1 ;; Mips.md Machine Description for MIPS based processors
2 ;; Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 ;; 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 ;; Free Software Foundation, Inc.
5 ;; Contributed by A. Lichnewsky, lich@inria.inria.fr
6 ;; Changes by Michael Meissner, meissner@osf.org
7 ;; 64-bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
8 ;; Brendan Eich, brendan@microunity.com.
10 ;; This file is part of GCC.
12 ;; GCC is free software; you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation; either version 3, or (at your option)
17 ;; GCC is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GCC; see the file COPYING3. If not see
24 ;; <http://www.gnu.org/licenses/>.
35 (UNSPEC_CONSTTABLE_INT 8)
36 (UNSPEC_CONSTTABLE_FLOAT 9)
40 (UNSPEC_LOAD_RIGHT 19)
41 (UNSPEC_STORE_LEFT 20)
42 (UNSPEC_STORE_RIGHT 21)
51 (UNSPEC_TLS_GET_TP 30)
54 (UNSPEC_CLEAR_HAZARD 33)
58 (UNSPEC_COMPARE_AND_SWAP 37)
59 (UNSPEC_COMPARE_AND_SWAP_12 38)
60 (UNSPEC_SYNC_OLD_OP 39)
61 (UNSPEC_SYNC_NEW_OP 40)
62 (UNSPEC_SYNC_NEW_OP_12 41)
63 (UNSPEC_SYNC_OLD_OP_12 42)
64 (UNSPEC_SYNC_EXCHANGE 43)
65 (UNSPEC_SYNC_EXCHANGE_12 44)
66 (UNSPEC_MEMORY_BARRIER 45)
67 (UNSPEC_SET_GOT_VERSION 46)
68 (UNSPEC_UPDATE_GOT_VERSION 47)
70 (UNSPEC_ADDRESS_FIRST 100)
73 (GOT_VERSION_REGNUM 79)
75 ;; For MIPS Paired-Singled Floating Point Instructions.
77 (UNSPEC_MOVE_TF_PS 200)
80 ;; MIPS64/MIPS32R2 alnv.ps
83 ;; MIPS-3D instructions
87 (UNSPEC_CVT_PW_PS 205)
88 (UNSPEC_CVT_PS_PW 206)
96 (UNSPEC_SINGLE_CC 213)
99 ;; MIPS DSP ASE Revision 0.98 3/24/2005
107 (UNSPEC_RADDU_W_QB 307)
109 (UNSPEC_PRECRQ_QB_PH 309)
110 (UNSPEC_PRECRQ_PH_W 310)
111 (UNSPEC_PRECRQ_RS_PH_W 311)
112 (UNSPEC_PRECRQU_S_QB_PH 312)
113 (UNSPEC_PRECEQ_W_PHL 313)
114 (UNSPEC_PRECEQ_W_PHR 314)
115 (UNSPEC_PRECEQU_PH_QBL 315)
116 (UNSPEC_PRECEQU_PH_QBR 316)
117 (UNSPEC_PRECEQU_PH_QBLA 317)
118 (UNSPEC_PRECEQU_PH_QBRA 318)
119 (UNSPEC_PRECEU_PH_QBL 319)
120 (UNSPEC_PRECEU_PH_QBR 320)
121 (UNSPEC_PRECEU_PH_QBLA 321)
122 (UNSPEC_PRECEU_PH_QBRA 322)
128 (UNSPEC_MULEU_S_PH_QBL 328)
129 (UNSPEC_MULEU_S_PH_QBR 329)
130 (UNSPEC_MULQ_RS_PH 330)
131 (UNSPEC_MULEQ_S_W_PHL 331)
132 (UNSPEC_MULEQ_S_W_PHR 332)
133 (UNSPEC_DPAU_H_QBL 333)
134 (UNSPEC_DPAU_H_QBR 334)
135 (UNSPEC_DPSU_H_QBL 335)
136 (UNSPEC_DPSU_H_QBR 336)
137 (UNSPEC_DPAQ_S_W_PH 337)
138 (UNSPEC_DPSQ_S_W_PH 338)
139 (UNSPEC_MULSAQ_S_W_PH 339)
140 (UNSPEC_DPAQ_SA_L_W 340)
141 (UNSPEC_DPSQ_SA_L_W 341)
142 (UNSPEC_MAQ_S_W_PHL 342)
143 (UNSPEC_MAQ_S_W_PHR 343)
144 (UNSPEC_MAQ_SA_W_PHL 344)
145 (UNSPEC_MAQ_SA_W_PHR 345)
153 (UNSPEC_CMPGU_EQ_QB 353)
154 (UNSPEC_CMPGU_LT_QB 354)
155 (UNSPEC_CMPGU_LE_QB 355)
157 (UNSPEC_PACKRL_PH 357)
159 (UNSPEC_EXTR_R_W 359)
160 (UNSPEC_EXTR_RS_W 360)
161 (UNSPEC_EXTR_S_H 361)
169 ;; MIPS DSP ASE REV 2 Revision 0.02 11/24/2006
170 (UNSPEC_ABSQ_S_QB 400)
172 (UNSPEC_ADDU_S_PH 402)
173 (UNSPEC_ADDUH_QB 403)
174 (UNSPEC_ADDUH_R_QB 404)
177 (UNSPEC_CMPGDU_EQ_QB 407)
178 (UNSPEC_CMPGDU_LT_QB 408)
179 (UNSPEC_CMPGDU_LE_QB 409)
180 (UNSPEC_DPA_W_PH 410)
181 (UNSPEC_DPS_W_PH 411)
187 (UNSPEC_MUL_S_PH 417)
188 (UNSPEC_MULQ_RS_W 418)
189 (UNSPEC_MULQ_S_PH 419)
190 (UNSPEC_MULQ_S_W 420)
191 (UNSPEC_MULSA_W_PH 421)
194 (UNSPEC_PRECR_QB_PH 424)
195 (UNSPEC_PRECR_SRA_PH_W 425)
196 (UNSPEC_PRECR_SRA_R_PH_W 426)
199 (UNSPEC_SHRA_R_QB 429)
202 (UNSPEC_SUBU_S_PH 432)
203 (UNSPEC_SUBUH_QB 433)
204 (UNSPEC_SUBUH_R_QB 434)
205 (UNSPEC_ADDQH_PH 435)
206 (UNSPEC_ADDQH_R_PH 436)
208 (UNSPEC_ADDQH_R_W 438)
209 (UNSPEC_SUBQH_PH 439)
210 (UNSPEC_SUBQH_R_PH 440)
212 (UNSPEC_SUBQH_R_W 442)
213 (UNSPEC_DPAX_W_PH 443)
214 (UNSPEC_DPSX_W_PH 444)
215 (UNSPEC_DPAQX_S_W_PH 445)
216 (UNSPEC_DPAQX_SA_W_PH 446)
217 (UNSPEC_DPSQX_S_W_PH 447)
218 (UNSPEC_DPSQX_SA_W_PH 448)
220 ;; ST Microelectronics Loongson-2E/2F.
221 (UNSPEC_LOONGSON_PAVG 500)
222 (UNSPEC_LOONGSON_PCMPEQ 501)
223 (UNSPEC_LOONGSON_PCMPGT 502)
224 (UNSPEC_LOONGSON_PEXTR 503)
225 (UNSPEC_LOONGSON_PINSR_0 504)
226 (UNSPEC_LOONGSON_PINSR_1 505)
227 (UNSPEC_LOONGSON_PINSR_2 506)
228 (UNSPEC_LOONGSON_PINSR_3 507)
229 (UNSPEC_LOONGSON_PMADD 508)
230 (UNSPEC_LOONGSON_PMOVMSK 509)
231 (UNSPEC_LOONGSON_PMULHU 510)
232 (UNSPEC_LOONGSON_PMULH 511)
233 (UNSPEC_LOONGSON_PMULL 512)
234 (UNSPEC_LOONGSON_PMULU 513)
235 (UNSPEC_LOONGSON_PASUBUB 514)
236 (UNSPEC_LOONGSON_BIADD 515)
237 (UNSPEC_LOONGSON_PSADBH 516)
238 (UNSPEC_LOONGSON_PSHUFH 517)
239 (UNSPEC_LOONGSON_PUNPCKH 518)
240 (UNSPEC_LOONGSON_PUNPCKL 519)
241 (UNSPEC_LOONGSON_PADDD 520)
242 (UNSPEC_LOONGSON_PSUBD 521)
244 ;; Used in loongson2ef.md
245 (UNSPEC_LOONGSON_ALU1_TURN_ENABLED_INSN 530)
246 (UNSPEC_LOONGSON_ALU2_TURN_ENABLED_INSN 531)
247 (UNSPEC_LOONGSON_FALU1_TURN_ENABLED_INSN 532)
248 (UNSPEC_LOONGSON_FALU2_TURN_ENABLED_INSN 533)
252 (include "predicates.md")
253 (include "constraints.md")
255 ;; ....................
259 ;; ....................
261 (define_attr "got" "unset,xgot_high,load"
262 (const_string "unset"))
264 ;; For jal instructions, this attribute is DIRECT when the target address
265 ;; is symbolic and INDIRECT when it is a register.
266 (define_attr "jal" "unset,direct,indirect"
267 (const_string "unset"))
269 ;; This attribute is YES if the instruction is a jal macro (not a
270 ;; real jal instruction).
272 ;; jal is always a macro for TARGET_CALL_CLOBBERED_GP because it includes
273 ;; an instruction to restore $gp. Direct jals are also macros for
274 ;; flag_pic && !TARGET_ABSOLUTE_ABICALLS because they first load
275 ;; the target address into a register.
276 (define_attr "jal_macro" "no,yes"
277 (cond [(eq_attr "jal" "direct")
278 (symbol_ref "TARGET_CALL_CLOBBERED_GP
279 || (flag_pic && !TARGET_ABSOLUTE_ABICALLS)")
280 (eq_attr "jal" "indirect")
281 (symbol_ref "TARGET_CALL_CLOBBERED_GP")]
282 (const_string "no")))
284 ;; Classification of moves, extensions and truncations. Most values
285 ;; are as for "type" (see below) but there are also the following
286 ;; move-specific values:
288 ;; constN move an N-constraint integer into a MIPS16 register
289 ;; sll0 "sll DEST,SRC,0", which on 64-bit targets is guaranteed
290 ;; to produce a sign-extended DEST, even if SRC is not
291 ;; properly sign-extended
292 ;; andi a single ANDI instruction
293 ;; loadpool move a constant into a MIPS16 register by loading it
295 ;; shift_shift a shift left followed by a shift right
296 ;; lui_movf an LUI followed by a MOVF (for d<-z CC moves)
298 ;; This attribute is used to determine the instruction's length and
299 ;; scheduling type. For doubleword moves, the attribute always describes
300 ;; the split instructions; in some cases, it is more appropriate for the
301 ;; scheduling type to be "multi" instead.
302 (define_attr "move_type"
303 "unknown,load,fpload,store,fpstore,mtc,mfc,mthilo,mfhilo,move,fmove,
304 const,constN,signext,sll0,andi,loadpool,shift_shift,lui_movf"
305 (const_string "unknown"))
307 ;; Main data type used by the insn
308 (define_attr "mode" "unknown,none,QI,HI,SI,DI,TI,SF,DF,TF,FPSW"
309 (const_string "unknown"))
311 ;; True if the main data type is twice the size of a word.
312 (define_attr "dword_mode" "no,yes"
313 (cond [(and (eq_attr "mode" "DI,DF")
314 (eq (symbol_ref "TARGET_64BIT") (const_int 0)))
317 (and (eq_attr "mode" "TI,TF")
318 (ne (symbol_ref "TARGET_64BIT") (const_int 0)))
319 (const_string "yes")]
320 (const_string "no")))
322 ;; Classification of each insn.
323 ;; branch conditional branch
324 ;; jump unconditional jump
325 ;; call unconditional call
326 ;; load load instruction(s)
327 ;; fpload floating point load
328 ;; fpidxload floating point indexed load
329 ;; store store instruction(s)
330 ;; fpstore floating point store
331 ;; fpidxstore floating point indexed store
332 ;; prefetch memory prefetch (register + offset)
333 ;; prefetchx memory indexed prefetch (register + register)
334 ;; condmove conditional moves
335 ;; mtc transfer to coprocessor
336 ;; mfc transfer from coprocessor
337 ;; mthilo transfer to hi/lo registers
338 ;; mfhilo transfer from hi/lo registers
339 ;; const load constant
340 ;; arith integer arithmetic instructions
341 ;; logical integer logical instructions
342 ;; shift integer shift instructions
343 ;; slt set less than instructions
344 ;; signext sign extend instructions
345 ;; clz the clz and clo instructions
346 ;; trap trap if instructions
347 ;; imul integer multiply 2 operands
348 ;; imul3 integer multiply 3 operands
349 ;; imadd integer multiply-add
350 ;; idiv integer divide
351 ;; move integer register move ({,D}ADD{,U} with rt = 0)
352 ;; fmove floating point register move
353 ;; fadd floating point add/subtract
354 ;; fmul floating point multiply
355 ;; fmadd floating point multiply-add
356 ;; fdiv floating point divide
357 ;; frdiv floating point reciprocal divide
358 ;; frdiv1 floating point reciprocal divide step 1
359 ;; frdiv2 floating point reciprocal divide step 2
360 ;; fabs floating point absolute value
361 ;; fneg floating point negation
362 ;; fcmp floating point compare
363 ;; fcvt floating point convert
364 ;; fsqrt floating point square root
365 ;; frsqrt floating point reciprocal square root
366 ;; frsqrt1 floating point reciprocal square root step1
367 ;; frsqrt2 floating point reciprocal square root step2
368 ;; multi multiword sequence (or user asm statements)
370 ;; ghost an instruction that produces no real code
372 "unknown,branch,jump,call,load,fpload,fpidxload,store,fpstore,fpidxstore,
373 prefetch,prefetchx,condmove,mtc,mfc,mthilo,mfhilo,const,arith,logical,
374 shift,slt,signext,clz,trap,imul,imul3,imadd,idiv,move,fmove,fadd,fmul,
375 fmadd,fdiv,frdiv,frdiv1,frdiv2,fabs,fneg,fcmp,fcvt,fsqrt,frsqrt,frsqrt1,
376 frsqrt2,multi,nop,ghost"
377 (cond [(eq_attr "jal" "!unset") (const_string "call")
378 (eq_attr "got" "load") (const_string "load")
380 ;; If a doubleword move uses these expensive instructions,
381 ;; it is usually better to schedule them in the same way
382 ;; as the singleword form, rather than as "multi".
383 (eq_attr "move_type" "load") (const_string "load")
384 (eq_attr "move_type" "fpload") (const_string "fpload")
385 (eq_attr "move_type" "store") (const_string "store")
386 (eq_attr "move_type" "fpstore") (const_string "fpstore")
387 (eq_attr "move_type" "mtc") (const_string "mtc")
388 (eq_attr "move_type" "mfc") (const_string "mfc")
389 (eq_attr "move_type" "mthilo") (const_string "mthilo")
390 (eq_attr "move_type" "mfhilo") (const_string "mfhilo")
392 ;; These types of move are always single insns.
393 (eq_attr "move_type" "fmove") (const_string "fmove")
394 (eq_attr "move_type" "loadpool") (const_string "load")
395 (eq_attr "move_type" "signext") (const_string "signext")
396 (eq_attr "move_type" "sll0") (const_string "shift")
397 (eq_attr "move_type" "andi") (const_string "logical")
399 ;; These types of move are always split.
400 (eq_attr "move_type" "constN,lui_movf,shift_shift")
401 (const_string "multi")
403 ;; These types of move are split for doubleword modes only.
404 (and (eq_attr "move_type" "move,const")
405 (eq_attr "dword_mode" "yes"))
406 (const_string "multi")
407 (eq_attr "move_type" "move") (const_string "move")
408 (eq_attr "move_type" "const") (const_string "const")]
409 (const_string "unknown")))
411 ;; Mode for conversion types (fcvt)
412 ;; I2S integer to float single (SI/DI to SF)
413 ;; I2D integer to float double (SI/DI to DF)
414 ;; S2I float to integer (SF to SI/DI)
415 ;; D2I float to integer (DF to SI/DI)
416 ;; D2S double to float single
417 ;; S2D float single to double
419 (define_attr "cnv_mode" "unknown,I2S,I2D,S2I,D2I,D2S,S2D"
420 (const_string "unknown"))
422 ;; Is this an extended instruction in mips16 mode?
423 (define_attr "extended_mips16" "no,yes"
424 (if_then_else (ior (eq_attr "move_type" "sll0")
425 (eq_attr "type" "branch")
426 (eq_attr "jal" "direct"))
428 (const_string "no")))
430 ;; Length of instruction in bytes.
431 (define_attr "length" ""
432 (cond [(and (eq_attr "extended_mips16" "yes")
433 (ne (symbol_ref "TARGET_MIPS16") (const_int 0)))
436 ;; Direct branch instructions have a range of [-0x40000,0x3fffc].
437 ;; If a branch is outside this range, we have a choice of two
438 ;; sequences. For PIC, an out-of-range branch like:
443 ;; becomes the equivalent of:
452 ;; where the load address can be up to three instructions long
455 ;; The non-PIC case is similar except that we use a direct
456 ;; jump instead of an la/jr pair. Since the target of this
457 ;; jump is an absolute 28-bit bit address (the other bits
458 ;; coming from the address of the delay slot) this form cannot
459 ;; cross a 256MB boundary. We could provide the option of
460 ;; using la/jr in this case too, but we do not do so at
463 ;; Note that this value does not account for the delay slot
464 ;; instruction, whose length is added separately. If the RTL
465 ;; pattern has no explicit delay slot, mips_adjust_insn_length
466 ;; will add the length of the implicit nop. The values for
467 ;; forward and backward branches will be different as well.
468 (eq_attr "type" "branch")
469 (cond [(and (le (minus (match_dup 1) (pc)) (const_int 131064))
470 (le (minus (pc) (match_dup 1)) (const_int 131068)))
472 (ne (symbol_ref "flag_pic") (const_int 0))
476 ;; "Ghost" instructions occupy no space.
477 (eq_attr "type" "ghost")
480 (eq_attr "got" "load")
482 (eq_attr "got" "xgot_high")
485 ;; In general, constant-pool loads are extended instructions.
486 (eq_attr "move_type" "loadpool")
489 ;; LUI_MOVFs are decomposed into two separate instructions.
490 (eq_attr "move_type" "lui_movf")
493 ;; SHIFT_SHIFTs are decomposed into two separate instructions.
494 ;; They are extended instructions on MIPS16 targets.
495 (eq_attr "move_type" "shift_shift")
496 (if_then_else (ne (symbol_ref "TARGET_MIPS16") (const_int 0))
500 ;; Check for doubleword moves that are decomposed into two
502 (and (eq_attr "move_type" "mtc,mfc,mthilo,mfhilo,move")
503 (eq_attr "dword_mode" "yes"))
506 ;; Doubleword CONST{,N} moves are split into two word
508 (and (eq_attr "move_type" "const,constN")
509 (eq_attr "dword_mode" "yes"))
510 (symbol_ref "mips_split_const_insns (operands[1]) * 4")
512 ;; Otherwise, constants, loads and stores are handled by external
514 (eq_attr "move_type" "const,constN")
515 (symbol_ref "mips_const_insns (operands[1]) * 4")
516 (eq_attr "move_type" "load,fpload")
517 (symbol_ref "mips_load_store_insns (operands[1], insn) * 4")
518 (eq_attr "move_type" "store,fpstore")
519 (symbol_ref "mips_load_store_insns (operands[0], insn) * 4")
521 ;; In the worst case, a call macro will take 8 instructions:
523 ;; lui $25,%call_hi(FOO)
525 ;; lw $25,%call_lo(FOO)($25)
531 (eq_attr "jal_macro" "yes")
534 ;; Various VR4120 errata require a nop to be inserted after a macc
535 ;; instruction. The assembler does this for us, so account for
536 ;; the worst-case length here.
537 (and (eq_attr "type" "imadd")
538 (ne (symbol_ref "TARGET_FIX_VR4120") (const_int 0)))
541 ;; VR4120 errata MD(4): if there are consecutive dmult instructions,
542 ;; the result of the second one is missed. The assembler should work
543 ;; around this by inserting a nop after the first dmult.
544 (and (eq_attr "type" "imul,imul3")
545 (and (eq_attr "mode" "DI")
546 (ne (symbol_ref "TARGET_FIX_VR4120") (const_int 0))))
549 (eq_attr "type" "idiv")
550 (symbol_ref "mips_idiv_insns () * 4")
553 ;; Attribute describing the processor. This attribute must match exactly
554 ;; with the processor_type enumeration in mips.h.
556 "r3000,4kc,4kp,5kc,5kf,20kc,24kc,24kf2_1,24kf1_1,74kc,74kf2_1,74kf1_1,74kf3_2,loongson_2e,loongson_2f,m4k,r3900,r6000,r4000,r4100,r4111,r4120,r4130,r4300,r4600,r4650,r5000,r5400,r5500,r7000,r8000,r9000,sb1,sb1a,sr71000,xlr"
557 (const (symbol_ref "mips_tune")))
559 ;; The type of hardware hazard associated with this instruction.
560 ;; DELAY means that the next instruction cannot read the result
561 ;; of this one. HILO means that the next two instructions cannot
562 ;; write to HI or LO.
563 (define_attr "hazard" "none,delay,hilo"
564 (cond [(and (eq_attr "type" "load,fpload,fpidxload")
565 (ne (symbol_ref "ISA_HAS_LOAD_DELAY") (const_int 0)))
566 (const_string "delay")
568 (and (eq_attr "type" "mfc,mtc")
569 (ne (symbol_ref "ISA_HAS_XFER_DELAY") (const_int 0)))
570 (const_string "delay")
572 (and (eq_attr "type" "fcmp")
573 (ne (symbol_ref "ISA_HAS_FCMP_DELAY") (const_int 0)))
574 (const_string "delay")
576 ;; The r4000 multiplication patterns include an mflo instruction.
577 (and (eq_attr "type" "imul")
578 (ne (symbol_ref "TARGET_FIX_R4000") (const_int 0)))
579 (const_string "hilo")
581 (and (eq_attr "type" "mfhilo")
582 (eq (symbol_ref "ISA_HAS_HILO_INTERLOCKS") (const_int 0)))
583 (const_string "hilo")]
584 (const_string "none")))
586 ;; Is it a single instruction?
587 (define_attr "single_insn" "no,yes"
588 (symbol_ref "get_attr_length (insn) == (TARGET_MIPS16 ? 2 : 4)"))
590 ;; Can the instruction be put into a delay slot?
591 (define_attr "can_delay" "no,yes"
592 (if_then_else (and (eq_attr "type" "!branch,call,jump")
593 (and (eq_attr "hazard" "none")
594 (eq_attr "single_insn" "yes")))
596 (const_string "no")))
598 ;; Attribute defining whether or not we can use the branch-likely instructions
599 (define_attr "branch_likely" "no,yes"
601 (if_then_else (ne (symbol_ref "GENERATE_BRANCHLIKELY") (const_int 0))
603 (const_string "no"))))
605 ;; True if an instruction might assign to hi or lo when reloaded.
606 ;; This is used by the TUNE_MACC_CHAINS code.
607 (define_attr "may_clobber_hilo" "no,yes"
608 (if_then_else (eq_attr "type" "imul,imul3,imadd,idiv,mthilo")
610 (const_string "no")))
612 ;; Describe a user's asm statement.
613 (define_asm_attributes
614 [(set_attr "type" "multi")
615 (set_attr "can_delay" "no")])
617 ;; This mode iterator allows 32-bit and 64-bit GPR patterns to be generated
618 ;; from the same template.
619 (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
621 ;; A copy of GPR that can be used when a pattern has two independent
623 (define_mode_iterator GPR2 [SI (DI "TARGET_64BIT")])
625 ;; This mode iterator allows :HILO to be used as the mode of the
626 ;; concatenated HI and LO registers.
627 (define_mode_iterator HILO [(DI "!TARGET_64BIT") (TI "TARGET_64BIT")])
629 ;; This mode iterator allows :P to be used for patterns that operate on
630 ;; pointer-sized quantities. Exactly one of the two alternatives will match.
631 (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
633 ;; This mode iterator allows :MOVECC to be used anywhere that a
634 ;; conditional-move-type condition is needed.
635 (define_mode_iterator MOVECC [SI (DI "TARGET_64BIT")
636 (CC "TARGET_HARD_FLOAT && !TARGET_LOONGSON_2EF")])
638 ;; 64-bit modes for which we provide move patterns.
639 (define_mode_iterator MOVE64
641 (V2SF "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT")
642 (V2SI "TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS")
643 (V4HI "TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS")
644 (V8QI "TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS")])
646 ;; 128-bit modes for which we provide move patterns on 64-bit targets.
647 (define_mode_iterator MOVE128 [TI TF])
649 ;; This mode iterator allows the QI and HI extension patterns to be
650 ;; defined from the same template.
651 (define_mode_iterator SHORT [QI HI])
653 ;; Likewise the 64-bit truncate-and-shift patterns.
654 (define_mode_iterator SUBDI [QI HI SI])
656 ;; This mode iterator allows :ANYF to be used wherever a scalar or vector
657 ;; floating-point mode is allowed.
658 (define_mode_iterator ANYF [(SF "TARGET_HARD_FLOAT")
659 (DF "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT")
660 (V2SF "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT")])
662 ;; Like ANYF, but only applies to scalar modes.
663 (define_mode_iterator SCALARF [(SF "TARGET_HARD_FLOAT")
664 (DF "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT")])
666 ;; A floating-point mode for which moves involving FPRs may need to be split.
667 (define_mode_iterator SPLITF
668 [(DF "!TARGET_64BIT && TARGET_DOUBLE_FLOAT")
669 (DI "!TARGET_64BIT && TARGET_DOUBLE_FLOAT")
670 (V2SF "!TARGET_64BIT && TARGET_PAIRED_SINGLE_FLOAT")
671 (V2SI "!TARGET_64BIT && TARGET_LOONGSON_VECTORS")
672 (V4HI "!TARGET_64BIT && TARGET_LOONGSON_VECTORS")
673 (V8QI "!TARGET_64BIT && TARGET_LOONGSON_VECTORS")
674 (TF "TARGET_64BIT && TARGET_FLOAT64")])
676 ;; In GPR templates, a string like "<d>subu" will expand to "subu" in the
677 ;; 32-bit version and "dsubu" in the 64-bit version.
678 (define_mode_attr d [(SI "") (DI "d")
679 (QQ "") (HQ "") (SQ "") (DQ "d")
680 (UQQ "") (UHQ "") (USQ "") (UDQ "d")
681 (HA "") (SA "") (DA "d")
682 (UHA "") (USA "") (UDA "d")])
684 ;; This attribute gives the length suffix for a sign- or zero-extension
686 (define_mode_attr size [(QI "b") (HI "h")])
688 ;; This attributes gives the mode mask of a SHORT.
689 (define_mode_attr mask [(QI "0x00ff") (HI "0xffff")])
691 ;; Mode attributes for GPR loads and stores.
692 (define_mode_attr load [(SI "lw") (DI "ld")])
693 (define_mode_attr store [(SI "sw") (DI "sd")])
695 ;; Similarly for MIPS IV indexed FPR loads and stores.
696 (define_mode_attr loadx [(SF "lwxc1") (DF "ldxc1") (V2SF "ldxc1")])
697 (define_mode_attr storex [(SF "swxc1") (DF "sdxc1") (V2SF "sdxc1")])
699 ;; The unextended ranges of the MIPS16 addiu and daddiu instructions
700 ;; are different. Some forms of unextended addiu have an 8-bit immediate
701 ;; field but the equivalent daddiu has only a 5-bit field.
702 (define_mode_attr si8_di5 [(SI "8") (DI "5")])
704 ;; This attribute gives the best constraint to use for registers of
706 (define_mode_attr reg [(SI "d") (DI "d") (CC "z")])
708 ;; This attribute gives the format suffix for floating-point operations.
709 (define_mode_attr fmt [(SF "s") (DF "d") (V2SF "ps")])
711 ;; This attribute gives the upper-case mode name for one unit of a
712 ;; floating-point mode.
713 (define_mode_attr UNITMODE [(SF "SF") (DF "DF") (V2SF "SF")])
715 ;; This attribute gives the integer mode that has the same size as a
717 (define_mode_attr IMODE [(QQ "QI") (HQ "HI") (SQ "SI") (DQ "DI")
718 (UQQ "QI") (UHQ "HI") (USQ "SI") (UDQ "DI")
719 (HA "HI") (SA "SI") (DA "DI")
720 (UHA "HI") (USA "SI") (UDA "DI")
721 (V4UQQ "SI") (V2UHQ "SI") (V2UHA "SI")
722 (V2HQ "SI") (V2HA "SI")])
724 ;; This attribute gives the integer mode that has half the size of
725 ;; the controlling mode.
726 (define_mode_attr HALFMODE [(DF "SI") (DI "SI") (V2SF "SI")
727 (V2SI "SI") (V4HI "SI") (V8QI "SI")
730 ;; This attribute works around the early SB-1 rev2 core "F2" erratum:
732 ;; In certain cases, div.s and div.ps may have a rounding error
733 ;; and/or wrong inexact flag.
735 ;; Therefore, we only allow div.s if not working around SB-1 rev2
736 ;; errata or if a slight loss of precision is OK.
737 (define_mode_attr divide_condition
738 [DF (SF "!TARGET_FIX_SB1 || flag_unsafe_math_optimizations")
739 (V2SF "TARGET_SB1 && (!TARGET_FIX_SB1 || flag_unsafe_math_optimizations)")])
741 ;; This attribute gives the conditions under which SQRT.fmt instructions
743 (define_mode_attr sqrt_condition
744 [(SF "!ISA_MIPS1") (DF "!ISA_MIPS1") (V2SF "TARGET_SB1")])
746 ;; This attribute gives the conditions under which RECIP.fmt and RSQRT.fmt
747 ;; instructions can be used. The MIPS32 and MIPS64 ISAs say that RECIP.D
748 ;; and RSQRT.D are unpredictable when doubles are stored in pairs of FPRs,
749 ;; so for safety's sake, we apply this restriction to all targets.
750 (define_mode_attr recip_condition
752 (DF "ISA_HAS_FP4 && TARGET_FLOAT64")
753 (V2SF "TARGET_SB1")])
755 ;; This code iterator allows all branch instructions to be generated from
756 ;; a single define_expand template.
