* arm.md (addsf3, adddf3, subsf3, subdf3, mulsf3, muldf3, negsf2)
[official-gcc.git] / gcc / combine.c
blobe193387025196ee6aedd87125d96912fba762f51
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tm_p.h"
83 #include "flags.h"
84 #include "regs.h"
85 #include "hard-reg-set.h"
86 #include "basic-block.h"
87 #include "insn-config.h"
88 #include "function.h"
89 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
90 #include "expr.h"
91 #include "insn-attr.h"
92 #include "recog.h"
93 #include "real.h"
94 #include "toplev.h"
96 /* It is not safe to use ordinary gen_lowpart in combine.
97 Use gen_lowpart_for_combine instead. See comments there. */
98 #define gen_lowpart dont_use_gen_lowpart_you_dummy
100 /* Number of attempts to combine instructions in this function. */
102 static int combine_attempts;
104 /* Number of attempts that got as far as substitution in this function. */
106 static int combine_merges;
108 /* Number of instructions combined with added SETs in this function. */
110 static int combine_extras;
112 /* Number of instructions combined in this function. */
114 static int combine_successes;
116 /* Totals over entire compilation. */
118 static int total_attempts, total_merges, total_extras, total_successes;
121 /* Vector mapping INSN_UIDs to cuids.
122 The cuids are like uids but increase monotonically always.
123 Combine always uses cuids so that it can compare them.
124 But actually renumbering the uids, which we used to do,
125 proves to be a bad idea because it makes it hard to compare
126 the dumps produced by earlier passes with those from later passes. */
128 static int *uid_cuid;
129 static int max_uid_cuid;
131 /* Get the cuid of an insn. */
133 #define INSN_CUID(INSN) \
134 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
136 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
137 BITS_PER_WORD would invoke undefined behavior. Work around it. */
139 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
140 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
142 #define nonzero_bits(X, M) \
143 cached_nonzero_bits (X, M, NULL_RTX, VOIDmode, 0)
145 #define num_sign_bit_copies(X, M) \
146 cached_num_sign_bit_copies (X, M, NULL_RTX, VOIDmode, 0)
148 /* Maximum register number, which is the size of the tables below. */
150 static unsigned int combine_max_regno;
152 /* Record last point of death of (hard or pseudo) register n. */
154 static rtx *reg_last_death;
156 /* Record last point of modification of (hard or pseudo) register n. */
158 static rtx *reg_last_set;
160 /* Record the cuid of the last insn that invalidated memory
161 (anything that writes memory, and subroutine calls, but not pushes). */
163 static int mem_last_set;
165 /* Record the cuid of the last CALL_INSN
166 so we can tell whether a potential combination crosses any calls. */
168 static int last_call_cuid;
170 /* When `subst' is called, this is the insn that is being modified
171 (by combining in a previous insn). The PATTERN of this insn
172 is still the old pattern partially modified and it should not be
173 looked at, but this may be used to examine the successors of the insn
174 to judge whether a simplification is valid. */
176 static rtx subst_insn;
178 /* This is the lowest CUID that `subst' is currently dealing with.
179 get_last_value will not return a value if the register was set at or
180 after this CUID. If not for this mechanism, we could get confused if
181 I2 or I1 in try_combine were an insn that used the old value of a register
182 to obtain a new value. In that case, we might erroneously get the
183 new value of the register when we wanted the old one. */
185 static int subst_low_cuid;
187 /* This contains any hard registers that are used in newpat; reg_dead_at_p
188 must consider all these registers to be always live. */
190 static HARD_REG_SET newpat_used_regs;
192 /* This is an insn to which a LOG_LINKS entry has been added. If this
193 insn is the earlier than I2 or I3, combine should rescan starting at
194 that location. */
196 static rtx added_links_insn;
198 /* Basic block in which we are performing combines. */
199 static basic_block this_basic_block;
201 /* A bitmap indicating which blocks had registers go dead at entry.
202 After combine, we'll need to re-do global life analysis with
203 those blocks as starting points. */
204 static sbitmap refresh_blocks;
206 /* The next group of arrays allows the recording of the last value assigned
207 to (hard or pseudo) register n. We use this information to see if an
208 operation being processed is redundant given a prior operation performed
209 on the register. For example, an `and' with a constant is redundant if
210 all the zero bits are already known to be turned off.
212 We use an approach similar to that used by cse, but change it in the
213 following ways:
215 (1) We do not want to reinitialize at each label.
216 (2) It is useful, but not critical, to know the actual value assigned
217 to a register. Often just its form is helpful.
219 Therefore, we maintain the following arrays:
221 reg_last_set_value the last value assigned
222 reg_last_set_label records the value of label_tick when the
223 register was assigned
224 reg_last_set_table_tick records the value of label_tick when a
225 value using the register is assigned
226 reg_last_set_invalid set to nonzero when it is not valid
227 to use the value of this register in some
228 register's value
230 To understand the usage of these tables, it is important to understand
231 the distinction between the value in reg_last_set_value being valid
232 and the register being validly contained in some other expression in the
233 table.
235 Entry I in reg_last_set_value is valid if it is nonzero, and either
236 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
238 Register I may validly appear in any expression returned for the value
239 of another register if reg_n_sets[i] is 1. It may also appear in the
240 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
241 reg_last_set_invalid[j] is zero.
243 If an expression is found in the table containing a register which may
244 not validly appear in an expression, the register is replaced by
245 something that won't match, (clobber (const_int 0)).
247 reg_last_set_invalid[i] is set nonzero when register I is being assigned
248 to and reg_last_set_table_tick[i] == label_tick. */
250 /* Record last value assigned to (hard or pseudo) register n. */
252 static rtx *reg_last_set_value;
254 /* Record the value of label_tick when the value for register n is placed in
255 reg_last_set_value[n]. */
257 static int *reg_last_set_label;
259 /* Record the value of label_tick when an expression involving register n
260 is placed in reg_last_set_value. */
262 static int *reg_last_set_table_tick;
264 /* Set nonzero if references to register n in expressions should not be
265 used. */
267 static char *reg_last_set_invalid;
269 /* Incremented for each label. */
271 static int label_tick;
273 /* Some registers that are set more than once and used in more than one
274 basic block are nevertheless always set in similar ways. For example,
275 a QImode register may be loaded from memory in two places on a machine
276 where byte loads zero extend.
278 We record in the following array what we know about the nonzero
279 bits of a register, specifically which bits are known to be zero.
281 If an entry is zero, it means that we don't know anything special. */
283 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
285 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
286 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
288 static enum machine_mode nonzero_bits_mode;
290 /* Nonzero if we know that a register has some leading bits that are always
291 equal to the sign bit. */
293 static unsigned char *reg_sign_bit_copies;
295 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
296 It is zero while computing them and after combine has completed. This
297 former test prevents propagating values based on previously set values,
298 which can be incorrect if a variable is modified in a loop. */
300 static int nonzero_sign_valid;
302 /* These arrays are maintained in parallel with reg_last_set_value
303 and are used to store the mode in which the register was last set,
304 the bits that were known to be zero when it was last set, and the
305 number of sign bits copies it was known to have when it was last set. */
307 static enum machine_mode *reg_last_set_mode;
308 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
309 static char *reg_last_set_sign_bit_copies;
311 /* Record one modification to rtl structure
312 to be undone by storing old_contents into *where.
313 is_int is 1 if the contents are an int. */
315 struct undo
317 struct undo *next;
318 int is_int;
319 union {rtx r; int i;} old_contents;
320 union {rtx *r; int *i;} where;
323 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
324 num_undo says how many are currently recorded.
326 other_insn is nonzero if we have modified some other insn in the process
327 of working on subst_insn. It must be verified too. */
329 struct undobuf
331 struct undo *undos;
332 struct undo *frees;
333 rtx other_insn;
336 static struct undobuf undobuf;
338 /* Number of times the pseudo being substituted for
339 was found and replaced. */
341 static int n_occurrences;
343 static void do_SUBST PARAMS ((rtx *, rtx));
344 static void do_SUBST_INT PARAMS ((int *, int));
345 static void init_reg_last_arrays PARAMS ((void));
346 static void setup_incoming_promotions PARAMS ((void));
347 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
348 static int cant_combine_insn_p PARAMS ((rtx));
349 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
350 static int sets_function_arg_p PARAMS ((rtx));
351 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
352 static int contains_muldiv PARAMS ((rtx));
353 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
354 static void undo_all PARAMS ((void));
355 static void undo_commit PARAMS ((void));
356 static rtx *find_split_point PARAMS ((rtx *, rtx));
357 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
358 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
359 static rtx simplify_if_then_else PARAMS ((rtx));
360 static rtx simplify_set PARAMS ((rtx));
361 static rtx simplify_logical PARAMS ((rtx, int));
362 static rtx expand_compound_operation PARAMS ((rtx));
363 static rtx expand_field_assignment PARAMS ((rtx));
364 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
365 rtx, unsigned HOST_WIDE_INT, int,
366 int, int));
367 static rtx extract_left_shift PARAMS ((rtx, int));
368 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
369 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
370 unsigned HOST_WIDE_INT *));
371 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
372 unsigned HOST_WIDE_INT, rtx, int));
373 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
374 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
375 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
376 static rtx make_field_assignment PARAMS ((rtx));
377 static rtx apply_distributive_law PARAMS ((rtx));
378 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
379 unsigned HOST_WIDE_INT));
380 static unsigned HOST_WIDE_INT cached_nonzero_bits
381 PARAMS ((rtx, enum machine_mode, rtx,
382 enum machine_mode,
383 unsigned HOST_WIDE_INT));
384 static unsigned HOST_WIDE_INT nonzero_bits1
385 PARAMS ((rtx, enum machine_mode, rtx,
386 enum machine_mode,
387 unsigned HOST_WIDE_INT));
388 static unsigned int cached_num_sign_bit_copies
389 PARAMS ((rtx, enum machine_mode, rtx,
390 enum machine_mode, unsigned int));
391 static unsigned int num_sign_bit_copies1
392 PARAMS ((rtx, enum machine_mode, rtx,
393 enum machine_mode, unsigned int));
394 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
395 enum rtx_code, HOST_WIDE_INT,
396 enum machine_mode, int *));
397 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
398 rtx, int));
399 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
400 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
401 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
402 rtx, rtx));
403 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
404 static void update_table_tick PARAMS ((rtx));
405 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
406 static void check_promoted_subreg PARAMS ((rtx, rtx));
407 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
408 static void record_dead_and_set_regs PARAMS ((rtx));
409 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
410 static rtx get_last_value PARAMS ((rtx));
411 static int use_crosses_set_p PARAMS ((rtx, int));
412 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
413 static int reg_dead_at_p PARAMS ((rtx, rtx));
414 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
415 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
416 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
417 static void distribute_links PARAMS ((rtx));
418 static void mark_used_regs_combine PARAMS ((rtx));
419 static int insn_cuid PARAMS ((rtx));
420 static void record_promoted_value PARAMS ((rtx, rtx));
421 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
422 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
424 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
425 insn. The substitution can be undone by undo_all. If INTO is already
426 set to NEWVAL, do not record this change. Because computing NEWVAL might
427 also call SUBST, we have to compute it before we put anything into
428 the undo table. */
430 static void
431 do_SUBST (into, newval)
432 rtx *into, newval;
434 struct undo *buf;
435 rtx oldval = *into;
437 if (oldval == newval)
438 return;
440 /* We'd like to catch as many invalid transformations here as
441 possible. Unfortunately, there are way too many mode changes
442 that are perfectly valid, so we'd waste too much effort for
443 little gain doing the checks here. Focus on catching invalid
444 transformations involving integer constants. */
445 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
446 && GET_CODE (newval) == CONST_INT)
448 /* Sanity check that we're replacing oldval with a CONST_INT
449 that is a valid sign-extension for the original mode. */
450 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
451 GET_MODE (oldval)))
452 abort ();
454 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
455 CONST_INT is not valid, because after the replacement, the
456 original mode would be gone. Unfortunately, we can't tell
457 when do_SUBST is called to replace the operand thereof, so we
458 perform this test on oldval instead, checking whether an
459 invalid replacement took place before we got here. */
460 if ((GET_CODE (oldval) == SUBREG
461 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
462 || (GET_CODE (oldval) == ZERO_EXTEND
463 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
464 abort ();
467 if (undobuf.frees)
468 buf = undobuf.frees, undobuf.frees = buf->next;
469 else
470 buf = (struct undo *) xmalloc (sizeof (struct undo));
472 buf->is_int = 0;
473 buf->where.r = into;
474 buf->old_contents.r = oldval;
475 *into = newval;
477 buf->next = undobuf.undos, undobuf.undos = buf;
480 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
482 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
483 for the value of a HOST_WIDE_INT value (including CONST_INT) is
484 not safe. */
486 static void
487 do_SUBST_INT (into, newval)
488 int *into, newval;
490 struct undo *buf;
491 int oldval = *into;
493 if (oldval == newval)
494 return;
496 if (undobuf.frees)
497 buf = undobuf.frees, undobuf.frees = buf->next;
498 else
499 buf = (struct undo *) xmalloc (sizeof (struct undo));
501 buf->is_int = 1;
502 buf->where.i = into;
503 buf->old_contents.i = oldval;
504 *into = newval;
506 buf->next = undobuf.undos, undobuf.undos = buf;
509 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
511 /* Main entry point for combiner. F is the first insn of the function.
512 NREGS is the first unused pseudo-reg number.
514 Return nonzero if the combiner has turned an indirect jump
515 instruction into a direct jump. */
517 combine_instructions (f, nregs)
518 rtx f;
519 unsigned int nregs;
521 rtx insn, next;
522 #ifdef HAVE_cc0
523 rtx prev;
524 #endif
525 int i;
526 rtx links, nextlinks;
528 int new_direct_jump_p = 0;
530 combine_attempts = 0;
531 combine_merges = 0;
532 combine_extras = 0;
533 combine_successes = 0;
535 combine_max_regno = nregs;
537 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
538 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
539 reg_sign_bit_copies
540 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
542 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
543 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
544 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
545 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
546 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
547 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
548 reg_last_set_mode
549 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
550 reg_last_set_nonzero_bits
551 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
552 reg_last_set_sign_bit_copies
553 = (char *) xmalloc (nregs * sizeof (char));
555 init_reg_last_arrays ();
557 init_recog_no_volatile ();
559 /* Compute maximum uid value so uid_cuid can be allocated. */
561 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
562 if (INSN_UID (insn) > i)
563 i = INSN_UID (insn);
565 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
566 max_uid_cuid = i;
568 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
570 /* Don't use reg_nonzero_bits when computing it. This can cause problems
571 when, for example, we have j <<= 1 in a loop. */
573 nonzero_sign_valid = 0;
575 /* Compute the mapping from uids to cuids.
576 Cuids are numbers assigned to insns, like uids,
577 except that cuids increase monotonically through the code.
579 Scan all SETs and see if we can deduce anything about what
580 bits are known to be zero for some registers and how many copies
581 of the sign bit are known to exist for those registers.
583 Also set any known values so that we can use it while searching
584 for what bits are known to be set. */
586 label_tick = 1;
588 setup_incoming_promotions ();
590 refresh_blocks = sbitmap_alloc (last_basic_block);
591 sbitmap_zero (refresh_blocks);
593 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
595 uid_cuid[INSN_UID (insn)] = ++i;
596 subst_low_cuid = i;
597 subst_insn = insn;
599 if (INSN_P (insn))
601 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
602 NULL);
603 record_dead_and_set_regs (insn);
605 #ifdef AUTO_INC_DEC
606 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
607 if (REG_NOTE_KIND (links) == REG_INC)
608 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
609 NULL);
610 #endif
613 if (GET_CODE (insn) == CODE_LABEL)
614 label_tick++;
617 nonzero_sign_valid = 1;
619 /* Now scan all the insns in forward order. */
621 label_tick = 1;
622 last_call_cuid = 0;
623 mem_last_set = 0;
624 init_reg_last_arrays ();
625 setup_incoming_promotions ();
627 FOR_EACH_BB (this_basic_block)
629 for (insn = this_basic_block->head;
630 insn != NEXT_INSN (this_basic_block->end);
631 insn = next ? next : NEXT_INSN (insn))
633 next = 0;
635 if (GET_CODE (insn) == CODE_LABEL)
636 label_tick++;
638 else if (INSN_P (insn))
640 /* See if we know about function return values before this
641 insn based upon SUBREG flags. */
642 check_promoted_subreg (insn, PATTERN (insn));
644 /* Try this insn with each insn it links back to. */
646 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
647 if ((next = try_combine (insn, XEXP (links, 0),
648 NULL_RTX, &new_direct_jump_p)) != 0)
649 goto retry;
651 /* Try each sequence of three linked insns ending with this one. */
653 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
655 rtx link = XEXP (links, 0);
657 /* If the linked insn has been replaced by a note, then there
658 is no point in pursuing this chain any further. */
659 if (GET_CODE (link) == NOTE)
660 continue;
662 for (nextlinks = LOG_LINKS (link);
663 nextlinks;
664 nextlinks = XEXP (nextlinks, 1))
665 if ((next = try_combine (insn, link,
666 XEXP (nextlinks, 0),
667 &new_direct_jump_p)) != 0)
668 goto retry;
671 #ifdef HAVE_cc0
672 /* Try to combine a jump insn that uses CC0
673 with a preceding insn that sets CC0, and maybe with its
674 logical predecessor as well.
675 This is how we make decrement-and-branch insns.
676 We need this special code because data flow connections
677 via CC0 do not get entered in LOG_LINKS. */
679 if (GET_CODE (insn) == JUMP_INSN
680 && (prev = prev_nonnote_insn (insn)) != 0
681 && GET_CODE (prev) == INSN
682 && sets_cc0_p (PATTERN (prev)))
684 if ((next = try_combine (insn, prev,
685 NULL_RTX, &new_direct_jump_p)) != 0)
686 goto retry;
688 for (nextlinks = LOG_LINKS (prev); nextlinks;
689 nextlinks = XEXP (nextlinks, 1))
690 if ((next = try_combine (insn, prev,
691 XEXP (nextlinks, 0),
692 &new_direct_jump_p)) != 0)
693 goto retry;
696 /* Do the same for an insn that explicitly references CC0. */
697 if (GET_CODE (insn) == INSN
698 && (prev = prev_nonnote_insn (insn)) != 0
699 && GET_CODE (prev) == INSN
700 && sets_cc0_p (PATTERN (prev))
701 && GET_CODE (PATTERN (insn)) == SET
702 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
704 if ((next = try_combine (insn, prev,
705 NULL_RTX, &new_direct_jump_p)) != 0)
706 goto retry;
708 for (nextlinks = LOG_LINKS (prev); nextlinks;
709 nextlinks = XEXP (nextlinks, 1))
710 if ((next = try_combine (insn, prev,
711 XEXP (nextlinks, 0),
712 &new_direct_jump_p)) != 0)
713 goto retry;
716 /* Finally, see if any of the insns that this insn links to
717 explicitly references CC0. If so, try this insn, that insn,
718 and its predecessor if it sets CC0. */
719 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
720 if (GET_CODE (XEXP (links, 0)) == INSN
721 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
722 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
723 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
724 && GET_CODE (prev) == INSN
725 && sets_cc0_p (PATTERN (prev))
726 && (next = try_combine (insn, XEXP (links, 0),
727 prev, &new_direct_jump_p)) != 0)
728 goto retry;
729 #endif
731 /* Try combining an insn with two different insns whose results it
732 uses. */
733 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
734 for (nextlinks = XEXP (links, 1); nextlinks;
735 nextlinks = XEXP (nextlinks, 1))
736 if ((next = try_combine (insn, XEXP (links, 0),
737 XEXP (nextlinks, 0),
738 &new_direct_jump_p)) != 0)
739 goto retry;
741 if (GET_CODE (insn) != NOTE)
742 record_dead_and_set_regs (insn);
744 retry:
749 clear_bb_flags ();
751 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
752 BASIC_BLOCK (i)->flags |= BB_DIRTY);
753 new_direct_jump_p |= purge_all_dead_edges (0);
754 delete_noop_moves (f);
756 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
757 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
758 | PROP_KILL_DEAD_CODE);
760 /* Clean up. */
761 sbitmap_free (refresh_blocks);
762 free (reg_nonzero_bits);
763 free (reg_sign_bit_copies);
764 free (reg_last_death);
765 free (reg_last_set);
766 free (reg_last_set_value);
767 free (reg_last_set_table_tick);
768 free (reg_last_set_label);
769 free (reg_last_set_invalid);
770 free (reg_last_set_mode);
771 free (reg_last_set_nonzero_bits);
772 free (reg_last_set_sign_bit_copies);
773 free (uid_cuid);
776 struct undo *undo, *next;
777 for (undo = undobuf.frees; undo; undo = next)
779 next = undo->next;
780 free (undo);
782 undobuf.frees = 0;
785 total_attempts += combine_attempts;
786 total_merges += combine_merges;
787 total_extras += combine_extras;
788 total_successes += combine_successes;
790 nonzero_sign_valid = 0;
792 /* Make recognizer allow volatile MEMs again. */
793 init_recog ();
795 return new_direct_jump_p;
798 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
800 static void
801 init_reg_last_arrays ()
803 unsigned int nregs = combine_max_regno;
805 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
806 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
807 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
808 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
809 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
810 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
811 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
812 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
813 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
816 /* Set up any promoted values for incoming argument registers. */
818 static void
819 setup_incoming_promotions ()
821 #ifdef PROMOTE_FUNCTION_ARGS
822 unsigned int regno;
823 rtx reg;
824 enum machine_mode mode;
825 int unsignedp;
826 rtx first = get_insns ();
828 #ifndef OUTGOING_REGNO
829 #define OUTGOING_REGNO(N) N
830 #endif
831 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
832 /* Check whether this register can hold an incoming pointer
833 argument. FUNCTION_ARG_REGNO_P tests outgoing register
834 numbers, so translate if necessary due to register windows. */
835 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
836 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
838 record_value_for_reg
839 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
840 : SIGN_EXTEND),
841 GET_MODE (reg),
842 gen_rtx_CLOBBER (mode, const0_rtx)));
844 #endif
847 /* Called via note_stores. If X is a pseudo that is narrower than
848 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
850 If we are setting only a portion of X and we can't figure out what
851 portion, assume all bits will be used since we don't know what will
852 be happening.
854 Similarly, set how many bits of X are known to be copies of the sign bit
855 at all locations in the function. This is the smallest number implied
856 by any set of X. */
858 static void
859 set_nonzero_bits_and_sign_copies (x, set, data)
860 rtx x;
861 rtx set;
862 void *data ATTRIBUTE_UNUSED;
864 unsigned int num;
866 if (GET_CODE (x) == REG
867 && REGNO (x) >= FIRST_PSEUDO_REGISTER
868 /* If this register is undefined at the start of the file, we can't
869 say what its contents were. */
870 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
871 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
873 if (set == 0 || GET_CODE (set) == CLOBBER)
875 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
876 reg_sign_bit_copies[REGNO (x)] = 1;
877 return;
880 /* If this is a complex assignment, see if we can convert it into a
881 simple assignment. */
882 set = expand_field_assignment (set);
884 /* If this is a simple assignment, or we have a paradoxical SUBREG,
885 set what we know about X. */
887 if (SET_DEST (set) == x
888 || (GET_CODE (SET_DEST (set)) == SUBREG
889 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
890 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
891 && SUBREG_REG (SET_DEST (set)) == x))
893 rtx src = SET_SRC (set);
895 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
896 /* If X is narrower than a word and SRC is a non-negative
897 constant that would appear negative in the mode of X,
898 sign-extend it for use in reg_nonzero_bits because some
899 machines (maybe most) will actually do the sign-extension
900 and this is the conservative approach.
902 ??? For 2.5, try to tighten up the MD files in this regard
903 instead of this kludge. */
905 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
906 && GET_CODE (src) == CONST_INT
907 && INTVAL (src) > 0
908 && 0 != (INTVAL (src)
909 & ((HOST_WIDE_INT) 1
910 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
911 src = GEN_INT (INTVAL (src)
912 | ((HOST_WIDE_INT) (-1)
913 << GET_MODE_BITSIZE (GET_MODE (x))));
914 #endif
916 /* Don't call nonzero_bits if it cannot change anything. */
917 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
918 reg_nonzero_bits[REGNO (x)]
919 |= nonzero_bits (src, nonzero_bits_mode);
920 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
921 if (reg_sign_bit_copies[REGNO (x)] == 0
922 || reg_sign_bit_copies[REGNO (x)] > num)
923 reg_sign_bit_copies[REGNO (x)] = num;
925 else
927 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
928 reg_sign_bit_copies[REGNO (x)] = 1;
933 /* See if INSN can be combined into I3. PRED and SUCC are optionally
934 insns that were previously combined into I3 or that will be combined
935 into the merger of INSN and I3.
937 Return 0 if the combination is not allowed for any reason.
939 If the combination is allowed, *PDEST will be set to the single
940 destination of INSN and *PSRC to the single source, and this function
941 will return 1. */
943 static int
944 can_combine_p (insn, i3, pred, succ, pdest, psrc)
945 rtx insn;
946 rtx i3;
947 rtx pred ATTRIBUTE_UNUSED;
948 rtx succ;
949 rtx *pdest, *psrc;
951 int i;
952 rtx set = 0, src, dest;
953 rtx p;
954 #ifdef AUTO_INC_DEC
955 rtx link;
956 #endif
957 int all_adjacent = (succ ? (next_active_insn (insn) == succ
958 && next_active_insn (succ) == i3)
959 : next_active_insn (insn) == i3);
961 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
962 or a PARALLEL consisting of such a SET and CLOBBERs.
964 If INSN has CLOBBER parallel parts, ignore them for our processing.
965 By definition, these happen during the execution of the insn. When it
966 is merged with another insn, all bets are off. If they are, in fact,
967 needed and aren't also supplied in I3, they may be added by
968 recog_for_combine. Otherwise, it won't match.
970 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
971 note.
973 Get the source and destination of INSN. If more than one, can't
974 combine. */
976 if (GET_CODE (PATTERN (insn)) == SET)
977 set = PATTERN (insn);
978 else if (GET_CODE (PATTERN (insn)) == PARALLEL
979 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
981 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
983 rtx elt = XVECEXP (PATTERN (insn), 0, i);
985 switch (GET_CODE (elt))
987 /* This is important to combine floating point insns
988 for the SH4 port. */
989 case USE:
990 /* Combining an isolated USE doesn't make sense.
