fix typo
[official-gcc.git] / gcc / function.c
blob31b71c68d2c19d83aecf9312ee8a98453665c192
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register.
37 Call `put_var_into_stack' when you learn, belatedly, that a variable
38 previously given a pseudo-register must in fact go in the stack.
39 This function changes the DECL_RTL to be a stack slot instead of a reg
40 then scans all the RTL instructions so far generated to correct them. */
42 #include "config.h"
43 #include "system.h"
44 #include "rtl.h"
45 #include "tree.h"
46 #include "flags.h"
47 #include "except.h"
48 #include "function.h"
49 #include "insn-flags.h"
50 #include "expr.h"
51 #include "insn-codes.h"
52 #include "regs.h"
53 #include "hard-reg-set.h"
54 #include "insn-config.h"
55 #include "recog.h"
56 #include "output.h"
57 #include "basic-block.h"
58 #include "obstack.h"
59 #include "toplev.h"
60 #include "hash.h"
61 #include "ggc.h"
62 #include "tm_p.h"
64 #ifndef ACCUMULATE_OUTGOING_ARGS
65 #define ACCUMULATE_OUTGOING_ARGS 0
66 #endif
68 #ifndef TRAMPOLINE_ALIGNMENT
69 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
70 #endif
72 #ifndef LOCAL_ALIGNMENT
73 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
74 #endif
76 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
77 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
78 #endif
80 /* Some systems use __main in a way incompatible with its use in gcc, in these
81 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
82 give the same symbol without quotes for an alternative entry point. You
83 must define both, or neither. */
84 #ifndef NAME__MAIN
85 #define NAME__MAIN "__main"
86 #define SYMBOL__MAIN __main
87 #endif
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
94 /* Similar, but round to the next highest integer that meets the
95 alignment. */
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
98 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
99 during rtl generation. If they are different register numbers, this is
100 always true. It may also be true if
101 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
102 generation. See fix_lexical_addr for details. */
104 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
105 #define NEED_SEPARATE_AP
106 #endif
108 /* Nonzero if function being compiled doesn't contain any calls
109 (ignoring the prologue and epilogue). This is set prior to
110 local register allocation and is valid for the remaining
111 compiler passes. */
112 int current_function_is_leaf;
114 /* Nonzero if function being compiled doesn't contain any instructions
115 that can throw an exception. This is set prior to final. */
117 int current_function_nothrow;
119 /* Nonzero if function being compiled doesn't modify the stack pointer
120 (ignoring the prologue and epilogue). This is only valid after
121 life_analysis has run. */
122 int current_function_sp_is_unchanging;
124 /* Nonzero if the function being compiled is a leaf function which only
125 uses leaf registers. This is valid after reload (specifically after
126 sched2) and is useful only if the port defines LEAF_REGISTERS. */
127 int current_function_uses_only_leaf_regs;
129 /* Nonzero once virtual register instantiation has been done.
130 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
131 static int virtuals_instantiated;
133 /* These variables hold pointers to functions to
134 save and restore machine-specific data,
135 in push_function_context and pop_function_context. */
136 void (*init_machine_status) PARAMS ((struct function *));
137 void (*save_machine_status) PARAMS ((struct function *));
138 void (*restore_machine_status) PARAMS ((struct function *));
139 void (*mark_machine_status) PARAMS ((struct function *));
140 void (*free_machine_status) PARAMS ((struct function *));
142 /* Likewise, but for language-specific data. */
143 void (*init_lang_status) PARAMS ((struct function *));
144 void (*save_lang_status) PARAMS ((struct function *));
145 void (*restore_lang_status) PARAMS ((struct function *));
146 void (*mark_lang_status) PARAMS ((struct function *));
147 void (*free_lang_status) PARAMS ((struct function *));
149 /* The FUNCTION_DECL for an inline function currently being expanded. */
150 tree inline_function_decl;
152 /* The currently compiled function. */
153 struct function *cfun = 0;
155 /* Global list of all compiled functions. */
156 struct function *all_functions = 0;
158 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
159 static varray_type prologue;
160 static varray_type epilogue;
162 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
163 in this function. */
164 static varray_type sibcall_epilogue;
166 /* In order to evaluate some expressions, such as function calls returning
167 structures in memory, we need to temporarily allocate stack locations.
168 We record each allocated temporary in the following structure.
170 Associated with each temporary slot is a nesting level. When we pop up
171 one level, all temporaries associated with the previous level are freed.
172 Normally, all temporaries are freed after the execution of the statement
173 in which they were created. However, if we are inside a ({...}) grouping,
174 the result may be in a temporary and hence must be preserved. If the
175 result could be in a temporary, we preserve it if we can determine which
176 one it is in. If we cannot determine which temporary may contain the
177 result, all temporaries are preserved. A temporary is preserved by
178 pretending it was allocated at the previous nesting level.
180 Automatic variables are also assigned temporary slots, at the nesting
181 level where they are defined. They are marked a "kept" so that
182 free_temp_slots will not free them. */
184 struct temp_slot
186 /* Points to next temporary slot. */
187 struct temp_slot *next;
188 /* The rtx to used to reference the slot. */
189 rtx slot;
190 /* The rtx used to represent the address if not the address of the
191 slot above. May be an EXPR_LIST if multiple addresses exist. */
192 rtx address;
193 /* The alignment (in bits) of the slot. */
194 int align;
195 /* The size, in units, of the slot. */
196 HOST_WIDE_INT size;
197 /* The alias set for the slot. If the alias set is zero, we don't
198 know anything about the alias set of the slot. We must only
199 reuse a slot if it is assigned an object of the same alias set.
200 Otherwise, the rest of the compiler may assume that the new use
201 of the slot cannot alias the old use of the slot, which is
202 false. If the slot has alias set zero, then we can't reuse the
203 slot at all, since we have no idea what alias set may have been
204 imposed on the memory. For example, if the stack slot is the
205 call frame for an inline functioned, we have no idea what alias
206 sets will be assigned to various pieces of the call frame. */
207 HOST_WIDE_INT alias_set;
208 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
209 tree rtl_expr;
210 /* Non-zero if this temporary is currently in use. */
211 char in_use;
212 /* Non-zero if this temporary has its address taken. */
213 char addr_taken;
214 /* Nesting level at which this slot is being used. */
215 int level;
216 /* Non-zero if this should survive a call to free_temp_slots. */
217 int keep;
218 /* The offset of the slot from the frame_pointer, including extra space
219 for alignment. This info is for combine_temp_slots. */
220 HOST_WIDE_INT base_offset;
221 /* The size of the slot, including extra space for alignment. This
222 info is for combine_temp_slots. */
223 HOST_WIDE_INT full_size;
226 /* This structure is used to record MEMs or pseudos used to replace VAR, any
227 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
228 maintain this list in case two operands of an insn were required to match;
229 in that case we must ensure we use the same replacement. */
231 struct fixup_replacement
233 rtx old;
234 rtx new;
235 struct fixup_replacement *next;
238 struct insns_for_mem_entry {
239 /* The KEY in HE will be a MEM. */
240 struct hash_entry he;
241 /* These are the INSNS which reference the MEM. */
242 rtx insns;
245 /* Forward declarations. */
247 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
248 int, struct function *));
249 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
250 HOST_WIDE_INT, int, tree));
251 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
252 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
253 enum machine_mode, enum machine_mode,
254 int, unsigned int, int,
255 struct hash_table *));
256 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
257 struct hash_table *));
258 static struct fixup_replacement
259 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
260 static void fixup_var_refs_insns PARAMS ((rtx, enum machine_mode, int,
261 rtx, int, struct hash_table *));
262 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
263 struct fixup_replacement **));
264 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
265 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
266 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
267 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
268 static void instantiate_decls PARAMS ((tree, int));
269 static void instantiate_decls_1 PARAMS ((tree, int));
270 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
271 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
272 static void delete_handlers PARAMS ((void));
273 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
274 struct args_size *));
275 #ifndef ARGS_GROW_DOWNWARD
276 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
277 tree));
278 #endif
279 #ifdef ARGS_GROW_DOWNWARD
280 static tree round_down PARAMS ((tree, int));
281 #endif
282 static rtx round_trampoline_addr PARAMS ((rtx));
283 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
284 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
285 static tree blocks_nreverse PARAMS ((tree));
286 static int all_blocks PARAMS ((tree, tree *));
287 static tree *get_block_vector PARAMS ((tree, int *));
288 /* We always define `record_insns' even if its not used so that we
289 can always export `prologue_epilogue_contains'. */
290 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
291 static int contains PARAMS ((rtx, varray_type));
292 #ifdef HAVE_return
293 static void emit_return_into_block PARAMS ((basic_block, rtx));
294 #endif
295 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
296 static boolean purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
297 struct hash_table *));
298 static int is_addressof PARAMS ((rtx *, void *));
299 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
300 struct hash_table *,
301 hash_table_key));
302 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
303 static boolean insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
304 static int insns_for_mem_walk PARAMS ((rtx *, void *));
305 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
306 static void mark_temp_slot PARAMS ((struct temp_slot *));
307 static void mark_function_status PARAMS ((struct function *));
308 static void mark_function_chain PARAMS ((void *));
309 static void prepare_function_start PARAMS ((void));
310 static void do_clobber_return_reg PARAMS ((rtx, void *));
311 static void do_use_return_reg PARAMS ((rtx, void *));
313 /* Pointer to chain of `struct function' for containing functions. */
314 struct function *outer_function_chain;
316 /* Given a function decl for a containing function,
317 return the `struct function' for it. */
319 struct function *
320 find_function_data (decl)
321 tree decl;
323 struct function *p;
325 for (p = outer_function_chain; p; p = p->next)
326 if (p->decl == decl)
327 return p;
329 abort ();
332 /* Save the current context for compilation of a nested function.
333 This is called from language-specific code. The caller should use
334 the save_lang_status callback to save any language-specific state,
335 since this function knows only about language-independent
336 variables. */
338 void
339 push_function_context_to (context)
340 tree context;
342 struct function *p, *context_data;
344 if (context)
346 context_data = (context == current_function_decl
347 ? cfun
348 : find_function_data (context));
349 context_data->contains_functions = 1;
352 if (cfun == 0)
353 init_dummy_function_start ();
354 p = cfun;
356 p->next = outer_function_chain;
357 outer_function_chain = p;
358 p->fixup_var_refs_queue = 0;
360 save_tree_status (p);
361 if (save_lang_status)
362 (*save_lang_status) (p);
363 if (save_machine_status)
364 (*save_machine_status) (p);
366 cfun = 0;
369 void
370 push_function_context ()
372 push_function_context_to (current_function_decl);
375 /* Restore the last saved context, at the end of a nested function.
376 This function is called from language-specific code. */
378 void
379 pop_function_context_from (context)
380 tree context ATTRIBUTE_UNUSED;
382 struct function *p = outer_function_chain;
383 struct var_refs_queue *queue;
384 struct var_refs_queue *next;
386 cfun = p;
387 outer_function_chain = p->next;
389 current_function_decl = p->decl;
390 reg_renumber = 0;
392 restore_tree_status (p);
393 restore_emit_status (p);
395 if (restore_machine_status)
396 (*restore_machine_status) (p);
397 if (restore_lang_status)
398 (*restore_lang_status) (p);
400 /* Finish doing put_var_into_stack for any of our variables
401 which became addressable during the nested function. */
402 for (queue = p->fixup_var_refs_queue; queue; queue = next)
404 next = queue->next;
405 fixup_var_refs (queue->modified, queue->promoted_mode,
406 queue->unsignedp, 0);
407 free (queue);
409 p->fixup_var_refs_queue = 0;
411 /* Reset variables that have known state during rtx generation. */
412 rtx_equal_function_value_matters = 1;
413 virtuals_instantiated = 0;
416 void
417 pop_function_context ()
419 pop_function_context_from (current_function_decl);
422 /* Clear out all parts of the state in F that can safely be discarded
423 after the function has been parsed, but not compiled, to let
424 garbage collection reclaim the memory. */
426 void
427 free_after_parsing (f)
428 struct function *f;
430 /* f->expr->forced_labels is used by code generation. */
431 /* f->emit->regno_reg_rtx is used by code generation. */
432 /* f->varasm is used by code generation. */
433 /* f->eh->eh_return_stub_label is used by code generation. */
435 if (free_lang_status)
436 (*free_lang_status) (f);
437 free_stmt_status (f);
440 /* Clear out all parts of the state in F that can safely be discarded
441 after the function has been compiled, to let garbage collection
442 reclaim the memory. */
444 void
445 free_after_compilation (f)
446 struct function *f;
448 struct temp_slot *ts;
449 struct temp_slot *next;
451 free_eh_status (f);
452 free_expr_status (f);
453 free_emit_status (f);
454 free_varasm_status (f);
456 if (free_machine_status)
457 (*free_machine_status) (f);
459 if (f->x_parm_reg_stack_loc)
460 free (f->x_parm_reg_stack_loc);
462 for (ts = f->x_temp_slots; ts; ts = next)
464 next = ts->next;
465 free (ts);
467 f->x_temp_slots = NULL;
469 f->arg_offset_rtx = NULL;
470 f->return_rtx = NULL;
471 f->internal_arg_pointer = NULL;
472 f->x_nonlocal_labels = NULL;
473 f->x_nonlocal_goto_handler_slots = NULL;
474 f->x_nonlocal_goto_handler_labels = NULL;
475 f->x_nonlocal_goto_stack_level = NULL;
476 f->x_cleanup_label = NULL;
477 f->x_return_label = NULL;
478 f->x_save_expr_regs = NULL;
479 f->x_stack_slot_list = NULL;
480 f->x_rtl_expr_chain = NULL;
481 f->x_tail_recursion_label = NULL;
482 f->x_tail_recursion_reentry = NULL;
483 f->x_arg_pointer_save_area = NULL;
484 f->x_context_display = NULL;
485 f->x_trampoline_list = NULL;
486 f->x_parm_birth_insn = NULL;
487 f->x_last_parm_insn = NULL;
488 f->x_parm_reg_stack_loc = NULL;
489 f->fixup_var_refs_queue = NULL;
490 f->original_arg_vector = NULL;
491 f->original_decl_initial = NULL;
492 f->inl_last_parm_insn = NULL;
493 f->epilogue_delay_list = NULL;
497 /* Allocate fixed slots in the stack frame of the current function. */
499 /* Return size needed for stack frame based on slots so far allocated in
500 function F.
501 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
502 the caller may have to do that. */
504 HOST_WIDE_INT
505 get_func_frame_size (f)
506 struct function *f;
508 #ifdef FRAME_GROWS_DOWNWARD
509 return -f->x_frame_offset;
510 #else
511 return f->x_frame_offset;
512 #endif
515 /* Return size needed for stack frame based on slots so far allocated.
516 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
517 the caller may have to do that. */
518 HOST_WIDE_INT
519 get_frame_size ()
521 return get_func_frame_size (cfun);
524 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
525 with machine mode MODE.
527 ALIGN controls the amount of alignment for the address of the slot:
528 0 means according to MODE,
529 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
530 positive specifies alignment boundary in bits.
532 We do not round to stack_boundary here.
534 FUNCTION specifies the function to allocate in. */
536 static rtx
537 assign_stack_local_1 (mode, size, align, function)
538 enum machine_mode mode;
539 HOST_WIDE_INT size;
540 int align;
541 struct function *function;
543 register rtx x, addr;
544 int bigend_correction = 0;
545 int alignment;
547 /* Allocate in the memory associated with the function in whose frame
548 we are assigning. */
549 if (function != cfun)
550 push_obstacks (function->function_obstack,
551 function->function_maybepermanent_obstack);
553 if (align == 0)
555 tree type;
557 alignment = GET_MODE_ALIGNMENT (mode);
558 if (mode == BLKmode)
559 alignment = BIGGEST_ALIGNMENT;
561 /* Allow the target to (possibly) increase the alignment of this
562 stack slot. */
563 type = type_for_mode (mode, 0);
564 if (type)
565 alignment = LOCAL_ALIGNMENT (type, alignment);
567 alignment /= BITS_PER_UNIT;
569 else if (align == -1)
571 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
572 size = CEIL_ROUND (size, alignment);
574 else
575 alignment = align / BITS_PER_UNIT;
577 #ifdef FRAME_GROWS_DOWNWARD
578 function->x_frame_offset -= size;
579 #endif
581 /* Ignore alignment we can't do with expected alignment of the boundary. */
582 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
583 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
585 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
586 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
588 /* Round frame offset to that alignment.
589 We must be careful here, since FRAME_OFFSET might be negative and
590 division with a negative dividend isn't as well defined as we might
591 like. So we instead assume that ALIGNMENT is a power of two and
592 use logical operations which are unambiguous. */
593 #ifdef FRAME_GROWS_DOWNWARD
594 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
595 #else
596 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
597 #endif
599 /* On a big-endian machine, if we are allocating more space than we will use,
600 use the least significant bytes of those that are allocated. */
601 if (BYTES_BIG_ENDIAN && mode != BLKmode)
602 bigend_correction = size - GET_MODE_SIZE (mode);
604 /* If we have already instantiated virtual registers, return the actual
605 address relative to the frame pointer. */
606 if (function == cfun && virtuals_instantiated)
607 addr = plus_constant (frame_pointer_rtx,
608 (frame_offset + bigend_correction
609 + STARTING_FRAME_OFFSET));
610 else
611 addr = plus_constant (virtual_stack_vars_rtx,
612 function->x_frame_offset + bigend_correction);
614 #ifndef FRAME_GROWS_DOWNWARD
615 function->x_frame_offset += size;
616 #endif
618 x = gen_rtx_MEM (mode, addr);
620 function->x_stack_slot_list
621 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
623 if (function != cfun)
624 pop_obstacks ();
626 return x;
629 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
630 current function. */
633 assign_stack_local (mode, size, align)
634 enum machine_mode mode;
635 HOST_WIDE_INT size;
636 int align;
638 return assign_stack_local_1 (mode, size, align, cfun);
641 /* Allocate a temporary stack slot and record it for possible later
642 reuse.
644 MODE is the machine mode to be given to the returned rtx.
646 SIZE is the size in units of the space required. We do no rounding here
647 since assign_stack_local will do any required rounding.
649 KEEP is 1 if this slot is to be retained after a call to
650 free_temp_slots. Automatic variables for a block are allocated
651 with this flag. KEEP is 2 if we allocate a longer term temporary,
652 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
653 if we are to allocate something at an inner level to be treated as
654 a variable in the block (e.g., a SAVE_EXPR).
656 TYPE is the type that will be used for the stack slot. */
658 static rtx
659 assign_stack_temp_for_type (mode, size, keep, type)
660 enum machine_mode mode;
661 HOST_WIDE_INT size;
662 int keep;
663 tree type;
665 int align;
666 HOST_WIDE_INT alias_set;
667 struct temp_slot *p, *best_p = 0;
669 /* If SIZE is -1 it means that somebody tried to allocate a temporary
670 of a variable size. */
671 if (size == -1)
672 abort ();
674 /* If we know the alias set for the memory that will be used, use
675 it. If there's no TYPE, then we don't know anything about the
676 alias set for the memory. */
677 if (type)
678 alias_set = get_alias_set (type);
679 else
680 alias_set = 0;
682 align = GET_MODE_ALIGNMENT (mode);
683 if (mode == BLKmode)
684 align = BIGGEST_ALIGNMENT;
686 if (! type)
687 type = type_for_mode (mode, 0);
689 if (type)
690 align = LOCAL_ALIGNMENT (type, align);
692 /* Try to find an available, already-allocated temporary of the proper
693 mode which meets the size and alignment requirements. Choose the
694 smallest one with the closest alignment. */
695 for (p = temp_slots; p; p = p->next)
696 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
697 && ! p->in_use
698 && (! flag_strict_aliasing
699 || (alias_set && p->alias_set == alias_set))
700 && (best_p == 0 || best_p->size > p->size
701 || (best_p->size == p->size && best_p->align > p->align)))
703 if (p->align == align && p->size == size)
705 best_p = 0;
706 break;
708 best_p = p;
711 /* Make our best, if any, the one to use. */
712 if (best_p)
714 /* If there are enough aligned bytes left over, make them into a new
715 temp_slot so that the extra bytes don't get wasted. Do this only
716 for BLKmode slots, so that we can be sure of the alignment. */
717 if (GET_MODE (best_p->slot) == BLKmode)
719 int alignment = best_p->align / BITS_PER_UNIT;
720 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
722 if (best_p->size - rounded_size >= alignment)
724 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
725 p->in_use = p->addr_taken = 0;
726 p->size = best_p->size - rounded_size;
727 p->base_offset = best_p->base_offset + rounded_size;
728 p->full_size = best_p->full_size - rounded_size;
729 p->slot = gen_rtx_MEM (BLKmode,
730 plus_constant (XEXP (best_p->slot, 0),
731 rounded_size));
732 p->align = best_p->align;
733 p->address = 0;
734 p->rtl_expr = 0;
735 p->alias_set = best_p->alias_set;
736 p->next = temp_slots;
737 temp_slots = p;
739 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
740 stack_slot_list);
742 best_p->size = rounded_size;
743 best_p->full_size = rounded_size;
747 p = best_p;
750 /* If we still didn't find one, make a new temporary. */
751 if (p == 0)
753 HOST_WIDE_INT frame_offset_old = frame_offset;
755 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
757 /* We are passing an explicit alignment request to assign_stack_local.
758 One side effect of that is assign_stack_local will not round SIZE
759 to ensure the frame offset remains suitably aligned.
761 So for requests which depended on the rounding of SIZE, we go ahead
762 and round it now. We also make sure ALIGNMENT is at least
763 BIGGEST_ALIGNMENT. */
764 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
765 abort();
766 p->slot = assign_stack_local (mode,
767 (mode == BLKmode
768 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
769 : size),
770 align);
772 p->align = align;
773 p->alias_set = alias_set;
775 /* The following slot size computation is necessary because we don't
776 know the actual size of the temporary slot until assign_stack_local
777 has performed all the frame alignment and size rounding for the
778 requested temporary. Note that extra space added for alignment
779 can be either above or below this stack slot depending on which
780 way the frame grows. We include the extra space if and only if it
781 is above this slot. */
782 #ifdef FRAME_GROWS_DOWNWARD
783 p->size = frame_offset_old - frame_offset;
784 #else
785 p->size = size;
786 #endif
788 /* Now define the fields used by combine_temp_slots. */
789 #ifdef FRAME_GROWS_DOWNWARD
790 p->base_offset = frame_offset;
791 p->full_size = frame_offset_old - frame_offset;
792 #else
793 p->base_offset = frame_offset_old;
794 p->full_size = frame_offset - frame_offset_old;
795 #endif
796 p->address = 0;
797 p->next = temp_slots;
798 temp_slots = p;
801 p->in_use = 1;
802 p->addr_taken = 0;
803 p->rtl_expr = seq_rtl_expr;
805 if (keep == 2)
807 p->level = target_temp_slot_level;
808 p->keep = 0;
810 else if (keep == 3)
812 p->level = var_temp_slot_level;
813 p->keep = 0;
815 else
817 p->level = temp_slot_level;
818 p->keep = keep;
821 /* We may be reusing an old slot, so clear any MEM flags that may have been
822 set from before. */
823 RTX_UNCHANGING_P (p->slot) = 0;
824 MEM_IN_STRUCT_P (p->slot) = 0;
825 MEM_SCALAR_P (p->slot) = 0;
826 MEM_ALIAS_SET (p->slot) = alias_set;
828 if (type != 0)
829 MEM_SET_IN_STRUCT_P (p->slot, AGGREGATE_TYPE_P (type));
831 return p->slot;
834 /* Allocate a temporary stack slot and record it for possible later
835 reuse. First three arguments are same as in preceding function. */
838 assign_stack_temp (mode, size, keep)
839 enum machine_mode mode;
840 HOST_WIDE_INT size;
841 int keep;
843 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
846 /* Assign a temporary of given TYPE.
847 KEEP is as for assign_stack_temp.
848 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
849 it is 0 if a register is OK.
850 DONT_PROMOTE is 1 if we should not promote values in register
851 to wider modes. */
854 assign_temp (type, keep, memory_required, dont_promote)
855 tree type;
856 int keep;
857 int memory_required;
858 int dont_promote ATTRIBUTE_UNUSED;
860 enum machine_mode mode = TYPE_MODE (type);
861 #ifndef PROMOTE_FOR_CALL_ONLY
862 int unsignedp = TREE_UNSIGNED (type);
863 #endif
865 if (mode == BLKmode || memory_required)
867 HOST_WIDE_INT size = int_size_in_bytes (type);
868 rtx tmp;
870 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
871 problems with allocating the stack space. */
872 if (size == 0)
873 size = 1;
875 /* Unfortunately, we don't yet know how to allocate variable-sized
876 temporaries. However, sometimes we have a fixed upper limit on
877 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
878 instead. This is the case for Chill variable-sized strings. */
879 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
880 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
881 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
882 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
884 tmp = assign_stack_temp_for_type (mode, size, keep, type);
885 return tmp;
888 #ifndef PROMOTE_FOR_CALL_ONLY
889 if (! dont_promote)
890 mode = promote_mode (type, mode, &unsignedp, 0);
891 #endif
893 return gen_reg_rtx (mode);
896 /* Combine temporary stack slots which are adjacent on the stack.
