1 // boehm.cc - interface between libjava and Boehm GC.
3 /* Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation
5 This file is part of libgcj.
7 This software is copyrighted work licensed under the terms of the
8 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
18 #include <java/lang/Class.h>
19 #include <java/lang/reflect/Modifier.h>
20 #include <java-interp.h>
22 // More nastiness: the GC wants to define TRUE and FALSE. We don't
23 // need the Java definitions (themselves a hack), so we undefine them.
29 #include <private/gc_pmark.h>
32 #ifdef THREAD_LOCAL_ALLOC
33 # define GC_REDIRECT_TO_LOCAL
34 # include <gc_local_alloc.h>
37 // These aren't declared in any Boehm GC header.
38 void GC_finalize_all (void);
39 ptr_t
GC_debug_generic_malloc (size_t size
, int k
, GC_EXTRA_PARAMS
);
42 #define MAYBE_MARK(Obj, Top, Limit, Source, Exit) \
43 Top=GC_MARK_AND_PUSH((GC_PTR)Obj, Top, Limit, (GC_PTR *)Source)
45 // `kind' index used when allocating Java arrays.
46 static int array_kind_x
;
48 // Freelist used for Java arrays.
49 static ptr_t
*array_free_list
;
51 // Lock used to protect access to Boehm's GC_enable/GC_disable functions.
52 static _Jv_Mutex_t disable_gc_mutex
;
56 // This is called by the GC during the mark phase. It marks a Java
57 // object. We use `void *' arguments and return, and not what the
58 // Boehm GC wants, to avoid pollution in our headers.
60 _Jv_MarkObj (void *addr
, void *msp
, void *msl
, void * /* env */)
62 mse
*mark_stack_ptr
= (mse
*) msp
;
63 mse
*mark_stack_limit
= (mse
*) msl
;
64 jobject obj
= (jobject
) addr
;
66 // FIXME: if env is 1, this object was allocated through the debug
67 // interface, and addr points to the beginning of the debug header.
68 // In that case, we should really add the size of the header to addr.
70 _Jv_VTable
*dt
= *(_Jv_VTable
**) addr
;
71 // The object might not yet have its vtable set, or it might
72 // really be an object on the freelist. In either case, the vtable slot
73 // will either be 0, or it will point to a cleared object.
74 // This assumes Java objects have size at least 3 words,
75 // including the header. But this should remain true, since this
76 // should only be used with debugging allocation or with large objects.
77 if (__builtin_expect (! dt
|| !(dt
-> get_finalizer()), false))
78 return mark_stack_ptr
;
79 jclass klass
= dt
->clas
;
82 # ifndef JV_HASH_SYNCHRONIZATION
83 // Every object has a sync_info pointer.
84 p
= (ptr_t
) obj
->sync_info
;
85 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, obj
, o1label
);
87 // Mark the object's class.
89 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, obj
, o2label
);
91 if (__builtin_expect (klass
== &java::lang::Class::class$
, false))
93 // Currently we allocate some of the memory referenced from class objects
94 // as pointerfree memory, and then mark it more intelligently here.
95 // We ensure that the ClassClass mark descriptor forces invocation of
97 // Correctness of this is subtle, but it looks OK to me for now. For the incremental
98 // collector, we need to make sure that the class object is written whenever
99 // any of the subobjects are altered and may need rescanning. This may be tricky
100 // during construction, and this may not be the right way to do this with
101 // incremental collection.
102 // If we overflow the mark stack, we will rescan the class object, so we should
103 // be OK. The same applies if we redo the mark phase because win32 unmapped part
104 // of our root set. - HB
105 jclass c
= (jclass
) addr
;
108 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c3label
);
109 p
= (ptr_t
) c
->superclass
;
110 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c4label
);
111 for (int i
= 0; i
< c
->constants
.size
; ++i
)
113 /* FIXME: We could make this more precise by using the tags -KKT */
114 p
= (ptr_t
) c
->constants
.data
[i
].p
;
115 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c5label
);
119 if (_Jv_IsInterpretedClass (c
))
121 p
= (ptr_t
) c
->constants
.tags
;
122 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c5alabel
);
123 p
= (ptr_t
) c
->constants
.data
;
124 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c5blabel
);
125 p
= (ptr_t
) c
->vtable
;
126 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c5clabel
);
130 // If the class is an array, then the methods field holds a
131 // pointer to the element class. If the class is primitive,
132 // then the methods field holds a pointer to the array class.