991 We depend here on combinable_i3pat to reject them. */
992 /* The code below this loop only verifies that the inputs of
993 the SET in INSN do not change. We call reg_set_between_p
994 to verify that the REG in the USE does not change between
995 I3 and INSN.
996 If the USE in INSN was for a pseudo register, the matching
997 insn pattern will likely match any register; combining this
998 with any other USE would only be safe if we knew that the
999 used registers have identical values, or if there was
1000 something to tell them apart, e.g. different modes. For
1001 now, we forgo such complicated tests and simply disallow
1002 combining of USES of pseudo registers with any other USE. */
1003 if (GET_CODE (XEXP (elt, 0)) == REG
1004 && GET_CODE (PATTERN (i3)) == PARALLEL)
1006 rtx i3pat = PATTERN (i3);
1007 int i = XVECLEN (i3pat, 0) - 1;
1008 unsigned int regno = REGNO (XEXP (elt, 0));
1012 rtx i3elt = XVECEXP (i3pat, 0, i);
1014 if (GET_CODE (i3elt) == USE
1015 && GET_CODE (XEXP (i3elt, 0)) == REG
1016 && (REGNO (XEXP (i3elt, 0)) == regno
1017 ? reg_set_between_p (XEXP (elt, 0),
1018 PREV_INSN (insn), i3)
1019 : regno >= FIRST_PSEUDO_REGISTER))
1020 return 0;
1022 while (--i >= 0);
1024 break;
1026 /* We can ignore CLOBBERs. */
1027 case CLOBBER:
1028 break;
1030 case SET:
1031 /* Ignore SETs whose result isn't used but not those that
1032 have side-effects. */
1033 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1034 && ! side_effects_p (elt))
1035 break;
1037 /* If we have already found a SET, this is a second one and
1038 so we cannot combine with this insn. */
1039 if (set)
1040 return 0;
1042 set = elt;
1043 break;
1045 default:
1046 /* Anything else means we can't combine. */
1047 return 0;
1051 if (set == 0
1052 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1053 so don't do anything with it. */
1054 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1055 return 0;
1057 else
1058 return 0;
1060 if (set == 0)
1061 return 0;
1063 set = expand_field_assignment (set);
1064 src = SET_SRC (set), dest = SET_DEST (set);
1066 /* Don't eliminate a store in the stack pointer. */
1067 if (dest == stack_pointer_rtx
1068 /* If we couldn't eliminate a field assignment, we can't combine. */
1069 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1070 /* Don't combine with an insn that sets a register to itself if it has
1071 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1072 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1073 /* Can't merge an ASM_OPERANDS. */
1074 || GET_CODE (src) == ASM_OPERANDS
1075 /* Can't merge a function call. */
1076 || GET_CODE (src) == CALL
1077 /* Don't eliminate a function call argument. */
1078 || (GET_CODE (i3) == CALL_INSN
1079 && (find_reg_fusage (i3, USE, dest)
1080 || (GET_CODE (dest) == REG
1081 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1082 && global_regs[REGNO (dest)])))
1083 /* Don't substitute into an incremented register. */
1084 || FIND_REG_INC_NOTE (i3, dest)
1085 || (succ && FIND_REG_INC_NOTE (succ, dest))
1086 #if 0
1087 /* Don't combine the end of a libcall into anything. */
1088 /* ??? This gives worse code, and appears to be unnecessary, since no
1089 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1090 use REG_RETVAL notes for noconflict blocks, but other code here
1091 makes sure that those insns don't disappear. */
1092 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1093 #endif
1094 /* Make sure that DEST is not used after SUCC but before I3. */
1095 || (succ && ! all_adjacent
1096 && reg_used_between_p (dest, succ, i3))
1097 /* Make sure that the value that is to be substituted for the register
1098 does not use any registers whose values alter in between. However,
1099 If the insns are adjacent, a use can't cross a set even though we
1100 think it might (this can happen for a sequence of insns each setting
1101 the same destination; reg_last_set of that register might point to
1102 a NOTE). If INSN has a REG_EQUIV note, the register is always
1103 equivalent to the memory so the substitution is valid even if there
1104 are intervening stores. Also, don't move a volatile asm or
1105 UNSPEC_VOLATILE across any other insns. */
1106 || (! all_adjacent
1107 && (((GET_CODE (src) != MEM
1108 || ! find_reg_note (insn, REG_EQUIV, src))
1109 && use_crosses_set_p (src, INSN_CUID (insn)))
1110 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1111 || GET_CODE (src) == UNSPEC_VOLATILE))
1112 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1113 better register allocation by not doing the combine. */
1114 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1115 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1116 /* Don't combine across a CALL_INSN, because that would possibly
1117 change whether the life span of some REGs crosses calls or not,
1118 and it is a pain to update that information.
1119 Exception: if source is a constant, moving it later can't hurt.
1120 Accept that special case, because it helps -fforce-addr a lot. */
1121 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1122 return 0;
1124 /* DEST must either be a REG or CC0. */
1125 if (GET_CODE (dest) == REG)
1127 /* If register alignment is being enforced for multi-word items in all
1128 cases except for parameters, it is possible to have a register copy
1129 insn referencing a hard register that is not allowed to contain the
1130 mode being copied and which would not be valid as an operand of most
1131 insns. Eliminate this problem by not combining with such an insn.
1133 Also, on some machines we don't want to extend the life of a hard
1134 register. */
1136 if (GET_CODE (src) == REG
1137 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1138 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1139 /* Don't extend the life of a hard register unless it is
1140 user variable (if we have few registers) or it can't
1141 fit into the desired register (meaning something special
1142 is going on).
1143 Also avoid substituting a return register into I3, because
1144 reload can't handle a conflict with constraints of other
1145 inputs. */
1146 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1147 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1148 return 0;
1150 else if (GET_CODE (dest) != CC0)
1151 return 0;
1153 /* Don't substitute for a register intended as a clobberable operand.
1154 Similarly, don't substitute an expression containing a register that
1155 will be clobbered in I3. */
1156 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1157 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1158 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1159 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1160 src)
1161 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1162 return 0;
1164 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1165 or not), reject, unless nothing volatile comes between it and I3 */
1167 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1169 /* Make sure succ doesn't contain a volatile reference. */
1170 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1171 return 0;
1173 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1174 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1175 return 0;
1178 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1179 to be an explicit register variable, and was chosen for a reason. */
1181 if (GET_CODE (src) == ASM_OPERANDS
1182 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1183 return 0;
1185 /* If there are any volatile insns between INSN and I3, reject, because
1186 they might affect machine state. */
1188 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1189 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1190 return 0;
1192 /* If INSN or I2 contains an autoincrement or autodecrement,
1193 make sure that register is not used between there and I3,
1194 and not already used in I3 either.
1195 Also insist that I3 not be a jump; if it were one
1196 and the incremented register were spilled, we would lose. */
1198 #ifdef AUTO_INC_DEC
1199 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1200 if (REG_NOTE_KIND (link) == REG_INC
1201 && (GET_CODE (i3) == JUMP_INSN
1202 || reg_used_between_p (XEXP (link, 0), insn, i3)
1203 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1204 return 0;
1205 #endif
1207 #ifdef HAVE_cc0
1208 /* Don't combine an insn that follows a CC0-setting insn.
1209 An insn that uses CC0 must not be separated from the one that sets it.
1210 We do, however, allow I2 to follow a CC0-setting insn if that insn
1211 is passed as I1; in that case it will be deleted also.
1212 We also allow combining in this case if all the insns are adjacent
1213 because that would leave the two CC0 insns adjacent as well.
1214 It would be more logical to test whether CC0 occurs inside I1 or I2,
1215 but that would be much slower, and this ought to be equivalent. */
1217 p = prev_nonnote_insn (insn);
1218 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1219 && ! all_adjacent)
1220 return 0;
1221 #endif
1223 /* If we get here, we have passed all the tests and the combination is
1224 to be allowed. */
1226 *pdest = dest;
1227 *psrc = src;
1229 return 1;
1232 /* Check if PAT is an insn - or a part of it - used to set up an
1233 argument for a function in a hard register. */
1235 static int
1236 sets_function_arg_p (pat)
1237 rtx pat;
1239 int i;
1240 rtx inner_dest;
1242 switch (GET_CODE (pat))
1244 case INSN:
1245 return sets_function_arg_p (PATTERN (pat));
1247 case PARALLEL:
1248 for (i = XVECLEN (pat, 0); --i >= 0;)
1249 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1250 return 1;
1252 break;
1254 case SET:
1255 inner_dest = SET_DEST (pat);
1256 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1257 || GET_CODE (inner_dest) == SUBREG
1258 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1259 inner_dest = XEXP (inner_dest, 0);
1261 return (GET_CODE (inner_dest) == REG
1262 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1263 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1265 default:
1266 break;
1269 return 0;
1272 /* LOC is the location within I3 that contains its pattern or the component
1273 of a PARALLEL of the pattern. We validate that it is valid for combining.
1275 One problem is if I3 modifies its output, as opposed to replacing it
1276 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1277 so would produce an insn that is not equivalent to the original insns.
1279 Consider:
1281 (set (reg:DI 101) (reg:DI 100))
1282 (set (subreg:SI (reg:DI 101) 0) <foo>)
1284 This is NOT equivalent to:
1286 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1287 (set (reg:DI 101) (reg:DI 100))])
1289 Not only does this modify 100 (in which case it might still be valid
1290 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1292 We can also run into a problem if I2 sets a register that I1
1293 uses and I1 gets directly substituted into I3 (not via I2). In that
1294 case, we would be getting the wrong value of I2DEST into I3, so we
1295 must reject the combination. This case occurs when I2 and I1 both
1296 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1297 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1298 of a SET must prevent combination from occurring.
1300 Before doing the above check, we first try to expand a field assignment
1301 into a set of logical operations.
1303 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1304 we place a register that is both set and used within I3. If more than one
1305 such register is detected, we fail.
1307 Return 1 if the combination is valid, zero otherwise. */
1309 static int
1310 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1311 rtx i3;
1312 rtx *loc;
1313 rtx i2dest;
1314 rtx i1dest;
1315 int i1_not_in_src;
1316 rtx *pi3dest_killed;
1318 rtx x = *loc;
1320 if (GET_CODE (x) == SET)
1322 rtx set = expand_field_assignment (x);
1323 rtx dest = SET_DEST (set);
1324 rtx src = SET_SRC (set);
1325 rtx inner_dest = dest;
1327 #if 0
1328 rtx inner_src = src;
1329 #endif
1331 SUBST (*loc, set);
1333 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1334 || GET_CODE (inner_dest) == SUBREG
1335 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1336 inner_dest = XEXP (inner_dest, 0);
1338 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1339 was added. */
1340 #if 0
1341 while (GET_CODE (inner_src) == STRICT_LOW_PART
1342 || GET_CODE (inner_src) == SUBREG
1343 || GET_CODE (inner_src) == ZERO_EXTRACT)
1344 inner_src = XEXP (inner_src, 0);
1346 /* If it is better that two different modes keep two different pseudos,
1347 avoid combining them. This avoids producing the following pattern
1348 on a 386:
1349 (set (subreg:SI (reg/v:QI 21) 0)
1350 (lshiftrt:SI (reg/v:SI 20)
1351 (const_int 24)))
1352 If that were made, reload could not handle the pair of
1353 reg 20/21, since it would try to get any GENERAL_REGS
1354 but some of them don't handle QImode. */
1356 if (rtx_equal_p (inner_src, i2dest)
1357 && GET_CODE (inner_dest) == REG
1358 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1359 return 0;
1360 #endif
1362 /* Check for the case where I3 modifies its output, as
1363 discussed above. */
1364 if ((inner_dest != dest
1365 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1366 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1368 /* This is the same test done in can_combine_p except we can't test
1369 all_adjacent; we don't have to, since this instruction will stay
1370 in place, thus we are not considering increasing the lifetime of
1371 INNER_DEST.
1373 Also, if this insn sets a function argument, combining it with
1374 something that might need a spill could clobber a previous
1375 function argument; the all_adjacent test in can_combine_p also
1376 checks this; here, we do a more specific test for this case. */
1378 || (GET_CODE (inner_dest) == REG
1379 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1380 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1381 GET_MODE (inner_dest))))
1382 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1383 return 0;
1385 /* If DEST is used in I3, it is being killed in this insn,
1386 so record that for later.
1387 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1388 STACK_POINTER_REGNUM, since these are always considered to be
1389 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1390 if (pi3dest_killed && GET_CODE (dest) == REG
1391 && reg_referenced_p (dest, PATTERN (i3))
1392 && REGNO (dest) != FRAME_POINTER_REGNUM
1393 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1394 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1395 #endif
1396 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1397 && (REGNO (dest) != ARG_POINTER_REGNUM
1398 || ! fixed_regs [REGNO (dest)])
1399 #endif
1400 && REGNO (dest) != STACK_POINTER_REGNUM)
1402 if (*pi3dest_killed)
1403 return 0;
1405 *pi3dest_killed = dest;
1409 else if (GET_CODE (x) == PARALLEL)
1411 int i;
1413 for (i = 0; i < XVECLEN (x, 0); i++)
1414 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1415 i1_not_in_src, pi3dest_killed))
1416 return 0;
1419 return 1;
1422 /* Return 1 if X is an arithmetic expression that contains a multiplication
1423 and division. We don't count multiplications by powers of two here. */
1425 static int
1426 contains_muldiv (x)
1427 rtx x;
1429 switch (GET_CODE (x))
1431 case MOD: case DIV: case UMOD: case UDIV:
1432 return 1;
1434 case MULT:
1435 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1436 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1437 default:
1438 switch (GET_RTX_CLASS (GET_CODE (x)))
1440 case 'c': case '<': case '2':
1441 return contains_muldiv (XEXP (x, 0))
1442 || contains_muldiv (XEXP (x, 1));
1444 case '1':
1445 return contains_muldiv (XEXP (x, 0));
1447 default:
1448 return 0;
1453 /* Determine whether INSN can be used in a combination. Return nonzero if
1454 not. This is used in try_combine to detect early some cases where we
1455 can't perform combinations. */
1457 static int
1458 cant_combine_insn_p (insn)
1459 rtx insn;
1461 rtx set;
1462 rtx src, dest;
1464 /* If this isn't really an insn, we can't do anything.
1465 This can occur when flow deletes an insn that it has merged into an
1466 auto-increment address. */
1467 if (! INSN_P (insn))
1468 return 1;
1470 /* Never combine loads and stores involving hard regs. The register
1471 allocator can usually handle such reg-reg moves by tying. If we allow
1472 the combiner to make substitutions of hard regs, we risk aborting in
1473 reload on machines that have SMALL_REGISTER_CLASSES.
1474 As an exception, we allow combinations involving fixed regs; these are
1475 not available to the register allocator so there's no risk involved. */
1477 set = single_set (insn);
1478 if (! set)
1479 return 0;
1480 src = SET_SRC (set);
1481 dest = SET_DEST (set);
1482 if (GET_CODE (src) == SUBREG)
1483 src = SUBREG_REG (src);
1484 if (GET_CODE (dest) == SUBREG)
1485 dest = SUBREG_REG (dest);
1486 if (REG_P (src) && REG_P (dest)
1487 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1488 && ! fixed_regs[REGNO (src)])
1489 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1490 && ! fixed_regs[REGNO (dest)])))
1491 return 1;
1493 return 0;
1496 /* Try to combine the insns I1 and I2 into I3.
1497 Here I1 and I2 appear earlier than I3.
1498 I1 can be zero; then we combine just I2 into I3.
1500 If we are combining three insns and the resulting insn is not recognized,
1501 try splitting it into two insns. If that happens, I2 and I3 are retained
1502 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1503 are pseudo-deleted.
1505 Return 0 if the combination does not work. Then nothing is changed.
1506 If we did the combination, return the insn at which combine should
1507 resume scanning.
1509 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1510 new direct jump instruction. */
1512 static rtx
1513 try_combine (i3, i2, i1, new_direct_jump_p)
1514 rtx i3, i2, i1;
1515 int *new_direct_jump_p;
1517 /* New patterns for I3 and I2, respectively. */
1518 rtx newpat, newi2pat = 0;
1519 int substed_i2 = 0, substed_i1 = 0;
1520 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1521 int added_sets_1, added_sets_2;
1522 /* Total number of SETs to put into I3. */
1523 int total_sets;
1524 /* Nonzero is I2's body now appears in I3. */
1525 int i2_is_used;
1526 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1527 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1528 /* Contains I3 if the destination of I3 is used in its source, which means
1529 that the old life of I3 is being killed. If that usage is placed into
1530 I2 and not in I3, a REG_DEAD note must be made. */
1531 rtx i3dest_killed = 0;
1532 /* SET_DEST and SET_SRC of I2 and I1. */
1533 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1534 /* PATTERN (I2), or a copy of it in certain cases. */
1535 rtx i2pat;
1536 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1537 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1538 int i1_feeds_i3 = 0;
1539 /* Notes that must be added to REG_NOTES in I3 and I2. */
1540 rtx new_i3_notes, new_i2_notes;
1541 /* Notes that we substituted I3 into I2 instead of the normal case. */
1542 int i3_subst_into_i2 = 0;
1543 /* Notes that I1, I2 or I3 is a MULT operation. */
1544 int have_mult = 0;
1546 int maxreg;
1547 rtx temp;
1548 rtx link;
1549 int i;
1551 /* Exit early if one of the insns involved can't be used for
1552 combinations. */
1553 if (cant_combine_insn_p (i3)
1554 || cant_combine_insn_p (i2)
1555 || (i1 && cant_combine_insn_p (i1))
1556 /* We also can't do anything if I3 has a
1557 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1558 libcall. */
1559 #if 0
1560 /* ??? This gives worse code, and appears to be unnecessary, since no
1561 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1562 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1563 #endif
1565 return 0;
1567 combine_attempts++;
1568 undobuf.other_insn = 0;
1570 /* Reset the hard register usage information. */
1571 CLEAR_HARD_REG_SET (newpat_used_regs);
1573 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1574 code below, set I1 to be the earlier of the two insns. */
1575 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1576 temp = i1, i1 = i2, i2 = temp;
1578 added_links_insn = 0;
1580 /* First check for one important special-case that the code below will
1581 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1582 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1583 we may be able to replace that destination with the destination of I3.
1584 This occurs in the common code where we compute both a quotient and
1585 remainder into a structure, in which case we want to do the computation
1586 directly into the structure to avoid register-register copies.
1588 Note that this case handles both multiple sets in I2 and also
1589 cases where I2 has a number of CLOBBER or PARALLELs.
1591 We make very conservative checks below and only try to handle the
1592 most common cases of this. For example, we only handle the case
1593 where I2 and I3 are adjacent to avoid making difficult register
1594 usage tests. */
1596 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1597 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1598 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1599 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1600 && GET_CODE (PATTERN (i2)) == PARALLEL
1601 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1602 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1603 below would need to check what is inside (and reg_overlap_mentioned_p
1604 doesn't support those codes anyway). Don't allow those destinations;
1605 the resulting insn isn't likely to be recognized anyway. */
1606 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1607 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1608 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1609 SET_DEST (PATTERN (i3)))
1610 && next_real_insn (i2) == i3)
1612 rtx p2 = PATTERN (i2);
1614 /* Make sure that the destination of I3,
1615 which we are going to substitute into one output of I2,
1616 is not used within another output of I2. We must avoid making this:
1617 (parallel [(set (mem (reg 69)) ...)
1618 (set (reg 69) ...)])
1619 which is not well-defined as to order of actions.
1620 (Besides, reload can't handle output reloads for this.)
1622 The problem can also happen if the dest of I3 is a memory ref,
1623 if another dest in I2 is an indirect memory ref. */
1624 for (i = 0; i < XVECLEN (p2, 0); i++)
1625 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1626 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1627 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1628 SET_DEST (XVECEXP (p2, 0, i))))
1629 break;
1631 if (i == XVECLEN (p2, 0))
1632 for (i = 0; i < XVECLEN (p2, 0); i++)
1633 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1634 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1635 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1637 combine_merges++;
1639 subst_insn = i3;
1640 subst_low_cuid = INSN_CUID (i2);
1642 added_sets_2 = added_sets_1 = 0;
1643 i2dest = SET_SRC (PATTERN (i3));
1645 /* Replace the dest in I2 with our dest and make the resulting
1646 insn the new pattern for I3. Then skip to where we
1647 validate the pattern. Everything was set up above. */
1648 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1649 SET_DEST (PATTERN (i3)));
1651 newpat = p2;
1652 i3_subst_into_i2 = 1;
1653 goto validate_replacement;
1657 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1658 one of those words to another constant, merge them by making a new
1659 constant. */
1660 if (i1 == 0
1661 && (temp = single_set (i2)) != 0
1662 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1663 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1664 && GET_CODE (SET_DEST (temp)) == REG
1665 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1666 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1667 && GET_CODE (PATTERN (i3)) == SET
1668 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1669 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1670 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1671 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1672 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1674 HOST_WIDE_INT lo, hi;
1676 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1677 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1678 else
1680 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1681 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1684 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1686 /* We don't handle the case of the target word being wider
1687 than a host wide int. */
1688 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1689 abort ();
1691 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1692 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1693 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1695 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1696 hi = INTVAL (SET_SRC (PATTERN (i3)));
1697 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1699 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1700 >> (HOST_BITS_PER_WIDE_INT - 1));
1702 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1703 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1704 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1705 (INTVAL (SET_SRC (PATTERN (i3)))));
1706 if (hi == sign)
1707 hi = lo < 0 ? -1 : 0;
1709 else
1710 /* We don't handle the case of the higher word not fitting
1711 entirely in either hi or lo. */
1712 abort ();
1714 combine_merges++;
1715 subst_insn = i3;
1716 subst_low_cuid = INSN_CUID (i2);
1717 added_sets_2 = added_sets_1 = 0;
1718 i2dest = SET_DEST (temp);
1720 SUBST (SET_SRC (temp),
1721 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1723 newpat = PATTERN (i2);
1724 goto validate_replacement;
1727 #ifndef HAVE_cc0
1728 /* If we have no I1 and I2 looks like:
1729 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1730 (set Y OP)])
1731 make up a dummy I1 that is
1732 (set Y OP)
1733 and change I2 to be
1734 (set (reg:CC X) (compare:CC Y (const_int 0)))
1736 (We can ignore any trailing CLOBBERs.)
1738 This undoes a previous combination and allows us to match a branch-and-
1739 decrement insn. */
1741 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1742 && XVECLEN (PATTERN (i2), 0) >= 2
1743 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1744 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1745 == MODE_CC)
1746 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1747 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1748 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1749 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1750 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1751 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1753 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1754 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1755 break;
1757 if (i == 1)
1759 /* We make I1 with the same INSN_UID as I2. This gives it
1760 the same INSN_CUID for value tracking. Our fake I1 will
1761 never appear in the insn stream so giving it the same INSN_UID
1762 as I2 will not cause a problem. */
1764 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1765 BLOCK_FOR_INSN (i2), INSN_SCOPE (i2),
1766 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1767 NULL_RTX);
1769 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1770 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1771 SET_DEST (PATTERN (i1)));
1774 #endif
1776 /* Verify that I2 and I1 are valid for combining. */
1777 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1778 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1780 undo_all ();
1781 return 0;
1784 /* Record whether I2DEST is used in I2SRC and similarly for the other
1785 cases. Knowing this will help in register status updating below. */
1786 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1787 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1788 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1790 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1791 in I2SRC. */
1792 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1794 /* Ensure that I3's pattern can be the destination of combines. */
1795 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1796 i1 && i2dest_in_i1src && i1_feeds_i3,
1797 &i3dest_killed))
1799 undo_all ();
1800 return 0;
1803 /* See if any of the insns is a MULT operation. Unless one is, we will
1804 reject a combination that is, since it must be slower. Be conservative
1805 here. */
1806 if (GET_CODE (i2src) == MULT
1807 || (i1 != 0 && GET_CODE (i1src) == MULT)
1808 || (GET_CODE (PATTERN (i3)) == SET
1809 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1810 have_mult = 1;
1812 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1813 We used to do this EXCEPT in one case: I3 has a post-inc in an
1814 output operand. However, that exception can give rise to insns like
1815 mov r3,(r3)+
1816 which is a famous insn on the PDP-11 where the value of r3 used as the
1817 source was model-dependent. Avoid this sort of thing. */
1819 #if 0
1820 if (!(GET_CODE (PATTERN (i3)) == SET
1821 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1822 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1823 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1824 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1825 /* It's not the exception. */
1826 #endif
1827 #ifdef AUTO_INC_DEC
1828 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1829 if (REG_NOTE_KIND (link) == REG_INC
1830 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1831 || (i1 != 0
1832 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1834 undo_all ();
1835 return 0;
1837 #endif
1839 /* See if the SETs in I1 or I2 need to be kept around in the merged
1840 instruction: whenever the value set there is still needed past I3.
1841 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1843 For the SET in I1, we have two cases: If I1 and I2 independently
1844 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1845 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1846 in I1 needs to be kept around unless I1DEST dies or is set in either
1847 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1848 I1DEST. If so, we know I1 feeds into I2. */
1850 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1852 added_sets_1
1853 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1854 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1856 /* If the set in I2 needs to be kept around, we must make a copy of
1857 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1858 PATTERN (I2), we are only substituting for the original I1DEST, not into
1859 an already-substituted copy. This also prevents making self-referential
1860 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1861 I2DEST. */
1863 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1864 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1865 : PATTERN (i2));
1867 if (added_sets_2)
1868 i2pat = copy_rtx (i2pat);
1870 combine_merges++;
1872 /* Substitute in the latest insn for the regs set by the earlier ones. */
1874 maxreg = max_reg_num ();
1876 subst_insn = i3;
1878 /* It is possible that the source of I2 or I1 may be performing an
1879 unneeded operation, such as a ZERO_EXTEND of something that is known
1880 to have the high part zero. Handle that case by letting subst look at
1881 the innermost one of them.