757 (define_code_iterator any_cond [unordered ordered unlt unge uneq ltgt unle ungt
758 eq ne gt ge lt le gtu geu ltu leu])
760 ;; This code iterator allows signed and unsigned widening multiplications
761 ;; to use the same template.
762 (define_code_iterator any_extend [sign_extend zero_extend])
764 ;; This code iterator allows the three shift instructions to be generated
765 ;; from the same template.
766 (define_code_iterator any_shift [ashift ashiftrt lshiftrt])
768 ;; This code iterator allows unsigned and signed division to be generated
769 ;; from the same template.
770 (define_code_iterator any_div [div udiv])
772 ;; This code iterator allows all native floating-point comparisons to be
773 ;; generated from the same template.
774 (define_code_iterator fcond [unordered uneq unlt unle eq lt le])
776 ;; This code iterator is used for comparisons that can be implemented
777 ;; by swapping the operands.
778 (define_code_iterator swapped_fcond [ge gt unge ungt])
780 ;; These code iterators allow the signed and unsigned scc operations to use
781 ;; the same template.
782 (define_code_iterator any_gt [gt gtu])
783 (define_code_iterator any_ge [ge geu])
784 (define_code_iterator any_lt [lt ltu])
785 (define_code_iterator any_le [le leu])
787 ;; <u> expands to an empty string when doing a signed operation and
788 ;; "u" when doing an unsigned operation.
789 (define_code_attr u [(sign_extend "") (zero_extend "u")
796 ;; <su> is like <u>, but the signed form expands to "s" rather than "".
797 (define_code_attr su [(sign_extend "s") (zero_extend "u")])
799 ;; <optab> expands to the name of the optab for a particular code.
800 (define_code_attr optab [(ashift "ashl")
809 ;; <insn> expands to the name of the insn that implements a particular code.
810 (define_code_attr insn [(ashift "sll")
819 ;; <fcond> is the c.cond.fmt condition associated with a particular code.
820 (define_code_attr fcond [(unordered "un")
828 ;; Similar, but for swapped conditions.
829 (define_code_attr swapped_fcond [(ge "le")
834 ;; Atomic fetch bitwise operations.
835 (define_code_iterator fetchop_bit [ior xor and])
837 ;; <immediate_insn> expands to the name of the insn that implements
838 ;; a particular code to operate in immediate values.
839 (define_code_attr immediate_insn [(ior "ori") (xor "xori") (and "andi")])
841 ;; Atomic HI and QI operations
842 (define_code_iterator atomic_hiqi_op [plus minus ior xor and])
844 ;; .........................
846 ;; Branch, call and jump delay slots
848 ;; .........................
850 (define_delay (and (eq_attr "type" "branch")
851 (eq (symbol_ref "TARGET_MIPS16") (const_int 0)))
852 [(eq_attr "can_delay" "yes")
854 (and (eq_attr "branch_likely" "yes")
855 (eq_attr "can_delay" "yes"))])
857 (define_delay (eq_attr "type" "jump")
858 [(eq_attr "can_delay" "yes")
862 (define_delay (and (eq_attr "type" "call")
863 (eq_attr "jal_macro" "no"))
864 [(eq_attr "can_delay" "yes")
868 ;; Pipeline descriptions.
870 ;; generic.md provides a fallback for processors without a specific
871 ;; pipeline description. It is derived from the old define_function_unit
872 ;; version and uses the "alu" and "imuldiv" units declared below.
874 ;; Some of the processor-specific files are also derived from old
875 ;; define_function_unit descriptions and simply override the parts of
876 ;; generic.md that don't apply. The other processor-specific files
877 ;; are self-contained.
878 (define_automaton "alu,imuldiv")
880 (define_cpu_unit "alu" "alu")
881 (define_cpu_unit "imuldiv" "imuldiv")
883 ;; Ghost instructions produce no real code and introduce no hazards.
884 ;; They exist purely to express an effect on dataflow.
885 (define_insn_reservation "ghost" 0
886 (eq_attr "type" "ghost")
909 (include "loongson2ef.md")
910 (include "generic.md")
913 ;; ....................
917 ;; ....................
921 [(trap_if (const_int 1) (const_int 0))]
924 if (ISA_HAS_COND_TRAP)
926 else if (TARGET_MIPS16)
931 [(set_attr "type" "trap")])
933 (define_expand "conditional_trap"
934 [(trap_if (match_operator 0 "comparison_operator"
935 [(match_dup 2) (match_dup 3)])
936 (match_operand 1 "const_int_operand"))]
939 if (GET_MODE_CLASS (GET_MODE (cmp_operands[0])) == MODE_INT
940 && operands[1] == const0_rtx)
942 mips_expand_conditional_trap (GET_CODE (operands[0]));
948 (define_insn "*conditional_trap<mode>"
949 [(trap_if (match_operator:GPR 0 "trap_comparison_operator"
950 [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
951 (match_operand:GPR 2 "arith_operand" "dI")])
955 [(set_attr "type" "trap")])
958 ;; ....................
962 ;; ....................
965 (define_insn "add<mode>3"
966 [(set (match_operand:ANYF 0 "register_operand" "=f")
967 (plus:ANYF (match_operand:ANYF 1 "register_operand" "f")
968 (match_operand:ANYF 2 "register_operand" "f")))]
970 "add.<fmt>\t%0,%1,%2"
971 [(set_attr "type" "fadd")
972 (set_attr "mode" "<UNITMODE>")])
974 (define_expand "add<mode>3"
975 [(set (match_operand:GPR 0 "register_operand")
976 (plus:GPR (match_operand:GPR 1 "register_operand")
977 (match_operand:GPR 2 "arith_operand")))]
980 (define_insn "*add<mode>3"
981 [(set (match_operand:GPR 0 "register_operand" "=d,d")
982 (plus:GPR (match_operand:GPR 1 "register_operand" "d,d")
983 (match_operand:GPR 2 "arith_operand" "d,Q")))]
988 [(set_attr "type" "arith")
989 (set_attr "mode" "<MODE>")])
991 (define_insn "*add<mode>3_mips16"
992 [(set (match_operand:GPR 0 "register_operand" "=ks,d,d,d,d")
993 (plus:GPR (match_operand:GPR 1 "register_operand" "ks,ks,0,d,d")
994 (match_operand:GPR 2 "arith_operand" "Q,Q,Q,O,d")))]
1002 [(set_attr "type" "arith")
1003 (set_attr "mode" "<MODE>")
1004 (set_attr_alternative "length"
1005 [(if_then_else (match_operand 2 "m16_simm8_8")
1008 (if_then_else (match_operand 2 "m16_uimm<si8_di5>_4")
1011 (if_then_else (match_operand 2 "m16_simm<si8_di5>_1")
1014 (if_then_else (match_operand 2 "m16_simm4_1")
1019 ;; On the mips16, we can sometimes split an add of a constant which is
1020 ;; a 4 byte instruction into two adds which are both 2 byte
1021 ;; instructions. There are two cases: one where we are adding a
1022 ;; constant plus a register to another register, and one where we are
1023 ;; simply adding a constant to a register.
1026 [(set (match_operand:SI 0 "d_operand")
1027 (plus:SI (match_dup 0)
1028 (match_operand:SI 1 "const_int_operand")))]
1029 "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
1030 && ((INTVAL (operands[1]) > 0x7f
1031 && INTVAL (operands[1]) <= 0x7f + 0x7f)
1032 || (INTVAL (operands[1]) < - 0x80
1033 && INTVAL (operands[1]) >= - 0x80 - 0x80))"
1034 [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
1035 (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))]
1037 HOST_WIDE_INT val = INTVAL (operands[1]);
1041 operands[1] = GEN_INT (0x7f);
1042 operands[2] = GEN_INT (val - 0x7f);
1046 operands[1] = GEN_INT (- 0x80);
1047 operands[2] = GEN_INT (val + 0x80);
1052 [(set (match_operand:SI 0 "d_operand")
1053 (plus:SI (match_operand:SI 1 "d_operand")
1054 (match_operand:SI 2 "const_int_operand")))]
1055 "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
1056 && REGNO (operands[0]) != REGNO (operands[1])
1057 && ((INTVAL (operands[2]) > 0x7
1058 && INTVAL (operands[2]) <= 0x7 + 0x7f)
1059 || (INTVAL (operands[2]) < - 0x8
1060 && INTVAL (operands[2]) >= - 0x8 - 0x80))"
1061 [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 2)))
1062 (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 3)))]
1064 HOST_WIDE_INT val = INTVAL (operands[2]);
1068 operands[2] = GEN_INT (0x7);
1069 operands[3] = GEN_INT (val - 0x7);
1073 operands[2] = GEN_INT (- 0x8);
1074 operands[3] = GEN_INT (val + 0x8);
1079 [(set (match_operand:DI 0 "d_operand")
1080 (plus:DI (match_dup 0)
1081 (match_operand:DI 1 "const_int_operand")))]
1082 "TARGET_MIPS16 && TARGET_64BIT && reload_completed && !TARGET_DEBUG_D_MODE
1083 && ((INTVAL (operands[1]) > 0xf
1084 && INTVAL (operands[1]) <= 0xf + 0xf)
1085 || (INTVAL (operands[1]) < - 0x10
1086 && INTVAL (operands[1]) >= - 0x10 - 0x10))"
1087 [(set (match_dup 0) (plus:DI (match_dup 0) (match_dup 1)))
1088 (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 2)))]
1090 HOST_WIDE_INT val = INTVAL (operands[1]);
1094 operands[1] = GEN_INT (0xf);
1095 operands[2] = GEN_INT (val - 0xf);
1099 operands[1] = GEN_INT (- 0x10);
1100 operands[2] = GEN_INT (val + 0x10);
1105 [(set (match_operand:DI 0 "d_operand")
1106 (plus:DI (match_operand:DI 1 "d_operand")
1107 (match_operand:DI 2 "const_int_operand")))]
1108 "TARGET_MIPS16 && TARGET_64BIT && reload_completed && !TARGET_DEBUG_D_MODE
1109 && REGNO (operands[0]) != REGNO (operands[1])
1110 && ((INTVAL (operands[2]) > 0x7
1111 && INTVAL (operands[2]) <= 0x7 + 0xf)
1112 || (INTVAL (operands[2]) < - 0x8
1113 && INTVAL (operands[2]) >= - 0x8 - 0x10))"
1114 [(set (match_dup 0) (plus:DI (match_dup 1) (match_dup 2)))
1115 (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 3)))]
1117 HOST_WIDE_INT val = INTVAL (operands[2]);
1121 operands[2] = GEN_INT (0x7);
1122 operands[3] = GEN_INT (val - 0x7);
1126 operands[2] = GEN_INT (- 0x8);
1127 operands[3] = GEN_INT (val + 0x8);
1131 (define_insn "*addsi3_extended"
1132 [(set (match_operand:DI 0 "register_operand" "=d,d")
1134 (plus:SI (match_operand:SI 1 "register_operand" "d,d")
1135 (match_operand:SI 2 "arith_operand" "d,Q"))))]
1136 "TARGET_64BIT && !TARGET_MIPS16"
1140 [(set_attr "type" "arith")
1141 (set_attr "mode" "SI")])
1143 ;; Split this insn so that the addiu splitters can have a crack at it.
1144 ;; Use a conservative length estimate until the split.
1145 (define_insn_and_split "*addsi3_extended_mips16"
1146 [(set (match_operand:DI 0 "register_operand" "=d,d,d")
1148 (plus:SI (match_operand:SI 1 "register_operand" "0,d,d")
1149 (match_operand:SI 2 "arith_operand" "Q,O,d"))))]
1150 "TARGET_64BIT && TARGET_MIPS16"
1152 "&& reload_completed"
1153 [(set (match_dup 3) (plus:SI (match_dup 1) (match_dup 2)))]
1154 { operands[3] = gen_lowpart (SImode, operands[0]); }
1155 [(set_attr "type" "arith")
1156 (set_attr "mode" "SI")
1157 (set_attr "extended_mips16" "yes")])
1160 ;; ....................
1164 ;; ....................
1167 (define_insn "sub<mode>3"
1168 [(set (match_operand:ANYF 0 "register_operand" "=f")
1169 (minus:ANYF (match_operand:ANYF 1 "register_operand" "f")
1170 (match_operand:ANYF 2 "register_operand" "f")))]
1172 "sub.<fmt>\t%0,%1,%2"
1173 [(set_attr "type" "fadd")
1174 (set_attr "mode" "<UNITMODE>")])
1176 (define_insn "sub<mode>3"
1177 [(set (match_operand:GPR 0 "register_operand" "=d")
1178 (minus:GPR (match_operand:GPR 1 "register_operand" "d")
1179 (match_operand:GPR 2 "register_operand" "d")))]
1182 [(set_attr "type" "arith")
1183 (set_attr "mode" "<MODE>")])
1185 (define_insn "*subsi3_extended"
1186 [(set (match_operand:DI 0 "register_operand" "=d")
1188 (minus:SI (match_operand:SI 1 "register_operand" "d")
1189 (match_operand:SI 2 "register_operand" "d"))))]
1192 [(set_attr "type" "arith")
1193 (set_attr "mode" "DI")])
1196 ;; ....................
1200 ;; ....................
1203 (define_expand "mul<mode>3"
1204 [(set (match_operand:SCALARF 0 "register_operand")
1205 (mult:SCALARF (match_operand:SCALARF 1 "register_operand")
1206 (match_operand:SCALARF 2 "register_operand")))]
1210 (define_insn "*mul<mode>3"
1211 [(set (match_operand:SCALARF 0 "register_operand" "=f")
1212 (mult:SCALARF (match_operand:SCALARF 1 "register_operand" "f")
1213 (match_operand:SCALARF 2 "register_operand" "f")))]
1214 "!TARGET_4300_MUL_FIX"
1215 "mul.<fmt>\t%0,%1,%2"
1216 [(set_attr "type" "fmul")
1217 (set_attr "mode" "<MODE>")])
1219 ;; Early VR4300 silicon has a CPU bug where multiplies with certain
1220 ;; operands may corrupt immediately following multiplies. This is a
1221 ;; simple fix to insert NOPs.
1223 (define_insn "*mul<mode>3_r4300"
1224 [(set (match_operand:SCALARF 0 "register_operand" "=f")
1225 (mult:SCALARF (match_operand:SCALARF 1 "register_operand" "f")
1226 (match_operand:SCALARF 2 "register_operand" "f")))]
1227 "TARGET_4300_MUL_FIX"
1228 "mul.<fmt>\t%0,%1,%2\;nop"
1229 [(set_attr "type" "fmul")
1230 (set_attr "mode" "<MODE>")
1231 (set_attr "length" "8")])
1233 (define_insn "mulv2sf3"
1234 [(set (match_operand:V2SF 0 "register_operand" "=f")
1235 (mult:V2SF (match_operand:V2SF 1 "register_operand" "f")
1236 (match_operand:V2SF 2 "register_operand" "f")))]
1237 "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT"
1239 [(set_attr "type" "fmul")
1240 (set_attr "mode" "SF")])
1242 ;; The original R4000 has a cpu bug. If a double-word or a variable
1243 ;; shift executes while an integer multiplication is in progress, the
1244 ;; shift may give an incorrect result. Avoid this by keeping the mflo
1245 ;; with the mult on the R4000.
1247 ;; From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
1248 ;; (also valid for MIPS R4000MC processors):
1250 ;; "16. R4000PC, R4000SC: Please refer to errata 28 for an update to
1251 ;; this errata description.
1252 ;; The following code sequence causes the R4000 to incorrectly
1253 ;; execute the Double Shift Right Arithmetic 32 (dsra32)
1254 ;; instruction. If the dsra32 instruction is executed during an
1255 ;; integer multiply, the dsra32 will only shift by the amount in
1256 ;; specified in the instruction rather than the amount plus 32
1258 ;; instruction 1: mult rs,rt integer multiply
1259 ;; instruction 2-12: dsra32 rd,rt,rs doubleword shift
1260 ;; right arithmetic + 32
1261 ;; Workaround: A dsra32 instruction placed after an integer
1262 ;; multiply should not be one of the 11 instructions after the
1263 ;; multiply instruction."
1267 ;; "28. R4000PC, R4000SC: The text from errata 16 should be replaced by
1268 ;; the following description.
1269 ;; All extended shifts (shift by n+32) and variable shifts (32 and
1270 ;; 64-bit versions) may produce incorrect results under the
1271 ;; following conditions:
1272 ;; 1) An integer multiply is currently executing
1273 ;; 2) These types of shift instructions are executed immediately
1274 ;; following an integer divide instruction.
1276 ;; 1) Make sure no integer multiply is running wihen these
1277 ;; instruction are executed. If this cannot be predicted at
1278 ;; compile time, then insert a "mfhi" to R0 instruction
1279 ;; immediately after the integer multiply instruction. This
1280 ;; will cause the integer multiply to complete before the shift
1282 ;; 2) Separate integer divide and these two classes of shift
1283 ;; instructions by another instruction or a noop."
1285 ;; These processors have PRId values of 0x00004220 and 0x00004300,
1288 (define_expand "mulsi3"
1289 [(set (match_operand:SI 0 "register_operand")
1290 (mult:SI (match_operand:SI 1 "register_operand")
1291 (match_operand:SI 2 "register_operand")))]
1295 emit_insn (gen_mulsi3_mult3 (operands[0], operands[1], operands[2]));
1296 else if (TARGET_FIX_R4000)
1297 emit_insn (gen_mulsi3_r4000 (operands[0], operands[1], operands[2]));
1299 emit_insn (gen_mulsi3_internal (operands[0], operands[1], operands[2]));
1303 (define_expand "muldi3"
1304 [(set (match_operand:DI 0 "register_operand")
1305 (mult:DI (match_operand:DI 1 "register_operand")
1306 (match_operand:DI 2 "register_operand")))]
1309 if (TARGET_FIX_R4000)
1310 emit_insn (gen_muldi3_r4000 (operands[0], operands[1], operands[2]));
1312 emit_insn (gen_muldi3_internal (operands[0], operands[1], operands[2]));
1316 (define_insn "mulsi3_mult3"
1317 [(set (match_operand:SI 0 "register_operand" "=d,l")
1318 (mult:SI (match_operand:SI 1 "register_operand" "d,d")
1319 (match_operand:SI 2 "register_operand" "d,d")))
1320 (clobber (match_scratch:SI 3 "=l,X"))]
1323 if (which_alternative == 1)
1324 return "mult\t%1,%2";
1325 if (TARGET_MIPS3900)
1326 return "mult\t%0,%1,%2";
1327 return "mul\t%0,%1,%2";
1329 [(set_attr "type" "imul3,imul")
1330 (set_attr "mode" "SI")])
1332 ;; If a register gets allocated to LO, and we spill to memory, the reload
1333 ;; will include a move from LO to a GPR. Merge it into the multiplication
1334 ;; if it can set the GPR directly.
1337 ;; Operand 1: GPR (1st multiplication operand)
1338 ;; Operand 2: GPR (2nd multiplication operand)
1339 ;; Operand 3: GPR (destination)
1342 [(set (match_operand:SI 0 "lo_operand")
1343 (mult:SI (match_operand:SI 1 "d_operand")
1344 (match_operand:SI 2 "d_operand")))
1345 (clobber (scratch:SI))])
1346 (set (match_operand:SI 3 "d_operand")
1348 "ISA_HAS_MUL3 && peep2_reg_dead_p (2, operands[0])"
1351 (mult:SI (match_dup 1)
1353 (clobber (match_dup 0))])])
1355 (define_insn "mul<mode>3_internal"
1356 [(set (match_operand:GPR 0 "register_operand" "=l")
1357 (mult:GPR (match_operand:GPR 1 "register_operand" "d")
1358 (match_operand:GPR 2 "register_operand" "d")))]
1361 [(set_attr "type" "imul")
1362 (set_attr "mode" "<MODE>")])
1364 (define_insn "mul<mode>3_r4000"
1365 [(set (match_operand:GPR 0 "register_operand" "=d")
1366 (mult:GPR (match_operand:GPR 1 "register_operand" "d")
1367 (match_operand:GPR 2 "register_operand" "d")))
1368 (clobber (match_scratch:GPR 3 "=l"))]
1370 "<d>mult\t%1,%2\;mflo\t%0"
1371 [(set_attr "type" "imul")
1372 (set_attr "mode" "<MODE>")
1373 (set_attr "length" "8")])
1375 ;; On the VR4120 and VR4130, it is better to use "mtlo $0; macc" instead
1376 ;; of "mult; mflo". They have the same latency, but the first form gives
1377 ;; us an extra cycle to compute the operands.
1380 ;; Operand 1: GPR (1st multiplication operand)
1381 ;; Operand 2: GPR (2nd multiplication operand)
1382 ;; Operand 3: GPR (destination)
1384 [(set (match_operand:SI 0 "lo_operand")
1385 (mult:SI (match_operand:SI 1 "d_operand")
1386 (match_operand:SI 2 "d_operand")))
1387 (set (match_operand:SI 3 "d_operand")
1389 "ISA_HAS_MACC && !ISA_HAS_MUL3"
1394 (plus:SI (mult:SI (match_dup 1)
1398 (plus:SI (mult:SI (match_dup 1)
1402 ;; Multiply-accumulate patterns
1404 ;; For processors that can copy the output to a general register:
1406 ;; The all-d alternative is needed because the combiner will find this
1407 ;; pattern and then register alloc/reload will move registers around to
1408 ;; make them fit, and we don't want to trigger unnecessary loads to LO.
1410 ;; The last alternative should be made slightly less desirable, but adding
1411 ;; "?" to the constraint is too strong, and causes values to be loaded into
1412 ;; LO even when that's more costly. For now, using "*d" mostly does the
1414 (define_insn "*mul_acc_si"
1415 [(set (match_operand:SI 0 "register_operand" "=l,*d,*d")
1416 (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d,d")
1417 (match_operand:SI 2 "register_operand" "d,d,d"))
1418 (match_operand:SI 3 "register_operand" "0,l,*d")))
1419 (clobber (match_scratch:SI 4 "=X,3,l"))
1420 (clobber (match_scratch:SI 5 "=X,X,&d"))]
1422 || GENERATE_MADD_MSUB)
1425 static const char *const madd[] = { "madd\t%1,%2", "madd\t%0,%1,%2" };
1426 if (which_alternative == 2)
1428 if (GENERATE_MADD_MSUB && which_alternative != 0)
1430 return madd[which_alternative];
1432 [(set_attr "type" "imadd")
1433 (set_attr "mode" "SI")
1434 (set_attr "length" "4,4,8")])
1436 ;; Split *mul_acc_si if both the source and destination accumulator
1439 [(set (match_operand:SI 0 "d_operand")
1440 (plus:SI (mult:SI (match_operand:SI 1 "d_operand")
1441 (match_operand:SI 2 "d_operand"))
1442 (match_operand:SI 3 "d_operand")))
1443 (clobber (match_operand:SI 4 "lo_operand"))
1444 (clobber (match_operand:SI 5 "d_operand"))]
1446 [(parallel [(set (match_dup 5)
1447 (mult:SI (match_dup 1) (match_dup 2)))
1448 (clobber (match_dup 4))])
1449 (set (match_dup 0) (plus:SI (match_dup 5) (match_dup 3)))]
1452 ;; Split *mul_acc_si if the destination accumulator value is in a GPR
1453 ;; and the source accumulator value is in LO.
1455 [(set (match_operand:SI 0 "d_operand")
1456 (plus:SI (mult:SI (match_operand:SI 1 "d_operand")
1457 (match_operand:SI 2 "d_operand"))
1458 (match_operand:SI 3 "lo_operand")))
1459 (clobber (match_dup 3))
1460 (clobber (scratch:SI))]
1462 [(parallel [(set (match_dup 3)
1463 (plus:SI (mult:SI (match_dup 1) (match_dup 2))
1465 (clobber (scratch:SI))
1466 (clobber (scratch:SI))])
1467 (set (match_dup 0) (match_dup 3))])
1469 (define_insn "*macc"
1470 [(set (match_operand:SI 0 "register_operand" "=l,d")
1471 (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d")
1472 (match_operand:SI 2 "register_operand" "d,d"))
1473 (match_operand:SI 3 "register_operand" "0,l")))
1474 (clobber (match_scratch:SI 4 "=X,3"))]
1477 if (which_alternative == 1)
1478 return "macc\t%0,%1,%2";
1479 else if (TARGET_MIPS5500)
1480 return "madd\t%1,%2";
1482 /* The VR4130 assumes that there is a two-cycle latency between a macc
1483 that "writes" to $0 and an instruction that reads from it. We avoid
1484 this by assigning to $1 instead. */
1485 return "%[macc\t%@,%1,%2%]";
1487 [(set_attr "type" "imadd")
1488 (set_attr "mode" "SI")])
1490 (define_insn "*msac"
1491 [(set (match_operand:SI 0 "register_operand" "=l,d")
1492 (minus:SI (match_operand:SI 1 "register_operand" "0,l")
1493 (mult:SI (match_operand:SI 2 "register_operand" "d,d")
1494 (match_operand:SI 3 "register_operand" "d,d"))))
1495 (clobber (match_scratch:SI 4 "=X,1"))]
1498 if (which_alternative == 1)
1499 return "msac\t%0,%2,%3";
1500 else if (TARGET_MIPS5500)
1501 return "msub\t%2,%3";
1503 return "msac\t$0,%2,%3";
1505 [(set_attr "type" "imadd")
1506 (set_attr "mode" "SI")])
1508 ;; An msac-like instruction implemented using negation and a macc.
1509 (define_insn_and_split "*msac_using_macc"
1510 [(set (match_operand:SI 0 "register_operand" "=l,d")
1511 (minus:SI (match_operand:SI 1 "register_operand" "0,l")
1512 (mult:SI (match_operand:SI 2 "register_operand" "d,d")
1513 (match_operand:SI 3 "register_operand" "d,d"))))
1514 (clobber (match_scratch:SI 4 "=X,1"))
1515 (clobber (match_scratch:SI 5 "=d,d"))]
1516 "ISA_HAS_MACC && !ISA_HAS_MSAC"
1518 "&& reload_completed"
1520 (neg:SI (match_dup 3)))
1523 (plus:SI (mult:SI (match_dup 2)
1526 (clobber (match_dup 4))])]
1528 [(set_attr "type" "imadd")
1529 (set_attr "length" "8")])
1531 ;; Patterns generated by the define_peephole2 below.
1533 (define_insn "*macc2"
1534 [(set (match_operand:SI 0 "register_operand" "=l")
1535 (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d")
1536 (match_operand:SI 2 "register_operand" "d"))
1538 (set (match_operand:SI 3 "register_operand" "=d")
1539 (plus:SI (mult:SI (match_dup 1)
1542 "ISA_HAS_MACC && reload_completed"
1544 [(set_attr "type" "imadd")
1545 (set_attr "mode" "SI")])
1547 (define_insn "*msac2"
1548 [(set (match_operand:SI 0 "register_operand" "=l")
1549 (minus:SI (match_dup 0)
1550 (mult:SI (match_operand:SI 1 "register_operand" "d")
1551 (match_operand:SI 2 "register_operand" "d"))))
1552 (set (match_operand:SI 3 "register_operand" "=d")
1553 (minus:SI (match_dup 0)
1554 (mult:SI (match_dup 1)
1556 "ISA_HAS_MSAC && reload_completed"
1558 [(set_attr "type" "imadd")
1559 (set_attr "mode" "SI")])
1561 ;; Convert macc $0,<r1>,<r2> & mflo <r3> into macc <r3>,<r1>,<r2>
1565 ;; Operand 1: macc/msac
1566 ;; Operand 2: GPR (destination)
1569 [(set (match_operand:SI 0 "lo_operand")
1570 (match_operand:SI 1 "macc_msac_operand"))
1571 (clobber (scratch:SI))])
1572 (set (match_operand:SI 2 "d_operand")
1575 [(parallel [(set (match_dup 0)
1580 ;; When we have a three-address multiplication instruction, it should
1581 ;; be faster to do a separate multiply and add, rather than moving
1582 ;; something into LO in order to use a macc instruction.
1584 ;; This peephole needs a scratch register to cater for the case when one
1585 ;; of the multiplication operands is the same as the destination.
1587 ;; Operand 0: GPR (scratch)
1589 ;; Operand 2: GPR (addend)
1590 ;; Operand 3: GPR (destination)
1591 ;; Operand 4: macc/msac
1592 ;; Operand 5: new multiplication
1593 ;; Operand 6: new addition/subtraction
1595 [(match_scratch:SI 0 "d")
1596 (set (match_operand:SI 1 "lo_operand")
1597 (match_operand:SI 2 "d_operand"))
1600 [(set (match_operand:SI 3 "d_operand")
1601 (match_operand:SI 4 "macc_msac_operand"))
1602 (clobber (match_dup 1))])]
1603 "ISA_HAS_MUL3 && peep2_reg_dead_p (2, operands[1])"
1604 [(parallel [(set (match_dup 0)
1606 (clobber (match_dup 1))])
1610 operands[5] = XEXP (operands[4], GET_CODE (operands[4]) == PLUS ? 0 : 1);
1611 operands[6] = gen_rtx_fmt_ee (GET_CODE (operands[4]), SImode,
1612 operands[2], operands[0]);
1615 ;; Same as above, except LO is the initial target of the macc.
1617 ;; Operand 0: GPR (scratch)
1619 ;; Operand 2: GPR (addend)
1620 ;; Operand 3: macc/msac
1621 ;; Operand 4: GPR (destination)
1622 ;; Operand 5: new multiplication
1623 ;; Operand 6: new addition/subtraction
1625 [(match_scratch:SI 0 "d")
1626 (set (match_operand:SI 1 "lo_operand")
1627 (match_operand:SI 2 "d_operand"))
1631 (match_operand:SI 3 "macc_msac_operand"))
1632 (clobber (scratch:SI))])
1634 (set (match_operand:SI 4 "d_operand")
1636 "ISA_HAS_MUL3 && peep2_reg_dead_p (3, operands[1])"
1637 [(parallel [(set (match_dup 0)
1639 (clobber (match_dup 1))])
1643 operands[5] = XEXP (operands[3], GET_CODE (operands[3]) == PLUS ? 0 : 1);
1644 operands[6] = gen_rtx_fmt_ee (GET_CODE (operands[3]), SImode,
1645 operands[2], operands[0]);
1648 (define_insn "*mul_sub_si"
1649 [(set (match_operand:SI 0 "register_operand" "=l,*d,*d")
1650 (minus:SI (match_operand:SI 1 "register_operand" "0,l,*d")
1651 (mult:SI (match_operand:SI 2 "register_operand" "d,d,d")
1652 (match_operand:SI 3 "register_operand" "d,d,d"))))
1653 (clobber (match_scratch:SI 4 "=X,1,l"))
1654 (clobber (match_scratch:SI 5 "=X,X,&d"))]
1655 "GENERATE_MADD_MSUB"
1660 [(set_attr "type" "imadd")
1661 (set_attr "mode" "SI")
1662 (set_attr "length" "4,8,8")])
1664 ;; Split *mul_sub_si if both the source and destination accumulator
1667 [(set (match_operand:SI 0 "d_operand")
1668 (minus:SI (match_operand:SI 1 "d_operand")
1669 (mult:SI (match_operand:SI 2 "d_operand")
1670 (match_operand:SI 3 "d_operand"))))
1671 (clobber (match_operand:SI 4 "lo_operand"))
1672 (clobber (match_operand:SI 5 "d_operand"))]
1674 [(parallel [(set (match_dup 5)
1675 (mult:SI (match_dup 2) (match_dup 3)))
1676 (clobber (match_dup 4))])
1677 (set (match_dup 0) (minus:SI (match_dup 1) (match_dup 5)))]
1680 ;; Split *mul_acc_si if the destination accumulator value is in a GPR
1681 ;; and the source accumulator value is in LO.