133 p
= (ptr_t
) c
->methods
;
134 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c6label
);
136 // The vtable might have been set, but the rest of the class
137 // could still be uninitialized. If this is the case, then
138 // c.isArray will SEGV. We check for this, and if it is the
139 // case we just return.
140 if (__builtin_expect (c
->name
== NULL
, false))
141 return mark_stack_ptr
;
143 if (! c
->isArray() && ! c
->isPrimitive())
145 // Scan each method in the cases where `methods' really
146 // points to a methods structure.
147 for (int i
= 0; i
< c
->method_count
; ++i
)
149 p
= (ptr_t
) c
->methods
[i
].name
;
150 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
,
152 p
= (ptr_t
) c
->methods
[i
].signature
;
153 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
,
158 // Mark all the fields.
159 p
= (ptr_t
) c
->fields
;
160 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c8label
);
161 for (int i
= 0; i
< c
->field_count
; ++i
)
163 _Jv_Field
* field
= &c
->fields
[i
];
165 #ifndef COMPACT_FIELDS
166 p
= (ptr_t
) field
->name
;
167 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c8alabel
);
169 p
= (ptr_t
) field
->type
;
170 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c8blabel
);
172 // For the interpreter, we also need to mark the memory
173 // containing static members
174 if ((field
->flags
& java::lang::reflect::Modifier::STATIC
))
176 p
= (ptr_t
) field
->u
.addr
;
177 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c8clabel
);
179 // also, if the static member is a reference,
180 // mark also the value pointed to. We check for isResolved
181 // since marking can happen before memory is allocated for
183 if (JvFieldIsRef (field
) && field
->isResolved())
185 jobject val
= *(jobject
*) field
->u
.addr
;
187 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
,
193 p
= (ptr_t
) c
->vtable
;
194 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c9label
);
195 p
= (ptr_t
) c
->interfaces
;
196 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, cAlabel
);
197 for (int i
= 0; i
< c
->interface_count
; ++i
)
199 p
= (ptr_t
) c
->interfaces
[i
];
200 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, cClabel
);
202 p
= (ptr_t
) c
->loader
;
203 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, cBlabel
);
204 p
= (ptr_t
) c
->arrayclass
;
205 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, cDlabel
);
206 p
= (ptr_t
) c
->protectionDomain
;
207 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, cPlabel
);
210 if (_Jv_IsInterpretedClass (c
))
212 _Jv_InterpClass
* ic
= (_Jv_InterpClass
*) c
;
214 p
= (ptr_t
) ic
->interpreted_methods
;
215 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, ic
, cElabel
);
217 for (int i
= 0; i
< c
->method_count
; i
++)
219 p
= (ptr_t
) ic
->interpreted_methods
[i
];
220 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, ic
, \
223 // Mark the direct-threaded code.
224 if ((c
->methods
[i
].accflags
225 & java::lang::reflect::Modifier::NATIVE
) == 0)
228 = (_Jv_InterpMethod
*) ic
->interpreted_methods
[i
];
231 p
= (ptr_t
) im
->prepared
;
232 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, ic
, \
237 // The interpreter installs a heap-allocated trampoline
238 // here, so we'll mark it.
239 p
= (ptr_t
) c
->methods
[i
].ncode
;
240 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
,
244 p
= (ptr_t
) ic
->field_initializers
;
245 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, ic
, cGlabel
);
253 // NOTE: each class only holds information about the class
254 // itself. So we must do the marking for the entire inheritance
255 // tree in order to mark all fields. FIXME: what about
256 // interfaces? We skip Object here, because Object only has a
257 // sync_info, and we handled that earlier.
258 // Note: occasionally `klass' can be null. For instance, this
259 // can happen if a GC occurs between the point where an object
260 // is allocated and where the vtbl slot is set.
