* arm.md (addsf3, adddf3, subsf3, subdf3, mulsf3, muldf3, negsf2)
[official-gcc.git] / gcc / flow.c
blobfb60610a7a87322fa913c552c324db4ec95480dd
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "ssa.h"
140 #include "timevar.h"
142 #include "obstack.h"
143 #include "splay-tree.h"
145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
146 the stack pointer does not matter. The value is tested only in
147 functions that have frame pointers.
148 No definition is equivalent to always zero. */
149 #ifndef EXIT_IGNORE_STACK
150 #define EXIT_IGNORE_STACK 0
151 #endif
153 #ifndef HAVE_epilogue
154 #define HAVE_epilogue 0
155 #endif
156 #ifndef HAVE_prologue
157 #define HAVE_prologue 0
158 #endif
159 #ifndef HAVE_sibcall_epilogue
160 #define HAVE_sibcall_epilogue 0
161 #endif
163 #ifndef LOCAL_REGNO
164 #define LOCAL_REGNO(REGNO) 0
165 #endif
166 #ifndef EPILOGUE_USES
167 #define EPILOGUE_USES(REGNO) 0
168 #endif
169 #ifndef EH_USES
170 #define EH_USES(REGNO) 0
171 #endif
173 #ifdef HAVE_conditional_execution
174 #ifndef REVERSE_CONDEXEC_PREDICATES_P
175 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
176 #endif
177 #endif
179 /* Nonzero if the second flow pass has completed. */
180 int flow2_completed;
182 /* Maximum register number used in this function, plus one. */
184 int max_regno;
186 /* Indexed by n, giving various register information */
188 varray_type reg_n_info;
190 /* Size of a regset for the current function,
191 in (1) bytes and (2) elements. */
193 int regset_bytes;
194 int regset_size;
196 /* Regset of regs live when calls to `setjmp'-like functions happen. */
197 /* ??? Does this exist only for the setjmp-clobbered warning message? */
199 regset regs_live_at_setjmp;
201 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
202 that have to go in the same hard reg.
203 The first two regs in the list are a pair, and the next two
204 are another pair, etc. */
205 rtx regs_may_share;
207 /* Callback that determines if it's ok for a function to have no
208 noreturn attribute. */
209 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
211 /* Set of registers that may be eliminable. These are handled specially
212 in updating regs_ever_live. */
214 static HARD_REG_SET elim_reg_set;
216 /* Holds information for tracking conditional register life information. */
217 struct reg_cond_life_info
219 /* A boolean expression of conditions under which a register is dead. */
220 rtx condition;
221 /* Conditions under which a register is dead at the basic block end. */
222 rtx orig_condition;
224 /* A boolean expression of conditions under which a register has been
225 stored into. */
226 rtx stores;
228 /* ??? Could store mask of bytes that are dead, so that we could finally
229 track lifetimes of multi-word registers accessed via subregs. */
232 /* For use in communicating between propagate_block and its subroutines.
233 Holds all information needed to compute life and def-use information. */
235 struct propagate_block_info
237 /* The basic block we're considering. */
238 basic_block bb;
240 /* Bit N is set if register N is conditionally or unconditionally live. */
241 regset reg_live;
243 /* Bit N is set if register N is set this insn. */
244 regset new_set;
246 /* Element N is the next insn that uses (hard or pseudo) register N
247 within the current basic block; or zero, if there is no such insn. */
248 rtx *reg_next_use;
250 /* Contains a list of all the MEMs we are tracking for dead store
251 elimination. */
252 rtx mem_set_list;
254 /* If non-null, record the set of registers set unconditionally in the
255 basic block. */
256 regset local_set;
258 /* If non-null, record the set of registers set conditionally in the
259 basic block. */
260 regset cond_local_set;
262 #ifdef HAVE_conditional_execution
263 /* Indexed by register number, holds a reg_cond_life_info for each
264 register that is not unconditionally live or dead. */
265 splay_tree reg_cond_dead;
267 /* Bit N is set if register N is in an expression in reg_cond_dead. */
268 regset reg_cond_reg;
269 #endif
271 /* The length of mem_set_list. */
272 int mem_set_list_len;
274 /* Nonzero if the value of CC0 is live. */
275 int cc0_live;
277 /* Flags controlling the set of information propagate_block collects. */
278 int flags;
281 /* Number of dead insns removed. */
282 static int ndead;
284 /* Maximum length of pbi->mem_set_list before we start dropping
285 new elements on the floor. */
286 #define MAX_MEM_SET_LIST_LEN 100
288 /* Forward declarations */
289 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
290 static void verify_wide_reg PARAMS ((int, basic_block));
291 static void verify_local_live_at_start PARAMS ((regset, basic_block));
292 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
293 static void notice_stack_pointer_modification PARAMS ((rtx));
294 static void mark_reg PARAMS ((rtx, void *));
295 static void mark_regs_live_at_end PARAMS ((regset));
296 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
297 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
298 static void propagate_block_delete_insn PARAMS ((rtx));
299 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
300 static int insn_dead_p PARAMS ((struct propagate_block_info *,
301 rtx, int, rtx));
302 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
303 rtx, rtx));
304 static void mark_set_regs PARAMS ((struct propagate_block_info *,
305 rtx, rtx));
306 static void mark_set_1 PARAMS ((struct propagate_block_info *,
307 enum rtx_code, rtx, rtx,
308 rtx, int));
309 static int find_regno_partial PARAMS ((rtx *, void *));
311 #ifdef HAVE_conditional_execution
312 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
313 int, rtx));
314 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
315 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
316 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
317 int));
318 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
319 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
320 static rtx not_reg_cond PARAMS ((rtx));
321 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
322 #endif
323 #ifdef AUTO_INC_DEC
324 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
325 rtx, rtx, rtx, rtx, rtx));
326 static void find_auto_inc PARAMS ((struct propagate_block_info *,
327 rtx, rtx));
328 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
329 rtx));
330 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
331 #endif
332 static void mark_used_reg PARAMS ((struct propagate_block_info *,
333 rtx, rtx, rtx));
334 static void mark_used_regs PARAMS ((struct propagate_block_info *,
335 rtx, rtx, rtx));
336 void dump_flow_info PARAMS ((FILE *));
337 void debug_flow_info PARAMS ((void));
338 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
339 rtx));
340 static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
341 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
342 rtx));
343 static void clear_log_links PARAMS ((sbitmap));
346 void
347 check_function_return_warnings ()
349 if (warn_missing_noreturn
350 && !TREE_THIS_VOLATILE (cfun->decl)
351 && EXIT_BLOCK_PTR->pred == NULL
352 && (lang_missing_noreturn_ok_p
353 && !lang_missing_noreturn_ok_p (cfun->decl)))
354 warning ("function might be possible candidate for attribute `noreturn'");
356 /* If we have a path to EXIT, then we do return. */
357 if (TREE_THIS_VOLATILE (cfun->decl)
358 && EXIT_BLOCK_PTR->pred != NULL)
359 warning ("`noreturn' function does return");
361 /* If the clobber_return_insn appears in some basic block, then we
362 do reach the end without returning a value. */
363 else if (warn_return_type
364 && cfun->x_clobber_return_insn != NULL
365 && EXIT_BLOCK_PTR->pred != NULL)
367 int max_uid = get_max_uid ();
369 /* If clobber_return_insn was excised by jump1, then renumber_insns
370 can make max_uid smaller than the number still recorded in our rtx.
371 That's fine, since this is a quick way of verifying that the insn
372 is no longer in the chain. */
373 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
375 rtx insn;
377 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
378 if (insn == cfun->x_clobber_return_insn)
380 warning ("control reaches end of non-void function");
381 break;
387 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
388 note associated with the BLOCK. */
391 first_insn_after_basic_block_note (block)
392 basic_block block;
394 rtx insn;
396 /* Get the first instruction in the block. */
397 insn = block->head;
399 if (insn == NULL_RTX)
400 return NULL_RTX;
401 if (GET_CODE (insn) == CODE_LABEL)
402 insn = NEXT_INSN (insn);
403 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
404 abort ();
406 return NEXT_INSN (insn);
409 /* Perform data flow analysis.
410 F is the first insn of the function; FLAGS is a set of PROP_* flags
411 to be used in accumulating flow info. */
413 void
414 life_analysis (f, file, flags)
415 rtx f;
416 FILE *file;
417 int flags;
419 #ifdef ELIMINABLE_REGS
420 int i;
421 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
422 #endif
424 /* Record which registers will be eliminated. We use this in
425 mark_used_regs. */
427 CLEAR_HARD_REG_SET (elim_reg_set);
429 #ifdef ELIMINABLE_REGS
430 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
431 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
432 #else
433 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
434 #endif
437 #ifdef CANNOT_CHANGE_MODE_CLASS
438 if (flags & PROP_REG_INFO)
439 bitmap_initialize (&subregs_of_mode, 1);
440 #endif
442 if (! optimize)
443 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
445 /* The post-reload life analysis have (on a global basis) the same
446 registers live as was computed by reload itself. elimination
447 Otherwise offsets and such may be incorrect.
449 Reload will make some registers as live even though they do not
450 appear in the rtl.
452 We don't want to create new auto-incs after reload, since they
453 are unlikely to be useful and can cause problems with shared
454 stack slots. */
455 if (reload_completed)
456 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
458 /* We want alias analysis information for local dead store elimination. */
459 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
460 init_alias_analysis ();
462 /* Always remove no-op moves. Do this before other processing so
463 that we don't have to keep re-scanning them. */
464 delete_noop_moves (f);
466 /* Some targets can emit simpler epilogues if they know that sp was
467 not ever modified during the function. After reload, of course,
468 we've already emitted the epilogue so there's no sense searching. */
469 if (! reload_completed)
470 notice_stack_pointer_modification (f);
472 /* Allocate and zero out data structures that will record the
473 data from lifetime analysis. */
474 allocate_reg_life_data ();
475 allocate_bb_life_data ();
477 /* Find the set of registers live on function exit. */
478 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
480 /* "Update" life info from zero. It'd be nice to begin the
481 relaxation with just the exit and noreturn blocks, but that set
482 is not immediately handy. */
484 if (flags & PROP_REG_INFO)
485 memset (regs_ever_live, 0, sizeof (regs_ever_live));
486 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
488 /* Clean up. */
489 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
490 end_alias_analysis ();
492 if (file)
493 dump_flow_info (file);
495 free_basic_block_vars (1);
497 /* Removing dead insns should've made jumptables really dead. */
498 delete_dead_jumptables ();
501 /* A subroutine of verify_wide_reg, called through for_each_rtx.
502 Search for REGNO. If found, return 2 if it is not wider than
503 word_mode. */
505 static int
506 verify_wide_reg_1 (px, pregno)
507 rtx *px;
508 void *pregno;
510 rtx x = *px;
511 unsigned int regno = *(int *) pregno;
513 if (GET_CODE (x) == REG && REGNO (x) == regno)
515 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
516 return 2;
517 return 1;
519 return 0;
522 /* A subroutine of verify_local_live_at_start. Search through insns
523 of BB looking for register REGNO. */
525 static void
526 verify_wide_reg (regno, bb)
527 int regno;
528 basic_block bb;
530 rtx head = bb->head, end = bb->end;
532 while (1)
534 if (INSN_P (head))
536 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
537 if (r == 1)
538 return;
539 if (r == 2)
540 break;
542 if (head == end)
543 break;
544 head = NEXT_INSN (head);
547 if (rtl_dump_file)
549 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
550 dump_bb (bb, rtl_dump_file);
552 abort ();
555 /* A subroutine of update_life_info. Verify that there are no untoward
556 changes in live_at_start during a local update. */
558 static void
559 verify_local_live_at_start (new_live_at_start, bb)
560 regset new_live_at_start;
561 basic_block bb;
563 if (reload_completed)
565 /* After reload, there are no pseudos, nor subregs of multi-word
566 registers. The regsets should exactly match. */
567 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
569 if (rtl_dump_file)
571 fprintf (rtl_dump_file,
572 "live_at_start mismatch in bb %d, aborting\nNew:\n",
573 bb->index);
574 debug_bitmap_file (rtl_dump_file, new_live_at_start);
575 fputs ("Old:\n", rtl_dump_file);
576 dump_bb (bb, rtl_dump_file);
578 abort ();
581 else
583 int i;
585 /* Find the set of changed registers. */
586 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
588 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
590 /* No registers should die. */
591 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
593 if (rtl_dump_file)
595 fprintf (rtl_dump_file,
596 "Register %d died unexpectedly.\n", i);
597 dump_bb (bb, rtl_dump_file);
599 abort ();
602 /* Verify that the now-live register is wider than word_mode. */
603 verify_wide_reg (i, bb);
608 /* Updates life information starting with the basic blocks set in BLOCKS.
609 If BLOCKS is null, consider it to be the universal set.
611 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
612 we are only expecting local modifications to basic blocks. If we find
613 extra registers live at the beginning of a block, then we either killed
614 useful data, or we have a broken split that wants data not provided.
615 If we find registers removed from live_at_start, that means we have
616 a broken peephole that is killing a register it shouldn't.
618 ??? This is not true in one situation -- when a pre-reload splitter
619 generates subregs of a multi-word pseudo, current life analysis will
620 lose the kill. So we _can_ have a pseudo go live. How irritating.