1883 Another way to do this would be to have a function that tries to
1884 simplify a single insn instead of merging two or more insns. We don't
1885 do this because of the potential of infinite loops and because
1886 of the potential extra memory required. However, doing it the way
1887 we are is a bit of a kludge and doesn't catch all cases.
1889 But only do this if -fexpensive-optimizations since it slows things down
1890 and doesn't usually win. */
1892 if (flag_expensive_optimizations)
1894 /* Pass pc_rtx so no substitutions are done, just simplifications.
1895 The cases that we are interested in here do not involve the few
1896 cases were is_replaced is checked. */
1897 if (i1)
1899 subst_low_cuid = INSN_CUID (i1);
1900 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1902 else
1904 subst_low_cuid = INSN_CUID (i2);
1905 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1909 #ifndef HAVE_cc0
1910 /* Many machines that don't use CC0 have insns that can both perform an
1911 arithmetic operation and set the condition code. These operations will
1912 be represented as a PARALLEL with the first element of the vector
1913 being a COMPARE of an arithmetic operation with the constant zero.
1914 The second element of the vector will set some pseudo to the result
1915 of the same arithmetic operation. If we simplify the COMPARE, we won't
1916 match such a pattern and so will generate an extra insn. Here we test
1917 for this case, where both the comparison and the operation result are
1918 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1919 I2SRC. Later we will make the PARALLEL that contains I2. */
1921 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1922 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1923 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1924 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1926 #ifdef EXTRA_CC_MODES
1927 rtx *cc_use;
1928 enum machine_mode compare_mode;
1929 #endif
1931 newpat = PATTERN (i3);
1932 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1934 i2_is_used = 1;
1936 #ifdef EXTRA_CC_MODES
1937 /* See if a COMPARE with the operand we substituted in should be done
1938 with the mode that is currently being used. If not, do the same
1939 processing we do in `subst' for a SET; namely, if the destination
1940 is used only once, try to replace it with a register of the proper
1941 mode and also replace the COMPARE. */
1942 if (undobuf.other_insn == 0
1943 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1944 &undobuf.other_insn))
1945 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1946 i2src, const0_rtx))
1947 != GET_MODE (SET_DEST (newpat))))
1949 unsigned int regno = REGNO (SET_DEST (newpat));
1950 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1952 if (regno < FIRST_PSEUDO_REGISTER
1953 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1954 && ! REG_USERVAR_P (SET_DEST (newpat))))
1956 if (regno >= FIRST_PSEUDO_REGISTER)
1957 SUBST (regno_reg_rtx[regno], new_dest);
1959 SUBST (SET_DEST (newpat), new_dest);
1960 SUBST (XEXP (*cc_use, 0), new_dest);
1961 SUBST (SET_SRC (newpat),
1962 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1964 else
1965 undobuf.other_insn = 0;
1967 #endif
1969 else
1970 #endif
1972 n_occurrences = 0; /* `subst' counts here */
1974 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1975 need to make a unique copy of I2SRC each time we substitute it
1976 to avoid self-referential rtl. */
1978 subst_low_cuid = INSN_CUID (i2);
1979 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1980 ! i1_feeds_i3 && i1dest_in_i1src);
1981 substed_i2 = 1;
1983 /* Record whether i2's body now appears within i3's body. */
1984 i2_is_used = n_occurrences;
1987 /* If we already got a failure, don't try to do more. Otherwise,
1988 try to substitute in I1 if we have it. */
1990 if (i1 && GET_CODE (newpat) != CLOBBER)
1992 /* Before we can do this substitution, we must redo the test done
1993 above (see detailed comments there) that ensures that I1DEST
1994 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1996 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1997 0, (rtx*) 0))
1999 undo_all ();
2000 return 0;
2003 n_occurrences = 0;
2004 subst_low_cuid = INSN_CUID (i1);
2005 newpat = subst (newpat, i1dest, i1src, 0, 0);
2006 substed_i1 = 1;
2009 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2010 to count all the ways that I2SRC and I1SRC can be used. */
2011 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2012 && i2_is_used + added_sets_2 > 1)
2013 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2014 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2015 > 1))
2016 /* Fail if we tried to make a new register (we used to abort, but there's
2017 really no reason to). */
2018 || max_reg_num () != maxreg
2019 /* Fail if we couldn't do something and have a CLOBBER. */
2020 || GET_CODE (newpat) == CLOBBER
2021 /* Fail if this new pattern is a MULT and we didn't have one before
2022 at the outer level. */
2023 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2024 && ! have_mult))
2026 undo_all ();
2027 return 0;
2030 /* If the actions of the earlier insns must be kept
2031 in addition to substituting them into the latest one,
2032 we must make a new PARALLEL for the latest insn
2033 to hold additional the SETs. */
2035 if (added_sets_1 || added_sets_2)
2037 combine_extras++;
2039 if (GET_CODE (newpat) == PARALLEL)
2041 rtvec old = XVEC (newpat, 0);
2042 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2043 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2044 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2045 sizeof (old->elem[0]) * old->num_elem);
2047 else
2049 rtx old = newpat;
2050 total_sets = 1 + added_sets_1 + added_sets_2;
2051 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2052 XVECEXP (newpat, 0, 0) = old;
2055 if (added_sets_1)
2056 XVECEXP (newpat, 0, --total_sets)
2057 = (GET_CODE (PATTERN (i1)) == PARALLEL
2058 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2060 if (added_sets_2)
2062 /* If there is no I1, use I2's body as is. We used to also not do
2063 the subst call below if I2 was substituted into I3,
2064 but that could lose a simplification. */
2065 if (i1 == 0)
2066 XVECEXP (newpat, 0, --total_sets) = i2pat;
2067 else
2068 /* See comment where i2pat is assigned. */
2069 XVECEXP (newpat, 0, --total_sets)
2070 = subst (i2pat, i1dest, i1src, 0, 0);
2074 /* We come here when we are replacing a destination in I2 with the
2075 destination of I3. */
2076 validate_replacement:
2078 /* Note which hard regs this insn has as inputs. */
2079 mark_used_regs_combine (newpat);
2081 /* Is the result of combination a valid instruction? */
2082 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2084 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2085 the second SET's destination is a register that is unused. In that case,
2086 we just need the first SET. This can occur when simplifying a divmod
2087 insn. We *must* test for this case here because the code below that
2088 splits two independent SETs doesn't handle this case correctly when it
2089 updates the register status. Also check the case where the first
2090 SET's destination is unused. That would not cause incorrect code, but
2091 does cause an unneeded insn to remain. */
2093 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2094 && XVECLEN (newpat, 0) == 2
2095 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2096 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2097 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2098 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2099 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2100 && asm_noperands (newpat) < 0)
2102 newpat = XVECEXP (newpat, 0, 0);
2103 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2106 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2107 && XVECLEN (newpat, 0) == 2
2108 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2109 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2110 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2111 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2112 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2113 && asm_noperands (newpat) < 0)
2115 newpat = XVECEXP (newpat, 0, 1);
2116 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2119 /* If we were combining three insns and the result is a simple SET
2120 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2121 insns. There are two ways to do this. It can be split using a
2122 machine-specific method (like when you have an addition of a large
2123 constant) or by combine in the function find_split_point. */
2125 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2126 && asm_noperands (newpat) < 0)
2128 rtx m_split, *split;
2129 rtx ni2dest = i2dest;
2131 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2132 use I2DEST as a scratch register will help. In the latter case,
2133 convert I2DEST to the mode of the source of NEWPAT if we can. */
2135 m_split = split_insns (newpat, i3);
2137 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2138 inputs of NEWPAT. */
2140 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2141 possible to try that as a scratch reg. This would require adding
2142 more code to make it work though. */
2144 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2146 /* If I2DEST is a hard register or the only use of a pseudo,
2147 we can change its mode. */
2148 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2149 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2150 && GET_CODE (i2dest) == REG
2151 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2152 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2153 && ! REG_USERVAR_P (i2dest))))
2154 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2155 REGNO (i2dest));
2157 m_split = split_insns (gen_rtx_PARALLEL
2158 (VOIDmode,
2159 gen_rtvec (2, newpat,
2160 gen_rtx_CLOBBER (VOIDmode,
2161 ni2dest))),
2162 i3);
2163 /* If the split with the mode-changed register didn't work, try
2164 the original register. */
2165 if (! m_split && ni2dest != i2dest)
2167 ni2dest = i2dest;
2168 m_split = split_insns (gen_rtx_PARALLEL
2169 (VOIDmode,
2170 gen_rtvec (2, newpat,
2171 gen_rtx_CLOBBER (VOIDmode,
2172 i2dest))),
2173 i3);
2177 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2179 m_split = PATTERN (m_split);
2180 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2181 if (insn_code_number >= 0)
2182 newpat = m_split;
2184 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2185 && (next_real_insn (i2) == i3
2186 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2188 rtx i2set, i3set;
2189 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2190 newi2pat = PATTERN (m_split);
2192 i3set = single_set (NEXT_INSN (m_split));
2193 i2set = single_set (m_split);
2195 /* In case we changed the mode of I2DEST, replace it in the
2196 pseudo-register table here. We can't do it above in case this
2197 code doesn't get executed and we do a split the other way. */
2199 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2200 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2202 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2204 /* If I2 or I3 has multiple SETs, we won't know how to track
2205 register status, so don't use these insns. If I2's destination
2206 is used between I2 and I3, we also can't use these insns. */
2208 if (i2_code_number >= 0 && i2set && i3set
2209 && (next_real_insn (i2) == i3
2210 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2211 insn_code_number = recog_for_combine (&newi3pat, i3,
2212 &new_i3_notes);
2213 if (insn_code_number >= 0)
2214 newpat = newi3pat;
2216 /* It is possible that both insns now set the destination of I3.
2217 If so, we must show an extra use of it. */
2219 if (insn_code_number >= 0)
2221 rtx new_i3_dest = SET_DEST (i3set);
2222 rtx new_i2_dest = SET_DEST (i2set);
2224 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2225 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2226 || GET_CODE (new_i3_dest) == SUBREG)
2227 new_i3_dest = XEXP (new_i3_dest, 0);
2229 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2230 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2231 || GET_CODE (new_i2_dest) == SUBREG)
2232 new_i2_dest = XEXP (new_i2_dest, 0);
2234 if (GET_CODE (new_i3_dest) == REG
2235 && GET_CODE (new_i2_dest) == REG
2236 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2237 REG_N_SETS (REGNO (new_i2_dest))++;
2241 /* If we can split it and use I2DEST, go ahead and see if that
2242 helps things be recognized. Verify that none of the registers
2243 are set between I2 and I3. */
2244 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2245 #ifdef HAVE_cc0
2246 && GET_CODE (i2dest) == REG
2247 #endif
2248 /* We need I2DEST in the proper mode. If it is a hard register
2249 or the only use of a pseudo, we can change its mode. */
2250 && (GET_MODE (*split) == GET_MODE (i2dest)
2251 || GET_MODE (*split) == VOIDmode
2252 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2253 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2254 && ! REG_USERVAR_P (i2dest)))
2255 && (next_real_insn (i2) == i3
2256 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2257 /* We can't overwrite I2DEST if its value is still used by
2258 NEWPAT. */
2259 && ! reg_referenced_p (i2dest, newpat))
2261 rtx newdest = i2dest;
2262 enum rtx_code split_code = GET_CODE (*split);
2263 enum machine_mode split_mode = GET_MODE (*split);
2265 /* Get NEWDEST as a register in the proper mode. We have already
2266 validated that we can do this. */
2267 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2269 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2271 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2272 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2275 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2276 an ASHIFT. This can occur if it was inside a PLUS and hence
2277 appeared to be a memory address. This is a kludge. */
2278 if (split_code == MULT
2279 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2280 && INTVAL (XEXP (*split, 1)) > 0
2281 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2283 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2284 XEXP (*split, 0), GEN_INT (i)));
2285 /* Update split_code because we may not have a multiply
2286 anymore. */
2287 split_code = GET_CODE (*split);
2290 #ifdef INSN_SCHEDULING
2291 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2292 be written as a ZERO_EXTEND. */
2293 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2295 #ifdef LOAD_EXTEND_OP
2296 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2297 what it really is. */
2298 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2299 == SIGN_EXTEND)
2300 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2301 SUBREG_REG (*split)));
2302 else
2303 #endif
2304 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2305 SUBREG_REG (*split)));
2307 #endif
2309 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2310 SUBST (*split, newdest);
2311 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2313 /* If the split point was a MULT and we didn't have one before,
2314 don't use one now. */
2315 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2316 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2320 /* Check for a case where we loaded from memory in a narrow mode and
2321 then sign extended it, but we need both registers. In that case,
2322 we have a PARALLEL with both loads from the same memory location.
2323 We can split this into a load from memory followed by a register-register
2324 copy. This saves at least one insn, more if register allocation can
2325 eliminate the copy.
2327 We cannot do this if the destination of the first assignment is a
2328 condition code register or cc0. We eliminate this case by making sure
2329 the SET_DEST and SET_SRC have the same mode.
2331 We cannot do this if the destination of the second assignment is
2332 a register that we have already assumed is zero-extended. Similarly
2333 for a SUBREG of such a register. */
2335 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2336 && GET_CODE (newpat) == PARALLEL
2337 && XVECLEN (newpat, 0) == 2
2338 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2339 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2340 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2341 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2342 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2343 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2344 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2345 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2346 INSN_CUID (i2))
2347 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2348 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2349 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2350 (GET_CODE (temp) == REG
2351 && reg_nonzero_bits[REGNO (temp)] != 0
2352 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2353 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2354 && (reg_nonzero_bits[REGNO (temp)]
2355 != GET_MODE_MASK (word_mode))))
2356 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2357 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2358 (GET_CODE (temp) == REG
2359 && reg_nonzero_bits[REGNO (temp)] != 0
2360 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2361 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2362 && (reg_nonzero_bits[REGNO (temp)]
2363 != GET_MODE_MASK (word_mode)))))
2364 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2365 SET_SRC (XVECEXP (newpat, 0, 1)))
2366 && ! find_reg_note (i3, REG_UNUSED,
2367 SET_DEST (XVECEXP (newpat, 0, 0))))
2369 rtx ni2dest;
2371 newi2pat = XVECEXP (newpat, 0, 0);
2372 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2373 newpat = XVECEXP (newpat, 0, 1);
2374 SUBST (SET_SRC (newpat),
2375 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2376 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2378 if (i2_code_number >= 0)
2379 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2381 if (insn_code_number >= 0)
2383 rtx insn;
2384 rtx link;
2386 /* If we will be able to accept this, we have made a change to the
2387 destination of I3. This can invalidate a LOG_LINKS pointing
2388 to I3. No other part of combine.c makes such a transformation.
2390 The new I3 will have a destination that was previously the
2391 destination of I1 or I2 and which was used in i2 or I3. Call
2392 distribute_links to make a LOG_LINK from the next use of
2393 that destination. */
2395 PATTERN (i3) = newpat;
2396 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2398 /* I3 now uses what used to be its destination and which is
2399 now I2's destination. That means we need a LOG_LINK from
2400 I3 to I2. But we used to have one, so we still will.
2402 However, some later insn might be using I2's dest and have
2403 a LOG_LINK pointing at I3. We must remove this link.
2404 The simplest way to remove the link is to point it at I1,
2405 which we know will be a NOTE. */
2407 for (insn = NEXT_INSN (i3);
2408 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2409 || insn != this_basic_block->next_bb->head);
2410 insn = NEXT_INSN (insn))
2412 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2414 for (link = LOG_LINKS (insn); link;
2415 link = XEXP (link, 1))
2416 if (XEXP (link, 0) == i3)
2417 XEXP (link, 0) = i1;
2419 break;
2425 /* Similarly, check for a case where we have a PARALLEL of two independent
2426 SETs but we started with three insns. In this case, we can do the sets
2427 as two separate insns. This case occurs when some SET allows two
2428 other insns to combine, but the destination of that SET is still live. */
2430 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2431 && GET_CODE (newpat) == PARALLEL
2432 && XVECLEN (newpat, 0) == 2
2433 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2434 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2435 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2436 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2437 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2438 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2439 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2440 INSN_CUID (i2))
2441 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2442 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2443 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2444 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2445 XVECEXP (newpat, 0, 0))
2446 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2447 XVECEXP (newpat, 0, 1))
2448 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2449 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2451 /* Normally, it doesn't matter which of the two is done first,
2452 but it does if one references cc0. In that case, it has to
2453 be first. */
2454 #ifdef HAVE_cc0
2455 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2457 newi2pat = XVECEXP (newpat, 0, 0);
2458 newpat = XVECEXP (newpat, 0, 1);
2460 else
2461 #endif
2463 newi2pat = XVECEXP (newpat, 0, 1);
2464 newpat = XVECEXP (newpat, 0, 0);
2467 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2469 if (i2_code_number >= 0)
2470 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2473 /* If it still isn't recognized, fail and change things back the way they
2474 were. */
2475 if ((insn_code_number < 0
2476 /* Is the result a reasonable ASM_OPERANDS? */
2477 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2479 undo_all ();
2480 return 0;
2483 /* If we had to change another insn, make sure it is valid also. */
2484 if (undobuf.other_insn)
2486 rtx other_pat = PATTERN (undobuf.other_insn);
2487 rtx new_other_notes;
2488 rtx note, next;
2490 CLEAR_HARD_REG_SET (newpat_used_regs);
2492 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2493 &new_other_notes);
2495 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2497 undo_all ();
2498 return 0;
2501 PATTERN (undobuf.other_insn) = other_pat;
2503 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2504 are still valid. Then add any non-duplicate notes added by
2505 recog_for_combine. */
2506 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2508 next = XEXP (note, 1);
2510 if (REG_NOTE_KIND (note) == REG_UNUSED
2511 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2513 if (GET_CODE (XEXP (note, 0)) == REG)
2514 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2516 remove_note (undobuf.other_insn, note);
2520 for (note = new_other_notes; note; note = XEXP (note, 1))
2521 if (GET_CODE (XEXP (note, 0)) == REG)
2522 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2524 distribute_notes (new_other_notes, undobuf.other_insn,
2525 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2527 #ifdef HAVE_cc0
2528 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2529 they are adjacent to each other or not. */
2531 rtx p = prev_nonnote_insn (i3);
2532 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2533 && sets_cc0_p (newi2pat))
2535 undo_all ();
2536 return 0;
2539 #endif
2541 /* We now know that we can do this combination. Merge the insns and
2542 update the status of registers and LOG_LINKS. */
2545 rtx i3notes, i2notes, i1notes = 0;
2546 rtx i3links, i2links, i1links = 0;
2547 rtx midnotes = 0;
2548 unsigned int regno;
2549 /* Compute which registers we expect to eliminate. newi2pat may be setting
2550 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2551 same as i3dest, in which case newi2pat may be setting i1dest. */
2552 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2553 || i2dest_in_i2src || i2dest_in_i1src
2554 ? 0 : i2dest);
2555 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2556 || (newi2pat && reg_set_p (i1dest, newi2pat))
2557 ? 0 : i1dest);
2559 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2560 clear them. */
2561 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2562 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2563 if (i1)
2564 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2566 /* Ensure that we do not have something that should not be shared but
2567 occurs multiple times in the new insns. Check this by first
2568 resetting all the `used' flags and then copying anything is shared. */
2570 reset_used_flags (i3notes);
2571 reset_used_flags (i2notes);
2572 reset_used_flags (i1notes);
2573 reset_used_flags (newpat);
2574 reset_used_flags (newi2pat);
2575 if (undobuf.other_insn)
2576 reset_used_flags (PATTERN (undobuf.other_insn));
2578 i3notes = copy_rtx_if_shared (i3notes);
2579 i2notes = copy_rtx_if_shared (i2notes);
2580 i1notes = copy_rtx_if_shared (i1notes);
2581 newpat = copy_rtx_if_shared (newpat);
2582 newi2pat = copy_rtx_if_shared (newi2pat);
2583 if (undobuf.other_insn)
2584 reset_used_flags (PATTERN (undobuf.other_insn));
2586 INSN_CODE (i3) = insn_code_number;
2587 PATTERN (i3) = newpat;
2589 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2591 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2593 reset_used_flags (call_usage);
2594 call_usage = copy_rtx (call_usage);
2596 if (substed_i2)
2597 replace_rtx (call_usage, i2dest, i2src);
2599 if (substed_i1)
2600 replace_rtx (call_usage, i1dest, i1src);
2602 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2605 if (undobuf.other_insn)
2606 INSN_CODE (undobuf.other_insn) = other_code_number;
2608 /* We had one special case above where I2 had more than one set and
2609 we replaced a destination of one of those sets with the destination
2610 of I3. In that case, we have to update LOG_LINKS of insns later
2611 in this basic block. Note that this (expensive) case is rare.
2613 Also, in this case, we must pretend that all REG_NOTEs for I2
2614 actually came from I3, so that REG_UNUSED notes from I2 will be
2615 properly handled. */
2617 if (i3_subst_into_i2)
2619 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2620 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2621 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2622 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2623 && ! find_reg_note (i2, REG_UNUSED,
2624 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2625 for (temp = NEXT_INSN (i2);
2626 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2627 || this_basic_block->head != temp);
2628 temp = NEXT_INSN (temp))
2629 if (temp != i3 && INSN_P (temp))
2630 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2631 if (XEXP (link, 0) == i2)
2632 XEXP (link, 0) = i3;
2634 if (i3notes)
2636 rtx link = i3notes;
2637 while (XEXP (link, 1))
2638 link = XEXP (link, 1);
2639 XEXP (link, 1) = i2notes;
2641 else
2642 i3notes = i2notes;
2643 i2notes = 0;
2646 LOG_LINKS (i3) = 0;
2647 REG_NOTES (i3) = 0;
2648 LOG_LINKS (i2) = 0;
2649 REG_NOTES (i2) = 0;
2651 if (newi2pat)
2653 INSN_CODE (i2) = i2_code_number;
2654 PATTERN (i2) = newi2pat;
2656 else
2658 PUT_CODE (i2, NOTE);
2659 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2660 NOTE_SOURCE_FILE (i2) = 0;
2663 if (i1)
2665 LOG_LINKS (i1) = 0;
2666 REG_NOTES (i1) = 0;
2667 PUT_CODE (i1, NOTE);
2668 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2669 NOTE_SOURCE_FILE (i1) = 0;
2672 /* Get death notes for everything that is now used in either I3 or
2673 I2 and used to die in a previous insn. If we built two new
2674 patterns, move from I1 to I2 then I2 to I3 so that we get the
2675 proper movement on registers that I2 modifies. */
2677 if (newi2pat)
2679 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2680 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2682 else
2683 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2684 i3, &midnotes);
2686 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2687 if (i3notes)
2688 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2689 elim_i2, elim_i1);
2690 if (i2notes)
2691 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2692 elim_i2, elim_i1);
2693 if (i1notes)
2694 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2695 elim_i2, elim_i1);
2696 if (midnotes)
2697 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2698 elim_i2, elim_i1);
2700 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2701 know these are REG_UNUSED and want them to go to the desired insn,
2702 so we always pass it as i3. We have not counted the notes in
2703 reg_n_deaths yet, so we need to do so now. */
2705 if (newi2pat && new_i2_notes)
2707 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2708 if (GET_CODE (XEXP (temp, 0)) == REG)
2709 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2711 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2714 if (new_i3_notes)
2716 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2717 if (GET_CODE (XEXP (temp, 0)) == REG)
2718 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2720 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2723 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2724 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2725 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2726 in that case, it might delete I2. Similarly for I2 and I1.
2727 Show an additional death due to the REG_DEAD note we make here. If
2728 we discard it in distribute_notes, we will decrement it again. */
2730 if (i3dest_killed)
2732 if (GET_CODE (i3dest_killed) == REG)
2733 REG_N_DEATHS (REGNO (i3dest_killed))++;
2735 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2736 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2737 NULL_RTX),
2738 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2739 else
2740 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2741 NULL_RTX),
2742 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2743 elim_i2, elim_i1);
2746 if (i2dest_in_i2src)
2748 if (GET_CODE (i2dest) == REG)
2749 REG_N_DEATHS (REGNO (i2dest))++;
2751 if (newi2pat && reg_set_p (i2dest, newi2pat))
2752 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2753 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2754 else
2755 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2756 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2757 NULL_RTX, NULL_RTX);
2760 if (i1dest_in_i1src)
2762 if (GET_CODE (i1dest) == REG)
2763 REG_N_DEATHS (REGNO (i1dest))++;
2765 if (newi2pat && reg_set_p (i1dest, newi2pat))
2766 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2767 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2768 else
2769 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2770 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2771 NULL_RTX, NULL_RTX);
2774 distribute_links (i3links);
2775 distribute_links (i2links);
2776 distribute_links (i1links);
2778 if (GET_CODE (i2dest) == REG)
2780 rtx link;
2781 rtx i2_insn = 0, i2_val = 0, set;
2783 /* The insn that used to set this register doesn't exist, and
2784 this life of the register may not exist either. See if one of
2785 I3's links points to an insn that sets I2DEST. If it does,
2786 that is now the last known value for I2DEST. If we don't update
2787 this and I2 set the register to a value that depended on its old
2788 contents, we will get confused. If this insn is used, thing
2789 will be set correctly in combine_instructions. */
2791 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2792 if ((set = single_set (XEXP (link, 0))) != 0
2793 && rtx_equal_p (i2dest, SET_DEST (set)))
2794 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2796 record_value_for_reg (i2dest, i2_insn, i2_val);
2798 /* If the reg formerly set in I2 died only once and that was in I3,
2799 zero its use count so it won't make `reload' do any work. */
2800 if (! added_sets_2
2801 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2802 && ! i2dest_in_i2src)
2804 regno = REGNO (i2dest);
2805 REG_N_SETS (regno)--;
2809 if (i1 && GET_CODE (i1dest) == REG)
2811 rtx link;
2812 rtx i1_insn = 0, i1_val = 0, set;
2814 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2815 if ((set = single_set (XEXP (link, 0))) != 0
2816 && rtx_equal_p (i1dest, SET_DEST (set)))
2817 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2819 record_value_for_reg (i1dest, i1_insn, i1_val);
2821 regno = REGNO (i1dest);
2822 if (! added_sets_1 && ! i1dest_in_i1src)
2823 REG_N_SETS (regno)--;
2826 /* Update reg_nonzero_bits et al for any changes that may have been made
2827 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2828 important. Because newi2pat can affect nonzero_bits of newpat */
2829 if (newi2pat)
2830 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2831 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2833 /* Set new_direct_jump_p if a new return or simple jump instruction
2834 has been created.
