1 /* Support for simple predicate analysis.
3 Copyright (C) 2001-2023 Free Software Foundation, Inc.
4 Contributed by Xinliang David Li <davidxl@google.com>
5 Generalized by Martin Sebor <msebor@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #define INCLUDE_STRING
26 #include "coretypes.h"
30 #include "tree-pass.h"
32 #include "gimple-pretty-print.h"
33 #include "diagnostic-core.h"
34 #include "fold-const.h"
35 #include "gimple-iterator.h"
42 #include "value-query.h"
45 #include "gimple-fold.h"
47 #include "gimple-predicate-analysis.h"
49 #define DEBUG_PREDICATE_ANALYZER 1
51 /* In our predicate normal form we have MAX_NUM_CHAINS or predicates
52 and in those MAX_CHAIN_LEN (inverted) and predicates. */
53 #define MAX_NUM_CHAINS 8
54 #define MAX_CHAIN_LEN 5
56 /* Return true if X1 is the negation of X2. */
59 pred_neg_p (const pred_info
&x1
, const pred_info
&x2
)
61 if (!operand_equal_p (x1
.pred_lhs
, x2
.pred_lhs
, 0)
62 || !operand_equal_p (x1
.pred_rhs
, x2
.pred_rhs
, 0))
65 tree_code c1
= x1
.cond_code
, c2
;
66 if (x1
.invert
== x2
.invert
)
67 c2
= invert_tree_comparison (x2
.cond_code
, false);
74 /* Return whether the condition (VAL CMPC BOUNDARY) is true. */
77 is_value_included_in (tree val
, tree boundary
, tree_code cmpc
)
79 /* Only handle integer constant here. */
80 if (TREE_CODE (val
) != INTEGER_CST
|| TREE_CODE (boundary
) != INTEGER_CST
)
83 bool inverted
= false;
84 if (cmpc
== GE_EXPR
|| cmpc
== GT_EXPR
|| cmpc
== NE_EXPR
)
86 cmpc
= invert_tree_comparison (cmpc
, false);
92 result
= tree_int_cst_equal (val
, boundary
);
93 else if (cmpc
== LT_EXPR
)
94 result
= tree_int_cst_lt (val
, boundary
);
97 gcc_assert (cmpc
== LE_EXPR
);
98 result
= tree_int_cst_le (val
, boundary
);
107 /* Format the vector of edges EV as a string. */
110 format_edge_vec (const vec
<edge
> &ev
)
114 unsigned n
= ev
.length ();
115 for (unsigned i
= 0; i
< n
; ++i
)
118 const_edge e
= ev
[i
];
119 sprintf (es
, "%u -> %u", e
->src
->index
, e
->dest
->index
);
127 /* Format the first N elements of the array of vector of edges EVA as
131 format_edge_vecs (const vec
<edge
> eva
[], unsigned n
)
135 for (unsigned i
= 0; i
!= n
; ++i
)
138 str
+= format_edge_vec (eva
[i
]);
146 /* Dump a single pred_info to F. */
149 dump_pred_info (FILE *f
, const pred_info
&pred
)
152 fprintf (f
, "NOT (");
153 print_generic_expr (f
, pred
.pred_lhs
);
154 fprintf (f
, " %s ", op_symbol_code (pred
.cond_code
));
155 print_generic_expr (f
, pred
.pred_rhs
);
160 /* Dump a pred_chain to F. */
163 dump_pred_chain (FILE *f
, const pred_chain
&chain
)
165 unsigned np
= chain
.length ();
166 for (unsigned j
= 0; j
< np
; j
++)
169 fprintf (f
, " AND (");
172 dump_pred_info (f
, chain
[j
]);
177 /* Return the 'normalized' conditional code with operand swapping
178 and condition inversion controlled by SWAP_COND and INVERT. */
181 get_cmp_code (tree_code orig_cmp_code
, bool swap_cond
, bool invert
)
183 tree_code tc
= orig_cmp_code
;
186 tc
= swap_tree_comparison (orig_cmp_code
);
188 tc
= invert_tree_comparison (tc
, false);
205 /* Return true if PRED is common among all predicate chains in PREDS
206 (and therefore can be factored out). */
209 find_matching_predicate_in_rest_chains (const pred_info
&pred
,
210 const pred_chain_union
&preds
)
213 if (preds
.length () == 1)
216 for (unsigned i
= 1; i
< preds
.length (); i
++)
219 const pred_chain
&chain
= preds
[i
];
220 unsigned n
= chain
.length ();
221 for (unsigned j
= 0; j
< n
; j
++)
223 const pred_info
&pred2
= chain
[j
];
224 /* Can relax the condition comparison to not use address
225 comparison. However, the most common case is that
226 multiple control dependent paths share a common path
227 prefix, so address comparison should be ok. */
228 if (operand_equal_p (pred2
.pred_lhs
, pred
.pred_lhs
, 0)
229 && operand_equal_p (pred2
.pred_rhs
, pred
.pred_rhs
, 0)
230 && pred2
.invert
== pred
.invert
)
242 /* Find a predicate to examine against paths of interest. If there
243 is no predicate of the "FLAG_VAR CMP CONST" form, try to find one
244 of that's the form "FLAG_VAR CMP FLAG_VAR" with value range info.
245 PHI is the phi node whose incoming (interesting) paths need to be
246 examined. On success, return the comparison code, set defintion
247 gimple of FLAG_DEF and BOUNDARY_CST. Otherwise return ERROR_MARK. */
250 find_var_cmp_const (pred_chain_union preds
, gphi
*phi
, gimple
**flag_def
,
253 tree_code vrinfo_code
= ERROR_MARK
;
254 gimple
*vrinfo_def
= NULL
;
255 tree vrinfo_cst
= NULL
;
257 gcc_assert (preds
.length () > 0);
258 pred_chain chain
= preds
[0];
259 for (unsigned i
= 0; i
< chain
.length (); i
++)
261 bool use_vrinfo_p
= false;
262 const pred_info
&pred
= chain
[i
];
263 tree cond_lhs
= pred
.pred_lhs
;
264 tree cond_rhs
= pred
.pred_rhs
;
265 if (cond_lhs
== NULL_TREE
|| cond_rhs
== NULL_TREE
)
268 tree_code code
= get_cmp_code (pred
.cond_code
, false, pred
.invert
);
269 if (code
== ERROR_MARK
)
272 /* Convert to the canonical form SSA_NAME CMP CONSTANT. */
273 if (TREE_CODE (cond_lhs
) == SSA_NAME
274 && is_gimple_constant (cond_rhs
))
276 else if (TREE_CODE (cond_rhs
) == SSA_NAME
277 && is_gimple_constant (cond_lhs
))
279 std::swap (cond_lhs
, cond_rhs
);
280 if ((code
= get_cmp_code (code
, true, false)) == ERROR_MARK
)
283 /* Check if we can take advantage of FLAG_VAR COMP FLAG_VAR predicate
284 with value range info. Note only first of such case is handled. */
285 else if (vrinfo_code
== ERROR_MARK
286 && TREE_CODE (cond_lhs
) == SSA_NAME
287 && TREE_CODE (cond_rhs
) == SSA_NAME
)
289 gimple
* lhs_def
= SSA_NAME_DEF_STMT (cond_lhs
);
290 if (!lhs_def
|| gimple_code (lhs_def
) != GIMPLE_PHI
291 || gimple_bb (lhs_def
) != gimple_bb (phi
))
293 std::swap (cond_lhs
, cond_rhs
);
294 if ((code
= get_cmp_code (code
, true, false)) == ERROR_MARK
)
298 /* Check value range info of rhs, do following transforms:
299 flag_var < [min, max] -> flag_var < max
300 flag_var > [min, max] -> flag_var > min
302 We can also transform LE_EXPR/GE_EXPR to LT_EXPR/GT_EXPR:
303 flag_var <= [min, max] -> flag_var < [min, max+1]
304 flag_var >= [min, max] -> flag_var > [min-1, max]
305 if no overflow/wrap. */
306 tree type
= TREE_TYPE (cond_lhs
);
308 if (!INTEGRAL_TYPE_P (type
)
309 || !get_range_query (cfun
)->range_of_expr (r
, cond_rhs
)
310 || r
.kind () != VR_RANGE
)
313 wide_int min
= r
.lower_bound ();
314 wide_int max
= r
.upper_bound ();
316 && max
!= wi::max_value (TYPE_PRECISION (type
), TYPE_SIGN (type
)))
322 && min
!= wi::min_value (TYPE_PRECISION (type
), TYPE_SIGN (type
)))
328 cond_rhs
= wide_int_to_tree (type
, max
);
329 else if (code
== GT_EXPR
)
330 cond_rhs
= wide_int_to_tree (type
, min
);
339 if ((*flag_def
= SSA_NAME_DEF_STMT (cond_lhs
)) == NULL
)
342 if (gimple_code (*flag_def
) != GIMPLE_PHI
343 || gimple_bb (*flag_def
) != gimple_bb (phi
)
344 || !find_matching_predicate_in_rest_chains (pred
, preds
))
347 /* Return if any "flag_var comp const" predicate is found. */
350 *boundary_cst
= cond_rhs
;
353 /* Record if any "flag_var comp flag_var[vinfo]" predicate is found. */
354 else if (vrinfo_code
== ERROR_MARK
)
357 vrinfo_def
= *flag_def
;
358 vrinfo_cst
= cond_rhs
;
361 /* Return the "flag_var cmp flag_var[vinfo]" predicate we found. */
362 if (vrinfo_code
!= ERROR_MARK
)
364 *flag_def
= vrinfo_def
;
365 *boundary_cst
= vrinfo_cst
;
370 /* Return true if all interesting opnds are pruned, false otherwise.