622 Including PROP_REG_INFO does not properly refresh regs_ever_live
623 unless the caller resets it to zero. */
626 update_life_info (blocks, extent, prop_flags)
627 sbitmap blocks;
628 enum update_life_extent extent;
629 int prop_flags;
631 regset tmp;
632 regset_head tmp_head;
633 int i;
634 int stabilized_prop_flags = prop_flags;
635 basic_block bb;
637 tmp = INITIALIZE_REG_SET (tmp_head);
638 ndead = 0;
640 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
641 ? TV_LIFE_UPDATE : TV_LIFE);
643 /* Changes to the CFG are only allowed when
644 doing a global update for the entire CFG. */
645 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
646 && (extent == UPDATE_LIFE_LOCAL || blocks))
647 abort ();
649 /* For a global update, we go through the relaxation process again. */
650 if (extent != UPDATE_LIFE_LOCAL)
652 for ( ; ; )
654 int changed = 0;
656 calculate_global_regs_live (blocks, blocks,
657 prop_flags & (PROP_SCAN_DEAD_CODE
658 | PROP_SCAN_DEAD_STORES
659 | PROP_ALLOW_CFG_CHANGES));
661 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
662 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
663 break;
665 /* Removing dead code may allow the CFG to be simplified which
666 in turn may allow for further dead code detection / removal. */
667 FOR_EACH_BB_REVERSE (bb)
669 COPY_REG_SET (tmp, bb->global_live_at_end);
670 changed |= propagate_block (bb, tmp, NULL, NULL,
671 prop_flags & (PROP_SCAN_DEAD_CODE
672 | PROP_SCAN_DEAD_STORES
673 | PROP_KILL_DEAD_CODE));
676 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
677 subsequent propagate_block calls, since removing or acting as
678 removing dead code can affect global register liveness, which
679 is supposed to be finalized for this call after this loop. */
680 stabilized_prop_flags
681 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
682 | PROP_KILL_DEAD_CODE);
684 if (! changed)
685 break;
687 /* We repeat regardless of what cleanup_cfg says. If there were
688 instructions deleted above, that might have been only a
689 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
690 Further improvement may be possible. */
691 cleanup_cfg (CLEANUP_EXPENSIVE);
693 /* Zap the life information from the last round. If we don't
694 do this, we can wind up with registers that no longer appear
695 in the code being marked live at entry, which twiggs bogus
696 warnings from regno_uninitialized. */
697 FOR_EACH_BB (bb)
699 CLEAR_REG_SET (bb->global_live_at_start);
700 CLEAR_REG_SET (bb->global_live_at_end);
704 /* If asked, remove notes from the blocks we'll update. */
705 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
706 count_or_remove_death_notes (blocks, 1);
709 /* Clear log links in case we are asked to (re)compute them. */
710 if (prop_flags & PROP_LOG_LINKS)
711 clear_log_links (blocks);
713 if (blocks)
715 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
717 bb = BASIC_BLOCK (i);
719 COPY_REG_SET (tmp, bb->global_live_at_end);
720 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
722 if (extent == UPDATE_LIFE_LOCAL)
723 verify_local_live_at_start (tmp, bb);
726 else
728 FOR_EACH_BB_REVERSE (bb)
730 COPY_REG_SET (tmp, bb->global_live_at_end);
732 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
734 if (extent == UPDATE_LIFE_LOCAL)
735 verify_local_live_at_start (tmp, bb);
739 FREE_REG_SET (tmp);
741 if (prop_flags & PROP_REG_INFO)
743 /* The only pseudos that are live at the beginning of the function
744 are those that were not set anywhere in the function. local-alloc
745 doesn't know how to handle these correctly, so mark them as not
746 local to any one basic block. */
747 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
748 FIRST_PSEUDO_REGISTER, i,
749 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
751 /* We have a problem with any pseudoreg that lives across the setjmp.
752 ANSI says that if a user variable does not change in value between
753 the setjmp and the longjmp, then the longjmp preserves it. This
754 includes longjmp from a place where the pseudo appears dead.
755 (In principle, the value still exists if it is in scope.)
756 If the pseudo goes in a hard reg, some other value may occupy
757 that hard reg where this pseudo is dead, thus clobbering the pseudo.
758 Conclusion: such a pseudo must not go in a hard reg. */
759 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
760 FIRST_PSEUDO_REGISTER, i,
762 if (regno_reg_rtx[i] != 0)
764 REG_LIVE_LENGTH (i) = -1;
765 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
769 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
770 ? TV_LIFE_UPDATE : TV_LIFE);
771 if (ndead && rtl_dump_file)
772 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
773 return ndead;
776 /* Update life information in all blocks where BB_DIRTY is set. */
779 update_life_info_in_dirty_blocks (extent, prop_flags)
780 enum update_life_extent extent;
781 int prop_flags;
783 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
784 int n = 0;
785 basic_block bb;
786 int retval = 0;
788 sbitmap_zero (update_life_blocks);
789 FOR_EACH_BB (bb)
791 if (extent == UPDATE_LIFE_LOCAL)
793 if (bb->flags & BB_DIRTY)
795 SET_BIT (update_life_blocks, bb->index);
796 n++;
799 else
801 /* ??? Bootstrap with -march=pentium4 fails to terminate
802 with only a partial life update. */
803 SET_BIT (update_life_blocks, bb->index);
804 if (bb->flags & BB_DIRTY)
805 n++;
809 if (n)
810 retval = update_life_info (update_life_blocks, extent, prop_flags);
812 sbitmap_free (update_life_blocks);
813 return retval;
816 /* Free the variables allocated by find_basic_blocks.
818 KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
820 void
821 free_basic_block_vars (keep_head_end_p)
822 int keep_head_end_p;
824 if (! keep_head_end_p)
826 if (basic_block_info)
828 clear_edges ();
829 VARRAY_FREE (basic_block_info);
831 n_basic_blocks = 0;
832 last_basic_block = 0;
834 ENTRY_BLOCK_PTR->aux = NULL;
835 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
836 EXIT_BLOCK_PTR->aux = NULL;
837 EXIT_BLOCK_PTR->global_live_at_start = NULL;
841 /* Delete any insns that copy a register to itself. */
844 delete_noop_moves (f)
845 rtx f ATTRIBUTE_UNUSED;
847 rtx insn, next;
848 basic_block bb;
849 int nnoops = 0;
851 FOR_EACH_BB (bb)
853 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
855 next = NEXT_INSN (insn);
856 if (INSN_P (insn) && noop_move_p (insn))
858 rtx note;
860 /* If we're about to remove the first insn of a libcall
861 then move the libcall note to the next real insn and
862 update the retval note. */
863 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
864 && XEXP (note, 0) != insn)
866 rtx new_libcall_insn = next_real_insn (insn);
867 rtx retval_note = find_reg_note (XEXP (note, 0),
868 REG_RETVAL, NULL_RTX);
869 REG_NOTES (new_libcall_insn)
870 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
871 REG_NOTES (new_libcall_insn));
872 XEXP (retval_note, 0) = new_libcall_insn;
875 delete_insn_and_edges (insn);
876 nnoops++;
880 if (nnoops && rtl_dump_file)
881 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
882 return nnoops;
885 /* Delete any jump tables never referenced. We can't delete them at the
886 time of removing tablejump insn as they are referenced by the preceding
887 insns computing the destination, so we delay deleting and garbagecollect
888 them once life information is computed. */
889 void
890 delete_dead_jumptables ()
892 rtx insn, next;
893 for (insn = get_insns (); insn; insn = next)
895 next = NEXT_INSN (insn);
896 if (GET_CODE (insn) == CODE_LABEL
897 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
898 && GET_CODE (next) == JUMP_INSN
899 && (GET_CODE (PATTERN (next)) == ADDR_VEC
900 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
902 if (rtl_dump_file)
903 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
904 delete_insn (NEXT_INSN (insn));
905 delete_insn (insn);
906 next = NEXT_INSN (next);
911 /* Determine if the stack pointer is constant over the life of the function.
912 Only useful before prologues have been emitted. */
914 static void
915 notice_stack_pointer_modification_1 (x, pat, data)
916 rtx x;
917 rtx pat ATTRIBUTE_UNUSED;
918 void *data ATTRIBUTE_UNUSED;
920 if (x == stack_pointer_rtx
921 /* The stack pointer is only modified indirectly as the result
922 of a push until later in flow. See the comments in rtl.texi
923 regarding Embedded Side-Effects on Addresses. */
924 || (GET_CODE (x) == MEM
925 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
926 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
927 current_function_sp_is_unchanging = 0;
930 static void
931 notice_stack_pointer_modification (f)
932 rtx f;
934 rtx insn;
936 /* Assume that the stack pointer is unchanging if alloca hasn't
937 been used. */
938 current_function_sp_is_unchanging = !current_function_calls_alloca;
939 if (! current_function_sp_is_unchanging)
940 return;
942 for (insn = f; insn; insn = NEXT_INSN (insn))
944 if (INSN_P (insn))
946 /* Check if insn modifies the stack pointer. */
947 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
948 NULL);
949 if (! current_function_sp_is_unchanging)
950 return;
955 /* Mark a register in SET. Hard registers in large modes get all
956 of their component registers set as well. */
958 static void
959 mark_reg (reg, xset)
960 rtx reg;
961 void *xset;
963 regset set = (regset) xset;
964 int regno = REGNO (reg);
966 if (GET_MODE (reg) == BLKmode)
967 abort ();
969 SET_REGNO_REG_SET (set, regno);
970 if (regno < FIRST_PSEUDO_REGISTER)
972 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
973 while (--n > 0)
974 SET_REGNO_REG_SET (set, regno + n);
978 /* Mark those regs which are needed at the end of the function as live
979 at the end of the last basic block. */
981 static void
982 mark_regs_live_at_end (set)
983 regset set;
985 unsigned int i;
987 /* If exiting needs the right stack value, consider the stack pointer
988 live at the end of the function. */
989 if ((HAVE_epilogue && reload_completed)
990 || ! EXIT_IGNORE_STACK
991 || (! FRAME_POINTER_REQUIRED
992 && ! current_function_calls_alloca
993 && flag_omit_frame_pointer)
994 || current_function_sp_is_unchanging)
996 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
999 /* Mark the frame pointer if needed at the end of the function. If
1000 we end up eliminating it, it will be removed from the live list
1001 of each basic block by reload. */
1003 if (! reload_completed || frame_pointer_needed)
1005 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
1006 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1007 /* If they are different, also mark the hard frame pointer as live. */
1008 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
1009 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
1010 #endif
1013 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1014 /* Many architectures have a GP register even without flag_pic.
1015 Assume the pic register is not in use, or will be handled by
1016 other means, if it is not fixed. */
1017 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1018 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1019 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1020 #endif
1022 /* Mark all global registers, and all registers used by the epilogue
1023 as being live at the end of the function since they may be
1024 referenced by our caller. */
1025 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1026 if (global_regs[i] || EPILOGUE_USES (i))
1027 SET_REGNO_REG_SET (set, i);
1029 if (HAVE_epilogue && reload_completed)
1031 /* Mark all call-saved registers that we actually used. */
1032 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1033 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1034 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1035 SET_REGNO_REG_SET (set, i);
1038 #ifdef EH_RETURN_DATA_REGNO
1039 /* Mark the registers that will contain data for the handler. */
1040 if (reload_completed && current_function_calls_eh_return)
1041 for (i = 0; ; ++i)
1043 unsigned regno = EH_RETURN_DATA_REGNO(i);
1044 if (regno == INVALID_REGNUM)
1045 break;
1046 SET_REGNO_REG_SET (set, regno);
1048 #endif
1049 #ifdef EH_RETURN_STACKADJ_RTX
1050 if ((! HAVE_epilogue || ! reload_completed)
1051 && current_function_calls_eh_return)
1053 rtx tmp = EH_RETURN_STACKADJ_RTX;
1054 if (tmp && REG_P (tmp))
1055 mark_reg (tmp, set);
1057 #endif
1058 #ifdef EH_RETURN_HANDLER_RTX
1059 if ((! HAVE_epilogue || ! reload_completed)
1060 && current_function_calls_eh_return)
1062 rtx tmp = EH_RETURN_HANDLER_RTX;
1063 if (tmp && REG_P (tmp))
1064 mark_reg (tmp, set);
1066 #endif
1068 /* Mark function return value. */
1069 diddle_return_value (mark_reg, set);
1072 /* Callback function for for_each_successor_phi. DATA is a regset.
1073 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1074 INSN, in the regset. */
1076 static int
1077 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1078 rtx insn ATTRIBUTE_UNUSED;
1079 int dest_regno ATTRIBUTE_UNUSED;
1080 int src_regno;
1081 void *data;
1083 regset live = (regset) data;
1084 SET_REGNO_REG_SET (live, src_regno);
1085 return 0;
1088 /* Propagate global life info around the graph of basic blocks. Begin
1089 considering blocks with their corresponding bit set in BLOCKS_IN.
1090 If BLOCKS_IN is null, consider it the universal set.
1092 BLOCKS_OUT is set for every block that was changed. */
1094 static void
1095 calculate_global_regs_live (blocks_in, blocks_out, flags)
1096 sbitmap blocks_in, blocks_out;
1097 int flags;
1099 basic_block *queue, *qhead, *qtail, *qend, bb;
1100 regset tmp, new_live_at_end, invalidated_by_call;
1101 regset_head tmp_head, invalidated_by_call_head;
1102 regset_head new_live_at_end_head;
1103 int i;
1105 /* Some passes used to forget clear aux field of basic block causing
1106 sick behavior here. */
1107 #ifdef ENABLE_CHECKING
1108 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1109 if (bb->aux)
1110 abort ();
1111 #endif
1113 tmp = INITIALIZE_REG_SET (tmp_head);
1114 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1115 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1117 /* Inconveniently, this is only readily available in hard reg set form. */
1118 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1119 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1120 SET_REGNO_REG_SET (invalidated_by_call, i);
1122 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1123 because the `head == tail' style test for an empty queue doesn't
1124 work with a full queue. */
1125 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1126 qtail = queue;
1127 qhead = qend = queue + n_basic_blocks + 2;
1129 /* Queue the blocks set in the initial mask. Do this in reverse block
1130 number order so that we are more likely for the first round to do
1131 useful work. We use AUX non-null to flag that the block is queued. */
1132 if (blocks_in)
1134 FOR_EACH_BB (bb)
1135 if (TEST_BIT (blocks_in, bb->index))
1137 *--qhead = bb;
1138 bb->aux = bb;
1141 else
1143 FOR_EACH_BB (bb)
1145 *--qhead = bb;
1146 bb->aux = bb;
1150 /* We clean aux when we remove the initially-enqueued bbs, but we
1151 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1152 unconditionally. */
1153 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1155 if (blocks_out)
1156 sbitmap_zero (blocks_out);
1158 /* We work through the queue until there are no more blocks. What
1159 is live at the end of this block is precisely the union of what
1160 is live at the beginning of all its successors. So, we set its
1161 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1162 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1163 this block by walking through the instructions in this block in
1164 reverse order and updating as we go. If that changed
1165 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1166 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1168 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1169 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1170 must either be live at the end of the block, or used within the
1171 block. In the latter case, it will certainly never disappear
1172 from GLOBAL_LIVE_AT_START. In the former case, the register
1173 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1174 for one of the successor blocks. By induction, that cannot
1175 occur. */
1176 while (qhead != qtail)
1178 int rescan, changed;
1179 basic_block bb;
1180 edge e;
1182 bb = *qhead++;
1183 if (qhead == qend)
1184 qhead = queue;
1185 bb->aux = NULL;
1187 /* Begin by propagating live_at_start from the successor blocks. */
1188 CLEAR_REG_SET (new_live_at_end);
1190 if (bb->succ)
1191 for (e = bb->succ; e; e = e->succ_next)
1193 basic_block sb = e->dest;
1195 /* Call-clobbered registers die across exception and
1196 call edges. */
1197 /* ??? Abnormal call edges ignored for the moment, as this gets
1198 confused by sibling call edges, which crashes reg-stack. */
1199 if (e->flags & EDGE_EH)
1201 bitmap_operation (tmp, sb->global_live_at_start,
1202 invalidated_by_call, BITMAP_AND_COMPL);
1203 IOR_REG_SET (new_live_at_end, tmp);
1205 else
1206 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1208 /* If a target saves one register in another (instead of on
1209 the stack) the save register will need to be live for EH. */
1210 if (e->flags & EDGE_EH)
1211 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1212 if (EH_USES (i))
1213 SET_REGNO_REG_SET (new_live_at_end, i);
1215 else
1217 /* This might be a noreturn function that throws. And
1218 even if it isn't, getting the unwind info right helps
1219 debugging. */
1220 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1221 if (EH_USES (i))
1222 SET_REGNO_REG_SET (new_live_at_end, i);
1225 /* The all-important stack pointer must always be live. */
1226 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1228 /* Before reload, there are a few registers that must be forced
1229 live everywhere -- which might not already be the case for
1230 blocks within infinite loops. */
1231 if (! reload_completed)
1233 /* Any reference to any pseudo before reload is a potential
1234 reference of the frame pointer. */
1235 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1237 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1238 /* Pseudos with argument area equivalences may require
1239 reloading via the argument pointer. */
1240 if (fixed_regs[ARG_POINTER_REGNUM])
1241 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1242 #endif
1244 /* Any constant, or pseudo with constant equivalences, may
1245 require reloading from memory using the pic register. */
1246 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1247 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1248 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1251 /* Regs used in phi nodes are not included in
1252 global_live_at_start, since they are live only along a
1253 particular edge. Set those regs that are live because of a
1254 phi node alternative corresponding to this particular block. */
1255 if (in_ssa_form)
1256 for_each_successor_phi (bb, &set_phi_alternative_reg,
1257 new_live_at_end);
1259 if (bb == ENTRY_BLOCK_PTR)
1261 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1262 continue;
1265 /* On our first pass through this block, we'll go ahead and continue.