898 This allows for better use of already allocated stack space. This is only
899 done for BLKmode slots because we can be sure that we won't have alignment
900 problems in this case. */
902 void
903 combine_temp_slots ()
905 struct temp_slot *p, *q;
906 struct temp_slot *prev_p, *prev_q;
907 int num_slots;
909 /* We can't combine slots, because the information about which slot
910 is in which alias set will be lost. */
911 if (flag_strict_aliasing)
912 return;
914 /* If there are a lot of temp slots, don't do anything unless
915 high levels of optimizaton. */
916 if (! flag_expensive_optimizations)
917 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
918 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
919 return;
921 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
923 int delete_p = 0;
925 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
926 for (q = p->next, prev_q = p; q; q = prev_q->next)
928 int delete_q = 0;
929 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
931 if (p->base_offset + p->full_size == q->base_offset)
933 /* Q comes after P; combine Q into P. */
934 p->size += q->size;
935 p->full_size += q->full_size;
936 delete_q = 1;
938 else if (q->base_offset + q->full_size == p->base_offset)
940 /* P comes after Q; combine P into Q. */
941 q->size += p->size;
942 q->full_size += p->full_size;
943 delete_p = 1;
944 break;
947 /* Either delete Q or advance past it. */
948 if (delete_q)
950 prev_q->next = q->next;
951 free (q);
953 else
954 prev_q = q;
956 /* Either delete P or advance past it. */
957 if (delete_p)
959 if (prev_p)
960 prev_p->next = p->next;
961 else
962 temp_slots = p->next;
964 else
965 prev_p = p;
969 /* Find the temp slot corresponding to the object at address X. */
971 static struct temp_slot *
972 find_temp_slot_from_address (x)
973 rtx x;
975 struct temp_slot *p;
976 rtx next;
978 for (p = temp_slots; p; p = p->next)
980 if (! p->in_use)
981 continue;
983 else if (XEXP (p->slot, 0) == x
984 || p->address == x
985 || (GET_CODE (x) == PLUS
986 && XEXP (x, 0) == virtual_stack_vars_rtx
987 && GET_CODE (XEXP (x, 1)) == CONST_INT
988 && INTVAL (XEXP (x, 1)) >= p->base_offset
989 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
990 return p;
992 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
993 for (next = p->address; next; next = XEXP (next, 1))
994 if (XEXP (next, 0) == x)
995 return p;
998 /* If we have a sum involving a register, see if it points to a temp
999 slot. */
1000 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1001 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1002 return p;
1003 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1004 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1005 return p;
1007 return 0;
1010 /* Indicate that NEW is an alternate way of referring to the temp slot
1011 that previously was known by OLD. */
1013 void
1014 update_temp_slot_address (old, new)
1015 rtx old, new;
1017 struct temp_slot *p;
1019 if (rtx_equal_p (old, new))
1020 return;
1022 p = find_temp_slot_from_address (old);
1024 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1025 is a register, see if one operand of the PLUS is a temporary
1026 location. If so, NEW points into it. Otherwise, if both OLD and
1027 NEW are a PLUS and if there is a register in common between them.
1028 If so, try a recursive call on those values. */
1029 if (p == 0)
1031 if (GET_CODE (old) != PLUS)
1032 return;
1034 if (GET_CODE (new) == REG)
1036 update_temp_slot_address (XEXP (old, 0), new);
1037 update_temp_slot_address (XEXP (old, 1), new);
1038 return;
1040 else if (GET_CODE (new) != PLUS)
1041 return;
1043 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1044 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1045 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1046 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1047 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1048 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1049 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1050 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1052 return;
1055 /* Otherwise add an alias for the temp's address. */
1056 else if (p->address == 0)
1057 p->address = new;
1058 else
1060 if (GET_CODE (p->address) != EXPR_LIST)
1061 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1063 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1067 /* If X could be a reference to a temporary slot, mark the fact that its
1068 address was taken. */
1070 void
1071 mark_temp_addr_taken (x)
1072 rtx x;
1074 struct temp_slot *p;
1076 if (x == 0)
1077 return;
1079 /* If X is not in memory or is at a constant address, it cannot be in
1080 a temporary slot. */
1081 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1082 return;
1084 p = find_temp_slot_from_address (XEXP (x, 0));
1085 if (p != 0)
1086 p->addr_taken = 1;
1089 /* If X could be a reference to a temporary slot, mark that slot as
1090 belonging to the to one level higher than the current level. If X
1091 matched one of our slots, just mark that one. Otherwise, we can't
1092 easily predict which it is, so upgrade all of them. Kept slots
1093 need not be touched.
1095 This is called when an ({...}) construct occurs and a statement
1096 returns a value in memory. */
1098 void
1099 preserve_temp_slots (x)
1100 rtx x;
1102 struct temp_slot *p = 0;
1104 /* If there is no result, we still might have some objects whose address
1105 were taken, so we need to make sure they stay around. */
1106 if (x == 0)
1108 for (p = temp_slots; p; p = p->next)
1109 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1110 p->level--;
1112 return;
1115 /* If X is a register that is being used as a pointer, see if we have
1116 a temporary slot we know it points to. To be consistent with
1117 the code below, we really should preserve all non-kept slots
1118 if we can't find a match, but that seems to be much too costly. */
1119 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1120 p = find_temp_slot_from_address (x);
1122 /* If X is not in memory or is at a constant address, it cannot be in
1123 a temporary slot, but it can contain something whose address was
1124 taken. */
1125 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1127 for (p = temp_slots; p; p = p->next)
1128 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1129 p->level--;
1131 return;
1134 /* First see if we can find a match. */
1135 if (p == 0)
1136 p = find_temp_slot_from_address (XEXP (x, 0));
1138 if (p != 0)
1140 /* Move everything at our level whose address was taken to our new
1141 level in case we used its address. */
1142 struct temp_slot *q;
1144 if (p->level == temp_slot_level)
1146 for (q = temp_slots; q; q = q->next)
1147 if (q != p && q->addr_taken && q->level == p->level)
1148 q->level--;
1150 p->level--;
1151 p->addr_taken = 0;
1153 return;
1156 /* Otherwise, preserve all non-kept slots at this level. */
1157 for (p = temp_slots; p; p = p->next)
1158 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1159 p->level--;
1162 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1163 with that RTL_EXPR, promote it into a temporary slot at the present
1164 level so it will not be freed when we free slots made in the
1165 RTL_EXPR. */
1167 void
1168 preserve_rtl_expr_result (x)
1169 rtx x;
1171 struct temp_slot *p;
1173 /* If X is not in memory or is at a constant address, it cannot be in
1174 a temporary slot. */
1175 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1176 return;
1178 /* If we can find a match, move it to our level unless it is already at
1179 an upper level. */
1180 p = find_temp_slot_from_address (XEXP (x, 0));
1181 if (p != 0)
1183 p->level = MIN (p->level, temp_slot_level);
1184 p->rtl_expr = 0;
1187 return;
1190 /* Free all temporaries used so far. This is normally called at the end
1191 of generating code for a statement. Don't free any temporaries
1192 currently in use for an RTL_EXPR that hasn't yet been emitted.
1193 We could eventually do better than this since it can be reused while
1194 generating the same RTL_EXPR, but this is complex and probably not
1195 worthwhile. */
1197 void
1198 free_temp_slots ()
1200 struct temp_slot *p;
1202 for (p = temp_slots; p; p = p->next)
1203 if (p->in_use && p->level == temp_slot_level && ! p->keep
1204 && p->rtl_expr == 0)
1205 p->in_use = 0;
1207 combine_temp_slots ();
1210 /* Free all temporary slots used in T, an RTL_EXPR node. */
1212 void
1213 free_temps_for_rtl_expr (t)
1214 tree t;
1216 struct temp_slot *p;
1218 for (p = temp_slots; p; p = p->next)
1219 if (p->rtl_expr == t)
1221 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1222 needs to be preserved. This can happen if a temporary in
1223 the RTL_EXPR was addressed; preserve_temp_slots will move
1224 the temporary into a higher level. */
1225 if (temp_slot_level <= p->level)
1226 p->in_use = 0;
1227 else
1228 p->rtl_expr = NULL_TREE;
1231 combine_temp_slots ();
1234 /* Mark all temporaries ever allocated in this function as not suitable
1235 for reuse until the current level is exited. */
1237 void
1238 mark_all_temps_used ()
1240 struct temp_slot *p;
1242 for (p = temp_slots; p; p = p->next)
1244 p->in_use = p->keep = 1;
1245 p->level = MIN (p->level, temp_slot_level);
1249 /* Push deeper into the nesting level for stack temporaries. */
1251 void
1252 push_temp_slots ()
1254 temp_slot_level++;
1257 /* Likewise, but save the new level as the place to allocate variables
1258 for blocks. */
1260 #if 0
1261 void
1262 push_temp_slots_for_block ()
1264 push_temp_slots ();
1266 var_temp_slot_level = temp_slot_level;
1269 /* Likewise, but save the new level as the place to allocate temporaries
1270 for TARGET_EXPRs. */
1272 void
1273 push_temp_slots_for_target ()
1275 push_temp_slots ();
1277 target_temp_slot_level = temp_slot_level;
1280 /* Set and get the value of target_temp_slot_level. The only
1281 permitted use of these functions is to save and restore this value. */
1284 get_target_temp_slot_level ()
1286 return target_temp_slot_level;
1289 void
1290 set_target_temp_slot_level (level)
1291 int level;
1293 target_temp_slot_level = level;
1295 #endif
1297 /* Pop a temporary nesting level. All slots in use in the current level
1298 are freed. */
1300 void
1301 pop_temp_slots ()
1303 struct temp_slot *p;
1305 for (p = temp_slots; p; p = p->next)
1306 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1307 p->in_use = 0;
1309 combine_temp_slots ();
1311 temp_slot_level--;
1314 /* Initialize temporary slots. */
1316 void
1317 init_temp_slots ()
1319 /* We have not allocated any temporaries yet. */
1320 temp_slots = 0;
1321 temp_slot_level = 0;
1322 var_temp_slot_level = 0;
1323 target_temp_slot_level = 0;
1326 /* Retroactively move an auto variable from a register to a stack slot.
1327 This is done when an address-reference to the variable is seen. */
1329 void
1330 put_var_into_stack (decl)
1331 tree decl;
1333 register rtx reg;
1334 enum machine_mode promoted_mode, decl_mode;
1335 struct function *function = 0;
1336 tree context;
1337 int can_use_addressof;
1339 context = decl_function_context (decl);
1341 /* Get the current rtl used for this object and its original mode. */
1342 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1344 /* No need to do anything if decl has no rtx yet
1345 since in that case caller is setting TREE_ADDRESSABLE
1346 and a stack slot will be assigned when the rtl is made. */
1347 if (reg == 0)
1348 return;
1350 /* Get the declared mode for this object. */
1351 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1352 : DECL_MODE (decl));
1353 /* Get the mode it's actually stored in. */
1354 promoted_mode = GET_MODE (reg);
1356 /* If this variable comes from an outer function,
1357 find that function's saved context. */
1358 if (context != current_function_decl && context != inline_function_decl)
1359 for (function = outer_function_chain; function; function = function->next)
1360 if (function->decl == context)
1361 break;
1363 /* If this is a variable-size object with a pseudo to address it,
1364 put that pseudo into the stack, if the var is nonlocal. */
1365 if (DECL_NONLOCAL (decl)
1366 && GET_CODE (reg) == MEM
1367 && GET_CODE (XEXP (reg, 0)) == REG
1368 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1370 reg = XEXP (reg, 0);
1371 decl_mode = promoted_mode = GET_MODE (reg);
1374 can_use_addressof
1375 = (function == 0
1376 && optimize > 0
1377 /* FIXME make it work for promoted modes too */
1378 && decl_mode == promoted_mode
1379 #ifdef NON_SAVING_SETJMP
1380 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1381 #endif
1384 /* If we can't use ADDRESSOF, make sure we see through one we already
1385 generated. */
1386 if (! can_use_addressof && GET_CODE (reg) == MEM
1387 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1388 reg = XEXP (XEXP (reg, 0), 0);
1390 /* Now we should have a value that resides in one or more pseudo regs. */
1392 if (GET_CODE (reg) == REG)
1394 /* If this variable lives in the current function and we don't need
1395 to put things in the stack for the sake of setjmp, try to keep it
1396 in a register until we know we actually need the address. */
1397 if (can_use_addressof)
1398 gen_mem_addressof (reg, decl);
1399 else
1400 put_reg_into_stack (function, reg, TREE_TYPE (decl),
1401 promoted_mode, decl_mode,
1402 (TREE_CODE (decl) != SAVE_EXPR
1403 && TREE_THIS_VOLATILE (decl)),
1405 (TREE_USED (decl)
1406 || (TREE_CODE (decl) != SAVE_EXPR
1407 && DECL_INITIAL (decl) != 0)),
1410 else if (GET_CODE (reg) == CONCAT)
1412 /* A CONCAT contains two pseudos; put them both in the stack.
1413 We do it so they end up consecutive. */
1414 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1415 tree part_type = type_for_mode (part_mode, 0);
1416 #ifdef FRAME_GROWS_DOWNWARD
1417 /* Since part 0 should have a lower address, do it second. */
1418 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1419 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1420 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1422 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1423 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1424 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1426 #else
1427 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1428 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1429 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1431 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1432 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1433 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1435 #endif
1437 /* Change the CONCAT into a combined MEM for both parts. */
1438 PUT_CODE (reg, MEM);
1439 MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
1440 MEM_ALIAS_SET (reg) = get_alias_set (decl);
1441 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (TREE_TYPE (decl)));
1443 /* The two parts are in memory order already.
1444 Use the lower parts address as ours. */
1445 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1446 /* Prevent sharing of rtl that might lose. */
1447 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1448 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1450 else
1451 return;
1453 if (current_function_check_memory_usage)
1454 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
1455 XEXP (reg, 0), Pmode,
1456 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1457 TYPE_MODE (sizetype),
1458 GEN_INT (MEMORY_USE_RW),
1459 TYPE_MODE (integer_type_node));
1462 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1463 into the stack frame of FUNCTION (0 means the current function).
1464 DECL_MODE is the machine mode of the user-level data type.
1465 PROMOTED_MODE is the machine mode of the register.
1466 VOLATILE_P is nonzero if this is for a "volatile" decl.
1467 USED_P is nonzero if this reg might have already been used in an insn. */
1469 static void
1470 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1471 original_regno, used_p, ht)
1472 struct function *function;
1473 rtx reg;
1474 tree type;
1475 enum machine_mode promoted_mode, decl_mode;
1476 int volatile_p;
1477 unsigned int original_regno;
1478 int used_p;
1479 struct hash_table *ht;
1481 struct function *func = function ? function : cfun;
1482 rtx new = 0;
1483 unsigned int regno = original_regno;
1485 if (regno == 0)
1486 regno = REGNO (reg);
1488 if (regno < func->x_max_parm_reg)
1489 new = func->x_parm_reg_stack_loc[regno];
1491 if (new == 0)
1492 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1494 PUT_CODE (reg, MEM);
1495 PUT_MODE (reg, decl_mode);
1496 XEXP (reg, 0) = XEXP (new, 0);
1497 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1498 MEM_VOLATILE_P (reg) = volatile_p;
1500 /* If this is a memory ref that contains aggregate components,
1501 mark it as such for cse and loop optimize. If we are reusing a
1502 previously generated stack slot, then we need to copy the bit in
1503 case it was set for other reasons. For instance, it is set for
1504 __builtin_va_alist. */
1505 MEM_SET_IN_STRUCT_P (reg,
1506 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1507 MEM_ALIAS_SET (reg) = get_alias_set (type);
1509 /* Now make sure that all refs to the variable, previously made
1510 when it was a register, are fixed up to be valid again. */
1512 if (used_p && function != 0)
1514 struct var_refs_queue *temp;
1516 temp
1517 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1518 temp->modified = reg;
1519 temp->promoted_mode = promoted_mode;
1520 temp->unsignedp = TREE_UNSIGNED (type);
1521 temp->next = function->fixup_var_refs_queue;
1522 function->fixup_var_refs_queue = temp;
1524 else if (used_p)
1525 /* Variable is local; fix it up now. */
1526 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type), ht);
1529 static void
1530 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1531 rtx var;
1532 enum machine_mode promoted_mode;
1533 int unsignedp;
1534 struct hash_table *ht;
1536 tree pending;
1537 rtx first_insn = get_insns ();
1538 struct sequence_stack *stack = seq_stack;
1539 tree rtl_exps = rtl_expr_chain;
1540 rtx insn;
1542 /* Must scan all insns for stack-refs that exceed the limit. */
1543 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn,
1544 stack == 0, ht);
1545 /* If there's a hash table, it must record all uses of VAR. */
1546 if (ht)
1547 return;
1549 /* Scan all pending sequences too. */
1550 for (; stack; stack = stack->next)
1552 push_to_sequence (stack->first);
1553 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1554 stack->first, stack->next != 0, 0);
1555 /* Update remembered end of sequence
1556 in case we added an insn at the end. */
1557 stack->last = get_last_insn ();
1558 end_sequence ();
1561 /* Scan all waiting RTL_EXPRs too. */
1562 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1564 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1565 if (seq != const0_rtx && seq != 0)
1567 push_to_sequence (seq);
1568 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0,
1570 end_sequence ();
1574 /* Scan the catch clauses for exception handling too. */
1575 push_to_full_sequence (catch_clauses, catch_clauses_last);
1576 fixup_var_refs_insns (var, promoted_mode, unsignedp, catch_clauses,
1577 0, 0);
1578 end_full_sequence (&catch_clauses, &catch_clauses_last);
1580 /* Scan sequences saved in CALL_PLACEHOLDERS too. */
1581 for (insn = first_insn; insn; insn = NEXT_INSN (insn))
1583 if (GET_CODE (insn) == CALL_INSN
1584 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1586 int i;
1588 /* Look at the Normal call, sibling call and tail recursion
1589 sequences attached to the CALL_PLACEHOLDER. */
1590 for (i = 0; i < 3; i++)
1592 rtx seq = XEXP (PATTERN (insn), i);
1593 if (seq)
1595 push_to_sequence (seq);
1596 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1597 seq, 0, 0);
1598 XEXP (PATTERN (insn), i) = get_insns ();
1599 end_sequence ();
1606 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1607 some part of an insn. Return a struct fixup_replacement whose OLD
1608 value is equal to X. Allocate a new structure if no such entry exists. */
1610 static struct fixup_replacement *
1611 find_fixup_replacement (replacements, x)
1612 struct fixup_replacement **replacements;
1613 rtx x;
1615 struct fixup_replacement *p;
1617 /* See if we have already replaced this. */
1618 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1621 if (p == 0)
1623 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1624 p->old = x;
1625 p->new = 0;
1626 p->next = *replacements;
1627 *replacements = p;
1630 return p;
1633 /* Scan the insn-chain starting with INSN for refs to VAR
1634 and fix them up. TOPLEVEL is nonzero if this chain is the
1635 main chain of insns for the current function. */
1637 static void
1638 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel, ht)
1639 rtx var;
1640 enum machine_mode promoted_mode;
1641 int unsignedp;
1642 rtx insn;
1643 int toplevel;
1644 struct hash_table *ht;
1646 rtx call_dest = 0;
1647 rtx insn_list = NULL_RTX;
1649 /* If we already know which INSNs reference VAR there's no need
1650 to walk the entire instruction chain. */
1651 if (ht)
1653 insn_list = ((struct insns_for_mem_entry *)
1654 hash_lookup (ht, var, /*create=*/0, /*copy=*/0))->insns;
1655 insn = insn_list ? XEXP (insn_list, 0) : NULL_RTX;
1656 insn_list = XEXP (insn_list, 1);
1659 while (insn)
1661 rtx next = NEXT_INSN (insn);
1662 rtx set, prev, prev_set;
1663 rtx note;
1665 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1667 /* Remember the notes in case we delete the insn. */
1668 note = REG_NOTES (insn);
1670 /* If this is a CLOBBER of VAR, delete it.
1672 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1673 and REG_RETVAL notes too. */
1674 if (GET_CODE (PATTERN (insn)) == CLOBBER
1675 && (XEXP (PATTERN (insn), 0) == var
1676 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1677 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1678 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1680 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1681 /* The REG_LIBCALL note will go away since we are going to
1682 turn INSN into a NOTE, so just delete the
1683 corresponding REG_RETVAL note. */
1684 remove_note (XEXP (note, 0),
1685 find_reg_note (XEXP (note, 0), REG_RETVAL,
1686 NULL_RTX));
1688 /* In unoptimized compilation, we shouldn't call delete_insn
1689 except in jump.c doing warnings. */
1690 PUT_CODE (insn, NOTE);
1691 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1692 NOTE_SOURCE_FILE (insn) = 0;
1695 /* The insn to load VAR from a home in the arglist
1696 is now a no-op. When we see it, just delete it.
1697 Similarly if this is storing VAR from a register from which
1698 it was loaded in the previous insn. This will occur
1699 when an ADDRESSOF was made for an arglist slot. */
1700 else if (toplevel
1701 && (set = single_set (insn)) != 0
1702 && SET_DEST (set) == var
1703 /* If this represents the result of an insn group,
1704 don't delete the insn. */
1705 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1706 && (rtx_equal_p (SET_SRC (set), var)
1707 || (GET_CODE (SET_SRC (set)) == REG
1708 && (prev = prev_nonnote_insn (insn)) != 0
1709 && (prev_set = single_set (prev)) != 0
1710 && SET_DEST (prev_set) == SET_SRC (set)
1711 && rtx_equal_p (SET_SRC (prev_set), var))))
1713 /* In unoptimized compilation, we shouldn't call delete_insn
1714 except in jump.c doing warnings. */
1715 PUT_CODE (insn, NOTE);
1716 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1717 NOTE_SOURCE_FILE (insn) = 0;
1718 if (insn == last_parm_insn)
1719 last_parm_insn = PREV_INSN (next);
1721 else
1723 struct fixup_replacement *replacements = 0;
1724 rtx next_insn = NEXT_INSN (insn);
1726 if (SMALL_REGISTER_CLASSES)
1728 /* If the insn that copies the results of a CALL_INSN
1729 into a pseudo now references VAR, we have to use an
1730 intermediate pseudo since we want the life of the
1731 return value register to be only a single insn.
1733 If we don't use an intermediate pseudo, such things as
1734 address computations to make the address of VAR valid
1735 if it is not can be placed between the CALL_INSN and INSN.
1737 To make sure this doesn't happen, we record the destination
1738 of the CALL_INSN and see if the next insn uses both that
1739 and VAR. */
1741 if (call_dest != 0 && GET_CODE (insn) == INSN
1742 && reg_mentioned_p (var, PATTERN (insn))
1743 && reg_mentioned_p (call_dest, PATTERN (insn)))
1745 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1747 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1749 PATTERN (insn) = replace_rtx (PATTERN (insn),
1750 call_dest, temp);
1753 if (GET_CODE (insn) == CALL_INSN
1754 && GET_CODE (PATTERN (insn)) == SET)
1755 call_dest = SET_DEST (PATTERN (insn));
1756 else if (GET_CODE (insn) == CALL_INSN
1757 && GET_CODE (PATTERN (insn)) == PARALLEL
1758 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1759 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1760 else
1761 call_dest = 0;
1764 /* See if we have to do anything to INSN now that VAR is in
1765 memory. If it needs to be loaded into a pseudo, use a single
1766 pseudo for the entire insn in case there is a MATCH_DUP
1767 between two operands. We pass a pointer to the head of
1768 a list of struct fixup_replacements. If fixup_var_refs_1
1769 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1770 it will record them in this list.
1772 If it allocated a pseudo for any replacement, we copy into
1773 it here. */
1775 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1776 &replacements);
1778 /* If this is last_parm_insn, and any instructions were output
1779 after it to fix it up, then we must set last_parm_insn to
1780 the last such instruction emitted. */
1781 if (insn == last_parm_insn)
1782 last_parm_insn = PREV_INSN (next_insn);
1784 while (replacements)
1786 if (GET_CODE (replacements->new) == REG)
1788 rtx insert_before;
1789 rtx seq;
1791 /* OLD might be a (subreg (mem)). */
1792 if (GET_CODE (replacements->old) == SUBREG)
1793 replacements->old
1794 = fixup_memory_subreg (replacements->old, insn, 0);
1795 else
1796 replacements->old
1797 = fixup_stack_1 (replacements->old, insn);
1799 insert_before = insn;
1801 /* If we are changing the mode, do a conversion.
1802 This might be wasteful, but combine.c will
1803 eliminate much of the waste. */
1805 if (GET_MODE (replacements->new)
1806 != GET_MODE (replacements->old))
1808 start_sequence ();
1809 convert_move (replacements->new,
1810 replacements->old, unsignedp);
1811 seq = gen_sequence ();
1812 end_sequence ();
1814 else
1815 seq = gen_move_insn (replacements->new,
1816 replacements->old);
1818 emit_insn_before (seq, insert_before);
1821 replacements = replacements->next;
1825 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1826 But don't touch other insns referred to by reg-notes;
1827 we will get them elsewhere. */
1828 while (note)
1830 if (GET_CODE (note) != INSN_LIST)
1831 XEXP (note, 0)
1832 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1833 note = XEXP (note, 1);
1837 if (!ht)
1838 insn = next;
1839 else if (insn_list)
1841 insn = XEXP (insn_list, 0);
1842 insn_list = XEXP (insn_list, 1);
1844 else
1845 insn = NULL_RTX;
1849 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1850 See if the rtx expression at *LOC in INSN needs to be changed.