371 PHI is the phi node with interesting operands, OPNDS is the bitmap
372 of the interesting operand positions, FLAG_DEF is the statement
373 defining the flag guarding the use of the PHI output, BOUNDARY_CST
374 is the const value used in the predicate associated with the flag,
375 CMP_CODE is the comparison code used in the predicate, VISITED_PHIS
376 is the pointer set of phis visited, and VISITED_FLAG_PHIS is
377 the pointer to the pointer set of flag definitions that are also
383 flag_1 = phi <0, 1> // (1)
384 var_1 = phi <undef, some_val>
388 flag_2 = phi <0, flag_1, flag_1> // (2)
389 var_2 = phi <undef, var_1, var_1>
396 Because some flag arg in (1) is not constant, if we do not look into
397 the flag phis recursively, it is conservatively treated as unknown and
398 var_1 is thought to flow into use at (3). Since var_1 is potentially
399 uninitialized a false warning will be emitted.
400 Checking recursively into (1), the compiler can find out that only
401 some_val (which is defined) can flow into (3) which is OK. */
404 uninit_analysis::prune_phi_opnds (gphi
*phi
, unsigned opnds
, gphi
*flag_def
,
405 tree boundary_cst
, tree_code cmp_code
,
406 hash_set
<gphi
*> *visited_phis
,
407 bitmap
*visited_flag_phis
)
409 /* The Boolean predicate guarding the PHI definition. Initialized
410 lazily from PHI in the first call to is_use_guarded() and cached
411 for subsequent iterations. */
412 uninit_analysis
def_preds (m_eval
);
414 unsigned n
= MIN (m_eval
.max_phi_args
, gimple_phi_num_args (flag_def
));
415 for (unsigned i
= 0; i
< n
; i
++)
417 if (!MASK_TEST_BIT (opnds
, i
))
420 tree flag_arg
= gimple_phi_arg_def (flag_def
, i
);
421 if (!is_gimple_constant (flag_arg
))
423 if (TREE_CODE (flag_arg
) != SSA_NAME
)
426 gphi
*flag_arg_def
= dyn_cast
<gphi
*> (SSA_NAME_DEF_STMT (flag_arg
));
430 tree phi_arg
= gimple_phi_arg_def (phi
, i
);
431 if (TREE_CODE (phi_arg
) != SSA_NAME
)
434 gphi
*phi_arg_def
= dyn_cast
<gphi
*> (SSA_NAME_DEF_STMT (phi_arg
));
438 if (gimple_bb (phi_arg_def
) != gimple_bb (flag_arg_def
))
441 if (!*visited_flag_phis
)
442 *visited_flag_phis
= BITMAP_ALLOC (NULL
);
444 tree phi_result
= gimple_phi_result (flag_arg_def
);
445 if (bitmap_bit_p (*visited_flag_phis
, SSA_NAME_VERSION (phi_result
)))
448 bitmap_set_bit (*visited_flag_phis
, SSA_NAME_VERSION (phi_result
));
450 /* Now recursively try to prune the interesting phi args. */
451 unsigned opnds_arg_phi
= m_eval
.phi_arg_set (phi_arg_def
);
452 if (!prune_phi_opnds (phi_arg_def
, opnds_arg_phi
, flag_arg_def
,
453 boundary_cst
, cmp_code
, visited_phis
,
457 bitmap_clear_bit (*visited_flag_phis
, SSA_NAME_VERSION (phi_result
));
461 /* Now check if the constant is in the guarded range. */
462 if (is_value_included_in (flag_arg
, boundary_cst
, cmp_code
))
464 /* Now that we know that this undefined edge is not pruned.
465 If the operand is defined by another phi, we can further
466 prune the incoming edges of that phi by checking
467 the predicates of this operands. */
469 tree opnd
= gimple_phi_arg_def (phi
, i
);
470 gimple
*opnd_def
= SSA_NAME_DEF_STMT (opnd
);
471 if (gphi
*opnd_def_phi
= dyn_cast
<gphi
*> (opnd_def
))
473 unsigned opnds2
= m_eval
.phi_arg_set (opnd_def_phi
);
474 if (!MASK_EMPTY (opnds2
))
476 edge opnd_edge
= gimple_phi_arg_edge (phi
, i
);
477 if (def_preds
.is_use_guarded (phi
, opnd_edge
->src
,
478 opnd_def_phi
, opnds2
,
491 /* Recursively compute the set PHI's incoming edges with "uninteresting"
492 operands of a phi chain, i.e., those for which EVAL returns false.
493 CD_ROOT is the control dependence root from which edges are collected
494 up the CFG nodes that it's dominated by. *EDGES holds the result, and
495 VISITED is used for detecting cycles. */
498 uninit_analysis::collect_phi_def_edges (gphi
*phi
, basic_block cd_root
,
500 hash_set
<gimple
*> *visited
)
502 if (visited
->elements () == 0
503 && DEBUG_PREDICATE_ANALYZER
506 fprintf (dump_file
, "%s for cd_root %u and ",
507 __func__
, cd_root
->index
);
508 print_gimple_stmt (dump_file
, phi
, 0);
512 if (visited
->add (phi
))
515 unsigned n
= gimple_phi_num_args (phi
);
516 unsigned opnds_arg_phi
= m_eval
.phi_arg_set (phi
);
517 for (unsigned i
= 0; i
< n
; i
++)
519 if (!MASK_TEST_BIT (opnds_arg_phi
, i
))
521 /* Add the edge for a not maybe-undefined edge value. */
522 edge opnd_edge
= gimple_phi_arg_edge (phi
, i
);
523 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
526 "\tFound def edge %i -> %i for cd_root %i "
527 "and operand %u of: ",
528 opnd_edge
->src
->index
, opnd_edge
->dest
->index
,
530 print_gimple_stmt (dump_file
, phi
, 0);
532 edges
->safe_push (opnd_edge
);
537 tree opnd
= gimple_phi_arg_def (phi
, i
);
538 if (TREE_CODE (opnd
) == SSA_NAME
)
540 gimple
*def
= SSA_NAME_DEF_STMT (opnd
);
541 if (gimple_code (def
) == GIMPLE_PHI
542 && dominated_by_p (CDI_DOMINATORS
, gimple_bb (def
), cd_root
))
543 /* Process PHI defs of maybe-undefined edge values
545 collect_phi_def_edges (as_a
<gphi
*> (def
), cd_root
, edges
,
552 /* Return a bitset of all PHI arguments or zero if there are too many. */
555 uninit_analysis::func_t::phi_arg_set (gphi
*phi
)
557 unsigned n
= gimple_phi_num_args (phi
);
559 if (max_phi_args
< n
)
562 /* Set the least significant N bits. */
563 return (1U << n
) - 1;
566 /* Determine if the predicate set of the use does not overlap with that
567 of the interesting paths. The most common senario of guarded use is
572 x = ...; // set x to valid
579 use (x); // use when x is valid
581 The real world examples are usually more complicated, but similar
582 and usually result from inlining:
584 bool init_func (int * x)
588 *x = ...; // set *x to valid
600 use (x); // use when x is valid
603 Another possible use scenario is in the following trivial example:
615 Predicate analysis needs to compute the composite predicate:
617 1) 'x' use predicate: (n > 0) .AND. (m < 2)
618 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
619 (the predicate chain for phi operand defs can be computed
620 starting from a bb that is control equivalent to the phi's
621 bb and is dominating the operand def.)