2836 If I3 is now an unconditional jump, ensure that it has a
2837 BARRIER following it since it may have initially been a
2838 conditional jump. It may also be the last nonnote insn. */
2840 if (returnjump_p (i3) || any_uncondjump_p (i3))
2842 *new_direct_jump_p = 1;
2844 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2845 || GET_CODE (temp) != BARRIER)
2846 emit_barrier_after (i3);
2849 if (undobuf.other_insn != NULL_RTX
2850 && (returnjump_p (undobuf.other_insn)
2851 || any_uncondjump_p (undobuf.other_insn)))
2853 *new_direct_jump_p = 1;
2855 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2856 || GET_CODE (temp) != BARRIER)
2857 emit_barrier_after (undobuf.other_insn);
2860 /* An NOOP jump does not need barrier, but it does need cleaning up
2861 of CFG. */
2862 if (GET_CODE (newpat) == SET
2863 && SET_SRC (newpat) == pc_rtx
2864 && SET_DEST (newpat) == pc_rtx)
2865 *new_direct_jump_p = 1;
2868 combine_successes++;
2869 undo_commit ();
2871 if (added_links_insn
2872 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2873 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2874 return added_links_insn;
2875 else
2876 return newi2pat ? i2 : i3;
2879 /* Undo all the modifications recorded in undobuf. */
2881 static void
2882 undo_all ()
2884 struct undo *undo, *next;
2886 for (undo = undobuf.undos; undo; undo = next)
2888 next = undo->next;
2889 if (undo->is_int)
2890 *undo->where.i = undo->old_contents.i;
2891 else
2892 *undo->where.r = undo->old_contents.r;
2894 undo->next = undobuf.frees;
2895 undobuf.frees = undo;
2898 undobuf.undos = 0;
2901 /* We've committed to accepting the changes we made. Move all
2902 of the undos to the free list. */
2904 static void
2905 undo_commit ()
2907 struct undo *undo, *next;
2909 for (undo = undobuf.undos; undo; undo = next)
2911 next = undo->next;
2912 undo->next = undobuf.frees;
2913 undobuf.frees = undo;
2915 undobuf.undos = 0;
2919 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2920 where we have an arithmetic expression and return that point. LOC will
2921 be inside INSN.
2923 try_combine will call this function to see if an insn can be split into
2924 two insns. */
2926 static rtx *
2927 find_split_point (loc, insn)
2928 rtx *loc;
2929 rtx insn;
2931 rtx x = *loc;
2932 enum rtx_code code = GET_CODE (x);
2933 rtx *split;
2934 unsigned HOST_WIDE_INT len = 0;
2935 HOST_WIDE_INT pos = 0;
2936 int unsignedp = 0;
2937 rtx inner = NULL_RTX;
2939 /* First special-case some codes. */
2940 switch (code)
2942 case SUBREG:
2943 #ifdef INSN_SCHEDULING
2944 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2945 point. */
2946 if (GET_CODE (SUBREG_REG (x)) == MEM)
2947 return loc;
2948 #endif
2949 return find_split_point (&SUBREG_REG (x), insn);
2951 case MEM:
2952 #ifdef HAVE_lo_sum
2953 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2954 using LO_SUM and HIGH. */
2955 if (GET_CODE (XEXP (x, 0)) == CONST
2956 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2958 SUBST (XEXP (x, 0),
2959 gen_rtx_LO_SUM (Pmode,
2960 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2961 XEXP (x, 0)));
2962 return &XEXP (XEXP (x, 0), 0);
2964 #endif
2966 /* If we have a PLUS whose second operand is a constant and the
2967 address is not valid, perhaps will can split it up using
2968 the machine-specific way to split large constants. We use
2969 the first pseudo-reg (one of the virtual regs) as a placeholder;
2970 it will not remain in the result. */
2971 if (GET_CODE (XEXP (x, 0)) == PLUS
2972 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2973 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2975 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2976 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2977 subst_insn);
2979 /* This should have produced two insns, each of which sets our
2980 placeholder. If the source of the second is a valid address,
2981 we can make put both sources together and make a split point
2982 in the middle. */
2984 if (seq
2985 && NEXT_INSN (seq) != NULL_RTX
2986 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2987 && GET_CODE (seq) == INSN
2988 && GET_CODE (PATTERN (seq)) == SET
2989 && SET_DEST (PATTERN (seq)) == reg
2990 && ! reg_mentioned_p (reg,
2991 SET_SRC (PATTERN (seq)))
2992 && GET_CODE (NEXT_INSN (seq)) == INSN
2993 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2994 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2995 && memory_address_p (GET_MODE (x),
2996 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2998 rtx src1 = SET_SRC (PATTERN (seq));
2999 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3001 /* Replace the placeholder in SRC2 with SRC1. If we can
3002 find where in SRC2 it was placed, that can become our
3003 split point and we can replace this address with SRC2.
3004 Just try two obvious places. */
3006 src2 = replace_rtx (src2, reg, src1);
3007 split = 0;
3008 if (XEXP (src2, 0) == src1)
3009 split = &XEXP (src2, 0);
3010 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3011 && XEXP (XEXP (src2, 0), 0) == src1)
3012 split = &XEXP (XEXP (src2, 0), 0);
3014 if (split)
3016 SUBST (XEXP (x, 0), src2);
3017 return split;
3021 /* If that didn't work, perhaps the first operand is complex and
3022 needs to be computed separately, so make a split point there.
3023 This will occur on machines that just support REG + CONST
3024 and have a constant moved through some previous computation. */
3026 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
3027 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3028 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3029 == 'o')))
3030 return &XEXP (XEXP (x, 0), 0);
3032 break;
3034 case SET:
3035 #ifdef HAVE_cc0
3036 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3037 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3038 we need to put the operand into a register. So split at that
3039 point. */
3041 if (SET_DEST (x) == cc0_rtx
3042 && GET_CODE (SET_SRC (x)) != COMPARE
3043 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3044 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3045 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3046 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3047 return &SET_SRC (x);
3048 #endif
3050 /* See if we can split SET_SRC as it stands. */
3051 split = find_split_point (&SET_SRC (x), insn);
3052 if (split && split != &SET_SRC (x))
3053 return split;
3055 /* See if we can split SET_DEST as it stands. */
3056 split = find_split_point (&SET_DEST (x), insn);
3057 if (split && split != &SET_DEST (x))
3058 return split;
3060 /* See if this is a bitfield assignment with everything constant. If
3061 so, this is an IOR of an AND, so split it into that. */
3062 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3063 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3064 <= HOST_BITS_PER_WIDE_INT)
3065 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3066 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3067 && GET_CODE (SET_SRC (x)) == CONST_INT
3068 && ((INTVAL (XEXP (SET_DEST (x), 1))
3069 + INTVAL (XEXP (SET_DEST (x), 2)))
3070 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3071 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3073 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3074 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3075 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3076 rtx dest = XEXP (SET_DEST (x), 0);
3077 enum machine_mode mode = GET_MODE (dest);
3078 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3080 if (BITS_BIG_ENDIAN)
3081 pos = GET_MODE_BITSIZE (mode) - len - pos;
3083 if (src == mask)
3084 SUBST (SET_SRC (x),
3085 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3086 else
3087 SUBST (SET_SRC (x),
3088 gen_binary (IOR, mode,
3089 gen_binary (AND, mode, dest,
3090 gen_int_mode (~(mask << pos),
3091 mode)),
3092 GEN_INT (src << pos)));
3094 SUBST (SET_DEST (x), dest);
3096 split = find_split_point (&SET_SRC (x), insn);
3097 if (split && split != &SET_SRC (x))
3098 return split;
3101 /* Otherwise, see if this is an operation that we can split into two.
3102 If so, try to split that. */
3103 code = GET_CODE (SET_SRC (x));
3105 switch (code)
3107 case AND:
3108 /* If we are AND'ing with a large constant that is only a single
3109 bit and the result is only being used in a context where we
3110 need to know if it is zero or nonzero, replace it with a bit
3111 extraction. This will avoid the large constant, which might
3112 have taken more than one insn to make. If the constant were
3113 not a valid argument to the AND but took only one insn to make,
3114 this is no worse, but if it took more than one insn, it will
3115 be better. */
3117 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3118 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3119 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3120 && GET_CODE (SET_DEST (x)) == REG
3121 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3122 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3123 && XEXP (*split, 0) == SET_DEST (x)
3124 && XEXP (*split, 1) == const0_rtx)
3126 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3127 XEXP (SET_SRC (x), 0),
3128 pos, NULL_RTX, 1, 1, 0, 0);
3129 if (extraction != 0)
3131 SUBST (SET_SRC (x), extraction);
3132 return find_split_point (loc, insn);
3135 break;
3137 case NE:
3138 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3139 is known to be on, this can be converted into a NEG of a shift. */
3140 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3141 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3142 && 1 <= (pos = exact_log2
3143 (nonzero_bits (XEXP (SET_SRC (x), 0),
3144 GET_MODE (XEXP (SET_SRC (x), 0))))))
3146 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3148 SUBST (SET_SRC (x),
3149 gen_rtx_NEG (mode,
3150 gen_rtx_LSHIFTRT (mode,
3151 XEXP (SET_SRC (x), 0),
3152 GEN_INT (pos))));
3154 split = find_split_point (&SET_SRC (x), insn);
3155 if (split && split != &SET_SRC (x))
3156 return split;
3158 break;
3160 case SIGN_EXTEND:
3161 inner = XEXP (SET_SRC (x), 0);
3163 /* We can't optimize if either mode is a partial integer
3164 mode as we don't know how many bits are significant
3165 in those modes. */
3166 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3167 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3168 break;
3170 pos = 0;
3171 len = GET_MODE_BITSIZE (GET_MODE (inner));
3172 unsignedp = 0;
3173 break;
3175 case SIGN_EXTRACT:
3176 case ZERO_EXTRACT:
3177 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3178 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3180 inner = XEXP (SET_SRC (x), 0);
3181 len = INTVAL (XEXP (SET_SRC (x), 1));
3182 pos = INTVAL (XEXP (SET_SRC (x), 2));
3184 if (BITS_BIG_ENDIAN)
3185 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3186 unsignedp = (code == ZERO_EXTRACT);
3188 break;
3190 default:
3191 break;
3194 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3196 enum machine_mode mode = GET_MODE (SET_SRC (x));
3198 /* For unsigned, we have a choice of a shift followed by an
3199 AND or two shifts. Use two shifts for field sizes where the
3200 constant might be too large. We assume here that we can
3201 always at least get 8-bit constants in an AND insn, which is
3202 true for every current RISC. */
3204 if (unsignedp && len <= 8)
3206 SUBST (SET_SRC (x),
3207 gen_rtx_AND (mode,
3208 gen_rtx_LSHIFTRT
3209 (mode, gen_lowpart_for_combine (mode, inner),
3210 GEN_INT (pos)),
3211 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3213 split = find_split_point (&SET_SRC (x), insn);
3214 if (split && split != &SET_SRC (x))
3215 return split;
3217 else
3219 SUBST (SET_SRC (x),
3220 gen_rtx_fmt_ee
3221 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3222 gen_rtx_ASHIFT (mode,
3223 gen_lowpart_for_combine (mode, inner),
3224 GEN_INT (GET_MODE_BITSIZE (mode)
3225 - len - pos)),
3226 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3228 split = find_split_point (&SET_SRC (x), insn);
3229 if (split && split != &SET_SRC (x))
3230 return split;
3234 /* See if this is a simple operation with a constant as the second
3235 operand. It might be that this constant is out of range and hence
3236 could be used as a split point. */
3237 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3238 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3239 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3240 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3241 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3242 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3243 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3244 == 'o'))))
3245 return &XEXP (SET_SRC (x), 1);
3247 /* Finally, see if this is a simple operation with its first operand
3248 not in a register. The operation might require this operand in a
3249 register, so return it as a split point. We can always do this
3250 because if the first operand were another operation, we would have
3251 already found it as a split point. */
3252 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3253 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3254 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3255 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3256 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3257 return &XEXP (SET_SRC (x), 0);
3259 return 0;
3261 case AND:
3262 case IOR:
3263 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3264 it is better to write this as (not (ior A B)) so we can split it.
3265 Similarly for IOR. */
3266 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3268 SUBST (*loc,
3269 gen_rtx_NOT (GET_MODE (x),
3270 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3271 GET_MODE (x),
3272 XEXP (XEXP (x, 0), 0),
3273 XEXP (XEXP (x, 1), 0))));
3274 return find_split_point (loc, insn);
3277 /* Many RISC machines have a large set of logical insns. If the
3278 second operand is a NOT, put it first so we will try to split the
3279 other operand first. */
3280 if (GET_CODE (XEXP (x, 1)) == NOT)
3282 rtx tem = XEXP (x, 0);
3283 SUBST (XEXP (x, 0), XEXP (x, 1));
3284 SUBST (XEXP (x, 1), tem);
3286 break;
3288 default:
3289 break;
3292 /* Otherwise, select our actions depending on our rtx class. */
3293 switch (GET_RTX_CLASS (code))
3295 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3296 case '3':
3297 split = find_split_point (&XEXP (x, 2), insn);
3298 if (split)
3299 return split;
3300 /* ... fall through ... */
3301 case '2':
3302 case 'c':
3303 case '<':
3304 split = find_split_point (&XEXP (x, 1), insn);
3305 if (split)
3306 return split;
3307 /* ... fall through ... */
3308 case '1':
3309 /* Some machines have (and (shift ...) ...) insns. If X is not
3310 an AND, but XEXP (X, 0) is, use it as our split point. */
3311 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3312 return &XEXP (x, 0);
3314 split = find_split_point (&XEXP (x, 0), insn);
3315 if (split)
3316 return split;
3317 return loc;
3320 /* Otherwise, we don't have a split point. */
3321 return 0;
3324 /* Throughout X, replace FROM with TO, and return the result.
3325 The result is TO if X is FROM;
3326 otherwise the result is X, but its contents may have been modified.
3327 If they were modified, a record was made in undobuf so that
3328 undo_all will (among other things) return X to its original state.
3330 If the number of changes necessary is too much to record to undo,
3331 the excess changes are not made, so the result is invalid.
3332 The changes already made can still be undone.
3333 undobuf.num_undo is incremented for such changes, so by testing that
3334 the caller can tell whether the result is valid.
3336 `n_occurrences' is incremented each time FROM is replaced.
3338 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3340 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3341 by copying if `n_occurrences' is nonzero. */
3343 static rtx
3344 subst (x, from, to, in_dest, unique_copy)
3345 rtx x, from, to;
3346 int in_dest;
3347 int unique_copy;
3349 enum rtx_code code = GET_CODE (x);
3350 enum machine_mode op0_mode = VOIDmode;
3351 const char *fmt;
3352 int len, i;
3353 rtx new;
3355 /* Two expressions are equal if they are identical copies of a shared
3356 RTX or if they are both registers with the same register number
3357 and mode. */
3359 #define COMBINE_RTX_EQUAL_P(X,Y) \
3360 ((X) == (Y) \
3361 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3362 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3364 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3366 n_occurrences++;
3367 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3370 /* If X and FROM are the same register but different modes, they will
3371 not have been seen as equal above. However, flow.c will make a
3372 LOG_LINKS entry for that case. If we do nothing, we will try to
3373 rerecognize our original insn and, when it succeeds, we will
3374 delete the feeding insn, which is incorrect.
3376 So force this insn not to match in this (rare) case. */
3377 if (! in_dest && code == REG && GET_CODE (from) == REG
3378 && REGNO (x) == REGNO (from))
3379 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3381 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3382 of which may contain things that can be combined. */
3383 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3384 return x;
3386 /* It is possible to have a subexpression appear twice in the insn.
3387 Suppose that FROM is a register that appears within TO.
3388 Then, after that subexpression has been scanned once by `subst',
3389 the second time it is scanned, TO may be found. If we were
3390 to scan TO here, we would find FROM within it and create a
3391 self-referent rtl structure which is completely wrong. */
3392 if (COMBINE_RTX_EQUAL_P (x, to))
3393 return to;
3395 /* Parallel asm_operands need special attention because all of the
3396 inputs are shared across the arms. Furthermore, unsharing the
3397 rtl results in recognition failures. Failure to handle this case
3398 specially can result in circular rtl.
3400 Solve this by doing a normal pass across the first entry of the
3401 parallel, and only processing the SET_DESTs of the subsequent
3402 entries. Ug. */
3404 if (code == PARALLEL
3405 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3406 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3408 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3410 /* If this substitution failed, this whole thing fails. */
3411 if (GET_CODE (new) == CLOBBER
3412 && XEXP (new, 0) == const0_rtx)
3413 return new;
3415 SUBST (XVECEXP (x, 0, 0), new);
3417 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3419 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3421 if (GET_CODE (dest) != REG
3422 && GET_CODE (dest) != CC0
3423 && GET_CODE (dest) != PC)
3425 new = subst (dest, from, to, 0, unique_copy);
3427 /* If this substitution failed, this whole thing fails. */
3428 if (GET_CODE (new) == CLOBBER
3429 && XEXP (new, 0) == const0_rtx)
3430 return new;
3432 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3436 else
3438 len = GET_RTX_LENGTH (code);
3439 fmt = GET_RTX_FORMAT (code);
3441 /* We don't need to process a SET_DEST that is a register, CC0,
3442 or PC, so set up to skip this common case. All other cases
3443 where we want to suppress replacing something inside a
3444 SET_SRC are handled via the IN_DEST operand. */
3445 if (code == SET
3446 && (GET_CODE (SET_DEST (x)) == REG
3447 || GET_CODE (SET_DEST (x)) == CC0
3448 || GET_CODE (SET_DEST (x)) == PC))
3449 fmt = "ie";
3451 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3452 constant. */
3453 if (fmt[0] == 'e')
3454 op0_mode = GET_MODE (XEXP (x, 0));
3456 for (i = 0; i < len; i++)
3458 if (fmt[i] == 'E')
3460 int j;
3461 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3463 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3465 new = (unique_copy && n_occurrences
3466 ? copy_rtx (to) : to);
3467 n_occurrences++;
3469 else
3471 new = subst (XVECEXP (x, i, j), from, to, 0,
3472 unique_copy);
3474 /* If this substitution failed, this whole thing
3475 fails. */
3476 if (GET_CODE (new) == CLOBBER
3477 && XEXP (new, 0) == const0_rtx)
3478 return new;
3481 SUBST (XVECEXP (x, i, j), new);
3484 else if (fmt[i] == 'e')
3486 /* If this is a register being set, ignore it. */
3487 new = XEXP (x, i);
3488 if (in_dest
3489 && (code == SUBREG || code == STRICT_LOW_PART
3490 || code == ZERO_EXTRACT)
3491 && i == 0
3492 && GET_CODE (new) == REG)
3495 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3497 /* In general, don't install a subreg involving two
3498 modes not tieable. It can worsen register
3499 allocation, and can even make invalid reload
3500 insns, since the reg inside may need to be copied
3501 from in the outside mode, and that may be invalid
3502 if it is an fp reg copied in integer mode.
3504 We allow two exceptions to this: It is valid if
3505 it is inside another SUBREG and the mode of that
3506 SUBREG and the mode of the inside of TO is
3507 tieable and it is valid if X is a SET that copies
3508 FROM to CC0. */
3510 if (GET_CODE (to) == SUBREG
3511 && ! MODES_TIEABLE_P (GET_MODE (to),
3512 GET_MODE (SUBREG_REG (to)))
3513 && ! (code == SUBREG
3514 && MODES_TIEABLE_P (GET_MODE (x),
3515 GET_MODE (SUBREG_REG (to))))
3516 #ifdef HAVE_cc0
3517 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3518 #endif
3520 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3522 #ifdef CANNOT_CHANGE_MODE_CLASS
3523 if (code == SUBREG
3524 && GET_CODE (to) == REG
3525 && REGNO (to) < FIRST_PSEUDO_REGISTER
3526 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3527 GET_MODE (to),
3528 GET_MODE (x)))
3529 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3530 #endif
3532 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3533 n_occurrences++;
3535 else
3536 /* If we are in a SET_DEST, suppress most cases unless we
3537 have gone inside a MEM, in which case we want to
3538 simplify the address. We assume here that things that
3539 are actually part of the destination have their inner
3540 parts in the first expression. This is true for SUBREG,
3541 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3542 things aside from REG and MEM that should appear in a
3543 SET_DEST. */
3544 new = subst (XEXP (x, i), from, to,
3545 (((in_dest
3546 && (code == SUBREG || code == STRICT_LOW_PART
3547 || code == ZERO_EXTRACT))
3548 || code == SET)
3549 && i == 0), unique_copy);
3551 /* If we found that we will have to reject this combination,
3552 indicate that by returning the CLOBBER ourselves, rather than
3553 an expression containing it. This will speed things up as
3554 well as prevent accidents where two CLOBBERs are considered
3555 to be equal, thus producing an incorrect simplification. */
3557 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3558 return new;
3560 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3562 enum machine_mode mode = GET_MODE (x);
3564 x = simplify_subreg (GET_MODE (x), new,
3565 GET_MODE (SUBREG_REG (x)),
3566 SUBREG_BYTE (x));
3567 if (! x)
3568 x = gen_rtx_CLOBBER (mode, const0_rtx);
3570 else if (GET_CODE (new) == CONST_INT
3571 && GET_CODE (x) == ZERO_EXTEND)
3573 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3574 new, GET_MODE (XEXP (x, 0)));
3575 if (! x)
3576 abort ();
3578 else
3579 SUBST (XEXP (x, i), new);
3584 /* Try to simplify X. If the simplification changed the code, it is likely
3585 that further simplification will help, so loop, but limit the number
3586 of repetitions that will be performed. */
3588 for (i = 0; i < 4; i++)
3590 /* If X is sufficiently simple, don't bother trying to do anything
3591 with it. */
3592 if (code != CONST_INT && code != REG && code != CLOBBER)
3593 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3595 if (GET_CODE (x) == code)
3596 break;
3598 code = GET_CODE (x);
3600 /* We no longer know the original mode of operand 0 since we
3601 have changed the form of X) */
3602 op0_mode = VOIDmode;
3605 return x;
3608 /* Simplify X, a piece of RTL. We just operate on the expression at the
3609 outer level; call `subst' to simplify recursively. Return the new
3610 expression.
3612 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3613 will be the iteration even if an expression with a code different from
3614 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3616 static rtx
3617 combine_simplify_rtx (x, op0_mode, last, in_dest)
3618 rtx x;
3619 enum machine_mode op0_mode;
3620 int last;
3621 int in_dest;
3623 enum rtx_code code = GET_CODE (x);
3624 enum machine_mode mode = GET_MODE (x);
3625 rtx temp;
3626 rtx reversed;
3627 int i;
3629 /* If this is a commutative operation, put a constant last and a complex
3630 expression first. We don't need to do this for comparisons here. */
3631 if (GET_RTX_CLASS (code) == 'c'
3632 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3634 temp = XEXP (x, 0);
3635 SUBST (XEXP (x, 0), XEXP (x, 1));
3636 SUBST (XEXP (x, 1), temp);
3639 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3640 sign extension of a PLUS with a constant, reverse the order of the sign
3641 extension and the addition. Note that this not the same as the original
3642 code, but overflow is undefined for signed values. Also note that the
3643 PLUS will have been partially moved "inside" the sign-extension, so that
3644 the first operand of X will really look like:
3645 (ashiftrt (plus (ashift A C4) C5) C4).
3646 We convert this to
3647 (plus (ashiftrt (ashift A C4) C2) C4)
3648 and replace the first operand of X with that expression. Later parts
3649 of this function may simplify the expression further.
3651 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3652 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3653 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3655 We do this to simplify address expressions. */
3657 if ((code == PLUS || code == MINUS || code == MULT)
3658 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3659 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3660 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3661 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3662 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3663 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3664 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3665 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3666 XEXP (XEXP (XEXP (x, 0), 0), 1),
3667 XEXP (XEXP (x, 0), 1))) != 0)
3669 rtx new
3670 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3671 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3672 INTVAL (XEXP (XEXP (x, 0), 1)));
3674 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3675 INTVAL (XEXP (XEXP (x, 0), 1)));
3677 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3680 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3681 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3682 things. Check for cases where both arms are testing the same
3683 condition.
