1 /* Define per-register tables for data flow info and register allocation.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #define REG_BYTES(R) mode_size[(int) GET_MODE (R)]
25 /* When you only have the mode of a pseudo register before it has a hard
26 register chosen for it, this reports the size of each hard register
27 a pseudo in such a mode would get allocated to. A target may
30 #ifndef REGMODE_NATURAL_SIZE
31 #define REGMODE_NATURAL_SIZE(MODE) UNITS_PER_WORD
34 /* Maximum register number used in this function, plus one. */
38 /* REG_N_REFS and REG_N_SETS are initialized by a call to
39 regstat_init_n_sets_and_refs from the current values of
40 DF_REG_DEF_COUNT and DF_REG_USE_COUNT. REG_N_REFS and REG_N_SETS
41 should only be used if a pass need to change these values in some
42 magical way or the pass needs to have accurate values for these
43 and is not using incremental df scanning.
45 At the end of a pass that uses REG_N_REFS and REG_N_SETS, a call
46 should be made to regstat_free_n_sets_and_refs.
48 Local alloc seems to play pretty loose with these values.
49 REG_N_REFS is set to 0 if the register is used in an asm.
50 Furthermore, local_alloc calls regclass to hack both REG_N_REFS and
51 REG_N_SETS for three address insns. Other passes seem to have
52 other special values. */
56 /* Structure to hold values for REG_N_SETS (i) and REG_N_REFS (i). */
58 struct regstat_n_sets_and_refs_t
60 int sets
; /* # of times (REG n) is set */
61 int refs
; /* # of times (REG n) is used or set */
64 extern struct regstat_n_sets_and_refs_t
*regstat_n_sets_and_refs
;
66 /* Indexed by n, gives number of times (REG n) is used or set. */
68 REG_N_REFS (int regno
)
70 return regstat_n_sets_and_refs
[regno
].refs
;
73 /* Indexed by n, gives number of times (REG n) is used or set. */
74 #define SET_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs = V)
75 #define INC_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs += V)
77 /* Indexed by n, gives number of times (REG n) is set. */
79 REG_N_SETS (int regno
)
81 return regstat_n_sets_and_refs
[regno
].sets
;
84 /* Indexed by n, gives number of times (REG n) is set. */
85 #define SET_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets = V)
86 #define INC_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets += V)
88 /* Given a REG, return TRUE if the reg is a PARM_DECL, FALSE otherwise. */
89 extern bool reg_is_parm_p (rtx
);
91 /* Functions defined in regstat.cc. */
92 extern void regstat_init_n_sets_and_refs (void);
93 extern void regstat_free_n_sets_and_refs (void);
94 extern void regstat_compute_ri (void);
95 extern void regstat_free_ri (void);
96 extern bitmap
regstat_get_setjmp_crosses (void);
97 extern void regstat_compute_calls_crossed (void);
98 extern void regstat_free_calls_crossed (void);
99 extern void dump_reg_info (FILE *);
101 /* Register information indexed by register number. This structure is
102 initialized by calling regstat_compute_ri and is destroyed by
103 calling regstat_free_ri. */
106 int freq
; /* # estimated frequency (REG n) is used or set */
107 int deaths
; /* # of times (REG n) dies */
108 int calls_crossed
; /* # of calls (REG n) is live across */
109 int basic_block
; /* # of basic blocks (REG n) is used in */
112 extern struct reg_info_t
*reg_info_p
;
114 /* The number allocated elements of reg_info_p. */
115 extern size_t reg_info_p_size
;
117 /* Estimate frequency of references to register N. */
119 #define REG_FREQ(N) (reg_info_p[N].freq)
121 /* The weights for each insn varies from 0 to REG_FREQ_BASE.
122 This constant does not need to be high, as in infrequently executed
123 regions we want to count instructions equivalently to optimize for
124 size instead of speed. */
125 #define REG_FREQ_MAX 1000
127 /* Compute register frequency from the BB frequency. When optimizing for size,
128 or profile driven feedback is available and the function is never executed,
129 frequency is always equivalent. Otherwise rescale the basic block
131 #define REG_FREQ_FROM_BB(bb) ((optimize_function_for_size_p (cfun) \
132 || !cfun->cfg->count_max.initialized_p ()) \
134 : ((bb)->count.to_frequency (cfun) \
135 * REG_FREQ_MAX / BB_FREQ_MAX) \
136 ? ((bb)->count.to_frequency (cfun) \
137 * REG_FREQ_MAX / BB_FREQ_MAX) \
140 /* Indexed by N, gives number of insns in which register N dies.