623 and check overlapping:
624 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
627 This implementation provides a framework that can handle different
628 scenarios. (Note that many simple cases are handled properly without
629 the predicate analysis if jump threading eliminates the merge point
630 thus makes path-sensitive analysis unnecessary.)
632 PHI is the phi node whose incoming (undefined) paths need to be
633 pruned, and OPNDS is the bitmap holding interesting operand
634 positions. VISITED is the pointer set of phi stmts being
638 uninit_analysis::overlap (gphi
*phi
, unsigned opnds
, hash_set
<gphi
*> *visited
,
639 const predicate
&use_preds
)
641 gimple
*flag_def
= NULL
;
642 tree boundary_cst
= NULL_TREE
;
643 bitmap visited_flag_phis
= NULL
;
645 /* Find within the common prefix of multiple predicate chains
646 a predicate that is a comparison of a flag variable against
648 tree_code cmp_code
= find_var_cmp_const (use_preds
.chain (), phi
, &flag_def
,
650 if (cmp_code
== ERROR_MARK
)
653 /* Now check all the uninit incoming edges have a constant flag
654 value that is in conflict with the use guard/predicate. */
655 gphi
*phi_def
= as_a
<gphi
*> (flag_def
);
656 bool all_pruned
= prune_phi_opnds (phi
, opnds
, phi_def
, boundary_cst
,
660 if (visited_flag_phis
)
661 BITMAP_FREE (visited_flag_phis
);
666 /* Return true if two predicates PRED1 and X2 are equivalent. Assume
667 the expressions have already properly re-associated. */
670 pred_equal_p (const pred_info
&pred1
, const pred_info
&pred2
)
672 if (!operand_equal_p (pred1
.pred_lhs
, pred2
.pred_lhs
, 0)
673 || !operand_equal_p (pred1
.pred_rhs
, pred2
.pred_rhs
, 0))
676 tree_code c1
= pred1
.cond_code
, c2
;
677 if (pred1
.invert
!= pred2
.invert
678 && TREE_CODE_CLASS (pred2
.cond_code
) == tcc_comparison
)
679 c2
= invert_tree_comparison (pred2
.cond_code
, false);
681 c2
= pred2
.cond_code
;
686 /* Return true if PRED tests inequality (i.e., X != Y). */
689 is_neq_relop_p (const pred_info
&pred
)
692 return ((pred
.cond_code
== NE_EXPR
&& !pred
.invert
)
693 || (pred
.cond_code
== EQ_EXPR
&& pred
.invert
));
696 /* Returns true if PRED is of the form X != 0. */
699 is_neq_zero_form_p (const pred_info
&pred
)
701 if (!is_neq_relop_p (pred
) || !integer_zerop (pred
.pred_rhs
)
702 || TREE_CODE (pred
.pred_lhs
) != SSA_NAME
)
707 /* Return true if PRED is equivalent to X != 0. */
710 pred_expr_equal_p (const pred_info
&pred
, tree expr
)
712 if (!is_neq_zero_form_p (pred
))
715 return operand_equal_p (pred
.pred_lhs
, expr
, 0);
718 /* Return true if VAL satisfies (x CMPC BOUNDARY) predicate. CMPC can
719 be either one of the range comparison codes ({GE,LT,EQ,NE}_EXPR and
720 the like), or BIT_AND_EXPR. EXACT_P is only meaningful for the latter.
721 Modify the question from VAL & BOUNDARY != 0 to VAL & BOUNDARY == VAL.
722 For other values of CMPC, EXACT_P is ignored. */
725 value_sat_pred_p (tree val
, tree boundary
, tree_code cmpc
,
726 bool exact_p
= false)
728 if (cmpc
!= BIT_AND_EXPR
)
729 return is_value_included_in (val
, boundary
, cmpc
);
731 wide_int andw
= wi::to_wide (val
) & wi::to_wide (boundary
);
733 return andw
== wi::to_wide (val
);
735 return andw
.to_uhwi ();
738 /* Return true if the domain of single predicate expression PRED1
739 is a subset of that of PRED2, and false if it cannot be proved. */
742 subset_of (const pred_info
&pred1
, const pred_info
&pred2
)
744 if (pred_equal_p (pred1
, pred2
))
747 if ((TREE_CODE (pred1
.pred_rhs
) != INTEGER_CST
)
748 || (TREE_CODE (pred2
.pred_rhs
) != INTEGER_CST
))
751 if (!operand_equal_p (pred1
.pred_lhs
, pred2
.pred_lhs
, 0))
754 tree_code code1
= pred1
.cond_code
;
756 code1
= invert_tree_comparison (code1
, false);
757 tree_code code2
= pred2
.cond_code
;
759 code2
= invert_tree_comparison (code2
, false);
761 if (code2
== NE_EXPR
&& code1
== NE_EXPR
)
764 if (code2
== NE_EXPR
)
765 return !value_sat_pred_p (pred2
.pred_rhs
, pred1
.pred_rhs
, code1
);
767 if (code1
== EQ_EXPR
)
768 return value_sat_pred_p (pred1
.pred_rhs
, pred2
.pred_rhs
, code2
);
771 return value_sat_pred_p (pred1
.pred_rhs
, pred2
.pred_rhs
, code2
,
772 code1
== BIT_AND_EXPR
);
777 /* Return true if the domain of CHAIN1 is a subset of that of CHAIN2.
778 Return false if it cannot be proven so. */
781 subset_of (const pred_chain
&chain1
, const pred_chain
&chain2
)
783 unsigned np1
= chain1
.length ();
784 unsigned np2
= chain2
.length ();
785 for (unsigned i2
= 0; i2
< np2
; i2
++)
788 const pred_info
&info2
= chain2
[i2
];
789 for (unsigned i1
= 0; i1
< np1
; i1
++)
791 const pred_info
&info1
= chain1
[i1
];
792 if (subset_of (info1
, info2
))
804 /* Return true if the domain defined by the predicate chain PREDS is
805 a subset of the domain of *THIS. Return false if PREDS's domain
806 is not a subset of any of the sub-domains of *THIS (corresponding
807 to each individual chains in it), even though it may be still be
808 a subset of whole domain of *THIS which is the union (ORed) of all
809 its subdomains. In other words, the result is conservative. */
812 predicate::includes (const pred_chain
&chain
) const
814 for (unsigned i
= 0; i
< m_preds
.length (); i
++)
815 if (subset_of (chain
, m_preds
[i
]))
821 /* Return true if the domain defined by *THIS is a superset of PREDS's
823 Avoid building generic trees (and rely on the folding capability
824 of the compiler), and instead perform brute force comparison of
825 individual predicate chains (this won't be a computationally costly
826 since the chains are pretty short). Returning false does not
827 necessarily mean *THIS is not a superset of *PREDS, only that
828 it need not be since the analysis cannot prove it. */
831 predicate::superset_of (const predicate
&preds
) const
833 for (unsigned i
= 0; i
< preds
.m_preds
.length (); i
++)
834 if (!includes (preds
.m_preds
[i
]))
840 /* Create a predicate of the form OP != 0 and push it the work list CHAIN. */
843 push_to_worklist (tree op
, pred_chain
*chain
, hash_set
<tree
> *mark_set
)
845 if (mark_set
->contains (op
))
850 arg_pred
.pred_lhs
= op
;
851 arg_pred
.pred_rhs
= integer_zero_node
;
852 arg_pred
.cond_code
= NE_EXPR
;
853 arg_pred
.invert
= false;
854 chain
->safe_push (arg_pred
);
857 /* Return a pred_info for a gimple assignment CMP_ASSIGN with comparison
861 get_pred_info_from_cmp (const gimple
*cmp_assign
)
864 pred
.pred_lhs
= gimple_assign_rhs1 (cmp_assign
);
865 pred
.pred_rhs
= gimple_assign_rhs2 (cmp_assign
);
866 pred
.cond_code
= gimple_assign_rhs_code (cmp_assign
);
871 /* If PHI is a degenerate phi with all operands having the same value (relop)
872 update *PRED to that value and return true. Otherwise return false. */
875 is_degenerate_phi (gimple
*phi
, pred_info
*pred
)
877 tree op0
= gimple_phi_arg_def (phi
, 0);
879 if (TREE_CODE (op0
) != SSA_NAME
)
882 gimple
*def0
= SSA_NAME_DEF_STMT (op0
);
883 if (gimple_code (def0
) != GIMPLE_ASSIGN
)
886 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0
)) != tcc_comparison
)
889 pred_info pred0
= get_pred_info_from_cmp (def0
);
891 unsigned n
= gimple_phi_num_args (phi
);
892 for (unsigned i
= 1; i
< n
; ++i
)
894 tree op
= gimple_phi_arg_def (phi
, i
);
895 if (TREE_CODE (op
) != SSA_NAME
)
898 gimple
*def
= SSA_NAME_DEF_STMT (op
);
899 if (gimple_code (def
) != GIMPLE_ASSIGN
)
902 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def
)) != tcc_comparison
)
905 pred_info pred
= get_pred_info_from_cmp (def
);
906 if (!pred_equal_p (pred
, pred0
))
914 /* If compute_control_dep_chain bailed out due to limits this routine
915 tries to build a partial sparse path using dominators. Returns
916 path edges whose predicates are always true when reaching E. */
919 simple_control_dep_chain (vec
<edge
>& chain
, basic_block from
, basic_block to
)
921 if (!dominated_by_p (CDI_DOMINATORS
, to
, from
))
924 basic_block src
= to
;
926 && chain
.length () <= MAX_CHAIN_LEN
)
928 basic_block dest
= src
;
929 src
= get_immediate_dominator (CDI_DOMINATORS
, src
);
930 if (single_pred_p (dest
))
932 edge pred_e
= single_pred_edge (dest
);
933 gcc_assert (pred_e
->src
== src
);
934 if (!(pred_e
->flags
& ((EDGE_FAKE
| EDGE_ABNORMAL
| EDGE_DFS_BACK
)))
935 && !single_succ_p (src
))
936 chain
.safe_push (pred_e
);
941 /* Perform a DFS walk on predecessor edges to mark the region denoted
942 by the EXIT_SRC block and DOM which dominates EXIT_SRC, including DOM.