3685 Don't do anything if all operands are very simple. */
3687 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3688 || GET_RTX_CLASS (code) == '<')
3689 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3690 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3691 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3692 == 'o')))
3693 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3694 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3695 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3696 == 'o')))))
3697 || (GET_RTX_CLASS (code) == '1'
3698 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3699 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3700 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3701 == 'o'))))))
3703 rtx cond, true_rtx, false_rtx;
3705 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3706 if (cond != 0
3707 /* If everything is a comparison, what we have is highly unlikely
3708 to be simpler, so don't use it. */
3709 && ! (GET_RTX_CLASS (code) == '<'
3710 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3711 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3713 rtx cop1 = const0_rtx;
3714 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3716 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3717 return x;
3719 /* Simplify the alternative arms; this may collapse the true and
3720 false arms to store-flag values. */
3721 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3722 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3724 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3725 is unlikely to be simpler. */
3726 if (general_operand (true_rtx, VOIDmode)
3727 && general_operand (false_rtx, VOIDmode))
3729 enum rtx_code reversed;
3731 /* Restarting if we generate a store-flag expression will cause
3732 us to loop. Just drop through in this case. */
3734 /* If the result values are STORE_FLAG_VALUE and zero, we can
3735 just make the comparison operation. */
3736 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3737 x = gen_binary (cond_code, mode, cond, cop1);
3738 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3739 && ((reversed = reversed_comparison_code_parts
3740 (cond_code, cond, cop1, NULL))
3741 != UNKNOWN))
3742 x = gen_binary (reversed, mode, cond, cop1);
3744 /* Likewise, we can make the negate of a comparison operation
3745 if the result values are - STORE_FLAG_VALUE and zero. */
3746 else if (GET_CODE (true_rtx) == CONST_INT
3747 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3748 && false_rtx == const0_rtx)
3749 x = simplify_gen_unary (NEG, mode,
3750 gen_binary (cond_code, mode, cond,
3751 cop1),
3752 mode);
3753 else if (GET_CODE (false_rtx) == CONST_INT
3754 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3755 && true_rtx == const0_rtx
3756 && ((reversed = reversed_comparison_code_parts
3757 (cond_code, cond, cop1, NULL))
3758 != UNKNOWN))
3759 x = simplify_gen_unary (NEG, mode,
3760 gen_binary (reversed, mode,
3761 cond, cop1),
3762 mode);
3763 else
3764 return gen_rtx_IF_THEN_ELSE (mode,
3765 gen_binary (cond_code, VOIDmode,
3766 cond, cop1),
3767 true_rtx, false_rtx);
3769 code = GET_CODE (x);
3770 op0_mode = VOIDmode;
3775 /* Try to fold this expression in case we have constants that weren't
3776 present before. */
3777 temp = 0;
3778 switch (GET_RTX_CLASS (code))
3780 case '1':
3781 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3782 break;
3783 case '<':
3785 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3786 if (cmp_mode == VOIDmode)
3788 cmp_mode = GET_MODE (XEXP (x, 1));
3789 if (cmp_mode == VOIDmode)
3790 cmp_mode = op0_mode;
3792 temp = simplify_relational_operation (code, cmp_mode,
3793 XEXP (x, 0), XEXP (x, 1));
3795 #ifdef FLOAT_STORE_FLAG_VALUE
3796 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3798 if (temp == const0_rtx)
3799 temp = CONST0_RTX (mode);
3800 else
3801 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3802 mode);
3804 #endif
3805 break;
3806 case 'c':
3807 case '2':
3808 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3809 break;
3810 case 'b':
3811 case '3':
3812 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3813 XEXP (x, 1), XEXP (x, 2));
3814 break;
3817 if (temp)
3819 x = temp;
3820 code = GET_CODE (temp);
3821 op0_mode = VOIDmode;
3822 mode = GET_MODE (temp);
3825 /* First see if we can apply the inverse distributive law. */
3826 if (code == PLUS || code == MINUS
3827 || code == AND || code == IOR || code == XOR)
3829 x = apply_distributive_law (x);
3830 code = GET_CODE (x);
3831 op0_mode = VOIDmode;
3834 /* If CODE is an associative operation not otherwise handled, see if we
3835 can associate some operands. This can win if they are constants or
3836 if they are logically related (i.e. (a & b) & a). */
3837 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3838 || code == AND || code == IOR || code == XOR
3839 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3840 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3841 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3843 if (GET_CODE (XEXP (x, 0)) == code)
3845 rtx other = XEXP (XEXP (x, 0), 0);
3846 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3847 rtx inner_op1 = XEXP (x, 1);
3848 rtx inner;
3850 /* Make sure we pass the constant operand if any as the second
3851 one if this is a commutative operation. */
3852 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3854 rtx tem = inner_op0;
3855 inner_op0 = inner_op1;
3856 inner_op1 = tem;
3858 inner = simplify_binary_operation (code == MINUS ? PLUS
3859 : code == DIV ? MULT
3860 : code,
3861 mode, inner_op0, inner_op1);
3863 /* For commutative operations, try the other pair if that one
3864 didn't simplify. */
3865 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3867 other = XEXP (XEXP (x, 0), 1);
3868 inner = simplify_binary_operation (code, mode,
3869 XEXP (XEXP (x, 0), 0),
3870 XEXP (x, 1));
3873 if (inner)
3874 return gen_binary (code, mode, other, inner);
3878 /* A little bit of algebraic simplification here. */
3879 switch (code)
3881 case MEM:
3882 /* Ensure that our address has any ASHIFTs converted to MULT in case
3883 address-recognizing predicates are called later. */
3884 temp = make_compound_operation (XEXP (x, 0), MEM);
3885 SUBST (XEXP (x, 0), temp);
3886 break;
3888 case SUBREG:
3889 if (op0_mode == VOIDmode)
3890 op0_mode = GET_MODE (SUBREG_REG (x));
3892 /* simplify_subreg can't use gen_lowpart_for_combine. */
3893 if (CONSTANT_P (SUBREG_REG (x))
3894 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3895 /* Don't call gen_lowpart_for_combine if the inner mode
3896 is VOIDmode and we cannot simplify it, as SUBREG without
3897 inner mode is invalid. */
3898 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3899 || gen_lowpart_common (mode, SUBREG_REG (x))))
3900 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3902 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3903 break;
3905 rtx temp;
3906 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3907 SUBREG_BYTE (x));
3908 if (temp)
3909 return temp;
3912 /* Don't change the mode of the MEM if that would change the meaning
3913 of the address. */
3914 if (GET_CODE (SUBREG_REG (x)) == MEM
3915 && (MEM_VOLATILE_P (SUBREG_REG (x))
3916 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3917 return gen_rtx_CLOBBER (mode, const0_rtx);
3919 /* Note that we cannot do any narrowing for non-constants since
3920 we might have been counting on using the fact that some bits were
3921 zero. We now do this in the SET. */
3923 break;
3925 case NOT:
3926 /* (not (plus X -1)) can become (neg X). */
3927 if (GET_CODE (XEXP (x, 0)) == PLUS
3928 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3929 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3931 /* Similarly, (not (neg X)) is (plus X -1). */
3932 if (GET_CODE (XEXP (x, 0)) == NEG)
3933 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3935 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3936 if (GET_CODE (XEXP (x, 0)) == XOR
3937 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3938 && (temp = simplify_unary_operation (NOT, mode,
3939 XEXP (XEXP (x, 0), 1),
3940 mode)) != 0)
3941 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3943 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3944 other than 1, but that is not valid. We could do a similar
3945 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3946 but this doesn't seem common enough to bother with. */
3947 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3948 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3949 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3950 const1_rtx, mode),
3951 XEXP (XEXP (x, 0), 1));
3953 if (GET_CODE (XEXP (x, 0)) == SUBREG
3954 && subreg_lowpart_p (XEXP (x, 0))
3955 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3956 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3957 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3958 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3960 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3962 x = gen_rtx_ROTATE (inner_mode,
3963 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3964 inner_mode),
3965 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3966 return gen_lowpart_for_combine (mode, x);
3969 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3970 reversing the comparison code if valid. */
3971 if (STORE_FLAG_VALUE == -1
3972 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3973 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3974 XEXP (XEXP (x, 0), 1))))
3975 return reversed;
3977 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3978 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3979 perform the above simplification. */
3981 if (STORE_FLAG_VALUE == -1
3982 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3983 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3984 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3985 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3987 /* Apply De Morgan's laws to reduce number of patterns for machines
3988 with negating logical insns (and-not, nand, etc.). If result has
3989 only one NOT, put it first, since that is how the patterns are
3990 coded. */
3992 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3994 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3995 enum machine_mode op_mode;
3997 op_mode = GET_MODE (in1);
3998 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4000 op_mode = GET_MODE (in2);
4001 if (op_mode == VOIDmode)
4002 op_mode = mode;
4003 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4005 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4007 rtx tem = in2;
4008 in2 = in1; in1 = tem;
4011 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4012 mode, in1, in2);
4014 break;
4016 case NEG:
4017 /* (neg (plus X 1)) can become (not X). */
4018 if (GET_CODE (XEXP (x, 0)) == PLUS
4019 && XEXP (XEXP (x, 0), 1) == const1_rtx)
4020 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
4022 /* Similarly, (neg (not X)) is (plus X 1). */
4023 if (GET_CODE (XEXP (x, 0)) == NOT)
4024 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
4026 /* (neg (minus X Y)) can become (minus Y X). This transformation
4027 isn't safe for modes with signed zeros, since if X and Y are
4028 both +0, (minus Y X) is the same as (minus X Y). If the rounding
4029 mode is towards +infinity (or -infinity) then the two expressions
4030 will be rounded differently. */
4031 if (GET_CODE (XEXP (x, 0)) == MINUS
4032 && !HONOR_SIGNED_ZEROS (mode)
4033 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4034 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4035 XEXP (XEXP (x, 0), 0));
4037 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
4038 if (GET_CODE (XEXP (x, 0)) == PLUS
4039 && !HONOR_SIGNED_ZEROS (mode)
4040 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4042 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
4043 temp = combine_simplify_rtx (temp, mode, last, in_dest);
4044 return gen_binary (MINUS, mode, temp, XEXP (XEXP (x, 0), 1));
4047 /* (neg (mult A B)) becomes (mult (neg A) B).
4048 This works even for floating-point values. */
4049 if (GET_CODE (XEXP (x, 0)) == MULT)
4051 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
4052 return gen_binary (MULT, mode, temp, XEXP (XEXP (x, 0), 1));
4055 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4056 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4057 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4058 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4060 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4061 if we can then eliminate the NEG (e.g.,
4062 if the operand is a constant). */
4064 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4066 temp = simplify_unary_operation (NEG, mode,
4067 XEXP (XEXP (x, 0), 0), mode);
4068 if (temp)
4069 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
4072 temp = expand_compound_operation (XEXP (x, 0));
4074 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4075 replaced by (lshiftrt X C). This will convert
4076 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4078 if (GET_CODE (temp) == ASHIFTRT
4079 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4080 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4081 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4082 INTVAL (XEXP (temp, 1)));
4084 /* If X has only a single bit that might be nonzero, say, bit I, convert
4085 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4086 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4087 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4088 or a SUBREG of one since we'd be making the expression more
4089 complex if it was just a register. */
4091 if (GET_CODE (temp) != REG
4092 && ! (GET_CODE (temp) == SUBREG
4093 && GET_CODE (SUBREG_REG (temp)) == REG)
4094 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4096 rtx temp1 = simplify_shift_const
4097 (NULL_RTX, ASHIFTRT, mode,
4098 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4099 GET_MODE_BITSIZE (mode) - 1 - i),
4100 GET_MODE_BITSIZE (mode) - 1 - i);
4102 /* If all we did was surround TEMP with the two shifts, we
4103 haven't improved anything, so don't use it. Otherwise,
4104 we are better off with TEMP1. */
4105 if (GET_CODE (temp1) != ASHIFTRT
4106 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4107 || XEXP (XEXP (temp1, 0), 0) != temp)
4108 return temp1;
4110 break;
4112 case TRUNCATE:
4113 /* We can't handle truncation to a partial integer mode here
4114 because we don't know the real bitsize of the partial
4115 integer mode. */
4116 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4117 break;
4119 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4120 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4121 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4122 SUBST (XEXP (x, 0),
4123 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4124 GET_MODE_MASK (mode), NULL_RTX, 0));
4126 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4127 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4128 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4129 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4130 return XEXP (XEXP (x, 0), 0);
4132 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4133 (OP:SI foo:SI) if OP is NEG or ABS. */
4134 if ((GET_CODE (XEXP (x, 0)) == ABS
4135 || GET_CODE (XEXP (x, 0)) == NEG)
4136 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4137 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4138 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4139 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4140 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4142 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4143 (truncate:SI x). */
4144 if (GET_CODE (XEXP (x, 0)) == SUBREG
4145 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4146 && subreg_lowpart_p (XEXP (x, 0)))
4147 return SUBREG_REG (XEXP (x, 0));
4149 /* If we know that the value is already truncated, we can
4150 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4151 is nonzero for the corresponding modes. But don't do this
4152 for an (LSHIFTRT (MULT ...)) since this will cause problems
4153 with the umulXi3_highpart patterns. */
4154 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4155 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4156 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4157 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4158 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4159 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4160 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4162 /* A truncate of a comparison can be replaced with a subreg if
4163 STORE_FLAG_VALUE permits. This is like the previous test,
4164 but it works even if the comparison is done in a mode larger
4165 than HOST_BITS_PER_WIDE_INT. */
4166 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4167 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4168 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4169 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4171 /* Similarly, a truncate of a register whose value is a
4172 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4173 permits. */
4174 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4175 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4176 && (temp = get_last_value (XEXP (x, 0)))
4177 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4178 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4180 break;
4182 case FLOAT_TRUNCATE:
4183 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4184 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4185 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4186 return XEXP (XEXP (x, 0), 0);
4188 /* (float_truncate:SF (float_truncate:DF foo:XF))
4189 = (float_truncate:SF foo:XF).
4190 This may elliminate double rounding, so it is unsafe.
4192 (float_truncate:SF (float_extend:XF foo:DF))
4193 = (float_truncate:SF foo:DF).
4195 (float_truncate:DF (float_extend:XF foo:SF))
4196 = (float_extend:SF foo:DF). */
4197 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4198 && flag_unsafe_math_optimizations)
4199 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4200 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4201 0)))
4202 > GET_MODE_SIZE (mode)
4203 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4204 mode,
4205 XEXP (XEXP (x, 0), 0), mode);
4207 /* (float_truncate (float x)) is (float x) */
4208 if (GET_CODE (XEXP (x, 0)) == FLOAT
4209 && (flag_unsafe_math_optimizations
4210 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4211 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4212 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4213 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4214 return simplify_gen_unary (FLOAT, mode,
4215 XEXP (XEXP (x, 0), 0),
4216 GET_MODE (XEXP (XEXP (x, 0), 0)));
4218 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4219 (OP:SF foo:SF) if OP is NEG or ABS. */
4220 if ((GET_CODE (XEXP (x, 0)) == ABS
4221 || GET_CODE (XEXP (x, 0)) == NEG)
4222 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4223 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4224 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4225 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4227 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4228 is (float_truncate:SF x). */
4229 if (GET_CODE (XEXP (x, 0)) == SUBREG
4230 && subreg_lowpart_p (XEXP (x, 0))
4231 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4232 return SUBREG_REG (XEXP (x, 0));
4233 break;
4234 case FLOAT_EXTEND:
4235 /* (float_extend (float_extend x)) is (float_extend x)
4237 (float_extend (float x)) is (float x) assuming that double
4238 rounding can't happen.
4240 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4241 || (GET_CODE (XEXP (x, 0)) == FLOAT
4242 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4243 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4244 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4245 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4246 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4247 XEXP (XEXP (x, 0), 0),
4248 GET_MODE (XEXP (XEXP (x, 0), 0)));
4250 break;
4251 #ifdef HAVE_cc0
4252 case COMPARE:
4253 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4254 using cc0, in which case we want to leave it as a COMPARE
4255 so we can distinguish it from a register-register-copy. */
4256 if (XEXP (x, 1) == const0_rtx)
4257 return XEXP (x, 0);
4259 /* x - 0 is the same as x unless x's mode has signed zeros and
4260 allows rounding towards -infinity. Under those conditions,
4261 0 - 0 is -0. */
4262 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4263 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4264 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4265 return XEXP (x, 0);
4266 break;
4267 #endif
4269 case CONST:
4270 /* (const (const X)) can become (const X). Do it this way rather than
4271 returning the inner CONST since CONST can be shared with a
4272 REG_EQUAL note. */
4273 if (GET_CODE (XEXP (x, 0)) == CONST)
4274 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4275 break;
4277 #ifdef HAVE_lo_sum
4278 case LO_SUM:
4279 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4280 can add in an offset. find_split_point will split this address up
4281 again if it doesn't match. */
4282 if (GET_CODE (XEXP (x, 0)) == HIGH
4283 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4284 return XEXP (x, 1);
4285 break;
4286 #endif
4288 case PLUS:
4289 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4291 if (GET_CODE (XEXP (x, 0)) == MULT
4292 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4294 rtx in1, in2;
4296 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4297 in2 = XEXP (XEXP (x, 0), 1);
4298 return gen_binary (MINUS, mode, XEXP (x, 1),
4299 gen_binary (MULT, mode, in1, in2));
4302 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4303 outermost. That's because that's the way indexed addresses are
4304 supposed to appear. This code used to check many more cases, but
4305 they are now checked elsewhere. */
4306 if (GET_CODE (XEXP (x, 0)) == PLUS
4307 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4308 return gen_binary (PLUS, mode,
4309 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4310 XEXP (x, 1)),
4311 XEXP (XEXP (x, 0), 1));
4313 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4314 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4315 bit-field and can be replaced by either a sign_extend or a
4316 sign_extract. The `and' may be a zero_extend and the two
4317 <c>, -<c> constants may be reversed. */
4318 if (GET_CODE (XEXP (x, 0)) == XOR
4319 && GET_CODE (XEXP (x, 1)) == CONST_INT
4320 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4321 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4322 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4323 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4324 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4325 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4326 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4327 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4328 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4329 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4330 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4331 == (unsigned int) i + 1))))
4332 return simplify_shift_const
4333 (NULL_RTX, ASHIFTRT, mode,
4334 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4335 XEXP (XEXP (XEXP (x, 0), 0), 0),
4336 GET_MODE_BITSIZE (mode) - (i + 1)),
4337 GET_MODE_BITSIZE (mode) - (i + 1));
4339 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4340 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4341 is 1. This produces better code than the alternative immediately
4342 below. */
4343 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4344 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4345 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4346 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4347 XEXP (XEXP (x, 0), 0),
4348 XEXP (XEXP (x, 0), 1))))
4349 return
4350 simplify_gen_unary (NEG, mode, reversed, mode);
4352 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4353 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4354 the bitsize of the mode - 1. This allows simplification of
4355 "a = (b & 8) == 0;" */
4356 if (XEXP (x, 1) == constm1_rtx
4357 && GET_CODE (XEXP (x, 0)) != REG
4358 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4359 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4360 && nonzero_bits (XEXP (x, 0), mode) == 1)
4361 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4362 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4363 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4364 GET_MODE_BITSIZE (mode) - 1),
4365 GET_MODE_BITSIZE (mode) - 1);
4367 /* If we are adding two things that have no bits in common, convert
4368 the addition into an IOR. This will often be further simplified,
4369 for example in cases like ((a & 1) + (a & 2)), which can
4370 become a & 3. */
4372 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4373 && (nonzero_bits (XEXP (x, 0), mode)
4374 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4376 /* Try to simplify the expression further. */
4377 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4378 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4380 /* If we could, great. If not, do not go ahead with the IOR
4381 replacement, since PLUS appears in many special purpose
4382 address arithmetic instructions. */
4383 if (GET_CODE (temp) != CLOBBER && temp != tor)
4384 return temp;
4386 break;
4388 case MINUS:
4389 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4390 by reversing the comparison code if valid. */
4391 if (STORE_FLAG_VALUE == 1
4392 && XEXP (x, 0) == const1_rtx
4393 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4394 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4395 XEXP (XEXP (x, 1), 0),
4396 XEXP (XEXP (x, 1), 1))))
4397 return reversed;
4399 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4400 (and <foo> (const_int pow2-1)) */
4401 if (GET_CODE (XEXP (x, 1)) == AND
4402 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4403 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4404 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4405 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4406 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4408 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4410 if (GET_CODE (XEXP (x, 1)) == MULT
4411 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4413 rtx in1, in2;
4415 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4416 in2 = XEXP (XEXP (x, 1), 1);
4417 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4418 XEXP (x, 0));
4421 /* Canonicalize (minus (neg A) (mult B C)) to
4422 (minus (mult (neg B) C) A). */
4423 if (GET_CODE (XEXP (x, 1)) == MULT
4424 && GET_CODE (XEXP (x, 0)) == NEG)
4426 rtx in1, in2;
4428 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4429 in2 = XEXP (XEXP (x, 1), 1);
4430 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4431 XEXP (XEXP (x, 0), 0));
4434 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4435 integers. */
4436 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4437 return gen_binary (MINUS, mode,
4438 gen_binary (MINUS, mode, XEXP (x, 0),
4439 XEXP (XEXP (x, 1), 0)),
4440 XEXP (XEXP (x, 1), 1));
4441 break;
4443 case MULT:
4444 /* If we have (mult (plus A B) C), apply the distributive law and then
4445 the inverse distributive law to see if things simplify. This
4446 occurs mostly in addresses, often when unrolling loops. */
4448 if (GET_CODE (XEXP (x, 0)) == PLUS)
4450 x = apply_distributive_law
4451 (gen_binary (PLUS, mode,
4452 gen_binary (MULT, mode,
4453 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4454 gen_binary (MULT, mode,
4455 XEXP (XEXP (x, 0), 1),
4456 copy_rtx (XEXP (x, 1)))));
4458 if (GET_CODE (x) != MULT)
4459 return x;
4461 /* Try simplify a*(b/c) as (a*b)/c. */
4462 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4463 && GET_CODE (XEXP (x, 0)) == DIV)
4465 rtx tem = simplify_binary_operation (MULT, mode,
4466 XEXP (XEXP (x, 0), 0),
4467 XEXP (x, 1));
4468 if (tem)
4469 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4471 break;
4473 case UDIV:
4474 /* If this is a divide by a power of two, treat it as a shift if
4475 its first operand is a shift. */
4476 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4477 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4478 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4479 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4480 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4481 || GET_CODE (XEXP (x, 0)) == ROTATE
4482 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4483 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4484 break;
4486 case EQ: case NE:
4487 case GT: case GTU: case GE: case GEU:
4488 case LT: case LTU: case LE: case LEU:
4489 case UNEQ: case LTGT:
4490 case UNGT: case UNGE:
4491 case UNLT: case UNLE:
4492 case UNORDERED: case ORDERED:
4493 /* If the first operand is a condition code, we can't do anything
4494 with it. */
4495 if (GET_CODE (XEXP (x, 0)) == COMPARE
4496 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4497 && ! CC0_P (XEXP (x, 0))))
4499 rtx op0 = XEXP (x, 0);
4500 rtx op1 = XEXP (x, 1);
4501 enum rtx_code new_code;
4503 if (GET_CODE (op0) == COMPARE)
4504 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4506 /* Simplify our comparison, if possible. */
4507 new_code = simplify_comparison (code, &op0, &op1);
4509 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4510 if only the low-order bit is possibly nonzero in X (such as when
4511 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4512 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4513 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4514 (plus X 1).
4516 Remove any ZERO_EXTRACT we made when thinking this was a
4517 comparison. It may now be simpler to use, e.g., an AND. If a
4518 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4519 the call to make_compound_operation in the SET case. */
4521 if (STORE_FLAG_VALUE == 1
4522 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4523 && op1 == const0_rtx
4524 && mode == GET_MODE (op0)
4525 && nonzero_bits (op0, mode) == 1)
4526 return gen_lowpart_for_combine (mode,
4527 expand_compound_operation (op0));
4529 else if (STORE_FLAG_VALUE == 1
4530 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4531 && op1 == const0_rtx
4532 && mode == GET_MODE (op0)
4533 && (num_sign_bit_copies (op0, mode)
4534 == GET_MODE_BITSIZE (mode)))
4536 op0 = expand_compound_operation (op0);
4537 return simplify_gen_unary (NEG, mode,
4538 gen_lowpart_for_combine (mode, op0),
4539 mode);
4542 else if (STORE_FLAG_VALUE == 1
4543 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4544 && op1 == const0_rtx
4545 && mode == GET_MODE (op0)
4546 && nonzero_bits (op0, mode) == 1)
4548 op0 = expand_compound_operation (op0);
4549 return gen_binary (XOR, mode,
4550 gen_lowpart_for_combine (mode, op0),
4551 const1_rtx);
4554 else if (STORE_FLAG_VALUE == 1
4555 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4556 && op1 == const0_rtx
4557 && mode == GET_MODE (op0)
4558 && (num_sign_bit_copies (op0, mode)
4559 == GET_MODE_BITSIZE (mode)))
4561 op0 = expand_compound_operation (op0);
4562 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4565 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4566 those above. */
4567 if (STORE_FLAG_VALUE == -1
4568 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4569 && op1 == const0_rtx
4570 && (num_sign_bit_copies (op0, mode)
4571 == GET_MODE_BITSIZE (mode)))
4572 return gen_lowpart_for_combine (mode,
4573 expand_compound_operation (op0));
4575 else if (STORE_FLAG_VALUE == -1
4576 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4577 && op1 == const0_rtx
4578 && mode == GET_MODE (op0)
4579 && nonzero_bits (op0, mode) == 1)
4581 op0 = expand_compound_operation (op0);
4582 return simplify_gen_unary (NEG, mode,
4583 gen_lowpart_for_combine (mode, op0),
4584 mode);
4587 else if (STORE_FLAG_VALUE == -1
4588 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4589 && op1 == const0_rtx
4590 && mode == GET_MODE (op0)
4591 && (num_sign_bit_copies (op0, mode)
4592 == GET_MODE_BITSIZE (mode)))
4594 op0 = expand_compound_operation (op0);
4595 return simplify_gen_unary (NOT, mode,
4596 gen_lowpart_for_combine (mode, op0),
4597 mode);
4600 /* If X is 0/1, (eq X 0) is X-1. */
4601 else if (STORE_FLAG_VALUE == -1
4602 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4603 && op1 == const0_rtx
4604 && mode == GET_MODE (op0)
4605 && nonzero_bits (op0, mode) == 1)
4607 op0 = expand_compound_operation (op0);
4608 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4611 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4612 one bit that might be nonzero, we can convert (ne x 0) to
4613 (ashift x c) where C puts the bit in the sign bit. Remove any
4614 AND with STORE_FLAG_VALUE when we are done, since we are only
4615 going to test the sign bit. */
4616 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4617 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4618 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4619 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4620 && op1 == const0_rtx
4621 && mode == GET_MODE (op0)
4622 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4624 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4625 expand_compound_operation (op0),
4626 GET_MODE_BITSIZE (mode) - 1 - i);
4627 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4628 return XEXP (x, 0);
4629 else
4630 return x;
4633 /* If the code changed, return a whole new comparison. */
4634 if (new_code != code)
4635 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4637 /* Otherwise, keep this operation, but maybe change its operands.