1683 [(set (match_operand:SI 0 "d_operand")
1684 (minus:SI (match_operand:SI 1 "lo_operand")
1685 (mult:SI (match_operand:SI 2 "d_operand")
1686 (match_operand:SI 3 "d_operand"))))
1687 (clobber (match_dup 1))
1688 (clobber (scratch:SI))]
1690 [(parallel [(set (match_dup 1)
1691 (minus:SI (match_dup 1)
1692 (mult:SI (match_dup 2) (match_dup 3))))
1693 (clobber (scratch:SI))
1694 (clobber (scratch:SI))])
1695 (set (match_dup 0) (match_dup 1))]
1698 (define_insn "*muls"
1699 [(set (match_operand:SI 0 "register_operand" "=l,d")
1700 (neg:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d")
1701 (match_operand:SI 2 "register_operand" "d,d"))))
1702 (clobber (match_scratch:SI 3 "=X,l"))]
1707 [(set_attr "type" "imul,imul3")
1708 (set_attr "mode" "SI")])
1710 (define_expand "<u>mulsidi3"
1711 [(set (match_operand:DI 0 "register_operand")
1712 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
1713 (any_extend:DI (match_operand:SI 2 "register_operand"))))]
1714 "!TARGET_64BIT || !TARGET_FIX_R4000"
1717 emit_insn (gen_<u>mulsidi3_64bit (operands[0], operands[1], operands[2]));
1718 else if (TARGET_FIX_R4000)
1719 emit_insn (gen_<u>mulsidi3_32bit_r4000 (operands[0], operands[1],
1722 emit_insn (gen_<u>mulsidi3_32bit (operands[0], operands[1], operands[2]));
1726 (define_insn "<u>mulsidi3_32bit"
1727 [(set (match_operand:DI 0 "register_operand" "=x")
1728 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1729 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))]
1730 "!TARGET_64BIT && !TARGET_FIX_R4000 && !ISA_HAS_DSPR2"
1732 [(set_attr "type" "imul")
1733 (set_attr "mode" "SI")])
1735 (define_insn "<u>mulsidi3_32bit_r4000"
1736 [(set (match_operand:DI 0 "register_operand" "=d")
1737 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1738 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
1739 (clobber (match_scratch:DI 3 "=x"))]
1740 "!TARGET_64BIT && TARGET_FIX_R4000"
1741 "mult<u>\t%1,%2\;mflo\t%L0\;mfhi\t%M0"
1742 [(set_attr "type" "imul")
1743 (set_attr "mode" "SI")
1744 (set_attr "length" "12")])
1746 (define_insn_and_split "<u>mulsidi3_64bit"
1747 [(set (match_operand:DI 0 "register_operand" "=d")
1748 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1749 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
1750 (clobber (match_scratch:TI 3 "=x"))
1751 (clobber (match_scratch:DI 4 "=d"))]
1752 "TARGET_64BIT && !TARGET_FIX_R4000"
1754 "&& reload_completed"
1756 (unspec:TI [(mult:DI (any_extend:DI (match_dup 1))
1757 (any_extend:DI (match_dup 2)))]
1760 ;; OP4 <- LO, OP0 <- HI
1761 (set (match_dup 4) (match_dup 5))
1762 (set (match_dup 0) (unspec:DI [(match_dup 3)] UNSPEC_MFHI))
1766 (ashift:DI (match_dup 4)
1769 (lshiftrt:DI (match_dup 4)
1772 ;; Shift OP0 into place.
1774 (ashift:DI (match_dup 0)
1777 ;; OR the two halves together
1779 (ior:DI (match_dup 0)
1781 { operands[5] = gen_rtx_REG (DImode, LO_REGNUM); }
1782 [(set_attr "type" "imul")
1783 (set_attr "mode" "SI")
1784 (set_attr "length" "24")])
1786 (define_insn "<u>mulsidi3_64bit_hilo"
1787 [(set (match_operand:TI 0 "register_operand" "=x")
1790 (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1791 (any_extend:DI (match_operand:SI 2 "register_operand" "d")))]
1793 "TARGET_64BIT && !TARGET_FIX_R4000"
1795 [(set_attr "type" "imul")
1796 (set_attr "mode" "SI")])
1798 ;; Widening multiply with negation.
1799 (define_insn "*muls<u>_di"
1800 [(set (match_operand:DI 0 "register_operand" "=x")
1803 (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1804 (any_extend:DI (match_operand:SI 2 "register_operand" "d")))))]
1805 "!TARGET_64BIT && ISA_HAS_MULS"
1807 [(set_attr "type" "imul")
1808 (set_attr "mode" "SI")])
1810 (define_insn "<u>msubsidi4"
1811 [(set (match_operand:DI 0 "register_operand" "=ka")
1813 (match_operand:DI 3 "register_operand" "0")
1815 (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1816 (any_extend:DI (match_operand:SI 2 "register_operand" "d")))))]
1817 "!TARGET_64BIT && (ISA_HAS_MSAC || GENERATE_MADD_MSUB || ISA_HAS_DSPR2)"
1820 return "msub<u>\t%q0,%1,%2";
1821 else if (TARGET_MIPS5500 || GENERATE_MADD_MSUB)
1822 return "msub<u>\t%1,%2";
1824 return "msac<u>\t$0,%1,%2";
1826 [(set_attr "type" "imadd")
1827 (set_attr "mode" "SI")])
1829 ;; _highpart patterns
1831 (define_expand "<su>mulsi3_highpart"
1832 [(set (match_operand:SI 0 "register_operand")
1835 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
1836 (any_extend:DI (match_operand:SI 2 "register_operand")))
1841 emit_insn (gen_<su>mulsi3_highpart_mulhi_internal (operands[0],
1845 emit_insn (gen_<su>mulsi3_highpart_internal (operands[0], operands[1],
1850 (define_insn_and_split "<su>mulsi3_highpart_internal"
1851 [(set (match_operand:SI 0 "register_operand" "=d")
1854 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1855 (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
1857 (clobber (match_scratch:SI 3 "=l"))]
1859 { return TARGET_FIX_R4000 ? "mult<u>\t%1,%2\n\tmfhi\t%0" : "#"; }
1860 "&& reload_completed && !TARGET_FIX_R4000"
1867 hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
1868 emit_insn (gen_<u>mulsidi3_64bit_hilo (hilo, operands[1], operands[2]));
1869 emit_insn (gen_mfhisi_ti (operands[0], hilo));
1873 hilo = gen_rtx_REG (DImode, MD_REG_FIRST);
1874 emit_insn (gen_<u>mulsidi3_32bit (hilo, operands[1], operands[2]));
1875 emit_insn (gen_mfhisi_di (operands[0], hilo));
1879 [(set_attr "type" "imul")
1880 (set_attr "mode" "SI")
1881 (set_attr "length" "8")])
1883 (define_insn "<su>mulsi3_highpart_mulhi_internal"
1884 [(set (match_operand:SI 0 "register_operand" "=d")
1888 (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1889 (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
1891 (clobber (match_scratch:SI 3 "=l"))]
1893 "mulhi<u>\t%0,%1,%2"
1894 [(set_attr "type" "imul3")
1895 (set_attr "mode" "SI")])
1897 (define_insn "*<su>mulsi3_highpart_neg_mulhi_internal"
1898 [(set (match_operand:SI 0 "register_operand" "=d")
1903 (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1904 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
1906 (clobber (match_scratch:SI 3 "=l"))]
1908 "mulshi<u>\t%0,%1,%2"
1909 [(set_attr "type" "imul3")
1910 (set_attr "mode" "SI")])
1912 ;; Disable unsigned multiplication for -mfix-vr4120. This is for VR4120
1913 ;; errata MD(0), which says that dmultu does not always produce the
1915 (define_insn_and_split "<su>muldi3_highpart"
1916 [(set (match_operand:DI 0 "register_operand" "=d")
1919 (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
1920 (any_extend:TI (match_operand:DI 2 "register_operand" "d")))
1922 (clobber (match_scratch:DI 3 "=l"))]
1923 "TARGET_64BIT && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
1924 { return TARGET_FIX_R4000 ? "dmult<u>\t%1,%2\n\tmfhi\t%0" : "#"; }
1925 "&& reload_completed && !TARGET_FIX_R4000"
1930 hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
1931 emit_insn (gen_<u>mulditi3_internal (hilo, operands[1], operands[2]));
1932 emit_insn (gen_mfhidi_ti (operands[0], hilo));
1935 [(set_attr "type" "imul")
1936 (set_attr "mode" "DI")
1937 (set_attr "length" "8")])
1939 (define_expand "<u>mulditi3"
1940 [(set (match_operand:TI 0 "register_operand")
1941 (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand"))
1942 (any_extend:TI (match_operand:DI 2 "register_operand"))))]
1943 "TARGET_64BIT && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
1945 if (TARGET_FIX_R4000)
1946 emit_insn (gen_<u>mulditi3_r4000 (operands[0], operands[1], operands[2]));
1948 emit_insn (gen_<u>mulditi3_internal (operands[0], operands[1],
1953 (define_insn "<u>mulditi3_internal"
1954 [(set (match_operand:TI 0 "register_operand" "=x")
1955 (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
1956 (any_extend:TI (match_operand:DI 2 "register_operand" "d"))))]
1958 && !TARGET_FIX_R4000
1959 && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
1961 [(set_attr "type" "imul")
1962 (set_attr "mode" "DI")])
1964 (define_insn "<u>mulditi3_r4000"
1965 [(set (match_operand:TI 0 "register_operand" "=d")
1966 (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
1967 (any_extend:TI (match_operand:DI 2 "register_operand" "d"))))
1968 (clobber (match_scratch:TI 3 "=x"))]
1971 && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
1972 "dmult<u>\t%1,%2\;mflo\t%L0\;mfhi\t%M0"
1973 [(set_attr "type" "imul")
1974 (set_attr "mode" "DI")
1975 (set_attr "length" "12")])
1977 ;; The R4650 supports a 32-bit multiply/ 64-bit accumulate
1978 ;; instruction. The HI/LO registers are used as a 64-bit accumulator.
1980 (define_insn "madsi"
1981 [(set (match_operand:SI 0 "register_operand" "+l")
1982 (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d")
1983 (match_operand:SI 2 "register_operand" "d"))
1987 [(set_attr "type" "imadd")
1988 (set_attr "mode" "SI")])
1990 (define_insn "<u>maddsidi4"
1991 [(set (match_operand:DI 0 "register_operand" "=ka")
1993 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1994 (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
1995 (match_operand:DI 3 "register_operand" "0")))]
1996 "(TARGET_MAD || ISA_HAS_MACC || GENERATE_MADD_MSUB || ISA_HAS_DSPR2)
2000 return "mad<u>\t%1,%2";
2001 else if (ISA_HAS_DSPR2)
2002 return "madd<u>\t%q0,%1,%2";
2003 else if (GENERATE_MADD_MSUB || TARGET_MIPS5500)
2004 return "madd<u>\t%1,%2";
2006 /* See comment in *macc. */
2007 return "%[macc<u>\t%@,%1,%2%]";
2009 [(set_attr "type" "imadd")
2010 (set_attr "mode" "SI")])
2012 ;; Floating point multiply accumulate instructions.
2014 (define_insn "*madd4<mode>"
2015 [(set (match_operand:ANYF 0 "register_operand" "=f")
2016 (plus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2017 (match_operand:ANYF 2 "register_operand" "f"))
2018 (match_operand:ANYF 3 "register_operand" "f")))]
2019 "ISA_HAS_FP_MADD4_MSUB4 && TARGET_FUSED_MADD"
2020 "madd.<fmt>\t%0,%3,%1,%2"
2021 [(set_attr "type" "fmadd")
2022 (set_attr "mode" "<UNITMODE>")])
2024 (define_insn "*madd3<mode>"
2025 [(set (match_operand:ANYF 0 "register_operand" "=f")
2026 (plus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2027 (match_operand:ANYF 2 "register_operand" "f"))
2028 (match_operand:ANYF 3 "register_operand" "0")))]
2029 "ISA_HAS_FP_MADD3_MSUB3 && TARGET_FUSED_MADD"
2030 "madd.<fmt>\t%0,%1,%2"
2031 [(set_attr "type" "fmadd")
2032 (set_attr "mode" "<UNITMODE>")])
2034 (define_insn "*msub4<mode>"
2035 [(set (match_operand:ANYF 0 "register_operand" "=f")
2036 (minus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2037 (match_operand:ANYF 2 "register_operand" "f"))
2038 (match_operand:ANYF 3 "register_operand" "f")))]
2039 "ISA_HAS_FP_MADD4_MSUB4 && TARGET_FUSED_MADD"
2040 "msub.<fmt>\t%0,%3,%1,%2"
2041 [(set_attr "type" "fmadd")
2042 (set_attr "mode" "<UNITMODE>")])
2044 (define_insn "*msub3<mode>"
2045 [(set (match_operand:ANYF 0 "register_operand" "=f")
2046 (minus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2047 (match_operand:ANYF 2 "register_operand" "f"))
2048 (match_operand:ANYF 3 "register_operand" "0")))]
2049 "ISA_HAS_FP_MADD3_MSUB3 && TARGET_FUSED_MADD"
2050 "msub.<fmt>\t%0,%1,%2"
2051 [(set_attr "type" "fmadd")
2052 (set_attr "mode" "<UNITMODE>")])
2054 (define_insn "*nmadd4<mode>"
2055 [(set (match_operand:ANYF 0 "register_operand" "=f")
2056 (neg:ANYF (plus:ANYF
2057 (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2058 (match_operand:ANYF 2 "register_operand" "f"))
2059 (match_operand:ANYF 3 "register_operand" "f"))))]
2060 "ISA_HAS_NMADD4_NMSUB4 (<MODE>mode)
2061 && TARGET_FUSED_MADD
2062 && HONOR_SIGNED_ZEROS (<MODE>mode)
2063 && !HONOR_NANS (<MODE>mode)"
2064 "nmadd.<fmt>\t%0,%3,%1,%2"
2065 [(set_attr "type" "fmadd")
2066 (set_attr "mode" "<UNITMODE>")])
2068 (define_insn "*nmadd3<mode>"
2069 [(set (match_operand:ANYF 0 "register_operand" "=f")
2070 (neg:ANYF (plus:ANYF
2071 (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2072 (match_operand:ANYF 2 "register_operand" "f"))
2073 (match_operand:ANYF 3 "register_operand" "0"))))]
2074 "ISA_HAS_NMADD3_NMSUB3 (<MODE>mode)
2075 && TARGET_FUSED_MADD
2076 && HONOR_SIGNED_ZEROS (<MODE>mode)
2077 && !HONOR_NANS (<MODE>mode)"
2078 "nmadd.<fmt>\t%0,%1,%2"
2079 [(set_attr "type" "fmadd")
2080 (set_attr "mode" "<UNITMODE>")])
2082 (define_insn "*nmadd4<mode>_fastmath"
2083 [(set (match_operand:ANYF 0 "register_operand" "=f")
2085 (mult:ANYF (neg:ANYF (match_operand:ANYF 1 "register_operand" "f"))
2086 (match_operand:ANYF 2 "register_operand" "f"))
2087 (match_operand:ANYF 3 "register_operand" "f")))]
2088 "ISA_HAS_NMADD4_NMSUB4 (<MODE>mode)
2089 && TARGET_FUSED_MADD
2090 && !HONOR_SIGNED_ZEROS (<MODE>mode)
2091 && !HONOR_NANS (<MODE>mode)"
2092 "nmadd.<fmt>\t%0,%3,%1,%2"
2093 [(set_attr "type" "fmadd")
2094 (set_attr "mode" "<UNITMODE>")])
2096 (define_insn "*nmadd3<mode>_fastmath"
2097 [(set (match_operand:ANYF 0 "register_operand" "=f")
2099 (mult:ANYF (neg:ANYF (match_operand:ANYF 1 "register_operand" "f"))
2100 (match_operand:ANYF 2 "register_operand" "f"))
2101 (match_operand:ANYF 3 "register_operand" "0")))]
2102 "ISA_HAS_NMADD3_NMSUB3 (<MODE>mode)
2103 && TARGET_FUSED_MADD
2104 && !HONOR_SIGNED_ZEROS (<MODE>mode)
2105 && !HONOR_NANS (<MODE>mode)"
2106 "nmadd.<fmt>\t%0,%1,%2"
2107 [(set_attr "type" "fmadd")
2108 (set_attr "mode" "<UNITMODE>")])
2110 (define_insn "*nmsub4<mode>"
2111 [(set (match_operand:ANYF 0 "register_operand" "=f")
2112 (neg:ANYF (minus:ANYF
2113 (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2114 (match_operand:ANYF 3 "register_operand" "f"))
2115 (match_operand:ANYF 1 "register_operand" "f"))))]
2116 "ISA_HAS_NMADD4_NMSUB4 (<MODE>mode)
2117 && TARGET_FUSED_MADD
2118 && HONOR_SIGNED_ZEROS (<MODE>mode)
2119 && !HONOR_NANS (<MODE>mode)"
2120 "nmsub.<fmt>\t%0,%1,%2,%3"
2121 [(set_attr "type" "fmadd")
2122 (set_attr "mode" "<UNITMODE>")])
2124 (define_insn "*nmsub3<mode>"
2125 [(set (match_operand:ANYF 0 "register_operand" "=f")
2126 (neg:ANYF (minus:ANYF
2127 (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2128 (match_operand:ANYF 3 "register_operand" "f"))
2129 (match_operand:ANYF 1 "register_operand" "0"))))]
2130 "ISA_HAS_NMADD3_NMSUB3 (<MODE>mode)
2131 && TARGET_FUSED_MADD
2132 && HONOR_SIGNED_ZEROS (<MODE>mode)
2133 && !HONOR_NANS (<MODE>mode)"
2134 "nmsub.<fmt>\t%0,%1,%2"
2135 [(set_attr "type" "fmadd")
2136 (set_attr "mode" "<UNITMODE>")])
2138 (define_insn "*nmsub4<mode>_fastmath"
2139 [(set (match_operand:ANYF 0 "register_operand" "=f")
2141 (match_operand:ANYF 1 "register_operand" "f")
2142 (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2143 (match_operand:ANYF 3 "register_operand" "f"))))]
2144 "ISA_HAS_NMADD4_NMSUB4 (<MODE>mode)
2145 && TARGET_FUSED_MADD
2146 && !HONOR_SIGNED_ZEROS (<MODE>mode)
2147 && !HONOR_NANS (<MODE>mode)"
2148 "nmsub.<fmt>\t%0,%1,%2,%3"
2149 [(set_attr "type" "fmadd")
2150 (set_attr "mode" "<UNITMODE>")])
2152 (define_insn "*nmsub3<mode>_fastmath"
2153 [(set (match_operand:ANYF 0 "register_operand" "=f")
2155 (match_operand:ANYF 1 "register_operand" "f")
2156 (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2157 (match_operand:ANYF 3 "register_operand" "0"))))]
2158 "ISA_HAS_NMADD3_NMSUB3 (<MODE>mode)
2159 && TARGET_FUSED_MADD
2160 && !HONOR_SIGNED_ZEROS (<MODE>mode)
2161 && !HONOR_NANS (<MODE>mode)"
2162 "nmsub.<fmt>\t%0,%1,%2"
2163 [(set_attr "type" "fmadd")
2164 (set_attr "mode" "<UNITMODE>")])
2167 ;; ....................
2169 ;; DIVISION and REMAINDER
2171 ;; ....................
2174 (define_expand "div<mode>3"
2175 [(set (match_operand:ANYF 0 "register_operand")
2176 (div:ANYF (match_operand:ANYF 1 "reg_or_1_operand")
2177 (match_operand:ANYF 2 "register_operand")))]
2178 "<divide_condition>"
2180 if (const_1_operand (operands[1], <MODE>mode))
2181 if (!(<recip_condition> && flag_unsafe_math_optimizations))
2182 operands[1] = force_reg (<MODE>mode, operands[1]);
2185 ;; These patterns work around the early SB-1 rev2 core "F1" erratum:
2187 ;; If an mfc1 or dmfc1 happens to access the floating point register
2188 ;; file at the same time a long latency operation (div, sqrt, recip,
2189 ;; sqrt) iterates an intermediate result back through the floating
2190 ;; point register file bypass, then instead returning the correct
2191 ;; register value the mfc1 or dmfc1 operation returns the intermediate
2192 ;; result of the long latency operation.
2194 ;; The workaround is to insert an unconditional 'mov' from/to the
2195 ;; long latency op destination register.
2197 (define_insn "*div<mode>3"
2198 [(set (match_operand:ANYF 0 "register_operand" "=f")
2199 (div:ANYF (match_operand:ANYF 1 "register_operand" "f")
2200 (match_operand:ANYF 2 "register_operand" "f")))]
2201 "<divide_condition>"
2204 return "div.<fmt>\t%0,%1,%2\;mov.<fmt>\t%0,%0";
2206 return "div.<fmt>\t%0,%1,%2";
2208 [(set_attr "type" "fdiv")
2209 (set_attr "mode" "<UNITMODE>")
2210 (set (attr "length")
2211 (if_then_else (ne (symbol_ref "TARGET_FIX_SB1") (const_int 0))
2215 (define_insn "*recip<mode>3"
2216 [(set (match_operand:ANYF 0 "register_operand" "=f")
2217 (div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
2218 (match_operand:ANYF 2 "register_operand" "f")))]
2219 "<recip_condition> && flag_unsafe_math_optimizations"
2222 return "recip.<fmt>\t%0,%2\;mov.<fmt>\t%0,%0";
2224 return "recip.<fmt>\t%0,%2";
2226 [(set_attr "type" "frdiv")
2227 (set_attr "mode" "<UNITMODE>")
2228 (set (attr "length")
2229 (if_then_else (ne (symbol_ref "TARGET_FIX_SB1") (const_int 0))
2233 ;; VR4120 errata MD(A1): signed division instructions do not work correctly
2234 ;; with negative operands. We use special libgcc functions instead.
2235 (define_insn_and_split "divmod<mode>4"
2236 [(set (match_operand:GPR 0 "register_operand" "=l")
2237 (div:GPR (match_operand:GPR 1 "register_operand" "d")
2238 (match_operand:GPR 2 "register_operand" "d")))
2239 (set (match_operand:GPR 3 "register_operand" "=d")
2240 (mod:GPR (match_dup 1)
2242 "!TARGET_FIX_VR4120"
2244 "&& reload_completed"
2251 hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2252 emit_insn (gen_divmod<mode>4_hilo_ti (hilo, operands[1], operands[2]));
2253 emit_insn (gen_mfhi<mode>_ti (operands[3], hilo));
2257 hilo = gen_rtx_REG (DImode, MD_REG_FIRST);
2258 emit_insn (gen_divmod<mode>4_hilo_di (hilo, operands[1], operands[2]));
2259 emit_insn (gen_mfhi<mode>_di (operands[3], hilo));
2263 [(set_attr "type" "idiv")
2264 (set_attr "mode" "<MODE>")
2265 (set_attr "length" "8")])
2267 (define_insn_and_split "udivmod<mode>4"
2268 [(set (match_operand:GPR 0 "register_operand" "=l")
2269 (udiv:GPR (match_operand:GPR 1 "register_operand" "d")
2270 (match_operand:GPR 2 "register_operand" "d")))
2271 (set (match_operand:GPR 3 "register_operand" "=d")
2272 (umod:GPR (match_dup 1)
2283 hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2284 emit_insn (gen_udivmod<mode>4_hilo_ti (hilo, operands[1], operands[2]));
2285 emit_insn (gen_mfhi<mode>_ti (operands[3], hilo));
2289 hilo = gen_rtx_REG (DImode, MD_REG_FIRST);
2290 emit_insn (gen_udivmod<mode>4_hilo_di (hilo, operands[1], operands[2]));
2291 emit_insn (gen_mfhi<mode>_di (operands[3], hilo));
2295 [(set_attr "type" "idiv")
2296 (set_attr "mode" "<MODE>")
2297 (set_attr "length" "8")])
2299 (define_insn "<u>divmod<GPR:mode>4_hilo_<HILO:mode>"
2300 [(set (match_operand:HILO 0 "register_operand" "=x")
2302 [(any_div:GPR (match_operand:GPR 1 "register_operand" "d")
2303 (match_operand:GPR 2 "register_operand" "d"))]
2306 { return mips_output_division ("<GPR:d>div<u>\t%.,%1,%2", operands); }
2307 [(set_attr "type" "idiv")
2308 (set_attr "mode" "<GPR:MODE>")])
2311 ;; ....................
2315 ;; ....................
2317 ;; These patterns work around the early SB-1 rev2 core "F1" erratum (see
2318 ;; "*div[sd]f3" comment for details).
2320 (define_insn "sqrt<mode>2"
2321 [(set (match_operand:ANYF 0 "register_operand" "=f")
2322 (sqrt:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
2326 return "sqrt.<fmt>\t%0,%1\;mov.<fmt>\t%0,%0";
2328 return "sqrt.<fmt>\t%0,%1";
2330 [(set_attr "type" "fsqrt")
2331 (set_attr "mode" "<UNITMODE>")
2332 (set (attr "length")
2333 (if_then_else (ne (symbol_ref "TARGET_FIX_SB1") (const_int 0))
2337 (define_insn "*rsqrt<mode>a"
2338 [(set (match_operand:ANYF 0 "register_operand" "=f")
2339 (div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
2340 (sqrt:ANYF (match_operand:ANYF 2 "register_operand" "f"))))]
2341 "<recip_condition> && flag_unsafe_math_optimizations"
2344 return "rsqrt.<fmt>\t%0,%2\;mov.<fmt>\t%0,%0";
2346 return "rsqrt.<fmt>\t%0,%2";
2348 [(set_attr "type" "frsqrt")
2349 (set_attr "mode" "<UNITMODE>")
2350 (set (attr "length")
2351 (if_then_else (ne (symbol_ref "TARGET_FIX_SB1") (const_int 0))
2355 (define_insn "*rsqrt<mode>b"
2356 [(set (match_operand:ANYF 0 "register_operand" "=f")
2357 (sqrt:ANYF (div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
2358 (match_operand:ANYF 2 "register_operand" "f"))))]
2359 "<recip_condition> && flag_unsafe_math_optimizations"
2362 return "rsqrt.<fmt>\t%0,%2\;mov.<fmt>\t%0,%0";
2364 return "rsqrt.<fmt>\t%0,%2";
2366 [(set_attr "type" "frsqrt")
2367 (set_attr "mode" "<UNITMODE>")
2368 (set (attr "length")
2369 (if_then_else (ne (symbol_ref "TARGET_FIX_SB1") (const_int 0))
2374 ;; ....................
2378 ;; ....................
2380 ;; Do not use the integer abs macro instruction, since that signals an
2381 ;; exception on -2147483648 (sigh).
2383 ;; abs.fmt is an arithmetic instruction and treats all NaN inputs as
2384 ;; invalid; it does not clear their sign bits. We therefore can't use
2385 ;; abs.fmt if the signs of NaNs matter.
2387 (define_insn "abs<mode>2"
2388 [(set (match_operand:ANYF 0 "register_operand" "=f")
2389 (abs:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
2390 "!HONOR_NANS (<MODE>mode)"
2392 [(set_attr "type" "fabs")
2393 (set_attr "mode" "<UNITMODE>")])
2396 ;; ...................
2398 ;; Count leading zeroes.
2400 ;; ...................
2403 (define_insn "clz<mode>2"
2404 [(set (match_operand:GPR 0 "register_operand" "=d")
2405 (clz:GPR (match_operand:GPR 1 "register_operand" "d")))]
2408 [(set_attr "type" "clz")
2409 (set_attr "mode" "<MODE>")])
2412 ;; ....................
2414 ;; NEGATION and ONE'S COMPLEMENT
2416 ;; ....................
2418 (define_insn "negsi2"
2419 [(set (match_operand:SI 0 "register_operand" "=d")
2420 (neg:SI (match_operand:SI 1 "register_operand" "d")))]
2424 return "neg\t%0,%1";
2426 return "subu\t%0,%.,%1";
2428 [(set_attr "type" "arith")
2429 (set_attr "mode" "SI")])
2431 (define_insn "negdi2"
2432 [(set (match_operand:DI 0 "register_operand" "=d")
2433 (neg:DI (match_operand:DI 1 "register_operand" "d")))]
2434 "TARGET_64BIT && !TARGET_MIPS16"
2436 [(set_attr "type" "arith")
2437 (set_attr "mode" "DI")])
2439 ;; neg.fmt is an arithmetic instruction and treats all NaN inputs as
2440 ;; invalid; it does not flip their sign bit. We therefore can't use
2441 ;; neg.fmt if the signs of NaNs matter.
2443 (define_insn "neg<mode>2"
2444 [(set (match_operand:ANYF 0 "register_operand" "=f")
2445 (neg:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
2446 "!HONOR_NANS (<MODE>mode)"
2448 [(set_attr "type" "fneg")
2449 (set_attr "mode" "<UNITMODE>")])
2451 (define_insn "one_cmpl<mode>2"
2452 [(set (match_operand:GPR 0 "register_operand" "=d")
2453 (not:GPR (match_operand:GPR 1 "register_operand" "d")))]
2457 return "not\t%0,%1";
2459 return "nor\t%0,%.,%1";
2461 [(set_attr "type" "logical")
2462 (set_attr "mode" "<MODE>")])
2465 ;; ....................