943 Blocks in the region are marked with FLAG and added to BBS. BBS is
944 filled up to its capacity only after which the walk is terminated
945 and false is returned. If the whole region was marked, true is returned. */
948 dfs_mark_dominating_region (basic_block exit_src
, basic_block dom
, int flag
,
949 vec
<basic_block
> &bbs
)
951 if (exit_src
== dom
|| exit_src
->flags
& flag
)
955 bbs
.quick_push (exit_src
);
956 exit_src
->flags
|= flag
;
957 auto_vec
<edge_iterator
, 20> stack (bbs
.allocated () - bbs
.length () + 1);
958 stack
.quick_push (ei_start (exit_src
->preds
));
959 while (!stack
.is_empty ())
961 /* Look at the edge on the top of the stack. */
962 edge_iterator ei
= stack
.last ();
963 basic_block src
= ei_edge (ei
)->src
;
965 /* Check if the edge source has been visited yet. */
966 if (!(src
->flags
& flag
))
968 /* Mark the source if there's still space. If not, return early. */
972 bbs
.quick_push (src
);
974 /* Queue its predecessors if we didn't reach DOM. */
975 if (src
!= dom
&& EDGE_COUNT (src
->preds
) > 0)
976 stack
.quick_push (ei_start (src
->preds
));
980 if (!ei_one_before_end_p (ei
))
981 ei_next (&stack
.last ());
990 compute_control_dep_chain (basic_block dom_bb
, const_basic_block dep_bb
,
991 vec
<edge
> cd_chains
[], unsigned *num_chains
,
992 vec
<edge
> &cur_cd_chain
, unsigned *num_calls
,
993 unsigned in_region
, unsigned depth
,
996 /* Helper for compute_control_dep_chain that walks the post-dominator
997 chain from CD_BB up unto TARGET_BB looking for paths to DEP_BB. */
1000 compute_control_dep_chain_pdom (basic_block cd_bb
, const_basic_block dep_bb
,
1001 basic_block target_bb
,
1002 vec
<edge
> cd_chains
[], unsigned *num_chains
,
1003 vec
<edge
> &cur_cd_chain
, unsigned *num_calls
,
1004 unsigned in_region
, unsigned depth
,
1007 bool found_cd_chain
= false;
1008 while (cd_bb
!= target_bb
)
1010 if (cd_bb
== dep_bb
)
1012 /* Found a direct control dependence. */
1013 if (*num_chains
< MAX_NUM_CHAINS
)
1015 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
1016 fprintf (dump_file
, "%*s pushing { %s }\n",
1017 depth
, "", format_edge_vec (cur_cd_chain
).c_str ());
1018 cd_chains
[*num_chains
] = cur_cd_chain
.copy ();
1021 found_cd_chain
= true;
1022 /* Check path from next edge. */
1026 /* If the dominating region has been marked avoid walking outside. */
1027 if (in_region
!= 0 && !(cd_bb
->flags
& in_region
))
1030 /* Count the number of steps we perform to limit compile-time.
1031 This should cover both recursion and the post-dominator walk. */
1032 if (*num_calls
> (unsigned)param_uninit_control_dep_attempts
)
1035 fprintf (dump_file
, "param_uninit_control_dep_attempts "
1036 "exceeded: %u\n", *num_calls
);
1037 *complete_p
= false;
1042 /* Check if DEP_BB is indirectly control-dependent on DOM_BB. */
1043 if (!single_succ_p (cd_bb
)
1044 && compute_control_dep_chain (cd_bb
, dep_bb
, cd_chains
,
1045 num_chains
, cur_cd_chain
,
1046 num_calls
, in_region
, depth
+ 1,
1049 found_cd_chain
= true;
1053 /* The post-dominator walk will reach a backedge only
1054 from a forwarder, otherwise it should choose to exit
1056 if (single_succ_p (cd_bb
)
1057 && single_succ_edge (cd_bb
)->flags
& EDGE_DFS_BACK
)
1059 basic_block prev_cd_bb
= cd_bb
;
1060 cd_bb
= get_immediate_dominator (CDI_POST_DOMINATORS
, cd_bb
);
1061 if (cd_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1063 /* Pick up conditions toward the post dominator such like
1064 loop exit conditions. See gcc.dg/uninit-pred-11.c and
1065 gcc.dg/unninit-pred-12.c and PR106754. */
1066 if (single_pred_p (cd_bb
))
1068 edge e2
= single_pred_edge (cd_bb
);
1069 gcc_assert (e2
->src
== prev_cd_bb
);
1070 /* But avoid adding fallthru or abnormal edges. */
1071 if (!(e2
->flags
& (EDGE_FAKE
| EDGE_ABNORMAL
| EDGE_DFS_BACK
))
1072 && !single_succ_p (prev_cd_bb
))
1073 cur_cd_chain
.safe_push (e2
);
1076 return found_cd_chain
;
1080 /* Recursively compute the control dependence chains (paths of edges)
1081 from the dependent basic block, DEP_BB, up to the dominating basic
1082 block, DOM_BB (the head node of a chain should be dominated by it),
1083 storing them in the CD_CHAINS array.
1084 CUR_CD_CHAIN is the current chain being computed.
1085 *NUM_CHAINS is total number of chains in the CD_CHAINS array.
1086 *NUM_CALLS is the number of recursive calls to control unbounded
1088 Return true if the information is successfully computed, false if
1089 there is no control dependence or not computed.
1090 *COMPLETE_P is set to false if we stopped walking due to limits.