4638 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4639 SUBST (XEXP (x, 0), op0);
4640 SUBST (XEXP (x, 1), op1);
4642 break;
4644 case IF_THEN_ELSE:
4645 return simplify_if_then_else (x);
4647 case ZERO_EXTRACT:
4648 case SIGN_EXTRACT:
4649 case ZERO_EXTEND:
4650 case SIGN_EXTEND:
4651 /* If we are processing SET_DEST, we are done. */
4652 if (in_dest)
4653 return x;
4655 return expand_compound_operation (x);
4657 case SET:
4658 return simplify_set (x);
4660 case AND:
4661 case IOR:
4662 case XOR:
4663 return simplify_logical (x, last);
4665 case ABS:
4666 /* (abs (neg <foo>)) -> (abs <foo>) */
4667 if (GET_CODE (XEXP (x, 0)) == NEG)
4668 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4670 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4671 do nothing. */
4672 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4673 break;
4675 /* If operand is something known to be positive, ignore the ABS. */
4676 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4677 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4678 <= HOST_BITS_PER_WIDE_INT)
4679 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4680 & ((HOST_WIDE_INT) 1
4681 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4682 == 0)))
4683 return XEXP (x, 0);
4685 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4686 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4687 return gen_rtx_NEG (mode, XEXP (x, 0));
4689 break;
4691 case FFS:
4692 /* (ffs (*_extend <X>)) = (ffs <X>) */
4693 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4694 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4695 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4696 break;
4698 case POPCOUNT:
4699 case PARITY:
4700 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4701 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4702 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4703 break;
4705 case FLOAT:
4706 /* (float (sign_extend <X>)) = (float <X>). */
4707 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4708 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4709 break;
4711 case ASHIFT:
4712 case LSHIFTRT:
4713 case ASHIFTRT:
4714 case ROTATE:
4715 case ROTATERT:
4716 /* If this is a shift by a constant amount, simplify it. */
4717 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4718 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4719 INTVAL (XEXP (x, 1)));
4721 #ifdef SHIFT_COUNT_TRUNCATED
4722 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4723 SUBST (XEXP (x, 1),
4724 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4725 ((HOST_WIDE_INT) 1
4726 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4727 - 1,
4728 NULL_RTX, 0));
4729 #endif
4731 break;
4733 case VEC_SELECT:
4735 rtx op0 = XEXP (x, 0);
4736 rtx op1 = XEXP (x, 1);
4737 int len;
4739 if (GET_CODE (op1) != PARALLEL)
4740 abort ();
4741 len = XVECLEN (op1, 0);
4742 if (len == 1
4743 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4744 && GET_CODE (op0) == VEC_CONCAT)
4746 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4748 /* Try to find the element in the VEC_CONCAT. */
4749 for (;;)
4751 if (GET_MODE (op0) == GET_MODE (x))
4752 return op0;
4753 if (GET_CODE (op0) == VEC_CONCAT)
4755 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4756 if (op0_size < offset)
4757 op0 = XEXP (op0, 0);
4758 else
4760 offset -= op0_size;
4761 op0 = XEXP (op0, 1);
4764 else
4765 break;
4770 break;
4772 default:
4773 break;
4776 return x;
4779 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4781 static rtx
4782 simplify_if_then_else (x)
4783 rtx x;
4785 enum machine_mode mode = GET_MODE (x);
4786 rtx cond = XEXP (x, 0);
4787 rtx true_rtx = XEXP (x, 1);
4788 rtx false_rtx = XEXP (x, 2);
4789 enum rtx_code true_code = GET_CODE (cond);
4790 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4791 rtx temp;
4792 int i;
4793 enum rtx_code false_code;
4794 rtx reversed;
4796 /* Simplify storing of the truth value. */
4797 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4798 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4800 /* Also when the truth value has to be reversed. */
4801 if (comparison_p
4802 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4803 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4804 XEXP (cond, 1))))
4805 return reversed;
4807 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4808 in it is being compared against certain values. Get the true and false
4809 comparisons and see if that says anything about the value of each arm. */
4811 if (comparison_p
4812 && ((false_code = combine_reversed_comparison_code (cond))
4813 != UNKNOWN)
4814 && GET_CODE (XEXP (cond, 0)) == REG)
4816 HOST_WIDE_INT nzb;
4817 rtx from = XEXP (cond, 0);
4818 rtx true_val = XEXP (cond, 1);
4819 rtx false_val = true_val;
4820 int swapped = 0;
4822 /* If FALSE_CODE is EQ, swap the codes and arms. */
4824 if (false_code == EQ)
4826 swapped = 1, true_code = EQ, false_code = NE;
4827 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4830 /* If we are comparing against zero and the expression being tested has
4831 only a single bit that might be nonzero, that is its value when it is
4832 not equal to zero. Similarly if it is known to be -1 or 0. */
4834 if (true_code == EQ && true_val == const0_rtx
4835 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4836 false_code = EQ, false_val = GEN_INT (nzb);
4837 else if (true_code == EQ && true_val == const0_rtx
4838 && (num_sign_bit_copies (from, GET_MODE (from))
4839 == GET_MODE_BITSIZE (GET_MODE (from))))
4840 false_code = EQ, false_val = constm1_rtx;
4842 /* Now simplify an arm if we know the value of the register in the
4843 branch and it is used in the arm. Be careful due to the potential
4844 of locally-shared RTL. */
4846 if (reg_mentioned_p (from, true_rtx))
4847 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4848 from, true_val),
4849 pc_rtx, pc_rtx, 0, 0);
4850 if (reg_mentioned_p (from, false_rtx))
4851 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4852 from, false_val),
4853 pc_rtx, pc_rtx, 0, 0);
4855 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4856 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4858 true_rtx = XEXP (x, 1);
4859 false_rtx = XEXP (x, 2);
4860 true_code = GET_CODE (cond);
4863 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4864 reversed, do so to avoid needing two sets of patterns for
4865 subtract-and-branch insns. Similarly if we have a constant in the true
4866 arm, the false arm is the same as the first operand of the comparison, or
4867 the false arm is more complicated than the true arm. */
4869 if (comparison_p
4870 && combine_reversed_comparison_code (cond) != UNKNOWN
4871 && (true_rtx == pc_rtx
4872 || (CONSTANT_P (true_rtx)
4873 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4874 || true_rtx == const0_rtx
4875 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4876 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4877 || (GET_CODE (true_rtx) == SUBREG
4878 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4879 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4880 || reg_mentioned_p (true_rtx, false_rtx)
4881 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4883 true_code = reversed_comparison_code (cond, NULL);
4884 SUBST (XEXP (x, 0),
4885 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4886 XEXP (cond, 1)));
4888 SUBST (XEXP (x, 1), false_rtx);
4889 SUBST (XEXP (x, 2), true_rtx);
4891 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4892 cond = XEXP (x, 0);
4894 /* It is possible that the conditional has been simplified out. */
4895 true_code = GET_CODE (cond);
4896 comparison_p = GET_RTX_CLASS (true_code) == '<';
4899 /* If the two arms are identical, we don't need the comparison. */
4901 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4902 return true_rtx;
4904 /* Convert a == b ? b : a to "a". */
4905 if (true_code == EQ && ! side_effects_p (cond)
4906 && !HONOR_NANS (mode)
4907 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4908 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4909 return false_rtx;
4910 else if (true_code == NE && ! side_effects_p (cond)
4911 && !HONOR_NANS (mode)
4912 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4913 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4914 return true_rtx;
4916 /* Look for cases where we have (abs x) or (neg (abs X)). */
4918 if (GET_MODE_CLASS (mode) == MODE_INT
4919 && GET_CODE (false_rtx) == NEG
4920 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4921 && comparison_p
4922 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4923 && ! side_effects_p (true_rtx))
4924 switch (true_code)
4926 case GT:
4927 case GE:
4928 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4929 case LT:
4930 case LE:
4931 return
4932 simplify_gen_unary (NEG, mode,
4933 simplify_gen_unary (ABS, mode, true_rtx, mode),
4934 mode);
4935 default:
4936 break;
4939 /* Look for MIN or MAX. */
4941 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4942 && comparison_p
4943 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4944 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4945 && ! side_effects_p (cond))
4946 switch (true_code)
4948 case GE:
4949 case GT:
4950 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4951 case LE:
4952 case LT:
4953 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4954 case GEU:
4955 case GTU:
4956 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4957 case LEU:
4958 case LTU:
4959 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4960 default:
4961 break;
4964 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4965 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4966 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4967 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4968 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4969 neither 1 or -1, but it isn't worth checking for. */
4971 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4972 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4974 rtx t = make_compound_operation (true_rtx, SET);
4975 rtx f = make_compound_operation (false_rtx, SET);
4976 rtx cond_op0 = XEXP (cond, 0);
4977 rtx cond_op1 = XEXP (cond, 1);
4978 enum rtx_code op = NIL, extend_op = NIL;
4979 enum machine_mode m = mode;
4980 rtx z = 0, c1 = NULL_RTX;
4982 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4983 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4984 || GET_CODE (t) == ASHIFT
4985 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4986 && rtx_equal_p (XEXP (t, 0), f))
4987 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4989 /* If an identity-zero op is commutative, check whether there
4990 would be a match if we swapped the operands. */
4991 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4992 || GET_CODE (t) == XOR)
4993 && rtx_equal_p (XEXP (t, 1), f))
4994 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4995 else if (GET_CODE (t) == SIGN_EXTEND
4996 && (GET_CODE (XEXP (t, 0)) == PLUS
4997 || GET_CODE (XEXP (t, 0)) == MINUS
4998 || GET_CODE (XEXP (t, 0)) == IOR
4999 || GET_CODE (XEXP (t, 0)) == XOR
5000 || GET_CODE (XEXP (t, 0)) == ASHIFT
5001 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5002 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5003 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5004 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5005 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5006 && (num_sign_bit_copies (f, GET_MODE (f))
5007 > (unsigned int)
5008 (GET_MODE_BITSIZE (mode)
5009 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5011 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5012 extend_op = SIGN_EXTEND;
5013 m = GET_MODE (XEXP (t, 0));
5015 else if (GET_CODE (t) == SIGN_EXTEND
5016 && (GET_CODE (XEXP (t, 0)) == PLUS
5017 || GET_CODE (XEXP (t, 0)) == IOR
5018 || GET_CODE (XEXP (t, 0)) == XOR)
5019 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5020 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5021 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5022 && (num_sign_bit_copies (f, GET_MODE (f))
5023 > (unsigned int)
5024 (GET_MODE_BITSIZE (mode)
5025 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5027 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5028 extend_op = SIGN_EXTEND;
5029 m = GET_MODE (XEXP (t, 0));
5031 else if (GET_CODE (t) == ZERO_EXTEND
5032 && (GET_CODE (XEXP (t, 0)) == PLUS
5033 || GET_CODE (XEXP (t, 0)) == MINUS
5034 || GET_CODE (XEXP (t, 0)) == IOR
5035 || GET_CODE (XEXP (t, 0)) == XOR
5036 || GET_CODE (XEXP (t, 0)) == ASHIFT
5037 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5038 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5039 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5040 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5041 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5042 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5043 && ((nonzero_bits (f, GET_MODE (f))
5044 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5045 == 0))
5047 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5048 extend_op = ZERO_EXTEND;
5049 m = GET_MODE (XEXP (t, 0));
5051 else if (GET_CODE (t) == ZERO_EXTEND
5052 && (GET_CODE (XEXP (t, 0)) == PLUS
5053 || GET_CODE (XEXP (t, 0)) == IOR
5054 || GET_CODE (XEXP (t, 0)) == XOR)
5055 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5056 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5057 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5058 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5059 && ((nonzero_bits (f, GET_MODE (f))
5060 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5061 == 0))
5063 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5064 extend_op = ZERO_EXTEND;
5065 m = GET_MODE (XEXP (t, 0));
5068 if (z)
5070 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
5071 pc_rtx, pc_rtx, 0, 0);
5072 temp = gen_binary (MULT, m, temp,
5073 gen_binary (MULT, m, c1, const_true_rtx));
5074 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5075 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
5077 if (extend_op != NIL)
5078 temp = simplify_gen_unary (extend_op, mode, temp, m);
5080 return temp;
5084 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5085 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5086 negation of a single bit, we can convert this operation to a shift. We
5087 can actually do this more generally, but it doesn't seem worth it. */
5089 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5090 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5091 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5092 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5093 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5094 == GET_MODE_BITSIZE (mode))
5095 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5096 return
5097 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5098 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
5100 return x;
5103 /* Simplify X, a SET expression. Return the new expression. */
5105 static rtx
5106 simplify_set (x)
5107 rtx x;
5109 rtx src = SET_SRC (x);
5110 rtx dest = SET_DEST (x);
5111 enum machine_mode mode
5112 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5113 rtx other_insn;
5114 rtx *cc_use;
5116 /* (set (pc) (return)) gets written as (return). */
5117 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5118 return src;
5120 /* Now that we know for sure which bits of SRC we are using, see if we can
5121 simplify the expression for the object knowing that we only need the
5122 low-order bits. */
5124 if (GET_MODE_CLASS (mode) == MODE_INT
5125 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5127 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5128 SUBST (SET_SRC (x), src);
5131 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5132 the comparison result and try to simplify it unless we already have used
5133 undobuf.other_insn. */
5134 if ((GET_MODE_CLASS (mode) == MODE_CC
5135 || GET_CODE (src) == COMPARE
5136 || CC0_P (dest))
5137 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5138 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5139 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5140 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5142 enum rtx_code old_code = GET_CODE (*cc_use);
5143 enum rtx_code new_code;
5144 rtx op0, op1, tmp;
5145 int other_changed = 0;
5146 enum machine_mode compare_mode = GET_MODE (dest);
5147 enum machine_mode tmp_mode;
5149 if (GET_CODE (src) == COMPARE)
5150 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5151 else
5152 op0 = src, op1 = const0_rtx;
5154 /* Check whether the comparison is known at compile time. */
5155 if (GET_MODE (op0) != VOIDmode)
5156 tmp_mode = GET_MODE (op0);
5157 else if (GET_MODE (op1) != VOIDmode)
5158 tmp_mode = GET_MODE (op1);
5159 else
5160 tmp_mode = compare_mode;
5161 tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
5162 if (tmp != NULL_RTX)
5164 rtx pat = PATTERN (other_insn);
5165 undobuf.other_insn = other_insn;
5166 SUBST (*cc_use, tmp);
5168 /* Attempt to simplify CC user. */
5169 if (GET_CODE (pat) == SET)
5171 rtx new = simplify_rtx (SET_SRC (pat));
5172 if (new != NULL_RTX)
5173 SUBST (SET_SRC (pat), new);
5176 /* Convert X into a no-op move. */
5177 SUBST (SET_DEST (x), pc_rtx);
5178 SUBST (SET_SRC (x), pc_rtx);
5179 return x;
5182 /* Simplify our comparison, if possible. */
5183 new_code = simplify_comparison (old_code, &op0, &op1);
5185 #ifdef EXTRA_CC_MODES
5186 /* If this machine has CC modes other than CCmode, check to see if we
5187 need to use a different CC mode here. */
5188 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5189 #endif /* EXTRA_CC_MODES */
5191 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5192 /* If the mode changed, we have to change SET_DEST, the mode in the
5193 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5194 a hard register, just build new versions with the proper mode. If it
5195 is a pseudo, we lose unless it is only time we set the pseudo, in
5196 which case we can safely change its mode. */
5197 if (compare_mode != GET_MODE (dest))
5199 unsigned int regno = REGNO (dest);
5200 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5202 if (regno < FIRST_PSEUDO_REGISTER
5203 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5205 if (regno >= FIRST_PSEUDO_REGISTER)
5206 SUBST (regno_reg_rtx[regno], new_dest);
5208 SUBST (SET_DEST (x), new_dest);
5209 SUBST (XEXP (*cc_use, 0), new_dest);
5210 other_changed = 1;
5212 dest = new_dest;
5215 #endif
5217 /* If the code changed, we have to build a new comparison in
5218 undobuf.other_insn. */
5219 if (new_code != old_code)
5221 unsigned HOST_WIDE_INT mask;
5223 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5224 dest, const0_rtx));
5226 /* If the only change we made was to change an EQ into an NE or
5227 vice versa, OP0 has only one bit that might be nonzero, and OP1
5228 is zero, check if changing the user of the condition code will
5229 produce a valid insn. If it won't, we can keep the original code
5230 in that insn by surrounding our operation with an XOR. */
5232 if (((old_code == NE && new_code == EQ)
5233 || (old_code == EQ && new_code == NE))
5234 && ! other_changed && op1 == const0_rtx
5235 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5236 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5238 rtx pat = PATTERN (other_insn), note = 0;
5240 if ((recog_for_combine (&pat, other_insn, &note) < 0
5241 && ! check_asm_operands (pat)))
5243 PUT_CODE (*cc_use, old_code);
5244 other_insn = 0;
5246 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5250 other_changed = 1;
5253 if (other_changed)
5254 undobuf.other_insn = other_insn;
5256 #ifdef HAVE_cc0
5257 /* If we are now comparing against zero, change our source if
5258 needed. If we do not use cc0, we always have a COMPARE. */
5259 if (op1 == const0_rtx && dest == cc0_rtx)
5261 SUBST (SET_SRC (x), op0);
5262 src = op0;
5264 else
5265 #endif
5267 /* Otherwise, if we didn't previously have a COMPARE in the
5268 correct mode, we need one. */
5269 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5271 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5272 src = SET_SRC (x);
5274 else
5276 /* Otherwise, update the COMPARE if needed. */
5277 SUBST (XEXP (src, 0), op0);
5278 SUBST (XEXP (src, 1), op1);
5281 else
5283 /* Get SET_SRC in a form where we have placed back any
5284 compound expressions. Then do the checks below. */
5285 src = make_compound_operation (src, SET);
5286 SUBST (SET_SRC (x), src);
5289 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5290 and X being a REG or (subreg (reg)), we may be able to convert this to
5291 (set (subreg:m2 x) (op)).
5293 We can always do this if M1 is narrower than M2 because that means that
5294 we only care about the low bits of the result.
5296 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5297 perform a narrower operation than requested since the high-order bits will
5298 be undefined. On machine where it is defined, this transformation is safe
5299 as long as M1 and M2 have the same number of words. */
5301 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5302 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5303 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5304 / UNITS_PER_WORD)
5305 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5306 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5307 #ifndef WORD_REGISTER_OPERATIONS
5308 && (GET_MODE_SIZE (GET_MODE (src))
5309 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5310 #endif
5311 #ifdef CANNOT_CHANGE_MODE_CLASS
5312 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5313 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5314 GET_MODE (SUBREG_REG (src)),
5315 GET_MODE (src)))
5316 #endif
5317 && (GET_CODE (dest) == REG
5318 || (GET_CODE (dest) == SUBREG
5319 && GET_CODE (SUBREG_REG (dest)) == REG)))
5321 SUBST (SET_DEST (x),
5322 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5323 dest));
5324 SUBST (SET_SRC (x), SUBREG_REG (src));
5326 src = SET_SRC (x), dest = SET_DEST (x);
5329 #ifdef HAVE_cc0
5330 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5331 in SRC. */
5332 if (dest == cc0_rtx
5333 && GET_CODE (src) == SUBREG
5334 && subreg_lowpart_p (src)
5335 && (GET_MODE_BITSIZE (GET_MODE (src))
5336 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5338 rtx inner = SUBREG_REG (src);
5339 enum machine_mode inner_mode = GET_MODE (inner);
5341 /* Here we make sure that we don't have a sign bit on. */
5342 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5343 && (nonzero_bits (inner, inner_mode)
5344 < ((unsigned HOST_WIDE_INT) 1
5345 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5347 SUBST (SET_SRC (x), inner);
5348 src = SET_SRC (x);
5351 #endif
5353 #ifdef LOAD_EXTEND_OP
5354 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5355 would require a paradoxical subreg. Replace the subreg with a
5356 zero_extend to avoid the reload that would otherwise be required. */
5358 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5359 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5360 && SUBREG_BYTE (src) == 0
5361 && (GET_MODE_SIZE (GET_MODE (src))
5362 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5363 && GET_CODE (SUBREG_REG (src)) == MEM)
5365 SUBST (SET_SRC (x),
5366 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5367 GET_MODE (src), SUBREG_REG (src)));
5369 src = SET_SRC (x);
5371 #endif
5373 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5374 are comparing an item known to be 0 or -1 against 0, use a logical
5375 operation instead. Check for one of the arms being an IOR of the other
5376 arm with some value. We compute three terms to be IOR'ed together. In
5377 practice, at most two will be nonzero. Then we do the IOR's. */
5379 if (GET_CODE (dest) != PC
5380 && GET_CODE (src) == IF_THEN_ELSE
5381 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5382 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5383 && XEXP (XEXP (src, 0), 1) == const0_rtx
5384 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5385 #ifdef HAVE_conditional_move
5386 && ! can_conditionally_move_p (GET_MODE (src))
5387 #endif
5388 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5389 GET_MODE (XEXP (XEXP (src, 0), 0)))
5390 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5391 && ! side_effects_p (src))
5393 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5394 ? XEXP (src, 1) : XEXP (src, 2));
5395 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5396 ? XEXP (src, 2) : XEXP (src, 1));
5397 rtx term1 = const0_rtx, term2, term3;
5399 if (GET_CODE (true_rtx) == IOR
5400 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5401 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5402 else if (GET_CODE (true_rtx) == IOR
5403 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5404 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5405 else if (GET_CODE (false_rtx) == IOR
5406 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5407 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5408 else if (GET_CODE (false_rtx) == IOR
5409 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5410 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5412 term2 = gen_binary (AND, GET_MODE (src),
5413 XEXP (XEXP (src, 0), 0), true_rtx);
5414 term3 = gen_binary (AND, GET_MODE (src),
5415 simplify_gen_unary (NOT, GET_MODE (src),
5416 XEXP (XEXP (src, 0), 0),
5417 GET_MODE (src)),
5418 false_rtx);
5420 SUBST (SET_SRC (x),
5421 gen_binary (IOR, GET_MODE (src),
5422 gen_binary (IOR, GET_MODE (src), term1, term2),
5423 term3));
5425 src = SET_SRC (x);
5428 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5429 whole thing fail. */
5430 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5431 return src;
5432 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5433 return dest;
5434 else
5435 /* Convert this into a field assignment operation, if possible. */
5436 return make_field_assignment (x);
5439 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5440 result. LAST is nonzero if this is the last retry. */
5442 static rtx
5443 simplify_logical (x, last)
5444 rtx x;
5445 int last;
5447 enum machine_mode mode = GET_MODE (x);
5448 rtx op0 = XEXP (x, 0);
5449 rtx op1 = XEXP (x, 1);
5450 rtx reversed;
5452 switch (GET_CODE (x))
5454 case AND:
5455 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5456 insn (and may simplify more). */
5457 if (GET_CODE (op0) == XOR
5458 && rtx_equal_p (XEXP (op0, 0), op1)
5459 && ! side_effects_p (op1))
5460 x = gen_binary (AND, mode,
5461 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5462 op1);
5464 if (GET_CODE (op0) == XOR
5465 && rtx_equal_p (XEXP (op0, 1), op1)
5466 && ! side_effects_p (op1))
5467 x = gen_binary (AND, mode,
5468 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5469 op1);
5471 /* Similarly for (~(A ^ B)) & A. */
5472 if (GET_CODE (op0) == NOT
5473 && GET_CODE (XEXP (op0, 0)) == XOR
5474 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5475 && ! side_effects_p (op1))
5476 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5478 if (GET_CODE (op0) == NOT
5479 && GET_CODE (XEXP (op0, 0)) == XOR
5480 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5481 && ! side_effects_p (op1))
5482 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5484 /* We can call simplify_and_const_int only if we don't lose
5485 any (sign) bits when converting INTVAL (op1) to
5486 "unsigned HOST_WIDE_INT". */
5487 if (GET_CODE (op1) == CONST_INT
5488 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5489 || INTVAL (op1) > 0))
5491 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5493 /* If we have (ior (and (X C1) C2)) and the next restart would be
5494 the last, simplify this by making C1 as small as possible
5495 and then exit. */
5496 if (last
5497 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5498 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5499 && GET_CODE (op1) == CONST_INT)
5500 return gen_binary (IOR, mode,
5501 gen_binary (AND, mode, XEXP (op0, 0),
5502 GEN_INT (INTVAL (XEXP (op0, 1))
5503 & ~INTVAL (op1))), op1);
5505 if (GET_CODE (x) != AND)
5506 return x;
5508 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5509 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5510 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5513 /* Convert (A | B) & A to A. */
5514 if (GET_CODE (op0) == IOR
5515 && (rtx_equal_p (XEXP (op0, 0), op1)
5516 || rtx_equal_p (XEXP (op0, 1), op1))
5517 && ! side_effects_p (XEXP (op0, 0))
5518 && ! side_effects_p (XEXP (op0, 1)))
5519 return op1;
5521 /* In the following group of tests (and those in case IOR below),
5522 we start with some combination of logical operations and apply
5523 the distributive law followed by the inverse distributive law.
5524 Most of the time, this results in no change. However, if some of
5525 the operands are the same or inverses of each other, simplifications
5526 will result.
5528 For example, (and (ior A B) (not B)) can occur as the result of
5529 expanding a bit field assignment. When we apply the distributive
5530 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5531 which then simplifies to (and (A (not B))).