1266 Recognize first pass by local_set NULL. On subsequent passes, we
1267 get to skip out early if live_at_end wouldn't have changed. */
1269 if (bb->local_set == NULL)
1271 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1272 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1273 rescan = 1;
1275 else
1277 /* If any bits were removed from live_at_end, we'll have to
1278 rescan the block. This wouldn't be necessary if we had
1279 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1280 local_live is really dependent on live_at_end. */
1281 CLEAR_REG_SET (tmp);
1282 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1283 new_live_at_end, BITMAP_AND_COMPL);
1285 if (! rescan)
1287 /* If any of the registers in the new live_at_end set are
1288 conditionally set in this basic block, we must rescan.
1289 This is because conditional lifetimes at the end of the
1290 block do not just take the live_at_end set into account,
1291 but also the liveness at the start of each successor
1292 block. We can miss changes in those sets if we only
1293 compare the new live_at_end against the previous one. */
1294 CLEAR_REG_SET (tmp);
1295 rescan = bitmap_operation (tmp, new_live_at_end,
1296 bb->cond_local_set, BITMAP_AND);
1299 if (! rescan)
1301 /* Find the set of changed bits. Take this opportunity
1302 to notice that this set is empty and early out. */
1303 CLEAR_REG_SET (tmp);
1304 changed = bitmap_operation (tmp, bb->global_live_at_end,
1305 new_live_at_end, BITMAP_XOR);
1306 if (! changed)
1307 continue;
1309 /* If any of the changed bits overlap with local_set,
1310 we'll have to rescan the block. Detect overlap by
1311 the AND with ~local_set turning off bits. */
1312 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1313 BITMAP_AND_COMPL);
1317 /* Let our caller know that BB changed enough to require its
1318 death notes updated. */
1319 if (blocks_out)
1320 SET_BIT (blocks_out, bb->index);
1322 if (! rescan)
1324 /* Add to live_at_start the set of all registers in
1325 new_live_at_end that aren't in the old live_at_end. */
1327 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1328 BITMAP_AND_COMPL);
1329 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1331 changed = bitmap_operation (bb->global_live_at_start,
1332 bb->global_live_at_start,
1333 tmp, BITMAP_IOR);
1334 if (! changed)
1335 continue;
1337 else
1339 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1341 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1342 into live_at_start. */
1343 propagate_block (bb, new_live_at_end, bb->local_set,
1344 bb->cond_local_set, flags);
1346 /* If live_at start didn't change, no need to go farther. */
1347 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1348 continue;
1350 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1353 /* Queue all predecessors of BB so that we may re-examine
1354 their live_at_end. */
1355 for (e = bb->pred; e; e = e->pred_next)
1357 basic_block pb = e->src;
1358 if (pb->aux == NULL)
1360 *qtail++ = pb;
1361 if (qtail == qend)
1362 qtail = queue;
1363 pb->aux = pb;
1368 FREE_REG_SET (tmp);
1369 FREE_REG_SET (new_live_at_end);
1370 FREE_REG_SET (invalidated_by_call);
1372 if (blocks_out)
1374 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1376 basic_block bb = BASIC_BLOCK (i);
1377 FREE_REG_SET (bb->local_set);
1378 FREE_REG_SET (bb->cond_local_set);
1381 else
1383 FOR_EACH_BB (bb)
1385 FREE_REG_SET (bb->local_set);
1386 FREE_REG_SET (bb->cond_local_set);
1390 free (queue);
1394 /* This structure is used to pass parameters to and from the
1395 the function find_regno_partial(). It is used to pass in the
1396 register number we are looking, as well as to return any rtx
1397 we find. */
1399 typedef struct {
1400 unsigned regno_to_find;
1401 rtx retval;
1402 } find_regno_partial_param;
1405 /* Find the rtx for the reg numbers specified in 'data' if it is
1406 part of an expression which only uses part of the register. Return
1407 it in the structure passed in. */
1408 static int
1409 find_regno_partial (ptr, data)
1410 rtx *ptr;
1411 void *data;
1413 find_regno_partial_param *param = (find_regno_partial_param *)data;
1414 unsigned reg = param->regno_to_find;
1415 param->retval = NULL_RTX;
1417 if (*ptr == NULL_RTX)
1418 return 0;
1420 switch (GET_CODE (*ptr))
1422 case ZERO_EXTRACT:
1423 case SIGN_EXTRACT:
1424 case STRICT_LOW_PART:
1425 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1427 param->retval = XEXP (*ptr, 0);
1428 return 1;
1430 break;
1432 case SUBREG:
1433 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1434 && REGNO (SUBREG_REG (*ptr)) == reg)
1436 param->retval = SUBREG_REG (*ptr);
1437 return 1;
1439 break;
1441 default:
1442 break;
1445 return 0;
1448 /* Process all immediate successors of the entry block looking for pseudo
1449 registers which are live on entry. Find all of those whose first
1450 instance is a partial register reference of some kind, and initialize
1451 them to 0 after the entry block. This will prevent bit sets within
1452 registers whose value is unknown, and may contain some kind of sticky
1453 bits we don't want. */
1456 initialize_uninitialized_subregs ()
1458 rtx insn;
1459 edge e;
1460 int reg, did_something = 0;
1461 find_regno_partial_param param;
1463 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1465 basic_block bb = e->dest;
1466 regset map = bb->global_live_at_start;
1467 EXECUTE_IF_SET_IN_REG_SET (map,
1468 FIRST_PSEUDO_REGISTER, reg,
1470 int uid = REGNO_FIRST_UID (reg);
1471 rtx i;
1473 /* Find an insn which mentions the register we are looking for.
1474 Its preferable to have an instance of the register's rtl since
1475 there may be various flags set which we need to duplicate.
1476 If we can't find it, its probably an automatic whose initial
1477 value doesn't matter, or hopefully something we don't care about. */
1478 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1480 if (i != NULL_RTX)
1482 /* Found the insn, now get the REG rtx, if we can. */
1483 param.regno_to_find = reg;
1484 for_each_rtx (&i, find_regno_partial, &param);
1485 if (param.retval != NULL_RTX)
1487 insn = gen_move_insn (param.retval,
1488 CONST0_RTX (GET_MODE (param.retval)));
1489 insert_insn_on_edge (insn, e);
1490 did_something = 1;
1496 if (did_something)
1497 commit_edge_insertions ();
1498 return did_something;
1502 /* Subroutines of life analysis. */
1504 /* Allocate the permanent data structures that represent the results
1505 of life analysis. Not static since used also for stupid life analysis. */
1507 void
1508 allocate_bb_life_data ()
1510 basic_block bb;
1512 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1514 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1515 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1518 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1521 void
1522 allocate_reg_life_data ()
1524 int i;
1526 max_regno = max_reg_num ();
1528 /* Recalculate the register space, in case it has grown. Old style
1529 vector oriented regsets would set regset_{size,bytes} here also. */
1530 allocate_reg_info (max_regno, FALSE, FALSE);
1532 /* Reset all the data we'll collect in propagate_block and its
1533 subroutines. */
1534 for (i = 0; i < max_regno; i++)
1536 REG_N_SETS (i) = 0;
1537 REG_N_REFS (i) = 0;
1538 REG_N_DEATHS (i) = 0;
1539 REG_N_CALLS_CROSSED (i) = 0;
1540 REG_LIVE_LENGTH (i) = 0;
1541 REG_FREQ (i) = 0;
1542 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1546 /* Delete dead instructions for propagate_block. */
1548 static void
1549 propagate_block_delete_insn (insn)
1550 rtx insn;
1552 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1554 /* If the insn referred to a label, and that label was attached to
1555 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1556 pretty much mandatory to delete it, because the ADDR_VEC may be
1557 referencing labels that no longer exist.
1559 INSN may reference a deleted label, particularly when a jump
1560 table has been optimized into a direct jump. There's no
1561 real good way to fix up the reference to the deleted label
1562 when the label is deleted, so we just allow it here. */
1564 if (inote && GET_CODE (inote) == CODE_LABEL)
1566 rtx label = XEXP (inote, 0);
1567 rtx next;
1569 /* The label may be forced if it has been put in the constant
1570 pool. If that is the only use we must discard the table
1571 jump following it, but not the label itself. */
1572 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1573 && (next = next_nonnote_insn (label)) != NULL
1574 && GET_CODE (next) == JUMP_INSN
1575 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1576 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1578 rtx pat = PATTERN (next);
1579 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1580 int len = XVECLEN (pat, diff_vec_p);
1581 int i;
1583 for (i = 0; i < len; i++)
1584 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1586 delete_insn_and_edges (next);
1587 ndead++;
1591 delete_insn_and_edges (insn);
1592 ndead++;
1595 /* Delete dead libcalls for propagate_block. Return the insn
1596 before the libcall. */
1598 static rtx
1599 propagate_block_delete_libcall ( insn, note)
1600 rtx insn, note;
1602 rtx first = XEXP (note, 0);
1603 rtx before = PREV_INSN (first);
1605 delete_insn_chain_and_edges (first, insn);
1606 ndead++;
1607 return before;
1610 /* Update the life-status of regs for one insn. Return the previous insn. */
1613 propagate_one_insn (pbi, insn)
1614 struct propagate_block_info *pbi;
1615 rtx insn;
1617 rtx prev = PREV_INSN (insn);
1618 int flags = pbi->flags;
1619 int insn_is_dead = 0;
1620 int libcall_is_dead = 0;
1621 rtx note;
1622 int i;
1624 if (! INSN_P (insn))
1625 return prev;
1627 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1628 if (flags & PROP_SCAN_DEAD_CODE)
1630 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1631 libcall_is_dead = (insn_is_dead && note != 0
1632 && libcall_dead_p (pbi, note, insn));
1635 /* If an instruction consists of just dead store(s) on final pass,
1636 delete it. */
1637 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1639 /* If we're trying to delete a prologue or epilogue instruction
1640 that isn't flagged as possibly being dead, something is wrong.
1641 But if we are keeping the stack pointer depressed, we might well
1642 be deleting insns that are used to compute the amount to update
1643 it by, so they are fine. */
1644 if (reload_completed
1645 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1646 && (TYPE_RETURNS_STACK_DEPRESSED
1647 (TREE_TYPE (current_function_decl))))
1648 && (((HAVE_epilogue || HAVE_prologue)
1649 && prologue_epilogue_contains (insn))
1650 || (HAVE_sibcall_epilogue
1651 && sibcall_epilogue_contains (insn)))
1652 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1653 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1655 /* Record sets. Do this even for dead instructions, since they
1656 would have killed the values if they hadn't been deleted. */
1657 mark_set_regs (pbi, PATTERN (insn), insn);
1659 /* CC0 is now known to be dead. Either this insn used it,
1660 in which case it doesn't anymore, or clobbered it,
1661 so the next insn can't use it. */
1662 pbi->cc0_live = 0;
1664 if (libcall_is_dead)
1665 prev = propagate_block_delete_libcall ( insn, note);
1666 else
1669 /* If INSN contains a RETVAL note and is dead, but the libcall
1670 as a whole is not dead, then we want to remove INSN, but
1671 not the whole libcall sequence.
1673 However, we need to also remove the dangling REG_LIBCALL
1674 note so that we do not have mis-matched LIBCALL/RETVAL
1675 notes. In theory we could find a new location for the
1676 REG_RETVAL note, but it hardly seems worth the effort.
1678 NOTE at this point will be the RETVAL note if it exists. */
1679 if (note)
1681 rtx libcall_note;
1683 libcall_note
1684 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1685 remove_note (XEXP (note, 0), libcall_note);
1688 /* Similarly if INSN contains a LIBCALL note, remove the
1689 dangling REG_RETVAL note. */
1690 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1691 if (note)
1693 rtx retval_note;
1695 retval_note
1696 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1697 remove_note (XEXP (note, 0), retval_note);
1700 /* Now delete INSN. */
1701 propagate_block_delete_insn (insn);
1704 return prev;
1707 /* See if this is an increment or decrement that can be merged into
1708 a following memory address. */
1709 #ifdef AUTO_INC_DEC
1711 rtx x = single_set (insn);
1713 /* Does this instruction increment or decrement a register? */
1714 if ((flags & PROP_AUTOINC)
1715 && x != 0
1716 && GET_CODE (SET_DEST (x)) == REG
1717 && (GET_CODE (SET_SRC (x)) == PLUS
1718 || GET_CODE (SET_SRC (x)) == MINUS)
1719 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1720 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1721 /* Ok, look for a following memory ref we can combine with.
1722 If one is found, change the memory ref to a PRE_INC
1723 or PRE_DEC, cancel this insn, and return 1.