1091 In this case there might be missing chains. */
1094 compute_control_dep_chain (basic_block dom_bb
, const_basic_block dep_bb
,
1095 vec
<edge
> cd_chains
[], unsigned *num_chains
,
1096 vec
<edge
> &cur_cd_chain
, unsigned *num_calls
,
1097 unsigned in_region
, unsigned depth
,
1100 /* In our recursive calls this doesn't happen. */
1101 if (single_succ_p (dom_bb
))
1104 /* FIXME: Use a set instead. */
1105 unsigned cur_chain_len
= cur_cd_chain
.length ();
1106 if (cur_chain_len
> MAX_CHAIN_LEN
)
1109 fprintf (dump_file
, "MAX_CHAIN_LEN exceeded: %u\n", cur_chain_len
);
1111 *complete_p
= false;
1115 if (cur_chain_len
> 5)
1118 fprintf (dump_file
, "chain length exceeds 5: %u\n", cur_chain_len
);
1121 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
1123 "%*s%s (dom_bb = %u, dep_bb = %u, ..., "
1124 "cur_cd_chain = { %s }, ...)\n",
1125 depth
, "", __func__
, dom_bb
->index
, dep_bb
->index
,
1126 format_edge_vec (cur_cd_chain
).c_str ());
1128 bool found_cd_chain
= false;
1130 /* Iterate over DOM_BB's successors. */
1133 FOR_EACH_EDGE (e
, ei
, dom_bb
->succs
)
1135 if (e
->flags
& (EDGE_FAKE
| EDGE_ABNORMAL
| EDGE_DFS_BACK
))
1138 basic_block cd_bb
= e
->dest
;
1139 unsigned pop_mark
= cur_cd_chain
.length ();
1140 cur_cd_chain
.safe_push (e
);
1141 basic_block target_bb
1142 = get_immediate_dominator (CDI_POST_DOMINATORS
, dom_bb
);
1143 /* Walk the post-dominator chain up to the CFG merge. */
1145 |= compute_control_dep_chain_pdom (cd_bb
, dep_bb
, target_bb
,
1146 cd_chains
, num_chains
,
1147 cur_cd_chain
, num_calls
,
1148 in_region
, depth
, complete_p
);
1149 cur_cd_chain
.truncate (pop_mark
);
1150 gcc_assert (cur_cd_chain
.length () == cur_chain_len
);
1153 gcc_assert (cur_cd_chain
.length () == cur_chain_len
);
1154 return found_cd_chain
;
1157 /* Wrapper around the compute_control_dep_chain worker above. Returns
1158 true when the collected set of chains in CD_CHAINS is complete. */
1161 compute_control_dep_chain (basic_block dom_bb
, const_basic_block dep_bb
,
1162 vec
<edge
> cd_chains
[], unsigned *num_chains
,
1163 unsigned in_region
= 0)
1165 auto_vec
<edge
, MAX_CHAIN_LEN
+ 1> cur_cd_chain
;
1166 unsigned num_calls
= 0;
1168 bool complete_p
= true;
1169 /* Walk the post-dominator chain. */
1170 compute_control_dep_chain_pdom (dom_bb
, dep_bb
, NULL
, cd_chains
,
1171 num_chains
, cur_cd_chain
, &num_calls
,
1172 in_region
, depth
, &complete_p
);
1176 /* Implemented simplifications:
1178 1a) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1179 1b) [!](X rel y) AND [!](X rel y') where y == y' or both constant
1180 can possibly be simplified
1181 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1182 3) X OR (!X AND Y) is equivalent to (X OR Y);
1183 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1185 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
1188 PREDS is the predicate chains, and N is the number of chains. */
1190 /* Implement rule 1a above. PREDS is the AND predicate to simplify
1194 simplify_1a (pred_chain
&chain
)
1196 bool simplified
= false;
1197 pred_chain s_chain
= vNULL
;
1199 unsigned n
= chain
.length ();
1200 for (unsigned i
= 0; i
< n
; i
++)
1202 pred_info
&a_pred
= chain
[i
];
1204 if (!a_pred
.pred_lhs
1205 || !is_neq_zero_form_p (a_pred
))
1208 gimple
*def_stmt
= SSA_NAME_DEF_STMT (a_pred
.pred_lhs
);
1209 if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
1212 if (gimple_assign_rhs_code (def_stmt
) != BIT_IOR_EXPR
)
1215 for (unsigned j
= 0; j
< n
; j
++)
1217 const pred_info
&b_pred
= chain
[j
];
1219 if (!b_pred
.pred_lhs
1220 || !is_neq_zero_form_p (b_pred
))
1223 if (pred_expr_equal_p (b_pred
, gimple_assign_rhs1 (def_stmt
))
1224 || pred_expr_equal_p (b_pred
, gimple_assign_rhs2 (def_stmt
)))
1226 /* Mark A_PRED for removal from PREDS. */
1227 a_pred
.pred_lhs
= NULL
;
1228 a_pred
.pred_rhs
= NULL
;
1238 /* Remove predicates marked above. */
1239 for (unsigned i
= 0; i
< n
; i
++)
1241 pred_info
&a_pred
= chain
[i
];
1242 if (!a_pred
.pred_lhs
)
1244 s_chain
.safe_push (a_pred
);
1251 /* Implement rule 1b above. PREDS is the AND predicate to simplify
1252 in place. Returns true if CHAIN simplifies to true or false. */
1255 simplify_1b (pred_chain
&chain
)
1257 for (unsigned i
= 0; i
< chain
.length (); i
++)
1259 pred_info
&a_pred
= chain
[i
];
1261 for (unsigned j
= i
+ 1; j
< chain
.length (); ++j
)
1263 pred_info
&b_pred
= chain
[j
];
1265 if (!operand_equal_p (a_pred
.pred_lhs
, b_pred
.pred_lhs
)
1266 || (!operand_equal_p (a_pred
.pred_rhs
, b_pred
.pred_rhs
)
1267 && !(CONSTANT_CLASS_P (a_pred
.pred_rhs
)
1268 && CONSTANT_CLASS_P (b_pred
.pred_rhs
))))
1271 tree_code a_code
= a_pred
.cond_code
;
1273 a_code
= invert_tree_comparison (a_code
, false);
1274 tree_code b_code
= b_pred
.cond_code
;
1276 b_code
= invert_tree_comparison (b_code
, false);
1277 /* Try to combine X a_code Y && X b_code Y'. */
1278 tree comb
= maybe_fold_and_comparisons (boolean_type_node
,
1284 b_pred
.pred_rhs
, NULL
);
1287 else if (integer_zerop (comb
))
1289 else if (integer_truep (comb
))
1291 chain
.ordered_remove (j
);
1292 chain
.ordered_remove (i
);
1293 if (chain
.is_empty ())
1298 else if (COMPARISON_CLASS_P (comb
)
1299 && operand_equal_p (a_pred
.pred_lhs
, TREE_OPERAND (comb
, 0)))
1301 chain
.ordered_remove (j
);
1302 a_pred
.cond_code
= TREE_CODE (comb
);
1303 a_pred
.pred_rhs
= TREE_OPERAND (comb
, 1);
1304 a_pred
.invert
= false;
1313 /* Implements rule 2 for the OR predicate PREDS:
1315 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
1318 predicate::simplify_2 ()
1320 bool simplified
= false;
1322 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
1323 (X AND Y) OR (X AND !Y) is equivalent to X. */
1325 for (unsigned i
= 0; i
< m_preds
.length (); i
++)
1327 pred_chain
&a_chain
= m_preds
[i
];
1329 for (unsigned j
= i
+ 1; j
< m_preds
.length (); j
++)
1331 pred_chain
&b_chain
= m_preds
[j
];
1332 if (b_chain
.length () != a_chain
.length ())
1335 unsigned neg_idx
= -1U;
1336 for (unsigned k
= 0; k
< a_chain
.length (); ++k
)
1338 if (pred_equal_p (a_chain
[k
], b_chain
[k
]))
1345 if (pred_neg_p (a_chain
[k
], b_chain
[k
]))
1350 /* If we found equal chains with one negated predicate
1354 a_chain
.ordered_remove (neg_idx
);
1355 m_preds
.ordered_remove (j
);
1357 if (a_chain
.is_empty ())
1359 /* A && !A simplifies to true, wipe the whole predicate. */
1360 for (unsigned k
= 0; k
< m_preds
.length (); ++k
)
1361 m_preds
[k
].release ();
1362 m_preds
.truncate (0);
1372 /* Implement rule 3 for the OR predicate PREDS:
1374 3) x OR (!x AND y) is equivalent to x OR y. */
1377 predicate::simplify_3 ()
1379 /* Now iteratively simplify X OR (!X AND Z ..)