261 while (klass
&& klass
!= &java::lang::Object::class$
)
263 jfieldID field
= JvGetFirstInstanceField (klass
);
264 jint max
= JvNumInstanceFields (klass
);
266 for (int i
= 0; i
< max
; ++i
)
268 if (JvFieldIsRef (field
))
270 jobject val
= JvGetObjectField (obj
, field
);
272 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
,
275 field
= field
->getNextField ();
277 klass
= klass
->getSuperclass();
281 return mark_stack_ptr
;
284 // This is called by the GC during the mark phase. It marks a Java
285 // array (of objects). We use `void *' arguments and return, and not
286 // what the Boehm GC wants, to avoid pollution in our headers.
288 _Jv_MarkArray (void *addr
, void *msp
, void *msl
, void * /*env*/)
290 mse
*mark_stack_ptr
= (mse
*) msp
;
291 mse
*mark_stack_limit
= (mse
*) msl
;
292 jobjectArray array
= (jobjectArray
) addr
;
294 _Jv_VTable
*dt
= *(_Jv_VTable
**) addr
;
295 // Assumes size >= 3 words. That's currently true since arrays have
296 // a vtable, sync pointer, and size. If the sync pointer goes away,
297 // we may need to round up the size.
298 if (__builtin_expect (! dt
|| !(dt
-> get_finalizer()), false))
299 return mark_stack_ptr
;
300 jclass klass
= dt
->clas
;
303 # ifndef JV_HASH_SYNCHRONIZATION
304 // Every object has a sync_info pointer.
305 p
= (ptr_t
) array
->sync_info
;
306 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, array
, e1label
);
308 // Mark the object's class.
310 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, &(dt
-> clas
), o2label
);
312 for (int i
= 0; i
< JvGetArrayLength (array
); ++i
)
314 jobject obj
= elements (array
)[i
];
316 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, array
, e2label
);
319 return mark_stack_ptr
;
322 // Generate a GC marking descriptor for a class.
324 // We assume that the gcj mark proc has index 0. This is a dubious assumption,
325 // since another one could be registered first. But the compiler also
326 // knows this, so in that case everything else will break, too.
327 #define GCJ_DEFAULT_DESCR GC_MAKE_PROC(GC_GCJ_RESERVED_MARK_PROC_INDEX,0)
329 _Jv_BuildGCDescr(jclass
)
331 /* FIXME: We should really look at the class and build the descriptor. */
332 return (void *)(GCJ_DEFAULT_DESCR
);
335 // Allocate some space that is known to be pointer-free.
337 _Jv_AllocBytes (jsize size
)
339 void *r
= GC_MALLOC_ATOMIC (size
);
340 // We have to explicitly zero memory here, as the GC doesn't
341 // guarantee that PTRFREE allocations are zeroed. Note that we
342 // don't have to do this for other allocation types because we set
343 // the `ok_init' flag in the type descriptor.
348 // Allocate space for a new Java array.
349 // Used only for arrays of objects.
351 _Jv_AllocArray (jsize size
, jclass klass
)
354 const jsize min_heap_addr
= 16*1024;
355 // A heuristic. If size is less than this value, the size
356 // stored in the array can't possibly be misinterpreted as
357 // a pointer. Thus we lose nothing by scanning the object
358 // completely conservatively, since no misidentification can
362 // There isn't much to lose by scanning this conservatively.
363 // If we didn't, the mark proc would have to understand that
364 // it needed to skip the header.
365 obj
= GC_MALLOC(size
);
367 if (size
< min_heap_addr
)
368 obj
= GC_MALLOC(size
);
370 obj
= GC_generic_malloc (size
, array_kind_x
);
372 *((_Jv_VTable
**) obj
) = klass
->vtable
;
376 /* Allocate space for a new non-Java object, which does not have the usual
377 Java object header but may contain pointers to other GC'ed objects. */
379 _Jv_AllocRawObj (jsize size
)
381 return (void *) GC_MALLOC (size
);
385 call_finalizer (GC_PTR obj
, GC_PTR client_data
)
387 _Jv_FinalizerFunc
*fn
= (_Jv_FinalizerFunc
*) client_data
;
388 jobject jobj
= (jobject
) obj
;
394 _Jv_RegisterFinalizer (void *object
, _Jv_FinalizerFunc
*meth
)
396 GC_REGISTER_FINALIZER_NO_ORDER (object
, call_finalizer
, (GC_PTR
) meth
,
401 _Jv_RunFinalizers (void)
403 GC_invoke_finalizers ();
407 _Jv_RunAllFinalizers (void)
419 _Jv_GCTotalMemory (void)
421 return GC_get_heap_size ();
425 _Jv_GCFreeMemory (void)
427 return GC_get_free_bytes ();
431 _Jv_GCSetInitialHeapSize (size_t size
)
433 size_t current
= GC_get_heap_size ();
435 GC_expand_hp (size
- current
);
439 _Jv_GCSetMaximumHeapSize (size_t size
)
441 GC_set_max_heap_size ((GC_word
) size
);
444 // From boehm's misc.c
445 extern "C" void GC_enable();
446 extern "C" void GC_disable();
451 _Jv_MutexLock (&disable_gc_mutex
);
453 _Jv_MutexUnlock (&disable_gc_mutex
);
459 _Jv_MutexLock (&disable_gc_mutex
);
461 _Jv_MutexUnlock (&disable_gc_mutex
);
464 static void * handle_out_of_memory(size_t)
474 // Ignore pointers that do not point to the start of an object.