1724 Return 0 if nothing has been done. */
1725 && try_pre_increment_1 (pbi, insn))
1726 return prev;
1728 #endif /* AUTO_INC_DEC */
1730 CLEAR_REG_SET (pbi->new_set);
1732 /* If this is not the final pass, and this insn is copying the value of
1733 a library call and it's dead, don't scan the insns that perform the
1734 library call, so that the call's arguments are not marked live. */
1735 if (libcall_is_dead)
1737 /* Record the death of the dest reg. */
1738 mark_set_regs (pbi, PATTERN (insn), insn);
1740 insn = XEXP (note, 0);
1741 return PREV_INSN (insn);
1743 else if (GET_CODE (PATTERN (insn)) == SET
1744 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1745 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1746 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1747 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1748 /* We have an insn to pop a constant amount off the stack.
1749 (Such insns use PLUS regardless of the direction of the stack,
1750 and any insn to adjust the stack by a constant is always a pop.)
1751 These insns, if not dead stores, have no effect on life, though
1752 they do have an effect on the memory stores we are tracking. */
1753 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1754 else
1756 rtx note;
1757 /* Any regs live at the time of a call instruction must not go
1758 in a register clobbered by calls. Find all regs now live and
1759 record this for them. */
1761 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1762 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1763 { REG_N_CALLS_CROSSED (i)++; });
1765 /* Record sets. Do this even for dead instructions, since they
1766 would have killed the values if they hadn't been deleted. */
1767 mark_set_regs (pbi, PATTERN (insn), insn);
1769 if (GET_CODE (insn) == CALL_INSN)
1771 int i;
1772 rtx note, cond;
1774 cond = NULL_RTX;
1775 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1776 cond = COND_EXEC_TEST (PATTERN (insn));
1778 /* Non-constant calls clobber memory, constant calls do not
1779 clobber memory, though they may clobber outgoing arguments
1780 on the stack. */
1781 if (! CONST_OR_PURE_CALL_P (insn))
1783 free_EXPR_LIST_list (&pbi->mem_set_list);
1784 pbi->mem_set_list_len = 0;
1786 else
1787 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1789 /* There may be extra registers to be clobbered. */
1790 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1791 note;
1792 note = XEXP (note, 1))
1793 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1794 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1795 cond, insn, pbi->flags);
1797 /* Calls change all call-used and global registers. */
1798 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1799 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1801 /* We do not want REG_UNUSED notes for these registers. */
1802 mark_set_1 (pbi, CLOBBER, regno_reg_rtx[i], cond, insn,
1803 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1807 /* If an insn doesn't use CC0, it becomes dead since we assume
1808 that every insn clobbers it. So show it dead here;
1809 mark_used_regs will set it live if it is referenced. */
1810 pbi->cc0_live = 0;
1812 /* Record uses. */
1813 if (! insn_is_dead)
1814 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1815 if ((flags & PROP_EQUAL_NOTES)
1816 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1817 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1818 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1820 /* Sometimes we may have inserted something before INSN (such as a move)
1821 when we make an auto-inc. So ensure we will scan those insns. */
1822 #ifdef AUTO_INC_DEC
1823 prev = PREV_INSN (insn);
1824 #endif
1826 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1828 int i;
1829 rtx note, cond;
1831 cond = NULL_RTX;
1832 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1833 cond = COND_EXEC_TEST (PATTERN (insn));
1835 /* Calls use their arguments. */
1836 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1837 note;
1838 note = XEXP (note, 1))
1839 if (GET_CODE (XEXP (note, 0)) == USE)
1840 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1841 cond, insn);
1843 /* The stack ptr is used (honorarily) by a CALL insn. */
1844 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1846 /* Calls may also reference any of the global registers,
1847 so they are made live. */
1848 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1849 if (global_regs[i])
1850 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1854 /* On final pass, update counts of how many insns in which each reg
1855 is live. */
1856 if (flags & PROP_REG_INFO)
1857 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1858 { REG_LIVE_LENGTH (i)++; });
1860 return prev;
1863 /* Initialize a propagate_block_info struct for public consumption.
1864 Note that the structure itself is opaque to this file, but that
1865 the user can use the regsets provided here. */
1867 struct propagate_block_info *
1868 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1869 basic_block bb;
1870 regset live, local_set, cond_local_set;
1871 int flags;
1873 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1875 pbi->bb = bb;
1876 pbi->reg_live = live;
1877 pbi->mem_set_list = NULL_RTX;
1878 pbi->mem_set_list_len = 0;
1879 pbi->local_set = local_set;
1880 pbi->cond_local_set = cond_local_set;
1881 pbi->cc0_live = 0;
1882 pbi->flags = flags;
1884 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1885 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1886 else
1887 pbi->reg_next_use = NULL;
1889 pbi->new_set = BITMAP_XMALLOC ();
1891 #ifdef HAVE_conditional_execution
1892 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1893 free_reg_cond_life_info);
1894 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1896 /* If this block ends in a conditional branch, for each register live
1897 from one side of the branch and not the other, record the register
1898 as conditionally dead. */
1899 if (GET_CODE (bb->end) == JUMP_INSN
1900 && any_condjump_p (bb->end))
1902 regset_head diff_head;
1903 regset diff = INITIALIZE_REG_SET (diff_head);
1904 basic_block bb_true, bb_false;
1905 rtx cond_true, cond_false, set_src;
1906 int i;
1908 /* Identify the successor blocks. */
1909 bb_true = bb->succ->dest;
1910 if (bb->succ->succ_next != NULL)
1912 bb_false = bb->succ->succ_next->dest;
1914 if (bb->succ->flags & EDGE_FALLTHRU)
1916 basic_block t = bb_false;
1917 bb_false = bb_true;
1918 bb_true = t;
1920 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1921 abort ();
1923 else
1925 /* This can happen with a conditional jump to the next insn. */
1926 if (JUMP_LABEL (bb->end) != bb_true->head)
1927 abort ();
1929 /* Simplest way to do nothing. */
1930 bb_false = bb_true;
1933 /* Extract the condition from the branch. */
1934 set_src = SET_SRC (pc_set (bb->end));
1935 cond_true = XEXP (set_src, 0);
1936 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1937 GET_MODE (cond_true), XEXP (cond_true, 0),
1938 XEXP (cond_true, 1));
1939 if (GET_CODE (XEXP (set_src, 1)) == PC)
1941 rtx t = cond_false;
1942 cond_false = cond_true;
1943 cond_true = t;
1946 /* Compute which register lead different lives in the successors. */
1947 if (bitmap_operation (diff, bb_true->global_live_at_start,
1948 bb_false->global_live_at_start, BITMAP_XOR))
1950 rtx reg = XEXP (cond_true, 0);
1952 if (GET_CODE (reg) == SUBREG)
1953 reg = SUBREG_REG (reg);
1955 if (GET_CODE (reg) != REG)
1956 abort ();
1958 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1960 /* For each such register, mark it conditionally dead. */
1961 EXECUTE_IF_SET_IN_REG_SET
1962 (diff, 0, i,
1964 struct reg_cond_life_info *rcli;
1965 rtx cond;
1967 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1969 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1970 cond = cond_false;
1971 else
1972 cond = cond_true;
1973 rcli->condition = cond;
1974 rcli->stores = const0_rtx;
1975 rcli->orig_condition = cond;
1977 splay_tree_insert (pbi->reg_cond_dead, i,
1978 (splay_tree_value) rcli);
1982 FREE_REG_SET (diff);
1984 #endif
1986 /* If this block has no successors, any stores to the frame that aren't
1987 used later in the block are dead. So make a pass over the block
1988 recording any such that are made and show them dead at the end. We do
1989 a very conservative and simple job here. */
1990 if (optimize
1991 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1992 && (TYPE_RETURNS_STACK_DEPRESSED
1993 (TREE_TYPE (current_function_decl))))
1994 && (flags & PROP_SCAN_DEAD_STORES)
1995 && (bb->succ == NULL
1996 || (bb->succ->succ_next == NULL
1997 && bb->succ->dest == EXIT_BLOCK_PTR
1998 && ! current_function_calls_eh_return)))
2000 rtx insn, set;
2001 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
2002 if (GET_CODE (insn) == INSN
2003 && (set = single_set (insn))
2004 && GET_CODE (SET_DEST (set)) == MEM)
2006 rtx mem = SET_DEST (set);
2007 rtx canon_mem = canon_rtx (mem);
2009 /* This optimization is performed by faking a store to the
2010 memory at the end of the block. This doesn't work for
2011 unchanging memories because multiple stores to unchanging
2012 memory is illegal and alias analysis doesn't consider it. */
2013 if (RTX_UNCHANGING_P (canon_mem))
2014 continue;
2016 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2017 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2018 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2019 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2020 add_to_mem_set_list (pbi, canon_mem);
2024 return pbi;
2027 /* Release a propagate_block_info struct. */
2029 void
2030 free_propagate_block_info (pbi)
2031 struct propagate_block_info *pbi;
2033 free_EXPR_LIST_list (&pbi->mem_set_list);
2035 BITMAP_XFREE (pbi->new_set);
2037 #ifdef HAVE_conditional_execution
2038 splay_tree_delete (pbi->reg_cond_dead);
2039 BITMAP_XFREE (pbi->reg_cond_reg);
2040 #endif
2042 if (pbi->reg_next_use)
2043 free (pbi->reg_next_use);
2045 free (pbi);
2048 /* Compute the registers live at the beginning of a basic block BB from
2049 those live at the end.
2051 When called, REG_LIVE contains those live at the end. On return, it
2052 contains those live at the beginning.
2054 LOCAL_SET, if non-null, will be set with all registers killed
2055 unconditionally by this basic block.
2056 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2057 killed conditionally by this basic block. If there is any unconditional
2058 set of a register, then the corresponding bit will be set in LOCAL_SET
2059 and cleared in COND_LOCAL_SET.
2060 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2061 case, the resulting set will be equal to the union of the two sets that
2062 would otherwise be computed.
2064 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2067 propagate_block (bb, live, local_set, cond_local_set, flags)
2068 basic_block bb;
2069 regset live;
2070 regset local_set;
2071 regset cond_local_set;
2072 int flags;
2074 struct propagate_block_info *pbi;
2075 rtx insn, prev;
2076 int changed;
2078 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2080 if (flags & PROP_REG_INFO)
2082 int i;
2084 /* Process the regs live at the end of the block.
2085 Mark them as not local to any one basic block. */
2086 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2087 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2090 /* Scan the block an insn at a time from end to beginning. */
2092 changed = 0;
2093 for (insn = bb->end;; insn = prev)
2095 /* If this is a call to `setjmp' et al, warn if any
2096 non-volatile datum is live. */
2097 if ((flags & PROP_REG_INFO)
2098 && GET_CODE (insn) == CALL_INSN
2099 && find_reg_note (insn, REG_SETJMP, NULL))
2100 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2102 prev = propagate_one_insn (pbi, insn);
2103 changed |= NEXT_INSN (prev) != insn;
2105 if (insn == bb->head)
2106 break;
2109 free_propagate_block_info (pbi);
2111 return changed;
2114 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2115 (SET expressions whose destinations are registers dead after the insn).
2116 NEEDED is the regset that says which regs are alive after the insn.
2118 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2120 If X is the entire body of an insn, NOTES contains the reg notes
2121 pertaining to the insn. */
2123 static int
2124 insn_dead_p (pbi, x, call_ok, notes)
2125 struct propagate_block_info *pbi;
2126 rtx x;
2127 int call_ok;
2128 rtx notes ATTRIBUTE_UNUSED;
2130 enum rtx_code code = GET_CODE (x);
2132 /* Don't eliminate insns that may trap. */
2133 if (flag_non_call_exceptions && may_trap_p (x))
2134 return 0;
2136 #ifdef AUTO_INC_DEC
2137 /* As flow is invoked after combine, we must take existing AUTO_INC
2138 expressions into account. */
2139 for (; notes; notes = XEXP (notes, 1))
2141 if (REG_NOTE_KIND (notes) == REG_INC)
2143 int regno = REGNO (XEXP (notes, 0));
2145 /* Don't delete insns to set global regs. */
2146 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2147 || REGNO_REG_SET_P (pbi->reg_live, regno))
2148 return 0;
2151 #endif
2153 /* If setting something that's a reg or part of one,
2154 see if that register's altered value will be live. */
2156 if (code == SET)
2158 rtx r = SET_DEST (x);
2160 #ifdef HAVE_cc0
2161 if (GET_CODE (r) == CC0)
2162 return ! pbi->cc0_live;
2163 #endif
2165 /* A SET that is a subroutine call cannot be dead. */
2166 if (GET_CODE (SET_SRC (x)) == CALL)
2168 if (! call_ok)
2169 return 0;
2172 /* Don't eliminate loads from volatile memory or volatile asms. */
2173 else if (volatile_refs_p (SET_SRC (x)))
2174 return 0;
2176 if (GET_CODE (r) == MEM)
2178 rtx temp, canon_r;
2180 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2181 return 0;
2183 canon_r = canon_rtx (r);
2185 /* Walk the set of memory locations we are currently tracking
2186 and see if one is an identical match to this memory location.
2187 If so, this memory write is dead (remember, we're walking
2188 backwards from the end of the block to the start). Since
2189 rtx_equal_p does not check the alias set or flags, we also
2190 must have the potential for them to conflict (anti_dependence). */
2191 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2192 if (anti_dependence (r, XEXP (temp, 0)))
2194 rtx mem = XEXP (temp, 0);
2196 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2197 && (GET_MODE_SIZE (GET_MODE (canon_r))
2198 <= GET_MODE_SIZE (GET_MODE (mem))))
2199 return 1;
2201 #ifdef AUTO_INC_DEC
2202 /* Check if memory reference matches an auto increment. Only
2203 post increment/decrement or modify are valid. */
2204 if (GET_MODE (mem) == GET_MODE (r)
2205 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2206 || GET_CODE (XEXP (mem, 0)) == POST_INC
2207 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2208 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2209 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2210 return 1;
2211 #endif
2214 else
2216 while (GET_CODE (r) == SUBREG
2217 || GET_CODE (r) == STRICT_LOW_PART
2218 || GET_CODE (r) == ZERO_EXTRACT)
2219 r = XEXP (r, 0);
2221 if (GET_CODE (r) == REG)
2223 int regno = REGNO (r);
2225 /* Obvious. */
2226 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2227 return 0;
2229 /* If this is a hard register, verify that subsequent
2230 words are not needed. */
2231 if (regno < FIRST_PSEUDO_REGISTER)
2233 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2235 while (--n > 0)
2236 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2237 return 0;
2240 /* Don't delete insns to set global regs. */
2241 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2242 return 0;
2244 /* Make sure insns to set the stack pointer aren't deleted. */
2245 if (regno == STACK_POINTER_REGNUM)
2246 return 0;
2248 /* ??? These bits might be redundant with the force live bits
2249 in calculate_global_regs_live. We would delete from
2250 sequential sets; whether this actually affects real code
2251 for anything but the stack pointer I don't know. */
2252 /* Make sure insns to set the frame pointer aren't deleted. */
2253 if (regno == FRAME_POINTER_REGNUM
2254 && (! reload_completed || frame_pointer_needed))
2255 return 0;
2256 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2257 if (regno == HARD_FRAME_POINTER_REGNUM
2258 && (! reload_completed || frame_pointer_needed))
2259 return 0;
2260 #endif
2262 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2263 /* Make sure insns to set arg pointer are never deleted
2264 (if the arg pointer isn't fixed, there will be a USE
2265 for it, so we can treat it normally). */
2266 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2267 return 0;
2268 #endif
2270 /* Otherwise, the set is dead. */
2271 return 1;
2276 /* If performing several activities, insn is dead if each activity
2277 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2278 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2279 worth keeping. */
2280 else if (code == PARALLEL)
2282 int i = XVECLEN (x, 0);
2284 for (i--; i >= 0; i--)
2285 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2286 && GET_CODE (XVECEXP (x, 0, i)) != USE
2287 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2288 return 0;
2290 return 1;
2293 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2294 is not necessarily true for hard registers. */
2295 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2296 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2297 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2298 return 1;
2300 /* We do not check other CLOBBER or USE here. An insn consisting of just
2301 a CLOBBER or just a USE should not be deleted. */
2302 return 0;
2305 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2306 return 1 if the entire library call is dead.