2469 ;; ....................
2472 ;; Many of these instructions use trivial define_expands, because we
2473 ;; want to use a different set of constraints when TARGET_MIPS16.
2475 (define_expand "and<mode>3"
2476 [(set (match_operand:GPR 0 "register_operand")
2477 (and:GPR (match_operand:GPR 1 "register_operand")
2478 (match_operand:GPR 2 "uns_arith_operand")))]
2482 operands[2] = force_reg (<MODE>mode, operands[2]);
2485 (define_insn "*and<mode>3"
2486 [(set (match_operand:GPR 0 "register_operand" "=d,d")
2487 (and:GPR (match_operand:GPR 1 "register_operand" "%d,d")
2488 (match_operand:GPR 2 "uns_arith_operand" "d,K")))]
2493 [(set_attr "type" "logical")
2494 (set_attr "mode" "<MODE>")])
2496 (define_insn "*and<mode>3_mips16"
2497 [(set (match_operand:GPR 0 "register_operand" "=d")
2498 (and:GPR (match_operand:GPR 1 "register_operand" "%0")
2499 (match_operand:GPR 2 "register_operand" "d")))]
2502 [(set_attr "type" "logical")
2503 (set_attr "mode" "<MODE>")])
2505 (define_expand "ior<mode>3"
2506 [(set (match_operand:GPR 0 "register_operand")
2507 (ior:GPR (match_operand:GPR 1 "register_operand")
2508 (match_operand:GPR 2 "uns_arith_operand")))]
2512 operands[2] = force_reg (<MODE>mode, operands[2]);
2515 (define_insn "*ior<mode>3"
2516 [(set (match_operand:GPR 0 "register_operand" "=d,d")
2517 (ior:GPR (match_operand:GPR 1 "register_operand" "%d,d")
2518 (match_operand:GPR 2 "uns_arith_operand" "d,K")))]
2523 [(set_attr "type" "logical")
2524 (set_attr "mode" "<MODE>")])
2526 (define_insn "*ior<mode>3_mips16"
2527 [(set (match_operand:GPR 0 "register_operand" "=d")
2528 (ior:GPR (match_operand:GPR 1 "register_operand" "%0")
2529 (match_operand:GPR 2 "register_operand" "d")))]
2532 [(set_attr "type" "logical")
2533 (set_attr "mode" "<MODE>")])
2535 (define_expand "xor<mode>3"
2536 [(set (match_operand:GPR 0 "register_operand")
2537 (xor:GPR (match_operand:GPR 1 "register_operand")
2538 (match_operand:GPR 2 "uns_arith_operand")))]
2543 [(set (match_operand:GPR 0 "register_operand" "=d,d")
2544 (xor:GPR (match_operand:GPR 1 "register_operand" "%d,d")
2545 (match_operand:GPR 2 "uns_arith_operand" "d,K")))]
2550 [(set_attr "type" "logical")
2551 (set_attr "mode" "<MODE>")])
2554 [(set (match_operand:GPR 0 "register_operand" "=d,t,t")
2555 (xor:GPR (match_operand:GPR 1 "register_operand" "%0,d,d")
2556 (match_operand:GPR 2 "uns_arith_operand" "d,K,d")))]
2562 [(set_attr "type" "logical,arith,arith")
2563 (set_attr "mode" "<MODE>")
2564 (set_attr_alternative "length"
2566 (if_then_else (match_operand:VOID 2 "m16_uimm8_1")
2571 (define_insn "*nor<mode>3"
2572 [(set (match_operand:GPR 0 "register_operand" "=d")
2573 (and:GPR (not:GPR (match_operand:GPR 1 "register_operand" "d"))
2574 (not:GPR (match_operand:GPR 2 "register_operand" "d"))))]
2577 [(set_attr "type" "logical")
2578 (set_attr "mode" "<MODE>")])
2581 ;; ....................
2585 ;; ....................
2589 (define_insn "truncdfsf2"
2590 [(set (match_operand:SF 0 "register_operand" "=f")
2591 (float_truncate:SF (match_operand:DF 1 "register_operand" "f")))]
2592 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
2594 [(set_attr "type" "fcvt")
2595 (set_attr "cnv_mode" "D2S")
2596 (set_attr "mode" "SF")])
2598 ;; Integer truncation patterns. Truncating SImode values to smaller
2599 ;; modes is a no-op, as it is for most other GCC ports. Truncating
2600 ;; DImode values to SImode is not a no-op for TARGET_64BIT since we
2601 ;; need to make sure that the lower 32 bits are properly sign-extended
2602 ;; (see TRULY_NOOP_TRUNCATION). Truncating DImode values into modes
2603 ;; smaller than SImode is equivalent to two separate truncations:
2606 ;; DI ---> HI == DI ---> SI ---> HI
2607 ;; DI ---> QI == DI ---> SI ---> QI
2609 ;; Step A needs a real instruction but step B does not.
2611 (define_insn "truncdisi2"
2612 [(set (match_operand:SI 0 "nonimmediate_operand" "=d,m")
2613 (truncate:SI (match_operand:DI 1 "register_operand" "d,d")))]
2618 [(set_attr "move_type" "sll0,store")
2619 (set_attr "mode" "SI")])
2621 (define_insn "truncdihi2"
2622 [(set (match_operand:HI 0 "nonimmediate_operand" "=d,m")
2623 (truncate:HI (match_operand:DI 1 "register_operand" "d,d")))]
2628 [(set_attr "move_type" "sll0,store")
2629 (set_attr "mode" "SI")])
2631 (define_insn "truncdiqi2"
2632 [(set (match_operand:QI 0 "nonimmediate_operand" "=d,m")
2633 (truncate:QI (match_operand:DI 1 "register_operand" "d,d")))]
2638 [(set_attr "move_type" "sll0,store")
2639 (set_attr "mode" "SI")])
2641 ;; Combiner patterns to optimize shift/truncate combinations.
2644 [(set (match_operand:SUBDI 0 "register_operand" "=d")
2646 (ashiftrt:DI (match_operand:DI 1 "register_operand" "d")
2647 (match_operand:DI 2 "const_arith_operand" ""))))]
2648 "TARGET_64BIT && !TARGET_MIPS16 && INTVAL (operands[2]) >= 32"
2650 [(set_attr "type" "shift")
2651 (set_attr "mode" "SI")])
2654 [(set (match_operand:SUBDI 0 "register_operand" "=d")
2656 (lshiftrt:DI (match_operand:DI 1 "register_operand" "d")
2658 "TARGET_64BIT && !TARGET_MIPS16"
2660 [(set_attr "type" "shift")
2661 (set_attr "mode" "SI")])
2664 ;; Combiner patterns for truncate/sign_extend combinations. The SI versions
2665 ;; use the shift/truncate patterns above.
2667 (define_insn_and_split "*extenddi_truncate<mode>"
2668 [(set (match_operand:DI 0 "register_operand" "=d")
2670 (truncate:SHORT (match_operand:DI 1 "register_operand" "d"))))]
2671 "TARGET_64BIT && !TARGET_MIPS16"
2673 "&& reload_completed"
2675 (ashift:DI (match_dup 1)
2678 (ashiftrt:DI (match_dup 2)
2681 operands[2] = gen_lowpart (DImode, operands[0]);
2682 operands[3] = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (<MODE>mode));
2685 (define_insn_and_split "*extendsi_truncate<mode>"
2686 [(set (match_operand:SI 0 "register_operand" "=d")
2688 (truncate:SHORT (match_operand:DI 1 "register_operand" "d"))))]
2689 "TARGET_64BIT && !TARGET_MIPS16"
2691 "&& reload_completed"
2693 (ashift:DI (match_dup 1)
2696 (truncate:SI (ashiftrt:DI (match_dup 2)
2699 operands[2] = gen_lowpart (DImode, operands[0]);
2700 operands[3] = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (<MODE>mode));
2703 ;; Combiner patterns to optimize truncate/zero_extend combinations.
2705 (define_insn "*zero_extend<mode>_trunchi"
2706 [(set (match_operand:GPR 0 "register_operand" "=d")
2708 (truncate:HI (match_operand:DI 1 "register_operand" "d"))))]
2709 "TARGET_64BIT && !TARGET_MIPS16"
2710 "andi\t%0,%1,0xffff"
2711 [(set_attr "type" "logical")
2712 (set_attr "mode" "<MODE>")])
2714 (define_insn "*zero_extend<mode>_truncqi"
2715 [(set (match_operand:GPR 0 "register_operand" "=d")
2717 (truncate:QI (match_operand:DI 1 "register_operand" "d"))))]
2718 "TARGET_64BIT && !TARGET_MIPS16"
2720 [(set_attr "type" "logical")
2721 (set_attr "mode" "<MODE>")])
2724 [(set (match_operand:HI 0 "register_operand" "=d")
2726 (truncate:QI (match_operand:DI 1 "register_operand" "d"))))]
2727 "TARGET_64BIT && !TARGET_MIPS16"
2729 [(set_attr "type" "logical")
2730 (set_attr "mode" "HI")])
2733 ;; ....................
2737 ;; ....................
2741 (define_insn_and_split "zero_extendsidi2"
2742 [(set (match_operand:DI 0 "register_operand" "=d,d")
2743 (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "d,W")))]
2748 "&& reload_completed && REG_P (operands[1])"
2750 (ashift:DI (match_dup 1) (const_int 32)))
2752 (lshiftrt:DI (match_dup 0) (const_int 32)))]
2753 { operands[1] = gen_lowpart (DImode, operands[1]); }
2754 [(set_attr "move_type" "shift_shift,load")
2755 (set_attr "mode" "DI")])
2757 ;; Combine is not allowed to convert this insn into a zero_extendsidi2
2758 ;; because of TRULY_NOOP_TRUNCATION.
2760 (define_insn_and_split "*clear_upper32"
2761 [(set (match_operand:DI 0 "register_operand" "=d,d")
2762 (and:DI (match_operand:DI 1 "nonimmediate_operand" "d,W")
2763 (const_int 4294967295)))]
2766 if (which_alternative == 0)
2769 operands[1] = gen_lowpart (SImode, operands[1]);
2770 return "lwu\t%0,%1";
2772 "&& reload_completed && REG_P (operands[1])"
2774 (ashift:DI (match_dup 1) (const_int 32)))
2776 (lshiftrt:DI (match_dup 0) (const_int 32)))]
2778 [(set_attr "move_type" "shift_shift,load")
2779 (set_attr "mode" "DI")])
2781 (define_expand "zero_extend<SHORT:mode><GPR:mode>2"
2782 [(set (match_operand:GPR 0 "register_operand")
2783 (zero_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand")))]
2786 if (TARGET_MIPS16 && !GENERATE_MIPS16E
2787 && !memory_operand (operands[1], <SHORT:MODE>mode))
2789 emit_insn (gen_and<GPR:mode>3 (operands[0],
2790 gen_lowpart (<GPR:MODE>mode, operands[1]),
2791 force_reg (<GPR:MODE>mode,
2792 GEN_INT (<SHORT:mask>))));
2797 (define_insn "*zero_extend<SHORT:mode><GPR:mode>2"
2798 [(set (match_operand:GPR 0 "register_operand" "=d,d")
2800 (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
2803 andi\t%0,%1,<SHORT:mask>
2804 l<SHORT:size>u\t%0,%1"
2805 [(set_attr "move_type" "andi,load")
2806 (set_attr "mode" "<GPR:MODE>")])
2808 (define_insn "*zero_extend<SHORT:mode><GPR:mode>2_mips16e"
2809 [(set (match_operand:GPR 0 "register_operand" "=d")
2810 (zero_extend:GPR (match_operand:SHORT 1 "register_operand" "0")))]
2812 "ze<SHORT:size>\t%0"
2813 ;; This instruction is effectively a special encoding of ANDI.
2814 [(set_attr "move_type" "andi")
2815 (set_attr "mode" "<GPR:MODE>")])
2817 (define_insn "*zero_extend<SHORT:mode><GPR:mode>2_mips16"
2818 [(set (match_operand:GPR 0 "register_operand" "=d")
2819 (zero_extend:GPR (match_operand:SHORT 1 "memory_operand" "m")))]
2821 "l<SHORT:size>u\t%0,%1"
2822 [(set_attr "move_type" "load")
2823 (set_attr "mode" "<GPR:MODE>")])
2825 (define_expand "zero_extendqihi2"
2826 [(set (match_operand:HI 0 "register_operand")
2827 (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand")))]
2830 if (TARGET_MIPS16 && !memory_operand (operands[1], QImode))
2832 emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[0]),
2838 (define_insn "*zero_extendqihi2"
2839 [(set (match_operand:HI 0 "register_operand" "=d,d")
2840 (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
2845 [(set_attr "move_type" "andi,load")
2846 (set_attr "mode" "HI")])
2848 (define_insn "*zero_extendqihi2_mips16"
2849 [(set (match_operand:HI 0 "register_operand" "=d")
2850 (zero_extend:HI (match_operand:QI 1 "memory_operand" "m")))]
2853 [(set_attr "move_type" "load")
2854 (set_attr "mode" "HI")])
2857 ;; ....................
2861 ;; ....................
2864 ;; Those for integer source operand are ordered widest source type first.
2866 ;; When TARGET_64BIT, all SImode integer registers should already be in
2867 ;; sign-extended form (see TRULY_NOOP_TRUNCATION and truncdisi2). We can
2868 ;; therefore get rid of register->register instructions if we constrain
2869 ;; the source to be in the same register as the destination.
2871 ;; The register alternative has type "arith" so that the pre-reload
2872 ;; scheduler will treat it as a move. This reflects what happens if
2873 ;; the register alternative needs a reload.
2874 (define_insn_and_split "extendsidi2"
2875 [(set (match_operand:DI 0 "register_operand" "=d,d")
2876 (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "0,m")))]
2881 "&& reload_completed && register_operand (operands[1], VOIDmode)"
2884 emit_note (NOTE_INSN_DELETED);
2887 [(set_attr "move_type" "move,load")
2888 (set_attr "mode" "DI")])
2890 (define_expand "extend<SHORT:mode><GPR:mode>2"
2891 [(set (match_operand:GPR 0 "register_operand")
2892 (sign_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand")))]
2895 (define_insn "*extend<SHORT:mode><GPR:mode>2_mips16e"
2896 [(set (match_operand:GPR 0 "register_operand" "=d,d")
2897 (sign_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand" "0,m")))]
2901 l<SHORT:size>\t%0,%1"
2902 [(set_attr "move_type" "signext,load")
2903 (set_attr "mode" "<GPR:MODE>")])
2905 (define_insn_and_split "*extend<SHORT:mode><GPR:mode>2"
2906 [(set (match_operand:GPR 0 "register_operand" "=d,d")
2908 (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
2909 "!ISA_HAS_SEB_SEH && !GENERATE_MIPS16E"
2912 l<SHORT:size>\t%0,%1"
2913 "&& reload_completed && REG_P (operands[1])"
2914 [(set (match_dup 0) (ashift:GPR (match_dup 1) (match_dup 2)))
2915 (set (match_dup 0) (ashiftrt:GPR (match_dup 0) (match_dup 2)))]
2917 operands[1] = gen_lowpart (<GPR:MODE>mode, operands[1]);
2918 operands[2] = GEN_INT (GET_MODE_BITSIZE (<GPR:MODE>mode)
2919 - GET_MODE_BITSIZE (<SHORT:MODE>mode));
2921 [(set_attr "move_type" "shift_shift,load")
2922 (set_attr "mode" "<GPR:MODE>")])
2924 (define_insn "*extend<SHORT:mode><GPR:mode>2_se<SHORT:size>"
2925 [(set (match_operand:GPR 0 "register_operand" "=d,d")
2927 (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
2930 se<SHORT:size>\t%0,%1
2931 l<SHORT:size>\t%0,%1"
2932 [(set_attr "move_type" "signext,load")
2933 (set_attr "mode" "<GPR:MODE>")])
2935 (define_expand "extendqihi2"
2936 [(set (match_operand:HI 0 "register_operand")
2937 (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand")))]
2940 (define_insn "*extendqihi2_mips16e"
2941 [(set (match_operand:HI 0 "register_operand" "=d,d")
2942 (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "0,m")))]
2947 [(set_attr "move_type" "signext,load")
2948 (set_attr "mode" "SI")])
2950 (define_insn_and_split "*extendqihi2"
2951 [(set (match_operand:HI 0 "register_operand" "=d,d")
2953 (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
2954 "!ISA_HAS_SEB_SEH && !GENERATE_MIPS16E"
2958 "&& reload_completed && REG_P (operands[1])"
2959 [(set (match_dup 0) (ashift:SI (match_dup 1) (match_dup 2)))
2960 (set (match_dup 0) (ashiftrt:SI (match_dup 0) (match_dup 2)))]
2962 operands[0] = gen_lowpart (SImode, operands[0]);
2963 operands[1] = gen_lowpart (SImode, operands[1]);
2964 operands[2] = GEN_INT (GET_MODE_BITSIZE (SImode)
2965 - GET_MODE_BITSIZE (QImode));
2967 [(set_attr "move_type" "shift_shift,load")
2968 (set_attr "mode" "SI")])
2970 (define_insn "*extendqihi2_seb"
2971 [(set (match_operand:HI 0 "register_operand" "=d,d")
2973 (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
2978 [(set_attr "move_type" "signext,load")
2979 (set_attr "mode" "SI")])
2981 (define_insn "extendsfdf2"
2982 [(set (match_operand:DF 0 "register_operand" "=f")
2983 (float_extend:DF (match_operand:SF 1 "register_operand" "f")))]
2984 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
2986 [(set_attr "type" "fcvt")
2987 (set_attr "cnv_mode" "S2D")
2988 (set_attr "mode" "DF")])
2991 ;; ....................
2995 ;; ....................
2997 (define_expand "fix_truncdfsi2"
2998 [(set (match_operand:SI 0 "register_operand")
2999 (fix:SI (match_operand:DF 1 "register_operand")))]
3000 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3002 if (!ISA_HAS_TRUNC_W)
3004 emit_insn (gen_fix_truncdfsi2_macro (operands[0], operands[1]));
3009 (define_insn "fix_truncdfsi2_insn"
3010 [(set (match_operand:SI 0 "register_operand" "=f")
3011 (fix:SI (match_operand:DF 1 "register_operand" "f")))]
3012 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && ISA_HAS_TRUNC_W"
3014 [(set_attr "type" "fcvt")
3015 (set_attr "mode" "DF")
3016 (set_attr "cnv_mode" "D2I")])
3018 (define_insn "fix_truncdfsi2_macro"
3019 [(set (match_operand:SI 0 "register_operand" "=f")
3020 (fix:SI (match_operand:DF 1 "register_operand" "f")))
3021 (clobber (match_scratch:DF 2 "=d"))]
3022 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && !ISA_HAS_TRUNC_W"
3025 return ".set\tmacro\;trunc.w.d %0,%1,%2\;.set\tnomacro";
3027 return "trunc.w.d %0,%1,%2";
3029 [(set_attr "type" "fcvt")
3030 (set_attr "mode" "DF")
3031 (set_attr "cnv_mode" "D2I")
3032 (set_attr "length" "36")])
3034 (define_expand "fix_truncsfsi2"
3035 [(set (match_operand:SI 0 "register_operand")
3036 (fix:SI (match_operand:SF 1 "register_operand")))]
3039 if (!ISA_HAS_TRUNC_W)
3041 emit_insn (gen_fix_truncsfsi2_macro (operands[0], operands[1]));
3046 (define_insn "fix_truncsfsi2_insn"
3047 [(set (match_operand:SI 0 "register_operand" "=f")
3048 (fix:SI (match_operand:SF 1 "register_operand" "f")))]
3049 "TARGET_HARD_FLOAT && ISA_HAS_TRUNC_W"
3051 [(set_attr "type" "fcvt")
3052 (set_attr "mode" "SF")
3053 (set_attr "cnv_mode" "S2I")])
3055 (define_insn "fix_truncsfsi2_macro"
3056 [(set (match_operand:SI 0 "register_operand" "=f")
3057 (fix:SI (match_operand:SF 1 "register_operand" "f")))
3058 (clobber (match_scratch:SF 2 "=d"))]
3059 "TARGET_HARD_FLOAT && !ISA_HAS_TRUNC_W"
3062 return ".set\tmacro\;trunc.w.s %0,%1,%2\;.set\tnomacro";
3064 return "trunc.w.s %0,%1,%2";
3066 [(set_attr "type" "fcvt")
3067 (set_attr "mode" "SF")
3068 (set_attr "cnv_mode" "S2I")
3069 (set_attr "length" "36")])
3072 (define_insn "fix_truncdfdi2"
3073 [(set (match_operand:DI 0 "register_operand" "=f")
3074 (fix:DI (match_operand:DF 1 "register_operand" "f")))]
3075 "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3077 [(set_attr "type" "fcvt")
3078 (set_attr "mode" "DF")
3079 (set_attr "cnv_mode" "D2I")])
3082 (define_insn "fix_truncsfdi2"
3083 [(set (match_operand:DI 0 "register_operand" "=f")
3084 (fix:DI (match_operand:SF 1 "register_operand" "f")))]
3085 "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3087 [(set_attr "type" "fcvt")
3088 (set_attr "mode" "SF")
3089 (set_attr "cnv_mode" "S2I")])
3092 (define_insn "floatsidf2"
3093 [(set (match_operand:DF 0 "register_operand" "=f")
3094 (float:DF (match_operand:SI 1 "register_operand" "f")))]
3095 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3097 [(set_attr "type" "fcvt")
3098 (set_attr "mode" "DF")
3099 (set_attr "cnv_mode" "I2D")])
3102 (define_insn "floatdidf2"
3103 [(set (match_operand:DF 0 "register_operand" "=f")
3104 (float:DF (match_operand:DI 1 "register_operand" "f")))]
3105 "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3107 [(set_attr "type" "fcvt")
3108 (set_attr "mode" "DF")
3109 (set_attr "cnv_mode" "I2D")])
3112 (define_insn "floatsisf2"
3113 [(set (match_operand:SF 0 "register_operand" "=f")
3114 (float:SF (match_operand:SI 1 "register_operand" "f")))]
3117 [(set_attr "type" "fcvt")
3118 (set_attr "mode" "SF")
3119 (set_attr "cnv_mode" "I2S")])
3122 (define_insn "floatdisf2"
3123 [(set (match_operand:SF 0 "register_operand" "=f")
3124 (float:SF (match_operand:DI 1 "register_operand" "f")))]
3125 "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3127 [(set_attr "type" "fcvt")
3128 (set_attr "mode" "SF")
3129 (set_attr "cnv_mode" "I2S")])
3132 (define_expand "fixuns_truncdfsi2"
3133 [(set (match_operand:SI 0 "register_operand")
3134 (unsigned_fix:SI (match_operand:DF 1 "register_operand")))]
3135 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3137 rtx reg1 = gen_reg_rtx (DFmode);
3138 rtx reg2 = gen_reg_rtx (DFmode);
3139 rtx reg3 = gen_reg_rtx (SImode);
3140 rtx label1 = gen_label_rtx ();
3141 rtx label2 = gen_label_rtx ();
3142 REAL_VALUE_TYPE offset;
3144 real_2expN (&offset, 31, DFmode);
3146 if (reg1) /* Turn off complaints about unreached code. */
3148 mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, DFmode));
3149 do_pending_stack_adjust ();
3151 emit_insn (gen_cmpdf (operands[1], reg1));
3152 emit_jump_insn (gen_bge (label1));
3154 emit_insn (gen_fix_truncdfsi2 (operands[0], operands[1]));
3155 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
3156 gen_rtx_LABEL_REF (VOIDmode, label2)));
3159 emit_label (label1);
3160 mips_emit_move (reg2, gen_rtx_MINUS (DFmode, operands[1], reg1));
3161 mips_emit_move (reg3, GEN_INT (trunc_int_for_mode
3162 (BITMASK_HIGH, SImode)));
3164 emit_insn (gen_fix_truncdfsi2 (operands[0], reg2));
3165 emit_insn (gen_iorsi3 (operands[0], operands[0], reg3));
3167 emit_label (label2);
3169 /* Allow REG_NOTES to be set on last insn (labels don't have enough
3170 fields, and can't be used for REG_NOTES anyway). */
3171 emit_use (stack_pointer_rtx);
3177 (define_expand "fixuns_truncdfdi2"
3178 [(set (match_operand:DI 0 "register_operand")
3179 (unsigned_fix:DI (match_operand:DF 1 "register_operand")))]
3180 "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT"
3182 rtx reg1 = gen_reg_rtx (DFmode);
3183 rtx reg2 = gen_reg_rtx (DFmode);
3184 rtx reg3 = gen_reg_rtx (DImode);
3185 rtx label1 = gen_label_rtx ();
3186 rtx label2 = gen_label_rtx ();
3187 REAL_VALUE_TYPE offset;
3189 real_2expN (&offset, 63, DFmode);
3191 mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, DFmode));
3192 do_pending_stack_adjust ();
3194 emit_insn (gen_cmpdf (operands[1], reg1));
3195 emit_jump_insn (gen_bge (label1));
3197 emit_insn (gen_fix_truncdfdi2 (operands[0], operands[1]));
3198 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
3199 gen_rtx_LABEL_REF (VOIDmode, label2)));
3202 emit_label (label1);
3203 mips_emit_move (reg2, gen_rtx_MINUS (DFmode, operands[1], reg1));
3204 mips_emit_move (reg3, GEN_INT (BITMASK_HIGH));
3205 emit_insn (gen_ashldi3 (reg3, reg3, GEN_INT (32)));
3207 emit_insn (gen_fix_truncdfdi2 (operands[0], reg2));
3208 emit_insn (gen_iordi3 (operands[0], operands[0], reg3));
3210 emit_label (label2);
3212 /* Allow REG_NOTES to be set on last insn (labels don't have enough
3213 fields, and can't be used for REG_NOTES anyway). */
3214 emit_use (stack_pointer_rtx);
3219 (define_expand "fixuns_truncsfsi2"
3220 [(set (match_operand:SI 0 "register_operand")
3221 (unsigned_fix:SI (match_operand:SF 1 "register_operand")))]
3224 rtx reg1 = gen_reg_rtx (SFmode);
3225 rtx reg2 = gen_reg_rtx (SFmode);
3226 rtx reg3 = gen_reg_rtx (SImode);
3227 rtx label1 = gen_label_rtx ();
3228 rtx label2 = gen_label_rtx ();
3229 REAL_VALUE_TYPE offset;
3231 real_2expN (&offset, 31, SFmode);
3233 mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, SFmode));
3234 do_pending_stack_adjust ();
3236 emit_insn (gen_cmpsf (operands[1], reg1));
3237 emit_jump_insn (gen_bge (label1));
3239 emit_insn (gen_fix_truncsfsi2 (operands[0], operands[1]));
3240 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
3241 gen_rtx_LABEL_REF (VOIDmode, label2)));
3244 emit_label (label1);
3245 mips_emit_move (reg2, gen_rtx_MINUS (SFmode, operands[1], reg1));
3246 mips_emit_move (reg3, GEN_INT (trunc_int_for_mode
3247 (BITMASK_HIGH, SImode)));
3249 emit_insn (gen_fix_truncsfsi2 (operands[0], reg2));
3250 emit_insn (gen_iorsi3 (operands[0], operands[0], reg3));
3252 emit_label (label2);
3254 /* Allow REG_NOTES to be set on last insn (labels don't have enough
3255 fields, and can't be used for REG_NOTES anyway). */
3256 emit_use (stack_pointer_rtx);
3261 (define_expand "fixuns_truncsfdi2"
3262 [(set (match_operand:DI 0 "register_operand")
3263 (unsigned_fix:DI (match_operand:SF 1 "register_operand")))]
3264 "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT"
3266 rtx reg1 = gen_reg_rtx (SFmode);
3267 rtx reg2 = gen_reg_rtx (SFmode);
3268 rtx reg3 = gen_reg_rtx (DImode);
3269 rtx label1 = gen_label_rtx ();
3270 rtx label2 = gen_label_rtx ();
3271 REAL_VALUE_TYPE offset;
3273 real_2expN (&offset, 63, SFmode);
3275 mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, SFmode));
3276 do_pending_stack_adjust ();
3278 emit_insn (gen_cmpsf (operands[1], reg1));
3279 emit_jump_insn (gen_bge (label1));
3281 emit_insn (gen_fix_truncsfdi2 (operands[0], operands[1]));
3282 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
3283 gen_rtx_LABEL_REF (VOIDmode, label2)));
3286 emit_label (label1);
3287 mips_emit_move (reg2, gen_rtx_MINUS (SFmode, operands[1], reg1));
3288 mips_emit_move (reg3, GEN_INT (BITMASK_HIGH));
3289 emit_insn (gen_ashldi3 (reg3, reg3, GEN_INT (32)));
3291 emit_insn (gen_fix_truncsfdi2 (operands[0], reg2));
3292 emit_insn (gen_iordi3 (operands[0], operands[0], reg3));
3294 emit_label (label2);
3296 /* Allow REG_NOTES to be set on last insn (labels don't have enough
3297 fields, and can't be used for REG_NOTES anyway). */
3298 emit_use (stack_pointer_rtx);
3303 ;; ....................
3307 ;; ....................
3309 ;; Bit field extract patterns which use lwl/lwr or ldl/ldr.