5533 If we have (and (ior A B) C), apply the distributive law and then
5534 the inverse distributive law to see if things simplify. */
5536 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5538 x = apply_distributive_law
5539 (gen_binary (GET_CODE (op0), mode,
5540 gen_binary (AND, mode, XEXP (op0, 0), op1),
5541 gen_binary (AND, mode, XEXP (op0, 1),
5542 copy_rtx (op1))));
5543 if (GET_CODE (x) != AND)
5544 return x;
5547 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5548 return apply_distributive_law
5549 (gen_binary (GET_CODE (op1), mode,
5550 gen_binary (AND, mode, XEXP (op1, 0), op0),
5551 gen_binary (AND, mode, XEXP (op1, 1),
5552 copy_rtx (op0))));
5554 /* Similarly, taking advantage of the fact that
5555 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5557 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5558 return apply_distributive_law
5559 (gen_binary (XOR, mode,
5560 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5561 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5562 XEXP (op1, 1))));
5564 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5565 return apply_distributive_law
5566 (gen_binary (XOR, mode,
5567 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5568 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5569 break;
5571 case IOR:
5572 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5573 if (GET_CODE (op1) == CONST_INT
5574 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5575 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5576 return op1;
5578 /* Convert (A & B) | A to A. */
5579 if (GET_CODE (op0) == AND
5580 && (rtx_equal_p (XEXP (op0, 0), op1)
5581 || rtx_equal_p (XEXP (op0, 1), op1))
5582 && ! side_effects_p (XEXP (op0, 0))
5583 && ! side_effects_p (XEXP (op0, 1)))
5584 return op1;
5586 /* If we have (ior (and A B) C), apply the distributive law and then
5587 the inverse distributive law to see if things simplify. */
5589 if (GET_CODE (op0) == AND)
5591 x = apply_distributive_law
5592 (gen_binary (AND, mode,
5593 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5594 gen_binary (IOR, mode, XEXP (op0, 1),
5595 copy_rtx (op1))));
5597 if (GET_CODE (x) != IOR)
5598 return x;
5601 if (GET_CODE (op1) == AND)
5603 x = apply_distributive_law
5604 (gen_binary (AND, mode,
5605 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5606 gen_binary (IOR, mode, XEXP (op1, 1),
5607 copy_rtx (op0))));
5609 if (GET_CODE (x) != IOR)
5610 return x;
5613 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5614 mode size to (rotate A CX). */
5616 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5617 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5618 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5619 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5620 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5621 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5622 == GET_MODE_BITSIZE (mode)))
5623 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5624 (GET_CODE (op0) == ASHIFT
5625 ? XEXP (op0, 1) : XEXP (op1, 1)));
5627 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5628 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5629 does not affect any of the bits in OP1, it can really be done
5630 as a PLUS and we can associate. We do this by seeing if OP1
5631 can be safely shifted left C bits. */
5632 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5633 && GET_CODE (XEXP (op0, 0)) == PLUS
5634 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5635 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5636 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5638 int count = INTVAL (XEXP (op0, 1));
5639 HOST_WIDE_INT mask = INTVAL (op1) << count;
5641 if (mask >> count == INTVAL (op1)
5642 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5644 SUBST (XEXP (XEXP (op0, 0), 1),
5645 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5646 return op0;
5649 break;
5651 case XOR:
5652 /* If we are XORing two things that have no bits in common,
5653 convert them into an IOR. This helps to detect rotation encoded
5654 using those methods and possibly other simplifications. */
5656 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5657 && (nonzero_bits (op0, mode)
5658 & nonzero_bits (op1, mode)) == 0)
5659 return (gen_binary (IOR, mode, op0, op1));
5661 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5662 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5663 (NOT y). */
5665 int num_negated = 0;
5667 if (GET_CODE (op0) == NOT)
5668 num_negated++, op0 = XEXP (op0, 0);
5669 if (GET_CODE (op1) == NOT)
5670 num_negated++, op1 = XEXP (op1, 0);
5672 if (num_negated == 2)
5674 SUBST (XEXP (x, 0), op0);
5675 SUBST (XEXP (x, 1), op1);
5677 else if (num_negated == 1)
5678 return
5679 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5680 mode);
5683 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5684 correspond to a machine insn or result in further simplifications
5685 if B is a constant. */
5687 if (GET_CODE (op0) == AND
5688 && rtx_equal_p (XEXP (op0, 1), op1)
5689 && ! side_effects_p (op1))
5690 return gen_binary (AND, mode,
5691 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5692 op1);
5694 else if (GET_CODE (op0) == AND
5695 && rtx_equal_p (XEXP (op0, 0), op1)
5696 && ! side_effects_p (op1))
5697 return gen_binary (AND, mode,
5698 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5699 op1);
5701 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5702 comparison if STORE_FLAG_VALUE is 1. */
5703 if (STORE_FLAG_VALUE == 1
5704 && op1 == const1_rtx
5705 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5706 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5707 XEXP (op0, 1))))
5708 return reversed;
5710 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5711 is (lt foo (const_int 0)), so we can perform the above
5712 simplification if STORE_FLAG_VALUE is 1. */
5714 if (STORE_FLAG_VALUE == 1
5715 && op1 == const1_rtx
5716 && GET_CODE (op0) == LSHIFTRT
5717 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5718 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5719 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5721 /* (xor (comparison foo bar) (const_int sign-bit))
5722 when STORE_FLAG_VALUE is the sign bit. */
5723 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5724 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5725 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5726 && op1 == const_true_rtx
5727 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5728 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5729 XEXP (op0, 1))))
5730 return reversed;
5732 break;
5734 default:
5735 abort ();
5738 return x;
5741 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5742 operations" because they can be replaced with two more basic operations.
5743 ZERO_EXTEND is also considered "compound" because it can be replaced with
5744 an AND operation, which is simpler, though only one operation.
5746 The function expand_compound_operation is called with an rtx expression
5747 and will convert it to the appropriate shifts and AND operations,
5748 simplifying at each stage.
5750 The function make_compound_operation is called to convert an expression
5751 consisting of shifts and ANDs into the equivalent compound expression.
5752 It is the inverse of this function, loosely speaking. */
5754 static rtx
5755 expand_compound_operation (x)
5756 rtx x;
5758 unsigned HOST_WIDE_INT pos = 0, len;
5759 int unsignedp = 0;
5760 unsigned int modewidth;
5761 rtx tem;
5763 switch (GET_CODE (x))
5765 case ZERO_EXTEND:
5766 unsignedp = 1;
5767 case SIGN_EXTEND:
5768 /* We can't necessarily use a const_int for a multiword mode;
5769 it depends on implicitly extending the value.
5770 Since we don't know the right way to extend it,
5771 we can't tell whether the implicit way is right.
5773 Even for a mode that is no wider than a const_int,
5774 we can't win, because we need to sign extend one of its bits through
5775 the rest of it, and we don't know which bit. */
5776 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5777 return x;
5779 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5780 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5781 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5782 reloaded. If not for that, MEM's would very rarely be safe.
5784 Reject MODEs bigger than a word, because we might not be able
5785 to reference a two-register group starting with an arbitrary register
5786 (and currently gen_lowpart might crash for a SUBREG). */
5788 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5789 return x;
5791 /* Reject MODEs that aren't scalar integers because turning vector
5792 or complex modes into shifts causes problems. */
5794 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5795 return x;
5797 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5798 /* If the inner object has VOIDmode (the only way this can happen
5799 is if it is an ASM_OPERANDS), we can't do anything since we don't
5800 know how much masking to do. */
5801 if (len == 0)
5802 return x;
5804 break;
5806 case ZERO_EXTRACT:
5807 unsignedp = 1;
5808 case SIGN_EXTRACT:
5809 /* If the operand is a CLOBBER, just return it. */
5810 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5811 return XEXP (x, 0);
5813 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5814 || GET_CODE (XEXP (x, 2)) != CONST_INT
5815 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5816 return x;
5818 /* Reject MODEs that aren't scalar integers because turning vector
5819 or complex modes into shifts causes problems. */
5821 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5822 return x;
5824 len = INTVAL (XEXP (x, 1));
5825 pos = INTVAL (XEXP (x, 2));
5827 /* If this goes outside the object being extracted, replace the object
5828 with a (use (mem ...)) construct that only combine understands
5829 and is used only for this purpose. */
5830 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5831 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5833 if (BITS_BIG_ENDIAN)
5834 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5836 break;
5838 default:
5839 return x;
5841 /* Convert sign extension to zero extension, if we know that the high
5842 bit is not set, as this is easier to optimize. It will be converted
5843 back to cheaper alternative in make_extraction. */
5844 if (GET_CODE (x) == SIGN_EXTEND
5845 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5846 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5847 & ~(((unsigned HOST_WIDE_INT)
5848 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5849 >> 1))
5850 == 0)))
5852 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5853 return expand_compound_operation (temp);
5856 /* We can optimize some special cases of ZERO_EXTEND. */
5857 if (GET_CODE (x) == ZERO_EXTEND)
5859 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5860 know that the last value didn't have any inappropriate bits
5861 set. */
5862 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5863 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5864 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5865 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5866 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5867 return XEXP (XEXP (x, 0), 0);
5869 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5870 if (GET_CODE (XEXP (x, 0)) == SUBREG
5871 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5872 && subreg_lowpart_p (XEXP (x, 0))
5873 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5874 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5875 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5876 return SUBREG_REG (XEXP (x, 0));
5878 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5879 is a comparison and STORE_FLAG_VALUE permits. This is like
5880 the first case, but it works even when GET_MODE (x) is larger
5881 than HOST_WIDE_INT. */
5882 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5883 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5884 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5885 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5886 <= HOST_BITS_PER_WIDE_INT)
5887 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5888 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5889 return XEXP (XEXP (x, 0), 0);
5891 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5892 if (GET_CODE (XEXP (x, 0)) == SUBREG
5893 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5894 && subreg_lowpart_p (XEXP (x, 0))
5895 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5896 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5897 <= HOST_BITS_PER_WIDE_INT)
5898 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5899 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5900 return SUBREG_REG (XEXP (x, 0));
5904 /* If we reach here, we want to return a pair of shifts. The inner
5905 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5906 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5907 logical depending on the value of UNSIGNEDP.
5909 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5910 converted into an AND of a shift.
5912 We must check for the case where the left shift would have a negative
5913 count. This can happen in a case like (x >> 31) & 255 on machines
5914 that can't shift by a constant. On those machines, we would first
5915 combine the shift with the AND to produce a variable-position
5916 extraction. Then the constant of 31 would be substituted in to produce
5917 a such a position. */
5919 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5920 if (modewidth + len >= pos)
5921 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5922 GET_MODE (x),
5923 simplify_shift_const (NULL_RTX, ASHIFT,
5924 GET_MODE (x),
5925 XEXP (x, 0),
5926 modewidth - pos - len),
5927 modewidth - len);
5929 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5930 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5931 simplify_shift_const (NULL_RTX, LSHIFTRT,
5932 GET_MODE (x),
5933 XEXP (x, 0), pos),
5934 ((HOST_WIDE_INT) 1 << len) - 1);
5935 else
5936 /* Any other cases we can't handle. */
5937 return x;
5939 /* If we couldn't do this for some reason, return the original
5940 expression. */
5941 if (GET_CODE (tem) == CLOBBER)
5942 return x;
5944 return tem;
5947 /* X is a SET which contains an assignment of one object into
5948 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5949 or certain SUBREGS). If possible, convert it into a series of
5950 logical operations.
5952 We half-heartedly support variable positions, but do not at all
5953 support variable lengths. */
5955 static rtx
5956 expand_field_assignment (x)
5957 rtx x;
5959 rtx inner;
5960 rtx pos; /* Always counts from low bit. */
5961 int len;
5962 rtx mask;
5963 enum machine_mode compute_mode;
5965 /* Loop until we find something we can't simplify. */
5966 while (1)
5968 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5969 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5971 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5972 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5973 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5975 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5976 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5978 inner = XEXP (SET_DEST (x), 0);
5979 len = INTVAL (XEXP (SET_DEST (x), 1));
5980 pos = XEXP (SET_DEST (x), 2);
5982 /* If the position is constant and spans the width of INNER,
5983 surround INNER with a USE to indicate this. */
5984 if (GET_CODE (pos) == CONST_INT
5985 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5986 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5988 if (BITS_BIG_ENDIAN)
5990 if (GET_CODE (pos) == CONST_INT)
5991 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5992 - INTVAL (pos));
5993 else if (GET_CODE (pos) == MINUS
5994 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5995 && (INTVAL (XEXP (pos, 1))
5996 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5997 /* If position is ADJUST - X, new position is X. */
5998 pos = XEXP (pos, 0);
5999 else
6000 pos = gen_binary (MINUS, GET_MODE (pos),
6001 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
6002 - len),
6003 pos);
6007 /* A SUBREG between two modes that occupy the same numbers of words
6008 can be done by moving the SUBREG to the source. */
6009 else if (GET_CODE (SET_DEST (x)) == SUBREG
6010 /* We need SUBREGs to compute nonzero_bits properly. */
6011 && nonzero_sign_valid
6012 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6013 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6014 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6015 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6017 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6018 gen_lowpart_for_combine
6019 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6020 SET_SRC (x)));
6021 continue;
6023 else
6024 break;
6026 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6027 inner = SUBREG_REG (inner);
6029 compute_mode = GET_MODE (inner);
6031 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6032 if (! SCALAR_INT_MODE_P (compute_mode))
6034 enum machine_mode imode;
6036 /* Don't do anything for vector or complex integral types. */
6037 if (! FLOAT_MODE_P (compute_mode))
6038 break;
6040 /* Try to find an integral mode to pun with. */
6041 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6042 if (imode == BLKmode)
6043 break;
6045 compute_mode = imode;
6046 inner = gen_lowpart_for_combine (imode, inner);
6049 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6050 if (len < HOST_BITS_PER_WIDE_INT)
6051 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6052 else
6053 break;
6055 /* Now compute the equivalent expression. Make a copy of INNER
6056 for the SET_DEST in case it is a MEM into which we will substitute;
6057 we don't want shared RTL in that case. */
6058 x = gen_rtx_SET
6059 (VOIDmode, copy_rtx (inner),
6060 gen_binary (IOR, compute_mode,
6061 gen_binary (AND, compute_mode,
6062 simplify_gen_unary (NOT, compute_mode,
6063 gen_binary (ASHIFT,
6064 compute_mode,
6065 mask, pos),
6066 compute_mode),
6067 inner),
6068 gen_binary (ASHIFT, compute_mode,
6069 gen_binary (AND, compute_mode,
6070 gen_lowpart_for_combine
6071 (compute_mode, SET_SRC (x)),
6072 mask),
6073 pos)));
6076 return x;
6079 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6080 it is an RTX that represents a variable starting position; otherwise,
6081 POS is the (constant) starting bit position (counted from the LSB).
6083 INNER may be a USE. This will occur when we started with a bitfield
6084 that went outside the boundary of the object in memory, which is
6085 allowed on most machines. To isolate this case, we produce a USE
6086 whose mode is wide enough and surround the MEM with it. The only
6087 code that understands the USE is this routine. If it is not removed,
6088 it will cause the resulting insn not to match.
6090 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6091 signed reference.
6093 IN_DEST is nonzero if this is a reference in the destination of a
6094 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6095 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6096 be used.
6098 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6099 ZERO_EXTRACT should be built even for bits starting at bit 0.
6101 MODE is the desired mode of the result (if IN_DEST == 0).
6103 The result is an RTX for the extraction or NULL_RTX if the target
6104 can't handle it. */
6106 static rtx
6107 make_extraction (mode, inner, pos, pos_rtx, len,
6108 unsignedp, in_dest, in_compare)
6109 enum machine_mode mode;
6110 rtx inner;
6111 HOST_WIDE_INT pos;
6112 rtx pos_rtx;
6113 unsigned HOST_WIDE_INT len;
6114 int unsignedp;
6115 int in_dest, in_compare;
6117 /* This mode describes the size of the storage area
6118 to fetch the overall value from. Within that, we
6119 ignore the POS lowest bits, etc. */
6120 enum machine_mode is_mode = GET_MODE (inner);
6121 enum machine_mode inner_mode;
6122 enum machine_mode wanted_inner_mode = byte_mode;
6123 enum machine_mode wanted_inner_reg_mode = word_mode;
6124 enum machine_mode pos_mode = word_mode;
6125 enum machine_mode extraction_mode = word_mode;
6126 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6127 int spans_byte = 0;
6128 rtx new = 0;
6129 rtx orig_pos_rtx = pos_rtx;
6130 HOST_WIDE_INT orig_pos;
6132 /* Get some information about INNER and get the innermost object. */
6133 if (GET_CODE (inner) == USE)
6134 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6135 /* We don't need to adjust the position because we set up the USE
6136 to pretend that it was a full-word object. */
6137 spans_byte = 1, inner = XEXP (inner, 0);
6138 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6140 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6141 consider just the QI as the memory to extract from.
6142 The subreg adds or removes high bits; its mode is
6143 irrelevant to the meaning of this extraction,
6144 since POS and LEN count from the lsb. */
6145 if (GET_CODE (SUBREG_REG (inner)) == MEM)
6146 is_mode = GET_MODE (SUBREG_REG (inner));
6147 inner = SUBREG_REG (inner);
6149 else if (GET_CODE (inner) == ASHIFT
6150 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6151 && pos_rtx == 0 && pos == 0
6152 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6154 /* We're extracting the least significant bits of an rtx
6155 (ashift X (const_int C)), where LEN > C. Extract the
6156 least significant (LEN - C) bits of X, giving an rtx
6157 whose mode is MODE, then shift it left C times. */
6158 new = make_extraction (mode, XEXP (inner, 0),
6159 0, 0, len - INTVAL (XEXP (inner, 1)),
6160 unsignedp, in_dest, in_compare);
6161 if (new != 0)
6162 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6165 inner_mode = GET_MODE (inner);
6167 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6168 pos = INTVAL (pos_rtx), pos_rtx = 0;
6170 /* See if this can be done without an extraction. We never can if the
6171 width of the field is not the same as that of some integer mode. For
6172 registers, we can only avoid the extraction if the position is at the
6173 low-order bit and this is either not in the destination or we have the
6174 appropriate STRICT_LOW_PART operation available.
6176 For MEM, we can avoid an extract if the field starts on an appropriate
6177 boundary and we can change the mode of the memory reference. However,
6178 we cannot directly access the MEM if we have a USE and the underlying
6179 MEM is not TMODE. This combination means that MEM was being used in a
6180 context where bits outside its mode were being referenced; that is only
6181 valid in bit-field insns. */
6183 if (tmode != BLKmode
6184 && ! (spans_byte && inner_mode != tmode)
6185 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6186 && GET_CODE (inner) != MEM
6187 && (! in_dest
6188 || (GET_CODE (inner) == REG
6189 && have_insn_for (STRICT_LOW_PART, tmode))))
6190 || (GET_CODE (inner) == MEM && pos_rtx == 0
6191 && (pos
6192 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6193 : BITS_PER_UNIT)) == 0
6194 /* We can't do this if we are widening INNER_MODE (it
6195 may not be aligned, for one thing). */
6196 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6197 && (inner_mode == tmode
6198 || (! mode_dependent_address_p (XEXP (inner, 0))
6199 && ! MEM_VOLATILE_P (inner))))))
6201 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6202 field. If the original and current mode are the same, we need not
6203 adjust the offset. Otherwise, we do if bytes big endian.
6205 If INNER is not a MEM, get a piece consisting of just the field
6206 of interest (in this case POS % BITS_PER_WORD must be 0). */
6208 if (GET_CODE (inner) == MEM)
6210 HOST_WIDE_INT offset;
6212 /* POS counts from lsb, but make OFFSET count in memory order. */
6213 if (BYTES_BIG_ENDIAN)
6214 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6215 else
6216 offset = pos / BITS_PER_UNIT;
6218 new = adjust_address_nv (inner, tmode, offset);
6220 else if (GET_CODE (inner) == REG)
6222 /* We can't call gen_lowpart_for_combine here since we always want
6223 a SUBREG and it would sometimes return a new hard register. */
6224 if (tmode != inner_mode)
6226 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6228 if (WORDS_BIG_ENDIAN
6229 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6230 final_word = ((GET_MODE_SIZE (inner_mode)
6231 - GET_MODE_SIZE (tmode))
6232 / UNITS_PER_WORD) - final_word;
6234 final_word *= UNITS_PER_WORD;
6235 if (BYTES_BIG_ENDIAN &&
6236 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6237 final_word += (GET_MODE_SIZE (inner_mode)
6238 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6240 /* Avoid creating invalid subregs, for example when
6241 simplifying (x>>32)&255. */
6242 if (final_word >= GET_MODE_SIZE (inner_mode))
6243 return NULL_RTX;
6245 new = gen_rtx_SUBREG (tmode, inner, final_word);
6247 else
6248 new = inner;
6250 else
6251 new = force_to_mode (inner, tmode,
6252 len >= HOST_BITS_PER_WIDE_INT
6253 ? ~(unsigned HOST_WIDE_INT) 0
6254 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6255 NULL_RTX, 0);
6257 /* If this extraction is going into the destination of a SET,
6258 make a STRICT_LOW_PART unless we made a MEM. */
6260 if (in_dest)
6261 return (GET_CODE (new) == MEM ? new
6262 : (GET_CODE (new) != SUBREG
6263 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6264 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6266 if (mode == tmode)
6267 return new;
6269 if (GET_CODE (new) == CONST_INT)
6270 return gen_int_mode (INTVAL (new), mode);
6272 /* If we know that no extraneous bits are set, and that the high
6273 bit is not set, convert the extraction to the cheaper of
6274 sign and zero extension, that are equivalent in these cases. */
6275 if (flag_expensive_optimizations
6276 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6277 && ((nonzero_bits (new, tmode)
6278 & ~(((unsigned HOST_WIDE_INT)
6279 GET_MODE_MASK (tmode))
6280 >> 1))
6281 == 0)))
6283 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6284 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6286 /* Prefer ZERO_EXTENSION, since it gives more information to
6287 backends. */
6288 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6289 return temp;
6290 return temp1;
6293 /* Otherwise, sign- or zero-extend unless we already are in the
6294 proper mode. */
6296 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6297 mode, new));
6300 /* Unless this is a COMPARE or we have a funny memory reference,
6301 don't do anything with zero-extending field extracts starting at
6302 the low-order bit since they are simple AND operations. */
6303 if (pos_rtx == 0 && pos == 0 && ! in_dest
6304 && ! in_compare && ! spans_byte && unsignedp)
6305 return 0;
6307 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6308 we would be spanning bytes or if the position is not a constant and the
6309 length is not 1. In all other cases, we would only be going outside
6310 our object in cases when an original shift would have been
6311 undefined. */
6312 if (! spans_byte && GET_CODE (inner) == MEM
6313 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6314 || (pos_rtx != 0 && len != 1)))
6315 return 0;
6317 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6318 and the mode for the result. */
6319 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6321 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6322 pos_mode = mode_for_extraction (EP_insv, 2);
6323 extraction_mode = mode_for_extraction (EP_insv, 3);
6326 if (! in_dest && unsignedp
6327 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6329 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6330 pos_mode = mode_for_extraction (EP_extzv, 3);
6331 extraction_mode = mode_for_extraction (EP_extzv, 0);
6334 if (! in_dest && ! unsignedp
6335 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6337 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6338 pos_mode = mode_for_extraction (EP_extv, 3);
6339 extraction_mode = mode_for_extraction (EP_extv, 0);
6342 /* Never narrow an object, since that might not be safe. */
6344 if (mode != VOIDmode
6345 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6346 extraction_mode = mode;
6348 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6349 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6350 pos_mode = GET_MODE (pos_rtx);
6352 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6353 if we have to change the mode of memory and cannot, the desired mode is
6354 EXTRACTION_MODE. */
6355 if (GET_CODE (inner) != MEM)
6356 wanted_inner_mode = wanted_inner_reg_mode;
6357 else if (inner_mode != wanted_inner_mode
6358 && (mode_dependent_address_p (XEXP (inner, 0))
6359 || MEM_VOLATILE_P (inner)))
6360 wanted_inner_mode = extraction_mode;
6362 orig_pos = pos;
6364 if (BITS_BIG_ENDIAN)
6366 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6367 BITS_BIG_ENDIAN style. If position is constant, compute new
6368 position. Otherwise, build subtraction.
6369 Note that POS is relative to the mode of the original argument.
6370 If it's a MEM we need to recompute POS relative to that.
6371 However, if we're extracting from (or inserting into) a register,
6372 we want to recompute POS relative to wanted_inner_mode. */
6373 int width = (GET_CODE (inner) == MEM
6374 ? GET_MODE_BITSIZE (is_mode)
6375 : GET_MODE_BITSIZE (wanted_inner_mode));
6377 if (pos_rtx == 0)
6378 pos = width - len - pos;
6379 else
6380 pos_rtx
6381 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6382 /* POS may be less than 0 now, but we check for that below.
6383 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6386 /* If INNER has a wider mode, make it smaller. If this is a constant
6387 extract, try to adjust the byte to point to the byte containing
6388 the value. */
6389 if (wanted_inner_mode != VOIDmode
6390 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6391 && ((GET_CODE (inner) == MEM
6392 && (inner_mode == wanted_inner_mode
6393 || (! mode_dependent_address_p (XEXP (inner, 0))
6394 && ! MEM_VOLATILE_P (inner))))))
6396 int offset = 0;
6398 /* The computations below will be correct if the machine is big
6399 endian in both bits and bytes or little endian in bits and bytes.
6400 If it is mixed, we must adjust. */
6402 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6403 adjust OFFSET to compensate. */
6404 if (BYTES_BIG_ENDIAN
6405 && ! spans_byte
6406 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6407 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6409 /* If this is a constant position, we can move to the desired byte. */
6410 if (pos_rtx == 0)
6412 offset += pos / BITS_PER_UNIT;
6413 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6416 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6417 && ! spans_byte
6418 && is_mode != wanted_inner_mode)
6419 offset = (GET_MODE_SIZE (is_mode)
6420 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6422 if (offset != 0 || inner_mode != wanted_inner_mode)
6423 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6426 /* If INNER is not memory, we can always get it into the proper mode. If we
6427 are changing its mode, POS must be a constant and smaller than the size
6428 of the new mode. */
6429 else if (GET_CODE (inner) != MEM)
6431 if (GET_MODE (inner) != wanted_inner_mode
6432 && (pos_rtx != 0
6433 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6434 return 0;
6436 inner = force_to_mode (inner, wanted_inner_mode,
6437 pos_rtx
6438 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6439 ? ~(unsigned HOST_WIDE_INT) 0
6440 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6441 << orig_pos),
6442 NULL_RTX, 0);
6445 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6446 have to zero extend. Otherwise, we can just use a SUBREG. */
6447 if (pos_rtx != 0
6448 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6450 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6452 /* If we know that no extraneous bits are set, and that the high
6453 bit is not set, convert extraction to cheaper one - either
6454 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6455 cases. */
6456 if (flag_expensive_optimizations
6457 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6458 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6459 & ~(((unsigned HOST_WIDE_INT)
6460 GET_MODE_MASK (GET_MODE (pos_rtx)))
6461 >> 1))
6462 == 0)))
6464 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6466 /* Prefer ZERO_EXTENSION, since it gives more information to
6467 backends. */
6468 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6469 temp = temp1;
6471 pos_rtx = temp;
6473 else if (pos_rtx != 0
6474 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6475 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6477 /* Make POS_RTX unless we already have it and it is correct. If we don't
6478 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6479 be a CONST_INT. */
6480 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6481 pos_rtx = orig_pos_rtx;
6483 else if (pos_rtx == 0)
6484 pos_rtx = GEN_INT (pos);
6486 /* Make the required operation. See if we can use existing rtx. */
6487 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6488 extraction_mode, inner, GEN_INT (len), pos_rtx);
6489 if (! in_dest)
6490 new = gen_lowpart_for_combine (mode, new);
6492 return new;
6495 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6496 with any other operations in X. Return X without that shift if so. */
6498 static rtx
6499 extract_left_shift (x, count)
6500 rtx x;
6501 int count;
6503 enum rtx_code code = GET_CODE (x);
6504 enum machine_mode mode = GET_MODE (x);
6505 rtx tem;
6507 switch (code)
6509 case ASHIFT:
6510 /* This is the shift itself. If it is wide enough, we will return
6511 either the value being shifted if the shift count is equal to
6512 COUNT or a shift for the difference. */
6513 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6514 && INTVAL (XEXP (x, 1)) >= count)
6515 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6516 INTVAL (XEXP (x, 1)) - count);
6517 break;
6519 case NEG: case NOT:
6520 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6521 return simplify_gen_unary (code, mode, tem, mode);
6523 break;
6525 case PLUS: case IOR: case XOR: case AND:
6526 /* If we can safely shift this constant and we find the inner shift,
6527 make a new operation. */
6528 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6529 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6530 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6531 return gen_binary (code, mode, tem,
6532 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6534 break;
6536 default:
6537 break;
6540 return 0;
6543 /* Look at the expression rooted at X. Look for expressions
6544 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6545 Form these expressions.