1852 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1853 contain a list of original rtx's and replacements. If we find that we need
1854 to modify this insn by replacing a memory reference with a pseudo or by
1855 making a new MEM to implement a SUBREG, we consult that list to see if
1856 we have already chosen a replacement. If none has already been allocated,
1857 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1858 or the SUBREG, as appropriate, to the pseudo. */
1860 static void
1861 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1862 register rtx var;
1863 enum machine_mode promoted_mode;
1864 register rtx *loc;
1865 rtx insn;
1866 struct fixup_replacement **replacements;
1868 register int i;
1869 register rtx x = *loc;
1870 RTX_CODE code = GET_CODE (x);
1871 register const char *fmt;
1872 register rtx tem, tem1;
1873 struct fixup_replacement *replacement;
1875 switch (code)
1877 case ADDRESSOF:
1878 if (XEXP (x, 0) == var)
1880 /* Prevent sharing of rtl that might lose. */
1881 rtx sub = copy_rtx (XEXP (var, 0));
1883 if (! validate_change (insn, loc, sub, 0))
1885 rtx y = gen_reg_rtx (GET_MODE (sub));
1886 rtx seq, new_insn;
1888 /* We should be able to replace with a register or all is lost.
1889 Note that we can't use validate_change to verify this, since
1890 we're not caring for replacing all dups simultaneously. */
1891 if (! validate_replace_rtx (*loc, y, insn))
1892 abort ();
1894 /* Careful! First try to recognize a direct move of the
1895 value, mimicking how things are done in gen_reload wrt
1896 PLUS. Consider what happens when insn is a conditional
1897 move instruction and addsi3 clobbers flags. */
1899 start_sequence ();
1900 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1901 seq = gen_sequence ();
1902 end_sequence ();
1904 if (recog_memoized (new_insn) < 0)
1906 /* That failed. Fall back on force_operand and hope. */
1908 start_sequence ();
1909 force_operand (sub, y);
1910 seq = gen_sequence ();
1911 end_sequence ();
1914 #ifdef HAVE_cc0
1915 /* Don't separate setter from user. */
1916 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1917 insn = PREV_INSN (insn);
1918 #endif
1920 emit_insn_before (seq, insn);
1923 return;
1925 case MEM:
1926 if (var == x)
1928 /* If we already have a replacement, use it. Otherwise,
1929 try to fix up this address in case it is invalid. */
1931 replacement = find_fixup_replacement (replacements, var);
1932 if (replacement->new)
1934 *loc = replacement->new;
1935 return;
1938 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1940 /* Unless we are forcing memory to register or we changed the mode,
1941 we can leave things the way they are if the insn is valid. */
1943 INSN_CODE (insn) = -1;
1944 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1945 && recog_memoized (insn) >= 0)
1946 return;
1948 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1949 return;
1952 /* If X contains VAR, we need to unshare it here so that we update
1953 each occurrence separately. But all identical MEMs in one insn
1954 must be replaced with the same rtx because of the possibility of
1955 MATCH_DUPs. */
1957 if (reg_mentioned_p (var, x))
1959 replacement = find_fixup_replacement (replacements, x);
1960 if (replacement->new == 0)
1961 replacement->new = copy_most_rtx (x, var);
1963 *loc = x = replacement->new;
1965 break;
1967 case REG:
1968 case CC0:
1969 case PC:
1970 case CONST_INT:
1971 case CONST:
1972 case SYMBOL_REF:
1973 case LABEL_REF:
1974 case CONST_DOUBLE:
1975 return;
1977 case SIGN_EXTRACT:
1978 case ZERO_EXTRACT:
1979 /* Note that in some cases those types of expressions are altered
1980 by optimize_bit_field, and do not survive to get here. */
1981 if (XEXP (x, 0) == var
1982 || (GET_CODE (XEXP (x, 0)) == SUBREG
1983 && SUBREG_REG (XEXP (x, 0)) == var))
1985 /* Get TEM as a valid MEM in the mode presently in the insn.
1987 We don't worry about the possibility of MATCH_DUP here; it
1988 is highly unlikely and would be tricky to handle. */
1990 tem = XEXP (x, 0);
1991 if (GET_CODE (tem) == SUBREG)
1993 if (GET_MODE_BITSIZE (GET_MODE (tem))
1994 > GET_MODE_BITSIZE (GET_MODE (var)))
1996 replacement = find_fixup_replacement (replacements, var);
1997 if (replacement->new == 0)
1998 replacement->new = gen_reg_rtx (GET_MODE (var));
1999 SUBREG_REG (tem) = replacement->new;
2001 else
2002 tem = fixup_memory_subreg (tem, insn, 0);
2004 else
2005 tem = fixup_stack_1 (tem, insn);
2007 /* Unless we want to load from memory, get TEM into the proper mode
2008 for an extract from memory. This can only be done if the
2009 extract is at a constant position and length. */
2011 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2012 && GET_CODE (XEXP (x, 2)) == CONST_INT
2013 && ! mode_dependent_address_p (XEXP (tem, 0))
2014 && ! MEM_VOLATILE_P (tem))
2016 enum machine_mode wanted_mode = VOIDmode;
2017 enum machine_mode is_mode = GET_MODE (tem);
2018 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2020 #ifdef HAVE_extzv
2021 if (GET_CODE (x) == ZERO_EXTRACT)
2023 wanted_mode
2024 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2025 if (wanted_mode == VOIDmode)
2026 wanted_mode = word_mode;
2028 #endif
2029 #ifdef HAVE_extv
2030 if (GET_CODE (x) == SIGN_EXTRACT)
2032 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2033 if (wanted_mode == VOIDmode)
2034 wanted_mode = word_mode;
2036 #endif
2037 /* If we have a narrower mode, we can do something. */
2038 if (wanted_mode != VOIDmode
2039 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2041 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2042 rtx old_pos = XEXP (x, 2);
2043 rtx newmem;
2045 /* If the bytes and bits are counted differently, we
2046 must adjust the offset. */
2047 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2048 offset = (GET_MODE_SIZE (is_mode)
2049 - GET_MODE_SIZE (wanted_mode) - offset);
2051 pos %= GET_MODE_BITSIZE (wanted_mode);
2053 newmem = gen_rtx_MEM (wanted_mode,
2054 plus_constant (XEXP (tem, 0), offset));
2055 MEM_COPY_ATTRIBUTES (newmem, tem);
2057 /* Make the change and see if the insn remains valid. */
2058 INSN_CODE (insn) = -1;
2059 XEXP (x, 0) = newmem;
2060 XEXP (x, 2) = GEN_INT (pos);
2062 if (recog_memoized (insn) >= 0)
2063 return;
2065 /* Otherwise, restore old position. XEXP (x, 0) will be
2066 restored later. */
2067 XEXP (x, 2) = old_pos;
2071 /* If we get here, the bitfield extract insn can't accept a memory
2072 reference. Copy the input into a register. */
2074 tem1 = gen_reg_rtx (GET_MODE (tem));
2075 emit_insn_before (gen_move_insn (tem1, tem), insn);
2076 XEXP (x, 0) = tem1;
2077 return;
2079 break;
2081 case SUBREG:
2082 if (SUBREG_REG (x) == var)
2084 /* If this is a special SUBREG made because VAR was promoted
2085 from a wider mode, replace it with VAR and call ourself
2086 recursively, this time saying that the object previously
2087 had its current mode (by virtue of the SUBREG). */
2089 if (SUBREG_PROMOTED_VAR_P (x))
2091 *loc = var;
2092 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2093 return;
2096 /* If this SUBREG makes VAR wider, it has become a paradoxical
2097 SUBREG with VAR in memory, but these aren't allowed at this
2098 stage of the compilation. So load VAR into a pseudo and take
2099 a SUBREG of that pseudo. */
2100 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2102 replacement = find_fixup_replacement (replacements, var);
2103 if (replacement->new == 0)
2104 replacement->new = gen_reg_rtx (GET_MODE (var));
2105 SUBREG_REG (x) = replacement->new;
2106 return;
2109 /* See if we have already found a replacement for this SUBREG.
2110 If so, use it. Otherwise, make a MEM and see if the insn
2111 is recognized. If not, or if we should force MEM into a register,
2112 make a pseudo for this SUBREG. */
2113 replacement = find_fixup_replacement (replacements, x);
2114 if (replacement->new)
2116 *loc = replacement->new;
2117 return;
2120 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2122 INSN_CODE (insn) = -1;
2123 if (! flag_force_mem && recog_memoized (insn) >= 0)
2124 return;
2126 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2127 return;
2129 break;
2131 case SET:
2132 /* First do special simplification of bit-field references. */
2133 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2134 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2135 optimize_bit_field (x, insn, 0);
2136 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2137 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2138 optimize_bit_field (x, insn, NULL_PTR);
2140 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2141 into a register and then store it back out. */
2142 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2143 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2144 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2145 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2146 > GET_MODE_SIZE (GET_MODE (var))))
2148 replacement = find_fixup_replacement (replacements, var);
2149 if (replacement->new == 0)
2150 replacement->new = gen_reg_rtx (GET_MODE (var));
2152 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2153 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2156 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2157 insn into a pseudo and store the low part of the pseudo into VAR. */
2158 if (GET_CODE (SET_DEST (x)) == SUBREG
2159 && SUBREG_REG (SET_DEST (x)) == var
2160 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2161 > GET_MODE_SIZE (GET_MODE (var))))
2163 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2164 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2165 tem)),
2166 insn);
2167 break;
2171 rtx dest = SET_DEST (x);
2172 rtx src = SET_SRC (x);
2173 #ifdef HAVE_insv
2174 rtx outerdest = dest;
2175 #endif
2177 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2178 || GET_CODE (dest) == SIGN_EXTRACT
2179 || GET_CODE (dest) == ZERO_EXTRACT)
2180 dest = XEXP (dest, 0);
2182 if (GET_CODE (src) == SUBREG)
2183 src = XEXP (src, 0);
2185 /* If VAR does not appear at the top level of the SET
2186 just scan the lower levels of the tree. */
2188 if (src != var && dest != var)
2189 break;
2191 /* We will need to rerecognize this insn. */
2192 INSN_CODE (insn) = -1;
2194 #ifdef HAVE_insv
2195 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2197 /* Since this case will return, ensure we fixup all the
2198 operands here. */
2199 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2200 insn, replacements);
2201 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2202 insn, replacements);
2203 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2204 insn, replacements);
2206 tem = XEXP (outerdest, 0);
2208 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2209 that may appear inside a ZERO_EXTRACT.
2210 This was legitimate when the MEM was a REG. */
2211 if (GET_CODE (tem) == SUBREG
2212 && SUBREG_REG (tem) == var)
2213 tem = fixup_memory_subreg (tem, insn, 0);
2214 else
2215 tem = fixup_stack_1 (tem, insn);
2217 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2218 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2219 && ! mode_dependent_address_p (XEXP (tem, 0))
2220 && ! MEM_VOLATILE_P (tem))
2222 enum machine_mode wanted_mode;
2223 enum machine_mode is_mode = GET_MODE (tem);
2224 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2226 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2227 if (wanted_mode == VOIDmode)
2228 wanted_mode = word_mode;
2230 /* If we have a narrower mode, we can do something. */
2231 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2233 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2234 rtx old_pos = XEXP (outerdest, 2);
2235 rtx newmem;
2237 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2238 offset = (GET_MODE_SIZE (is_mode)
2239 - GET_MODE_SIZE (wanted_mode) - offset);
2241 pos %= GET_MODE_BITSIZE (wanted_mode);
2243 newmem = gen_rtx_MEM (wanted_mode,
2244 plus_constant (XEXP (tem, 0),
2245 offset));
2246 MEM_COPY_ATTRIBUTES (newmem, tem);
2248 /* Make the change and see if the insn remains valid. */
2249 INSN_CODE (insn) = -1;
2250 XEXP (outerdest, 0) = newmem;
2251 XEXP (outerdest, 2) = GEN_INT (pos);
2253 if (recog_memoized (insn) >= 0)
2254 return;
2256 /* Otherwise, restore old position. XEXP (x, 0) will be
2257 restored later. */
2258 XEXP (outerdest, 2) = old_pos;
2262 /* If we get here, the bit-field store doesn't allow memory
2263 or isn't located at a constant position. Load the value into
2264 a register, do the store, and put it back into memory. */
2266 tem1 = gen_reg_rtx (GET_MODE (tem));
2267 emit_insn_before (gen_move_insn (tem1, tem), insn);
2268 emit_insn_after (gen_move_insn (tem, tem1), insn);
2269 XEXP (outerdest, 0) = tem1;
2270 return;
2272 #endif
2274 /* STRICT_LOW_PART is a no-op on memory references
2275 and it can cause combinations to be unrecognizable,
2276 so eliminate it. */
2278 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2279 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2281 /* A valid insn to copy VAR into or out of a register
2282 must be left alone, to avoid an infinite loop here.
2283 If the reference to VAR is by a subreg, fix that up,
2284 since SUBREG is not valid for a memref.
2285 Also fix up the address of the stack slot.
2287 Note that we must not try to recognize the insn until
2288 after we know that we have valid addresses and no
2289 (subreg (mem ...) ...) constructs, since these interfere
2290 with determining the validity of the insn. */
2292 if ((SET_SRC (x) == var
2293 || (GET_CODE (SET_SRC (x)) == SUBREG
2294 && SUBREG_REG (SET_SRC (x)) == var))
2295 && (GET_CODE (SET_DEST (x)) == REG
2296 || (GET_CODE (SET_DEST (x)) == SUBREG
2297 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2298 && GET_MODE (var) == promoted_mode
2299 && x == single_set (insn))
2301 rtx pat;
2303 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2304 if (replacement->new)
2305 SET_SRC (x) = replacement->new;
2306 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2307 SET_SRC (x) = replacement->new
2308 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2309 else
2310 SET_SRC (x) = replacement->new
2311 = fixup_stack_1 (SET_SRC (x), insn);
2313 if (recog_memoized (insn) >= 0)
2314 return;
2316 /* INSN is not valid, but we know that we want to
2317 copy SET_SRC (x) to SET_DEST (x) in some way. So
2318 we generate the move and see whether it requires more
2319 than one insn. If it does, we emit those insns and
2320 delete INSN. Otherwise, we an just replace the pattern
2321 of INSN; we have already verified above that INSN has
2322 no other function that to do X. */
2324 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2325 if (GET_CODE (pat) == SEQUENCE)
2327 emit_insn_after (pat, insn);
2328 PUT_CODE (insn, NOTE);
2329 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2330 NOTE_SOURCE_FILE (insn) = 0;
2332 else
2333 PATTERN (insn) = pat;
2335 return;
2338 if ((SET_DEST (x) == var
2339 || (GET_CODE (SET_DEST (x)) == SUBREG
2340 && SUBREG_REG (SET_DEST (x)) == var))
2341 && (GET_CODE (SET_SRC (x)) == REG
2342 || (GET_CODE (SET_SRC (x)) == SUBREG
2343 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2344 && GET_MODE (var) == promoted_mode
2345 && x == single_set (insn))
2347 rtx pat;
2349 if (GET_CODE (SET_DEST (x)) == SUBREG)
2350 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2351 else
2352 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2354 if (recog_memoized (insn) >= 0)
2355 return;
2357 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2358 if (GET_CODE (pat) == SEQUENCE)
2360 emit_insn_after (pat, insn);
2361 PUT_CODE (insn, NOTE);
2362 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2363 NOTE_SOURCE_FILE (insn) = 0;
2365 else
2366 PATTERN (insn) = pat;
2368 return;
2371 /* Otherwise, storing into VAR must be handled specially
2372 by storing into a temporary and copying that into VAR
2373 with a new insn after this one. Note that this case
2374 will be used when storing into a promoted scalar since
2375 the insn will now have different modes on the input
2376 and output and hence will be invalid (except for the case
2377 of setting it to a constant, which does not need any
2378 change if it is valid). We generate extra code in that case,
2379 but combine.c will eliminate it. */
2381 if (dest == var)
2383 rtx temp;
2384 rtx fixeddest = SET_DEST (x);
2386 /* STRICT_LOW_PART can be discarded, around a MEM. */
2387 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2388 fixeddest = XEXP (fixeddest, 0);
2389 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2390 if (GET_CODE (fixeddest) == SUBREG)
2392 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2393 promoted_mode = GET_MODE (fixeddest);
2395 else
2396 fixeddest = fixup_stack_1 (fixeddest, insn);
2398 temp = gen_reg_rtx (promoted_mode);
2400 emit_insn_after (gen_move_insn (fixeddest,
2401 gen_lowpart (GET_MODE (fixeddest),
2402 temp)),
2403 insn);
2405 SET_DEST (x) = temp;
2409 default:
2410 break;
2413 /* Nothing special about this RTX; fix its operands. */
2415 fmt = GET_RTX_FORMAT (code);
2416 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2418 if (fmt[i] == 'e')
2419 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2420 else if (fmt[i] == 'E')
2422 register int j;
2423 for (j = 0; j < XVECLEN (x, i); j++)
2424 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2425 insn, replacements);
2430 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2431 return an rtx (MEM:m1 newaddr) which is equivalent.
2432 If any insns must be emitted to compute NEWADDR, put them before INSN.
2434 UNCRITICAL nonzero means accept paradoxical subregs.
2435 This is used for subregs found inside REG_NOTES. */
2437 static rtx
2438 fixup_memory_subreg (x, insn, uncritical)
2439 rtx x;
2440 rtx insn;
2441 int uncritical;
2443 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2444 rtx addr = XEXP (SUBREG_REG (x), 0);
2445 enum machine_mode mode = GET_MODE (x);
2446 rtx result;
2448 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2449 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2450 && ! uncritical)
2451 abort ();
2453 if (BYTES_BIG_ENDIAN)
2454 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2455 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2456 addr = plus_constant (addr, offset);
2457 if (!flag_force_addr && memory_address_p (mode, addr))
2458 /* Shortcut if no insns need be emitted. */
2459 return change_address (SUBREG_REG (x), mode, addr);
2460 start_sequence ();
2461 result = change_address (SUBREG_REG (x), mode, addr);
2462 emit_insn_before (gen_sequence (), insn);
2463 end_sequence ();
2464 return result;
2467 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2468 Replace subexpressions of X in place.
2469 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2470 Otherwise return X, with its contents possibly altered.
2472 If any insns must be emitted to compute NEWADDR, put them before INSN.
2474 UNCRITICAL is as in fixup_memory_subreg. */
2476 static rtx
2477 walk_fixup_memory_subreg (x, insn, uncritical)
2478 register rtx x;
2479 rtx insn;
2480 int uncritical;
2482 register enum rtx_code code;
2483 register const char *fmt;
2484 register int i;
2486 if (x == 0)
2487 return 0;
2489 code = GET_CODE (x);
2491 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2492 return fixup_memory_subreg (x, insn, uncritical);
2494 /* Nothing special about this RTX; fix its operands. */
2496 fmt = GET_RTX_FORMAT (code);
2497 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2499 if (fmt[i] == 'e')
2500 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2501 else if (fmt[i] == 'E')
2503 register int j;
2504 for (j = 0; j < XVECLEN (x, i); j++)
2505 XVECEXP (x, i, j)
2506 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2509 return x;
2512 /* For each memory ref within X, if it refers to a stack slot
2513 with an out of range displacement, put the address in a temp register
2514 (emitting new insns before INSN to load these registers)
2515 and alter the memory ref to use that register.
2516 Replace each such MEM rtx with a copy, to avoid clobberage. */
2518 static rtx
2519 fixup_stack_1 (x, insn)
2520 rtx x;
2521 rtx insn;
2523 register int i;
2524 register RTX_CODE code = GET_CODE (x);
2525 register const char *fmt;
2527 if (code == MEM)
2529 register rtx ad = XEXP (x, 0);
2530 /* If we have address of a stack slot but it's not valid
2531 (displacement is too large), compute the sum in a register. */
2532 if (GET_CODE (ad) == PLUS
2533 && GET_CODE (XEXP (ad, 0)) == REG
2534 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2535 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2536 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2537 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2538 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2539 #endif
2540 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2541 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2542 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2543 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2545 rtx temp, seq;
2546 if (memory_address_p (GET_MODE (x), ad))
2547 return x;
2549 start_sequence ();
2550 temp = copy_to_reg (ad);
2551 seq = gen_sequence ();
2552 end_sequence ();
2553 emit_insn_before (seq, insn);
2554 return change_address (x, VOIDmode, temp);
2556 return x;
2559 fmt = GET_RTX_FORMAT (code);
2560 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2562 if (fmt[i] == 'e')
2563 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2564 else if (fmt[i] == 'E')
2566 register int j;
2567 for (j = 0; j < XVECLEN (x, i); j++)
2568 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2571 return x;
2574 /* Optimization: a bit-field instruction whose field
2575 happens to be a byte or halfword in memory
2576 can be changed to a move instruction.
2578 We call here when INSN is an insn to examine or store into a bit-field.
2579 BODY is the SET-rtx to be altered.
2581 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2582 (Currently this is called only from function.c, and EQUIV_MEM
2583 is always 0.) */
2585 static void
2586 optimize_bit_field (body, insn, equiv_mem)
2587 rtx body;
2588 rtx insn;
2589 rtx *equiv_mem;
2591 register rtx bitfield;
2592 int destflag;
2593 rtx seq = 0;
2594 enum machine_mode mode;
2596 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2597 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2598 bitfield = SET_DEST (body), destflag = 1;
2599 else
2600 bitfield = SET_SRC (body), destflag = 0;
2602 /* First check that the field being stored has constant size and position
2603 and is in fact a byte or halfword suitably aligned. */
2605 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2606 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2607 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2608 != BLKmode)
2609 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2611 register rtx memref = 0;
2613 /* Now check that the containing word is memory, not a register,
2614 and that it is safe to change the machine mode. */
2616 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2617 memref = XEXP (bitfield, 0);
2618 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2619 && equiv_mem != 0)
2620 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2621 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2622 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2623 memref = SUBREG_REG (XEXP (bitfield, 0));
2624 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2625 && equiv_mem != 0
2626 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2627 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2629 if (memref
2630 && ! mode_dependent_address_p (XEXP (memref, 0))
2631 && ! MEM_VOLATILE_P (memref))
2633 /* Now adjust the address, first for any subreg'ing
2634 that we are now getting rid of,
2635 and then for which byte of the word is wanted. */
2637 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2638 rtx insns;
2640 /* Adjust OFFSET to count bits from low-address byte. */
2641 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2642 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2643 - offset - INTVAL (XEXP (bitfield, 1)));
2645 /* Adjust OFFSET to count bytes from low-address byte. */
2646 offset /= BITS_PER_UNIT;
2647 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2649 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2650 if (BYTES_BIG_ENDIAN)
2651 offset -= (MIN (UNITS_PER_WORD,
2652 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2653 - MIN (UNITS_PER_WORD,
2654 GET_MODE_SIZE (GET_MODE (memref))));
2657 start_sequence ();
2658 memref = change_address (memref, mode,
2659 plus_constant (XEXP (memref, 0), offset));
2660 insns = get_insns ();
2661 end_sequence ();
2662 emit_insns_before (insns, insn);
2664 /* Store this memory reference where
2665 we found the bit field reference. */
2667 if (destflag)
2669 validate_change (insn, &SET_DEST (body), memref, 1);
2670 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2672 rtx src = SET_SRC (body);
2673 while (GET_CODE (src) == SUBREG
2674 && SUBREG_WORD (src) == 0)
2675 src = SUBREG_REG (src);
2676 if (GET_MODE (src) != GET_MODE (memref))
2677 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2678 validate_change (insn, &SET_SRC (body), src, 1);
2680 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2681 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2682 /* This shouldn't happen because anything that didn't have
2683 one of these modes should have got converted explicitly
2684 and then referenced through a subreg.
2685 This is so because the original bit-field was
2686 handled by agg_mode and so its tree structure had
2687 the same mode that memref now has. */
2688 abort ();
2690 else
2692 rtx dest = SET_DEST (body);
2694 while (GET_CODE (dest) == SUBREG
2695 && SUBREG_WORD (dest) == 0
2696 && (GET_MODE_CLASS (GET_MODE (dest))
2697 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2698 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2699 <= UNITS_PER_WORD))
2700 dest = SUBREG_REG (dest);
2702 validate_change (insn, &SET_DEST (body), dest, 1);
2704 if (GET_MODE (dest) == GET_MODE (memref))
2705 validate_change (insn, &SET_SRC (body), memref, 1);
2706 else
2708 /* Convert the mem ref to the destination mode. */
2709 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2711 start_sequence ();
2712 convert_move (newreg, memref,
2713 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2714 seq = get_insns ();
2715 end_sequence ();
2717 validate_change (insn, &SET_SRC (body), newreg, 1);
2721 /* See if we can convert this extraction or insertion into
2722 a simple move insn. We might not be able to do so if this
2723 was, for example, part of a PARALLEL.
2725 If we succeed, write out any needed conversions. If we fail,
2726 it is hard to guess why we failed, so don't do anything
2727 special; just let the optimization be suppressed. */
2729 if (apply_change_group () && seq)
2730 emit_insns_before (seq, insn);
2735 /* These routines are responsible for converting virtual register references
2736 to the actual hard register references once RTL generation is complete.
2738 The following four variables are used for communication between the
2739 routines. They contain the offsets of the virtual registers from their
2740 respective hard registers. */
2742 static int in_arg_offset;
2743 static int var_offset;
2744 static int dynamic_offset;
2745 static int out_arg_offset;
2746 static int cfa_offset;
2748 /* In most machines, the stack pointer register is equivalent to the bottom
2749 of the stack. */
2751 #ifndef STACK_POINTER_OFFSET
2752 #define STACK_POINTER_OFFSET 0
2753 #endif
2755 /* If not defined, pick an appropriate default for the offset of dynamically
2756 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2757 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2759 #ifndef STACK_DYNAMIC_OFFSET
2761 /* The bottom of the stack points to the actual arguments. If
2762 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2763 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2764 stack space for register parameters is not pushed by the caller, but
2765 rather part of the fixed stack areas and hence not included in
2766 `current_function_outgoing_args_size'. Nevertheless, we must allow
2767 for it when allocating stack dynamic objects. */
2769 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2770 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2771 ((ACCUMULATE_OUTGOING_ARGS \
2772 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2773 + (STACK_POINTER_OFFSET)) \
2775 #else
2776 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2777 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2778 + (STACK_POINTER_OFFSET))
2779 #endif
2780 #endif
2782 /* On most machines, the CFA coincides with the first incoming parm. */
2784 #ifndef ARG_POINTER_CFA_OFFSET
2785 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2786 #endif
2789 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2790 its address taken. DECL is the decl for the object stored in the
2791 register, for later use if we do need to force REG into the stack.