3311 (define_expand "extv"
3312 [(set (match_operand 0 "register_operand")
3313 (sign_extract (match_operand:QI 1 "memory_operand")
3314 (match_operand 2 "immediate_operand")
3315 (match_operand 3 "immediate_operand")))]
3318 if (mips_expand_ext_as_unaligned_load (operands[0], operands[1],
3319 INTVAL (operands[2]),
3320 INTVAL (operands[3])))
3326 (define_expand "extzv"
3327 [(set (match_operand 0 "register_operand")
3328 (zero_extract (match_operand 1 "nonimmediate_operand")
3329 (match_operand 2 "immediate_operand")
3330 (match_operand 3 "immediate_operand")))]
3333 if (mips_expand_ext_as_unaligned_load (operands[0], operands[1],
3334 INTVAL (operands[2]),
3335 INTVAL (operands[3])))
3337 else if (mips_use_ins_ext_p (operands[1], INTVAL (operands[2]),
3338 INTVAL (operands[3])))
3340 if (GET_MODE (operands[0]) == DImode)
3341 emit_insn (gen_extzvdi (operands[0], operands[1], operands[2],
3344 emit_insn (gen_extzvsi (operands[0], operands[1], operands[2],
3352 (define_insn "extzv<mode>"
3353 [(set (match_operand:GPR 0 "register_operand" "=d")
3354 (zero_extract:GPR (match_operand:GPR 1 "register_operand" "d")
3355 (match_operand:SI 2 "immediate_operand" "I")
3356 (match_operand:SI 3 "immediate_operand" "I")))]
3357 "mips_use_ins_ext_p (operands[1], INTVAL (operands[2]),
3358 INTVAL (operands[3]))"
3359 "<d>ext\t%0,%1,%3,%2"
3360 [(set_attr "type" "arith")
3361 (set_attr "mode" "<MODE>")])
3364 (define_expand "insv"
3365 [(set (zero_extract (match_operand 0 "nonimmediate_operand")
3366 (match_operand 1 "immediate_operand")
3367 (match_operand 2 "immediate_operand"))
3368 (match_operand 3 "reg_or_0_operand"))]
3371 if (mips_expand_ins_as_unaligned_store (operands[0], operands[3],
3372 INTVAL (operands[1]),
3373 INTVAL (operands[2])))
3375 else if (mips_use_ins_ext_p (operands[0], INTVAL (operands[1]),
3376 INTVAL (operands[2])))
3378 if (GET_MODE (operands[0]) == DImode)
3379 emit_insn (gen_insvdi (operands[0], operands[1], operands[2],
3382 emit_insn (gen_insvsi (operands[0], operands[1], operands[2],
3390 (define_insn "insv<mode>"
3391 [(set (zero_extract:GPR (match_operand:GPR 0 "register_operand" "+d")
3392 (match_operand:SI 1 "immediate_operand" "I")
3393 (match_operand:SI 2 "immediate_operand" "I"))
3394 (match_operand:GPR 3 "reg_or_0_operand" "dJ"))]
3395 "mips_use_ins_ext_p (operands[0], INTVAL (operands[1]),
3396 INTVAL (operands[2]))"
3397 "<d>ins\t%0,%z3,%2,%1"
3398 [(set_attr "type" "arith")
3399 (set_attr "mode" "<MODE>")])
3401 ;; Unaligned word moves generated by the bit field patterns.
3403 ;; As far as the rtl is concerned, both the left-part and right-part
3404 ;; instructions can access the whole field. However, the real operand
3405 ;; refers to just the first or the last byte (depending on endianness).
3406 ;; We therefore use two memory operands to each instruction, one to
3407 ;; describe the rtl effect and one to use in the assembly output.
3409 ;; Operands 0 and 1 are the rtl-level target and source respectively.
3410 ;; This allows us to use the standard length calculations for the "load"
3411 ;; and "store" type attributes.
3413 (define_insn "mov_<load>l"
3414 [(set (match_operand:GPR 0 "register_operand" "=d")
3415 (unspec:GPR [(match_operand:BLK 1 "memory_operand" "m")
3416 (match_operand:QI 2 "memory_operand" "m")]
3418 "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[1])"
3420 [(set_attr "move_type" "load")
3421 (set_attr "mode" "<MODE>")])
3423 (define_insn "mov_<load>r"
3424 [(set (match_operand:GPR 0 "register_operand" "=d")
3425 (unspec:GPR [(match_operand:BLK 1 "memory_operand" "m")
3426 (match_operand:QI 2 "memory_operand" "m")
3427 (match_operand:GPR 3 "register_operand" "0")]
3428 UNSPEC_LOAD_RIGHT))]
3429 "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[1])"
3431 [(set_attr "move_type" "load")
3432 (set_attr "mode" "<MODE>")])
3434 (define_insn "mov_<store>l"
3435 [(set (match_operand:BLK 0 "memory_operand" "=m")
3436 (unspec:BLK [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
3437 (match_operand:QI 2 "memory_operand" "m")]
3438 UNSPEC_STORE_LEFT))]
3439 "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[0])"
3441 [(set_attr "move_type" "store")
3442 (set_attr "mode" "<MODE>")])
3444 (define_insn "mov_<store>r"
3445 [(set (match_operand:BLK 0 "memory_operand" "+m")
3446 (unspec:BLK [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
3447 (match_operand:QI 2 "memory_operand" "m")
3449 UNSPEC_STORE_RIGHT))]
3450 "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[0])"
3452 [(set_attr "move_type" "store")
3453 (set_attr "mode" "<MODE>")])
3455 ;; An instruction to calculate the high part of a 64-bit SYMBOL_ABSOLUTE.
3456 ;; The required value is:
3458 ;; (%highest(op1) << 48) + (%higher(op1) << 32) + (%hi(op1) << 16)
3460 ;; which translates to:
3462 ;; lui op0,%highest(op1)
3463 ;; daddiu op0,op0,%higher(op1)
3465 ;; daddiu op0,op0,%hi(op1)
3468 ;; The split is deferred until after flow2 to allow the peephole2 below
3470 (define_insn_and_split "*lea_high64"
3471 [(set (match_operand:DI 0 "register_operand" "=d")
3472 (high:DI (match_operand:DI 1 "absolute_symbolic_operand" "")))]
3473 "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS"
3475 "&& epilogue_completed"
3476 [(set (match_dup 0) (high:DI (match_dup 2)))
3477 (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 2)))
3478 (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 16)))
3479 (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 3)))
3480 (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 16)))]
3482 operands[2] = mips_unspec_address (operands[1], SYMBOL_64_HIGH);
3483 operands[3] = mips_unspec_address (operands[1], SYMBOL_64_MID);
3485 [(set_attr "length" "20")])
3487 ;; Use a scratch register to reduce the latency of the above pattern
3488 ;; on superscalar machines. The optimized sequence is:
3490 ;; lui op1,%highest(op2)
3492 ;; daddiu op1,op1,%higher(op2)
3494 ;; daddu op1,op1,op0
3496 [(set (match_operand:DI 1 "d_operand")
3497 (high:DI (match_operand:DI 2 "absolute_symbolic_operand")))
3498 (match_scratch:DI 0 "d")]
3499 "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS"
3500 [(set (match_dup 1) (high:DI (match_dup 3)))
3501 (set (match_dup 0) (high:DI (match_dup 4)))
3502 (set (match_dup 1) (lo_sum:DI (match_dup 1) (match_dup 3)))
3503 (set (match_dup 1) (ashift:DI (match_dup 1) (const_int 32)))
3504 (set (match_dup 1) (plus:DI (match_dup 1) (match_dup 0)))]
3506 operands[3] = mips_unspec_address (operands[2], SYMBOL_64_HIGH);
3507 operands[4] = mips_unspec_address (operands[2], SYMBOL_64_LOW);
3510 ;; On most targets, the expansion of (lo_sum (high X) X) for a 64-bit
3511 ;; SYMBOL_ABSOLUTE X will take 6 cycles. This next pattern allows combine
3512 ;; to merge the HIGH and LO_SUM parts of a move if the HIGH part is only
3513 ;; used once. We can then use the sequence:
3515 ;; lui op0,%highest(op1)
3517 ;; daddiu op0,op0,%higher(op1)
3518 ;; daddiu op2,op2,%lo(op1)
3520 ;; daddu op0,op0,op2
3522 ;; which takes 4 cycles on most superscalar targets.
3523 (define_insn_and_split "*lea64"
3524 [(set (match_operand:DI 0 "register_operand" "=d")
3525 (match_operand:DI 1 "absolute_symbolic_operand" ""))
3526 (clobber (match_scratch:DI 2 "=&d"))]
3527 "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS && cse_not_expected"
3529 "&& reload_completed"
3530 [(set (match_dup 0) (high:DI (match_dup 3)))
3531 (set (match_dup 2) (high:DI (match_dup 4)))
3532 (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 3)))
3533 (set (match_dup 2) (lo_sum:DI (match_dup 2) (match_dup 4)))
3534 (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 32)))
3535 (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 2)))]
3537 operands[3] = mips_unspec_address (operands[1], SYMBOL_64_HIGH);
3538 operands[4] = mips_unspec_address (operands[1], SYMBOL_64_LOW);
3540 [(set_attr "length" "24")])
3542 ;; Split HIGHs into:
3547 ;; on MIPS16 targets.
3549 [(set (match_operand:SI 0 "d_operand")
3550 (high:SI (match_operand:SI 1 "absolute_symbolic_operand")))]
3551 "TARGET_MIPS16 && reload_completed"
3552 [(set (match_dup 0) (match_dup 2))
3553 (set (match_dup 0) (ashift:SI (match_dup 0) (const_int 16)))]
3555 operands[2] = mips_unspec_address (operands[1], SYMBOL_32_HIGH);
3558 ;; Insns to fetch a symbol from a big GOT.
3560 (define_insn_and_split "*xgot_hi<mode>"
3561 [(set (match_operand:P 0 "register_operand" "=d")
3562 (high:P (match_operand:P 1 "got_disp_operand" "")))]
3563 "TARGET_EXPLICIT_RELOCS && TARGET_XGOT"
3565 "&& reload_completed"
3566 [(set (match_dup 0) (high:P (match_dup 2)))
3567 (set (match_dup 0) (plus:P (match_dup 0) (match_dup 3)))]
3569 operands[2] = mips_unspec_address (operands[1], SYMBOL_GOTOFF_DISP);
3570 operands[3] = pic_offset_table_rtx;
3572 [(set_attr "got" "xgot_high")
3573 (set_attr "mode" "<MODE>")])
3575 (define_insn_and_split "*xgot_lo<mode>"
3576 [(set (match_operand:P 0 "register_operand" "=d")
3577 (lo_sum:P (match_operand:P 1 "register_operand" "d")
3578 (match_operand:P 2 "got_disp_operand" "")))]
3579 "TARGET_EXPLICIT_RELOCS && TARGET_XGOT"
3581 "&& reload_completed"
3583 (unspec:P [(match_dup 1) (match_dup 3)] UNSPEC_LOAD_GOT))]
3584 { operands[3] = mips_unspec_address (operands[2], SYMBOL_GOTOFF_DISP); }
3585 [(set_attr "got" "load")
3586 (set_attr "mode" "<MODE>")])
3588 ;; Insns to fetch a symbol from a normal GOT.
3590 (define_insn_and_split "*got_disp<mode>"
3591 [(set (match_operand:P 0 "register_operand" "=d")
3592 (match_operand:P 1 "got_disp_operand" ""))]
3593 "TARGET_EXPLICIT_RELOCS && !TARGET_XGOT"
3595 "&& reload_completed"
3597 (unspec:P [(match_dup 2) (match_dup 3)] UNSPEC_LOAD_GOT))]
3599 operands[2] = pic_offset_table_rtx;
3600 operands[3] = mips_unspec_address (operands[1], SYMBOL_GOTOFF_DISP);
3602 [(set_attr "got" "load")
3603 (set_attr "mode" "<MODE>")])
3605 ;; Insns for loading the "page" part of a page/ofst address from the GOT.
3607 (define_insn_and_split "*got_page<mode>"
3608 [(set (match_operand:P 0 "register_operand" "=d")
3609 (high:P (match_operand:P 1 "got_page_ofst_operand" "")))]
3610 "TARGET_EXPLICIT_RELOCS"
3612 "&& reload_completed"
3614 (unspec:P [(match_dup 2) (match_dup 3)] UNSPEC_LOAD_GOT))]
3616 operands[2] = pic_offset_table_rtx;
3617 operands[3] = mips_unspec_address (operands[1], SYMBOL_GOTOFF_PAGE);
3619 [(set_attr "got" "load")
3620 (set_attr "mode" "<MODE>")])
3622 ;; Lower-level instructions for loading an address from the GOT.
3623 ;; We could use MEMs, but an unspec gives more optimization
3626 (define_insn "load_got<mode>"
3627 [(set (match_operand:P 0 "register_operand" "=d")
3628 (unspec:P [(match_operand:P 1 "register_operand" "d")
3629 (match_operand:P 2 "immediate_operand" "")]
3632 "<load>\t%0,%R2(%1)"
3633 [(set_attr "type" "load")
3634 (set_attr "mode" "<MODE>")
3635 (set_attr "length" "4")])
3637 ;; Instructions for adding the low 16 bits of an address to a register.
3638 ;; Operand 2 is the address: mips_print_operand works out which relocation
3639 ;; should be applied.
3641 (define_insn "*low<mode>"
3642 [(set (match_operand:P 0 "register_operand" "=d")
3643 (lo_sum:P (match_operand:P 1 "register_operand" "d")
3644 (match_operand:P 2 "immediate_operand" "")))]
3646 "<d>addiu\t%0,%1,%R2"
3647 [(set_attr "type" "arith")
3648 (set_attr "mode" "<MODE>")])
3650 (define_insn "*low<mode>_mips16"
3651 [(set (match_operand:P 0 "register_operand" "=d")
3652 (lo_sum:P (match_operand:P 1 "register_operand" "0")
3653 (match_operand:P 2 "immediate_operand" "")))]
3656 [(set_attr "type" "arith")
3657 (set_attr "mode" "<MODE>")
3658 (set_attr "extended_mips16" "yes")])
3660 ;; Allow combine to split complex const_int load sequences, using operand 2
3661 ;; to store the intermediate results. See move_operand for details.
3663 [(set (match_operand:GPR 0 "register_operand")
3664 (match_operand:GPR 1 "splittable_const_int_operand"))
3665 (clobber (match_operand:GPR 2 "register_operand"))]
3669 mips_move_integer (operands[2], operands[0], INTVAL (operands[1]));
3673 ;; Likewise, for symbolic operands.
3675 [(set (match_operand:P 0 "register_operand")
3676 (match_operand:P 1))
3677 (clobber (match_operand:P 2 "register_operand"))]
3678 "mips_split_symbol (operands[2], operands[1], MAX_MACHINE_MODE, NULL)"
3679 [(set (match_dup 0) (match_dup 3))]
3681 mips_split_symbol (operands[2], operands[1],
3682 MAX_MACHINE_MODE, &operands[3]);
3685 ;; 64-bit integer moves
3687 ;; Unlike most other insns, the move insns can't be split with
3688 ;; different predicates, because register spilling and other parts of
3689 ;; the compiler, have memoized the insn number already.
3691 (define_expand "movdi"
3692 [(set (match_operand:DI 0 "")
3693 (match_operand:DI 1 ""))]
3696 if (mips_legitimize_move (DImode, operands[0], operands[1]))
3700 ;; For mips16, we need a special case to handle storing $31 into
3701 ;; memory, since we don't have a constraint to match $31. This
3702 ;; instruction can be generated by save_restore_insns.
3704 (define_insn "*mov<mode>_ra"
3705 [(set (match_operand:GPR 0 "stack_operand" "=m")
3709 [(set_attr "move_type" "store")
3710 (set_attr "mode" "<MODE>")])
3712 (define_insn "*movdi_32bit"
3713 [(set (match_operand:DI 0 "nonimmediate_operand" "=d,d,d,m,*a,*d,*f,*f,*d,*m,*B*C*D,*B*C*D,*d,*m")
3714 (match_operand:DI 1 "move_operand" "d,i,m,d,*J*d,*a,*J*d,*m,*f,*f,*d,*m,*B*C*D,*B*C*D"))]
3715 "!TARGET_64BIT && !TARGET_MIPS16
3716 && (register_operand (operands[0], DImode)
3717 || reg_or_0_operand (operands[1], DImode))"
3718 { return mips_output_move (operands[0], operands[1]); }
3719 [(set_attr "move_type" "move,const,load,store,mthilo,mfhilo,mtc,fpload,mfc,fpstore,mtc,fpload,mfc,fpstore")
3720 (set_attr "mode" "DI")])
3722 (define_insn "*movdi_32bit_mips16"
3723 [(set (match_operand:DI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
3724 (match_operand:DI 1 "move_operand" "d,d,y,K,N,m,d,*x"))]
3725 "!TARGET_64BIT && TARGET_MIPS16
3726 && (register_operand (operands[0], DImode)
3727 || register_operand (operands[1], DImode))"
3728 { return mips_output_move (operands[0], operands[1]); }
3729 [(set_attr "move_type" "move,move,move,const,constN,load,store,mfhilo")
3730 (set_attr "mode" "DI")])
3732 (define_insn "*movdi_64bit"
3733 [(set (match_operand:DI 0 "nonimmediate_operand" "=d,d,e,d,m,*f,*f,*d,*m,*a,*d,*B*C*D,*B*C*D,*d,*m")
3734 (match_operand:DI 1 "move_operand" "d,U,T,m,dJ,*d*J,*m,*f,*f,*J*d,*a,*d,*m,*B*C*D,*B*C*D"))]
3735 "TARGET_64BIT && !TARGET_MIPS16
3736 && (register_operand (operands[0], DImode)
3737 || reg_or_0_operand (operands[1], DImode))"
3738 { return mips_output_move (operands[0], operands[1]); }
3739 [(set_attr "move_type" "move,const,const,load,store,mtc,fpload,mfc,fpstore,mthilo,mfhilo,mtc,fpload,mfc,fpstore")
3740 (set_attr "mode" "DI")])
3742 (define_insn "*movdi_64bit_mips16"
3743 [(set (match_operand:DI 0 "nonimmediate_operand" "=d,y,d,d,d,d,d,d,m,*d")
3744 (match_operand:DI 1 "move_operand" "d,d,y,K,N,U,kf,m,d,*a"))]
3745 "TARGET_64BIT && TARGET_MIPS16
3746 && (register_operand (operands[0], DImode)
3747 || register_operand (operands[1], DImode))"
3748 { return mips_output_move (operands[0], operands[1]); }
3749 [(set_attr "move_type" "move,move,move,const,constN,const,loadpool,load,store,mfhilo")
3750 (set_attr "mode" "DI")])
3752 ;; On the mips16, we can split ld $r,N($r) into an add and a load,
3753 ;; when the original load is a 4 byte instruction but the add and the
3754 ;; load are 2 2 byte instructions.
3757 [(set (match_operand:DI 0 "d_operand")
3758 (mem:DI (plus:DI (match_dup 0)
3759 (match_operand:DI 1 "const_int_operand"))))]
3760 "TARGET_64BIT && TARGET_MIPS16 && reload_completed
3761 && !TARGET_DEBUG_D_MODE
3762 && ((INTVAL (operands[1]) < 0
3763 && INTVAL (operands[1]) >= -0x10)
3764 || (INTVAL (operands[1]) >= 32 * 8
3765 && INTVAL (operands[1]) <= 31 * 8 + 0x8)
3766 || (INTVAL (operands[1]) >= 0
3767 && INTVAL (operands[1]) < 32 * 8
3768 && (INTVAL (operands[1]) & 7) != 0))"
3769 [(set (match_dup 0) (plus:DI (match_dup 0) (match_dup 1)))
3770 (set (match_dup 0) (mem:DI (plus:DI (match_dup 0) (match_dup 2))))]
3772 HOST_WIDE_INT val = INTVAL (operands[1]);
3775 operands[2] = const0_rtx;
3776 else if (val >= 32 * 8)
3780 operands[1] = GEN_INT (0x8 + off);
3781 operands[2] = GEN_INT (val - off - 0x8);
3787 operands[1] = GEN_INT (off);
3788 operands[2] = GEN_INT (val - off);
3792 ;; 32-bit Integer moves
3794 ;; Unlike most other insns, the move insns can't be split with
3795 ;; different predicates, because register spilling and other parts of
3796 ;; the compiler, have memoized the insn number already.
3798 (define_expand "movsi"
3799 [(set (match_operand:SI 0 "")
3800 (match_operand:SI 1 ""))]
3803 if (mips_legitimize_move (SImode, operands[0], operands[1]))
3807 ;; The difference between these two is whether or not ints are allowed
3808 ;; in FP registers (off by default, use -mdebugh to enable).
3810 (define_insn "*movsi_internal"
3811 [(set (match_operand:SI 0 "nonimmediate_operand" "=d,d,e,d,m,*f,*f,*d,*m,*d,*z,*a,*d,*B*C*D,*B*C*D,*d,*m")
3812 (match_operand:SI 1 "move_operand" "d,U,T,m,dJ,*d*J,*m,*f,*f,*z,*d,*J*d,*a,*d,*m,*B*C*D,*B*C*D"))]
3814 && (register_operand (operands[0], SImode)
3815 || reg_or_0_operand (operands[1], SImode))"
3816 { return mips_output_move (operands[0], operands[1]); }
3817 [(set_attr "move_type" "move,const,const,load,store,mtc,fpload,mfc,fpstore,mfc,mtc,mthilo,mfhilo,mtc,fpload,mfc,fpstore")
3818 (set_attr "mode" "SI")])
3820 (define_insn "*movsi_mips16"
3821 [(set (match_operand:SI 0 "nonimmediate_operand" "=d,y,d,d,d,d,d,d,m,*d")
3822 (match_operand:SI 1 "move_operand" "d,d,y,K,N,U,kf,m,d,*a"))]
3824 && (register_operand (operands[0], SImode)
3825 || register_operand (operands[1], SImode))"
3826 { return mips_output_move (operands[0], operands[1]); }
3827 [(set_attr "move_type" "move,move,move,const,constN,const,loadpool,load,store,mfhilo")
3828 (set_attr "mode" "SI")])
3830 ;; On the mips16, we can split lw $r,N($r) into an add and a load,
3831 ;; when the original load is a 4 byte instruction but the add and the
3832 ;; load are 2 2 byte instructions.
3835 [(set (match_operand:SI 0 "d_operand")
3836 (mem:SI (plus:SI (match_dup 0)
3837 (match_operand:SI 1 "const_int_operand"))))]
3838 "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
3839 && ((INTVAL (operands[1]) < 0
3840 && INTVAL (operands[1]) >= -0x80)
3841 || (INTVAL (operands[1]) >= 32 * 4
3842 && INTVAL (operands[1]) <= 31 * 4 + 0x7c)
3843 || (INTVAL (operands[1]) >= 0
3844 && INTVAL (operands[1]) < 32 * 4
3845 && (INTVAL (operands[1]) & 3) != 0))"
3846 [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
3847 (set (match_dup 0) (mem:SI (plus:SI (match_dup 0) (match_dup 2))))]
3849 HOST_WIDE_INT val = INTVAL (operands[1]);
3852 operands[2] = const0_rtx;
3853 else if (val >= 32 * 4)
3857 operands[1] = GEN_INT (0x7c + off);
3858 operands[2] = GEN_INT (val - off - 0x7c);
3864 operands[1] = GEN_INT (off);
3865 operands[2] = GEN_INT (val - off);
3869 ;; On the mips16, we can split a load of certain constants into a load
3870 ;; and an add. This turns a 4 byte instruction into 2 2 byte
3874 [(set (match_operand:SI 0 "d_operand")
3875 (match_operand:SI 1 "const_int_operand"))]
3876 "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
3877 && INTVAL (operands[1]) >= 0x100
3878 && INTVAL (operands[1]) <= 0xff + 0x7f"
3879 [(set (match_dup 0) (match_dup 1))
3880 (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))]
3882 int val = INTVAL (operands[1]);
3884 operands[1] = GEN_INT (0xff);
3885 operands[2] = GEN_INT (val - 0xff);
3888 ;; This insn handles moving CCmode values. It's really just a
3889 ;; slightly simplified copy of movsi_internal2, with additional cases
3890 ;; to move a condition register to a general register and to move
3891 ;; between the general registers and the floating point registers.
3893 (define_insn "movcc"
3894 [(set (match_operand:CC 0 "nonimmediate_operand" "=d,*d,*d,*m,*d,*f,*f,*f,*m")
3895 (match_operand:CC 1 "general_operand" "z,*d,*m,*d,*f,*d,*f,*m,*f"))]
3896 "ISA_HAS_8CC && TARGET_HARD_FLOAT"
3897 { return mips_output_move (operands[0], operands[1]); }
3898 [(set_attr "move_type" "lui_movf,move,load,store,mfc,mtc,fmove,fpload,fpstore")
3899 (set_attr "mode" "SI")])
3901 ;; Reload condition code registers. reload_incc and reload_outcc
3902 ;; both handle moves from arbitrary operands into condition code
3903 ;; registers. reload_incc handles the more common case in which
3904 ;; a source operand is constrained to be in a condition-code
3905 ;; register, but has not been allocated to one.
3907 ;; Sometimes, such as in movcc, we have a CCmode destination whose
3908 ;; constraints do not include 'z'. reload_outcc handles the case
3909 ;; when such an operand is allocated to a condition-code register.
3911 ;; Note that reloads from a condition code register to some
3912 ;; other location can be done using ordinary moves. Moving
3913 ;; into a GPR takes a single movcc, moving elsewhere takes
3914 ;; two. We can leave these cases to the generic reload code.
3915 (define_expand "reload_incc"
3916 [(set (match_operand:CC 0 "fcc_reload_operand" "=z")
3917 (match_operand:CC 1 "general_operand" ""))
3918 (clobber (match_operand:TF 2 "register_operand" "=&f"))]
3919 "ISA_HAS_8CC && TARGET_HARD_FLOAT"
3921 mips_expand_fcc_reload (operands[0], operands[1], operands[2]);
3925 (define_expand "reload_outcc"
3926 [(set (match_operand:CC 0 "fcc_reload_operand" "=z")
3927 (match_operand:CC 1 "register_operand" ""))
3928 (clobber (match_operand:TF 2 "register_operand" "=&f"))]
3929 "ISA_HAS_8CC && TARGET_HARD_FLOAT"
3931 mips_expand_fcc_reload (operands[0], operands[1], operands[2]);
3935 ;; MIPS4 supports loading and storing a floating point register from
3936 ;; the sum of two general registers. We use two versions for each of
3937 ;; these four instructions: one where the two general registers are
3938 ;; SImode, and one where they are DImode. This is because general
3939 ;; registers will be in SImode when they hold 32-bit values, but,
3940 ;; since the 32-bit values are always sign extended, the [ls][wd]xc1
3941 ;; instructions will still work correctly.
3943 ;; ??? Perhaps it would be better to support these instructions by
3944 ;; modifying GO_IF_LEGITIMATE_ADDRESS and friends. However, since
3945 ;; these instructions can only be used to load and store floating
3946 ;; point registers, that would probably cause trouble in reload.
3948 (define_insn "*<ANYF:loadx>_<P:mode>"
3949 [(set (match_operand:ANYF 0 "register_operand" "=f")
3950 (mem:ANYF (plus:P (match_operand:P 1 "register_operand" "d")
3951 (match_operand:P 2 "register_operand" "d"))))]
3953 "<ANYF:loadx>\t%0,%1(%2)"
3954 [(set_attr "type" "fpidxload")
3955 (set_attr "mode" "<ANYF:UNITMODE>")])
3957 (define_insn "*<ANYF:storex>_<P:mode>"
3958 [(set (mem:ANYF (plus:P (match_operand:P 1 "register_operand" "d")
3959 (match_operand:P 2 "register_operand" "d")))
3960 (match_operand:ANYF 0 "register_operand" "f"))]
3962 "<ANYF:storex>\t%0,%1(%2)"
3963 [(set_attr "type" "fpidxstore")
3964 (set_attr "mode" "<ANYF:UNITMODE>")])
3966 ;; Scaled indexed address load.
3967 ;; Per md.texi, we only need to look for a pattern with multiply in the
3968 ;; address expression, not shift.
3970 (define_insn "*lwxs"
3971 [(set (match_operand:SI 0 "register_operand" "=d")
3972 (mem:SI (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d")
3974 (match_operand:SI 2 "register_operand" "d"))))]
3977 [(set_attr "type" "load")
3978 (set_attr "mode" "SI")])
3980 ;; 16-bit Integer moves
3982 ;; Unlike most other insns, the move insns can't be split with
3983 ;; different predicates, because register spilling and other parts of
3984 ;; the compiler, have memoized the insn number already.
3985 ;; Unsigned loads are used because LOAD_EXTEND_OP returns ZERO_EXTEND.
3987 (define_expand "movhi"
3988 [(set (match_operand:HI 0 "")
3989 (match_operand:HI 1 ""))]
3992 if (mips_legitimize_move (HImode, operands[0], operands[1]))
3996 (define_insn "*movhi_internal"
3997 [(set (match_operand:HI 0 "nonimmediate_operand" "=d,d,d,m,*a,*d")
3998 (match_operand:HI 1 "move_operand" "d,I,m,dJ,*d*J,*a"))]
4000 && (register_operand (operands[0], HImode)
4001 || reg_or_0_operand (operands[1], HImode))"
4002 { return mips_output_move (operands[0], operands[1]); }
4003 [(set_attr "move_type" "move,const,load,store,mthilo,mfhilo")
4004 (set_attr "mode" "HI")])
4006 (define_insn "*movhi_mips16"
4007 [(set (match_operand:HI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
4008 (match_operand:HI 1 "move_operand" "d,d,y,K,N,m,d,*a"))]
4010 && (register_operand (operands[0], HImode)
4011 || register_operand (operands[1], HImode))"
4012 { return mips_output_move (operands[0], operands[1]); }
4013 [(set_attr "move_type" "move,move,move,const,constN,load,store,mfhilo")
4014 (set_attr "mode" "HI")])
4016 ;; On the mips16, we can split lh $r,N($r) into an add and a load,
4017 ;; when the original load is a 4 byte instruction but the add and the
4018 ;; load are 2 2 byte instructions.
4021 [(set (match_operand:HI 0 "d_operand")
4022 (mem:HI (plus:SI (match_dup 0)
4023 (match_operand:SI 1 "const_int_operand"))))]
4024 "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4025 && ((INTVAL (operands[1]) < 0
4026 && INTVAL (operands[1]) >= -0x80)
4027 || (INTVAL (operands[1]) >= 32 * 2
4028 && INTVAL (operands[1]) <= 31 * 2 + 0x7e)
4029 || (INTVAL (operands[1]) >= 0
4030 && INTVAL (operands[1]) < 32 * 2
4031 && (INTVAL (operands[1]) & 1) != 0))"
4032 [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
4033 (set (match_dup 0) (mem:HI (plus:SI (match_dup 0) (match_dup 2))))]
4035 HOST_WIDE_INT val = INTVAL (operands[1]);
4038 operands[2] = const0_rtx;
4039 else if (val >= 32 * 2)
4043 operands[1] = GEN_INT (0x7e + off);
4044 operands[2] = GEN_INT (val - off - 0x7e);
4050 operands[1] = GEN_INT (off);
4051 operands[2] = GEN_INT (val - off);
4055 ;; 8-bit Integer moves
4057 ;; Unlike most other insns, the move insns can't be split with
4058 ;; different predicates, because register spilling and other parts of
4059 ;; the compiler, have memoized the insn number already.