141 Note that if register N is live around loops, it can die
142 in transitions between basic blocks, and that is not counted here.
143 So this is only a reliable indicator of how many regions of life there are
144 for registers that are contained in one basic block. */
146 #define REG_N_DEATHS(N) (reg_info_p[N].deaths)
148 /* Get the number of consecutive words required to hold pseudo-reg N. */
150 #define PSEUDO_REGNO_SIZE(N) \
151 ((GET_MODE_SIZE (PSEUDO_REGNO_MODE (N)) + UNITS_PER_WORD - 1) \
154 /* Get the number of bytes required to hold pseudo-reg N. */
156 #define PSEUDO_REGNO_BYTES(N) \
157 GET_MODE_SIZE (PSEUDO_REGNO_MODE (N))
159 /* Get the machine mode of pseudo-reg N. */
161 #define PSEUDO_REGNO_MODE(N) GET_MODE (regno_reg_rtx[N])
163 /* Indexed by N, gives number of CALL_INSNS across which (REG n) is live. */
165 #define REG_N_CALLS_CROSSED(N) (reg_info_p[N].calls_crossed)
167 /* Indexed by n, gives number of basic block that (REG n) is used in.
168 If the value is REG_BLOCK_GLOBAL (-1),
169 it means (REG n) is used in more than one basic block.
170 REG_BLOCK_UNKNOWN (0) means it hasn't been seen yet so we don't know.
171 This information remains valid for the rest of the compilation
172 of the current function; it is used to control register allocation. */
174 #define REG_BLOCK_UNKNOWN 0
175 #define REG_BLOCK_GLOBAL -1
177 #define REG_BASIC_BLOCK(N) (reg_info_p[N].basic_block)
179 /* Vector of substitutions of register numbers,
180 used to map pseudo regs into hardware regs.
182 This can't be folded into reg_n_info without changing all of the
183 machine dependent directories, since the reload functions
184 in the machine dependent files access it. */
186 extern short *reg_renumber
;
188 /* Flag set by local-alloc or global-alloc if they decide to allocate
189 something in a call-clobbered register. */
191 extern int caller_save_needed
;
193 /* Select a register mode required for caller save of hard regno REGNO. */
194 #ifndef HARD_REGNO_CALLER_SAVE_MODE
195 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
196 choose_hard_reg_mode (REGNO, NREGS, NULL)
199 /* Target-dependent globals. */
201 /* For each starting hard register, the number of consecutive hard
202 registers that a given machine mode occupies. */
203 unsigned char x_hard_regno_nregs
[FIRST_PSEUDO_REGISTER
][MAX_MACHINE_MODE
];
205 /* The max value found in x_hard_regno_nregs. */
206 unsigned char x_hard_regno_max_nregs
;
208 /* For each hard register, the widest mode object that it can contain.