2792 REG is overwritten by the MEM like in put_reg_into_stack. */
2795 gen_mem_addressof (reg, decl)
2796 rtx reg;
2797 tree decl;
2799 tree type = TREE_TYPE (decl);
2800 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2801 REGNO (reg), decl);
2803 /* If the original REG was a user-variable, then so is the REG whose
2804 address is being taken. Likewise for unchanging. */
2805 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2806 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2808 PUT_CODE (reg, MEM);
2809 PUT_MODE (reg, DECL_MODE (decl));
2810 XEXP (reg, 0) = r;
2811 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2812 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2813 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2815 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2816 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2818 return reg;
2821 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2823 void
2824 flush_addressof (decl)
2825 tree decl;
2827 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2828 && DECL_RTL (decl) != 0
2829 && GET_CODE (DECL_RTL (decl)) == MEM
2830 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2831 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2832 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2835 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2837 static void
2838 put_addressof_into_stack (r, ht)
2839 rtx r;
2840 struct hash_table *ht;
2842 tree decl = ADDRESSOF_DECL (r);
2843 rtx reg = XEXP (r, 0);
2845 if (GET_CODE (reg) != REG)
2846 abort ();
2848 put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg),
2849 GET_MODE (reg),
2850 (TREE_CODE (decl) != SAVE_EXPR
2851 && TREE_THIS_VOLATILE (decl)),
2852 ADDRESSOF_REGNO (r),
2853 (TREE_USED (decl)
2854 || (TREE_CODE (decl) != SAVE_EXPR
2855 && DECL_INITIAL (decl) != 0)),
2856 ht);
2859 /* List of replacements made below in purge_addressof_1 when creating
2860 bitfield insertions. */
2861 static rtx purge_bitfield_addressof_replacements;
2863 /* List of replacements made below in purge_addressof_1 for patterns
2864 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2865 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2866 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2867 enough in complex cases, e.g. when some field values can be
2868 extracted by usage MEM with narrower mode. */
2869 static rtx purge_addressof_replacements;
2871 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2872 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2873 the stack. If the function returns FALSE then the replacement could not
2874 be made. */
2876 static boolean
2877 purge_addressof_1 (loc, insn, force, store, ht)
2878 rtx *loc;
2879 rtx insn;
2880 int force, store;
2881 struct hash_table *ht;
2883 rtx x;
2884 RTX_CODE code;
2885 int i, j;
2886 const char *fmt;
2887 boolean result = true;
2889 /* Re-start here to avoid recursion in common cases. */
2890 restart:
2892 x = *loc;
2893 if (x == 0)
2894 return true;
2896 code = GET_CODE (x);
2898 /* If we don't return in any of the cases below, we will recurse inside
2899 the RTX, which will normally result in any ADDRESSOF being forced into
2900 memory. */
2901 if (code == SET)
2903 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2904 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2905 return result;
2908 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2910 /* We must create a copy of the rtx because it was created by
2911 overwriting a REG rtx which is always shared. */
2912 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2913 rtx insns;
2915 if (validate_change (insn, loc, sub, 0)
2916 || validate_replace_rtx (x, sub, insn))
2917 return true;
2919 start_sequence ();
2920 sub = force_operand (sub, NULL_RTX);
2921 if (! validate_change (insn, loc, sub, 0)
2922 && ! validate_replace_rtx (x, sub, insn))
2923 abort ();
2925 insns = gen_sequence ();
2926 end_sequence ();
2927 emit_insn_before (insns, insn);
2928 return true;
2931 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2933 rtx sub = XEXP (XEXP (x, 0), 0);
2934 rtx sub2;
2936 if (GET_CODE (sub) == MEM)
2938 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
2939 MEM_COPY_ATTRIBUTES (sub2, sub);
2940 sub = sub2;
2942 else if (GET_CODE (sub) == REG
2943 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2945 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2947 int size_x, size_sub;
2949 if (!insn)
2951 /* When processing REG_NOTES look at the list of
2952 replacements done on the insn to find the register that X
2953 was replaced by. */
2954 rtx tem;
2956 for (tem = purge_bitfield_addressof_replacements;
2957 tem != NULL_RTX;
2958 tem = XEXP (XEXP (tem, 1), 1))
2959 if (rtx_equal_p (x, XEXP (tem, 0)))
2961 *loc = XEXP (XEXP (tem, 1), 0);
2962 return true;
2965 /* See comment for purge_addressof_replacements. */
2966 for (tem = purge_addressof_replacements;
2967 tem != NULL_RTX;
2968 tem = XEXP (XEXP (tem, 1), 1))
2969 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
2971 rtx z = XEXP (XEXP (tem, 1), 0);
2973 if (GET_MODE (x) == GET_MODE (z)
2974 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
2975 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
2976 abort ();
2978 /* It can happen that the note may speak of things
2979 in a wider (or just different) mode than the
2980 code did. This is especially true of
2981 REG_RETVAL. */
2983 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
2984 z = SUBREG_REG (z);
2986 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2987 && (GET_MODE_SIZE (GET_MODE (x))
2988 > GET_MODE_SIZE (GET_MODE (z))))
2990 /* This can occur as a result in invalid
2991 pointer casts, e.g. float f; ...
2992 *(long long int *)&f.
2993 ??? We could emit a warning here, but
2994 without a line number that wouldn't be
2995 very helpful. */
2996 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
2998 else
2999 z = gen_lowpart (GET_MODE (x), z);
3001 *loc = z;
3002 return true;
3005 /* Sometimes we may not be able to find the replacement. For
3006 example when the original insn was a MEM in a wider mode,
3007 and the note is part of a sign extension of a narrowed
3008 version of that MEM. Gcc testcase compile/990829-1.c can
3009 generate an example of this siutation. Rather than complain
3010 we return false, which will prompt our caller to remove the
3011 offending note. */
3012 return false;
3015 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3016 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3018 /* Don't even consider working with paradoxical subregs,
3019 or the moral equivalent seen here. */
3020 if (size_x <= size_sub
3021 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3023 /* Do a bitfield insertion to mirror what would happen
3024 in memory. */
3026 rtx val, seq;
3028 if (store)
3030 rtx p = PREV_INSN (insn);
3032 start_sequence ();
3033 val = gen_reg_rtx (GET_MODE (x));
3034 if (! validate_change (insn, loc, val, 0))
3036 /* Discard the current sequence and put the
3037 ADDRESSOF on stack. */
3038 end_sequence ();
3039 goto give_up;
3041 seq = gen_sequence ();
3042 end_sequence ();
3043 emit_insn_before (seq, insn);
3044 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3045 insn, ht);
3047 start_sequence ();
3048 store_bit_field (sub, size_x, 0, GET_MODE (x),
3049 val, GET_MODE_SIZE (GET_MODE (sub)),
3050 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3052 /* Make sure to unshare any shared rtl that store_bit_field
3053 might have created. */
3054 unshare_all_rtl_again (get_insns ());
3056 seq = gen_sequence ();
3057 end_sequence ();
3058 p = emit_insn_after (seq, insn);
3059 if (NEXT_INSN (insn))
3060 compute_insns_for_mem (NEXT_INSN (insn),
3061 p ? NEXT_INSN (p) : NULL_RTX,
3062 ht);
3064 else
3066 rtx p = PREV_INSN (insn);
3068 start_sequence ();
3069 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3070 GET_MODE (x), GET_MODE (x),
3071 GET_MODE_SIZE (GET_MODE (sub)),
3072 GET_MODE_SIZE (GET_MODE (sub)));
3074 if (! validate_change (insn, loc, val, 0))
3076 /* Discard the current sequence and put the
3077 ADDRESSOF on stack. */
3078 end_sequence ();
3079 goto give_up;
3082 seq = gen_sequence ();
3083 end_sequence ();
3084 emit_insn_before (seq, insn);
3085 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3086 insn, ht);
3089 /* Remember the replacement so that the same one can be done
3090 on the REG_NOTES. */
3091 purge_bitfield_addressof_replacements
3092 = gen_rtx_EXPR_LIST (VOIDmode, x,
3093 gen_rtx_EXPR_LIST
3094 (VOIDmode, val,
3095 purge_bitfield_addressof_replacements));
3097 /* We replaced with a reg -- all done. */
3098 return true;
3102 else if (validate_change (insn, loc, sub, 0))
3104 /* Remember the replacement so that the same one can be done
3105 on the REG_NOTES. */
3106 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3108 rtx tem;
3110 for (tem = purge_addressof_replacements;
3111 tem != NULL_RTX;
3112 tem = XEXP (XEXP (tem, 1), 1))
3113 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3115 XEXP (XEXP (tem, 1), 0) = sub;
3116 return true;
3118 purge_addressof_replacements
3119 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3120 gen_rtx_EXPR_LIST (VOIDmode, sub,
3121 purge_addressof_replacements));
3122 return true;
3124 goto restart;
3126 give_up:;
3127 /* else give up and put it into the stack */
3130 else if (code == ADDRESSOF)
3132 put_addressof_into_stack (x, ht);
3133 return true;
3135 else if (code == SET)
3137 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3138 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3139 return result;
3142 /* Scan all subexpressions. */
3143 fmt = GET_RTX_FORMAT (code);
3144 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3146 if (*fmt == 'e')
3147 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3148 else if (*fmt == 'E')
3149 for (j = 0; j < XVECLEN (x, i); j++)
3150 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3153 return result;
3156 /* Return a new hash table entry in HT. */
3158 static struct hash_entry *
3159 insns_for_mem_newfunc (he, ht, k)
3160 struct hash_entry *he;
3161 struct hash_table *ht;
3162 hash_table_key k ATTRIBUTE_UNUSED;
3164 struct insns_for_mem_entry *ifmhe;
3165 if (he)
3166 return he;
3168 ifmhe = ((struct insns_for_mem_entry *)
3169 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3170 ifmhe->insns = NULL_RTX;
3172 return &ifmhe->he;
3175 /* Return a hash value for K, a REG. */
3177 static unsigned long
3178 insns_for_mem_hash (k)
3179 hash_table_key k;
3181 /* K is really a RTX. Just use the address as the hash value. */
3182 return (unsigned long) k;
3185 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3187 static boolean
3188 insns_for_mem_comp (k1, k2)
3189 hash_table_key k1;
3190 hash_table_key k2;
3192 return k1 == k2;
3195 struct insns_for_mem_walk_info {
3196 /* The hash table that we are using to record which INSNs use which
3197 MEMs. */
3198 struct hash_table *ht;
3200 /* The INSN we are currently proessing. */
3201 rtx insn;
3203 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3204 to find the insns that use the REGs in the ADDRESSOFs. */
3205 int pass;
3208 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3209 that might be used in an ADDRESSOF expression, record this INSN in
3210 the hash table given by DATA (which is really a pointer to an
3211 insns_for_mem_walk_info structure). */
3213 static int
3214 insns_for_mem_walk (r, data)
3215 rtx *r;
3216 void *data;
3218 struct insns_for_mem_walk_info *ifmwi
3219 = (struct insns_for_mem_walk_info *) data;
3221 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3222 && GET_CODE (XEXP (*r, 0)) == REG)
3223 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3224 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3226 /* Lookup this MEM in the hashtable, creating it if necessary. */
3227 struct insns_for_mem_entry *ifme
3228 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3230 /*create=*/0,
3231 /*copy=*/0);
3233 /* If we have not already recorded this INSN, do so now. Since
3234 we process the INSNs in order, we know that if we have
3235 recorded it it must be at the front of the list. */
3236 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3238 /* We do the allocation on the same obstack as is used for
3239 the hash table since this memory will not be used once
3240 the hash table is deallocated. */
3241 push_obstacks (&ifmwi->ht->memory, &ifmwi->ht->memory);
3242 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3243 ifme->insns);
3244 pop_obstacks ();
3248 return 0;
3251 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3252 which REGs in HT. */
3254 static void
3255 compute_insns_for_mem (insns, last_insn, ht)
3256 rtx insns;
3257 rtx last_insn;
3258 struct hash_table *ht;
3260 rtx insn;
3261 struct insns_for_mem_walk_info ifmwi;
3262 ifmwi.ht = ht;
3264 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3265 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3266 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3268 ifmwi.insn = insn;
3269 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3273 /* Helper function for purge_addressof called through for_each_rtx.
3274 Returns true iff the rtl is an ADDRESSOF. */
3275 static int
3276 is_addressof (rtl, data)
3277 rtx * rtl;
3278 void * data ATTRIBUTE_UNUSED;
3280 return GET_CODE (* rtl) == ADDRESSOF;
3283 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3284 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3285 stack. */
3287 void
3288 purge_addressof (insns)
3289 rtx insns;
3291 rtx insn;
3292 struct hash_table ht;
3294 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3295 requires a fixup pass over the instruction stream to correct
3296 INSNs that depended on the REG being a REG, and not a MEM. But,
3297 these fixup passes are slow. Furthermore, most MEMs are not
3298 mentioned in very many instructions. So, we speed up the process
3299 by pre-calculating which REGs occur in which INSNs; that allows
3300 us to perform the fixup passes much more quickly. */
3301 hash_table_init (&ht,
3302 insns_for_mem_newfunc,
3303 insns_for_mem_hash,
3304 insns_for_mem_comp);
3305 compute_insns_for_mem (insns, NULL_RTX, &ht);
3307 for (insn = insns; insn; insn = NEXT_INSN (insn))
3308 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3309 || GET_CODE (insn) == CALL_INSN)
3311 if (! purge_addressof_1 (&PATTERN (insn), insn,
3312 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3313 /* If we could not replace the ADDRESSOFs in the insn,
3314 something is wrong. */
3315 abort ();
3317 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3319 /* If we could not replace the ADDRESSOFs in the insn's notes,
3320 we can just remove the offending notes instead. */
3321 rtx note;
3323 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3325 /* If we find a REG_RETVAL note then the insn is a libcall.
3326 Such insns must have REG_EQUAL notes as well, in order
3327 for later passes of the compiler to work. So it is not
3328 safe to delete the notes here, and instead we abort. */
3329 if (REG_NOTE_KIND (note) == REG_RETVAL)
3330 abort ();
3331 if (for_each_rtx (& note, is_addressof, NULL))
3332 remove_note (insn, note);
3337 /* Clean up. */
3338 hash_table_free (&ht);
3339 purge_bitfield_addressof_replacements = 0;
3340 purge_addressof_replacements = 0;
3342 /* REGs are shared. purge_addressof will destructively replace a REG
3343 with a MEM, which creates shared MEMs.
3345 Unfortunately, the children of put_reg_into_stack assume that MEMs
3346 referring to the same stack slot are shared (fixup_var_refs and
3347 the associated hash table code).
3349 So, we have to do another unsharing pass after we have flushed any
3350 REGs that had their address taken into the stack.
3352 It may be worth tracking whether or not we converted any REGs into
3353 MEMs to avoid this overhead when it is not needed. */
3354 unshare_all_rtl_again (get_insns ());
3357 /* Pass through the INSNS of function FNDECL and convert virtual register
3358 references to hard register references. */
3360 void
3361 instantiate_virtual_regs (fndecl, insns)
3362 tree fndecl;
3363 rtx insns;
3365 rtx insn;
3366 unsigned int i;
3368 /* Compute the offsets to use for this function. */
3369 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3370 var_offset = STARTING_FRAME_OFFSET;
3371 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3372 out_arg_offset = STACK_POINTER_OFFSET;
3373 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3375 /* Scan all variables and parameters of this function. For each that is
3376 in memory, instantiate all virtual registers if the result is a valid
3377 address. If not, we do it later. That will handle most uses of virtual
3378 regs on many machines. */
3379 instantiate_decls (fndecl, 1);
3381 /* Initialize recognition, indicating that volatile is OK. */
3382 init_recog ();
3384 /* Scan through all the insns, instantiating every virtual register still
3385 present. */
3386 for (insn = insns; insn; insn = NEXT_INSN (insn))
3387 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3388 || GET_CODE (insn) == CALL_INSN)
3390 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3391 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3394 /* Instantiate the stack slots for the parm registers, for later use in
3395 addressof elimination. */
3396 for (i = 0; i < max_parm_reg; ++i)
3397 if (parm_reg_stack_loc[i])
3398 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3400 /* Now instantiate the remaining register equivalences for debugging info.
3401 These will not be valid addresses. */
3402 instantiate_decls (fndecl, 0);
3404 /* Indicate that, from now on, assign_stack_local should use
3405 frame_pointer_rtx. */
3406 virtuals_instantiated = 1;
3409 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3410 all virtual registers in their DECL_RTL's.
3412 If VALID_ONLY, do this only if the resulting address is still valid.
3413 Otherwise, always do it. */
3415 static void
3416 instantiate_decls (fndecl, valid_only)
3417 tree fndecl;
3418 int valid_only;
3420 tree decl;
3422 if (DECL_SAVED_INSNS (fndecl))
3423 /* When compiling an inline function, the obstack used for
3424 rtl allocation is the maybepermanent_obstack. Calling
3425 `resume_temporary_allocation' switches us back to that
3426 obstack while we process this function's parameters. */
3427 resume_temporary_allocation ();
3429 /* Process all parameters of the function. */
3430 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3432 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3434 instantiate_decl (DECL_RTL (decl), size, valid_only);
3436 /* If the parameter was promoted, then the incoming RTL mode may be
3437 larger than the declared type size. We must use the larger of
3438 the two sizes. */
3439 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3440 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3443 /* Now process all variables defined in the function or its subblocks. */
3444 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3446 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
3448 /* Save all rtl allocated for this function by raising the
3449 high-water mark on the maybepermanent_obstack. */
3450 preserve_data ();
3451 /* All further rtl allocation is now done in the current_obstack. */
3452 rtl_in_current_obstack ();
3456 /* Subroutine of instantiate_decls: Process all decls in the given
3457 BLOCK node and all its subblocks. */
3459 static void
3460 instantiate_decls_1 (let, valid_only)
3461 tree let;
3462 int valid_only;
3464 tree t;
3466 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3467 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
3468 valid_only);
3470 /* Process all subblocks. */
3471 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3472 instantiate_decls_1 (t, valid_only);
3475 /* Subroutine of the preceding procedures: Given RTL representing a
3476 decl and the size of the object, do any instantiation required.
3478 If VALID_ONLY is non-zero, it means that the RTL should only be
3479 changed if the new address is valid. */
3481 static void
3482 instantiate_decl (x, size, valid_only)
3483 rtx x;
3484 HOST_WIDE_INT size;
3485 int valid_only;
3487 enum machine_mode mode;
3488 rtx addr;
3490 /* If this is not a MEM, no need to do anything. Similarly if the
3491 address is a constant or a register that is not a virtual register. */
3493 if (x == 0 || GET_CODE (x) != MEM)
3494 return;
3496 addr = XEXP (x, 0);
3497 if (CONSTANT_P (addr)
3498 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3499 || (GET_CODE (addr) == REG
3500 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3501 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3502 return;
3504 /* If we should only do this if the address is valid, copy the address.
3505 We need to do this so we can undo any changes that might make the
3506 address invalid. This copy is unfortunate, but probably can't be
3507 avoided. */
3509 if (valid_only)
3510 addr = copy_rtx (addr);
3512 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3514 if (valid_only && size >= 0)
3516 unsigned HOST_WIDE_INT decl_size = size;
3518 /* Now verify that the resulting address is valid for every integer or
3519 floating-point mode up to and including SIZE bytes long. We do this
3520 since the object might be accessed in any mode and frame addresses
3521 are shared. */
3523 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3524 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3525 mode = GET_MODE_WIDER_MODE (mode))
3526 if (! memory_address_p (mode, addr))
3527 return;
3529 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3530 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3531 mode = GET_MODE_WIDER_MODE (mode))
3532 if (! memory_address_p (mode, addr))
3533 return;
3536 /* Put back the address now that we have updated it and we either know
3537 it is valid or we don't care whether it is valid. */
3539 XEXP (x, 0) = addr;
3542 /* Given a pointer to a piece of rtx and an optional pointer to the
3543 containing object, instantiate any virtual registers present in it.
3545 If EXTRA_INSNS, we always do the replacement and generate
3546 any extra insns before OBJECT. If it zero, we do nothing if replacement
3547 is not valid.
3549 Return 1 if we either had nothing to do or if we were able to do the
3550 needed replacement. Return 0 otherwise; we only return zero if
3551 EXTRA_INSNS is zero.
3553 We first try some simple transformations to avoid the creation of extra
3554 pseudos. */
3556 static int
3557 instantiate_virtual_regs_1 (loc, object, extra_insns)
3558 rtx *loc;
3559 rtx object;
3560 int extra_insns;
3562 rtx x;
3563 RTX_CODE code;
3564 rtx new = 0;
3565 HOST_WIDE_INT offset = 0;
3566 rtx temp;
3567 rtx seq;
3568 int i, j;
3569 const char *fmt;
3571 /* Re-start here to avoid recursion in common cases. */
3572 restart:
3574 x = *loc;
3575 if (x == 0)
3576 return 1;
3578 code = GET_CODE (x);
3580 /* Check for some special cases. */
3581 switch (code)
3583 case CONST_INT:
3584 case CONST_DOUBLE:
3585 case CONST:
3586 case SYMBOL_REF:
3587 case CODE_LABEL:
3588 case PC:
3589 case CC0:
3590 case ASM_INPUT:
3591 case ADDR_VEC:
3592 case ADDR_DIFF_VEC:
3593 case RETURN:
3594 return 1;
3596 case SET:
3597 /* We are allowed to set the virtual registers. This means that
3598 the actual register should receive the source minus the
3599 appropriate offset. This is used, for example, in the handling
3600 of non-local gotos. */
3601 if (SET_DEST (x) == virtual_incoming_args_rtx)
3602 new = arg_pointer_rtx, offset = - in_arg_offset;
3603 else if (SET_DEST (x) == virtual_stack_vars_rtx)
3604 new = frame_pointer_rtx, offset = - var_offset;
3605 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3606 new = stack_pointer_rtx, offset = - dynamic_offset;
3607 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3608 new = stack_pointer_rtx, offset = - out_arg_offset;
3609 else if (SET_DEST (x) == virtual_cfa_rtx)
3610 new = arg_pointer_rtx, offset = - cfa_offset;
3612 if (new)
3614 rtx src = SET_SRC (x);
3616 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3618 /* The only valid sources here are PLUS or REG. Just do
3619 the simplest possible thing to handle them. */
3620 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3621 abort ();
3623 start_sequence ();
3624 if (GET_CODE (src) != REG)
3625 temp = force_operand (src, NULL_RTX);
3626 else
3627 temp = src;
3628 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3629 seq = get_insns ();
3630 end_sequence ();
3632 emit_insns_before (seq, object);
3633 SET_DEST (x) = new;
3635 if (! validate_change (object, &SET_SRC (x), temp, 0)
3636 || ! extra_insns)
3637 abort ();
3639 return 1;
3642 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3643 loc = &SET_SRC (x);
3644 goto restart;
3646 case PLUS:
3647 /* Handle special case of virtual register plus constant. */
3648 if (CONSTANT_P (XEXP (x, 1)))
3650 rtx old, new_offset;
3652 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3653 if (GET_CODE (XEXP (x, 0)) == PLUS)
3655 rtx inner = XEXP (XEXP (x, 0), 0);
3657 if (inner == virtual_incoming_args_rtx)
3658 new = arg_pointer_rtx, offset = in_arg_offset;
3659 else if (inner == virtual_stack_vars_rtx)
3660 new = frame_pointer_rtx, offset = var_offset;
3661 else if (inner == virtual_stack_dynamic_rtx)
3662 new = stack_pointer_rtx, offset = dynamic_offset;
3663 else if (inner == virtual_outgoing_args_rtx)
3664 new = stack_pointer_rtx, offset = out_arg_offset;
3665 else if (inner == virtual_cfa_rtx)
3666 new = arg_pointer_rtx, offset = cfa_offset;
3667 else
3669 loc = &XEXP (x, 0);
3670 goto restart;
3673 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3674 extra_insns);
3675 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3678 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3679 new = arg_pointer_rtx, offset = in_arg_offset;
3680 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3681 new = frame_pointer_rtx, offset = var_offset;
3682 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3683 new = stack_pointer_rtx, offset = dynamic_offset;
3684 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3685 new = stack_pointer_rtx, offset = out_arg_offset;
3686 else if (XEXP (x, 0) == virtual_cfa_rtx)
3687 new = arg_pointer_rtx, offset = cfa_offset;
3688 else
3690 /* We know the second operand is a constant. Unless the
3691 first operand is a REG (which has been already checked),
3692 it needs to be checked. */
3693 if (GET_CODE (XEXP (x, 0)) != REG)
3695 loc = &XEXP (x, 0);
3696 goto restart;
3698 return 1;
3701 new_offset = plus_constant (XEXP (x, 1), offset);
3703 /* If the new constant is zero, try to replace the sum with just
3704 the register. */
3705 if (new_offset == const0_rtx
3706 && validate_change (object, loc, new, 0))
3707 return 1;
3709 /* Next try to replace the register and new offset.