4060 ;; Unsigned loads are used because LOAD_EXTEND_OP returns ZERO_EXTEND.
4062 (define_expand "movqi"
4063 [(set (match_operand:QI 0 "")
4064 (match_operand:QI 1 ""))]
4067 if (mips_legitimize_move (QImode, operands[0], operands[1]))
4071 (define_insn "*movqi_internal"
4072 [(set (match_operand:QI 0 "nonimmediate_operand" "=d,d,d,m,*a,*d")
4073 (match_operand:QI 1 "move_operand" "d,I,m,dJ,*d*J,*a"))]
4075 && (register_operand (operands[0], QImode)
4076 || reg_or_0_operand (operands[1], QImode))"
4077 { return mips_output_move (operands[0], operands[1]); }
4078 [(set_attr "move_type" "move,const,load,store,mthilo,mfhilo")
4079 (set_attr "mode" "QI")])
4081 (define_insn "*movqi_mips16"
4082 [(set (match_operand:QI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
4083 (match_operand:QI 1 "move_operand" "d,d,y,K,N,m,d,*a"))]
4085 && (register_operand (operands[0], QImode)
4086 || register_operand (operands[1], QImode))"
4087 { return mips_output_move (operands[0], operands[1]); }
4088 [(set_attr "move_type" "move,move,move,const,constN,load,store,mfhilo")
4089 (set_attr "mode" "QI")])
4091 ;; On the mips16, we can split lb $r,N($r) into an add and a load,
4092 ;; when the original load is a 4 byte instruction but the add and the
4093 ;; load are 2 2 byte instructions.
4096 [(set (match_operand:QI 0 "d_operand")
4097 (mem:QI (plus:SI (match_dup 0)
4098 (match_operand:SI 1 "const_int_operand"))))]
4099 "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4100 && ((INTVAL (operands[1]) < 0
4101 && INTVAL (operands[1]) >= -0x80)
4102 || (INTVAL (operands[1]) >= 32
4103 && INTVAL (operands[1]) <= 31 + 0x7f))"
4104 [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
4105 (set (match_dup 0) (mem:QI (plus:SI (match_dup 0) (match_dup 2))))]
4107 HOST_WIDE_INT val = INTVAL (operands[1]);
4110 operands[2] = const0_rtx;
4113 operands[1] = GEN_INT (0x7f);
4114 operands[2] = GEN_INT (val - 0x7f);
4118 ;; 32-bit floating point moves
4120 (define_expand "movsf"
4121 [(set (match_operand:SF 0 "")
4122 (match_operand:SF 1 ""))]
4125 if (mips_legitimize_move (SFmode, operands[0], operands[1]))
4129 (define_insn "*movsf_hardfloat"
4130 [(set (match_operand:SF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
4131 (match_operand:SF 1 "move_operand" "f,G,m,f,G,*d,*f,*G*d,*m,*d"))]
4133 && (register_operand (operands[0], SFmode)
4134 || reg_or_0_operand (operands[1], SFmode))"
4135 { return mips_output_move (operands[0], operands[1]); }
4136 [(set_attr "move_type" "fmove,mtc,fpload,fpstore,store,mtc,mfc,move,load,store")
4137 (set_attr "mode" "SF")])
4139 (define_insn "*movsf_softfloat"
4140 [(set (match_operand:SF 0 "nonimmediate_operand" "=d,d,m")
4141 (match_operand:SF 1 "move_operand" "Gd,m,d"))]
4142 "TARGET_SOFT_FLOAT && !TARGET_MIPS16
4143 && (register_operand (operands[0], SFmode)
4144 || reg_or_0_operand (operands[1], SFmode))"
4145 { return mips_output_move (operands[0], operands[1]); }
4146 [(set_attr "move_type" "move,load,store")
4147 (set_attr "mode" "SF")])
4149 (define_insn "*movsf_mips16"
4150 [(set (match_operand:SF 0 "nonimmediate_operand" "=d,y,d,d,m")
4151 (match_operand:SF 1 "move_operand" "d,d,y,m,d"))]
4153 && (register_operand (operands[0], SFmode)
4154 || register_operand (operands[1], SFmode))"
4155 { return mips_output_move (operands[0], operands[1]); }
4156 [(set_attr "move_type" "move,move,move,load,store")
4157 (set_attr "mode" "SF")])
4159 ;; 64-bit floating point moves
4161 (define_expand "movdf"
4162 [(set (match_operand:DF 0 "")
4163 (match_operand:DF 1 ""))]
4166 if (mips_legitimize_move (DFmode, operands[0], operands[1]))
4170 (define_insn "*movdf_hardfloat"
4171 [(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
4172 (match_operand:DF 1 "move_operand" "f,G,m,f,G,*d,*f,*d*G,*m,*d"))]
4173 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT
4174 && (register_operand (operands[0], DFmode)
4175 || reg_or_0_operand (operands[1], DFmode))"
4176 { return mips_output_move (operands[0], operands[1]); }
4177 [(set_attr "move_type" "fmove,mtc,fpload,fpstore,store,mtc,mfc,move,load,store")
4178 (set_attr "mode" "DF")])
4180 (define_insn "*movdf_softfloat"
4181 [(set (match_operand:DF 0 "nonimmediate_operand" "=d,d,m")
4182 (match_operand:DF 1 "move_operand" "dG,m,dG"))]
4183 "(TARGET_SOFT_FLOAT || TARGET_SINGLE_FLOAT) && !TARGET_MIPS16
4184 && (register_operand (operands[0], DFmode)
4185 || reg_or_0_operand (operands[1], DFmode))"
4186 { return mips_output_move (operands[0], operands[1]); }
4187 [(set_attr "move_type" "move,load,store")
4188 (set_attr "mode" "DF")])
4190 (define_insn "*movdf_mips16"
4191 [(set (match_operand:DF 0 "nonimmediate_operand" "=d,y,d,d,m")
4192 (match_operand:DF 1 "move_operand" "d,d,y,m,d"))]
4194 && (register_operand (operands[0], DFmode)
4195 || register_operand (operands[1], DFmode))"
4196 { return mips_output_move (operands[0], operands[1]); }
4197 [(set_attr "move_type" "move,move,move,load,store")
4198 (set_attr "mode" "DF")])
4200 ;; 128-bit integer moves
4202 (define_expand "movti"
4203 [(set (match_operand:TI 0)
4204 (match_operand:TI 1))]
4207 if (mips_legitimize_move (TImode, operands[0], operands[1]))
4211 (define_insn "*movti"
4212 [(set (match_operand:TI 0 "nonimmediate_operand" "=d,d,d,m,*a,*d")
4213 (match_operand:TI 1 "move_operand" "d,i,m,dJ,*d*J,*a"))]
4216 && (register_operand (operands[0], TImode)
4217 || reg_or_0_operand (operands[1], TImode))"
4219 [(set_attr "move_type" "move,const,load,store,mthilo,mfhilo")
4220 (set_attr "mode" "TI")])
4222 (define_insn "*movti_mips16"
4223 [(set (match_operand:TI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
4224 (match_operand:TI 1 "move_operand" "d,d,y,K,N,m,d,*a"))]
4227 && (register_operand (operands[0], TImode)
4228 || register_operand (operands[1], TImode))"
4230 [(set_attr "move_type" "move,move,move,const,constN,load,store,mfhilo")
4231 (set_attr "mode" "TI")])
4233 ;; 128-bit floating point moves
4235 (define_expand "movtf"
4236 [(set (match_operand:TF 0)
4237 (match_operand:TF 1))]
4240 if (mips_legitimize_move (TFmode, operands[0], operands[1]))
4244 ;; This pattern handles both hard- and soft-float cases.
4245 (define_insn "*movtf"
4246 [(set (match_operand:TF 0 "nonimmediate_operand" "=d,d,m,f,d,f,m")
4247 (match_operand:TF 1 "move_operand" "dG,m,dG,dG,f,m,f"))]
4250 && (register_operand (operands[0], TFmode)
4251 || reg_or_0_operand (operands[1], TFmode))"
4253 [(set_attr "move_type" "move,load,store,mtc,mfc,fpload,fpstore")
4254 (set_attr "mode" "TF")])
4256 (define_insn "*movtf_mips16"
4257 [(set (match_operand:TF 0 "nonimmediate_operand" "=d,y,d,d,m")
4258 (match_operand:TF 1 "move_operand" "d,d,y,m,d"))]
4261 && (register_operand (operands[0], TFmode)
4262 || register_operand (operands[1], TFmode))"
4264 [(set_attr "move_type" "move,move,move,load,store")
4265 (set_attr "mode" "TF")])
4268 [(set (match_operand:MOVE64 0 "nonimmediate_operand")
4269 (match_operand:MOVE64 1 "move_operand"))]
4270 "reload_completed && !TARGET_64BIT
4271 && mips_split_64bit_move_p (operands[0], operands[1])"
4274 mips_split_doubleword_move (operands[0], operands[1]);
4279 [(set (match_operand:MOVE128 0 "nonimmediate_operand")
4280 (match_operand:MOVE128 1 "move_operand"))]
4281 "TARGET_64BIT && reload_completed"
4284 mips_split_doubleword_move (operands[0], operands[1]);
4288 ;; When generating mips16 code, split moves of negative constants into
4289 ;; a positive "li" followed by a negation.
4291 [(set (match_operand 0 "d_operand")
4292 (match_operand 1 "const_int_operand"))]
4293 "TARGET_MIPS16 && reload_completed && INTVAL (operands[1]) < 0"
4297 (neg:SI (match_dup 2)))]
4299 operands[2] = gen_lowpart (SImode, operands[0]);
4300 operands[3] = GEN_INT (-INTVAL (operands[1]));
4303 ;; 64-bit paired-single floating point moves
4305 (define_expand "movv2sf"
4306 [(set (match_operand:V2SF 0)
4307 (match_operand:V2SF 1))]
4308 "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT"
4310 if (mips_legitimize_move (V2SFmode, operands[0], operands[1]))
4314 (define_insn "*movv2sf"
4315 [(set (match_operand:V2SF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
4316 (match_operand:V2SF 1 "move_operand" "f,YG,m,f,YG,*d,*f,*d*YG,*m,*d"))]
4318 && TARGET_PAIRED_SINGLE_FLOAT
4319 && (register_operand (operands[0], V2SFmode)
4320 || reg_or_0_operand (operands[1], V2SFmode))"
4321 { return mips_output_move (operands[0], operands[1]); }
4322 [(set_attr "move_type" "fmove,mtc,fpload,fpstore,store,mtc,mfc,move,load,store")
4323 (set_attr "mode" "DF")])
4325 ;; Extract the high part of a HI/LO value. See mips_hard_regno_mode_ok_p
4326 ;; for the reason why we can't just use (reg:GPR HI_REGNUM).
4328 ;; When generating VR4120 or VR4130 code, we use MACCHI and DMACCHI
4329 ;; instead of MFHI. This avoids both the normal MIPS III hi/lo hazards
4330 ;; and the errata related to -mfix-vr4130.
4331 (define_insn "mfhi<GPR:mode>_<HILO:mode>"
4332 [(set (match_operand:GPR 0 "register_operand" "=d")
4333 (unspec:GPR [(match_operand:HILO 1 "register_operand" "x")]
4336 { return ISA_HAS_MACCHI ? "<GPR:d>macchi\t%0,%.,%." : "mfhi\t%0"; }
4337 [(set_attr "move_type" "mfhilo")
4338 (set_attr "mode" "<GPR:MODE>")])
4340 ;; Set the high part of a HI/LO value, given that the low part has
4341 ;; already been set. See mips_hard_regno_mode_ok_p for the reason
4342 ;; why we can't just use (reg:GPR HI_REGNUM).
4343 (define_insn "mthi<GPR:mode>_<HILO:mode>"
4344 [(set (match_operand:HILO 0 "register_operand" "=x")
4345 (unspec:HILO [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
4346 (match_operand:GPR 2 "register_operand" "l")]
4350 [(set_attr "move_type" "mthilo")
4351 (set_attr "mode" "SI")])
4353 ;; Emit a doubleword move in which exactly one of the operands is
4354 ;; a floating-point register. We can't just emit two normal moves
4355 ;; because of the constraints imposed by the FPU register model;
4356 ;; see mips_cannot_change_mode_class for details. Instead, we keep
4357 ;; the FPR whole and use special patterns to refer to each word of
4358 ;; the other operand.
4360 (define_expand "move_doubleword_fpr<mode>"
4361 [(set (match_operand:SPLITF 0)
4362 (match_operand:SPLITF 1))]
4365 if (FP_REG_RTX_P (operands[0]))
4367 rtx low = mips_subword (operands[1], 0);
4368 rtx high = mips_subword (operands[1], 1);
4369 emit_insn (gen_load_low<mode> (operands[0], low));
4371 emit_insn (gen_mthc1<mode> (operands[0], high, operands[0]));
4373 emit_insn (gen_load_high<mode> (operands[0], high, operands[0]));
4377 rtx low = mips_subword (operands[0], 0);
4378 rtx high = mips_subword (operands[0], 1);
4379 emit_insn (gen_store_word<mode> (low, operands[1], const0_rtx));
4381 emit_insn (gen_mfhc1<mode> (high, operands[1]));
4383 emit_insn (gen_store_word<mode> (high, operands[1], const1_rtx));
4388 ;; Load the low word of operand 0 with operand 1.
4389 (define_insn "load_low<mode>"
4390 [(set (match_operand:SPLITF 0 "register_operand" "=f,f")
4391 (unspec:SPLITF [(match_operand:<HALFMODE> 1 "general_operand" "dJ,m")]
4395 operands[0] = mips_subword (operands[0], 0);
4396 return mips_output_move (operands[0], operands[1]);
4398 [(set_attr "move_type" "mtc,fpload")
4399 (set_attr "mode" "<HALFMODE>")])
4401 ;; Load the high word of operand 0 from operand 1, preserving the value
4403 (define_insn "load_high<mode>"
4404 [(set (match_operand:SPLITF 0 "register_operand" "=f,f")
4405 (unspec:SPLITF [(match_operand:<HALFMODE> 1 "general_operand" "dJ,m")
4406 (match_operand:SPLITF 2 "register_operand" "0,0")]
4410 operands[0] = mips_subword (operands[0], 1);
4411 return mips_output_move (operands[0], operands[1]);
4413 [(set_attr "move_type" "mtc,fpload")
4414 (set_attr "mode" "<HALFMODE>")])
4416 ;; Store one word of operand 1 in operand 0. Operand 2 is 1 to store the
4417 ;; high word and 0 to store the low word.
4418 (define_insn "store_word<mode>"
4419 [(set (match_operand:<HALFMODE> 0 "nonimmediate_operand" "=d,m")
4420 (unspec:<HALFMODE> [(match_operand:SPLITF 1 "register_operand" "f,f")
4421 (match_operand 2 "const_int_operand")]
4422 UNSPEC_STORE_WORD))]
4425 operands[1] = mips_subword (operands[1], INTVAL (operands[2]));
4426 return mips_output_move (operands[0], operands[1]);
4428 [(set_attr "move_type" "mfc,fpstore")
4429 (set_attr "mode" "<HALFMODE>")])
4431 ;; Move operand 1 to the high word of operand 0 using mthc1, preserving the
4432 ;; value in the low word.
4433 (define_insn "mthc1<mode>"
4434 [(set (match_operand:SPLITF 0 "register_operand" "=f")
4435 (unspec:SPLITF [(match_operand:<HALFMODE> 1 "general_operand" "dJ")
4436 (match_operand:SPLITF 2 "register_operand" "0")]
4438 "TARGET_HARD_FLOAT && ISA_HAS_MXHC1"
4440 [(set_attr "move_type" "mtc")
4441 (set_attr "mode" "<HALFMODE>")])
4443 ;; Move high word of operand 1 to operand 0 using mfhc1.
4444 (define_insn "mfhc1<mode>"
4445 [(set (match_operand:<HALFMODE> 0 "register_operand" "=d")
4446 (unspec:<HALFMODE> [(match_operand:SPLITF 1 "register_operand" "f")]
4448 "TARGET_HARD_FLOAT && ISA_HAS_MXHC1"
4450 [(set_attr "move_type" "mfc")
4451 (set_attr "mode" "<HALFMODE>")])
4453 ;; Move a constant that satisfies CONST_GP_P into operand 0.
4454 (define_expand "load_const_gp_<mode>"
4455 [(set (match_operand:P 0 "register_operand" "=d")
4456 (const:P (unspec:P [(const_int 0)] UNSPEC_GP)))])
4458 ;; Insn to initialize $gp for n32/n64 abicalls. Operand 0 is the offset
4459 ;; of _gp from the start of this function. Operand 1 is the incoming
4460 ;; function address.
4461 (define_insn_and_split "loadgp_newabi_<mode>"
4462 [(set (match_operand:P 0 "register_operand" "=d")
4463 (unspec_volatile:P [(match_operand:P 1)
4464 (match_operand:P 2 "register_operand" "d")]
4466 "mips_current_loadgp_style () == LOADGP_NEWABI"
4469 [(set (match_dup 0) (match_dup 3))
4470 (set (match_dup 0) (match_dup 4))
4471 (set (match_dup 0) (match_dup 5))]
4473 operands[3] = gen_rtx_HIGH (Pmode, operands[1]);
4474 operands[4] = gen_rtx_PLUS (Pmode, operands[0], operands[2]);
4475 operands[5] = gen_rtx_LO_SUM (Pmode, operands[0], operands[1]);
4477 [(set_attr "length" "12")])
4479 ;; Likewise, for -mno-shared code. Operand 0 is the __gnu_local_gp symbol.
4480 (define_insn_and_split "loadgp_absolute_<mode>"
4481 [(set (match_operand:P 0 "register_operand" "=d")
4482 (unspec_volatile:P [(match_operand:P 1)] UNSPEC_LOADGP))]
4483 "mips_current_loadgp_style () == LOADGP_ABSOLUTE"
4488 mips_emit_move (operands[0], operands[1]);
4491 [(set_attr "length" "8")])
4493 ;; This blockage instruction prevents the gp load from being
4494 ;; scheduled after an implicit use of gp. It also prevents
4495 ;; the load from being deleted as dead.
4496 (define_insn "loadgp_blockage"
4497 [(unspec_volatile [(reg:SI 28)] UNSPEC_BLOCKAGE)]
4500 [(set_attr "type" "ghost")
4501 (set_attr "mode" "none")])
4503 ;; Initialize $gp for RTP PIC. Operand 0 is the __GOTT_BASE__ symbol
4504 ;; and operand 1 is the __GOTT_INDEX__ symbol.
4505 (define_insn_and_split "loadgp_rtp_<mode>"
4506 [(set (match_operand:P 0 "register_operand" "=d")
4507 (unspec_volatile:P [(match_operand:P 1 "symbol_ref_operand")
4508 (match_operand:P 2 "symbol_ref_operand")]
4510 "mips_current_loadgp_style () == LOADGP_RTP"
4513 [(set (match_dup 0) (high:P (match_dup 3)))
4514 (set (match_dup 0) (unspec:P [(match_dup 0)
4515 (match_dup 3)] UNSPEC_LOAD_GOT))
4516 (set (match_dup 0) (unspec:P [(match_dup 0)
4517 (match_dup 4)] UNSPEC_LOAD_GOT))]
4519 operands[3] = mips_unspec_address (operands[1], SYMBOL_ABSOLUTE);
4520 operands[4] = mips_unspec_address (operands[2], SYMBOL_HALF);
4522 [(set_attr "length" "12")])
4524 ;; Emit a .cprestore directive, which normally expands to a single store
4525 ;; instruction. Note that we continue to use .cprestore for explicit reloc
4526 ;; code so that jals inside inline asms will work correctly.
4527 (define_insn "cprestore"
4528 [(unspec_volatile [(match_operand 0 "const_int_operand" "I,i")
4533 if (set_nomacro && which_alternative == 1)
4534 return ".set\tmacro\;.cprestore\t%0\;.set\tnomacro";
4536 return ".cprestore\t%0";
4538 [(set_attr "type" "store")
4539 (set_attr "length" "4,12")])
4541 ;; Expand in-line code to clear the instruction cache between operand[0] and
4543 (define_expand "clear_cache"
4544 [(match_operand 0 "pmode_register_operand")
4545 (match_operand 1 "pmode_register_operand")]
4551 mips_expand_synci_loop (operands[0], operands[1]);
4552 emit_insn (gen_sync ());
4553 emit_insn (gen_clear_hazard ());
4555 else if (mips_cache_flush_func && mips_cache_flush_func[0])
4557 rtx len = gen_reg_rtx (Pmode);
4558 emit_insn (gen_sub3_insn (len, operands[1], operands[0]));
4559 MIPS_ICACHE_SYNC (operands[0], len);
4565 [(unspec_volatile [(const_int 0)] UNSPEC_SYNC)]
4569 (define_insn "synci"
4570 [(unspec_volatile [(match_operand 0 "pmode_register_operand" "d")]
4575 (define_insn "rdhwr"
4576 [(set (match_operand:SI 0 "register_operand" "=d")
4577 (unspec_volatile [(match_operand:SI 1 "const_int_operand" "n")]
4582 (define_insn "clear_hazard"
4583 [(unspec_volatile [(const_int 0)] UNSPEC_CLEAR_HAZARD)
4584 (clobber (reg:SI 31))]
4587 return "%(%<bal\t1f\n"
4589 "1:\taddiu\t$31,$31,12\n"
4593 [(set_attr "length" "20")])
4595 ;; Atomic memory operations.
4597 (define_insn "memory_barrier"
4598 [(set (mem:BLK (scratch))
4599 (unspec:BLK [(const_int 0)] UNSPEC_MEMORY_BARRIER))]
4603 (define_insn "sync_compare_and_swap<mode>"
4604 [(set (match_operand:GPR 0 "register_operand" "=&d,&d")
4605 (match_operand:GPR 1 "memory_operand" "+R,R"))
4607 (unspec_volatile:GPR [(match_operand:GPR 2 "reg_or_0_operand" "dJ,dJ")
4608 (match_operand:GPR 3 "arith_operand" "I,d")]
4609 UNSPEC_COMPARE_AND_SWAP))]
4612 if (which_alternative == 0)
4613 return MIPS_COMPARE_AND_SWAP ("<d>", "li");
4615 return MIPS_COMPARE_AND_SWAP ("<d>", "move");
4617 [(set_attr "length" "32")])
4619 (define_expand "sync_compare_and_swap<mode>"
4620 [(match_operand:SHORT 0 "register_operand")
4621 (match_operand:SHORT 1 "memory_operand")
4622 (match_operand:SHORT 2 "general_operand")
4623 (match_operand:SHORT 3 "general_operand")]
4626 union mips_gen_fn_ptrs generator;
4627 generator.fn_6 = gen_compare_and_swap_12;
4628 mips_expand_atomic_qihi (generator,
4629 operands[0], operands[1], operands[2], operands[3]);
4633 ;; Helper insn for mips_expand_atomic_qihi.