1380 into X OR (Z ...). */
1382 unsigned n
= m_preds
.length ();
1386 bool simplified
= false;
1387 for (unsigned i
= 0; i
< n
; i
++)
1389 const pred_chain
&a_chain
= m_preds
[i
];
1391 if (a_chain
.length () != 1)
1394 const pred_info
&x
= a_chain
[0];
1395 for (unsigned j
= 0; j
< n
; j
++)
1400 pred_chain b_chain
= m_preds
[j
];
1401 if (b_chain
.length () < 2)
1404 for (unsigned k
= 0; k
< b_chain
.length (); k
++)
1406 const pred_info
&x2
= b_chain
[k
];
1407 if (pred_neg_p (x
, x2
))
1409 b_chain
.unordered_remove (k
);
1419 /* Implement rule 4 for the OR predicate PREDS:
1421 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1422 (x != 0 AND y != 0). */
1425 predicate::simplify_4 ()
1427 bool simplified
= false;
1428 pred_chain_union s_preds
= vNULL
;
1430 unsigned n
= m_preds
.length ();
1431 for (unsigned i
= 0; i
< n
; i
++)
1433 pred_chain a_chain
= m_preds
[i
];
1434 if (a_chain
.length () != 1)
1437 const pred_info
&z
= a_chain
[0];
1438 if (!is_neq_zero_form_p (z
))
1441 gimple
*def_stmt
= SSA_NAME_DEF_STMT (z
.pred_lhs
);
1442 if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
1445 if (gimple_assign_rhs_code (def_stmt
) != BIT_AND_EXPR
)
1448 for (unsigned j
= 0; j
< n
; j
++)
1453 pred_chain b_chain
= m_preds
[j
];
1454 if (b_chain
.length () != 2)
1457 const pred_info
&x2
= b_chain
[0];
1458 const pred_info
&y2
= b_chain
[1];
1459 if (!is_neq_zero_form_p (x2
) || !is_neq_zero_form_p (y2
))
1462 if ((pred_expr_equal_p (x2
, gimple_assign_rhs1 (def_stmt
))
1463 && pred_expr_equal_p (y2
, gimple_assign_rhs2 (def_stmt
)))
1464 || (pred_expr_equal_p (x2
, gimple_assign_rhs2 (def_stmt
))
1465 && pred_expr_equal_p (y2
, gimple_assign_rhs1 (def_stmt
))))
1474 /* Now clean up the chain. */
1477 for (unsigned i
= 0; i
< n
; i
++)
1479 if (m_preds
[i
].is_empty ())
1481 s_preds
.safe_push (m_preds
[i
]);
1492 /* Simplify predicates in *THIS. */
1495 predicate::simplify (gimple
*use_or_def
, bool is_use
)
1497 if (dump_file
&& dump_flags
& TDF_DETAILS
)
1499 fprintf (dump_file
, "Before simplication ");
1500 dump (dump_file
, use_or_def
, is_use
? "[USE]:\n" : "[DEF]:\n");
1503 for (unsigned i
= 0; i
< m_preds
.length (); i
++)
1505 ::simplify_1a (m_preds
[i
]);
1506 if (::simplify_1b (m_preds
[i
]))
1508 m_preds
[i
].release ();
1509 m_preds
.ordered_remove (i
);
1514 if (m_preds
.length () < 2)
1533 /* Attempt to normalize predicate chains by following UD chains by
1534 building up a big tree of either IOR operations or AND operations,
1535 and converting the IOR tree into a pred_chain_union or the BIT_AND
1536 tree into a pred_chain.
1546 then _t != 0 will be normalized into a pred_chain_union
1548 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1558 then _t != 0 will be normalized into a pred_chain:
1559 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
1562 /* Normalize predicate PRED:
1563 1) if PRED can no longer be normalized, append it to *THIS.
1564 2) otherwise if PRED is of the form x != 0, follow x's definition
1565 and put normalized predicates into WORK_LIST. */
1568 predicate::normalize (pred_chain
*norm_chain
,
1570 tree_code and_or_code
,
1571 pred_chain
*work_list
,
1572 hash_set
<tree
> *mark_set
)
1574 if (!is_neq_zero_form_p (pred
))
1576 if (and_or_code
== BIT_IOR_EXPR
)
1579 norm_chain
->safe_push (pred
);
1583 gimple
*def_stmt
= SSA_NAME_DEF_STMT (pred
.pred_lhs
);
1585 if (gimple_code (def_stmt
) == GIMPLE_PHI
1586 && is_degenerate_phi (def_stmt
, &pred
))
1587 /* PRED has been modified above. */
1588 work_list
->safe_push (pred
);
1589 else if (gimple_code (def_stmt
) == GIMPLE_PHI
&& and_or_code
== BIT_IOR_EXPR
)
1591 unsigned n
= gimple_phi_num_args (def_stmt
);
1593 /* Punt for a nonzero constant. The predicate should be one guarding
1595 for (unsigned i
= 0; i
< n
; ++i
)
1597 tree op
= gimple_phi_arg_def (def_stmt
, i
);
1598 if (TREE_CODE (op
) == INTEGER_CST
&& !integer_zerop (op
))
1605 for (unsigned i
= 0; i
< n
; ++i
)
1607 tree op
= gimple_phi_arg_def (def_stmt
, i
);
1608 if (integer_zerop (op
))
1611 push_to_worklist (op
, work_list
, mark_set
);
1614 else if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
1616 if (and_or_code
== BIT_IOR_EXPR
)
1619 norm_chain
->safe_push (pred
);
1621 else if (gimple_assign_rhs_code (def_stmt
) == and_or_code
)
1623 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */
1624 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt
)))
1626 /* But treat x & 3 as a condition. */
1627 if (and_or_code
== BIT_AND_EXPR
)
1630 n_pred
.pred_lhs
= gimple_assign_rhs1 (def_stmt
);
1631 n_pred
.pred_rhs
= gimple_assign_rhs2 (def_stmt
);
1632 n_pred
.cond_code
= and_or_code
;
1633 n_pred
.invert
= false;
1634 norm_chain
->safe_push (n_pred
);
1639 push_to_worklist (gimple_assign_rhs1 (def_stmt
), work_list
, mark_set
);
1640 push_to_worklist (gimple_assign_rhs2 (def_stmt
), work_list
, mark_set
);
1643 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
))
1646 pred_info n_pred
= get_pred_info_from_cmp (def_stmt
);
1647 if (and_or_code
== BIT_IOR_EXPR
)
1650 norm_chain
->safe_push (n_pred
);
1654 if (and_or_code
== BIT_IOR_EXPR
)
1657 norm_chain
->safe_push (pred
);
1661 /* Normalize PRED and store the normalized predicates in THIS->M_PREDS. */
1664 predicate::normalize (const pred_info
&pred
)
1666 if (!is_neq_zero_form_p (pred
))
1672 tree_code and_or_code
= ERROR_MARK
;
1674 gimple
*def_stmt
= SSA_NAME_DEF_STMT (pred
.pred_lhs
);
1675 if (gimple_code (def_stmt
) == GIMPLE_ASSIGN
)
1676 and_or_code
= gimple_assign_rhs_code (def_stmt
);
1677 if (and_or_code
!= BIT_IOR_EXPR
&& and_or_code
!= BIT_AND_EXPR
)
1679 if (TREE_CODE_CLASS (and_or_code
) == tcc_comparison
)
1681 pred_info n_pred
= get_pred_info_from_cmp (def_stmt
);
1690 pred_chain norm_chain
= vNULL
;
1691 pred_chain work_list
= vNULL
;
1692 work_list
.safe_push (pred
);
1693 hash_set
<tree
> mark_set
;
1695 while (!work_list
.is_empty ())
1697 pred_info a_pred
= work_list
.pop ();
1698 normalize (&norm_chain
, a_pred
, and_or_code
, &work_list
, &mark_set
);
1701 if (and_or_code
== BIT_AND_EXPR
)
1702 m_preds
.safe_push (norm_chain
);
1704 work_list
.release ();
1707 /* Normalize a single predicate PRED_CHAIN and append it to *THIS. */
1710 predicate::normalize (const pred_chain
&chain
)
1712 pred_chain work_list
= vNULL
;
1713 hash_set
<tree
> mark_set
;
1714 for (unsigned i
= 0; i
< chain
.length (); i
++)
1716 work_list
.safe_push (chain
[i
]);
1717 mark_set
.add (chain
[i
].pred_lhs
);
1720 /* Normalized chain of predicates built up below. */
1721 pred_chain norm_chain
= vNULL
;
1722 while (!work_list
.is_empty ())
1724 pred_info pi
= work_list
.pop ();
1725 /* The predicate object is not modified here, only NORM_CHAIN and
1726 WORK_LIST are appended to. */
1727 unsigned oldlen
= m_preds
.length ();
1728 normalize (&norm_chain
, pi
, BIT_AND_EXPR
, &work_list
, &mark_set
);
1729 gcc_assert (m_preds
.length () == oldlen
);
1732 m_preds
.safe_push (norm_chain
);
1733 work_list
.release ();
1736 /* Normalize predicate chains in THIS. */
1739 predicate::normalize (gimple
*use_or_def
, bool is_use
)
1741 if (dump_file
&& dump_flags
& TDF_DETAILS
)
1743 fprintf (dump_file
, "Before normalization ");
1744 dump (dump_file
, use_or_def
, is_use
? "[USE]:\n" : "[DEF]:\n");
1747 predicate
norm_preds (empty_val ());
1748 for (unsigned i
= 0; i
< m_preds
.length (); i
++)
1750 if (m_preds
[i
].length () != 1)
1751 norm_preds
.normalize (m_preds
[i
]);
1753 norm_preds
.normalize (m_preds
[i
][0]);
1760 fprintf (dump_file
, "After normalization ");
1761 dump (dump_file
, use_or_def
, is_use
? "[USE]:\n" : "[DEF]:\n");
1765 /* Convert the chains of control dependence edges into a set of predicates.