209 This will be a MODE_INT mode if the register can hold integers. Otherwise
210 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
212 machine_mode x_reg_raw_mode
[FIRST_PSEUDO_REGISTER
];
214 /* Vector indexed by machine mode saying whether there are regs of
216 bool x_have_regs_of_mode
[MAX_MACHINE_MODE
];
218 /* 1 if the corresponding class contains a register of the given mode. */
219 char x_contains_reg_of_mode
[N_REG_CLASSES
][MAX_MACHINE_MODE
];
221 /* 1 if the corresponding class contains a register of the given mode
222 which is not global and can therefore be allocated. */
223 char x_contains_allocatable_reg_of_mode
[N_REG_CLASSES
][MAX_MACHINE_MODE
];
225 /* Record for each mode whether we can move a register directly to or
226 from an object of that mode in memory. If we can't, we won't try
227 to use that mode directly when accessing a field of that mode. */
228 char x_direct_load
[NUM_MACHINE_MODES
];
229 char x_direct_store
[NUM_MACHINE_MODES
];
231 /* Record for each mode whether we can float-extend from memory. */
232 bool x_float_extend_from_mem
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
];
235 extern struct target_regs default_target_regs
;
236 #if SWITCHABLE_TARGET
237 extern struct target_regs
*this_target_regs
;
239 #define this_target_regs (&default_target_regs)
241 #define hard_regno_max_nregs \
242 (this_target_regs->x_hard_regno_max_nregs)
243 #define reg_raw_mode \
244 (this_target_regs->x_reg_raw_mode)
245 #define have_regs_of_mode \
246 (this_target_regs->x_have_regs_of_mode)
247 #define contains_reg_of_mode \
248 (this_target_regs->x_contains_reg_of_mode)
249 #define contains_allocatable_reg_of_mode \
250 (this_target_regs->x_contains_allocatable_reg_of_mode)
251 #define direct_load \
252 (this_target_regs->x_direct_load)
253 #define direct_store \
254 (this_target_regs->x_direct_store)
255 #define float_extend_from_mem \
256 (this_target_regs->x_float_extend_from_mem)
258 /* Return the number of hard registers in (reg:MODE REGNO). */
260 ALWAYS_INLINE
unsigned char
261 hard_regno_nregs (unsigned int regno
, machine_mode mode
)
263 return this_target_regs
->x_hard_regno_nregs
[regno
][mode
];
266 /* Return an exclusive upper bound on the registers occupied by hard
267 register (reg:MODE REGNO). */
269 static inline unsigned int
270 end_hard_regno (machine_mode mode
, unsigned int regno
)
272 return regno
+ hard_regno_nregs (regno
, mode
);
275 /* Add to REGS all the registers required to store a value of mode MODE
276 in register REGNO. */
279 add_to_hard_reg_set (HARD_REG_SET
*regs
, machine_mode mode
,
282 unsigned int end_regno
;
284 end_regno
= end_hard_regno (mode
, regno
);
286 SET_HARD_REG_BIT (*regs
, regno
);
287 while (++regno
< end_regno
);
290 /* Likewise, but remove the registers. */
293 remove_from_hard_reg_set (HARD_REG_SET
*regs
, machine_mode mode
,
296 unsigned int end_regno
;
298 end_regno
= end_hard_regno (mode
, regno
);
300 CLEAR_HARD_REG_BIT (*regs
, regno
);
301 while (++regno
< end_regno
);
304 /* Return true if REGS contains the whole of (reg:MODE REGNO). */
307 in_hard_reg_set_p (const_hard_reg_set regs
, machine_mode mode
,
310 unsigned int end_regno
;
312 gcc_assert (HARD_REGISTER_NUM_P (regno
));
314 if (!TEST_HARD_REG_BIT (regs
, regno
))
317 end_regno
= end_hard_regno (mode
, regno
);
319 if (!HARD_REGISTER_NUM_P (end_regno
- 1))
322 while (++regno
< end_regno
)
323 if (!TEST_HARD_REG_BIT (regs
, regno
))
329 /* Return true if (reg:MODE REGNO) includes an element of REGS. */
332 overlaps_hard_reg_set_p (const_hard_reg_set regs
, machine_mode mode
,
335 unsigned int end_regno
;
337 if (TEST_HARD_REG_BIT (regs
, regno
))
340 end_regno
= end_hard_regno (mode
, regno
);
341 while (++regno
< end_regno
)
342 if (TEST_HARD_REG_BIT (regs
, regno
))
348 /* Like add_to_hard_reg_set, but use a REGNO/NREGS range instead of
352 add_range_to_hard_reg_set (HARD_REG_SET
*regs
, unsigned int regno
,
356 SET_HARD_REG_BIT (*regs
, regno
+ nregs
);
359 /* Likewise, but remove the registers. */
362 remove_range_from_hard_reg_set (HARD_REG_SET
*regs
, unsigned int regno
,
366 CLEAR_HARD_REG_BIT (*regs
, regno
+ nregs
);
369 /* Like overlaps_hard_reg_set_p, but use a REGNO/NREGS range instead of
372 range_overlaps_hard_reg_set_p (const_hard_reg_set set
, unsigned regno
,
376 if (TEST_HARD_REG_BIT (set
, regno
+ nregs
))
381 /* Like in_hard_reg_set_p, but use a REGNO/NREGS range instead of
384 range_in_hard_reg_set_p (const_hard_reg_set set
, unsigned regno
, int nregs
)
387 if (!TEST_HARD_REG_BIT (set
, regno
+ nregs
))
392 #endif /* GCC_REGS_H */