4634 (define_insn "compare_and_swap_12"
4635 [(set (match_operand:SI 0 "register_operand" "=&d,&d")
4636 (match_operand:SI 1 "memory_operand" "+R,R"))
4638 (unspec_volatile:SI [(match_operand:SI 2 "register_operand" "d,d")
4639 (match_operand:SI 3 "register_operand" "d,d")
4640 (match_operand:SI 4 "reg_or_0_operand" "dJ,dJ")
4641 (match_operand:SI 5 "reg_or_0_operand" "d,J")]
4642 UNSPEC_COMPARE_AND_SWAP_12))]
4645 if (which_alternative == 0)
4646 return MIPS_COMPARE_AND_SWAP_12 (MIPS_COMPARE_AND_SWAP_12_NONZERO_OP);
4648 return MIPS_COMPARE_AND_SWAP_12 (MIPS_COMPARE_AND_SWAP_12_ZERO_OP);
4650 [(set_attr "length" "40,36")])
4652 (define_insn "sync_add<mode>"
4653 [(set (match_operand:GPR 0 "memory_operand" "+R,R")
4654 (unspec_volatile:GPR
4655 [(plus:GPR (match_dup 0)
4656 (match_operand:GPR 1 "arith_operand" "I,d"))]
4657 UNSPEC_SYNC_OLD_OP))]
4660 if (which_alternative == 0)
4661 return MIPS_SYNC_OP ("<d>", "<d>addiu");
4663 return MIPS_SYNC_OP ("<d>", "<d>addu");
4665 [(set_attr "length" "28")])
4667 (define_expand "sync_<optab><mode>"
4668 [(set (match_operand:SHORT 0 "memory_operand")
4669 (unspec_volatile:SHORT
4670 [(atomic_hiqi_op:SHORT (match_dup 0)
4671 (match_operand:SHORT 1 "general_operand"))]
4672 UNSPEC_SYNC_OLD_OP))]
4675 union mips_gen_fn_ptrs generator;
4676 generator.fn_4 = gen_sync_<optab>_12;
4677 mips_expand_atomic_qihi (generator,
4678 NULL, operands[0], operands[1], NULL);
4682 ;; Helper insn for sync_<optab><mode>
4683 (define_insn "sync_<optab>_12"
4684 [(set (match_operand:SI 0 "memory_operand" "+R")
4686 [(match_operand:SI 1 "register_operand" "d")
4687 (match_operand:SI 2 "register_operand" "d")
4688 (atomic_hiqi_op:SI (match_dup 0)
4689 (match_operand:SI 3 "register_operand" "dJ"))]
4690 UNSPEC_SYNC_OLD_OP_12))
4691 (clobber (match_scratch:SI 4 "=&d"))]
4694 return MIPS_SYNC_OP_12 ("<insn>", MIPS_SYNC_OP_12_NOT_NOP);
4696 [(set_attr "length" "40")])
4698 (define_expand "sync_old_<optab><mode>"
4700 (set (match_operand:SHORT 0 "register_operand")
4701 (match_operand:SHORT 1 "memory_operand"))
4703 (unspec_volatile:SHORT [(atomic_hiqi_op:SHORT
4705 (match_operand:SHORT 2 "general_operand"))]
4706 UNSPEC_SYNC_OLD_OP))])]
4709 union mips_gen_fn_ptrs generator;
4710 generator.fn_5 = gen_sync_old_<optab>_12;
4711 mips_expand_atomic_qihi (generator,
4712 operands[0], operands[1], operands[2], NULL);
4716 ;; Helper insn for sync_old_<optab><mode>
4717 (define_insn "sync_old_<optab>_12"
4718 [(set (match_operand:SI 0 "register_operand" "=&d")
4719 (match_operand:SI 1 "memory_operand" "+R"))
4722 [(match_operand:SI 2 "register_operand" "d")
4723 (match_operand:SI 3 "register_operand" "d")
4724 (atomic_hiqi_op:SI (match_dup 0)
4725 (match_operand:SI 4 "register_operand" "dJ"))]
4726 UNSPEC_SYNC_OLD_OP_12))
4727 (clobber (match_scratch:SI 5 "=&d"))]
4730 return MIPS_SYNC_OLD_OP_12 ("<insn>", MIPS_SYNC_OLD_OP_12_NOT_NOP,
4731 MIPS_SYNC_OLD_OP_12_NOT_NOP_REG);
4733 [(set_attr "length" "40")])
4735 (define_expand "sync_new_<optab><mode>"
4737 (set (match_operand:SHORT 0 "register_operand")
4738 (unspec_volatile:SHORT [(atomic_hiqi_op:SHORT
4739 (match_operand:SHORT 1 "memory_operand")
4740 (match_operand:SHORT 2 "general_operand"))]
4741 UNSPEC_SYNC_NEW_OP))
4743 (unspec_volatile:SHORT [(match_dup 1) (match_dup 2)]
4744 UNSPEC_SYNC_NEW_OP))])]
4747 union mips_gen_fn_ptrs generator;
4748 generator.fn_5 = gen_sync_new_<optab>_12;
4749 mips_expand_atomic_qihi (generator,
4750 operands[0], operands[1], operands[2], NULL);
4754 ;; Helper insn for sync_new_<optab><mode>
4755 (define_insn "sync_new_<optab>_12"
4756 [(set (match_operand:SI 0 "register_operand" "=&d")
4758 [(match_operand:SI 1 "memory_operand" "+R")
4759 (match_operand:SI 2 "register_operand" "d")
4760 (match_operand:SI 3 "register_operand" "d")
4761 (atomic_hiqi_op:SI (match_dup 0)
4762 (match_operand:SI 4 "register_operand" "dJ"))]
4763 UNSPEC_SYNC_NEW_OP_12))
4769 (match_dup 4)] UNSPEC_SYNC_NEW_OP_12))]
4772 return MIPS_SYNC_NEW_OP_12 ("<insn>", MIPS_SYNC_NEW_OP_12_NOT_NOP);
4774 [(set_attr "length" "40")])
4776 (define_expand "sync_nand<mode>"
4777 [(set (match_operand:SHORT 0 "memory_operand")
4778 (unspec_volatile:SHORT
4780 (match_operand:SHORT 1 "general_operand")]
4781 UNSPEC_SYNC_OLD_OP))]
4784 union mips_gen_fn_ptrs generator;
4785 generator.fn_4 = gen_sync_nand_12;
4786 mips_expand_atomic_qihi (generator,
4787 NULL, operands[0], operands[1], NULL);
4791 ;; Helper insn for sync_nand<mode>
4792 (define_insn "sync_nand_12"
4793 [(set (match_operand:SI 0 "memory_operand" "+R")
4795 [(match_operand:SI 1 "register_operand" "d")
4796 (match_operand:SI 2 "register_operand" "d")
4798 (match_operand:SI 3 "register_operand" "dJ")]
4799 UNSPEC_SYNC_OLD_OP_12))
4800 (clobber (match_scratch:SI 4 "=&d"))]
4803 return MIPS_SYNC_OP_12 ("and", MIPS_SYNC_OP_12_NOT_NOT);
4805 [(set_attr "length" "44")])
4807 (define_expand "sync_old_nand<mode>"
4809 (set (match_operand:SHORT 0 "register_operand")
4810 (match_operand:SHORT 1 "memory_operand"))
4812 (unspec_volatile:SHORT [(match_dup 1)
4813 (match_operand:SHORT 2 "general_operand")]
4814 UNSPEC_SYNC_OLD_OP))])]
4817 union mips_gen_fn_ptrs generator;
4818 generator.fn_5 = gen_sync_old_nand_12;
4819 mips_expand_atomic_qihi (generator,
4820 operands[0], operands[1], operands[2], NULL);
4824 ;; Helper insn for sync_old_nand<mode>
4825 (define_insn "sync_old_nand_12"
4826 [(set (match_operand:SI 0 "register_operand" "=&d")
4827 (match_operand:SI 1 "memory_operand" "+R"))
4830 [(match_operand:SI 2 "register_operand" "d")
4831 (match_operand:SI 3 "register_operand" "d")
4832 (match_operand:SI 4 "register_operand" "dJ")]
4833 UNSPEC_SYNC_OLD_OP_12))
4834 (clobber (match_scratch:SI 5 "=&d"))]
4837 return MIPS_SYNC_OLD_OP_12 ("and", MIPS_SYNC_OLD_OP_12_NOT_NOT,
4838 MIPS_SYNC_OLD_OP_12_NOT_NOT_REG);
4840 [(set_attr "length" "44")])
4842 (define_expand "sync_new_nand<mode>"
4844 (set (match_operand:SHORT 0 "register_operand")
4845 (unspec_volatile:SHORT [(match_operand:SHORT 1 "memory_operand")
4846 (match_operand:SHORT 2 "general_operand")]
4847 UNSPEC_SYNC_NEW_OP))
4849 (unspec_volatile:SHORT [(match_dup 1) (match_dup 2)]
4850 UNSPEC_SYNC_NEW_OP))])]
4853 union mips_gen_fn_ptrs generator;
4854 generator.fn_5 = gen_sync_new_nand_12;
4855 mips_expand_atomic_qihi (generator,
4856 operands[0], operands[1], operands[2], NULL);
4860 ;; Helper insn for sync_new_nand<mode>
4861 (define_insn "sync_new_nand_12"
4862 [(set (match_operand:SI 0 "register_operand" "=&d")
4864 [(match_operand:SI 1 "memory_operand" "+R")
4865 (match_operand:SI 2 "register_operand" "d")
4866 (match_operand:SI 3 "register_operand" "d")
4867 (match_operand:SI 4 "register_operand" "dJ")]
4868 UNSPEC_SYNC_NEW_OP_12))
4874 (match_dup 4)] UNSPEC_SYNC_NEW_OP_12))]
4877 return MIPS_SYNC_NEW_OP_12 ("and", MIPS_SYNC_NEW_OP_12_NOT_NOT);
4879 [(set_attr "length" "40")])
4881 (define_insn "sync_sub<mode>"
4882 [(set (match_operand:GPR 0 "memory_operand" "+R")
4883 (unspec_volatile:GPR
4884 [(minus:GPR (match_dup 0)
4885 (match_operand:GPR 1 "register_operand" "d"))]
4886 UNSPEC_SYNC_OLD_OP))]
4889 return MIPS_SYNC_OP ("<d>", "<d>subu");
4891 [(set_attr "length" "28")])
4893 (define_insn "sync_old_add<mode>"
4894 [(set (match_operand:GPR 0 "register_operand" "=&d,&d")
4895 (match_operand:GPR 1 "memory_operand" "+R,R"))
4897 (unspec_volatile:GPR
4898 [(plus:GPR (match_dup 1)
4899 (match_operand:GPR 2 "arith_operand" "I,d"))]
4900 UNSPEC_SYNC_OLD_OP))]
4903 if (which_alternative == 0)
4904 return MIPS_SYNC_OLD_OP ("<d>", "<d>addiu");
4906 return MIPS_SYNC_OLD_OP ("<d>", "<d>addu");
4908 [(set_attr "length" "28")])
4910 (define_insn "sync_old_sub<mode>"
4911 [(set (match_operand:GPR 0 "register_operand" "=&d")
4912 (match_operand:GPR 1 "memory_operand" "+R"))
4914 (unspec_volatile:GPR
4915 [(minus:GPR (match_dup 1)
4916 (match_operand:GPR 2 "register_operand" "d"))]
4917 UNSPEC_SYNC_OLD_OP))]
4920 return MIPS_SYNC_OLD_OP ("<d>", "<d>subu");
4922 [(set_attr "length" "28")])
4924 (define_insn "sync_new_add<mode>"
4925 [(set (match_operand:GPR 0 "register_operand" "=&d,&d")
4926 (plus:GPR (match_operand:GPR 1 "memory_operand" "+R,R")
4927 (match_operand:GPR 2 "arith_operand" "I,d")))
4929 (unspec_volatile:GPR
4930 [(plus:GPR (match_dup 1) (match_dup 2))]
4931 UNSPEC_SYNC_NEW_OP))]
4934 if (which_alternative == 0)
4935 return MIPS_SYNC_NEW_OP ("<d>", "<d>addiu");
4937 return MIPS_SYNC_NEW_OP ("<d>", "<d>addu");
4939 [(set_attr "length" "28")])
4941 (define_insn "sync_new_sub<mode>"
4942 [(set (match_operand:GPR 0 "register_operand" "=&d")
4943 (minus:GPR (match_operand:GPR 1 "memory_operand" "+R")
4944 (match_operand:GPR 2 "register_operand" "d")))
4946 (unspec_volatile:GPR
4947 [(minus:GPR (match_dup 1) (match_dup 2))]
4948 UNSPEC_SYNC_NEW_OP))]
4951 return MIPS_SYNC_NEW_OP ("<d>", "<d>subu");
4953 [(set_attr "length" "28")])
4955 (define_insn "sync_<optab><mode>"
4956 [(set (match_operand:GPR 0 "memory_operand" "+R,R")
4957 (unspec_volatile:GPR
4958 [(fetchop_bit:GPR (match_operand:GPR 1 "uns_arith_operand" "K,d")
4960 UNSPEC_SYNC_OLD_OP))]
4963 if (which_alternative == 0)
4964 return MIPS_SYNC_OP ("<d>", "<immediate_insn>");
4966 return MIPS_SYNC_OP ("<d>", "<insn>");
4968 [(set_attr "length" "28")])
4970 (define_insn "sync_old_<optab><mode>"
4971 [(set (match_operand:GPR 0 "register_operand" "=&d,&d")
4972 (match_operand:GPR 1 "memory_operand" "+R,R"))
4974 (unspec_volatile:GPR
4975 [(fetchop_bit:GPR (match_operand:GPR 2 "uns_arith_operand" "K,d")
4977 UNSPEC_SYNC_OLD_OP))]
4980 if (which_alternative == 0)
4981 return MIPS_SYNC_OLD_OP ("<d>", "<immediate_insn>");
4983 return MIPS_SYNC_OLD_OP ("<d>", "<insn>");
4985 [(set_attr "length" "28")])
4987 (define_insn "sync_new_<optab><mode>"
4988 [(set (match_operand:GPR 0 "register_operand" "=&d,&d")
4989 (match_operand:GPR 1 "memory_operand" "+R,R"))
4991 (unspec_volatile:GPR
4992 [(fetchop_bit:GPR (match_operand:GPR 2 "uns_arith_operand" "K,d")
4994 UNSPEC_SYNC_NEW_OP))]
4997 if (which_alternative == 0)
4998 return MIPS_SYNC_NEW_OP ("<d>", "<immediate_insn>");
5000 return MIPS_SYNC_NEW_OP ("<d>", "<insn>");
5002 [(set_attr "length" "28")])
5004 (define_insn "sync_nand<mode>"
5005 [(set (match_operand:GPR 0 "memory_operand" "+R,R")
5006 (unspec_volatile:GPR [(match_operand:GPR 1 "uns_arith_operand" "K,d")]
5007 UNSPEC_SYNC_OLD_OP))]
5010 if (which_alternative == 0)
5011 return MIPS_SYNC_NAND ("<d>", "andi");
5013 return MIPS_SYNC_NAND ("<d>", "and");
5015 [(set_attr "length" "32")])
5017 (define_insn "sync_old_nand<mode>"
5018 [(set (match_operand:GPR 0 "register_operand" "=&d,&d")
5019 (match_operand:GPR 1 "memory_operand" "+R,R"))
5021 (unspec_volatile:GPR [(match_operand:GPR 2 "uns_arith_operand" "K,d")]
5022 UNSPEC_SYNC_OLD_OP))]
5025 if (which_alternative == 0)
5026 return MIPS_SYNC_OLD_NAND ("<d>", "andi");
5028 return MIPS_SYNC_OLD_NAND ("<d>", "and");
5030 [(set_attr "length" "32")])
5032 (define_insn "sync_new_nand<mode>"
5033 [(set (match_operand:GPR 0 "register_operand" "=&d,&d")
5034 (match_operand:GPR 1 "memory_operand" "+R,R"))
5036 (unspec_volatile:GPR [(match_operand:GPR 2 "uns_arith_operand" "K,d")]
5037 UNSPEC_SYNC_NEW_OP))]
5040 if (which_alternative == 0)
5041 return MIPS_SYNC_NEW_NAND ("<d>", "andi");
5043 return MIPS_SYNC_NEW_NAND ("<d>", "and");
5045 [(set_attr "length" "32")])
5047 (define_insn "sync_lock_test_and_set<mode>"
5048 [(set (match_operand:GPR 0 "register_operand" "=&d,&d")
5049 (match_operand:GPR 1 "memory_operand" "+R,R"))
5051 (unspec_volatile:GPR [(match_operand:GPR 2 "arith_operand" "I,d")]
5052 UNSPEC_SYNC_EXCHANGE))]
5055 if (which_alternative == 0)
5056 return MIPS_SYNC_EXCHANGE ("<d>", "li");
5058 return MIPS_SYNC_EXCHANGE ("<d>", "move");
5060 [(set_attr "length" "24")])
5062 (define_expand "sync_lock_test_and_set<mode>"
5063 [(match_operand:SHORT 0 "register_operand")
5064 (match_operand:SHORT 1 "memory_operand")
5065 (match_operand:SHORT 2 "general_operand")]
5068 union mips_gen_fn_ptrs generator;
5069 generator.fn_5 = gen_test_and_set_12;
5070 mips_expand_atomic_qihi (generator,
5071 operands[0], operands[1], operands[2], NULL);
5075 (define_insn "test_and_set_12"
5076 [(set (match_operand:SI 0 "register_operand" "=&d,&d")
5077 (match_operand:SI 1 "memory_operand" "+R,R"))
5079 (unspec_volatile:SI [(match_operand:SI 2 "register_operand" "d,d")
5080 (match_operand:SI 3 "register_operand" "d,d")
5081 (match_operand:SI 4 "arith_operand" "d,J")]
5082 UNSPEC_SYNC_EXCHANGE_12))]
5085 if (which_alternative == 0)
5086 return MIPS_SYNC_EXCHANGE_12 (MIPS_SYNC_EXCHANGE_12_NONZERO_OP);
5088 return MIPS_SYNC_EXCHANGE_12 (MIPS_SYNC_EXCHANGE_12_ZERO_OP);
5090 [(set_attr "length" "28,24")])
5092 ;; Block moves, see mips.c for more details.
5093 ;; Argument 0 is the destination
5094 ;; Argument 1 is the source
5095 ;; Argument 2 is the length
5096 ;; Argument 3 is the alignment
5098 (define_expand "movmemsi"
5099 [(parallel [(set (match_operand:BLK 0 "general_operand")
5100 (match_operand:BLK 1 "general_operand"))
5101 (use (match_operand:SI 2 ""))
5102 (use (match_operand:SI 3 "const_int_operand"))])]
5103 "!TARGET_MIPS16 && !TARGET_MEMCPY"
5105 if (mips_expand_block_move (operands[0], operands[1], operands[2]))
5112 ;; ....................
5116 ;; ....................
5118 (define_expand "<optab><mode>3"
5119 [(set (match_operand:GPR 0 "register_operand")
5120 (any_shift:GPR (match_operand:GPR 1 "register_operand")
5121 (match_operand:SI 2 "arith_operand")))]
5124 /* On the mips16, a shift of more than 8 is a four byte instruction,
5125 so, for a shift between 8 and 16, it is just as fast to do two
5126 shifts of 8 or less. If there is a lot of shifting going on, we
5127 may win in CSE. Otherwise combine will put the shifts back
5128 together again. This can be called by mips_function_arg, so we must
5129 be careful not to allocate a new register if we've reached the
5133 && GET_CODE (operands[2]) == CONST_INT
5134 && INTVAL (operands[2]) > 8
5135 && INTVAL (operands[2]) <= 16
5136 && !reload_in_progress
5137 && !reload_completed)
5139 rtx temp = gen_reg_rtx (<MODE>mode);
5141 emit_insn (gen_<optab><mode>3 (temp, operands[1], GEN_INT (8)));
5142 emit_insn (gen_<optab><mode>3 (operands[0], temp,
5143 GEN_INT (INTVAL (operands[2]) - 8)));
5148 (define_insn "*<optab><mode>3"
5149 [(set (match_operand:GPR 0 "register_operand" "=d")
5150 (any_shift:GPR (match_operand:GPR 1 "register_operand" "d")
5151 (match_operand:SI 2 "arith_operand" "dI")))]
5154 if (GET_CODE (operands[2]) == CONST_INT)
5155 operands[2] = GEN_INT (INTVAL (operands[2])
5156 & (GET_MODE_BITSIZE (<MODE>mode) - 1));
5158 return "<d><insn>\t%0,%1,%2";
5160 [(set_attr "type" "shift")
5161 (set_attr "mode" "<MODE>")])
5163 (define_insn "*<optab>si3_extend"
5164 [(set (match_operand:DI 0 "register_operand" "=d")
5166 (any_shift:SI (match_operand:SI 1 "register_operand" "d")
5167 (match_operand:SI 2 "arith_operand" "dI"))))]
5168 "TARGET_64BIT && !TARGET_MIPS16"
5170 if (GET_CODE (operands[2]) == CONST_INT)
5171 operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
5173 return "<insn>\t%0,%1,%2";
5175 [(set_attr "type" "shift")
5176 (set_attr "mode" "SI")])
5178 (define_insn "*<optab>si3_mips16"
5179 [(set (match_operand:SI 0 "register_operand" "=d,d")
5180 (any_shift:SI (match_operand:SI 1 "register_operand" "0,d")
5181 (match_operand:SI 2 "arith_operand" "d,I")))]
5184 if (which_alternative == 0)
5185 return "<insn>\t%0,%2";
5187 operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
5188 return "<insn>\t%0,%1,%2";
5190 [(set_attr "type" "shift")
5191 (set_attr "mode" "SI")
5192 (set_attr_alternative "length"
5194 (if_then_else (match_operand 2 "m16_uimm3_b")
5198 ;; We need separate DImode MIPS16 patterns because of the irregularity
5200 (define_insn "*ashldi3_mips16"
5201 [(set (match_operand:DI 0 "register_operand" "=d,d")
5202 (ashift:DI (match_operand:DI 1 "register_operand" "0,d")
5203 (match_operand:SI 2 "arith_operand" "d,I")))]
5204 "TARGET_64BIT && TARGET_MIPS16"
5206 if (which_alternative == 0)
5207 return "dsll\t%0,%2";
5209 operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
5210 return "dsll\t%0,%1,%2";
5212 [(set_attr "type" "shift")
5213 (set_attr "mode" "DI")
5214 (set_attr_alternative "length"
5216 (if_then_else (match_operand 2 "m16_uimm3_b")
5220 (define_insn "*ashrdi3_mips16"
5221 [(set (match_operand:DI 0 "register_operand" "=d,d")
5222 (ashiftrt:DI (match_operand:DI 1 "register_operand" "0,0")
5223 (match_operand:SI 2 "arith_operand" "d,I")))]
5224 "TARGET_64BIT && TARGET_MIPS16"
5226 if (GET_CODE (operands[2]) == CONST_INT)
5227 operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
5229 return "dsra\t%0,%2";
5231 [(set_attr "type" "shift")
5232 (set_attr "mode" "DI")
5233 (set_attr_alternative "length"
5235 (if_then_else (match_operand 2 "m16_uimm3_b")
5239 (define_insn "*lshrdi3_mips16"
5240 [(set (match_operand:DI 0 "register_operand" "=d,d")
5241 (lshiftrt:DI (match_operand:DI 1 "register_operand" "0,0")
5242 (match_operand:SI 2 "arith_operand" "d,I")))]
5243 "TARGET_64BIT && TARGET_MIPS16"
5245 if (GET_CODE (operands[2]) == CONST_INT)
5246 operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
5248 return "dsrl\t%0,%2";
5250 [(set_attr "type" "shift")
5251 (set_attr "mode" "DI")
5252 (set_attr_alternative "length"
5254 (if_then_else (match_operand 2 "m16_uimm3_b")
5258 ;; On the mips16, we can split a 4 byte shift into 2 2 byte shifts.
5261 [(set (match_operand:GPR 0 "d_operand")
5262 (any_shift:GPR (match_operand:GPR 1 "d_operand")
5263 (match_operand:GPR 2 "const_int_operand")))]
5264 "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
5265 && INTVAL (operands[2]) > 8
5266 && INTVAL (operands[2]) <= 16"
5267 [(set (match_dup 0) (any_shift:GPR (match_dup 1) (const_int 8)))
5268 (set (match_dup 0) (any_shift:GPR (match_dup 0) (match_dup 2)))]
5269 { operands[2] = GEN_INT (INTVAL (operands[2]) - 8); })
5271 ;; If we load a byte on the mips16 as a bitfield, the resulting
5272 ;; sequence of instructions is too complicated for combine, because it
5273 ;; involves four instructions: a load, a shift, a constant load into a
5274 ;; register, and an and (the key problem here is that the mips16 does
5275 ;; not have and immediate). We recognize a shift of a load in order
5276 ;; to make it simple enough for combine to understand.
5278 ;; The length here is the worst case: the length of the split version
5279 ;; will be more accurate.
5280 (define_insn_and_split ""
5281 [(set (match_operand:SI 0 "register_operand" "=d")
5282 (lshiftrt:SI (match_operand:SI 1 "memory_operand" "m")
5283 (match_operand:SI 2 "immediate_operand" "I")))]
5287 [(set (match_dup 0) (match_dup 1))
5288 (set (match_dup 0) (lshiftrt:SI (match_dup 0) (match_dup 2)))]
5290 [(set_attr "type" "load")
5291 (set_attr "mode" "SI")
5292 (set_attr "length" "16")])
5294 (define_insn "rotr<mode>3"
5295 [(set (match_operand:GPR 0 "register_operand" "=d")
5296 (rotatert:GPR (match_operand:GPR 1 "register_operand" "d")
5297 (match_operand:SI 2 "arith_operand" "dI")))]
5300 if (GET_CODE (operands[2]) == CONST_INT)
5301 gcc_assert (INTVAL (operands[2]) >= 0
5302 && INTVAL (operands[2]) < GET_MODE_BITSIZE (<MODE>mode));
5304 return "<d>ror\t%0,%1,%2";
5306 [(set_attr "type" "shift")
5307 (set_attr "mode" "<MODE>")])
5310 ;; ....................
5314 ;; ....................
5316 ;; Flow here is rather complex:
5318 ;; 1) The cmp{si,di,sf,df} routine is called. It deposits the arguments
5319 ;; into cmp_operands[] but generates no RTL.
5321 ;; 2) The appropriate branch define_expand is called, which then
5322 ;; creates the appropriate RTL for the comparison and branch.
5323 ;; Different CC modes are used, based on what type of branch is
5324 ;; done, so that we can constrain things appropriately. There
5325 ;; are assumptions in the rest of GCC that break if we fold the
5326 ;; operands into the branches for integer operations, and use cc0
5327 ;; for floating point, so we use the fp status register instead.
5328 ;; If needed, an appropriate temporary is created to hold the
5329 ;; of the integer compare.
5331 (define_expand "cmp<mode>"
5333 (compare:CC (match_operand:GPR 0 "register_operand")
5334 (match_operand:GPR 1 "nonmemory_operand")))]
5337 cmp_operands[0] = operands[0];
5338 cmp_operands[1] = operands[1];
5342 (define_expand "cmp<mode>"
5344 (compare:CC (match_operand:SCALARF 0 "register_operand")
5345 (match_operand:SCALARF 1 "register_operand")))]
5348 cmp_operands[0] = operands[0];
5349 cmp_operands[1] = operands[1];
5354 ;; ....................
5356 ;; CONDITIONAL BRANCHES
5358 ;; ....................
5360 ;; Conditional branches on floating-point equality tests.
5362 (define_insn "*branch_fp"
5365 (match_operator 0 "equality_operator"
5366 [(match_operand:CC 2 "register_operand" "z")
5368 (label_ref (match_operand 1 "" ""))
5372 return mips_output_conditional_branch (insn, operands,
5373 MIPS_BRANCH ("b%F0", "%Z2%1"),
5374 MIPS_BRANCH ("b%W0", "%Z2%1"));
5376 [(set_attr "type" "branch")
5377 (set_attr "mode" "none")])
5379 (define_insn "*branch_fp_inverted"
5382 (match_operator 0 "equality_operator"
5383 [(match_operand:CC 2 "register_operand" "z")
5386 (label_ref (match_operand 1 "" ""))))]
5389 return mips_output_conditional_branch (insn, operands,
5390 MIPS_BRANCH ("b%W0", "%Z2%1"),
5391 MIPS_BRANCH ("b%F0", "%Z2%1"));
5393 [(set_attr "type" "branch")
5394 (set_attr "mode" "none")])
5396 ;; Conditional branches on ordered comparisons with zero.
5398 (define_insn "*branch_order<mode>"
5401 (match_operator 0 "order_operator"
5402 [(match_operand:GPR 2 "register_operand" "d")
5404 (label_ref (match_operand 1 "" ""))
5407 { return mips_output_order_conditional_branch (insn, operands, false); }
5408 [(set_attr "type" "branch")
5409 (set_attr "mode" "none")])
5411 (define_insn "*branch_order<mode>_inverted"
5414 (match_operator 0 "order_operator"
5415 [(match_operand:GPR 2 "register_operand" "d")
5418 (label_ref (match_operand 1 "" ""))))]
5420 { return mips_output_order_conditional_branch (insn, operands, true); }
5421 [(set_attr "type" "branch")
5422 (set_attr "mode" "none")])
5424 ;; Conditional branch on equality comparison.
5426 (define_insn "*branch_equality<mode>"
5429 (match_operator 0 "equality_operator"
5430 [(match_operand:GPR 2 "register_operand" "d")
5431 (match_operand:GPR 3 "reg_or_0_operand" "dJ")])
5432 (label_ref (match_operand 1 "" ""))
5436 return mips_output_conditional_branch (insn, operands,
5437 MIPS_BRANCH ("b%C0", "%2,%z3,%1"),
5438 MIPS_BRANCH ("b%N0", "%2,%z3,%1"));
5440 [(set_attr "type" "branch")
5441 (set_attr "mode" "none")])
5443 (define_insn "*branch_equality<mode>_inverted"
5446 (match_operator 0 "equality_operator"
5447 [(match_operand:GPR 2 "register_operand" "d")
5448 (match_operand:GPR 3 "reg_or_0_operand" "dJ")])
5450 (label_ref (match_operand 1 "" ""))))]
5453 return mips_output_conditional_branch (insn, operands,
5454 MIPS_BRANCH ("b%N0", "%2,%z3,%1"),
5455 MIPS_BRANCH ("b%C0", "%2,%z3,%1"));
5457 [(set_attr "type" "branch")
5458 (set_attr "mode" "none")])
5462 (define_insn "*branch_equality<mode>_mips16"
5465 (match_operator 0 "equality_operator"
5466 [(match_operand:GPR 1 "register_operand" "d,t")
5468 (match_operand 2 "pc_or_label_operand" "")
5469 (match_operand 3 "pc_or_label_operand" "")))]
5472 if (operands[2] != pc_rtx)
5474 if (which_alternative == 0)
5475 return "b%C0z\t%1,%2";
5477 return "bt%C0z\t%2";
5481 if (which_alternative == 0)
5482 return "b%N0z\t%1,%3";
5484 return "bt%N0z\t%3";
5487 [(set_attr "type" "branch")
5488 (set_attr "mode" "none")])
5490 (define_expand "b<code>"
5492 (if_then_else (any_cond:CC (cc0)
5494 (label_ref (match_operand 0 ""))
5498 mips_expand_conditional_branch (operands, <CODE>);
5502 ;; Used to implement built-in functions.
5503 (define_expand "condjump"
5505 (if_then_else (match_operand 0)
5506 (label_ref (match_operand 1))
5510 ;; ....................
5512 ;; SETTING A REGISTER FROM A COMPARISON
5514 ;; ....................
5516 ;; Destination is always set in SI mode.
5518 (define_expand "seq"
5519 [(set (match_operand:SI 0 "register_operand")
5520 (eq:SI (match_dup 1)
5523 { if (mips_expand_scc (EQ, operands[0])) DONE; else FAIL; })
5525 (define_insn "*seq_<GPR:mode><GPR2:mode>"
5526 [(set (match_operand:GPR2 0 "register_operand" "=d")
5527 (eq:GPR2 (match_operand:GPR 1 "register_operand" "d")
5531 [(set_attr "type" "slt")
5532 (set_attr "mode" "<GPR:MODE>")])
5534 (define_insn "*seq_<GPR:mode><GPR2:mode>_mips16"
5535 [(set (match_operand:GPR2 0 "register_operand" "=t")
5536 (eq:GPR2 (match_operand:GPR 1 "register_operand" "d")
5540 [(set_attr "type" "slt")
5541 (set_attr "mode" "<GPR:MODE>")])
5543 ;; "sne" uses sltu instructions in which the first operand is $0.
5544 ;; This isn't possible in mips16 code.
5546 (define_expand "sne"
5547 [(set (match_operand:SI 0 "register_operand")
5548 (ne:SI (match_dup 1)
5551 { if (mips_expand_scc (NE, operands[0])) DONE; else FAIL; })
5553 (define_insn "*sne_<GPR:mode><GPR2:mode>"
5554 [(set (match_operand:GPR2 0 "register_operand" "=d")
5555 (ne:GPR2 (match_operand:GPR 1 "register_operand" "d")
5559 [(set_attr "type" "slt")
5560 (set_attr "mode" "<GPR:MODE>")])
5562 (define_expand "sgt<u>"
5563 [(set (match_operand:SI 0 "register_operand")
5564 (any_gt:SI (match_dup 1)
5567 { if (mips_expand_scc (<CODE>, operands[0])) DONE; else FAIL; })
5569 (define_insn "*sgt<u>_<GPR:mode><GPR2:mode>"
5570 [(set (match_operand:GPR2 0 "register_operand" "=d")
5571 (any_gt:GPR2 (match_operand:GPR 1 "register_operand" "d")
5572 (match_operand:GPR 2 "reg_or_0_operand" "dJ")))]
5575 [(set_attr "type" "slt")
5576 (set_attr "mode" "<GPR:MODE>")])
5578 (define_insn "*sgt<u>_<GPR:mode><GPR2:mode>_mips16"
5579 [(set (match_operand:GPR2 0 "register_operand" "=t")
5580 (any_gt:GPR2 (match_operand:GPR 1 "register_operand" "d")
5581 (match_operand:GPR 2 "register_operand" "d")))]
5584 [(set_attr "type" "slt")
5585 (set_attr "mode" "<GPR:MODE>")])
5587 (define_expand "sge<u>"
5588 [(set (match_operand:SI 0 "register_operand")
5589 (any_ge:SI (match_dup 1)
5592 { if (mips_expand_scc (<CODE>, operands[0])) DONE; else FAIL; })
5594 (define_insn "*sge<u>_<GPR:mode><GPR2:mode>"
5595 [(set (match_operand:GPR2 0 "register_operand" "=d")
5596 (any_ge:GPR2 (match_operand:GPR 1 "register_operand" "d")
5600 [(set_attr "type" "slt")
5601 (set_attr "mode" "<GPR:MODE>")])
5603 (define_expand "slt<u>"
5604 [(set (match_operand:SI 0 "register_operand")
5605 (any_lt:SI (match_dup 1)
5608 { if (mips_expand_scc (<CODE>, operands[0])) DONE; else FAIL; })
5610 (define_insn "*slt<u>_<GPR:mode><GPR2:mode>"
5611 [(set (match_operand:GPR2 0 "register_operand" "=d")
5612 (any_lt:GPR2 (match_operand:GPR 1 "register_operand" "d")
5613 (match_operand:GPR 2 "arith_operand" "dI")))]
5616 [(set_attr "type" "slt")
5617 (set_attr "mode" "<GPR:MODE>")])
5619 (define_insn "*slt<u>_<GPR:mode><GPR2:mode>_mips16"
5620 [(set (match_operand:GPR2 0 "register_operand" "=t,t")
5621 (any_lt:GPR2 (match_operand:GPR 1 "register_operand" "d,d")
5622 (match_operand:GPR 2 "arith_operand" "d,I")))]
5625 [(set_attr "type" "slt")
5626 (set_attr "mode" "<GPR:MODE>")
5627 (set_attr_alternative "length"
5629 (if_then_else (match_operand 2 "m16_uimm8_1")
5633 (define_expand "sle<u>"
5634 [(set (match_operand:SI 0 "register_operand")
5635 (any_le:SI (match_dup 1)
5638 { if (mips_expand_scc (<CODE>, operands[0])) DONE; else FAIL; })
5640 (define_insn "*sle<u>_<GPR:mode><GPR2:mode>"
5641 [(set (match_operand:GPR2 0 "register_operand" "=d")
5642 (any_le:GPR2 (match_operand:GPR 1 "register_operand" "d")
5643 (match_operand:GPR 2 "sle_operand" "")))]
5646 operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
5647 return "slt<u>\t%0,%1,%2";
5649 [(set_attr "type" "slt")
5650 (set_attr "mode" "<GPR:MODE>")])
5652 (define_insn "*sle<u>_<GPR:mode><GPR2:mode>_mips16"
5653 [(set (match_operand:GPR2 0 "register_operand" "=t")
5654 (any_le:GPR2 (match_operand:GPR 1 "register_operand" "d")
5655 (match_operand:GPR 2 "sle_operand" "")))]
5658 operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
5659 return "slt<u>\t%1,%2";
5661 [(set_attr "type" "slt")
5662 (set_attr "mode" "<GPR:MODE>")
5663 (set (attr "length") (if_then_else (match_operand 2 "m16_uimm8_m1_1")
5668 ;; ....................
5670 ;; FLOATING POINT COMPARISONS
5672 ;; ....................