2307 This is true if INSN copies a register (hard or pseudo)
2308 and if the hard return reg of the call insn is dead.
2309 (The caller should have tested the destination of the SET inside
2310 INSN already for death.)
2312 If this insn doesn't just copy a register, then we don't
2313 have an ordinary libcall. In that case, cse could not have
2314 managed to substitute the source for the dest later on,
2315 so we can assume the libcall is dead.
2317 PBI is the block info giving pseudoregs live before this insn.
2318 NOTE is the REG_RETVAL note of the insn. */
2320 static int
2321 libcall_dead_p (pbi, note, insn)
2322 struct propagate_block_info *pbi;
2323 rtx note;
2324 rtx insn;
2326 rtx x = single_set (insn);
2328 if (x)
2330 rtx r = SET_SRC (x);
2332 if (GET_CODE (r) == REG)
2334 rtx call = XEXP (note, 0);
2335 rtx call_pat;
2336 int i;
2338 /* Find the call insn. */
2339 while (call != insn && GET_CODE (call) != CALL_INSN)
2340 call = NEXT_INSN (call);
2342 /* If there is none, do nothing special,
2343 since ordinary death handling can understand these insns. */
2344 if (call == insn)
2345 return 0;
2347 /* See if the hard reg holding the value is dead.
2348 If this is a PARALLEL, find the call within it. */
2349 call_pat = PATTERN (call);
2350 if (GET_CODE (call_pat) == PARALLEL)
2352 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2353 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2354 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2355 break;
2357 /* This may be a library call that is returning a value
2358 via invisible pointer. Do nothing special, since
2359 ordinary death handling can understand these insns. */
2360 if (i < 0)
2361 return 0;
2363 call_pat = XVECEXP (call_pat, 0, i);
2366 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2369 return 1;
2372 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2373 live at function entry. Don't count global register variables, variables
2374 in registers that can be used for function arg passing, or variables in
2375 fixed hard registers. */
2378 regno_uninitialized (regno)
2379 unsigned int regno;
2381 if (n_basic_blocks == 0
2382 || (regno < FIRST_PSEUDO_REGISTER
2383 && (global_regs[regno]
2384 || fixed_regs[regno]
2385 || FUNCTION_ARG_REGNO_P (regno))))
2386 return 0;
2388 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno);
2391 /* 1 if register REGNO was alive at a place where `setjmp' was called
2392 and was set more than once or is an argument.
2393 Such regs may be clobbered by `longjmp'. */
2396 regno_clobbered_at_setjmp (regno)
2397 int regno;
2399 if (n_basic_blocks == 0)
2400 return 0;
2402 return ((REG_N_SETS (regno) > 1
2403 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2404 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2407 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2408 maximal list size; look for overlaps in mode and select the largest. */
2409 static void
2410 add_to_mem_set_list (pbi, mem)
2411 struct propagate_block_info *pbi;
2412 rtx mem;
2414 rtx i;
2416 /* We don't know how large a BLKmode store is, so we must not
2417 take them into consideration. */
2418 if (GET_MODE (mem) == BLKmode)
2419 return;
2421 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2423 rtx e = XEXP (i, 0);
2424 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2426 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2428 #ifdef AUTO_INC_DEC
2429 /* If we must store a copy of the mem, we can just modify
2430 the mode of the stored copy. */
2431 if (pbi->flags & PROP_AUTOINC)
2432 PUT_MODE (e, GET_MODE (mem));
2433 else
2434 #endif
2435 XEXP (i, 0) = mem;
2437 return;
2441 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2443 #ifdef AUTO_INC_DEC
2444 /* Store a copy of mem, otherwise the address may be
2445 scrogged by find_auto_inc. */
2446 if (pbi->flags & PROP_AUTOINC)
2447 mem = shallow_copy_rtx (mem);
2448 #endif
2449 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2450 pbi->mem_set_list_len++;
2454 /* INSN references memory, possibly using autoincrement addressing modes.
2455 Find any entries on the mem_set_list that need to be invalidated due
2456 to an address change. */
2458 static int
2459 invalidate_mems_from_autoinc (px, data)
2460 rtx *px;
2461 void *data;
2463 rtx x = *px;
2464 struct propagate_block_info *pbi = data;
2466 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2468 invalidate_mems_from_set (pbi, XEXP (x, 0));
2469 return -1;
2472 return 0;
2475 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2477 static void
2478 invalidate_mems_from_set (pbi, exp)
2479 struct propagate_block_info *pbi;
2480 rtx exp;
2482 rtx temp = pbi->mem_set_list;
2483 rtx prev = NULL_RTX;
2484 rtx next;
2486 while (temp)
2488 next = XEXP (temp, 1);
2489 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2491 /* Splice this entry out of the list. */
2492 if (prev)
2493 XEXP (prev, 1) = next;
2494 else
2495 pbi->mem_set_list = next;
2496 free_EXPR_LIST_node (temp);
2497 pbi->mem_set_list_len--;
2499 else
2500 prev = temp;
2501 temp = next;
2505 /* Process the registers that are set within X. Their bits are set to
2506 1 in the regset DEAD, because they are dead prior to this insn.
2508 If INSN is nonzero, it is the insn being processed.
2510 FLAGS is the set of operations to perform. */
2512 static void
2513 mark_set_regs (pbi, x, insn)
2514 struct propagate_block_info *pbi;
2515 rtx x, insn;
2517 rtx cond = NULL_RTX;
2518 rtx link;
2519 enum rtx_code code;
2521 if (insn)
2522 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2524 if (REG_NOTE_KIND (link) == REG_INC)
2525 mark_set_1 (pbi, SET, XEXP (link, 0),
2526 (GET_CODE (x) == COND_EXEC
2527 ? COND_EXEC_TEST (x) : NULL_RTX),
2528 insn, pbi->flags);
2530 retry:
2531 switch (code = GET_CODE (x))
2533 case SET:
2534 case CLOBBER:
2535 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2536 return;
2538 case COND_EXEC:
2539 cond = COND_EXEC_TEST (x);
2540 x = COND_EXEC_CODE (x);
2541 goto retry;
2543 case PARALLEL:
2545 int i;
2547 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2549 rtx sub = XVECEXP (x, 0, i);
2550 switch (code = GET_CODE (sub))
2552 case COND_EXEC:
2553 if (cond != NULL_RTX)
2554 abort ();
2556 cond = COND_EXEC_TEST (sub);
2557 sub = COND_EXEC_CODE (sub);
2558 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2559 break;
2560 /* Fall through. */
2562 case SET:
2563 case CLOBBER:
2564 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2565 break;
2567 default:
2568 break;
2571 break;
2574 default:
2575 break;
2579 /* Process a single set, which appears in INSN. REG (which may not
2580 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2581 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2582 If the set is conditional (because it appear in a COND_EXEC), COND
2583 will be the condition. */
2585 static void
2586 mark_set_1 (pbi, code, reg, cond, insn, flags)
2587 struct propagate_block_info *pbi;
2588 enum rtx_code code;
2589 rtx reg, cond, insn;
2590 int flags;
2592 int regno_first = -1, regno_last = -1;
2593 unsigned long not_dead = 0;
2594 int i;
2596 /* Modifying just one hardware register of a multi-reg value or just a
2597 byte field of a register does not mean the value from before this insn
2598 is now dead. Of course, if it was dead after it's unused now. */
2600 switch (GET_CODE (reg))
2602 case PARALLEL:
2603 /* Some targets place small structures in registers for return values of
2604 functions. We have to detect this case specially here to get correct
2605 flow information. */
2606 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2607 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2608 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2609 flags);
2610 return;
2612 case ZERO_EXTRACT:
2613 case SIGN_EXTRACT:
2614 case STRICT_LOW_PART:
2615 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2617 reg = XEXP (reg, 0);
2618 while (GET_CODE (reg) == SUBREG
2619 || GET_CODE (reg) == ZERO_EXTRACT
2620 || GET_CODE (reg) == SIGN_EXTRACT
2621 || GET_CODE (reg) == STRICT_LOW_PART);
2622 if (GET_CODE (reg) == MEM)
2623 break;
2624 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2625 /* Fall through. */
2627 case REG:
2628 regno_last = regno_first = REGNO (reg);
2629 if (regno_first < FIRST_PSEUDO_REGISTER)
2630 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2631 break;
2633 case SUBREG:
2634 if (GET_CODE (SUBREG_REG (reg)) == REG)
2636 enum machine_mode outer_mode = GET_MODE (reg);
2637 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2639 /* Identify the range of registers affected. This is moderately
2640 tricky for hard registers. See alter_subreg. */
2642 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2643 if (regno_first < FIRST_PSEUDO_REGISTER)
2645 regno_first += subreg_regno_offset (regno_first, inner_mode,
2646 SUBREG_BYTE (reg),
2647 outer_mode);
2648 regno_last = (regno_first
2649 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2651 /* Since we've just adjusted the register number ranges, make
2652 sure REG matches. Otherwise some_was_live will be clear
2653 when it shouldn't have been, and we'll create incorrect
2654 REG_UNUSED notes. */
2655 reg = gen_rtx_REG (outer_mode, regno_first);
2657 else
2659 /* If the number of words in the subreg is less than the number
2660 of words in the full register, we have a well-defined partial
2661 set. Otherwise the high bits are undefined.
2663 This is only really applicable to pseudos, since we just took
2664 care of multi-word hard registers. */
2665 if (((GET_MODE_SIZE (outer_mode)
2666 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2667 < ((GET_MODE_SIZE (inner_mode)
2668 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2669 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2670 regno_first);
2672 reg = SUBREG_REG (reg);
2675 else
2676 reg = SUBREG_REG (reg);
2677 break;
2679 default:
2680 break;
2683 /* If this set is a MEM, then it kills any aliased writes.
2684 If this set is a REG, then it kills any MEMs which use the reg. */
2685 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2687 if (GET_CODE (reg) == REG)
2688 invalidate_mems_from_set (pbi, reg);
2690 /* If the memory reference had embedded side effects (autoincrement
2691 address modes. Then we may need to kill some entries on the
2692 memory set list. */
2693 if (insn && GET_CODE (reg) == MEM)
2694 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2696 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2697 /* ??? With more effort we could track conditional memory life. */
2698 && ! cond)
2699 add_to_mem_set_list (pbi, canon_rtx (reg));
2702 if (GET_CODE (reg) == REG
2703 && ! (regno_first == FRAME_POINTER_REGNUM
2704 && (! reload_completed || frame_pointer_needed))
2705 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2706 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2707 && (! reload_completed || frame_pointer_needed))
2708 #endif
2709 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2710 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2711 #endif
2714 int some_was_live = 0, some_was_dead = 0;
2716 for (i = regno_first; i <= regno_last; ++i)
2718 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2719 if (pbi->local_set)
2721 /* Order of the set operation matters here since both
2722 sets may be the same. */
2723 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2724 if (cond != NULL_RTX
2725 && ! REGNO_REG_SET_P (pbi->local_set, i))
2726 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2727 else
2728 SET_REGNO_REG_SET (pbi->local_set, i);
2730 if (code != CLOBBER)
2731 SET_REGNO_REG_SET (pbi->new_set, i);
2733 some_was_live |= needed_regno;
2734 some_was_dead |= ! needed_regno;
2737 #ifdef HAVE_conditional_execution
2738 /* Consider conditional death in deciding that the register needs
2739 a death note. */
2740 if (some_was_live && ! not_dead
2741 /* The stack pointer is never dead. Well, not strictly true,
2742 but it's very difficult to tell from here. Hopefully
2743 combine_stack_adjustments will fix up the most egregious
2744 errors. */
2745 && regno_first != STACK_POINTER_REGNUM)
2747 for (i = regno_first; i <= regno_last; ++i)
2748 if (! mark_regno_cond_dead (pbi, i, cond))
2749 not_dead |= ((unsigned long) 1) << (i - regno_first);
2751 #endif
2753 /* Additional data to record if this is the final pass. */
2754 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2755 | PROP_DEATH_NOTES | PROP_AUTOINC))
2757 rtx y;
2758 int blocknum = pbi->bb->index;
2760 y = NULL_RTX;
2761 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2763 y = pbi->reg_next_use[regno_first];
2765 /* The next use is no longer next, since a store intervenes. */
2766 for (i = regno_first; i <= regno_last; ++i)
2767 pbi->reg_next_use[i] = 0;
2770 if (flags & PROP_REG_INFO)
2772 for (i = regno_first; i <= regno_last; ++i)
2774 /* Count (weighted) references, stores, etc. This counts a
2775 register twice if it is modified, but that is correct. */
2776 REG_N_SETS (i) += 1;
2777 REG_N_REFS (i) += 1;
2778 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2780 /* The insns where a reg is live are normally counted
2781 elsewhere, but we want the count to include the insn
2782 where the reg is set, and the normal counting mechanism
2783 would not count it. */
2784 REG_LIVE_LENGTH (i) += 1;
2787 /* If this is a hard reg, record this function uses the reg. */
2788 if (regno_first < FIRST_PSEUDO_REGISTER)
2790 for (i = regno_first; i <= regno_last; i++)
2791 regs_ever_live[i] = 1;
2793 else
2795 /* Keep track of which basic blocks each reg appears in. */
2796 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2797 REG_BASIC_BLOCK (regno_first) = blocknum;
2798 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2799 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2803 if (! some_was_dead)
2805 if (flags & PROP_LOG_LINKS)
2807 /* Make a logical link from the next following insn
2808 that uses this register, back to this insn.
