1 ;; ARM 1026EJ-S Pipeline Description
2 ;; Copyright (C) 2003-2016 Free Software Foundation, Inc.
3 ;; Written by CodeSourcery, LLC.
5 ;; This file is part of GCC.
7 ;; GCC is free software; you can redistribute it and/or modify it
8 ;; under the terms of the GNU General Public License as published by
9 ;; the Free Software Foundation; either version 3, or (at your option)
12 ;; GCC is distributed in the hope that it will be useful, but
13 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 ;; General Public License for more details.
17 ;; You should have received a copy of the GNU General Public License
18 ;; along with GCC; see the file COPYING3. If not see
19 ;; <http://www.gnu.org/licenses/>. */
21 ;; These descriptions are based on the information contained in the
22 ;; ARM1026EJ-S Technical Reference Manual, Copyright (c) 2003 ARM
26 ;; This automaton provides a pipeline description for the ARM
29 ;; The model given here assumes that the condition for all conditional
30 ;; instructions is "true", i.e., that all of the instructions are
33 (define_automaton "arm1026ejs")
35 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
37 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
39 ;; There are two pipelines:
41 ;; - An Arithmetic Logic Unit (ALU) pipeline.
43 ;; The ALU pipeline has fetch, issue, decode, execute, memory, and
44 ;; write stages. We only need to model the execute, memory and write
47 ;; - A Load-Store Unit (LSU) pipeline.
49 ;; The LSU pipeline has decode, execute, memory, and write stages.
50 ;; We only model the execute, memory and write stages.
52 (define_cpu_unit "a_e,a_m,a_w" "arm1026ejs")
53 (define_cpu_unit "l_e,l_m,l_w" "arm1026ejs")
55 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
57 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
59 ;; ALU instructions require three cycles to execute, and use the ALU
60 ;; pipeline in each of the three stages. The results are available
61 ;; after the execute stage has finished.
63 ;; If the destination register is the PC, the pipelines are stalled
64 ;; for several cycles. That case is not modeled here.
66 ;; ALU operations with no shifted operand
67 (define_insn_reservation "alu_op" 1
68 (and (eq_attr "tune" "arm1026ejs")
69 (eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,\
70 alu_sreg,alus_sreg,logic_reg,logics_reg,\
71 adc_imm,adcs_imm,adc_reg,adcs_reg,\
74 mov_imm,mov_reg,mvn_imm,mvn_reg,\
78 ;; ALU operations with a shift-by-constant operand
79 (define_insn_reservation "alu_shift_op" 1
80 (and (eq_attr "tune" "arm1026ejs")
81 (eq_attr "type" "alu_shift_imm,alus_shift_imm,\
82 logic_shift_imm,logics_shift_imm,\
83 extend,mov_shift,mvn_shift"))
86 ;; ALU operations with a shift-by-register operand
87 ;; These really stall in the decoder, in order to read
88 ;; the shift value in a second cycle. Pretend we take two cycles in
90 (define_insn_reservation "alu_shift_reg_op" 2
91 (and (eq_attr "tune" "arm1026ejs")
92 (eq_attr "type" "alu_shift_reg,alus_shift_reg,\
93 logic_shift_reg,logics_shift_reg,\
94 mov_shift_reg,mvn_shift_reg"))
97 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
98 ;; Multiplication Instructions
99 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
101 ;; Multiplication instructions loop in the execute stage until the
102 ;; instruction has been passed through the multiplier array enough
105 ;; The result of the "smul" and "smulw" instructions is not available
106 ;; until after the memory stage.
107 (define_insn_reservation "mult1" 2
108 (and (eq_attr "tune" "arm1026ejs")
109 (eq_attr "type" "smulxy,smulwy"))
112 ;; The "smlaxy" and "smlawx" instructions require two iterations through
113 ;; the execute stage; the result is available immediately following
114 ;; the execute stage.
115 (define_insn_reservation "mult2" 2
116 (and (eq_attr "tune" "arm1026ejs")
117 (eq_attr "type" "smlaxy,smlalxy,smlawx"))
120 ;; The "smlalxy", "mul", and "mla" instructions require two iterations
121 ;; through the execute stage; the result is not available until after
123 (define_insn_reservation "mult3" 3
124 (and (eq_attr "tune" "arm1026ejs")
125 (eq_attr "type" "smlalxy,mul,mla"))
128 ;; The "muls" and "mlas" instructions loop in the execute stage for
129 ;; four iterations in order to set the flags. The value result is
130 ;; available after three iterations.
131 (define_insn_reservation "mult4" 3
132 (and (eq_attr "tune" "arm1026ejs")
133 (eq_attr "type" "muls,mlas"))
136 ;; Long multiply instructions that produce two registers of
137 ;; output (such as umull) make their results available in two cycles;
138 ;; the least significant word is available before the most significant
139 ;; word. That fact is not modeled; instead, the instructions are
140 ;; described as if the entire result was available at the end of the
141 ;; cycle in which both words are available.