3710 There are two changes to validate here and we can't assume that
3711 in the case of old offset equals new just changing the register
3712 will yield a valid insn. In the interests of a little efficiency,
3713 however, we only call validate change once (we don't queue up the
3714 changes and then call apply_change_group). */
3716 old = XEXP (x, 0);
3717 if (offset == 0
3718 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3719 : (XEXP (x, 0) = new,
3720 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3722 if (! extra_insns)
3724 XEXP (x, 0) = old;
3725 return 0;
3728 /* Otherwise copy the new constant into a register and replace
3729 constant with that register. */
3730 temp = gen_reg_rtx (Pmode);
3731 XEXP (x, 0) = new;
3732 if (validate_change (object, &XEXP (x, 1), temp, 0))
3733 emit_insn_before (gen_move_insn (temp, new_offset), object);
3734 else
3736 /* If that didn't work, replace this expression with a
3737 register containing the sum. */
3739 XEXP (x, 0) = old;
3740 new = gen_rtx_PLUS (Pmode, new, new_offset);
3742 start_sequence ();
3743 temp = force_operand (new, NULL_RTX);
3744 seq = get_insns ();
3745 end_sequence ();
3747 emit_insns_before (seq, object);
3748 if (! validate_change (object, loc, temp, 0)
3749 && ! validate_replace_rtx (x, temp, object))
3750 abort ();
3754 return 1;
3757 /* Fall through to generic two-operand expression case. */
3758 case EXPR_LIST:
3759 case CALL:
3760 case COMPARE:
3761 case MINUS:
3762 case MULT:
3763 case DIV: case UDIV:
3764 case MOD: case UMOD:
3765 case AND: case IOR: case XOR:
3766 case ROTATERT: case ROTATE:
3767 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3768 case NE: case EQ:
3769 case GE: case GT: case GEU: case GTU:
3770 case LE: case LT: case LEU: case LTU:
3771 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3772 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3773 loc = &XEXP (x, 0);
3774 goto restart;
3776 case MEM:
3777 /* Most cases of MEM that convert to valid addresses have already been
3778 handled by our scan of decls. The only special handling we
3779 need here is to make a copy of the rtx to ensure it isn't being
3780 shared if we have to change it to a pseudo.
3782 If the rtx is a simple reference to an address via a virtual register,
3783 it can potentially be shared. In such cases, first try to make it
3784 a valid address, which can also be shared. Otherwise, copy it and
3785 proceed normally.
3787 First check for common cases that need no processing. These are
3788 usually due to instantiation already being done on a previous instance
3789 of a shared rtx. */
3791 temp = XEXP (x, 0);
3792 if (CONSTANT_ADDRESS_P (temp)
3793 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3794 || temp == arg_pointer_rtx
3795 #endif
3796 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3797 || temp == hard_frame_pointer_rtx
3798 #endif
3799 || temp == frame_pointer_rtx)
3800 return 1;
3802 if (GET_CODE (temp) == PLUS
3803 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3804 && (XEXP (temp, 0) == frame_pointer_rtx
3805 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3806 || XEXP (temp, 0) == hard_frame_pointer_rtx
3807 #endif
3808 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3809 || XEXP (temp, 0) == arg_pointer_rtx
3810 #endif
3812 return 1;
3814 if (temp == virtual_stack_vars_rtx
3815 || temp == virtual_incoming_args_rtx
3816 || (GET_CODE (temp) == PLUS
3817 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3818 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3819 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3821 /* This MEM may be shared. If the substitution can be done without
3822 the need to generate new pseudos, we want to do it in place
3823 so all copies of the shared rtx benefit. The call below will
3824 only make substitutions if the resulting address is still
3825 valid.
3827 Note that we cannot pass X as the object in the recursive call
3828 since the insn being processed may not allow all valid
3829 addresses. However, if we were not passed on object, we can
3830 only modify X without copying it if X will have a valid
3831 address.
3833 ??? Also note that this can still lose if OBJECT is an insn that
3834 has less restrictions on an address that some other insn.
3835 In that case, we will modify the shared address. This case
3836 doesn't seem very likely, though. One case where this could
3837 happen is in the case of a USE or CLOBBER reference, but we
3838 take care of that below. */
3840 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3841 object ? object : x, 0))
3842 return 1;
3844 /* Otherwise make a copy and process that copy. We copy the entire
3845 RTL expression since it might be a PLUS which could also be
3846 shared. */
3847 *loc = x = copy_rtx (x);
3850 /* Fall through to generic unary operation case. */
3851 case SUBREG:
3852 case STRICT_LOW_PART:
3853 case NEG: case NOT:
3854 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3855 case SIGN_EXTEND: case ZERO_EXTEND:
3856 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3857 case FLOAT: case FIX:
3858 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3859 case ABS:
3860 case SQRT:
3861 case FFS:
3862 /* These case either have just one operand or we know that we need not
3863 check the rest of the operands. */
3864 loc = &XEXP (x, 0);
3865 goto restart;
3867 case USE:
3868 case CLOBBER:
3869 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3870 go ahead and make the invalid one, but do it to a copy. For a REG,
3871 just make the recursive call, since there's no chance of a problem. */
3873 if ((GET_CODE (XEXP (x, 0)) == MEM
3874 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3876 || (GET_CODE (XEXP (x, 0)) == REG
3877 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
3878 return 1;
3880 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3881 loc = &XEXP (x, 0);
3882 goto restart;
3884 case REG:
3885 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3886 in front of this insn and substitute the temporary. */
3887 if (x == virtual_incoming_args_rtx)
3888 new = arg_pointer_rtx, offset = in_arg_offset;
3889 else if (x == virtual_stack_vars_rtx)
3890 new = frame_pointer_rtx, offset = var_offset;
3891 else if (x == virtual_stack_dynamic_rtx)
3892 new = stack_pointer_rtx, offset = dynamic_offset;
3893 else if (x == virtual_outgoing_args_rtx)
3894 new = stack_pointer_rtx, offset = out_arg_offset;
3895 else if (x == virtual_cfa_rtx)
3896 new = arg_pointer_rtx, offset = cfa_offset;
3898 if (new)
3900 temp = plus_constant (new, offset);
3901 if (!validate_change (object, loc, temp, 0))
3903 if (! extra_insns)
3904 return 0;
3906 start_sequence ();
3907 temp = force_operand (temp, NULL_RTX);
3908 seq = get_insns ();
3909 end_sequence ();
3911 emit_insns_before (seq, object);
3912 if (! validate_change (object, loc, temp, 0)
3913 && ! validate_replace_rtx (x, temp, object))
3914 abort ();
3918 return 1;
3920 case ADDRESSOF:
3921 if (GET_CODE (XEXP (x, 0)) == REG)
3922 return 1;
3924 else if (GET_CODE (XEXP (x, 0)) == MEM)
3926 /* If we have a (addressof (mem ..)), do any instantiation inside
3927 since we know we'll be making the inside valid when we finally
3928 remove the ADDRESSOF. */
3929 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
3930 return 1;
3932 break;
3934 default:
3935 break;
3938 /* Scan all subexpressions. */
3939 fmt = GET_RTX_FORMAT (code);
3940 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3941 if (*fmt == 'e')
3943 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3944 return 0;
3946 else if (*fmt == 'E')
3947 for (j = 0; j < XVECLEN (x, i); j++)
3948 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3949 extra_insns))
3950 return 0;
3952 return 1;
3955 /* Optimization: assuming this function does not receive nonlocal gotos,
3956 delete the handlers for such, as well as the insns to establish
3957 and disestablish them. */
3959 static void
3960 delete_handlers ()
3962 rtx insn;
3963 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3965 /* Delete the handler by turning off the flag that would
3966 prevent jump_optimize from deleting it.
3967 Also permit deletion of the nonlocal labels themselves
3968 if nothing local refers to them. */
3969 if (GET_CODE (insn) == CODE_LABEL)
3971 tree t, last_t;
3973 LABEL_PRESERVE_P (insn) = 0;
3975 /* Remove it from the nonlocal_label list, to avoid confusing
3976 flow. */
3977 for (t = nonlocal_labels, last_t = 0; t;
3978 last_t = t, t = TREE_CHAIN (t))
3979 if (DECL_RTL (TREE_VALUE (t)) == insn)
3980 break;
3981 if (t)
3983 if (! last_t)
3984 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
3985 else
3986 TREE_CHAIN (last_t) = TREE_CHAIN (t);
3989 if (GET_CODE (insn) == INSN)
3991 int can_delete = 0;
3992 rtx t;
3993 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
3994 if (reg_mentioned_p (t, PATTERN (insn)))
3996 can_delete = 1;
3997 break;
3999 if (can_delete
4000 || (nonlocal_goto_stack_level != 0
4001 && reg_mentioned_p (nonlocal_goto_stack_level,
4002 PATTERN (insn))))
4003 delete_insn (insn);
4009 max_parm_reg_num ()
4011 return max_parm_reg;
4014 /* Return the first insn following those generated by `assign_parms'. */
4017 get_first_nonparm_insn ()
4019 if (last_parm_insn)
4020 return NEXT_INSN (last_parm_insn);
4021 return get_insns ();
4024 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4025 Crash if there is none. */
4028 get_first_block_beg ()
4030 register rtx searcher;
4031 register rtx insn = get_first_nonparm_insn ();
4033 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4034 if (GET_CODE (searcher) == NOTE
4035 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4036 return searcher;
4038 abort (); /* Invalid call to this function. (See comments above.) */
4039 return NULL_RTX;
4042 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4043 This means a type for which function calls must pass an address to the
4044 function or get an address back from the function.
4045 EXP may be a type node or an expression (whose type is tested). */
4048 aggregate_value_p (exp)
4049 tree exp;
4051 int i, regno, nregs;
4052 rtx reg;
4054 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4056 if (TREE_CODE (type) == VOID_TYPE)
4057 return 0;
4058 if (RETURN_IN_MEMORY (type))
4059 return 1;
4060 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4061 and thus can't be returned in registers. */
4062 if (TREE_ADDRESSABLE (type))
4063 return 1;
4064 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4065 return 1;
4066 /* Make sure we have suitable call-clobbered regs to return
4067 the value in; if not, we must return it in memory. */
4068 reg = hard_function_value (type, 0, 0);
4070 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4071 it is OK. */
4072 if (GET_CODE (reg) != REG)
4073 return 0;
4075 regno = REGNO (reg);
4076 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4077 for (i = 0; i < nregs; i++)
4078 if (! call_used_regs[regno + i])
4079 return 1;
4080 return 0;
4083 /* Assign RTL expressions to the function's parameters.
4084 This may involve copying them into registers and using
4085 those registers as the RTL for them. */
4087 void
4088 assign_parms (fndecl)
4089 tree fndecl;
4091 register tree parm;
4092 register rtx entry_parm = 0;
4093 register rtx stack_parm = 0;
4094 CUMULATIVE_ARGS args_so_far;
4095 enum machine_mode promoted_mode, passed_mode;
4096 enum machine_mode nominal_mode, promoted_nominal_mode;
4097 int unsignedp;
4098 /* Total space needed so far for args on the stack,
4099 given as a constant and a tree-expression. */
4100 struct args_size stack_args_size;
4101 tree fntype = TREE_TYPE (fndecl);
4102 tree fnargs = DECL_ARGUMENTS (fndecl);
4103 /* This is used for the arg pointer when referring to stack args. */
4104 rtx internal_arg_pointer;
4105 /* This is a dummy PARM_DECL that we used for the function result if
4106 the function returns a structure. */
4107 tree function_result_decl = 0;
4108 #ifdef SETUP_INCOMING_VARARGS
4109 int varargs_setup = 0;
4110 #endif
4111 rtx conversion_insns = 0;
4112 struct args_size alignment_pad;
4114 /* Nonzero if the last arg is named `__builtin_va_alist',
4115 which is used on some machines for old-fashioned non-ANSI varargs.h;
4116 this should be stuck onto the stack as if it had arrived there. */
4117 int hide_last_arg
4118 = (current_function_varargs
4119 && fnargs
4120 && (parm = tree_last (fnargs)) != 0
4121 && DECL_NAME (parm)
4122 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4123 "__builtin_va_alist")));
4125 /* Nonzero if function takes extra anonymous args.
4126 This means the last named arg must be on the stack
4127 right before the anonymous ones. */
4128 int stdarg
4129 = (TYPE_ARG_TYPES (fntype) != 0
4130 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4131 != void_type_node));
4133 current_function_stdarg = stdarg;
4135 /* If the reg that the virtual arg pointer will be translated into is
4136 not a fixed reg or is the stack pointer, make a copy of the virtual
4137 arg pointer, and address parms via the copy. The frame pointer is
4138 considered fixed even though it is not marked as such.
4140 The second time through, simply use ap to avoid generating rtx. */
4142 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4143 || ! (fixed_regs[ARG_POINTER_REGNUM]
4144 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4145 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4146 else
4147 internal_arg_pointer = virtual_incoming_args_rtx;
4148 current_function_internal_arg_pointer = internal_arg_pointer;
4150 stack_args_size.constant = 0;
4151 stack_args_size.var = 0;
4153 /* If struct value address is treated as the first argument, make it so. */
4154 if (aggregate_value_p (DECL_RESULT (fndecl))
4155 && ! current_function_returns_pcc_struct
4156 && struct_value_incoming_rtx == 0)
4158 tree type = build_pointer_type (TREE_TYPE (fntype));
4160 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4162 DECL_ARG_TYPE (function_result_decl) = type;
4163 TREE_CHAIN (function_result_decl) = fnargs;
4164 fnargs = function_result_decl;
4167 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4168 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4170 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4171 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4172 #else
4173 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4174 #endif
4176 /* We haven't yet found an argument that we must push and pretend the
4177 caller did. */
4178 current_function_pretend_args_size = 0;
4180 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4182 struct args_size stack_offset;
4183 struct args_size arg_size;
4184 int passed_pointer = 0;
4185 int did_conversion = 0;
4186 tree passed_type = DECL_ARG_TYPE (parm);
4187 tree nominal_type = TREE_TYPE (parm);
4188 int pretend_named;
4190 /* Set LAST_NAMED if this is last named arg before some
4191 anonymous args. */
4192 int last_named = ((TREE_CHAIN (parm) == 0
4193 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4194 && (stdarg || current_function_varargs));
4195 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4196 most machines, if this is a varargs/stdarg function, then we treat
4197 the last named arg as if it were anonymous too. */
4198 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4200 if (TREE_TYPE (parm) == error_mark_node
4201 /* This can happen after weird syntax errors
4202 or if an enum type is defined among the parms. */
4203 || TREE_CODE (parm) != PARM_DECL
4204 || passed_type == NULL)
4206 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
4207 = gen_rtx_MEM (BLKmode, const0_rtx);
4208 TREE_USED (parm) = 1;
4209 continue;
4212 /* For varargs.h function, save info about regs and stack space
4213 used by the individual args, not including the va_alist arg. */
4214 if (hide_last_arg && last_named)
4215 current_function_args_info = args_so_far;
4217 /* Find mode of arg as it is passed, and mode of arg
4218 as it should be during execution of this function. */
4219 passed_mode = TYPE_MODE (passed_type);
4220 nominal_mode = TYPE_MODE (nominal_type);
4222 /* If the parm's mode is VOID, its value doesn't matter,
4223 and avoid the usual things like emit_move_insn that could crash. */
4224 if (nominal_mode == VOIDmode)
4226 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
4227 continue;
4230 /* If the parm is to be passed as a transparent union, use the
4231 type of the first field for the tests below. We have already
4232 verified that the modes are the same. */
4233 if (DECL_TRANSPARENT_UNION (parm)
4234 || (TREE_CODE (passed_type) == UNION_TYPE
4235 && TYPE_TRANSPARENT_UNION (passed_type)))
4236 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4238 /* See if this arg was passed by invisible reference. It is if
4239 it is an object whose size depends on the contents of the
4240 object itself or if the machine requires these objects be passed
4241 that way. */
4243 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4244 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4245 || TREE_ADDRESSABLE (passed_type)
4246 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4247 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4248 passed_type, named_arg)
4249 #endif
4252 passed_type = nominal_type = build_pointer_type (passed_type);
4253 passed_pointer = 1;
4254 passed_mode = nominal_mode = Pmode;
4257 promoted_mode = passed_mode;
4259 #ifdef PROMOTE_FUNCTION_ARGS
4260 /* Compute the mode in which the arg is actually extended to. */
4261 unsignedp = TREE_UNSIGNED (passed_type);
4262 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4263 #endif
4265 /* Let machine desc say which reg (if any) the parm arrives in.
4266 0 means it arrives on the stack. */
4267 #ifdef FUNCTION_INCOMING_ARG
4268 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4269 passed_type, named_arg);
4270 #else
4271 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4272 passed_type, named_arg);
4273 #endif
4275 if (entry_parm == 0)
4276 promoted_mode = passed_mode;
4278 #ifdef SETUP_INCOMING_VARARGS
4279 /* If this is the last named parameter, do any required setup for
4280 varargs or stdargs. We need to know about the case of this being an
4281 addressable type, in which case we skip the registers it
4282 would have arrived in.
4284 For stdargs, LAST_NAMED will be set for two parameters, the one that
4285 is actually the last named, and the dummy parameter. We only
4286 want to do this action once.
4288 Also, indicate when RTL generation is to be suppressed. */
4289 if (last_named && !varargs_setup)
4291 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4292 current_function_pretend_args_size, 0);
4293 varargs_setup = 1;
4295 #endif
4297 /* Determine parm's home in the stack,
4298 in case it arrives in the stack or we should pretend it did.
4300 Compute the stack position and rtx where the argument arrives
4301 and its size.
4303 There is one complexity here: If this was a parameter that would
4304 have been passed in registers, but wasn't only because it is
4305 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4306 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4307 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4308 0 as it was the previous time. */
4310 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4311 locate_and_pad_parm (promoted_mode, passed_type,
4312 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4314 #else
4315 #ifdef FUNCTION_INCOMING_ARG
4316 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4317 passed_type,
4318 pretend_named) != 0,
4319 #else
4320 FUNCTION_ARG (args_so_far, promoted_mode,
4321 passed_type,
4322 pretend_named) != 0,
4323 #endif
4324 #endif
4325 fndecl, &stack_args_size, &stack_offset, &arg_size,
4326 &alignment_pad);
4329 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4331 if (offset_rtx == const0_rtx)
4332 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4333 else
4334 stack_parm = gen_rtx_MEM (promoted_mode,
4335 gen_rtx_PLUS (Pmode,
4336 internal_arg_pointer,
4337 offset_rtx));
4339 set_mem_attributes (stack_parm, parm, 1);
4342 /* If this parameter was passed both in registers and in the stack,
4343 use the copy on the stack. */
4344 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4345 entry_parm = 0;
4347 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4348 /* If this parm was passed part in regs and part in memory,
4349 pretend it arrived entirely in memory
4350 by pushing the register-part onto the stack.
4352 In the special case of a DImode or DFmode that is split,
4353 we could put it together in a pseudoreg directly,
4354 but for now that's not worth bothering with. */
4356 if (entry_parm)
4358 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4359 passed_type, named_arg);
4361 if (nregs > 0)
4363 current_function_pretend_args_size
4364 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4365 / (PARM_BOUNDARY / BITS_PER_UNIT)
4366 * (PARM_BOUNDARY / BITS_PER_UNIT));
4368 /* Handle calls that pass values in multiple non-contiguous
4369 locations. The Irix 6 ABI has examples of this. */
4370 if (GET_CODE (entry_parm) == PARALLEL)
4371 emit_group_store (validize_mem (stack_parm), entry_parm,
4372 int_size_in_bytes (TREE_TYPE (parm)),
4373 TYPE_ALIGN (TREE_TYPE (parm)));
4375 else
4376 move_block_from_reg (REGNO (entry_parm),
4377 validize_mem (stack_parm), nregs,
4378 int_size_in_bytes (TREE_TYPE (parm)));
4380 entry_parm = stack_parm;
4383 #endif
4385 /* If we didn't decide this parm came in a register,
4386 by default it came on the stack. */
4387 if (entry_parm == 0)
4388 entry_parm = stack_parm;
4390 /* Record permanently how this parm was passed. */
4391 DECL_INCOMING_RTL (parm) = entry_parm;
4393 /* If there is actually space on the stack for this parm,
4394 count it in stack_args_size; otherwise set stack_parm to 0
4395 to indicate there is no preallocated stack slot for the parm. */
4397 if (entry_parm == stack_parm
4398 || (GET_CODE (entry_parm) == PARALLEL
4399 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4400 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4401 /* On some machines, even if a parm value arrives in a register
4402 there is still an (uninitialized) stack slot allocated for it.
4404 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4405 whether this parameter already has a stack slot allocated,
4406 because an arg block exists only if current_function_args_size
4407 is larger than some threshold, and we haven't calculated that
4408 yet. So, for now, we just assume that stack slots never exist
4409 in this case. */
4410 || REG_PARM_STACK_SPACE (fndecl) > 0
4411 #endif
4414 stack_args_size.constant += arg_size.constant;
4415 if (arg_size.var)
4416 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4418 else
4419 /* No stack slot was pushed for this parm. */
4420 stack_parm = 0;
4422 /* Update info on where next arg arrives in registers. */
4424 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4425 passed_type, named_arg);
4427 /* If we can't trust the parm stack slot to be aligned enough
4428 for its ultimate type, don't use that slot after entry.
4429 We'll make another stack slot, if we need one. */
4431 unsigned int thisparm_boundary
4432 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4434 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4435 stack_parm = 0;
4438 /* If parm was passed in memory, and we need to convert it on entry,
4439 don't store it back in that same slot. */
4440 if (entry_parm != 0
4441 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4442 stack_parm = 0;
4444 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4445 in the mode in which it arrives.
4446 STACK_PARM is an RTX for a stack slot where the parameter can live
4447 during the function (in case we want to put it there).
4448 STACK_PARM is 0 if no stack slot was pushed for it.
4450 Now output code if necessary to convert ENTRY_PARM to
4451 the type in which this function declares it,
4452 and store that result in an appropriate place,
4453 which may be a pseudo reg, may be STACK_PARM,
4454 or may be a local stack slot if STACK_PARM is 0.
4456 Set DECL_RTL to that place. */
4458 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4460 /* If a BLKmode arrives in registers, copy it to a stack slot.
4461 Handle calls that pass values in multiple non-contiguous
4462 locations. The Irix 6 ABI has examples of this. */
4463 if (GET_CODE (entry_parm) == REG
4464 || GET_CODE (entry_parm) == PARALLEL)
4466 int size_stored
4467 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4468 UNITS_PER_WORD);
4470 /* Note that we will be storing an integral number of words.
4471 So we have to be careful to ensure that we allocate an
4472 integral number of words. We do this below in the
4473 assign_stack_local if space was not allocated in the argument
4474 list. If it was, this will not work if PARM_BOUNDARY is not
4475 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4476 if it becomes a problem. */
4478 if (stack_parm == 0)
4480 stack_parm
4481 = assign_stack_local (GET_MODE (entry_parm),
4482 size_stored, 0);
4483 set_mem_attributes (stack_parm, parm, 1);
4486 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4487 abort ();
4489 /* Handle calls that pass values in multiple non-contiguous
4490 locations. The Irix 6 ABI has examples of this. */
4491 if (GET_CODE (entry_parm) == PARALLEL)
4492 emit_group_store (validize_mem (stack_parm), entry_parm,
4493 int_size_in_bytes (TREE_TYPE (parm)),
4494 TYPE_ALIGN (TREE_TYPE (parm)));
4495 else
4496 move_block_from_reg (REGNO (entry_parm),
4497 validize_mem (stack_parm),
4498 size_stored / UNITS_PER_WORD,
4499 int_size_in_bytes (TREE_TYPE (parm)));
4501 DECL_RTL (parm) = stack_parm;
4503 else if (! ((! optimize
4504 && ! DECL_REGISTER (parm)
4505 && ! DECL_INLINE (fndecl))
4506 /* layout_decl may set this. */
4507 || TREE_ADDRESSABLE (parm)
4508 || TREE_SIDE_EFFECTS (parm)
4509 /* If -ffloat-store specified, don't put explicit
4510 float variables into registers. */
4511 || (flag_float_store
4512 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4513 /* Always assign pseudo to structure return or item passed
4514 by invisible reference. */
4515 || passed_pointer || parm == function_result_decl)
4517 /* Store the parm in a pseudoregister during the function, but we
4518 may need to do it in a wider mode. */
4520 register rtx parmreg;
4521 unsigned int regno, regnoi = 0, regnor = 0;
4523 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4525 promoted_nominal_mode
4526 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4528 parmreg = gen_reg_rtx (promoted_nominal_mode);
4529 mark_user_reg (parmreg);
4531 /* If this was an item that we received a pointer to, set DECL_RTL
4532 appropriately. */
4533 if (passed_pointer)
4535 DECL_RTL (parm)
4536 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4537 set_mem_attributes (DECL_RTL (parm), parm, 1);
4539 else
4540 DECL_RTL (parm) = parmreg;
4542 /* Copy the value into the register. */
4543 if (nominal_mode != passed_mode
4544 || promoted_nominal_mode != promoted_mode)
4546 int save_tree_used;
4547 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4548 mode, by the caller. We now have to convert it to
4549 NOMINAL_MODE, if different. However, PARMREG may be in
4550 a different mode than NOMINAL_MODE if it is being stored
4551 promoted.
4553 If ENTRY_PARM is a hard register, it might be in a register
4554 not valid for operating in its mode (e.g., an odd-numbered
4555 register for a DFmode). In that case, moves are the only
4556 thing valid, so we can't do a convert from there. This
4557 occurs when the calling sequence allow such misaligned
4558 usages.