2809 The following insns have already been processed.
2811 We don't build a LOG_LINK for hard registers containing
2812 in ASM_OPERANDs. If these registers get replaced,
2813 we might wind up changing the semantics of the insn,
2814 even if reload can make what appear to be valid
2815 assignments later. */
2816 if (y && (BLOCK_NUM (y) == blocknum)
2817 && (regno_first >= FIRST_PSEUDO_REGISTER
2818 || asm_noperands (PATTERN (y)) < 0))
2819 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2822 else if (not_dead)
2824 else if (! some_was_live)
2826 if (flags & PROP_REG_INFO)
2827 REG_N_DEATHS (regno_first) += 1;
2829 if (flags & PROP_DEATH_NOTES)
2831 /* Note that dead stores have already been deleted
2832 when possible. If we get here, we have found a
2833 dead store that cannot be eliminated (because the
2834 same insn does something useful). Indicate this
2835 by marking the reg being set as dying here. */
2836 REG_NOTES (insn)
2837 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2840 else
2842 if (flags & PROP_DEATH_NOTES)
2844 /* This is a case where we have a multi-word hard register
2845 and some, but not all, of the words of the register are
2846 needed in subsequent insns. Write REG_UNUSED notes
2847 for those parts that were not needed. This case should
2848 be rare. */
2850 for (i = regno_first; i <= regno_last; ++i)
2851 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2852 REG_NOTES (insn)
2853 = alloc_EXPR_LIST (REG_UNUSED,
2854 regno_reg_rtx[i],
2855 REG_NOTES (insn));
2860 /* Mark the register as being dead. */
2861 if (some_was_live
2862 /* The stack pointer is never dead. Well, not strictly true,
2863 but it's very difficult to tell from here. Hopefully
2864 combine_stack_adjustments will fix up the most egregious
2865 errors. */
2866 && regno_first != STACK_POINTER_REGNUM)
2868 for (i = regno_first; i <= regno_last; ++i)
2869 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2870 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2873 else if (GET_CODE (reg) == REG)
2875 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2876 pbi->reg_next_use[regno_first] = 0;
2879 /* If this is the last pass and this is a SCRATCH, show it will be dying
2880 here and count it. */
2881 else if (GET_CODE (reg) == SCRATCH)
2883 if (flags & PROP_DEATH_NOTES)
2884 REG_NOTES (insn)
2885 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2889 #ifdef HAVE_conditional_execution
2890 /* Mark REGNO conditionally dead.
2891 Return true if the register is now unconditionally dead. */
2893 static int
2894 mark_regno_cond_dead (pbi, regno, cond)
2895 struct propagate_block_info *pbi;
2896 int regno;
2897 rtx cond;
2899 /* If this is a store to a predicate register, the value of the
2900 predicate is changing, we don't know that the predicate as seen
2901 before is the same as that seen after. Flush all dependent
2902 conditions from reg_cond_dead. This will make all such
2903 conditionally live registers unconditionally live. */
2904 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2905 flush_reg_cond_reg (pbi, regno);
2907 /* If this is an unconditional store, remove any conditional
2908 life that may have existed. */
2909 if (cond == NULL_RTX)
2910 splay_tree_remove (pbi->reg_cond_dead, regno);
2911 else
2913 splay_tree_node node;
2914 struct reg_cond_life_info *rcli;
2915 rtx ncond;
2917 /* Otherwise this is a conditional set. Record that fact.
2918 It may have been conditionally used, or there may be a
2919 subsequent set with a complimentary condition. */
2921 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2922 if (node == NULL)
2924 /* The register was unconditionally live previously.
2925 Record the current condition as the condition under
2926 which it is dead. */
2927 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2928 rcli->condition = cond;
2929 rcli->stores = cond;
2930 rcli->orig_condition = const0_rtx;
2931 splay_tree_insert (pbi->reg_cond_dead, regno,
2932 (splay_tree_value) rcli);
2934 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2936 /* Not unconditionally dead. */
2937 return 0;
2939 else
2941 /* The register was conditionally live previously.
2942 Add the new condition to the old. */
2943 rcli = (struct reg_cond_life_info *) node->value;
2944 ncond = rcli->condition;
2945 ncond = ior_reg_cond (ncond, cond, 1);
2946 if (rcli->stores == const0_rtx)
2947 rcli->stores = cond;
2948 else if (rcli->stores != const1_rtx)
2949 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2951 /* If the register is now unconditionally dead, remove the entry
2952 in the splay_tree. A register is unconditionally dead if the
2953 dead condition ncond is true. A register is also unconditionally
2954 dead if the sum of all conditional stores is an unconditional
2955 store (stores is true), and the dead condition is identically the
2956 same as the original dead condition initialized at the end of
2957 the block. This is a pointer compare, not an rtx_equal_p
2958 compare. */
2959 if (ncond == const1_rtx
2960 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2961 splay_tree_remove (pbi->reg_cond_dead, regno);
2962 else
2964 rcli->condition = ncond;
2966 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2968 /* Not unconditionally dead. */
2969 return 0;
2974 return 1;
2977 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2979 static void
2980 free_reg_cond_life_info (value)
2981 splay_tree_value value;
2983 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2984 free (rcli);
2987 /* Helper function for flush_reg_cond_reg. */
2989 static int
2990 flush_reg_cond_reg_1 (node, data)
2991 splay_tree_node node;
2992 void *data;
2994 struct reg_cond_life_info *rcli;
2995 int *xdata = (int *) data;
2996 unsigned int regno = xdata[0];
2998 /* Don't need to search if last flushed value was farther on in
2999 the in-order traversal. */
3000 if (xdata[1] >= (int) node->key)
3001 return 0;
3003 /* Splice out portions of the expression that refer to regno. */
3004 rcli = (struct reg_cond_life_info *) node->value;
3005 rcli->condition = elim_reg_cond (rcli->condition, regno);
3006 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3007 rcli->stores = elim_reg_cond (rcli->stores, regno);
3009 /* If the entire condition is now false, signal the node to be removed. */
3010 if (rcli->condition == const0_rtx)
3012 xdata[1] = node->key;
3013 return -1;
3015 else if (rcli->condition == const1_rtx)
3016 abort ();
3018 return 0;
3021 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3023 static void
3024 flush_reg_cond_reg (pbi, regno)
3025 struct propagate_block_info *pbi;
3026 int regno;
3028 int pair[2];
3030 pair[0] = regno;
3031 pair[1] = -1;
3032 while (splay_tree_foreach (pbi->reg_cond_dead,
3033 flush_reg_cond_reg_1, pair) == -1)
3034 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3036 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3039 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3040 For ior/and, the ADD flag determines whether we want to add the new
3041 condition X to the old one unconditionally. If it is zero, we will
3042 only return a new expression if X allows us to simplify part of
3043 OLD, otherwise we return NULL to the caller.
3044 If ADD is nonzero, we will return a new condition in all cases. The
3045 toplevel caller of one of these functions should always pass 1 for
3046 ADD. */
3048 static rtx
3049 ior_reg_cond (old, x, add)
3050 rtx old, x;
3051 int add;
3053 rtx op0, op1;
3055 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3057 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3058 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3059 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3060 return const1_rtx;
3061 if (GET_CODE (x) == GET_CODE (old)
3062 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3063 return old;
3064 if (! add)
3065 return NULL;
3066 return gen_rtx_IOR (0, old, x);
3069 switch (GET_CODE (old))
3071 case IOR:
3072 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3073 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3074 if (op0 != NULL || op1 != NULL)
3076 if (op0 == const0_rtx)
3077 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3078 if (op1 == const0_rtx)
3079 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3080 if (op0 == const1_rtx || op1 == const1_rtx)
3081 return const1_rtx;
3082 if (op0 == NULL)
3083 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3084 else if (rtx_equal_p (x, op0))
3085 /* (x | A) | x ~ (x | A). */
3086 return old;
3087 if (op1 == NULL)
3088 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3089 else if (rtx_equal_p (x, op1))
3090 /* (A | x) | x ~ (A | x). */
3091 return old;
3092 return gen_rtx_IOR (0, op0, op1);
3094 if (! add)
3095 return NULL;
3096 return gen_rtx_IOR (0, old, x);
3098 case AND:
3099 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3100 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3101 if (op0 != NULL || op1 != NULL)
3103 if (op0 == const1_rtx)
3104 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3105 if (op1 == const1_rtx)
3106 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3107 if (op0 == const0_rtx || op1 == const0_rtx)
3108 return const0_rtx;
3109 if (op0 == NULL)
3110 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3111 else if (rtx_equal_p (x, op0))
3112 /* (x & A) | x ~ x. */
3113 return op0;
3114 if (op1 == NULL)
3115 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3116 else if (rtx_equal_p (x, op1))
3117 /* (A & x) | x ~ x. */
3118 return op1;
3119 return gen_rtx_AND (0, op0, op1);
3121 if (! add)
3122 return NULL;
3123 return gen_rtx_IOR (0, old, x);
3125 case NOT:
3126 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3127 if (op0 != NULL)
3128 return not_reg_cond (op0);
3129 if (! add)
3130 return NULL;
3131 return gen_rtx_IOR (0, old, x);
3133 default:
3134 abort ();
3138 static rtx
3139 not_reg_cond (x)
3140 rtx x;
3142 enum rtx_code x_code;
3144 if (x == const0_rtx)
3145 return const1_rtx;
3146 else if (x == const1_rtx)
3147 return const0_rtx;
3148 x_code = GET_CODE (x);
3149 if (x_code == NOT)
3150 return XEXP (x, 0);
3151 if (GET_RTX_CLASS (x_code) == '<'
3152 && GET_CODE (XEXP (x, 0)) == REG)
3154 if (XEXP (x, 1) != const0_rtx)
3155 abort ();
3157 return gen_rtx_fmt_ee (reverse_condition (x_code),
3158 VOIDmode, XEXP (x, 0), const0_rtx);
3160 return gen_rtx_NOT (0, x);
3163 static rtx
3164 and_reg_cond (old, x, add)
3165 rtx old, x;
3166 int add;
3168 rtx op0, op1;
3170 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3172 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3173 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3174 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3175 return const0_rtx;
3176 if (GET_CODE (x) == GET_CODE (old)
3177 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3178 return old;
3179 if (! add)
3180 return NULL;
3181 return gen_rtx_AND (0, old, x);
3184 switch (GET_CODE (old))
3186 case IOR:
3187 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3188 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3189 if (op0 != NULL || op1 != NULL)
3191 if (op0 == const0_rtx)
3192 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3193 if (op1 == const0_rtx)
3194 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3195 if (op0 == const1_rtx || op1 == const1_rtx)
3196 return const1_rtx;
3197 if (op0 == NULL)
3198 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3199 else if (rtx_equal_p (x, op0))
3200 /* (x | A) & x ~ x. */
3201 return op0;
3202 if (op1 == NULL)
3203 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3204 else if (rtx_equal_p (x, op1))
3205 /* (A | x) & x ~ x. */
3206 return op1;
3207 return gen_rtx_IOR (0, op0, op1);
3209 if (! add)
3210 return NULL;
3211 return gen_rtx_AND (0, old, x);
3213 case AND:
3214 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3215 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3216 if (op0 != NULL || op1 != NULL)
3218 if (op0 == const1_rtx)
3219 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3220 if (op1 == const1_rtx)
3221 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3222 if (op0 == const0_rtx || op1 == const0_rtx)
3223 return const0_rtx;
3224 if (op0 == NULL)
3225 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3226 else if (rtx_equal_p (x, op0))
3227 /* (x & A) & x ~ (x & A). */
3228 return old;
3229 if (op1 == NULL)
3230 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3231 else if (rtx_equal_p (x, op1))
3232 /* (A & x) & x ~ (A & x). */
3233 return old;
3234 return gen_rtx_AND (0, op0, op1);
3236 if (! add)
3237 return NULL;
3238 return gen_rtx_AND (0, old, x);
3240 case NOT:
3241 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3242 if (op0 != NULL)
3243 return not_reg_cond (op0);
3244 if (! add)
3245 return NULL;
3246 return gen_rtx_AND (0, old, x);
3248 default:
3249 abort ();
3253 /* Given a condition X, remove references to reg REGNO and return the
3254 new condition. The removal will be done so that all conditions
3255 involving REGNO are considered to evaluate to false. This function
3256 is used when the value of REGNO changes. */
3258 static rtx
3259 elim_reg_cond (x, regno)
3260 rtx x;
3261 unsigned int regno;
3263 rtx op0, op1;
3265 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3267 if (REGNO (XEXP (x, 0)) == regno)
3268 return const0_rtx;
3269 return x;
3272 switch (GET_CODE (x))
3274 case AND:
3275 op0 = elim_reg_cond (XEXP (x, 0), regno);
3276 op1 = elim_reg_cond (XEXP (x, 1), regno);
3277 if (op0 == const0_rtx || op1 == const0_rtx)
3278 return const0_rtx;
3279 if (op0 == const1_rtx)
3280 return op1;
3281 if (op1 == const1_rtx)
3282 return op0;
3283 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3284 return x;
3285 return gen_rtx_AND (0, op0, op1);
3287 case IOR:
3288 op0 = elim_reg_cond (XEXP (x, 0), regno);
3289 op1 = elim_reg_cond (XEXP (x, 1), regno);
3290 if (op0 == const1_rtx || op1 == const1_rtx)
3291 return const1_rtx;
3292 if (op0 == const0_rtx)
3293 return op1;
3294 if (op1 == const0_rtx)
3295 return op0;
3296 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3297 return x;
3298 return gen_rtx_IOR (0, op0, op1);
3300 case NOT:
3301 op0 = elim_reg_cond (XEXP (x, 0), regno);
3302 if (op0 == const0_rtx)
3303 return const1_rtx;
3304 if (op0 == const1_rtx)
3305 return const0_rtx;
3306 if (op0 != XEXP (x, 0))
3307 return not_reg_cond (op0);
3308 return x;
3310 default:
3311 abort ();
3314 #endif /* HAVE_conditional_execution */
3316 #ifdef AUTO_INC_DEC
3318 /* Try to substitute the auto-inc expression INC as the address inside
3319 MEM which occurs in INSN. Currently, the address of MEM is an expression
3320 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3321 that has a single set whose source is a PLUS of INCR_REG and something
3322 else. */
3324 static void
3325 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3326 struct propagate_block_info *pbi;
3327 rtx inc, insn, mem, incr, incr_reg;
3329 int regno = REGNO (incr_reg);
3330 rtx set = single_set (incr);
3331 rtx q = SET_DEST (set);
3332 rtx y = SET_SRC (set);
3333 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3335 /* Make sure this reg appears only once in this insn. */
3336 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3337 return;
3339 if (dead_or_set_p (incr, incr_reg)
3340 /* Mustn't autoinc an eliminable register. */
3341 && (regno >= FIRST_PSEUDO_REGISTER
3342 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3344 /* This is the simple case. Try to make the auto-inc. If
3345 we can't, we are done. Otherwise, we will do any
3346 needed updates below. */
3347 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3348 return;
3350 else if (GET_CODE (q) == REG
3351 /* PREV_INSN used here to check the semi-open interval
3352 [insn,incr). */
3353 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3354 /* We must also check for sets of q as q may be
3355 a call clobbered hard register and there may
3356 be a call between PREV_INSN (insn) and incr. */
3357 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3359 /* We have *p followed sometime later by q = p+size.