475 GC_all_interior_pointers
= 0;
477 // Configure the collector to use the bitmap marking descriptors that we
478 // stash in the class vtable.
479 GC_init_gcj_malloc (0, (void *) _Jv_MarkObj
);
481 // Cause an out of memory error to be thrown from the allocators,
482 // instead of returning 0. This is cheaper than checking on allocation.
483 GC_oom_fn
= handle_out_of_memory
;
485 GC_java_finalization
= 1;
487 // We use a different mark procedure for object arrays. This code
488 // configures a different object `kind' for object array allocation and
489 // marking. FIXME: see above.
490 array_free_list
= (ptr_t
*) GC_generic_malloc_inner ((MAXOBJSZ
+ 1)
493 memset (array_free_list
, 0, (MAXOBJSZ
+ 1) * sizeof (ptr_t
));
495 proc
= GC_n_mark_procs
++;
496 GC_mark_procs
[proc
] = (GC_mark_proc
) _Jv_MarkArray
;
498 array_kind_x
= GC_n_kinds
++;
499 GC_obj_kinds
[array_kind_x
].ok_freelist
= array_free_list
;
500 GC_obj_kinds
[array_kind_x
].ok_reclaim_list
= 0;
501 GC_obj_kinds
[array_kind_x
].ok_descriptor
= GC_MAKE_PROC (proc
, 0);
502 GC_obj_kinds
[array_kind_x
].ok_relocate_descr
= FALSE
;
503 GC_obj_kinds
[array_kind_x
].ok_init
= TRUE
;
505 _Jv_MutexInit (&disable_gc_mutex
);
508 #ifdef JV_HASH_SYNCHRONIZATION
509 // Allocate an object with a fake vtable pointer, which causes only
510 // the first field (beyond the fake vtable pointer) to be traced.
511 // Eventually this should probably be generalized.
513 static _Jv_VTable trace_one_vtable
= {
515 (void *)(2 * sizeof(void *)),
516 // descriptor; scan 2 words incl. vtable ptr.
517 // Least significant bits must be zero to
518 // identify this as a length descriptor
523 _Jv_AllocTraceOne (jsize size
/* includes vtable slot */)
525 return GC_GCJ_MALLOC (size
, &trace_one_vtable
);
528 // Ditto for two words.
529 // the first field (beyond the fake vtable pointer) to be traced.
530 // Eventually this should probably be generalized.
532 static _Jv_VTable trace_two_vtable
=
535 (void *)(3 * sizeof(void *)),
536 // descriptor; scan 3 words incl. vtable ptr.
541 _Jv_AllocTraceTwo (jsize size
/* includes vtable slot */)
543 return GC_GCJ_MALLOC (size
, &trace_two_vtable
);
546 #endif /* JV_HASH_SYNCHRONIZATION */
549 _Jv_GCInitializeFinalizers (void (*notifier
) (void))
551 GC_finalize_on_demand
= 1;
552 GC_finalizer_notifier
= notifier
;
556 _Jv_GCRegisterDisappearingLink (jobject
*objp
)
558 GC_general_register_disappearing_link ((GC_PTR
*) objp
, (GC_PTR
) *objp
);
562 _Jv_GCCanReclaimSoftReference (jobject
)
564 // For now, always reclaim soft references. FIXME.