1766 A control dependence chain is represented by a vector edges. DEP_CHAINS
1767 points to an array of NUM_CHAINS dependence chains. One edge in
1768 a dependence chain is mapped to predicate expression represented by
1769 pred_info type. One dependence chain is converted to a composite
1770 predicate that is the result of AND operation of pred_info mapped to
1771 each edge. A composite predicate is represented by a vector of
1772 pred_info. Sets M_PREDS to the resulting composite predicates. */
1775 predicate::init_from_control_deps (const vec
<edge
> *dep_chains
,
1776 unsigned num_chains
, bool is_use
)
1778 gcc_assert (is_empty ());
1780 if (num_chains
== 0)
1783 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
1784 fprintf (dump_file
, "init_from_control_deps [%s] {%s}:\n",
1785 is_use
? "USE" : "DEF",
1786 format_edge_vecs (dep_chains
, num_chains
).c_str ());
1788 /* Convert the control dependency chain into a set of predicates. */
1789 m_preds
.reserve (num_chains
);
1791 for (unsigned i
= 0; i
< num_chains
; i
++)
1793 /* One path through the CFG represents a logical conjunction
1794 of the predicates. */
1795 const vec
<edge
> &path
= dep_chains
[i
];
1797 bool has_valid_pred
= false;
1798 /* The chain of predicates guarding the definition along this path. */
1799 pred_chain t_chain
{ };
1800 for (unsigned j
= 0; j
< path
.length (); j
++)
1803 basic_block guard_bb
= e
->src
;
1805 gcc_assert (!empty_block_p (guard_bb
) && !single_succ_p (guard_bb
));
1807 /* Skip this edge if it is bypassing an abort - when the
1808 condition is not satisfied we are neither reaching the
1809 definition nor the use so it isn't meaningful. Note if
1810 we are processing the use predicate the condition is
1811 meaningful. See PR65244. */
1812 if (!is_use
&& EDGE_COUNT (e
->src
->succs
) == 2)
1818 FOR_EACH_EDGE (e1
, ei1
, e
->src
->succs
)
1820 if (EDGE_COUNT (e1
->dest
->succs
) == 0)
1828 has_valid_pred
= true;
1832 /* Get the conditional controlling the bb exit edge. */
1833 gimple
*cond_stmt
= last_stmt (guard_bb
);
1834 if (gimple_code (cond_stmt
) == GIMPLE_COND
)
1836 /* The true edge corresponds to the uninteresting condition.
1837 Add the negated predicate(s) for the edge to record
1838 the interesting condition. */
1840 one_pred
.pred_lhs
= gimple_cond_lhs (cond_stmt
);
1841 one_pred
.pred_rhs
= gimple_cond_rhs (cond_stmt
);
1842 one_pred
.cond_code
= gimple_cond_code (cond_stmt
);
1843 one_pred
.invert
= !!(e
->flags
& EDGE_FALSE_VALUE
);
1845 t_chain
.safe_push (one_pred
);
1847 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
1849 fprintf (dump_file
, "%d -> %d: one_pred = ",
1850 e
->src
->index
, e
->dest
->index
);
1851 dump_pred_info (dump_file
, one_pred
);
1852 fputc ('\n', dump_file
);
1855 has_valid_pred
= true;
1857 else if (gswitch
*gs
= dyn_cast
<gswitch
*> (cond_stmt
))
1859 /* Find the case label, but avoid quadratic behavior. */
1860 tree l
= get_cases_for_edge (e
, gs
);
1861 /* If more than one label reaches this block or the case
1862 label doesn't have a contiguous range of values (like the
1863 default one) fail. */
1864 if (!l
|| CASE_CHAIN (l
) || !CASE_LOW (l
))
1865 has_valid_pred
= false;
1866 else if (!CASE_HIGH (l
)
1867 || operand_equal_p (CASE_LOW (l
), CASE_HIGH (l
)))
1870 one_pred
.pred_lhs
= gimple_switch_index (gs
);
1871 one_pred
.pred_rhs
= CASE_LOW (l
);
1872 one_pred
.cond_code
= EQ_EXPR
;
1873 one_pred
.invert
= false;
1874 t_chain
.safe_push (one_pred
);
1875 has_valid_pred
= true;
1879 /* Support a case label with a range with
1880 two predicates. We're overcommitting on
1881 the MAX_CHAIN_LEN budget by at most a factor
1884 one_pred
.pred_lhs
= gimple_switch_index (gs
);
1885 one_pred
.pred_rhs
= CASE_LOW (l
);
1886 one_pred
.cond_code
= GE_EXPR
;
1887 one_pred
.invert
= false;
1888 t_chain
.safe_push (one_pred
);
1889 one_pred
.pred_rhs
= CASE_HIGH (l
);
1890 one_pred
.cond_code
= LE_EXPR
;
1891 t_chain
.safe_push (one_pred
);
1892 has_valid_pred
= true;
1895 else if (stmt_can_throw_internal (cfun
, cond_stmt
)
1896 && !(e
->flags
& EDGE_EH
))
1897 /* Ignore the exceptional control flow and proceed as if
1898 E were a fallthru without a controlling predicate for
1899 both the USE (valid) and DEF (questionable) case. */
1900 has_valid_pred
= true;
1902 has_valid_pred
= false;
1904 /* For USE predicates we can drop components of the
1906 if (!has_valid_pred
&& !is_use
)
1910 /* For DEF predicates we have to drop components of the OR chain
1912 if (!has_valid_pred
&& !is_use
)
1918 /* When we add || 1 simply prune the chain and return. */
1919 if (t_chain
.is_empty ())
1922 for (auto chain
: m_preds
)
1924 m_preds
.truncate (0);
1928 m_preds
.quick_push (t_chain
);
1931 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
1935 /* Store a PRED in *THIS. */
1938 predicate::push_pred (const pred_info
&pred
)
1940 pred_chain chain
= vNULL
;
1941 chain
.safe_push (pred
);
1942 m_preds
.safe_push (chain
);
1945 /* Dump predicates in *THIS to F. */
1948 predicate::dump (FILE *f
) const
1950 unsigned np
= m_preds
.length ();
1953 fprintf (f
, "\tTRUE (empty)\n");
1957 for (unsigned i
= 0; i
< np
; i
++)
1960 fprintf (f
, "\tOR (");
1963 dump_pred_chain (f
, m_preds
[i
]);
1968 /* Dump predicates in *THIS to stderr. */
1971 predicate::debug () const
1976 /* Dump predicates in *THIS for STMT prepended by MSG to F. */
1979 predicate::dump (FILE *f
, gimple
*stmt
, const char *msg
) const
1981 fprintf (f
, "%s", msg
);
1985 print_gimple_stmt (f
, stmt
, 0);
1986 fprintf (f
, " is conditional on:\n");
1992 /* Initialize USE_PREDS with the predicates of the control dependence chains
1993 between the basic block DEF_BB that defines a variable of interst and
1994 USE_BB that uses the variable, respectively. */
1997 uninit_analysis::init_use_preds (predicate
&use_preds
, basic_block def_bb
,
2000 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
2001 fprintf (dump_file
, "init_use_preds (def_bb = %u, use_bb = %u)\n",
2002 def_bb
->index
, use_bb
->index
);
2004 gcc_assert (use_preds
.is_empty ()
2005 && dominated_by_p (CDI_DOMINATORS
, use_bb
, def_bb
));
2007 /* Set CD_ROOT to the basic block closest to USE_BB that is the control
2008 equivalent of (is guarded by the same predicate as) DEF_BB that also
2009 dominates USE_BB. This mimics the inner loop in
2010 compute_control_dep_chain. */
2011 basic_block cd_root
= def_bb
;
2014 basic_block pdom
= get_immediate_dominator (CDI_POST_DOMINATORS
, cd_root
);
2016 /* Stop at a loop exit which is also postdominating cd_root. */
2017 if (single_pred_p (pdom
) && !single_succ_p (cd_root
))
2020 if (!dominated_by_p (CDI_DOMINATORS
, pdom
, cd_root
)
2021 || !dominated_by_p (CDI_DOMINATORS
, use_bb
, pdom
))
2028 auto_bb_flag
in_region (cfun
);
2029 auto_vec
<basic_block
, 20> region (MIN (n_basic_blocks_for_fn (cfun
),
2030 param_uninit_control_dep_attempts
));
2032 /* Set DEP_CHAINS to the set of edges between CD_ROOT and USE_BB.