3360 Both p and q must be live afterward,
3361 and q is not used between INSN and its assignment.
3362 Change it to q = p, ...*q..., q = q+size.
3363 Then fall into the usual case. */
3364 rtx insns, temp;
3366 start_sequence ();
3367 emit_move_insn (q, incr_reg);
3368 insns = get_insns ();
3369 end_sequence ();
3371 /* If we can't make the auto-inc, or can't make the
3372 replacement into Y, exit. There's no point in making
3373 the change below if we can't do the auto-inc and doing
3374 so is not correct in the pre-inc case. */
3376 XEXP (inc, 0) = q;
3377 validate_change (insn, &XEXP (mem, 0), inc, 1);
3378 validate_change (incr, &XEXP (y, opnum), q, 1);
3379 if (! apply_change_group ())
3380 return;
3382 /* We now know we'll be doing this change, so emit the
3383 new insn(s) and do the updates. */
3384 emit_insn_before (insns, insn);
3386 if (pbi->bb->head == insn)
3387 pbi->bb->head = insns;
3389 /* INCR will become a NOTE and INSN won't contain a
3390 use of INCR_REG. If a use of INCR_REG was just placed in
3391 the insn before INSN, make that the next use.
3392 Otherwise, invalidate it. */
3393 if (GET_CODE (PREV_INSN (insn)) == INSN
3394 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3395 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3396 pbi->reg_next_use[regno] = PREV_INSN (insn);
3397 else
3398 pbi->reg_next_use[regno] = 0;
3400 incr_reg = q;
3401 regno = REGNO (q);
3403 /* REGNO is now used in INCR which is below INSN, but
3404 it previously wasn't live here. If we don't mark
3405 it as live, we'll put a REG_DEAD note for it
3406 on this insn, which is incorrect. */
3407 SET_REGNO_REG_SET (pbi->reg_live, regno);
3409 /* If there are any calls between INSN and INCR, show
3410 that REGNO now crosses them. */
3411 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3412 if (GET_CODE (temp) == CALL_INSN)
3413 REG_N_CALLS_CROSSED (regno)++;
3415 /* Invalidate alias info for Q since we just changed its value. */
3416 clear_reg_alias_info (q);
3418 else
3419 return;
3421 /* If we haven't returned, it means we were able to make the
3422 auto-inc, so update the status. First, record that this insn
3423 has an implicit side effect. */
3425 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3427 /* Modify the old increment-insn to simply copy
3428 the already-incremented value of our register. */
3429 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3430 abort ();
3432 /* If that makes it a no-op (copying the register into itself) delete
3433 it so it won't appear to be a "use" and a "set" of this
3434 register. */
3435 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3437 /* If the original source was dead, it's dead now. */
3438 rtx note;
3440 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3442 remove_note (incr, note);
3443 if (XEXP (note, 0) != incr_reg)
3444 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3447 PUT_CODE (incr, NOTE);
3448 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3449 NOTE_SOURCE_FILE (incr) = 0;
3452 if (regno >= FIRST_PSEUDO_REGISTER)
3454 /* Count an extra reference to the reg. When a reg is
3455 incremented, spilling it is worse, so we want to make
3456 that less likely. */
3457 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3459 /* Count the increment as a setting of the register,
3460 even though it isn't a SET in rtl. */
3461 REG_N_SETS (regno)++;
3465 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3466 reference. */
3468 static void
3469 find_auto_inc (pbi, x, insn)
3470 struct propagate_block_info *pbi;
3471 rtx x;
3472 rtx insn;
3474 rtx addr = XEXP (x, 0);
3475 HOST_WIDE_INT offset = 0;
3476 rtx set, y, incr, inc_val;
3477 int regno;
3478 int size = GET_MODE_SIZE (GET_MODE (x));
3480 if (GET_CODE (insn) == JUMP_INSN)
3481 return;
3483 /* Here we detect use of an index register which might be good for
3484 postincrement, postdecrement, preincrement, or predecrement. */
3486 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3487 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3489 if (GET_CODE (addr) != REG)
3490 return;
3492 regno = REGNO (addr);
3494 /* Is the next use an increment that might make auto-increment? */
3495 incr = pbi->reg_next_use[regno];
3496 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3497 return;
3498 set = single_set (incr);
3499 if (set == 0 || GET_CODE (set) != SET)
3500 return;
3501 y = SET_SRC (set);
3503 if (GET_CODE (y) != PLUS)
3504 return;
3506 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3507 inc_val = XEXP (y, 1);
3508 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3509 inc_val = XEXP (y, 0);
3510 else
3511 return;
3513 if (GET_CODE (inc_val) == CONST_INT)
3515 if (HAVE_POST_INCREMENT
3516 && (INTVAL (inc_val) == size && offset == 0))
3517 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3518 incr, addr);
3519 else if (HAVE_POST_DECREMENT
3520 && (INTVAL (inc_val) == -size && offset == 0))
3521 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3522 incr, addr);
3523 else if (HAVE_PRE_INCREMENT
3524 && (INTVAL (inc_val) == size && offset == size))
3525 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3526 incr, addr);
3527 else if (HAVE_PRE_DECREMENT
3528 && (INTVAL (inc_val) == -size && offset == -size))
3529 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3530 incr, addr);
3531 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3532 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3533 gen_rtx_PLUS (Pmode,
3534 addr,
3535 inc_val)),
3536 insn, x, incr, addr);
3537 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3538 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3539 gen_rtx_PLUS (Pmode,
3540 addr,
3541 inc_val)),
3542 insn, x, incr, addr);
3544 else if (GET_CODE (inc_val) == REG
3545 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3546 NEXT_INSN (incr)))
3549 if (HAVE_POST_MODIFY_REG && offset == 0)
3550 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3551 gen_rtx_PLUS (Pmode,
3552 addr,
3553 inc_val)),
3554 insn, x, incr, addr);
3558 #endif /* AUTO_INC_DEC */
3560 static void
3561 mark_used_reg (pbi, reg, cond, insn)
3562 struct propagate_block_info *pbi;
3563 rtx reg;
3564 rtx cond ATTRIBUTE_UNUSED;
3565 rtx insn;
3567 unsigned int regno_first, regno_last, i;
3568 int some_was_live, some_was_dead, some_not_set;
3570 regno_last = regno_first = REGNO (reg);
3571 if (regno_first < FIRST_PSEUDO_REGISTER)
3572 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3574 /* Find out if any of this register is live after this instruction. */
3575 some_was_live = some_was_dead = 0;
3576 for (i = regno_first; i <= regno_last; ++i)
3578 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3579 some_was_live |= needed_regno;
3580 some_was_dead |= ! needed_regno;
3583 /* Find out if any of the register was set this insn. */
3584 some_not_set = 0;
3585 for (i = regno_first; i <= regno_last; ++i)
3586 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3588 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3590 /* Record where each reg is used, so when the reg is set we know
3591 the next insn that uses it. */
3592 pbi->reg_next_use[regno_first] = insn;
3595 if (pbi->flags & PROP_REG_INFO)
3597 if (regno_first < FIRST_PSEUDO_REGISTER)
3599 /* If this is a register we are going to try to eliminate,
3600 don't mark it live here. If we are successful in
3601 eliminating it, it need not be live unless it is used for
3602 pseudos, in which case it will have been set live when it
3603 was allocated to the pseudos. If the register will not
3604 be eliminated, reload will set it live at that point.
3606 Otherwise, record that this function uses this register. */
3607 /* ??? The PPC backend tries to "eliminate" on the pic
3608 register to itself. This should be fixed. In the mean
3609 time, hack around it. */
3611 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3612 && (regno_first == FRAME_POINTER_REGNUM
3613 || regno_first == ARG_POINTER_REGNUM)))
3614 for (i = regno_first; i <= regno_last; ++i)
3615 regs_ever_live[i] = 1;
3617 else
3619 /* Keep track of which basic block each reg appears in. */
3621 int blocknum = pbi->bb->index;
3622 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3623 REG_BASIC_BLOCK (regno_first) = blocknum;
3624 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3625 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3627 /* Count (weighted) number of uses of each reg. */
3628 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3629 REG_N_REFS (regno_first)++;
3633 /* Record and count the insns in which a reg dies. If it is used in
3634 this insn and was dead below the insn then it dies in this insn.
3635 If it was set in this insn, we do not make a REG_DEAD note;
3636 likewise if we already made such a note. */
3637 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3638 && some_was_dead
3639 && some_not_set)
3641 /* Check for the case where the register dying partially
3642 overlaps the register set by this insn. */
3643 if (regno_first != regno_last)
3644 for (i = regno_first; i <= regno_last; ++i)
3645 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3647 /* If none of the words in X is needed, make a REG_DEAD note.
3648 Otherwise, we must make partial REG_DEAD notes. */
3649 if (! some_was_live)
3651 if ((pbi->flags & PROP_DEATH_NOTES)
3652 && ! find_regno_note (insn, REG_DEAD, regno_first))
3653 REG_NOTES (insn)
3654 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3656 if (pbi->flags & PROP_REG_INFO)
3657 REG_N_DEATHS (regno_first)++;
3659 else
3661 /* Don't make a REG_DEAD note for a part of a register
3662 that is set in the insn. */
3663 for (i = regno_first; i <= regno_last; ++i)
3664 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3665 && ! dead_or_set_regno_p (insn, i))
3666 REG_NOTES (insn)
3667 = alloc_EXPR_LIST (REG_DEAD,
3668 regno_reg_rtx[i],
3669 REG_NOTES (insn));
3673 /* Mark the register as being live. */
3674 for (i = regno_first; i <= regno_last; ++i)
3676 #ifdef HAVE_conditional_execution
3677 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3678 #endif
3680 SET_REGNO_REG_SET (pbi->reg_live, i);
3682 #ifdef HAVE_conditional_execution
3683 /* If this is a conditional use, record that fact. If it is later
3684 conditionally set, we'll know to kill the register. */
3685 if (cond != NULL_RTX)
3687 splay_tree_node node;
3688 struct reg_cond_life_info *rcli;
3689 rtx ncond;
3691 if (this_was_live)
3693 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3694 if (node == NULL)
3696 /* The register was unconditionally live previously.
3697 No need to do anything. */
3699 else
3701 /* The register was conditionally live previously.
3702 Subtract the new life cond from the old death cond. */
3703 rcli = (struct reg_cond_life_info *) node->value;
3704 ncond = rcli->condition;
3705 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3707 /* If the register is now unconditionally live,
3708 remove the entry in the splay_tree. */
3709 if (ncond == const0_rtx)
3710 splay_tree_remove (pbi->reg_cond_dead, i);
3711 else
3713 rcli->condition = ncond;
3714 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3715 REGNO (XEXP (cond, 0)));
3719 else
3721 /* The register was not previously live at all. Record
3722 the condition under which it is still dead. */
3723 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3724 rcli->condition = not_reg_cond (cond);
3725 rcli->stores = const0_rtx;
3726 rcli->orig_condition = const0_rtx;
3727 splay_tree_insert (pbi->reg_cond_dead, i,
3728 (splay_tree_value) rcli);
3730 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3733 else if (this_was_live)
3735 /* The register may have been conditionally live previously, but
3736 is now unconditionally live. Remove it from the conditionally
3737 dead list, so that a conditional set won't cause us to think
3738 it dead. */
3739 splay_tree_remove (pbi->reg_cond_dead, i);
3741 #endif
3745 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3746 This is done assuming the registers needed from X are those that
3747 have 1-bits in PBI->REG_LIVE.
3749 INSN is the containing instruction. If INSN is dead, this function
3750 is not called. */
3752 static void
3753 mark_used_regs (pbi, x, cond, insn)
3754 struct propagate_block_info *pbi;
3755 rtx x, cond, insn;
3757 RTX_CODE code;
3758 int regno;
3759 int flags = pbi->flags;
3761 retry:
3762 if (!x)
3763 return;
3764 code = GET_CODE (x);
3765 switch (code)
3767 case LABEL_REF:
3768 case SYMBOL_REF:
3769 case CONST_INT:
3770 case CONST:
3771 case CONST_DOUBLE:
3772 case CONST_VECTOR:
3773 case PC:
3774 case ADDR_VEC:
3775 case ADDR_DIFF_VEC:
3776 return;
3778 #ifdef HAVE_cc0
3779 case CC0:
3780 pbi->cc0_live = 1;
3781 return;
3782 #endif
3784 case CLOBBER:
3785 /* If we are clobbering a MEM, mark any registers inside the address
3786 as being used. */
3787 if (GET_CODE (XEXP (x, 0)) == MEM)
3788 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3789 return;
3791 case MEM:
3792 /* Don't bother watching stores to mems if this is not the
3793 final pass. We'll not be deleting dead stores this round. */
3794 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3796 /* Invalidate the data for the last MEM stored, but only if MEM is
3797 something that can be stored into. */
3798 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3799 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3800 /* Needn't clear the memory set list. */
3802 else
3804 rtx temp = pbi->mem_set_list;
3805 rtx prev = NULL_RTX;
3806 rtx next;
3808 while (temp)
3810 next = XEXP (temp, 1);
3811 if (anti_dependence (XEXP (temp, 0), x))
3813 /* Splice temp out of the list. */
3814 if (prev)
3815 XEXP (prev, 1) = next;
3816 else
3817 pbi->mem_set_list = next;
3818 free_EXPR_LIST_node (temp);
3819 pbi->mem_set_list_len--;
3821 else
3822 prev = temp;
3823 temp = next;
3827 /* If the memory reference had embedded side effects (autoincrement
3828 address modes. Then we may need to kill some entries on the
3829 memory set list. */
3830 if (insn)
3831 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3834 #ifdef AUTO_INC_DEC
3835 if (flags & PROP_AUTOINC)
3836 find_auto_inc (pbi, x, insn);
3837 #endif
3838 break;
3840 case SUBREG:
3841 #ifdef CANNOT_CHANGE_MODE_CLASS
3842 if (GET_CODE (SUBREG_REG (x)) == REG
3843 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3844 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (x))
3845 * MAX_MACHINE_MODE
3846 + GET_MODE (x));
3847 #endif
3849 /* While we're here, optimize this case. */
3850 x = SUBREG_REG (x);
3851 if (GET_CODE (x) != REG)
3852 goto retry;
3853 /* Fall through. */
3855 case REG:
3856 /* See a register other than being set => mark it as needed. */
3857 mark_used_reg (pbi, x, cond, insn);
3858 return;
3860 case SET:
3862 rtx testreg = SET_DEST (x);
3863 int mark_dest = 0;
3865 /* If storing into MEM, don't show it as being used. But do
3866 show the address as being used. */
3867 if (GET_CODE (testreg) == MEM)
3869 #ifdef AUTO_INC_DEC
3870 if (flags & PROP_AUTOINC)
3871 find_auto_inc (pbi, testreg, insn);
3872 #endif
3873 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3874 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3875 return;
3878 /* Storing in STRICT_LOW_PART is like storing in a reg
3879 in that this SET might be dead, so ignore it in TESTREG.