5674 (define_insn "s<code>_<mode>"
5675 [(set (match_operand:CC 0 "register_operand" "=z")
5676 (fcond:CC (match_operand:SCALARF 1 "register_operand" "f")
5677 (match_operand:SCALARF 2 "register_operand" "f")))]
5679 "c.<fcond>.<fmt>\t%Z0%1,%2"
5680 [(set_attr "type" "fcmp")
5681 (set_attr "mode" "FPSW")])
5683 (define_insn "s<code>_<mode>"
5684 [(set (match_operand:CC 0 "register_operand" "=z")
5685 (swapped_fcond:CC (match_operand:SCALARF 1 "register_operand" "f")
5686 (match_operand:SCALARF 2 "register_operand" "f")))]
5688 "c.<swapped_fcond>.<fmt>\t%Z0%2,%1"
5689 [(set_attr "type" "fcmp")
5690 (set_attr "mode" "FPSW")])
5693 ;; ....................
5695 ;; UNCONDITIONAL BRANCHES
5697 ;; ....................
5699 ;; Unconditional branches.
5703 (label_ref (match_operand 0 "" "")))]
5708 if (get_attr_length (insn) <= 8)
5709 return "%*b\t%l0%/";
5712 output_asm_insn (mips_output_load_label (), operands);
5713 return "%*jr\t%@%/%]";
5717 return "%*j\t%l0%/";
5719 [(set_attr "type" "jump")
5720 (set_attr "mode" "none")
5721 (set (attr "length")
5722 ;; We can't use `j' when emitting PIC. Emit a branch if it's
5723 ;; in range, otherwise load the address of the branch target into
5724 ;; $at and then jump to it.
5726 (ior (eq (symbol_ref "flag_pic") (const_int 0))
5727 (lt (abs (minus (match_dup 0)
5728 (plus (pc) (const_int 4))))
5729 (const_int 131072)))
5730 (const_int 4) (const_int 16)))])
5732 ;; We need a different insn for the mips16, because a mips16 branch
5733 ;; does not have a delay slot.
5737 (label_ref (match_operand 0 "" "")))]
5740 [(set_attr "type" "branch")
5741 (set_attr "mode" "none")])
5743 (define_expand "indirect_jump"
5744 [(set (pc) (match_operand 0 "register_operand"))]
5747 operands[0] = force_reg (Pmode, operands[0]);
5748 if (Pmode == SImode)
5749 emit_jump_insn (gen_indirect_jumpsi (operands[0]));
5751 emit_jump_insn (gen_indirect_jumpdi (operands[0]));
5755 (define_insn "indirect_jump<mode>"
5756 [(set (pc) (match_operand:P 0 "register_operand" "d"))]
5759 [(set_attr "type" "jump")
5760 (set_attr "mode" "none")])
5762 (define_expand "tablejump"
5764 (match_operand 0 "register_operand"))
5765 (use (label_ref (match_operand 1 "")))]
5768 if (TARGET_MIPS16_SHORT_JUMP_TABLES)
5769 operands[0] = expand_binop (Pmode, add_optab,
5770 convert_to_mode (Pmode, operands[0], false),
5771 gen_rtx_LABEL_REF (Pmode, operands[1]),
5773 else if (TARGET_GPWORD)
5774 operands[0] = expand_binop (Pmode, add_optab, operands[0],
5775 pic_offset_table_rtx, 0, 0, OPTAB_WIDEN);
5776 else if (TARGET_RTP_PIC)
5778 /* When generating RTP PIC, we use case table entries that are relative
5779 to the start of the function. Add the function's address to the
5781 rtx start = get_hard_reg_initial_val (Pmode, PIC_FUNCTION_ADDR_REGNUM);
5782 operands[0] = expand_binop (ptr_mode, add_optab, operands[0],
5783 start, 0, 0, OPTAB_WIDEN);
5786 if (Pmode == SImode)
5787 emit_jump_insn (gen_tablejumpsi (operands[0], operands[1]));
5789 emit_jump_insn (gen_tablejumpdi (operands[0], operands[1]));
5793 (define_insn "tablejump<mode>"
5795 (match_operand:P 0 "register_operand" "d"))
5796 (use (label_ref (match_operand 1 "" "")))]
5799 [(set_attr "type" "jump")
5800 (set_attr "mode" "none")])
5802 ;; For TARGET_USE_GOT, we save the gp in the jmp_buf as well.
5803 ;; While it is possible to either pull it off the stack (in the
5804 ;; o32 case) or recalculate it given t9 and our target label,
5805 ;; it takes 3 or 4 insns to do so.
5807 (define_expand "builtin_setjmp_setup"
5808 [(use (match_operand 0 "register_operand"))]
5813 addr = plus_constant (operands[0], GET_MODE_SIZE (Pmode) * 3);
5814 mips_emit_move (gen_rtx_MEM (Pmode, addr), pic_offset_table_rtx);
5818 ;; Restore the gp that we saved above. Despite the earlier comment, it seems
5819 ;; that older code did recalculate the gp from $25. Continue to jump through
5820 ;; $25 for compatibility (we lose nothing by doing so).
5822 (define_expand "builtin_longjmp"
5823 [(use (match_operand 0 "register_operand"))]
5826 /* The elements of the buffer are, in order: */
5827 int W = GET_MODE_SIZE (Pmode);
5828 rtx fp = gen_rtx_MEM (Pmode, operands[0]);
5829 rtx lab = gen_rtx_MEM (Pmode, plus_constant (operands[0], 1*W));
5830 rtx stack = gen_rtx_MEM (Pmode, plus_constant (operands[0], 2*W));
5831 rtx gpv = gen_rtx_MEM (Pmode, plus_constant (operands[0], 3*W));
5832 rtx pv = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
5833 /* Use gen_raw_REG to avoid being given pic_offset_table_rtx.
5834 The target is bound to be using $28 as the global pointer
5835 but the current function might not be. */
5836 rtx gp = gen_raw_REG (Pmode, GLOBAL_POINTER_REGNUM);
5838 /* This bit is similar to expand_builtin_longjmp except that it
5839 restores $gp as well. */
5840 mips_emit_move (hard_frame_pointer_rtx, fp);
5841 mips_emit_move (pv, lab);
5842 emit_stack_restore (SAVE_NONLOCAL, stack, NULL_RTX);
5843 mips_emit_move (gp, gpv);
5844 emit_use (hard_frame_pointer_rtx);
5845 emit_use (stack_pointer_rtx);
5847 emit_indirect_jump (pv);
5852 ;; ....................
5854 ;; Function prologue/epilogue
5856 ;; ....................
5859 (define_expand "prologue"
5863 mips_expand_prologue ();
5867 ;; Block any insns from being moved before this point, since the
5868 ;; profiling call to mcount can use various registers that aren't
5869 ;; saved or used to pass arguments.
5871 (define_insn "blockage"
5872 [(unspec_volatile [(const_int 0)] UNSPEC_BLOCKAGE)]
5875 [(set_attr "type" "ghost")
5876 (set_attr "mode" "none")])
5878 (define_expand "epilogue"
5882 mips_expand_epilogue (false);
5886 (define_expand "sibcall_epilogue"
5890 mips_expand_epilogue (true);
5894 ;; Trivial return. Make it look like a normal return insn as that
5895 ;; allows jump optimizations to work better.
5897 (define_expand "return"
5899 "mips_can_use_return_insn ()"
5900 { mips_expand_before_return (); })
5902 (define_insn "*return"
5904 "mips_can_use_return_insn ()"
5906 [(set_attr "type" "jump")
5907 (set_attr "mode" "none")])
5911 (define_insn "return_internal"
5913 (use (match_operand 0 "pmode_register_operand" ""))]
5916 [(set_attr "type" "jump")
5917 (set_attr "mode" "none")])
5919 ;; This is used in compiling the unwind routines.
5920 (define_expand "eh_return"
5921 [(use (match_operand 0 "general_operand"))]
5924 if (GET_MODE (operands[0]) != word_mode)
5925 operands[0] = convert_to_mode (word_mode, operands[0], 0);
5927 emit_insn (gen_eh_set_lr_di (operands[0]));
5929 emit_insn (gen_eh_set_lr_si (operands[0]));
5933 ;; Clobber the return address on the stack. We can't expand this
5934 ;; until we know where it will be put in the stack frame.
5936 (define_insn "eh_set_lr_si"
5937 [(unspec [(match_operand:SI 0 "register_operand" "d")] UNSPEC_EH_RETURN)
5938 (clobber (match_scratch:SI 1 "=&d"))]
5942 (define_insn "eh_set_lr_di"
5943 [(unspec [(match_operand:DI 0 "register_operand" "d")] UNSPEC_EH_RETURN)
5944 (clobber (match_scratch:DI 1 "=&d"))]
5949 [(unspec [(match_operand 0 "register_operand")] UNSPEC_EH_RETURN)
5950 (clobber (match_scratch 1))]
5954 mips_set_return_address (operands[0], operands[1]);
5958 (define_expand "exception_receiver"
5962 /* See the comment above load_call<mode> for details. */
5963 emit_insn (gen_set_got_version ());
5965 /* If we have a call-clobbered $gp, restore it from its save slot. */
5966 if (HAVE_restore_gp)
5967 emit_insn (gen_restore_gp ());
5971 (define_expand "nonlocal_goto_receiver"
5975 /* See the comment above load_call<mode> for details. */
5976 emit_insn (gen_set_got_version ());
5980 ;; Restore $gp from its .cprestore stack slot. The instruction remains
5981 ;; volatile until all uses of $28 are exposed.
5982 (define_insn_and_split "restore_gp"
5984 (unspec_volatile:SI [(const_int 0)] UNSPEC_RESTORE_GP))]
5985 "TARGET_CALL_CLOBBERED_GP"
5987 "&& reload_completed"
5993 [(set_attr "type" "load")
5994 (set_attr "length" "12")])
5997 ;; ....................
6001 ;; ....................
6003 ;; Instructions to load a call address from the GOT. The address might
6004 ;; point to a function or to a lazy binding stub. In the latter case,
6005 ;; the stub will use the dynamic linker to resolve the function, which
6006 ;; in turn will change the GOT entry to point to the function's real
6009 ;; This means that every call, even pure and constant ones, can
6010 ;; potentially modify the GOT entry. And once a stub has been called,
6011 ;; we must not call it again.
6013 ;; We represent this restriction using an imaginary, fixed, call-saved
6014 ;; register called GOT_VERSION_REGNUM. The idea is to make the register
6015 ;; live throughout the function and to change its value after every
6016 ;; potential call site. This stops any rtx value that uses the register
6017 ;; from being computed before an earlier call. To do this, we:
6019 ;; - Ensure that the register is live on entry to the function,
6020 ;; so that it is never thought to be used uninitalized.
6022 ;; - Ensure that the register is live on exit from the function,
6023 ;; so that it is live throughout.
6025 ;; - Make each call (lazily-bound or not) use the current value
6026 ;; of GOT_VERSION_REGNUM, so that updates of the register are
6027 ;; not moved across call boundaries.
6029 ;; - Add "ghost" definitions of the register to the beginning of
6030 ;; blocks reached by EH and ABNORMAL_CALL edges, because those
6031 ;; edges may involve calls that normal paths don't. (E.g. the
6032 ;; unwinding code that handles a non-call exception may change
6033 ;; lazily-bound GOT entries.) We do this by making the
6034 ;; exception_receiver and nonlocal_goto_receiver expanders emit
6035 ;; a set_got_version instruction.
6037 ;; - After each call (lazily-bound or not), use a "ghost"
6038 ;; update_got_version instruction to change the register's value.
6039 ;; This instruction mimics the _possible_ effect of the dynamic
6040 ;; resolver during the call and it remains live even if the call
6041 ;; itself becomes dead.
6043 ;; - Leave GOT_VERSION_REGNUM out of all register classes.
6044 ;; The register is therefore not a valid register_operand
6045 ;; and cannot be moved to or from other registers.
6046 (define_insn "load_call<mode>"
6047 [(set (match_operand:P 0 "register_operand" "=d")
6048 (unspec:P [(match_operand:P 1 "register_operand" "r")
6049 (match_operand:P 2 "immediate_operand" "")
6050 (reg:SI GOT_VERSION_REGNUM)] UNSPEC_LOAD_CALL))]
6052 "<load>\t%0,%R2(%1)"
6053 [(set_attr "type" "load")
6054 (set_attr "mode" "<MODE>")
6055 (set_attr "length" "4")])
6057 (define_insn "set_got_version"
6058 [(set (reg:SI GOT_VERSION_REGNUM)
6059 (unspec_volatile:SI [(const_int 0)] UNSPEC_SET_GOT_VERSION))]
6062 [(set_attr "type" "ghost")])
6064 (define_insn "update_got_version"
6065 [(set (reg:SI GOT_VERSION_REGNUM)
6066 (unspec:SI [(reg:SI GOT_VERSION_REGNUM)] UNSPEC_UPDATE_GOT_VERSION))]
6069 [(set_attr "type" "ghost")])
6071 ;; Sibling calls. All these patterns use jump instructions.
6073 ;; If TARGET_SIBCALLS, call_insn_operand will only accept constant
6074 ;; addresses if a direct jump is acceptable. Since the 'S' constraint
6075 ;; is defined in terms of call_insn_operand, the same is true of the
6078 ;; When we use an indirect jump, we need a register that will be
6079 ;; preserved by the epilogue. Since TARGET_USE_PIC_FN_ADDR_REG forces
6080 ;; us to use $25 for this purpose -- and $25 is never clobbered by the
6081 ;; epilogue -- we might as well use it for !TARGET_USE_PIC_FN_ADDR_REG
6084 (define_expand "sibcall"
6085 [(parallel [(call (match_operand 0 "")
6086 (match_operand 1 ""))
6087 (use (match_operand 2 "")) ;; next_arg_reg
6088 (use (match_operand 3 ""))])] ;; struct_value_size_rtx
6091 mips_expand_call (0, XEXP (operands[0], 0), operands[1], operands[2], true);
6095 (define_insn "sibcall_internal"
6096 [(call (mem:SI (match_operand 0 "call_insn_operand" "j,S"))
6097 (match_operand 1 "" ""))]
6098 "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
6099 { return MIPS_CALL ("j", operands, 0); }
6100 [(set_attr "type" "call")])
6102 (define_expand "sibcall_value"
6103 [(parallel [(set (match_operand 0 "")
6104 (call (match_operand 1 "")
6105 (match_operand 2 "")))
6106 (use (match_operand 3 ""))])] ;; next_arg_reg
6109 mips_expand_call (operands[0], XEXP (operands[1], 0),
6110 operands[2], operands[3], true);
6114 (define_insn "sibcall_value_internal"
6115 [(set (match_operand 0 "register_operand" "")
6116 (call (mem:SI (match_operand 1 "call_insn_operand" "j,S"))
6117 (match_operand 2 "" "")))]
6118 "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
6119 { return MIPS_CALL ("j", operands, 1); }
6120 [(set_attr "type" "call")])
6122 (define_insn "sibcall_value_multiple_internal"
6123 [(set (match_operand 0 "register_operand" "")
6124 (call (mem:SI (match_operand 1 "call_insn_operand" "j,S"))
6125 (match_operand 2 "" "")))
6126 (set (match_operand 3 "register_operand" "")
6127 (call (mem:SI (match_dup 1))
6129 "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
6130 { return MIPS_CALL ("j", operands, 1); }
6131 [(set_attr "type" "call")])
6133 (define_expand "call"
6134 [(parallel [(call (match_operand 0 "")
6135 (match_operand 1 ""))
6136 (use (match_operand 2 "")) ;; next_arg_reg
6137 (use (match_operand 3 ""))])] ;; struct_value_size_rtx
6140 mips_expand_call (0, XEXP (operands[0], 0), operands[1], operands[2], false);
6144 ;; This instruction directly corresponds to an assembly-language "jal".
6145 ;; There are four cases:
6148 ;; Both symbolic and register destinations are OK. The pattern
6149 ;; always expands to a single mips instruction.
6151 ;; - -mabicalls/-mno-explicit-relocs:
6152 ;; Again, both symbolic and register destinations are OK.
6153 ;; The call is treated as a multi-instruction black box.
6155 ;; - -mabicalls/-mexplicit-relocs with n32 or n64:
6156 ;; Only "jal $25" is allowed. This expands to a single "jalr $25"
6159 ;; - -mabicalls/-mexplicit-relocs with o32 or o64:
6160 ;; Only "jal $25" is allowed. The call is actually two instructions:
6161 ;; "jalr $25" followed by an insn to reload $gp.
6163 ;; In the last case, we can generate the individual instructions with
6164 ;; a define_split. There are several things to be wary of:
6166 ;; - We can't expose the load of $gp before reload. If we did,
6167 ;; it might get removed as dead, but reload can introduce new
6168 ;; uses of $gp by rematerializing constants.
6170 ;; - We shouldn't restore $gp after calls that never return.
6171 ;; It isn't valid to insert instructions between a noreturn
6172 ;; call and the following barrier.
6174 ;; - The splitter deliberately changes the liveness of $gp. The unsplit
6175 ;; instruction preserves $gp and so have no effect on its liveness.
6176 ;; But once we generate the separate insns, it becomes obvious that
6177 ;; $gp is not live on entry to the call.
6179 ;; ??? The operands[2] = insn check is a hack to make the original insn
6180 ;; available to the splitter.
6181 (define_insn_and_split "call_internal"
6182 [(call (mem:SI (match_operand 0 "call_insn_operand" "c,S"))
6183 (match_operand 1 "" ""))
6184 (clobber (reg:SI 31))]
6186 { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 0); }
6187 "reload_completed && TARGET_SPLIT_CALLS && (operands[2] = insn)"
6190 emit_call_insn (gen_call_split (operands[0], operands[1]));
6191 if (!find_reg_note (operands[2], REG_NORETURN, 0))
6195 [(set_attr "jal" "indirect,direct")])
6197 ;; A pattern for calls that must be made directly. It is used for
6198 ;; MIPS16 calls that the linker may need to redirect to a hard-float
6199 ;; stub; the linker relies on the call relocation type to detect when
6200 ;; such redirection is needed.
6201 (define_insn "call_internal_direct"
6202 [(call (mem:SI (match_operand 0 "const_call_insn_operand"))
6205 (clobber (reg:SI 31))]
6207 { return MIPS_CALL ("jal", operands, 0); })
6209 (define_insn "call_split"
6210 [(call (mem:SI (match_operand 0 "call_insn_operand" "cS"))
6211 (match_operand 1 "" ""))
6212 (clobber (reg:SI 31))
6213 (clobber (reg:SI 28))]
6214 "TARGET_SPLIT_CALLS"
6215 { return MIPS_CALL ("jal", operands, 0); }
6216 [(set_attr "type" "call")])
6218 (define_expand "call_value"
6219 [(parallel [(set (match_operand 0 "")
6220 (call (match_operand 1 "")
6221 (match_operand 2 "")))
6222 (use (match_operand 3 ""))])] ;; next_arg_reg
6225 mips_expand_call (operands[0], XEXP (operands[1], 0),
6226 operands[2], operands[3], false);
6230 ;; See comment for call_internal.
6231 (define_insn_and_split "call_value_internal"
6232 [(set (match_operand 0 "register_operand" "")
6233 (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
6234 (match_operand 2 "" "")))
6235 (clobber (reg:SI 31))]
6237 { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 1); }
6238 "reload_completed && TARGET_SPLIT_CALLS && (operands[3] = insn)"
6241 emit_call_insn (gen_call_value_split (operands[0], operands[1],
6243 if (!find_reg_note (operands[3], REG_NORETURN, 0))
6247 [(set_attr "jal" "indirect,direct")])
6249 (define_insn "call_value_split"
6250 [(set (match_operand 0 "register_operand" "")
6251 (call (mem:SI (match_operand 1 "call_insn_operand" "cS"))
6252 (match_operand 2 "" "")))
6253 (clobber (reg:SI 31))
6254 (clobber (reg:SI 28))]
6255 "TARGET_SPLIT_CALLS"
6256 { return MIPS_CALL ("jal", operands, 1); }
6257 [(set_attr "type" "call")])
6259 ;; See call_internal_direct.
6260 (define_insn "call_value_internal_direct"
6261 [(set (match_operand 0 "register_operand")
6262 (call (mem:SI (match_operand 1 "const_call_insn_operand"))
6265 (clobber (reg:SI 31))]
6267 { return MIPS_CALL ("jal", operands, 1); })
6269 ;; See comment for call_internal.
6270 (define_insn_and_split "call_value_multiple_internal"
6271 [(set (match_operand 0 "register_operand" "")
6272 (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
6273 (match_operand 2 "" "")))
6274 (set (match_operand 3 "register_operand" "")
6275 (call (mem:SI (match_dup 1))
6277 (clobber (reg:SI 31))]
6279 { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 1); }
6280 "reload_completed && TARGET_SPLIT_CALLS && (operands[4] = insn)"
6283 emit_call_insn (gen_call_value_multiple_split (operands[0], operands[1],
6284 operands[2], operands[3]));
6285 if (!find_reg_note (operands[4], REG_NORETURN, 0))
6289 [(set_attr "jal" "indirect,direct")])
6291 (define_insn "call_value_multiple_split"
6292 [(set (match_operand 0 "register_operand" "")
6293 (call (mem:SI (match_operand 1 "call_insn_operand" "cS"))
6294 (match_operand 2 "" "")))
6295 (set (match_operand 3 "register_operand" "")
6296 (call (mem:SI (match_dup 1))
6298 (clobber (reg:SI 31))
6299 (clobber (reg:SI 28))]
6300 "TARGET_SPLIT_CALLS"
6301 { return MIPS_CALL ("jal", operands, 1); }
6302 [(set_attr "type" "call")])
6304 ;; Call subroutine returning any type.
6306 (define_expand "untyped_call"
6307 [(parallel [(call (match_operand 0 "")
6309 (match_operand 1 "")
6310 (match_operand 2 "")])]
6315 emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx));
6317 for (i = 0; i < XVECLEN (operands[2], 0); i++)
6319 rtx set = XVECEXP (operands[2], 0, i);
6320 mips_emit_move (SET_DEST (set), SET_SRC (set));
6323 emit_insn (gen_blockage ());
6328 ;; ....................
6332 ;; ....................
6336 (define_insn "prefetch"
6337 [(prefetch (match_operand:QI 0 "address_operand" "p")
6338 (match_operand 1 "const_int_operand" "n")
6339 (match_operand 2 "const_int_operand" "n"))]
6340 "ISA_HAS_PREFETCH && TARGET_EXPLICIT_RELOCS"
6342 operands[1] = mips_prefetch_cookie (operands[1], operands[2]);
6343 return "pref\t%1,%a0";
6345 [(set_attr "type" "prefetch")])
6347 (define_insn "*prefetch_indexed_<mode>"
6348 [(prefetch (plus:P (match_operand:P 0 "register_operand" "d")
6349 (match_operand:P 1 "register_operand" "d"))
6350 (match_operand 2 "const_int_operand" "n")
6351 (match_operand 3 "const_int_operand" "n"))]
6352 "ISA_HAS_PREFETCHX && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
6354 operands[2] = mips_prefetch_cookie (operands[2], operands[3]);
6355 return "prefx\t%2,%1(%0)";
6357 [(set_attr "type" "prefetchx")])
6363 [(set_attr "type" "nop")
6364 (set_attr "mode" "none")])
6366 ;; Like nop, but commented out when outside a .set noreorder block.
6367 (define_insn "hazard_nop"
6376 [(set_attr "type" "nop")])
6378 ;; MIPS4 Conditional move instructions.
6380 (define_insn "*mov<GPR:mode>_on_<MOVECC:mode>"
6381 [(set (match_operand:GPR 0 "register_operand" "=d,d")
6383 (match_operator:MOVECC 4 "equality_operator"
6384 [(match_operand:MOVECC 1 "register_operand" "<MOVECC:reg>,<MOVECC:reg>")
6386 (match_operand:GPR 2 "reg_or_0_operand" "dJ,0")
6387 (match_operand:GPR 3 "reg_or_0_operand" "0,dJ")))]
6392 [(set_attr "type" "condmove")
6393 (set_attr "mode" "<GPR:MODE>")])
6395 (define_insn "*mov<SCALARF:mode>_on_<MOVECC:mode>"
6396 [(set (match_operand:SCALARF 0 "register_operand" "=f,f")
6397 (if_then_else:SCALARF
6398 (match_operator:MOVECC 4 "equality_operator"
6399 [(match_operand:MOVECC 1 "register_operand" "<MOVECC:reg>,<MOVECC:reg>")
6401 (match_operand:SCALARF 2 "register_operand" "f,0")
6402 (match_operand:SCALARF 3 "register_operand" "0,f")))]
6403 "ISA_HAS_FP_CONDMOVE"
6405 mov%T4.<fmt>\t%0,%2,%1
6406 mov%t4.<fmt>\t%0,%3,%1"
6407 [(set_attr "type" "condmove")
6408 (set_attr "mode" "<SCALARF:MODE>")])
6410 ;; These are the main define_expand's used to make conditional moves.
6412 (define_expand "mov<mode>cc"
6413 [(set (match_dup 4) (match_operand 1 "comparison_operator"))
6414 (set (match_operand:GPR 0 "register_operand")
6415 (if_then_else:GPR (match_dup 5)
6416 (match_operand:GPR 2 "reg_or_0_operand")
6417 (match_operand:GPR 3 "reg_or_0_operand")))]
6420 mips_expand_conditional_move (operands);
6424 (define_expand "mov<mode>cc"
6425 [(set (match_dup 4) (match_operand 1 "comparison_operator"))
6426 (set (match_operand:SCALARF 0 "register_operand")
6427 (if_then_else:SCALARF (match_dup 5)
6428 (match_operand:SCALARF 2 "register_operand")
6429 (match_operand:SCALARF 3 "register_operand")))]
6430 "ISA_HAS_FP_CONDMOVE"
6432 mips_expand_conditional_move (operands);
6437 ;; ....................
6439 ;; mips16 inline constant tables
6441 ;; ....................
6444 (define_insn "consttable_int"
6445 [(unspec_volatile [(match_operand 0 "consttable_operand" "")
6446 (match_operand 1 "const_int_operand" "")]
6447 UNSPEC_CONSTTABLE_INT)]
6450 assemble_integer (operands[0], INTVAL (operands[1]),
6451 BITS_PER_UNIT * INTVAL (operands[1]), 1);
6454 [(set (attr "length") (symbol_ref "INTVAL (operands[1])"))])
6456 (define_insn "consttable_float"
6457 [(unspec_volatile [(match_operand 0 "consttable_operand" "")]
6458 UNSPEC_CONSTTABLE_FLOAT)]
6463 gcc_assert (GET_CODE (operands[0]) == CONST_DOUBLE);
6464 REAL_VALUE_FROM_CONST_DOUBLE (d, operands[0]);
6465 assemble_real (d, GET_MODE (operands[0]),
6466 GET_MODE_BITSIZE (GET_MODE (operands[0])));
6469 [(set (attr "length")
6470 (symbol_ref "GET_MODE_SIZE (GET_MODE (operands[0]))"))])
6472 (define_insn "align"
6473 [(unspec_volatile [(match_operand 0 "const_int_operand" "")] UNSPEC_ALIGN)]
6476 [(set (attr "length") (symbol_ref "(1 << INTVAL (operands[0])) - 1"))])
6479 [(match_operand 0 "small_data_pattern")]
6482 { operands[0] = mips_rewrite_small_data (operands[0]); })
6485 ;; ....................
6487 ;; MIPS16e Save/Restore
6489 ;; ....................
6492 (define_insn "*mips16e_save_restore"
6493 [(match_parallel 0 ""
6494 [(set (match_operand:SI 1 "register_operand")
6495 (plus:SI (match_dup 1)
6496 (match_operand:SI 2 "const_int_operand")))])]
6497 "operands[1] == stack_pointer_rtx
6498 && mips16e_save_restore_pattern_p (operands[0], INTVAL (operands[2]), NULL)"
6499 { return mips16e_output_save_restore (operands[0], INTVAL (operands[2])); }
6500 [(set_attr "type" "arith")
6501 (set_attr "extended_mips16" "yes")])
6503 ;; Thread-Local Storage
6505 ;; The TLS base pointer is accessed via "rdhwr $3, $29". No current
6506 ;; MIPS architecture defines this register, and no current
6507 ;; implementation provides it; instead, any OS which supports TLS is
6508 ;; expected to trap and emulate this instruction. rdhwr is part of the
6509 ;; MIPS 32r2 specification, but we use it on any architecture because
6510 ;; we expect it to be emulated. Use .set to force the assembler to
6513 ;; We do not use a constraint to force the destination to be $3
6514 ;; because $3 can appear explicitly as a function return value.
6515 ;; If we leave the use of $3 implicit in the constraints until
6516 ;; reload, we may end up making a $3 return value live across
6517 ;; the instruction, leading to a spill failure when reloading it.
6518 (define_insn_and_split "tls_get_tp_<mode>"
6519 [(set (match_operand:P 0 "register_operand" "=d")
6520 (unspec:P [(const_int 0)] UNSPEC_TLS_GET_TP))
6521 (clobber (reg:P TLS_GET_TP_REGNUM))]
6522 "HAVE_AS_TLS && !TARGET_MIPS16"
6524 "&& reload_completed"
6525 [(set (reg:P TLS_GET_TP_REGNUM)
6526 (unspec:P [(const_int 0)] UNSPEC_TLS_GET_TP))
6527 (set (match_dup 0) (reg:P TLS_GET_TP_REGNUM))]
6529 [(set_attr "type" "unknown")
6530 ; Since rdhwr always generates a trap for now, putting it in a delay
6531 ; slot would make the kernel's emulation of it much slower.
6532 (set_attr "can_delay" "no")
6533 (set_attr "mode" "<MODE>")
6534 (set_attr "length" "8")])
6536 (define_insn "*tls_get_tp_<mode>_split"
6537 [(set (reg:P TLS_GET_TP_REGNUM)
6538 (unspec:P [(const_int 0)] UNSPEC_TLS_GET_TP))]
6539 "HAVE_AS_TLS && !TARGET_MIPS16"
6540 ".set\tpush\;.set\tmips32r2\t\;rdhwr\t$3,$29\;.set\tpop"
6541 [(set_attr "type" "unknown")
6542 ; See tls_get_tp_<mode>
6543 (set_attr "can_delay" "no")
6544 (set_attr "mode" "<MODE>")])
6546 ; The MIPS Paired-Single Floating Point and MIPS-3D Instructions.
6548 (include "mips-ps-3d.md")
6550 ; The MIPS DSP Instructions.
6552 (include "mips-dsp.md")
6554 ; The MIPS DSP REV 2 Instructions.
6556 (include "mips-dspr2.md")
6558 ; MIPS fixed-point instructions.
6559 (include "mips-fixed.md")
6561 ; ST-Microelectronics Loongson-2E/2F-specific patterns.
6562 (include "loongson.md")