4560 In addition, the conversion may involve a call, which could
4561 clobber parameters which haven't been copied to pseudo
4562 registers yet. Therefore, we must first copy the parm to
4563 a pseudo reg here, and save the conversion until after all
4564 parameters have been moved. */
4566 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4568 emit_move_insn (tempreg, validize_mem (entry_parm));
4570 push_to_sequence (conversion_insns);
4571 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4573 /* TREE_USED gets set erroneously during expand_assignment. */
4574 save_tree_used = TREE_USED (parm);
4575 expand_assignment (parm,
4576 make_tree (nominal_type, tempreg), 0, 0);
4577 TREE_USED (parm) = save_tree_used;
4578 conversion_insns = get_insns ();
4579 did_conversion = 1;
4580 end_sequence ();
4582 else
4583 emit_move_insn (parmreg, validize_mem (entry_parm));
4585 /* If we were passed a pointer but the actual value
4586 can safely live in a register, put it in one. */
4587 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4588 && ! ((! optimize
4589 && ! DECL_REGISTER (parm)
4590 && ! DECL_INLINE (fndecl))
4591 /* layout_decl may set this. */
4592 || TREE_ADDRESSABLE (parm)
4593 || TREE_SIDE_EFFECTS (parm)
4594 /* If -ffloat-store specified, don't put explicit
4595 float variables into registers. */
4596 || (flag_float_store
4597 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4599 /* We can't use nominal_mode, because it will have been set to
4600 Pmode above. We must use the actual mode of the parm. */
4601 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4602 mark_user_reg (parmreg);
4603 emit_move_insn (parmreg, DECL_RTL (parm));
4604 DECL_RTL (parm) = parmreg;
4605 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4606 now the parm. */
4607 stack_parm = 0;
4609 #ifdef FUNCTION_ARG_CALLEE_COPIES
4610 /* If we are passed an arg by reference and it is our responsibility
4611 to make a copy, do it now.
4612 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4613 original argument, so we must recreate them in the call to
4614 FUNCTION_ARG_CALLEE_COPIES. */
4615 /* ??? Later add code to handle the case that if the argument isn't
4616 modified, don't do the copy. */
4618 else if (passed_pointer
4619 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4620 TYPE_MODE (DECL_ARG_TYPE (parm)),
4621 DECL_ARG_TYPE (parm),
4622 named_arg)
4623 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4625 rtx copy;
4626 tree type = DECL_ARG_TYPE (parm);
4628 /* This sequence may involve a library call perhaps clobbering
4629 registers that haven't been copied to pseudos yet. */
4631 push_to_sequence (conversion_insns);
4633 if (!COMPLETE_TYPE_P (type)
4634 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4635 /* This is a variable sized object. */
4636 copy = gen_rtx_MEM (BLKmode,
4637 allocate_dynamic_stack_space
4638 (expr_size (parm), NULL_RTX,
4639 TYPE_ALIGN (type)));
4640 else
4641 copy = assign_stack_temp (TYPE_MODE (type),
4642 int_size_in_bytes (type), 1);
4643 set_mem_attributes (copy, parm);
4645 store_expr (parm, copy, 0);
4646 emit_move_insn (parmreg, XEXP (copy, 0));
4647 if (current_function_check_memory_usage)
4648 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4649 XEXP (copy, 0), Pmode,
4650 GEN_INT (int_size_in_bytes (type)),
4651 TYPE_MODE (sizetype),
4652 GEN_INT (MEMORY_USE_RW),
4653 TYPE_MODE (integer_type_node));
4654 conversion_insns = get_insns ();
4655 did_conversion = 1;
4656 end_sequence ();
4658 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4660 /* In any case, record the parm's desired stack location
4661 in case we later discover it must live in the stack.
4663 If it is a COMPLEX value, store the stack location for both
4664 halves. */
4666 if (GET_CODE (parmreg) == CONCAT)
4667 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4668 else
4669 regno = REGNO (parmreg);
4671 if (regno >= max_parm_reg)
4673 rtx *new;
4674 int old_max_parm_reg = max_parm_reg;
4676 /* It's slow to expand this one register at a time,
4677 but it's also rare and we need max_parm_reg to be
4678 precisely correct. */
4679 max_parm_reg = regno + 1;
4680 new = (rtx *) xrealloc (parm_reg_stack_loc,
4681 max_parm_reg * sizeof (rtx));
4682 bzero ((char *) (new + old_max_parm_reg),
4683 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4684 parm_reg_stack_loc = new;
4687 if (GET_CODE (parmreg) == CONCAT)
4689 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4691 regnor = REGNO (gen_realpart (submode, parmreg));
4692 regnoi = REGNO (gen_imagpart (submode, parmreg));
4694 if (stack_parm != 0)
4696 parm_reg_stack_loc[regnor]
4697 = gen_realpart (submode, stack_parm);
4698 parm_reg_stack_loc[regnoi]
4699 = gen_imagpart (submode, stack_parm);
4701 else
4703 parm_reg_stack_loc[regnor] = 0;
4704 parm_reg_stack_loc[regnoi] = 0;
4707 else
4708 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4710 /* Mark the register as eliminable if we did no conversion
4711 and it was copied from memory at a fixed offset,
4712 and the arg pointer was not copied to a pseudo-reg.
4713 If the arg pointer is a pseudo reg or the offset formed
4714 an invalid address, such memory-equivalences
4715 as we make here would screw up life analysis for it. */
4716 if (nominal_mode == passed_mode
4717 && ! did_conversion
4718 && stack_parm != 0
4719 && GET_CODE (stack_parm) == MEM
4720 && stack_offset.var == 0
4721 && reg_mentioned_p (virtual_incoming_args_rtx,
4722 XEXP (stack_parm, 0)))
4724 rtx linsn = get_last_insn ();
4725 rtx sinsn, set;
4727 /* Mark complex types separately. */
4728 if (GET_CODE (parmreg) == CONCAT)
4729 /* Scan backwards for the set of the real and
4730 imaginary parts. */
4731 for (sinsn = linsn; sinsn != 0;
4732 sinsn = prev_nonnote_insn (sinsn))
4734 set = single_set (sinsn);
4735 if (set != 0
4736 && SET_DEST (set) == regno_reg_rtx [regnoi])
4737 REG_NOTES (sinsn)
4738 = gen_rtx_EXPR_LIST (REG_EQUIV,
4739 parm_reg_stack_loc[regnoi],
4740 REG_NOTES (sinsn));
4741 else if (set != 0
4742 && SET_DEST (set) == regno_reg_rtx [regnor])
4743 REG_NOTES (sinsn)
4744 = gen_rtx_EXPR_LIST (REG_EQUIV,
4745 parm_reg_stack_loc[regnor],
4746 REG_NOTES (sinsn));
4748 else if ((set = single_set (linsn)) != 0
4749 && SET_DEST (set) == parmreg)
4750 REG_NOTES (linsn)
4751 = gen_rtx_EXPR_LIST (REG_EQUIV,
4752 stack_parm, REG_NOTES (linsn));
4755 /* For pointer data type, suggest pointer register. */
4756 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4757 mark_reg_pointer (parmreg,
4758 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4761 else
4763 /* Value must be stored in the stack slot STACK_PARM
4764 during function execution. */
4766 if (promoted_mode != nominal_mode)
4768 /* Conversion is required. */
4769 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4771 emit_move_insn (tempreg, validize_mem (entry_parm));
4773 push_to_sequence (conversion_insns);
4774 entry_parm = convert_to_mode (nominal_mode, tempreg,
4775 TREE_UNSIGNED (TREE_TYPE (parm)));
4776 if (stack_parm)
4778 /* ??? This may need a big-endian conversion on sparc64. */
4779 stack_parm = change_address (stack_parm, nominal_mode,
4780 NULL_RTX);
4782 conversion_insns = get_insns ();
4783 did_conversion = 1;
4784 end_sequence ();
4787 if (entry_parm != stack_parm)
4789 if (stack_parm == 0)
4791 stack_parm
4792 = assign_stack_local (GET_MODE (entry_parm),
4793 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4794 set_mem_attributes (stack_parm, parm, 1);
4797 if (promoted_mode != nominal_mode)
4799 push_to_sequence (conversion_insns);
4800 emit_move_insn (validize_mem (stack_parm),
4801 validize_mem (entry_parm));
4802 conversion_insns = get_insns ();
4803 end_sequence ();
4805 else
4806 emit_move_insn (validize_mem (stack_parm),
4807 validize_mem (entry_parm));
4809 if (current_function_check_memory_usage)
4811 push_to_sequence (conversion_insns);
4812 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4813 XEXP (stack_parm, 0), Pmode,
4814 GEN_INT (GET_MODE_SIZE (GET_MODE
4815 (entry_parm))),
4816 TYPE_MODE (sizetype),
4817 GEN_INT (MEMORY_USE_RW),
4818 TYPE_MODE (integer_type_node));
4820 conversion_insns = get_insns ();
4821 end_sequence ();
4823 DECL_RTL (parm) = stack_parm;
4826 /* If this "parameter" was the place where we are receiving the
4827 function's incoming structure pointer, set up the result. */
4828 if (parm == function_result_decl)
4830 tree result = DECL_RESULT (fndecl);
4832 DECL_RTL (result)
4833 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
4835 set_mem_attributes (DECL_RTL (result), result, 1);
4839 /* Output all parameter conversion instructions (possibly including calls)
4840 now that all parameters have been copied out of hard registers. */
4841 emit_insns (conversion_insns);
4843 last_parm_insn = get_last_insn ();
4845 current_function_args_size = stack_args_size.constant;
4847 /* Adjust function incoming argument size for alignment and
4848 minimum length. */
4850 #ifdef REG_PARM_STACK_SPACE
4851 #ifndef MAYBE_REG_PARM_STACK_SPACE
4852 current_function_args_size = MAX (current_function_args_size,
4853 REG_PARM_STACK_SPACE (fndecl));
4854 #endif
4855 #endif
4857 #ifdef STACK_BOUNDARY
4858 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4860 current_function_args_size
4861 = ((current_function_args_size + STACK_BYTES - 1)
4862 / STACK_BYTES) * STACK_BYTES;
4863 #endif
4865 #ifdef ARGS_GROW_DOWNWARD
4866 current_function_arg_offset_rtx
4867 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4868 : expand_expr (size_diffop (stack_args_size.var,
4869 size_int (-stack_args_size.constant)),
4870 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
4871 #else
4872 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4873 #endif
4875 /* See how many bytes, if any, of its args a function should try to pop
4876 on return. */
4878 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4879 current_function_args_size);
4881 /* For stdarg.h function, save info about
4882 regs and stack space used by the named args. */
4884 if (!hide_last_arg)
4885 current_function_args_info = args_so_far;
4887 /* Set the rtx used for the function return value. Put this in its
4888 own variable so any optimizers that need this information don't have
4889 to include tree.h. Do this here so it gets done when an inlined
4890 function gets output. */
4892 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4895 /* Indicate whether REGNO is an incoming argument to the current function
4896 that was promoted to a wider mode. If so, return the RTX for the
4897 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4898 that REGNO is promoted from and whether the promotion was signed or
4899 unsigned. */
4901 #ifdef PROMOTE_FUNCTION_ARGS
4904 promoted_input_arg (regno, pmode, punsignedp)
4905 unsigned int regno;
4906 enum machine_mode *pmode;
4907 int *punsignedp;
4909 tree arg;
4911 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4912 arg = TREE_CHAIN (arg))
4913 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4914 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4915 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4917 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4918 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4920 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4921 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4922 && mode != DECL_MODE (arg))
4924 *pmode = DECL_MODE (arg);
4925 *punsignedp = unsignedp;
4926 return DECL_INCOMING_RTL (arg);
4930 return 0;
4933 #endif
4935 /* Compute the size and offset from the start of the stacked arguments for a
4936 parm passed in mode PASSED_MODE and with type TYPE.
4938 INITIAL_OFFSET_PTR points to the current offset into the stacked
4939 arguments.
4941 The starting offset and size for this parm are returned in *OFFSET_PTR
4942 and *ARG_SIZE_PTR, respectively.
4944 IN_REGS is non-zero if the argument will be passed in registers. It will
4945 never be set if REG_PARM_STACK_SPACE is not defined.
4947 FNDECL is the function in which the argument was defined.
4949 There are two types of rounding that are done. The first, controlled by
4950 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4951 list to be aligned to the specific boundary (in bits). This rounding
4952 affects the initial and starting offsets, but not the argument size.
4954 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4955 optionally rounds the size of the parm to PARM_BOUNDARY. The
4956 initial offset is not affected by this rounding, while the size always
4957 is and the starting offset may be. */
4959 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4960 initial_offset_ptr is positive because locate_and_pad_parm's
4961 callers pass in the total size of args so far as
4962 initial_offset_ptr. arg_size_ptr is always positive.*/
4964 void
4965 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
4966 initial_offset_ptr, offset_ptr, arg_size_ptr,
4967 alignment_pad)
4968 enum machine_mode passed_mode;
4969 tree type;
4970 int in_regs ATTRIBUTE_UNUSED;
4971 tree fndecl ATTRIBUTE_UNUSED;
4972 struct args_size *initial_offset_ptr;
4973 struct args_size *offset_ptr;
4974 struct args_size *arg_size_ptr;
4975 struct args_size *alignment_pad;
4978 tree sizetree
4979 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4980 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4981 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
4983 #ifdef REG_PARM_STACK_SPACE
4984 /* If we have found a stack parm before we reach the end of the
4985 area reserved for registers, skip that area. */
4986 if (! in_regs)
4988 int reg_parm_stack_space = 0;
4990 #ifdef MAYBE_REG_PARM_STACK_SPACE
4991 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
4992 #else
4993 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4994 #endif
4995 if (reg_parm_stack_space > 0)
4997 if (initial_offset_ptr->var)
4999 initial_offset_ptr->var
5000 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5001 ssize_int (reg_parm_stack_space));
5002 initial_offset_ptr->constant = 0;
5004 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5005 initial_offset_ptr->constant = reg_parm_stack_space;
5008 #endif /* REG_PARM_STACK_SPACE */
5010 arg_size_ptr->var = 0;
5011 arg_size_ptr->constant = 0;
5013 #ifdef ARGS_GROW_DOWNWARD
5014 if (initial_offset_ptr->var)
5016 offset_ptr->constant = 0;
5017 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5018 initial_offset_ptr->var);
5020 else
5022 offset_ptr->constant = - initial_offset_ptr->constant;
5023 offset_ptr->var = 0;
5025 if (where_pad != none
5026 && (TREE_CODE (sizetree) != INTEGER_CST
5027 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5028 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5029 SUB_PARM_SIZE (*offset_ptr, sizetree);
5030 if (where_pad != downward)
5031 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5032 if (initial_offset_ptr->var)
5033 arg_size_ptr->var = size_binop (MINUS_EXPR,
5034 size_binop (MINUS_EXPR,
5035 ssize_int (0),
5036 initial_offset_ptr->var),
5037 offset_ptr->var);
5039 else
5040 arg_size_ptr->constant = (- initial_offset_ptr->constant
5041 - offset_ptr->constant);
5043 #else /* !ARGS_GROW_DOWNWARD */
5044 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5045 *offset_ptr = *initial_offset_ptr;
5047 #ifdef PUSH_ROUNDING
5048 if (passed_mode != BLKmode)
5049 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5050 #endif
5052 /* Pad_below needs the pre-rounded size to know how much to pad below
5053 so this must be done before rounding up. */
5054 if (where_pad == downward
5055 /* However, BLKmode args passed in regs have their padding done elsewhere.
5056 The stack slot must be able to hold the entire register. */
5057 && !(in_regs && passed_mode == BLKmode))
5058 pad_below (offset_ptr, passed_mode, sizetree);
5060 if (where_pad != none
5061 && (TREE_CODE (sizetree) != INTEGER_CST
5062 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5063 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5065 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5066 #endif /* ARGS_GROW_DOWNWARD */
5069 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5070 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5072 static void
5073 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5074 struct args_size *offset_ptr;
5075 int boundary;
5076 struct args_size *alignment_pad;
5078 tree save_var = NULL_TREE;
5079 HOST_WIDE_INT save_constant = 0;
5081 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5083 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5085 save_var = offset_ptr->var;
5086 save_constant = offset_ptr->constant;
5089 alignment_pad->var = NULL_TREE;
5090 alignment_pad->constant = 0;
5092 if (boundary > BITS_PER_UNIT)
5094 if (offset_ptr->var)
5096 offset_ptr->var =
5097 #ifdef ARGS_GROW_DOWNWARD
5098 round_down
5099 #else
5100 round_up
5101 #endif
5102 (ARGS_SIZE_TREE (*offset_ptr),
5103 boundary / BITS_PER_UNIT);
5104 offset_ptr->constant = 0; /*?*/
5105 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5106 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5107 save_var);
5109 else
5111 offset_ptr->constant =
5112 #ifdef ARGS_GROW_DOWNWARD
5113 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5114 #else
5115 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5116 #endif
5117 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5118 alignment_pad->constant = offset_ptr->constant - save_constant;
5123 #ifndef ARGS_GROW_DOWNWARD
5124 static void
5125 pad_below (offset_ptr, passed_mode, sizetree)
5126 struct args_size *offset_ptr;
5127 enum machine_mode passed_mode;
5128 tree sizetree;
5130 if (passed_mode != BLKmode)
5132 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5133 offset_ptr->constant
5134 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5135 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5136 - GET_MODE_SIZE (passed_mode));
5138 else
5140 if (TREE_CODE (sizetree) != INTEGER_CST
5141 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5143 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5144 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5145 /* Add it in. */
5146 ADD_PARM_SIZE (*offset_ptr, s2);
5147 SUB_PARM_SIZE (*offset_ptr, sizetree);
5151 #endif
5153 /* Walk the tree of blocks describing the binding levels within a function
5154 and warn about uninitialized variables.
5155 This is done after calling flow_analysis and before global_alloc
5156 clobbers the pseudo-regs to hard regs. */
5158 void
5159 uninitialized_vars_warning (block)
5160 tree block;
5162 register tree decl, sub;
5163 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5165 if (warn_uninitialized
5166 && TREE_CODE (decl) == VAR_DECL
5167 /* These warnings are unreliable for and aggregates
5168 because assigning the fields one by one can fail to convince
5169 flow.c that the entire aggregate was initialized.
5170 Unions are troublesome because members may be shorter. */
5171 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5172 && DECL_RTL (decl) != 0
5173 && GET_CODE (DECL_RTL (decl)) == REG
5174 /* Global optimizations can make it difficult to determine if a
5175 particular variable has been initialized. However, a VAR_DECL
5176 with a nonzero DECL_INITIAL had an initializer, so do not
5177 claim it is potentially uninitialized.
5179 We do not care about the actual value in DECL_INITIAL, so we do
5180 not worry that it may be a dangling pointer. */
5181 && DECL_INITIAL (decl) == NULL_TREE
5182 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5183 warning_with_decl (decl,
5184 "`%s' might be used uninitialized in this function");
5185 if (extra_warnings
5186 && TREE_CODE (decl) == VAR_DECL
5187 && DECL_RTL (decl) != 0
5188 && GET_CODE (DECL_RTL (decl)) == REG
5189 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5190 warning_with_decl (decl,
5191 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5193 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5194 uninitialized_vars_warning (sub);
5197 /* Do the appropriate part of uninitialized_vars_warning
5198 but for arguments instead of local variables. */
5200 void
5201 setjmp_args_warning ()
5203 register tree decl;
5204 for (decl = DECL_ARGUMENTS (current_function_decl);
5205 decl; decl = TREE_CHAIN (decl))
5206 if (DECL_RTL (decl) != 0
5207 && GET_CODE (DECL_RTL (decl)) == REG
5208 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5209 warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
5212 /* If this function call setjmp, put all vars into the stack
5213 unless they were declared `register'. */
5215 void
5216 setjmp_protect (block)
5217 tree block;
5219 register tree decl, sub;
5220 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5221 if ((TREE_CODE (decl) == VAR_DECL
5222 || TREE_CODE (decl) == PARM_DECL)
5223 && DECL_RTL (decl) != 0
5224 && (GET_CODE (DECL_RTL (decl)) == REG
5225 || (GET_CODE (DECL_RTL (decl)) == MEM
5226 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5227 /* If this variable came from an inline function, it must be
5228 that its life doesn't overlap the setjmp. If there was a
5229 setjmp in the function, it would already be in memory. We
5230 must exclude such variable because their DECL_RTL might be
5231 set to strange things such as virtual_stack_vars_rtx. */
5232 && ! DECL_FROM_INLINE (decl)
5233 && (
5234 #ifdef NON_SAVING_SETJMP
5235 /* If longjmp doesn't restore the registers,
5236 don't put anything in them. */
5237 NON_SAVING_SETJMP
5239 #endif
5240 ! DECL_REGISTER (decl)))
5241 put_var_into_stack (decl);
5242 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5243 setjmp_protect (sub);
5246 /* Like the previous function, but for args instead of local variables. */
5248 void
5249 setjmp_protect_args ()
5251 register tree decl;
5252 for (decl = DECL_ARGUMENTS (current_function_decl);
5253 decl; decl = TREE_CHAIN (decl))
5254 if ((TREE_CODE (decl) == VAR_DECL
5255 || TREE_CODE (decl) == PARM_DECL)
5256 && DECL_RTL (decl) != 0
5257 && (GET_CODE (DECL_RTL (decl)) == REG
5258 || (GET_CODE (DECL_RTL (decl)) == MEM
5259 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5260 && (
5261 /* If longjmp doesn't restore the registers,
5262 don't put anything in them. */
5263 #ifdef NON_SAVING_SETJMP
5264 NON_SAVING_SETJMP
5266 #endif
5267 ! DECL_REGISTER (decl)))
5268 put_var_into_stack (decl);
5271 /* Return the context-pointer register corresponding to DECL,
5272 or 0 if it does not need one. */
5275 lookup_static_chain (decl)
5276 tree decl;
5278 tree context = decl_function_context (decl);
5279 tree link;
5281 if (context == 0
5282 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5283 return 0;
5285 /* We treat inline_function_decl as an alias for the current function
5286 because that is the inline function whose vars, types, etc.
5287 are being merged into the current function.
5288 See expand_inline_function. */
5289 if (context == current_function_decl || context == inline_function_decl)
5290 return virtual_stack_vars_rtx;
5292 for (link = context_display; link; link = TREE_CHAIN (link))
5293 if (TREE_PURPOSE (link) == context)
5294 return RTL_EXPR_RTL (TREE_VALUE (link));
5296 abort ();
5299 /* Convert a stack slot address ADDR for variable VAR
5300 (from a containing function)
5301 into an address valid in this function (using a static chain). */
5304 fix_lexical_addr (addr, var)
5305 rtx addr;
5306 tree var;
5308 rtx basereg;
5309 HOST_WIDE_INT displacement;
5310 tree context = decl_function_context (var);
5311 struct function *fp;
5312 rtx base = 0;
5314 /* If this is the present function, we need not do anything. */
5315 if (context == current_function_decl || context == inline_function_decl)
5316 return addr;
5318 for (fp = outer_function_chain; fp; fp = fp->next)
5319 if (fp->decl == context)
5320 break;
5322 if (fp == 0)
5323 abort ();
5325 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5326 addr = XEXP (XEXP (addr, 0), 0);
5328 /* Decode given address as base reg plus displacement. */
5329 if (GET_CODE (addr) == REG)
5330 basereg = addr, displacement = 0;
5331 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5332 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5333 else
5334 abort ();
5336 /* We accept vars reached via the containing function's
5337 incoming arg pointer and via its stack variables pointer. */
5338 if (basereg == fp->internal_arg_pointer)
5340 /* If reached via arg pointer, get the arg pointer value
5341 out of that function's stack frame.
5343 There are two cases: If a separate ap is needed, allocate a
5344 slot in the outer function for it and dereference it that way.
5345 This is correct even if the real ap is actually a pseudo.
5346 Otherwise, just adjust the offset from the frame pointer to
5347 compensate. */
5349 #ifdef NEED_SEPARATE_AP
5350 rtx addr;
5352 if (fp->x_arg_pointer_save_area == 0)
5353 fp->x_arg_pointer_save_area
5354 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5356 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5357 addr = memory_address (Pmode, addr);
5359 base = gen_rtx_MEM (Pmode, addr);
5360 MEM_ALIAS_SET (base) = get_frame_alias_set ();
5361 base = copy_to_reg (base);
5362 #else
5363 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5364 base = lookup_static_chain (var);
5365 #endif
5368 else if (basereg == virtual_stack_vars_rtx)
5370 /* This is the same code as lookup_static_chain, duplicated here to
5371 avoid an extra call to decl_function_context. */
5372 tree link;
5374 for (link = context_display; link; link = TREE_CHAIN (link))
5375 if (TREE_PURPOSE (link) == context)
5377 base = RTL_EXPR_RTL (TREE_VALUE (link));
5378 break;
5382 if (base == 0)
5383 abort ();
5385 /* Use same offset, relative to appropriate static chain or argument
5386 pointer. */
5387 return plus_constant (base, displacement);
5390 /* Return the address of the trampoline for entering nested fn FUNCTION.