3880 but in some other ways it is like using the reg.
3882 Storing in a SUBREG or a bit field is like storing the entire
3883 register in that if the register's value is not used
3884 then this SET is not needed. */
3885 while (GET_CODE (testreg) == STRICT_LOW_PART
3886 || GET_CODE (testreg) == ZERO_EXTRACT
3887 || GET_CODE (testreg) == SIGN_EXTRACT
3888 || GET_CODE (testreg) == SUBREG)
3890 #ifdef CANNOT_CHANGE_MODE_CLASS
3891 if (GET_CODE (testreg) == SUBREG
3892 && GET_CODE (SUBREG_REG (testreg)) == REG
3893 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3894 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (testreg))
3895 * MAX_MACHINE_MODE
3896 + GET_MODE (testreg));
3897 #endif
3899 /* Modifying a single register in an alternate mode
3900 does not use any of the old value. But these other
3901 ways of storing in a register do use the old value. */
3902 if (GET_CODE (testreg) == SUBREG
3903 && !((REG_BYTES (SUBREG_REG (testreg))
3904 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3905 > (REG_BYTES (testreg)
3906 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3908 else
3909 mark_dest = 1;
3911 testreg = XEXP (testreg, 0);
3914 /* If this is a store into a register or group of registers,
3915 recursively scan the value being stored. */
3917 if ((GET_CODE (testreg) == PARALLEL
3918 && GET_MODE (testreg) == BLKmode)
3919 || (GET_CODE (testreg) == REG
3920 && (regno = REGNO (testreg),
3921 ! (regno == FRAME_POINTER_REGNUM
3922 && (! reload_completed || frame_pointer_needed)))
3923 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3924 && ! (regno == HARD_FRAME_POINTER_REGNUM
3925 && (! reload_completed || frame_pointer_needed))
3926 #endif
3927 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3928 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3929 #endif
3932 if (mark_dest)
3933 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3934 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3935 return;
3938 break;
3940 case ASM_OPERANDS:
3941 case UNSPEC_VOLATILE:
3942 case TRAP_IF:
3943 case ASM_INPUT:
3945 /* Traditional and volatile asm instructions must be considered to use
3946 and clobber all hard registers, all pseudo-registers and all of
3947 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3949 Consider for instance a volatile asm that changes the fpu rounding
3950 mode. An insn should not be moved across this even if it only uses
3951 pseudo-regs because it might give an incorrectly rounded result.
3953 ?!? Unfortunately, marking all hard registers as live causes massive
3954 problems for the register allocator and marking all pseudos as live
3955 creates mountains of uninitialized variable warnings.
3957 So for now, just clear the memory set list and mark any regs
3958 we can find in ASM_OPERANDS as used. */
3959 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3961 free_EXPR_LIST_list (&pbi->mem_set_list);
3962 pbi->mem_set_list_len = 0;
3965 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3966 We can not just fall through here since then we would be confused
3967 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3968 traditional asms unlike their normal usage. */
3969 if (code == ASM_OPERANDS)
3971 int j;
3973 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3974 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3976 break;
3979 case COND_EXEC:
3980 if (cond != NULL_RTX)
3981 abort ();
3983 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3985 cond = COND_EXEC_TEST (x);
3986 x = COND_EXEC_CODE (x);
3987 goto retry;
3989 case PHI:
3990 /* We _do_not_ want to scan operands of phi nodes. Operands of
3991 a phi function are evaluated only when control reaches this
3992 block along a particular edge. Therefore, regs that appear
3993 as arguments to phi should not be added to the global live at
3994 start. */
3995 return;
3997 default:
3998 break;
4001 /* Recursively scan the operands of this expression. */
4004 const char * const fmt = GET_RTX_FORMAT (code);
4005 int i;
4007 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4009 if (fmt[i] == 'e')
4011 /* Tail recursive case: save a function call level. */
4012 if (i == 0)
4014 x = XEXP (x, 0);
4015 goto retry;
4017 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4019 else if (fmt[i] == 'E')
4021 int j;
4022 for (j = 0; j < XVECLEN (x, i); j++)
4023 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4029 #ifdef AUTO_INC_DEC
4031 static int
4032 try_pre_increment_1 (pbi, insn)
4033 struct propagate_block_info *pbi;
4034 rtx insn;
4036 /* Find the next use of this reg. If in same basic block,
4037 make it do pre-increment or pre-decrement if appropriate. */
4038 rtx x = single_set (insn);
4039 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4040 * INTVAL (XEXP (SET_SRC (x), 1)));
4041 int regno = REGNO (SET_DEST (x));
4042 rtx y = pbi->reg_next_use[regno];
4043 if (y != 0
4044 && SET_DEST (x) != stack_pointer_rtx
4045 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4046 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4047 mode would be better. */
4048 && ! dead_or_set_p (y, SET_DEST (x))
4049 && try_pre_increment (y, SET_DEST (x), amount))
4051 /* We have found a suitable auto-increment and already changed
4052 insn Y to do it. So flush this increment instruction. */
4053 propagate_block_delete_insn (insn);
4055 /* Count a reference to this reg for the increment insn we are
4056 deleting. When a reg is incremented, spilling it is worse,
4057 so we want to make that less likely. */
4058 if (regno >= FIRST_PSEUDO_REGISTER)
4060 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4061 REG_N_SETS (regno)++;
4064 /* Flush any remembered memories depending on the value of
4065 the incremented register. */
4066 invalidate_mems_from_set (pbi, SET_DEST (x));
4068 return 1;
4070 return 0;
4073 /* Try to change INSN so that it does pre-increment or pre-decrement
4074 addressing on register REG in order to add AMOUNT to REG.
4075 AMOUNT is negative for pre-decrement.
4076 Returns 1 if the change could be made.
4077 This checks all about the validity of the result of modifying INSN. */
4079 static int
4080 try_pre_increment (insn, reg, amount)
4081 rtx insn, reg;
4082 HOST_WIDE_INT amount;
4084 rtx use;
4086 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4087 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4088 int pre_ok = 0;
4089 /* Nonzero if we can try to make a post-increment or post-decrement.
4090 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4091 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4092 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4093 int post_ok = 0;
4095 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4096 int do_post = 0;
4098 /* From the sign of increment, see which possibilities are conceivable
4099 on this target machine. */
4100 if (HAVE_PRE_INCREMENT && amount > 0)
4101 pre_ok = 1;
4102 if (HAVE_POST_INCREMENT && amount > 0)
4103 post_ok = 1;
4105 if (HAVE_PRE_DECREMENT && amount < 0)
4106 pre_ok = 1;
4107 if (HAVE_POST_DECREMENT && amount < 0)
4108 post_ok = 1;
4110 if (! (pre_ok || post_ok))
4111 return 0;
4113 /* It is not safe to add a side effect to a jump insn
4114 because if the incremented register is spilled and must be reloaded
4115 there would be no way to store the incremented value back in memory. */
4117 if (GET_CODE (insn) == JUMP_INSN)
4118 return 0;
4120 use = 0;
4121 if (pre_ok)
4122 use = find_use_as_address (PATTERN (insn), reg, 0);
4123 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4125 use = find_use_as_address (PATTERN (insn), reg, -amount);
4126 do_post = 1;
4129 if (use == 0 || use == (rtx) (size_t) 1)
4130 return 0;
4132 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4133 return 0;
4135 /* See if this combination of instruction and addressing mode exists. */
4136 if (! validate_change (insn, &XEXP (use, 0),
4137 gen_rtx_fmt_e (amount > 0
4138 ? (do_post ? POST_INC : PRE_INC)
4139 : (do_post ? POST_DEC : PRE_DEC),
4140 Pmode, reg), 0))
4141 return 0;
4143 /* Record that this insn now has an implicit side effect on X. */
4144 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4145 return 1;
4148 #endif /* AUTO_INC_DEC */
4150 /* Find the place in the rtx X where REG is used as a memory address.
4151 Return the MEM rtx that so uses it.
4152 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4153 (plus REG (const_int PLUSCONST)).
4155 If such an address does not appear, return 0.
4156 If REG appears more than once, or is used other than in such an address,
4157 return (rtx) 1. */
4160 find_use_as_address (x, reg, plusconst)
4161 rtx x;
4162 rtx reg;
4163 HOST_WIDE_INT plusconst;
4165 enum rtx_code code = GET_CODE (x);
4166 const char * const fmt = GET_RTX_FORMAT (code);
4167 int i;
4168 rtx value = 0;
4169 rtx tem;
4171 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4172 return x;
4174 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4175 && XEXP (XEXP (x, 0), 0) == reg
4176 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4177 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4178 return x;
4180 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4182 /* If REG occurs inside a MEM used in a bit-field reference,
4183 that is unacceptable. */
4184 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4185 return (rtx) (size_t) 1;
4188 if (x == reg)
4189 return (rtx) (size_t) 1;
4191 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4193 if (fmt[i] == 'e')
4195 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4196 if (value == 0)
4197 value = tem;
4198 else if (tem != 0)
4199 return (rtx) (size_t) 1;
4201 else if (fmt[i] == 'E')
4203 int j;
4204 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4206 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4207 if (value == 0)
4208 value = tem;
4209 else if (tem != 0)
4210 return (rtx) (size_t) 1;
4215 return value;
4218 /* Write information about registers and basic blocks into FILE.
4219 This is part of making a debugging dump. */
4221 void
4222 dump_regset (r, outf)
4223 regset r;
4224 FILE *outf;
4226 int i;
4227 if (r == NULL)
4229 fputs (" (nil)", outf);
4230 return;
4233 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4235 fprintf (outf, " %d", i);
4236 if (i < FIRST_PSEUDO_REGISTER)
4237 fprintf (outf, " [%s]",
4238 reg_names[i]);
4242 /* Print a human-readable representation of R on the standard error
4243 stream. This function is designed to be used from within the
4244 debugger. */
4246 void
4247 debug_regset (r)
4248 regset r;
4250 dump_regset (r, stderr);
4251 putc ('\n', stderr);
4254 /* Recompute register set/reference counts immediately prior to register
4255 allocation.
4257 This avoids problems with set/reference counts changing to/from values
4258 which have special meanings to the register allocators.
4260 Additionally, the reference counts are the primary component used by the
4261 register allocators to prioritize pseudos for allocation to hard regs.
4262 More accurate reference counts generally lead to better register allocation.
4264 F is the first insn to be scanned.
4266 LOOP_STEP denotes how much loop_depth should be incremented per
4267 loop nesting level in order to increase the ref count more for
4268 references in a loop.
4270 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4271 possibly other information which is used by the register allocators. */
4273 void
4274 recompute_reg_usage (f, loop_step)
4275 rtx f ATTRIBUTE_UNUSED;
4276 int loop_step ATTRIBUTE_UNUSED;
4278 allocate_reg_life_data ();
4279 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4282 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4283 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4284 of the number of registers that died. */
4287 count_or_remove_death_notes (blocks, kill)
4288 sbitmap blocks;
4289 int kill;
4291 int count = 0;
4292 basic_block bb;
4294 FOR_EACH_BB_REVERSE (bb)
4296 rtx insn;
4298 if (blocks && ! TEST_BIT (blocks, bb->index))
4299 continue;
4301 for (insn = bb->head;; insn = NEXT_INSN (insn))
4303 if (INSN_P (insn))
4305 rtx *pprev = &REG_NOTES (insn);
4306 rtx link = *pprev;
4308 while (link)
4310 switch (REG_NOTE_KIND (link))
4312 case REG_DEAD:
4313 if (GET_CODE (XEXP (link, 0)) == REG)
4315 rtx reg = XEXP (link, 0);
4316 int n;
4318 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4319 n = 1;
4320 else
4321 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4322 count += n;
4324 /* Fall through. */
4326 case REG_UNUSED:
4327 if (kill)
4329 rtx next = XEXP (link, 1);
4330 free_EXPR_LIST_node (link);
4331 *pprev = link = next;
4332 break;
4334 /* Fall through. */
4336 default:
4337 pprev = &XEXP (link, 1);
4338 link = *pprev;
4339 break;
4344 if (insn == bb->end)
4345 break;
4349 return count;
4351 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4352 if blocks is NULL. */
4354 static void
4355 clear_log_links (blocks)
4356 sbitmap blocks;
4358 rtx insn;
4359 int i;
4361 if (!blocks)
4363 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4364 if (INSN_P (insn))
4365 free_INSN_LIST_list (&LOG_LINKS (insn));
4367 else
4368 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4370 basic_block bb = BASIC_BLOCK (i);
4372 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4373 insn = NEXT_INSN (insn))
4374 if (INSN_P (insn))
4375 free_INSN_LIST_list (&LOG_LINKS (insn));
4379 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4380 correspond to the hard registers, if any, set in that map. This
4381 could be done far more efficiently by having all sorts of special-cases
4382 with moving single words, but probably isn't worth the trouble. */
4384 void
4385 reg_set_to_hard_reg_set (to, from)
4386 HARD_REG_SET *to;
4387 bitmap from;
4389 int i;
4391 EXECUTE_IF_SET_IN_BITMAP
4392 (from, 0, i,
4394 if (i >= FIRST_PSEUDO_REGISTER)
4395 return;
4396 SET_HARD_REG_BIT (*to, i);