2033 Each DEP_CHAINS element is a series of edges whose conditions
2034 are logical conjunctions. Together, the DEP_CHAINS vector is
2035 used below to initialize an OR expression of the conjunctions. */
2036 unsigned num_chains
= 0;
2037 auto_vec
<edge
> dep_chains
[MAX_NUM_CHAINS
];
2039 if (!dfs_mark_dominating_region (use_bb
, cd_root
, in_region
, region
)
2040 || !compute_control_dep_chain (cd_root
, use_bb
, dep_chains
, &num_chains
,
2043 /* If the info in dep_chains is not complete we need to use a
2044 conservative approximation for the use predicate. */
2045 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
2046 fprintf (dump_file
, "init_use_preds: dep_chain incomplete, using "
2047 "conservative approximation\n");
2049 dep_chains
[0].truncate (0);
2050 simple_control_dep_chain (dep_chains
[0], cd_root
, use_bb
);
2053 /* Unmark the region. */
2054 for (auto bb
: region
)
2055 bb
->flags
&= ~in_region
;
2057 /* From the set of edges computed above initialize *THIS as the OR
2058 condition under which the definition in DEF_BB is used in USE_BB.
2059 Each OR subexpression is represented by one element of DEP_CHAINS,
2060 where each element consists of a series of AND subexpressions. */
2061 use_preds
.init_from_control_deps (dep_chains
, num_chains
, true);
2062 return !use_preds
.is_empty ();
2065 /* Release resources in *THIS. */
2067 predicate::~predicate ()
2069 unsigned n
= m_preds
.length ();
2070 for (unsigned i
= 0; i
!= n
; ++i
)
2071 m_preds
[i
].release ();
2075 /* Copy-assign RHS to *THIS. */
2078 predicate::operator= (const predicate
&rhs
)
2083 m_cval
= rhs
.m_cval
;
2085 unsigned n
= m_preds
.length ();
2086 for (unsigned i
= 0; i
!= n
; ++i
)
2087 m_preds
[i
].release ();
2090 n
= rhs
.m_preds
.length ();
2091 for (unsigned i
= 0; i
!= n
; ++i
)
2093 const pred_chain
&chain
= rhs
.m_preds
[i
];
2094 m_preds
.safe_push (chain
.copy ());
2100 /* For each use edge of PHI, compute all control dependence chains
2101 and convert those to the composite predicates in M_PREDS.
2102 Return true if a nonempty predicate has been obtained. */
2105 uninit_analysis::init_from_phi_def (gphi
*phi
)
2107 gcc_assert (m_phi_def_preds
.is_empty ());
2109 basic_block phi_bb
= gimple_bb (phi
);
2110 /* Find the closest dominating bb to be the control dependence root. */
2111 basic_block cd_root
= get_immediate_dominator (CDI_DOMINATORS
, phi_bb
);
2115 /* Set DEF_EDGES to the edges to the PHI from the bb's that provide
2116 definitions of each of the PHI operands for which M_EVAL is false. */
2117 auto_vec
<edge
> def_edges
;
2118 hash_set
<gimple
*> visited_phis
;
2119 collect_phi_def_edges (phi
, cd_root
, &def_edges
, &visited_phis
);
2121 unsigned nedges
= def_edges
.length ();
2125 auto_bb_flag
in_region (cfun
);
2126 auto_vec
<basic_block
, 20> region (MIN (n_basic_blocks_for_fn (cfun
),
2127 param_uninit_control_dep_attempts
));
2128 /* Pre-mark the PHI incoming edges PHI block to make sure we only walk
2129 interesting edges from there. */
2130 for (unsigned i
= 0; i
< nedges
; i
++)
2132 if (!(def_edges
[i
]->dest
->flags
& in_region
))
2134 if (!region
.space (1))
2136 def_edges
[i
]->dest
->flags
|= in_region
;
2137 region
.quick_push (def_edges
[i
]->dest
);
2140 for (unsigned i
= 0; i
< nedges
; i
++)
2141 if (!dfs_mark_dominating_region (def_edges
[i
]->src
, cd_root
,
2145 unsigned num_chains
= 0;
2146 auto_vec
<edge
> dep_chains
[MAX_NUM_CHAINS
];
2147 for (unsigned i
= 0; i
< nedges
; i
++)
2149 edge e
= def_edges
[i
];
2150 unsigned prev_nc
= num_chains
;
2151 bool complete_p
= compute_control_dep_chain (cd_root
, e
->src
, dep_chains
,
2152 &num_chains
, in_region
);
2154 /* Update the newly added chains with the phi operand edge. */
2155 if (EDGE_COUNT (e
->src
->succs
) > 1)
2158 && prev_nc
== num_chains
2159 && num_chains
< MAX_NUM_CHAINS
)
2160 /* We can only add a chain for the PHI operand edge when the
2161 collected info was complete, otherwise the predicate may
2162 not be conservative. */
2163 dep_chains
[num_chains
++] = vNULL
;
2164 for (unsigned j
= prev_nc
; j
< num_chains
; j
++)
2165 dep_chains
[j
].safe_push (e
);
2169 /* Unmark the region. */
2170 for (auto bb
: region
)
2171 bb
->flags
&= ~in_region
;
2173 /* Convert control dependence chains to the predicate in *THIS under
2174 which the PHI operands are defined to values for which M_EVAL is
2176 m_phi_def_preds
.init_from_control_deps (dep_chains
, num_chains
, false);
2177 return !m_phi_def_preds
.is_empty ();
2180 /* Compute the predicates that guard the use USE_STMT and check if
2181 the incoming paths that have an empty (or possibly empty) definition
2182 can be pruned. Return true if it can be determined that the use of
2183 PHI's def in USE_STMT is guarded by a predicate set that does not
2184 overlap with the predicate sets of all runtime paths that do not
2187 Return false if the use is not guarded or if it cannot be determined.
2188 USE_BB is the bb of the use (for phi operand use, the bb is not the bb
2189 of the phi stmt, but the source bb of the operand edge).
2191 OPNDS is a bitmap with a bit set for each PHI operand of interest.
2193 THIS->M_PREDS contains the (memoized) defining predicate chains of
2194 a PHI. If THIS->M_PREDS is empty, the PHI's defining predicate
2195 chains are computed and stored into THIS->M_PREDS as needed.
2197 VISITED_PHIS is a pointer set of phis being visited. */
2200 uninit_analysis::is_use_guarded (gimple
*use_stmt
, basic_block use_bb
,
2201 gphi
*phi
, unsigned opnds
,
2202 hash_set
<gphi
*> *visited
)
2204 if (visited
->add (phi
))
2207 /* The basic block where the PHI is defined. */
2208 basic_block def_bb
= gimple_bb (phi
);
2210 /* Try to build the predicate expression under which the PHI flows
2211 into its use. This will be empty if the PHI is defined and used
2213 predicate
use_preds (true);
2214 if (!init_use_preds (use_preds
, def_bb
, use_bb
))
2217 use_preds
.simplify (use_stmt
, /*is_use=*/true);
2218 if (use_preds
.is_false ())
2220 if (use_preds
.is_true ())
2222 use_preds
.normalize (use_stmt
, /*is_use=*/true);
2224 /* Try to prune the dead incoming phi edges. */
2225 if (!overlap (phi
, opnds
, visited
, use_preds
))
2227 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
2228 fputs ("found predicate overlap\n", dump_file
);
2233 if (m_phi_def_preds
.is_empty ())
2235 /* Lazily initialize *THIS from PHI. */
2236 if (!init_from_phi_def (phi
))
2239 m_phi_def_preds
.simplify (phi
);
2240 if (m_phi_def_preds
.is_false ())
2242 if (m_phi_def_preds
.is_true ())
2244 m_phi_def_preds
.normalize (phi
);
2247 /* Return true if the predicate guarding the valid definition (i.e.,
2248 *THIS) is a superset of the predicate guarding the use (i.e.,
2250 if (m_phi_def_preds
.superset_of (use_preds
))
2256 /* Public interface to the above. */
2259 uninit_analysis::is_use_guarded (gimple
*stmt
, basic_block use_bb
, gphi
*phi
,
2262 hash_set
<gphi
*> visited
;
2263 return is_use_guarded (stmt
, use_bb
, phi
, opnds
, &visited
);