5391 If necessary, allocate a trampoline (in the stack frame)
5392 and emit rtl to initialize its contents (at entry to this function). */
5395 trampoline_address (function)
5396 tree function;
5398 tree link;
5399 tree rtlexp;
5400 rtx tramp;
5401 struct function *fp;
5402 tree fn_context;
5404 /* Find an existing trampoline and return it. */
5405 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5406 if (TREE_PURPOSE (link) == function)
5407 return
5408 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5410 for (fp = outer_function_chain; fp; fp = fp->next)
5411 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5412 if (TREE_PURPOSE (link) == function)
5414 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5415 function);
5416 return round_trampoline_addr (tramp);
5419 /* None exists; we must make one. */
5421 /* Find the `struct function' for the function containing FUNCTION. */
5422 fp = 0;
5423 fn_context = decl_function_context (function);
5424 if (fn_context != current_function_decl
5425 && fn_context != inline_function_decl)
5426 for (fp = outer_function_chain; fp; fp = fp->next)
5427 if (fp->decl == fn_context)
5428 break;
5430 /* Allocate run-time space for this trampoline
5431 (usually in the defining function's stack frame). */
5432 #ifdef ALLOCATE_TRAMPOLINE
5433 tramp = ALLOCATE_TRAMPOLINE (fp);
5434 #else
5435 /* If rounding needed, allocate extra space
5436 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5437 #ifdef TRAMPOLINE_ALIGNMENT
5438 #define TRAMPOLINE_REAL_SIZE \
5439 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5440 #else
5441 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5442 #endif
5443 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5444 fp ? fp : cfun);
5445 #endif
5447 /* Record the trampoline for reuse and note it for later initialization
5448 by expand_function_end. */
5449 if (fp != 0)
5451 push_obstacks (fp->function_maybepermanent_obstack,
5452 fp->function_maybepermanent_obstack);
5453 rtlexp = make_node (RTL_EXPR);
5454 RTL_EXPR_RTL (rtlexp) = tramp;
5455 fp->x_trampoline_list = tree_cons (function, rtlexp,
5456 fp->x_trampoline_list);
5457 pop_obstacks ();
5459 else
5461 /* Make the RTL_EXPR node temporary, not momentary, so that the
5462 trampoline_list doesn't become garbage. */
5463 int momentary = suspend_momentary ();
5464 rtlexp = make_node (RTL_EXPR);
5465 resume_momentary (momentary);
5467 RTL_EXPR_RTL (rtlexp) = tramp;
5468 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5471 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5472 return round_trampoline_addr (tramp);
5475 /* Given a trampoline address,
5476 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5478 static rtx
5479 round_trampoline_addr (tramp)
5480 rtx tramp;
5482 #ifdef TRAMPOLINE_ALIGNMENT
5483 /* Round address up to desired boundary. */
5484 rtx temp = gen_reg_rtx (Pmode);
5485 temp = expand_binop (Pmode, add_optab, tramp,
5486 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5487 temp, 0, OPTAB_LIB_WIDEN);
5488 tramp = expand_binop (Pmode, and_optab, temp,
5489 GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5490 temp, 0, OPTAB_LIB_WIDEN);
5491 #endif
5492 return tramp;
5495 /* Put all this function's BLOCK nodes including those that are chained
5496 onto the first block into a vector, and return it.
5497 Also store in each NOTE for the beginning or end of a block
5498 the index of that block in the vector.
5499 The arguments are BLOCK, the chain of top-level blocks of the function,
5500 and INSNS, the insn chain of the function. */
5502 void
5503 identify_blocks ()
5505 int n_blocks;
5506 tree *block_vector, *last_block_vector;
5507 tree *block_stack;
5508 tree block = DECL_INITIAL (current_function_decl);
5510 if (block == 0)
5511 return;
5513 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5514 depth-first order. */
5515 block_vector = get_block_vector (block, &n_blocks);
5516 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5518 last_block_vector = identify_blocks_1 (get_insns (),
5519 block_vector + 1,
5520 block_vector + n_blocks,
5521 block_stack);
5523 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5524 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5525 if (0 && last_block_vector != block_vector + n_blocks)
5526 abort ();
5528 free (block_vector);
5529 free (block_stack);
5532 /* Subroutine of identify_blocks. Do the block substitution on the
5533 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5535 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5536 BLOCK_VECTOR is incremented for each block seen. */
5538 static tree *
5539 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5540 rtx insns;
5541 tree *block_vector;
5542 tree *end_block_vector;
5543 tree *orig_block_stack;
5545 rtx insn;
5546 tree *block_stack = orig_block_stack;
5548 for (insn = insns; insn; insn = NEXT_INSN (insn))
5550 if (GET_CODE (insn) == NOTE)
5552 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5554 tree b;
5556 /* If there are more block notes than BLOCKs, something
5557 is badly wrong. */
5558 if (block_vector == end_block_vector)
5559 abort ();
5561 b = *block_vector++;
5562 NOTE_BLOCK (insn) = b;
5563 *block_stack++ = b;
5565 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5567 /* If there are more NOTE_INSN_BLOCK_ENDs than
5568 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5569 if (block_stack == orig_block_stack)
5570 abort ();
5572 NOTE_BLOCK (insn) = *--block_stack;
5575 else if (GET_CODE (insn) == CALL_INSN
5576 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5578 rtx cp = PATTERN (insn);
5580 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5581 end_block_vector, block_stack);
5582 if (XEXP (cp, 1))
5583 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5584 end_block_vector, block_stack);
5585 if (XEXP (cp, 2))
5586 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5587 end_block_vector, block_stack);
5591 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5592 something is badly wrong. */
5593 if (block_stack != orig_block_stack)
5594 abort ();
5596 return block_vector;
5599 /* Identify BLOCKs referenced by more than one
5600 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5602 void
5603 reorder_blocks ()
5605 tree block = DECL_INITIAL (current_function_decl);
5606 varray_type block_stack;
5608 if (block == NULL_TREE)
5609 return;
5611 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5613 /* Prune the old trees away, so that they don't get in the way. */
5614 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5615 BLOCK_CHAIN (block) = NULL_TREE;
5617 reorder_blocks_1 (get_insns (), block, &block_stack);
5619 BLOCK_SUBBLOCKS (block)
5620 = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5622 VARRAY_FREE (block_stack);
5625 /* Helper function for reorder_blocks. Process the insn chain beginning
5626 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5628 static void
5629 reorder_blocks_1 (insns, current_block, p_block_stack)
5630 rtx insns;
5631 tree current_block;
5632 varray_type *p_block_stack;
5634 rtx insn;
5636 for (insn = insns; insn; insn = NEXT_INSN (insn))
5638 if (GET_CODE (insn) == NOTE)
5640 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5642 tree block = NOTE_BLOCK (insn);
5643 /* If we have seen this block before, copy it. */
5644 if (TREE_ASM_WRITTEN (block))
5646 block = copy_node (block);
5647 NOTE_BLOCK (insn) = block;
5649 BLOCK_SUBBLOCKS (block) = 0;
5650 TREE_ASM_WRITTEN (block) = 1;
5651 BLOCK_SUPERCONTEXT (block) = current_block;
5652 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5653 BLOCK_SUBBLOCKS (current_block) = block;
5654 current_block = block;
5655 VARRAY_PUSH_TREE (*p_block_stack, block);
5657 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5659 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5660 VARRAY_POP (*p_block_stack);
5661 BLOCK_SUBBLOCKS (current_block)
5662 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5663 current_block = BLOCK_SUPERCONTEXT (current_block);
5666 else if (GET_CODE (insn) == CALL_INSN
5667 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5669 rtx cp = PATTERN (insn);
5670 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5671 if (XEXP (cp, 1))
5672 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5673 if (XEXP (cp, 2))
5674 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5679 /* Reverse the order of elements in the chain T of blocks,
5680 and return the new head of the chain (old last element). */
5682 static tree
5683 blocks_nreverse (t)
5684 tree t;
5686 register tree prev = 0, decl, next;
5687 for (decl = t; decl; decl = next)
5689 next = BLOCK_CHAIN (decl);
5690 BLOCK_CHAIN (decl) = prev;
5691 prev = decl;
5693 return prev;
5696 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5697 non-NULL, list them all into VECTOR, in a depth-first preorder
5698 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5699 blocks. */
5701 static int
5702 all_blocks (block, vector)
5703 tree block;
5704 tree *vector;
5706 int n_blocks = 0;
5708 while (block)
5710 TREE_ASM_WRITTEN (block) = 0;
5712 /* Record this block. */
5713 if (vector)
5714 vector[n_blocks] = block;
5716 ++n_blocks;
5718 /* Record the subblocks, and their subblocks... */
5719 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5720 vector ? vector + n_blocks : 0);
5721 block = BLOCK_CHAIN (block);
5724 return n_blocks;
5727 /* Return a vector containing all the blocks rooted at BLOCK. The
5728 number of elements in the vector is stored in N_BLOCKS_P. The
5729 vector is dynamically allocated; it is the caller's responsibility
5730 to call `free' on the pointer returned. */
5732 static tree *
5733 get_block_vector (block, n_blocks_p)
5734 tree block;
5735 int *n_blocks_p;
5737 tree *block_vector;
5739 *n_blocks_p = all_blocks (block, NULL);
5740 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5741 all_blocks (block, block_vector);
5743 return block_vector;
5746 static int next_block_index = 2;
5748 /* Set BLOCK_NUMBER for all the blocks in FN. */
5750 void
5751 number_blocks (fn)
5752 tree fn;
5754 int i;
5755 int n_blocks;
5756 tree *block_vector;
5758 /* For SDB and XCOFF debugging output, we start numbering the blocks
5759 from 1 within each function, rather than keeping a running
5760 count. */
5761 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
5762 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
5763 next_block_index = 1;
5764 #endif
5766 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
5768 /* The top-level BLOCK isn't numbered at all. */
5769 for (i = 1; i < n_blocks; ++i)
5770 /* We number the blocks from two. */
5771 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
5773 free (block_vector);
5775 return;
5779 /* Allocate a function structure and reset its contents to the defaults. */
5780 static void
5781 prepare_function_start ()
5783 cfun = (struct function *) xcalloc (1, sizeof (struct function));
5785 init_stmt_for_function ();
5786 init_eh_for_function ();
5788 cse_not_expected = ! optimize;
5790 /* Caller save not needed yet. */
5791 caller_save_needed = 0;
5793 /* No stack slots have been made yet. */
5794 stack_slot_list = 0;
5796 current_function_has_nonlocal_label = 0;
5797 current_function_has_nonlocal_goto = 0;
5799 /* There is no stack slot for handling nonlocal gotos. */
5800 nonlocal_goto_handler_slots = 0;
5801 nonlocal_goto_stack_level = 0;
5803 /* No labels have been declared for nonlocal use. */
5804 nonlocal_labels = 0;
5805 nonlocal_goto_handler_labels = 0;
5807 /* No function calls so far in this function. */
5808 function_call_count = 0;
5810 /* No parm regs have been allocated.
5811 (This is important for output_inline_function.) */
5812 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5814 /* Initialize the RTL mechanism. */
5815 init_emit ();
5817 /* Initialize the queue of pending postincrement and postdecrements,
5818 and some other info in expr.c. */
5819 init_expr ();
5821 /* We haven't done register allocation yet. */
5822 reg_renumber = 0;
5824 init_varasm_status (cfun);
5826 /* Clear out data used for inlining. */
5827 cfun->inlinable = 0;
5828 cfun->original_decl_initial = 0;
5829 cfun->original_arg_vector = 0;
5831 #ifdef STACK_BOUNDARY
5832 cfun->stack_alignment_needed = STACK_BOUNDARY;
5833 cfun->preferred_stack_boundary = STACK_BOUNDARY;
5834 #else
5835 cfun->stack_alignment_needed = 0;
5836 cfun->preferred_stack_boundary = 0;
5837 #endif
5839 /* Set if a call to setjmp is seen. */
5840 current_function_calls_setjmp = 0;
5842 /* Set if a call to longjmp is seen. */
5843 current_function_calls_longjmp = 0;
5845 current_function_calls_alloca = 0;
5846 current_function_contains_functions = 0;
5847 current_function_is_leaf = 0;
5848 current_function_nothrow = 0;
5849 current_function_sp_is_unchanging = 0;
5850 current_function_uses_only_leaf_regs = 0;
5851 current_function_has_computed_jump = 0;
5852 current_function_is_thunk = 0;
5854 current_function_returns_pcc_struct = 0;
5855 current_function_returns_struct = 0;
5856 current_function_epilogue_delay_list = 0;
5857 current_function_uses_const_pool = 0;
5858 current_function_uses_pic_offset_table = 0;
5859 current_function_cannot_inline = 0;
5861 /* We have not yet needed to make a label to jump to for tail-recursion. */
5862 tail_recursion_label = 0;
5864 /* We haven't had a need to make a save area for ap yet. */
5865 arg_pointer_save_area = 0;
5867 /* No stack slots allocated yet. */
5868 frame_offset = 0;
5870 /* No SAVE_EXPRs in this function yet. */
5871 save_expr_regs = 0;
5873 /* No RTL_EXPRs in this function yet. */
5874 rtl_expr_chain = 0;
5876 /* Set up to allocate temporaries. */
5877 init_temp_slots ();
5879 /* Indicate that we need to distinguish between the return value of the
5880 present function and the return value of a function being called. */
5881 rtx_equal_function_value_matters = 1;
5883 /* Indicate that we have not instantiated virtual registers yet. */
5884 virtuals_instantiated = 0;
5886 /* Indicate we have no need of a frame pointer yet. */
5887 frame_pointer_needed = 0;
5889 /* By default assume not varargs or stdarg. */
5890 current_function_varargs = 0;
5891 current_function_stdarg = 0;
5893 /* We haven't made any trampolines for this function yet. */
5894 trampoline_list = 0;
5896 init_pending_stack_adjust ();
5897 inhibit_defer_pop = 0;
5899 current_function_outgoing_args_size = 0;
5901 if (init_lang_status)
5902 (*init_lang_status) (cfun);
5903 if (init_machine_status)
5904 (*init_machine_status) (cfun);
5907 /* Initialize the rtl expansion mechanism so that we can do simple things
5908 like generate sequences. This is used to provide a context during global
5909 initialization of some passes. */
5910 void
5911 init_dummy_function_start ()
5913 prepare_function_start ();
5916 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5917 and initialize static variables for generating RTL for the statements
5918 of the function. */
5920 void
5921 init_function_start (subr, filename, line)
5922 tree subr;
5923 const char *filename;
5924 int line;
5926 prepare_function_start ();
5928 /* Remember this function for later. */
5929 cfun->next_global = all_functions;
5930 all_functions = cfun;
5932 current_function_name = (*decl_printable_name) (subr, 2);
5933 cfun->decl = subr;
5935 /* Nonzero if this is a nested function that uses a static chain. */
5937 current_function_needs_context
5938 = (decl_function_context (current_function_decl) != 0
5939 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
5941 /* Within function body, compute a type's size as soon it is laid out. */
5942 immediate_size_expand++;
5944 /* Prevent ever trying to delete the first instruction of a function.
5945 Also tell final how to output a linenum before the function prologue.
5946 Note linenums could be missing, e.g. when compiling a Java .class file. */
5947 if (line > 0)
5948 emit_line_note (filename, line);
5950 /* Make sure first insn is a note even if we don't want linenums.
5951 This makes sure the first insn will never be deleted.
5952 Also, final expects a note to appear there. */
5953 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5955 /* Set flags used by final.c. */
5956 if (aggregate_value_p (DECL_RESULT (subr)))
5958 #ifdef PCC_STATIC_STRUCT_RETURN
5959 current_function_returns_pcc_struct = 1;
5960 #endif
5961 current_function_returns_struct = 1;
5964 /* Warn if this value is an aggregate type,
5965 regardless of which calling convention we are using for it. */
5966 if (warn_aggregate_return
5967 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5968 warning ("function returns an aggregate");
5970 current_function_returns_pointer
5971 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5974 /* Make sure all values used by the optimization passes have sane
5975 defaults. */
5976 void
5977 init_function_for_compilation ()
5979 reg_renumber = 0;
5981 /* No prologue/epilogue insns yet. */
5982 VARRAY_GROW (prologue, 0);
5983 VARRAY_GROW (epilogue, 0);
5984 VARRAY_GROW (sibcall_epilogue, 0);
5987 /* Indicate that the current function uses extra args
5988 not explicitly mentioned in the argument list in any fashion. */
5990 void
5991 mark_varargs ()
5993 current_function_varargs = 1;
5996 /* Expand a call to __main at the beginning of a possible main function. */
5998 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
5999 #undef HAS_INIT_SECTION
6000 #define HAS_INIT_SECTION
6001 #endif
6003 void
6004 expand_main_function ()
6006 #if !defined (HAS_INIT_SECTION)
6007 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6008 VOIDmode, 0);
6009 #endif /* not HAS_INIT_SECTION */
6012 extern struct obstack permanent_obstack;
6014 /* Start the RTL for a new function, and set variables used for
6015 emitting RTL.
6016 SUBR is the FUNCTION_DECL node.
6017 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6018 the function's parameters, which must be run at any return statement. */
6020 void
6021 expand_function_start (subr, parms_have_cleanups)
6022 tree subr;
6023 int parms_have_cleanups;
6025 tree tem;
6026 rtx last_ptr = NULL_RTX;
6028 /* Make sure volatile mem refs aren't considered
6029 valid operands of arithmetic insns. */
6030 init_recog_no_volatile ();
6032 /* Set this before generating any memory accesses. */
6033 current_function_check_memory_usage
6034 = (flag_check_memory_usage
6035 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6037 current_function_instrument_entry_exit
6038 = (flag_instrument_function_entry_exit
6039 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6041 current_function_limit_stack
6042 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6044 /* If function gets a static chain arg, store it in the stack frame.
6045 Do this first, so it gets the first stack slot offset. */
6046 if (current_function_needs_context)
6048 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6050 /* Delay copying static chain if it is not a register to avoid
6051 conflicts with regs used for parameters. */
6052 if (! SMALL_REGISTER_CLASSES
6053 || GET_CODE (static_chain_incoming_rtx) == REG)
6054 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6057 /* If the parameters of this function need cleaning up, get a label
6058 for the beginning of the code which executes those cleanups. This must
6059 be done before doing anything with return_label. */
6060 if (parms_have_cleanups)
6061 cleanup_label = gen_label_rtx ();
6062 else
6063 cleanup_label = 0;
6065 /* Make the label for return statements to jump to, if this machine
6066 does not have a one-instruction return and uses an epilogue,
6067 or if it returns a structure, or if it has parm cleanups. */
6068 #ifdef HAVE_return
6069 if (cleanup_label == 0 && HAVE_return
6070 && ! current_function_instrument_entry_exit
6071 && ! current_function_returns_pcc_struct
6072 && ! (current_function_returns_struct && ! optimize))
6073 return_label = 0;
6074 else
6075 return_label = gen_label_rtx ();
6076 #else
6077 return_label = gen_label_rtx ();
6078 #endif
6080 /* Initialize rtx used to return the value. */
6081 /* Do this before assign_parms so that we copy the struct value address
6082 before any library calls that assign parms might generate. */
6084 /* Decide whether to return the value in memory or in a register. */
6085 if (aggregate_value_p (DECL_RESULT (subr)))
6087 /* Returning something that won't go in a register. */
6088 register rtx value_address = 0;
6090 #ifdef PCC_STATIC_STRUCT_RETURN
6091 if (current_function_returns_pcc_struct)
6093 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6094 value_address = assemble_static_space (size);
6096 else
6097 #endif
6099 /* Expect to be passed the address of a place to store the value.
6100 If it is passed as an argument, assign_parms will take care of
6101 it. */
6102 if (struct_value_incoming_rtx)
6104 value_address = gen_reg_rtx (Pmode);
6105 emit_move_insn (value_address, struct_value_incoming_rtx);
6108 if (value_address)
6110 DECL_RTL (DECL_RESULT (subr))
6111 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6112 set_mem_attributes (DECL_RTL (DECL_RESULT (subr)),
6113 DECL_RESULT (subr), 1);
6116 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6117 /* If return mode is void, this decl rtl should not be used. */
6118 DECL_RTL (DECL_RESULT (subr)) = 0;
6119 else if (parms_have_cleanups || current_function_instrument_entry_exit)
6121 /* If function will end with cleanup code for parms,
6122 compute the return values into a pseudo reg,
6123 which we will copy into the true return register
6124 after the cleanups are done. */
6126 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6128 #ifdef PROMOTE_FUNCTION_RETURN
6129 tree type = TREE_TYPE (DECL_RESULT (subr));
6130 int unsignedp = TREE_UNSIGNED (type);
6132 mode = promote_mode (type, mode, &unsignedp, 1);
6133 #endif
6135 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
6137 else
6138 /* Scalar, returned in a register. */
6140 DECL_RTL (DECL_RESULT (subr))
6141 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)), subr, 1);
6143 /* Mark this reg as the function's return value. */
6144 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6146 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6147 /* Needed because we may need to move this to memory
6148 in case it's a named return value whose address is taken. */
6149 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6153 /* Initialize rtx for parameters and local variables.
6154 In some cases this requires emitting insns. */
6156 assign_parms (subr);
6158 /* Copy the static chain now if it wasn't a register. The delay is to
6159 avoid conflicts with the parameter passing registers. */
6161 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6162 if (GET_CODE (static_chain_incoming_rtx) != REG)
6163 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6165 /* The following was moved from init_function_start.
6166 The move is supposed to make sdb output more accurate. */
6167 /* Indicate the beginning of the function body,
6168 as opposed to parm setup. */
6169 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6171 if (GET_CODE (get_last_insn ()) != NOTE)
6172 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6173 parm_birth_insn = get_last_insn ();
6175 context_display = 0;
6176 if (current_function_needs_context)
6178 /* Fetch static chain values for containing functions. */
6179 tem = decl_function_context (current_function_decl);
6180 /* Copy the static chain pointer into a pseudo. If we have
6181 small register classes, copy the value from memory if
6182 static_chain_incoming_rtx is a REG. */
6183 if (tem)
6185 /* If the static chain originally came in a register, put it back
6186 there, then move it out in the next insn. The reason for
6187 this peculiar code is to satisfy function integration. */
6188 if (SMALL_REGISTER_CLASSES
6189 && GET_CODE (static_chain_incoming_rtx) == REG)
6190 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6191 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6194 while (tem)
6196 tree rtlexp = make_node (RTL_EXPR);
6198 RTL_EXPR_RTL (rtlexp) = last_ptr;
6199 context_display = tree_cons (tem, rtlexp, context_display);
6200 tem = decl_function_context (tem);
6201 if (tem == 0)
6202 break;
6203 /* Chain thru stack frames, assuming pointer to next lexical frame
6204 is found at the place we always store it. */
6205 #ifdef FRAME_GROWS_DOWNWARD
6206 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
6207 #endif
6208 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6209 MEM_ALIAS_SET (last_ptr) = get_frame_alias_set ();
6210 last_ptr = copy_to_reg (last_ptr);
6212 /* If we are not optimizing, ensure that we know that this
6213 piece of context is live over the entire function. */
6214 if (! optimize)
6215 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6216 save_expr_regs);
6220 if (current_function_instrument_entry_exit)
6222 rtx fun = DECL_RTL (current_function_decl);
6223 if (GET_CODE (fun) == MEM)
6224 fun = XEXP (fun, 0);
6225 else
6226 abort ();
6227 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6228 fun, Pmode,
6229 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6231 hard_frame_pointer_rtx),
6232 Pmode);
6235 /* After the display initializations is where the tail-recursion label
6236 should go, if we end up needing one. Ensure we have a NOTE here
6237 since some things (like trampolines) get placed before this. */
6238 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6240 /* Evaluate now the sizes of any types declared among the arguments. */
6241 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6243 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6244 EXPAND_MEMORY_USE_BAD);
6245 /* Flush the queue in case this parameter declaration has
6246 side-effects. */
6247 emit_queue ();
6250 /* Make sure there is a line number after the function entry setup code. */
6251 force_next_line_note ();
6254 /* Undo the effects of init_dummy_function_start. */
6255 void
6256 expand_dummy_function_end ()
6258 /* End any sequences that failed to be closed due to syntax errors. */
6259 while (in_sequence_p ())
6260 end_sequence ();
6262 /* Outside function body, can't compute type's actual size
6263 until next function's body starts. */
6265 free_after_parsing (cfun);
6266 free_after_compilation (cfun);
6267 free (cfun);
6268 cfun = 0;
6271 /* Call DOIT for each hard register used as a return value from
6272 the current function. */
6274 void
6275 diddle_return_value (doit, arg)
6276 void (*doit) PARAMS ((rtx, void *));
6277 void *arg;
6279 rtx outgoing = current_function_return_rtx;
6280 int pcc;
6282 if (! outgoing)
6283 return;
6285 pcc = (current_function_returns_struct
6286 || current_function_returns_pcc_struct);
6288 if ((GET_CODE (outgoing) == REG
6289 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6290 || pcc)
6292 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6294 /* A PCC-style return returns a pointer to the memory in which
6295 the structure is stored. */
6296 if (pcc)
6297 type = build_pointer_type (type);
6299 #ifdef FUNCTION_OUTGOING_VALUE
6300 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6301 #else
6302 outgoing = FUNCTION_VALUE (type, current_function_decl);
6303 #endif
6304 /* If this is a BLKmode structure being returned in registers, then use
6305 the mode computed in expand_return. */
6306 if (GET_MODE (outgoing) == BLKmode)
6307 PUT_MODE (outgoing,
6308 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6309 REG_FUNCTION_VALUE_P (outgoing) = 1;
6312 if (GET_CODE (outgoing) == REG)
6313 (*doit) (outgoing, arg);
6314 else if (GET_CODE (outgoing) == PARALLEL)
6316 int i;
6318 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6320 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6322 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6323 (*doit) (x, arg);
6328 static void
6329 do_clobber_return_reg (reg, arg)
6330 rtx reg;
6331 void *arg ATTRIBUTE_UNUSED;
6333 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6336 void
6337 clobber_return_register ()
6339 diddle_return_value (do_clobber_return_reg, NULL);
6342 static void
6343 do_use_return_reg (reg, arg)
6344 rtx reg;
6345 void *arg ATTRIBUTE_UNUSED;
6347 emit_insn (gen_rtx_USE (VOIDmode, reg));
6350 void
6351 use_return_register ()
6353 diddle_return_value (do_use_return_reg, NULL);
6356 /* Generate RTL for the end of the current function.