143 ;; The "umull", "umlal", "smull", and "smlal" instructions all take
144 ;; three iterations through the execute cycle, and make their results
145 ;; available after the memory cycle.
146 (define_insn_reservation "mult5" 4
147 (and (eq_attr "tune" "arm1026ejs")
148 (eq_attr "type" "umull,umlal,smull,smlal"))
151 ;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
152 ;; the execute stage for five iterations in order to set the flags.
153 ;; The value result is available after four iterations.
154 (define_insn_reservation "mult6" 4
155 (and (eq_attr "tune" "arm1026ejs")
156 (eq_attr "type" "umulls,umlals,smulls,smlals"))
159 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
160 ;; Load/Store Instructions
161 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
163 ;; The models for load/store instructions do not accurately describe
164 ;; the difference between operations with a base register writeback
165 ;; (such as "ldm!"). These models assume that all memory references
168 ;; LSU instructions require six cycles to execute. They use the ALU
169 ;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
170 ;; three through six.
171 ;; Loads and stores which use a scaled register offset or scaled
172 ;; register pre-indexed addressing mode take three cycles EXCEPT for
173 ;; those that are base + offset with LSL of 0 or 2, or base - offset
174 ;; with LSL of zero. The remainder take 1 cycle to execute.
175 ;; For 4byte loads there is a bypass from the load stage
177 (define_insn_reservation "load1_op" 2
178 (and (eq_attr "tune" "arm1026ejs")
179 (eq_attr "type" "load_byte,load1"))
180 "a_e+l_e,l_m,a_w+l_w")
182 (define_insn_reservation "store1_op" 0
183 (and (eq_attr "tune" "arm1026ejs")
184 (eq_attr "type" "store1"))
185 "a_e+l_e,l_m,a_w+l_w")
187 ;; A load's result can be stored by an immediately following store
188 (define_bypass 1 "load1_op" "store1_op" "arm_no_early_store_addr_dep")
190 ;; On a LDM/STM operation, the LSU pipeline iterates until all of the
191 ;; registers have been processed.
193 ;; The time it takes to load the data depends on whether or not the
194 ;; base address is 64-bit aligned; if it is not, an additional cycle
195 ;; is required. This model assumes that the address is always 64-bit
196 ;; aligned. Because the processor can load two registers per cycle,
197 ;; that assumption means that we use the same instruction reservations
198 ;; for loading 2k and 2k - 1 registers.
200 ;; The ALU pipeline is stalled until the completion of the last memory
201 ;; stage in the LSU pipeline. That is modeled by keeping the ALU
202 ;; execute stage busy until that point.
204 ;; As with ALU operations, if one of the destination registers is the
205 ;; PC, there are additional stalls; that is not modeled.
207 (define_insn_reservation "load2_op" 2
208 (and (eq_attr "tune" "arm1026ejs")
209 (eq_attr "type" "load2"))
210 "a_e+l_e,l_m,a_w+l_w")
212 (define_insn_reservation "store2_op" 0
213 (and (eq_attr "tune" "arm1026ejs")
214 (eq_attr "type" "store2"))
215 "a_e+l_e,l_m,a_w+l_w")
217 (define_insn_reservation "load34_op" 3
218 (and (eq_attr "tune" "arm1026ejs")
219 (eq_attr "type" "load3,load4"))
220 "a_e+l_e,a_e+l_e+l_m,a_e+l_m,a_w+l_w")
222 (define_insn_reservation "store34_op" 0
223 (and (eq_attr "tune" "arm1026ejs")
224 (eq_attr "type" "store3,store4"))
225 "a_e+l_e,a_e+l_e+l_m,a_e+l_m,a_w+l_w")
227 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
228 ;; Branch and Call Instructions
229 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
231 ;; Branch instructions are difficult to model accurately. The ARM
232 ;; core can predict most branches. If the branch is predicted
233 ;; correctly, and predicted early enough, the branch can be completely
234 ;; eliminated from the instruction stream. Some branches can
235 ;; therefore appear to require zero cycles to execute. We assume that
236 ;; all branches are predicted correctly, and that the latency is
237 ;; therefore the minimum value.
239 (define_insn_reservation "branch_op" 0
240 (and (eq_attr "tune" "arm1026ejs")
241 (eq_attr "type" "branch"))
244 ;; The latency for a call is not predictable. Therefore, we use 32 as
245 ;; roughly equivalent to positive infinity.
247 (define_insn_reservation "call_op" 32
248 (and (eq_attr "tune" "arm1026ejs")
249 (eq_attr "type" "call"))