6357 FILENAME and LINE are the current position in the source file.
6359 It is up to language-specific callers to do cleanups for parameters--
6360 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6362 void
6363 expand_function_end (filename, line, end_bindings)
6364 const char *filename;
6365 int line;
6366 int end_bindings;
6368 tree link;
6370 #ifdef TRAMPOLINE_TEMPLATE
6371 static rtx initial_trampoline;
6372 #endif
6374 finish_expr_for_function ();
6376 #ifdef NON_SAVING_SETJMP
6377 /* Don't put any variables in registers if we call setjmp
6378 on a machine that fails to restore the registers. */
6379 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6381 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6382 setjmp_protect (DECL_INITIAL (current_function_decl));
6384 setjmp_protect_args ();
6386 #endif
6388 /* Save the argument pointer if a save area was made for it. */
6389 if (arg_pointer_save_area)
6391 /* arg_pointer_save_area may not be a valid memory address, so we
6392 have to check it and fix it if necessary. */
6393 rtx seq;
6394 start_sequence ();
6395 emit_move_insn (validize_mem (arg_pointer_save_area),
6396 virtual_incoming_args_rtx);
6397 seq = gen_sequence ();
6398 end_sequence ();
6399 emit_insn_before (seq, tail_recursion_reentry);
6402 /* Initialize any trampolines required by this function. */
6403 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6405 tree function = TREE_PURPOSE (link);
6406 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6407 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6408 #ifdef TRAMPOLINE_TEMPLATE
6409 rtx blktramp;
6410 #endif
6411 rtx seq;
6413 #ifdef TRAMPOLINE_TEMPLATE
6414 /* First make sure this compilation has a template for
6415 initializing trampolines. */
6416 if (initial_trampoline == 0)
6418 end_temporary_allocation ();
6419 initial_trampoline
6420 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6421 resume_temporary_allocation ();
6423 ggc_add_rtx_root (&initial_trampoline, 1);
6425 #endif
6427 /* Generate insns to initialize the trampoline. */
6428 start_sequence ();
6429 tramp = round_trampoline_addr (XEXP (tramp, 0));
6430 #ifdef TRAMPOLINE_TEMPLATE
6431 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6432 emit_block_move (blktramp, initial_trampoline,
6433 GEN_INT (TRAMPOLINE_SIZE),
6434 TRAMPOLINE_ALIGNMENT);
6435 #endif
6436 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6437 seq = get_insns ();
6438 end_sequence ();
6440 /* Put those insns at entry to the containing function (this one). */
6441 emit_insns_before (seq, tail_recursion_reentry);
6444 /* If we are doing stack checking and this function makes calls,
6445 do a stack probe at the start of the function to ensure we have enough
6446 space for another stack frame. */
6447 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6449 rtx insn, seq;
6451 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6452 if (GET_CODE (insn) == CALL_INSN)
6454 start_sequence ();
6455 probe_stack_range (STACK_CHECK_PROTECT,
6456 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6457 seq = get_insns ();
6458 end_sequence ();
6459 emit_insns_before (seq, tail_recursion_reentry);
6460 break;
6464 /* Warn about unused parms if extra warnings were specified. */
6465 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6466 warning. WARN_UNUSED_PARAMETER is negative when set by
6467 -Wunused. */
6468 if (warn_unused_parameter > 0
6469 || (warn_unused_parameter < 0 && extra_warnings))
6471 tree decl;
6473 for (decl = DECL_ARGUMENTS (current_function_decl);
6474 decl; decl = TREE_CHAIN (decl))
6475 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6476 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6477 warning_with_decl (decl, "unused parameter `%s'");
6480 /* Delete handlers for nonlocal gotos if nothing uses them. */
6481 if (nonlocal_goto_handler_slots != 0
6482 && ! current_function_has_nonlocal_label)
6483 delete_handlers ();
6485 /* End any sequences that failed to be closed due to syntax errors. */
6486 while (in_sequence_p ())
6487 end_sequence ();
6489 /* Outside function body, can't compute type's actual size
6490 until next function's body starts. */
6491 immediate_size_expand--;
6493 clear_pending_stack_adjust ();
6494 do_pending_stack_adjust ();
6496 /* Mark the end of the function body.
6497 If control reaches this insn, the function can drop through
6498 without returning a value. */
6499 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6501 /* Must mark the last line number note in the function, so that the test
6502 coverage code can avoid counting the last line twice. This just tells
6503 the code to ignore the immediately following line note, since there
6504 already exists a copy of this note somewhere above. This line number
6505 note is still needed for debugging though, so we can't delete it. */
6506 if (flag_test_coverage)
6507 emit_note (NULL_PTR, NOTE_INSN_REPEATED_LINE_NUMBER);
6509 /* Output a linenumber for the end of the function.
6510 SDB depends on this. */
6511 emit_line_note_force (filename, line);
6513 /* Output the label for the actual return from the function,
6514 if one is expected. This happens either because a function epilogue
6515 is used instead of a return instruction, or because a return was done
6516 with a goto in order to run local cleanups, or because of pcc-style
6517 structure returning. */
6519 if (return_label)
6521 /* Before the return label, clobber the return registers so that
6522 they are not propogated live to the rest of the function. This
6523 can only happen with functions that drop through; if there had
6524 been a return statement, there would have either been a return
6525 rtx, or a jump to the return label. */
6526 clobber_return_register ();
6528 emit_label (return_label);
6531 /* C++ uses this. */
6532 if (end_bindings)
6533 expand_end_bindings (0, 0, 0);
6535 /* Now handle any leftover exception regions that may have been
6536 created for the parameters. */
6538 rtx last = get_last_insn ();
6539 rtx label;
6541 expand_leftover_cleanups ();
6543 /* If there are any catch_clauses remaining, output them now. */
6544 emit_insns (catch_clauses);
6545 catch_clauses = catch_clauses_last = NULL_RTX;
6546 /* If the above emitted any code, may sure we jump around it. */
6547 if (last != get_last_insn ())
6549 label = gen_label_rtx ();
6550 last = emit_jump_insn_after (gen_jump (label), last);
6551 last = emit_barrier_after (last);
6552 emit_label (label);
6556 if (current_function_instrument_entry_exit)
6558 rtx fun = DECL_RTL (current_function_decl);
6559 if (GET_CODE (fun) == MEM)
6560 fun = XEXP (fun, 0);
6561 else
6562 abort ();
6563 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6564 fun, Pmode,
6565 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6567 hard_frame_pointer_rtx),
6568 Pmode);
6571 /* If we had calls to alloca, and this machine needs
6572 an accurate stack pointer to exit the function,
6573 insert some code to save and restore the stack pointer. */
6574 #ifdef EXIT_IGNORE_STACK
6575 if (! EXIT_IGNORE_STACK)
6576 #endif
6577 if (current_function_calls_alloca)
6579 rtx tem = 0;
6581 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6582 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6585 /* If scalar return value was computed in a pseudo-reg,
6586 copy that to the hard return register. */
6587 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
6588 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
6589 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
6590 >= FIRST_PSEUDO_REGISTER))
6592 rtx real_decl_result;
6594 #ifdef FUNCTION_OUTGOING_VALUE
6595 real_decl_result
6596 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6597 current_function_decl);
6598 #else
6599 real_decl_result
6600 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6601 current_function_decl);
6602 #endif
6603 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
6604 /* If this is a BLKmode structure being returned in registers, then use
6605 the mode computed in expand_return. */
6606 if (GET_MODE (real_decl_result) == BLKmode)
6607 PUT_MODE (real_decl_result,
6608 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6609 emit_move_insn (real_decl_result,
6610 DECL_RTL (DECL_RESULT (current_function_decl)));
6612 /* The delay slot scheduler assumes that current_function_return_rtx
6613 holds the hard register containing the return value, not a temporary
6614 pseudo. */
6615 current_function_return_rtx = real_decl_result;
6618 /* If returning a structure, arrange to return the address of the value
6619 in a place where debuggers expect to find it.
6621 If returning a structure PCC style,
6622 the caller also depends on this value.
6623 And current_function_returns_pcc_struct is not necessarily set. */
6624 if (current_function_returns_struct
6625 || current_function_returns_pcc_struct)
6627 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6628 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6629 #ifdef FUNCTION_OUTGOING_VALUE
6630 rtx outgoing
6631 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6632 current_function_decl);
6633 #else
6634 rtx outgoing
6635 = FUNCTION_VALUE (build_pointer_type (type),
6636 current_function_decl);
6637 #endif
6639 /* Mark this as a function return value so integrate will delete the
6640 assignment and USE below when inlining this function. */
6641 REG_FUNCTION_VALUE_P (outgoing) = 1;
6643 emit_move_insn (outgoing, value_address);
6646 /* ??? This should no longer be necessary since stupid is no longer with
6647 us, but there are some parts of the compiler (eg reload_combine, and
6648 sh mach_dep_reorg) that still try and compute their own lifetime info
6649 instead of using the general framework. */
6650 use_return_register ();
6652 /* If this is an implementation of __throw, do what's necessary to
6653 communicate between __builtin_eh_return and the epilogue. */
6654 expand_eh_return ();
6656 /* Output a return insn if we are using one.
6657 Otherwise, let the rtl chain end here, to drop through
6658 into the epilogue. */
6660 #ifdef HAVE_return
6661 if (HAVE_return)
6663 emit_jump_insn (gen_return ());
6664 emit_barrier ();
6666 #endif
6668 /* Fix up any gotos that jumped out to the outermost
6669 binding level of the function.
6670 Must follow emitting RETURN_LABEL. */
6672 /* If you have any cleanups to do at this point,
6673 and they need to create temporary variables,
6674 then you will lose. */
6675 expand_fixups (get_insns ());
6678 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6679 sequence or a single insn). */
6681 static void
6682 record_insns (insns, vecp)
6683 rtx insns;
6684 varray_type *vecp;
6686 if (GET_CODE (insns) == SEQUENCE)
6688 int len = XVECLEN (insns, 0);
6689 int i = VARRAY_SIZE (*vecp);
6691 VARRAY_GROW (*vecp, i + len);
6692 while (--len >= 0)
6694 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6695 ++i;
6698 else
6700 int i = VARRAY_SIZE (*vecp);
6701 VARRAY_GROW (*vecp, i + 1);
6702 VARRAY_INT (*vecp, i) = INSN_UID (insns);
6706 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6708 static int
6709 contains (insn, vec)
6710 rtx insn;
6711 varray_type vec;
6713 register int i, j;
6715 if (GET_CODE (insn) == INSN
6716 && GET_CODE (PATTERN (insn)) == SEQUENCE)
6718 int count = 0;
6719 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6720 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6721 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
6722 count++;
6723 return count;
6725 else
6727 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6728 if (INSN_UID (insn) == VARRAY_INT (vec, j))
6729 return 1;
6731 return 0;
6735 prologue_epilogue_contains (insn)
6736 rtx insn;
6738 if (contains (insn, prologue))
6739 return 1;
6740 if (contains (insn, epilogue))
6741 return 1;
6742 return 0;
6746 sibcall_epilogue_contains (insn)
6747 rtx insn;
6749 if (sibcall_epilogue)
6750 return contains (insn, sibcall_epilogue);
6751 return 0;
6754 #ifdef HAVE_return
6755 /* Insert gen_return at the end of block BB. This also means updating
6756 block_for_insn appropriately. */
6758 static void
6759 emit_return_into_block (bb, line_note)
6760 basic_block bb;
6761 rtx line_note;
6763 rtx p, end;
6765 p = NEXT_INSN (bb->end);
6766 end = emit_jump_insn_after (gen_return (), bb->end);
6767 if (line_note)
6768 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
6769 NOTE_LINE_NUMBER (line_note), bb->end);
6771 while (1)
6773 set_block_for_insn (p, bb);
6774 if (p == bb->end)
6775 break;
6776 p = PREV_INSN (p);
6778 bb->end = end;
6780 #endif /* HAVE_return */
6782 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6783 this into place with notes indicating where the prologue ends and where
6784 the epilogue begins. Update the basic block information when possible. */
6786 void
6787 thread_prologue_and_epilogue_insns (f)
6788 rtx f ATTRIBUTE_UNUSED;
6790 int inserted = 0;
6791 edge e;
6792 rtx seq;
6793 #ifdef HAVE_prologue
6794 rtx prologue_end = NULL_RTX;
6795 #endif
6796 #if defined (HAVE_epilogue) || defined(HAVE_return)
6797 rtx epilogue_end = NULL_RTX;
6798 #endif
6800 #ifdef HAVE_prologue
6801 if (HAVE_prologue)
6803 start_sequence ();
6804 seq = gen_prologue();
6805 emit_insn (seq);
6807 /* Retain a map of the prologue insns. */
6808 if (GET_CODE (seq) != SEQUENCE)
6809 seq = get_insns ();
6810 record_insns (seq, &prologue);
6811 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
6813 seq = gen_sequence ();
6814 end_sequence ();
6816 /* If optimization is off, and perhaps in an empty function,
6817 the entry block will have no successors. */
6818 if (ENTRY_BLOCK_PTR->succ)
6820 /* Can't deal with multiple successsors of the entry block. */
6821 if (ENTRY_BLOCK_PTR->succ->succ_next)
6822 abort ();
6824 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
6825 inserted = 1;
6827 else
6828 emit_insn_after (seq, f);
6830 #endif
6832 /* If the exit block has no non-fake predecessors, we don't need
6833 an epilogue. */
6834 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6835 if ((e->flags & EDGE_FAKE) == 0)
6836 break;
6837 if (e == NULL)
6838 goto epilogue_done;
6840 #ifdef HAVE_return
6841 if (optimize && HAVE_return)
6843 /* If we're allowed to generate a simple return instruction,
6844 then by definition we don't need a full epilogue. Examine
6845 the block that falls through to EXIT. If it does not
6846 contain any code, examine its predecessors and try to
6847 emit (conditional) return instructions. */
6849 basic_block last;
6850 edge e_next;
6851 rtx label;
6853 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6854 if (e->flags & EDGE_FALLTHRU)
6855 break;
6856 if (e == NULL)
6857 goto epilogue_done;
6858 last = e->src;
6860 /* Verify that there are no active instructions in the last block. */
6861 label = last->end;
6862 while (label && GET_CODE (label) != CODE_LABEL)
6864 if (active_insn_p (label))
6865 break;
6866 label = PREV_INSN (label);
6869 if (last->head == label && GET_CODE (label) == CODE_LABEL)
6871 rtx epilogue_line_note = NULL_RTX;
6873 /* Locate the line number associated with the closing brace,
6874 if we can find one. */
6875 for (seq = get_last_insn ();
6876 seq && ! active_insn_p (seq);
6877 seq = PREV_INSN (seq))
6878 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
6880 epilogue_line_note = seq;
6881 break;
6884 for (e = last->pred; e ; e = e_next)
6886 basic_block bb = e->src;
6887 rtx jump;
6889 e_next = e->pred_next;
6890 if (bb == ENTRY_BLOCK_PTR)
6891 continue;
6893 jump = bb->end;
6894 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
6895 continue;
6897 /* If we have an unconditional jump, we can replace that
6898 with a simple return instruction. */
6899 if (simplejump_p (jump))
6901 emit_return_into_block (bb, epilogue_line_note);
6902 flow_delete_insn (jump);
6905 /* If we have a conditional jump, we can try to replace
6906 that with a conditional return instruction. */
6907 else if (condjump_p (jump))
6909 rtx ret, *loc;
6911 ret = SET_SRC (PATTERN (jump));
6912 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
6913 loc = &XEXP (ret, 1);
6914 else
6915 loc = &XEXP (ret, 2);
6916 ret = gen_rtx_RETURN (VOIDmode);
6918 if (! validate_change (jump, loc, ret, 0))
6919 continue;
6920 if (JUMP_LABEL (jump))
6921 LABEL_NUSES (JUMP_LABEL (jump))--;
6923 /* If this block has only one successor, it both jumps
6924 and falls through to the fallthru block, so we can't
6925 delete the edge. */
6926 if (bb->succ->succ_next == NULL)
6927 continue;
6929 else
6930 continue;
6932 /* Fix up the CFG for the successful change we just made. */
6933 redirect_edge_succ (e, EXIT_BLOCK_PTR);
6936 /* Emit a return insn for the exit fallthru block. Whether
6937 this is still reachable will be determined later. */
6939 emit_barrier_after (last->end);
6940 emit_return_into_block (last, epilogue_line_note);
6941 epilogue_end = last->end;
6942 goto epilogue_done;
6945 #endif
6946 #ifdef HAVE_epilogue
6947 if (HAVE_epilogue)
6949 /* Find the edge that falls through to EXIT. Other edges may exist
6950 due to RETURN instructions, but those don't need epilogues.
6951 There really shouldn't be a mixture -- either all should have
6952 been converted or none, however... */
6954 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6955 if (e->flags & EDGE_FALLTHRU)
6956 break;
6957 if (e == NULL)
6958 goto epilogue_done;
6960 start_sequence ();
6961 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
6963 seq = gen_epilogue ();
6964 emit_jump_insn (seq);
6966 /* Retain a map of the epilogue insns. */
6967 if (GET_CODE (seq) != SEQUENCE)
6968 seq = get_insns ();
6969 record_insns (seq, &epilogue);
6971 seq = gen_sequence ();
6972 end_sequence();
6974 insert_insn_on_edge (seq, e);
6975 inserted = 1;
6977 #endif
6978 epilogue_done:
6980 if (inserted)
6981 commit_edge_insertions ();
6983 #ifdef HAVE_sibcall_epilogue
6984 /* Emit sibling epilogues before any sibling call sites. */
6985 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6987 basic_block bb = e->src;
6988 rtx insn = bb->end;
6989 rtx i;
6990 rtx newinsn;
6992 if (GET_CODE (insn) != CALL_INSN
6993 || ! SIBLING_CALL_P (insn))
6994 continue;
6996 start_sequence ();
6997 seq = gen_sibcall_epilogue ();
6998 end_sequence ();
7000 i = PREV_INSN (insn);
7001 newinsn = emit_insn_before (seq, insn);
7003 /* Update the UID to basic block map. */
7004 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7005 set_block_for_insn (i, bb);
7007 /* Retain a map of the epilogue insns. Used in life analysis to
7008 avoid getting rid of sibcall epilogue insns. */
7009 record_insns (GET_CODE (seq) == SEQUENCE
7010 ? seq : newinsn, &sibcall_epilogue);
7012 #endif
7014 #ifdef HAVE_prologue
7015 if (prologue_end)
7017 rtx insn, prev;
7019 /* GDB handles `break f' by setting a breakpoint on the first
7020 line note after the prologue. Which means (1) that if
7021 there are line number notes before where we inserted the
7022 prologue we should move them, and (2) we should generate a
7023 note before the end of the first basic block, if there isn't
7024 one already there. */
7026 for (insn = prologue_end; insn ; insn = prev)
7028 prev = PREV_INSN (insn);
7029 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7031 /* Note that we cannot reorder the first insn in the
7032 chain, since rest_of_compilation relies on that
7033 remaining constant. */
7034 if (prev == NULL)
7035 break;
7036 reorder_insns (insn, insn, prologue_end);
7040 /* Find the last line number note in the first block. */
7041 for (insn = BASIC_BLOCK (0)->end;
7042 insn != prologue_end;
7043 insn = PREV_INSN (insn))
7044 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7045 break;
7047 /* If we didn't find one, make a copy of the first line number
7048 we run across. */
7049 if (! insn)
7051 for (insn = next_active_insn (prologue_end);
7052 insn;
7053 insn = PREV_INSN (insn))
7054 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7056 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7057 NOTE_LINE_NUMBER (insn),
7058 prologue_end);
7059 break;
7063 #endif
7064 #ifdef HAVE_epilogue
7065 if (epilogue_end)
7067 rtx insn, next;
7069 /* Similarly, move any line notes that appear after the epilogue.
7070 There is no need, however, to be quite so anal about the existance
7071 of such a note. */
7072 for (insn = epilogue_end; insn ; insn = next)
7074 next = NEXT_INSN (insn);
7075 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7076 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7079 #endif
7082 /* Reposition the prologue-end and epilogue-begin notes after instruction
7083 scheduling and delayed branch scheduling. */
7085 void
7086 reposition_prologue_and_epilogue_notes (f)
7087 rtx f ATTRIBUTE_UNUSED;
7089 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7090 int len;
7092 if ((len = VARRAY_SIZE (prologue)) > 0)
7094 register rtx insn, note = 0;
7096 /* Scan from the beginning until we reach the last prologue insn.
7097 We apparently can't depend on basic_block_{head,end} after
7098 reorg has run. */
7099 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7101 if (GET_CODE (insn) == NOTE)
7103 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7104 note = insn;
7106 else if ((len -= contains (insn, prologue)) == 0)
7108 rtx next;
7109 /* Find the prologue-end note if we haven't already, and
7110 move it to just after the last prologue insn. */
7111 if (note == 0)
7113 for (note = insn; (note = NEXT_INSN (note));)
7114 if (GET_CODE (note) == NOTE
7115 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7116 break;
7119 next = NEXT_INSN (note);
7121 /* Whether or not we can depend on BLOCK_HEAD,
7122 attempt to keep it up-to-date. */
7123 if (BLOCK_HEAD (0) == note)
7124 BLOCK_HEAD (0) = next;
7126 remove_insn (note);
7127 add_insn_after (note, insn);
7132 if ((len = VARRAY_SIZE (epilogue)) > 0)
7134 register rtx insn, note = 0;
7136 /* Scan from the end until we reach the first epilogue insn.
7137 We apparently can't depend on basic_block_{head,end} after
7138 reorg has run. */
7139 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7141 if (GET_CODE (insn) == NOTE)
7143 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7144 note = insn;
7146 else if ((len -= contains (insn, epilogue)) == 0)
7148 /* Find the epilogue-begin note if we haven't already, and
7149 move it to just before the first epilogue insn. */
7150 if (note == 0)
7152 for (note = insn; (note = PREV_INSN (note));)
7153 if (GET_CODE (note) == NOTE
7154 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7155 break;
7158 /* Whether or not we can depend on BLOCK_HEAD,
7159 attempt to keep it up-to-date. */
7160 if (n_basic_blocks
7161 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7162 BLOCK_HEAD (n_basic_blocks-1) = note;
7164 remove_insn (note);
7165 add_insn_before (note, insn);
7169 #endif /* HAVE_prologue or HAVE_epilogue */
7172 /* Mark T for GC. */
7174 static void
7175 mark_temp_slot (t)
7176 struct temp_slot *t;
7178 while (t)
7180 ggc_mark_rtx (t->slot);
7181 ggc_mark_rtx (t->address);
7182 ggc_mark_tree (t->rtl_expr);
7184 t = t->next;
7188 /* Mark P for GC. */
7190 static void
7191 mark_function_status (p)
7192 struct function *p;
7194 int i;
7195 rtx *r;
7197 if (p == 0)
7198 return;
7200 ggc_mark_rtx (p->arg_offset_rtx);
7202 if (p->x_parm_reg_stack_loc)
7203 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7204 i > 0; --i, ++r)
7205 ggc_mark_rtx (*r);
7207 ggc_mark_rtx (p->return_rtx);
7208 ggc_mark_rtx (p->x_cleanup_label);
7209 ggc_mark_rtx (p->x_return_label);
7210 ggc_mark_rtx (p->x_save_expr_regs);
7211 ggc_mark_rtx (p->x_stack_slot_list);
7212 ggc_mark_rtx (p->x_parm_birth_insn);
7213 ggc_mark_rtx (p->x_tail_recursion_label);
7214 ggc_mark_rtx (p->x_tail_recursion_reentry);
7215 ggc_mark_rtx (p->internal_arg_pointer);
7216 ggc_mark_rtx (p->x_arg_pointer_save_area);
7217 ggc_mark_tree (p->x_rtl_expr_chain);
7218 ggc_mark_rtx (p->x_last_parm_insn);
7219 ggc_mark_tree (p->x_context_display);
7220 ggc_mark_tree (p->x_trampoline_list);
7221 ggc_mark_rtx (p->epilogue_delay_list);
7223 mark_temp_slot (p->x_temp_slots);
7226 struct var_refs_queue *q = p->fixup_var_refs_queue;
7227 while (q)
7229 ggc_mark_rtx (q->modified);
7230 q = q->next;
7234 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7235 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7236 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7237 ggc_mark_tree (p->x_nonlocal_labels);
7240 /* Mark the function chain ARG (which is really a struct function **)
7241 for GC. */
7243 static void
7244 mark_function_chain (arg)
7245 void *arg;
7247 struct function *f = *(struct function **) arg;
7249 for (; f; f = f->next_global)
7251 ggc_mark_tree (f->decl);
7253 mark_function_status (f);
7254 mark_eh_status (f->eh);
7255 mark_stmt_status (f->stmt);
7256 mark_expr_status (f->expr);
7257 mark_emit_status (f->emit);
7258 mark_varasm_status (f->varasm);
7260 if (mark_machine_status)
7261 (*mark_machine_status) (f);
7262 if (mark_lang_status)
7263 (*mark_lang_status) (f);
7265 if (f->original_arg_vector)
7266 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7267 if (f->original_decl_initial)
7268 ggc_mark_tree (f->original_decl_initial);
7272 /* Called once, at initialization, to initialize function.c. */
7274 void
7275 init_function_once ()
7277 ggc_add_root (&all_functions, 1, sizeof all_functions,
7278 mark_function_chain);
7280 VARRAY_INT_INIT (prologue, 0, "prologue");
7281 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7282 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");