6547 Return the new rtx, usually just X.
6549 Also, for machines like the VAX that don't have logical shift insns,
6550 try to convert logical to arithmetic shift operations in cases where
6551 they are equivalent. This undoes the canonicalizations to logical
6552 shifts done elsewhere.
6554 We try, as much as possible, to re-use rtl expressions to save memory.
6556 IN_CODE says what kind of expression we are processing. Normally, it is
6557 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6558 being kludges), it is MEM. When processing the arguments of a comparison
6559 or a COMPARE against zero, it is COMPARE. */
6561 static rtx
6562 make_compound_operation (x, in_code)
6563 rtx x;
6564 enum rtx_code in_code;
6566 enum rtx_code code = GET_CODE (x);
6567 enum machine_mode mode = GET_MODE (x);
6568 int mode_width = GET_MODE_BITSIZE (mode);
6569 rtx rhs, lhs;
6570 enum rtx_code next_code;
6571 int i;
6572 rtx new = 0;
6573 rtx tem;
6574 const char *fmt;
6576 /* Select the code to be used in recursive calls. Once we are inside an
6577 address, we stay there. If we have a comparison, set to COMPARE,
6578 but once inside, go back to our default of SET. */
6580 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6581 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6582 && XEXP (x, 1) == const0_rtx) ? COMPARE
6583 : in_code == COMPARE ? SET : in_code);
6585 /* Process depending on the code of this operation. If NEW is set
6586 nonzero, it will be returned. */
6588 switch (code)
6590 case ASHIFT:
6591 /* Convert shifts by constants into multiplications if inside
6592 an address. */
6593 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6594 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6595 && INTVAL (XEXP (x, 1)) >= 0)
6597 new = make_compound_operation (XEXP (x, 0), next_code);
6598 new = gen_rtx_MULT (mode, new,
6599 GEN_INT ((HOST_WIDE_INT) 1
6600 << INTVAL (XEXP (x, 1))));
6602 break;
6604 case AND:
6605 /* If the second operand is not a constant, we can't do anything
6606 with it. */
6607 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6608 break;
6610 /* If the constant is a power of two minus one and the first operand
6611 is a logical right shift, make an extraction. */
6612 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6613 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6615 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6616 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6617 0, in_code == COMPARE);
6620 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6621 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6622 && subreg_lowpart_p (XEXP (x, 0))
6623 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6624 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6626 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6627 next_code);
6628 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6629 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6630 0, in_code == COMPARE);
6632 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6633 else if ((GET_CODE (XEXP (x, 0)) == XOR
6634 || GET_CODE (XEXP (x, 0)) == IOR)
6635 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6636 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6637 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6639 /* Apply the distributive law, and then try to make extractions. */
6640 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6641 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6642 XEXP (x, 1)),
6643 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6644 XEXP (x, 1)));
6645 new = make_compound_operation (new, in_code);
6648 /* If we are have (and (rotate X C) M) and C is larger than the number
6649 of bits in M, this is an extraction. */
6651 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6652 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6653 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6654 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6656 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6657 new = make_extraction (mode, new,
6658 (GET_MODE_BITSIZE (mode)
6659 - INTVAL (XEXP (XEXP (x, 0), 1))),
6660 NULL_RTX, i, 1, 0, in_code == COMPARE);
6663 /* On machines without logical shifts, if the operand of the AND is
6664 a logical shift and our mask turns off all the propagated sign
6665 bits, we can replace the logical shift with an arithmetic shift. */
6666 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6667 && !have_insn_for (LSHIFTRT, mode)
6668 && have_insn_for (ASHIFTRT, mode)
6669 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6670 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6671 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6672 && mode_width <= HOST_BITS_PER_WIDE_INT)
6674 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6676 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6677 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6678 SUBST (XEXP (x, 0),
6679 gen_rtx_ASHIFTRT (mode,
6680 make_compound_operation
6681 (XEXP (XEXP (x, 0), 0), next_code),
6682 XEXP (XEXP (x, 0), 1)));
6685 /* If the constant is one less than a power of two, this might be
6686 representable by an extraction even if no shift is present.
6687 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6688 we are in a COMPARE. */
6689 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6690 new = make_extraction (mode,
6691 make_compound_operation (XEXP (x, 0),
6692 next_code),
6693 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6695 /* If we are in a comparison and this is an AND with a power of two,
6696 convert this into the appropriate bit extract. */
6697 else if (in_code == COMPARE
6698 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6699 new = make_extraction (mode,
6700 make_compound_operation (XEXP (x, 0),
6701 next_code),
6702 i, NULL_RTX, 1, 1, 0, 1);
6704 break;
6706 case LSHIFTRT:
6707 /* If the sign bit is known to be zero, replace this with an
6708 arithmetic shift. */
6709 if (have_insn_for (ASHIFTRT, mode)
6710 && ! have_insn_for (LSHIFTRT, mode)
6711 && mode_width <= HOST_BITS_PER_WIDE_INT
6712 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6714 new = gen_rtx_ASHIFTRT (mode,
6715 make_compound_operation (XEXP (x, 0),
6716 next_code),
6717 XEXP (x, 1));
6718 break;
6721 /* ... fall through ... */
6723 case ASHIFTRT:
6724 lhs = XEXP (x, 0);
6725 rhs = XEXP (x, 1);
6727 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6728 this is a SIGN_EXTRACT. */
6729 if (GET_CODE (rhs) == CONST_INT
6730 && GET_CODE (lhs) == ASHIFT
6731 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6732 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6734 new = make_compound_operation (XEXP (lhs, 0), next_code);
6735 new = make_extraction (mode, new,
6736 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6737 NULL_RTX, mode_width - INTVAL (rhs),
6738 code == LSHIFTRT, 0, in_code == COMPARE);
6739 break;
6742 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6743 If so, try to merge the shifts into a SIGN_EXTEND. We could
6744 also do this for some cases of SIGN_EXTRACT, but it doesn't
6745 seem worth the effort; the case checked for occurs on Alpha. */
6747 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6748 && ! (GET_CODE (lhs) == SUBREG
6749 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6750 && GET_CODE (rhs) == CONST_INT
6751 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6752 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6753 new = make_extraction (mode, make_compound_operation (new, next_code),
6754 0, NULL_RTX, mode_width - INTVAL (rhs),
6755 code == LSHIFTRT, 0, in_code == COMPARE);
6757 break;
6759 case SUBREG:
6760 /* Call ourselves recursively on the inner expression. If we are
6761 narrowing the object and it has a different RTL code from
6762 what it originally did, do this SUBREG as a force_to_mode. */
6764 tem = make_compound_operation (SUBREG_REG (x), in_code);
6765 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6766 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6767 && subreg_lowpart_p (x))
6769 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6770 NULL_RTX, 0);
6772 /* If we have something other than a SUBREG, we might have
6773 done an expansion, so rerun ourselves. */
6774 if (GET_CODE (newer) != SUBREG)
6775 newer = make_compound_operation (newer, in_code);
6777 return newer;
6780 /* If this is a paradoxical subreg, and the new code is a sign or
6781 zero extension, omit the subreg and widen the extension. If it
6782 is a regular subreg, we can still get rid of the subreg by not
6783 widening so much, or in fact removing the extension entirely. */
6784 if ((GET_CODE (tem) == SIGN_EXTEND
6785 || GET_CODE (tem) == ZERO_EXTEND)
6786 && subreg_lowpart_p (x))
6788 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6789 || (GET_MODE_SIZE (mode) >
6790 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6792 if (! SCALAR_INT_MODE_P (mode))
6793 break;
6794 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6796 else
6797 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6798 return tem;
6800 break;
6802 default:
6803 break;
6806 if (new)
6808 x = gen_lowpart_for_combine (mode, new);
6809 code = GET_CODE (x);
6812 /* Now recursively process each operand of this operation. */
6813 fmt = GET_RTX_FORMAT (code);
6814 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6815 if (fmt[i] == 'e')
6817 new = make_compound_operation (XEXP (x, i), next_code);
6818 SUBST (XEXP (x, i), new);
6821 return x;
6824 /* Given M see if it is a value that would select a field of bits
6825 within an item, but not the entire word. Return -1 if not.
6826 Otherwise, return the starting position of the field, where 0 is the
6827 low-order bit.
6829 *PLEN is set to the length of the field. */
6831 static int
6832 get_pos_from_mask (m, plen)
6833 unsigned HOST_WIDE_INT m;
6834 unsigned HOST_WIDE_INT *plen;
6836 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6837 int pos = exact_log2 (m & -m);
6838 int len;
6840 if (pos < 0)
6841 return -1;
6843 /* Now shift off the low-order zero bits and see if we have a power of
6844 two minus 1. */
6845 len = exact_log2 ((m >> pos) + 1);
6847 if (len <= 0)
6848 return -1;
6850 *plen = len;
6851 return pos;
6854 /* See if X can be simplified knowing that we will only refer to it in
6855 MODE and will only refer to those bits that are nonzero in MASK.
6856 If other bits are being computed or if masking operations are done
6857 that select a superset of the bits in MASK, they can sometimes be
6858 ignored.
6860 Return a possibly simplified expression, but always convert X to
6861 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6863 Also, if REG is nonzero and X is a register equal in value to REG,
6864 replace X with REG.
6866 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6867 are all off in X. This is used when X will be complemented, by either
6868 NOT, NEG, or XOR. */
6870 static rtx
6871 force_to_mode (x, mode, mask, reg, just_select)
6872 rtx x;
6873 enum machine_mode mode;
6874 unsigned HOST_WIDE_INT mask;
6875 rtx reg;
6876 int just_select;
6878 enum rtx_code code = GET_CODE (x);
6879 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6880 enum machine_mode op_mode;
6881 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6882 rtx op0, op1, temp;
6884 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6885 code below will do the wrong thing since the mode of such an
6886 expression is VOIDmode.
6888 Also do nothing if X is a CLOBBER; this can happen if X was
6889 the return value from a call to gen_lowpart_for_combine. */
6890 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6891 return x;
6893 /* We want to perform the operation is its present mode unless we know
6894 that the operation is valid in MODE, in which case we do the operation
6895 in MODE. */
6896 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6897 && have_insn_for (code, mode))
6898 ? mode : GET_MODE (x));
6900 /* It is not valid to do a right-shift in a narrower mode
6901 than the one it came in with. */
6902 if ((code == LSHIFTRT || code == ASHIFTRT)
6903 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6904 op_mode = GET_MODE (x);
6906 /* Truncate MASK to fit OP_MODE. */
6907 if (op_mode)
6908 mask &= GET_MODE_MASK (op_mode);
6910 /* When we have an arithmetic operation, or a shift whose count we
6911 do not know, we need to assume that all bit the up to the highest-order
6912 bit in MASK will be needed. This is how we form such a mask. */
6913 if (op_mode)
6914 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6915 ? GET_MODE_MASK (op_mode)
6916 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6917 - 1));
6918 else
6919 fuller_mask = ~(HOST_WIDE_INT) 0;
6921 /* Determine what bits of X are guaranteed to be (non)zero. */
6922 nonzero = nonzero_bits (x, mode);
6924 /* If none of the bits in X are needed, return a zero. */
6925 if (! just_select && (nonzero & mask) == 0)
6926 x = const0_rtx;
6928 /* If X is a CONST_INT, return a new one. Do this here since the
6929 test below will fail. */
6930 if (GET_CODE (x) == CONST_INT)
6932 if (SCALAR_INT_MODE_P (mode))
6933 return gen_int_mode (INTVAL (x) & mask, mode);
6934 else
6936 x = GEN_INT (INTVAL (x) & mask);
6937 return gen_lowpart_common (mode, x);
6941 /* If X is narrower than MODE and we want all the bits in X's mode, just
6942 get X in the proper mode. */
6943 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6944 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6945 return gen_lowpart_for_combine (mode, x);
6947 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6948 MASK are already known to be zero in X, we need not do anything. */
6949 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6950 return x;
6952 switch (code)
6954 case CLOBBER:
6955 /* If X is a (clobber (const_int)), return it since we know we are
6956 generating something that won't match. */
6957 return x;
6959 case USE:
6960 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6961 spanned the boundary of the MEM. If we are now masking so it is
6962 within that boundary, we don't need the USE any more. */
6963 if (! BITS_BIG_ENDIAN
6964 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6965 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6966 break;
6968 case SIGN_EXTEND:
6969 case ZERO_EXTEND:
6970 case ZERO_EXTRACT:
6971 case SIGN_EXTRACT:
6972 x = expand_compound_operation (x);
6973 if (GET_CODE (x) != code)
6974 return force_to_mode (x, mode, mask, reg, next_select);
6975 break;
6977 case REG:
6978 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6979 || rtx_equal_p (reg, get_last_value (x))))
6980 x = reg;
6981 break;
6983 case SUBREG:
6984 if (subreg_lowpart_p (x)
6985 /* We can ignore the effect of this SUBREG if it narrows the mode or
6986 if the constant masks to zero all the bits the mode doesn't
6987 have. */
6988 && ((GET_MODE_SIZE (GET_MODE (x))
6989 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6990 || (0 == (mask
6991 & GET_MODE_MASK (GET_MODE (x))
6992 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6993 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6994 break;
6996 case AND:
6997 /* If this is an AND with a constant, convert it into an AND
6998 whose constant is the AND of that constant with MASK. If it
6999 remains an AND of MASK, delete it since it is redundant. */
7001 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7003 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7004 mask & INTVAL (XEXP (x, 1)));
7006 /* If X is still an AND, see if it is an AND with a mask that
7007 is just some low-order bits. If so, and it is MASK, we don't
7008 need it. */
7010 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7011 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7012 == mask))
7013 x = XEXP (x, 0);
7015 /* If it remains an AND, try making another AND with the bits
7016 in the mode mask that aren't in MASK turned on. If the
7017 constant in the AND is wide enough, this might make a
7018 cheaper constant. */
7020 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7021 && GET_MODE_MASK (GET_MODE (x)) != mask
7022 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7024 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7025 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7026 int width = GET_MODE_BITSIZE (GET_MODE (x));
7027 rtx y;
7029 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
7030 number, sign extend it. */
7031 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7032 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7033 cval |= (HOST_WIDE_INT) -1 << width;
7035 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
7036 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7037 x = y;
7040 break;
7043 goto binop;
7045 case PLUS:
7046 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7047 low-order bits (as in an alignment operation) and FOO is already
7048 aligned to that boundary, mask C1 to that boundary as well.
7049 This may eliminate that PLUS and, later, the AND. */
7052 unsigned int width = GET_MODE_BITSIZE (mode);
7053 unsigned HOST_WIDE_INT smask = mask;
7055 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7056 number, sign extend it. */
7058 if (width < HOST_BITS_PER_WIDE_INT
7059 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7060 smask |= (HOST_WIDE_INT) -1 << width;
7062 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7063 && exact_log2 (- smask) >= 0
7064 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7065 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7066 return force_to_mode (plus_constant (XEXP (x, 0),
7067 (INTVAL (XEXP (x, 1)) & smask)),
7068 mode, smask, reg, next_select);
7071 /* ... fall through ... */
7073 case MULT:
7074 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7075 most significant bit in MASK since carries from those bits will
7076 affect the bits we are interested in. */
7077 mask = fuller_mask;
7078 goto binop;
7080 case MINUS:
7081 /* If X is (minus C Y) where C's least set bit is larger than any bit
7082 in the mask, then we may replace with (neg Y). */
7083 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7084 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7085 & -INTVAL (XEXP (x, 0))))
7086 > mask))
7088 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7089 GET_MODE (x));
7090 return force_to_mode (x, mode, mask, reg, next_select);
7093 /* Similarly, if C contains every bit in the fuller_mask, then we may
7094 replace with (not Y). */
7095 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7096 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7097 == INTVAL (XEXP (x, 0))))
7099 x = simplify_gen_unary (NOT, GET_MODE (x),
7100 XEXP (x, 1), GET_MODE (x));
7101 return force_to_mode (x, mode, mask, reg, next_select);
7104 mask = fuller_mask;
7105 goto binop;
7107 case IOR:
7108 case XOR:
7109 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7110 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7111 operation which may be a bitfield extraction. Ensure that the
7112 constant we form is not wider than the mode of X. */
7114 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7115 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7116 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7117 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7118 && GET_CODE (XEXP (x, 1)) == CONST_INT
7119 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7120 + floor_log2 (INTVAL (XEXP (x, 1))))
7121 < GET_MODE_BITSIZE (GET_MODE (x)))
7122 && (INTVAL (XEXP (x, 1))
7123 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7125 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7126 << INTVAL (XEXP (XEXP (x, 0), 1)));
7127 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7128 XEXP (XEXP (x, 0), 0), temp);
7129 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7130 XEXP (XEXP (x, 0), 1));
7131 return force_to_mode (x, mode, mask, reg, next_select);
7134 binop:
7135 /* For most binary operations, just propagate into the operation and
7136 change the mode if we have an operation of that mode. */
7138 op0 = gen_lowpart_for_combine (op_mode,
7139 force_to_mode (XEXP (x, 0), mode, mask,
7140 reg, next_select));
7141 op1 = gen_lowpart_for_combine (op_mode,
7142 force_to_mode (XEXP (x, 1), mode, mask,
7143 reg, next_select));
7145 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7146 x = gen_binary (code, op_mode, op0, op1);
7147 break;
7149 case ASHIFT:
7150 /* For left shifts, do the same, but just for the first operand.
7151 However, we cannot do anything with shifts where we cannot
7152 guarantee that the counts are smaller than the size of the mode
7153 because such a count will have a different meaning in a
7154 wider mode. */
7156 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7157 && INTVAL (XEXP (x, 1)) >= 0
7158 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7159 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7160 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7161 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7162 break;
7164 /* If the shift count is a constant and we can do arithmetic in
7165 the mode of the shift, refine which bits we need. Otherwise, use the
7166 conservative form of the mask. */
7167 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7168 && INTVAL (XEXP (x, 1)) >= 0
7169 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7170 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7171 mask >>= INTVAL (XEXP (x, 1));
7172 else
7173 mask = fuller_mask;
7175 op0 = gen_lowpart_for_combine (op_mode,
7176 force_to_mode (XEXP (x, 0), op_mode,
7177 mask, reg, next_select));
7179 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7180 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7181 break;
7183 case LSHIFTRT:
7184 /* Here we can only do something if the shift count is a constant,
7185 this shift constant is valid for the host, and we can do arithmetic
7186 in OP_MODE. */
7188 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7189 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7190 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7192 rtx inner = XEXP (x, 0);
7193 unsigned HOST_WIDE_INT inner_mask;
7195 /* Select the mask of the bits we need for the shift operand. */
7196 inner_mask = mask << INTVAL (XEXP (x, 1));
7198 /* We can only change the mode of the shift if we can do arithmetic
7199 in the mode of the shift and INNER_MASK is no wider than the
7200 width of OP_MODE. */
7201 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7202 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7203 op_mode = GET_MODE (x);
7205 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7207 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7208 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7211 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7212 shift and AND produces only copies of the sign bit (C2 is one less
7213 than a power of two), we can do this with just a shift. */
7215 if (GET_CODE (x) == LSHIFTRT
7216 && GET_CODE (XEXP (x, 1)) == CONST_INT
7217 /* The shift puts one of the sign bit copies in the least significant
7218 bit. */
7219 && ((INTVAL (XEXP (x, 1))
7220 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7221 >= GET_MODE_BITSIZE (GET_MODE (x)))
7222 && exact_log2 (mask + 1) >= 0
7223 /* Number of bits left after the shift must be more than the mask
7224 needs. */
7225 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7226 <= GET_MODE_BITSIZE (GET_MODE (x)))
7227 /* Must be more sign bit copies than the mask needs. */
7228 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7229 >= exact_log2 (mask + 1)))
7230 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7231 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7232 - exact_log2 (mask + 1)));
7234 goto shiftrt;
7236 case ASHIFTRT:
7237 /* If we are just looking for the sign bit, we don't need this shift at
7238 all, even if it has a variable count. */
7239 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7240 && (mask == ((unsigned HOST_WIDE_INT) 1
7241 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7242 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7244 /* If this is a shift by a constant, get a mask that contains those bits
7245 that are not copies of the sign bit. We then have two cases: If
7246 MASK only includes those bits, this can be a logical shift, which may
7247 allow simplifications. If MASK is a single-bit field not within
7248 those bits, we are requesting a copy of the sign bit and hence can
7249 shift the sign bit to the appropriate location. */
7251 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7252 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7254 int i = -1;
7256 /* If the considered data is wider than HOST_WIDE_INT, we can't
7257 represent a mask for all its bits in a single scalar.
7258 But we only care about the lower bits, so calculate these. */
7260 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7262 nonzero = ~(HOST_WIDE_INT) 0;
7264 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7265 is the number of bits a full-width mask would have set.
7266 We need only shift if these are fewer than nonzero can
7267 hold. If not, we must keep all bits set in nonzero. */
7269 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7270 < HOST_BITS_PER_WIDE_INT)
7271 nonzero >>= INTVAL (XEXP (x, 1))
7272 + HOST_BITS_PER_WIDE_INT
7273 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7275 else
7277 nonzero = GET_MODE_MASK (GET_MODE (x));
7278 nonzero >>= INTVAL (XEXP (x, 1));
7281 if ((mask & ~nonzero) == 0
7282 || (i = exact_log2 (mask)) >= 0)
7284 x = simplify_shift_const
7285 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7286 i < 0 ? INTVAL (XEXP (x, 1))
7287 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7289 if (GET_CODE (x) != ASHIFTRT)
7290 return force_to_mode (x, mode, mask, reg, next_select);
7294 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7295 even if the shift count isn't a constant. */
7296 if (mask == 1)
7297 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7299 shiftrt:
7301 /* If this is a zero- or sign-extension operation that just affects bits
7302 we don't care about, remove it. Be sure the call above returned
7303 something that is still a shift. */
7305 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7306 && GET_CODE (XEXP (x, 1)) == CONST_INT
7307 && INTVAL (XEXP (x, 1)) >= 0
7308 && (INTVAL (XEXP (x, 1))
7309 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7310 && GET_CODE (XEXP (x, 0)) == ASHIFT
7311 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7312 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7313 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7314 reg, next_select);
7316 break;
7318 case ROTATE:
7319 case ROTATERT:
7320 /* If the shift count is constant and we can do computations
7321 in the mode of X, compute where the bits we care about are.
7322 Otherwise, we can't do anything. Don't change the mode of
7323 the shift or propagate MODE into the shift, though. */
7324 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7325 && INTVAL (XEXP (x, 1)) >= 0)
7327 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7328 GET_MODE (x), GEN_INT (mask),
7329 XEXP (x, 1));
7330 if (temp && GET_CODE (temp) == CONST_INT)
7331 SUBST (XEXP (x, 0),
7332 force_to_mode (XEXP (x, 0), GET_MODE (x),
7333 INTVAL (temp), reg, next_select));
7335 break;
7337 case NEG:
7338 /* If we just want the low-order bit, the NEG isn't needed since it
7339 won't change the low-order bit. */
7340 if (mask == 1)
7341 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7343 /* We need any bits less significant than the most significant bit in
7344 MASK since carries from those bits will affect the bits we are
7345 interested in. */
7346 mask = fuller_mask;
7347 goto unop;
7349 case NOT:
7350 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7351 same as the XOR case above. Ensure that the constant we form is not
7352 wider than the mode of X. */
7354 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7355 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7356 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7357 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7358 < GET_MODE_BITSIZE (GET_MODE (x)))
7359 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7361 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7362 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7363 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7365 return force_to_mode (x, mode, mask, reg, next_select);
7368 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7369 use the full mask inside the NOT. */
7370 mask = fuller_mask;
7372 unop:
7373 op0 = gen_lowpart_for_combine (op_mode,
7374 force_to_mode (XEXP (x, 0), mode, mask,
7375 reg, next_select));
7376 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7377 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7378 break;
7380 case NE:
7381 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7382 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7383 which is equal to STORE_FLAG_VALUE. */
7384 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7385 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7386 && (nonzero_bits (XEXP (x, 0), mode)
7387 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7388 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7390 break;
7392 case IF_THEN_ELSE:
7393 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7394 written in a narrower mode. We play it safe and do not do so. */
7396 SUBST (XEXP (x, 1),
7397 gen_lowpart_for_combine (GET_MODE (x),
7398 force_to_mode (XEXP (x, 1), mode,
7399 mask, reg, next_select)));
7400 SUBST (XEXP (x, 2),
7401 gen_lowpart_for_combine (GET_MODE (x),
7402 force_to_mode (XEXP (x, 2), mode,
7403 mask, reg, next_select)));
7404 break;
7406 default:
7407 break;
7410 /* Ensure we return a value of the proper mode. */
7411 return gen_lowpart_for_combine (mode, x);
7414 /* Return nonzero if X is an expression that has one of two values depending on
7415 whether some other value is zero or nonzero. In that case, we return the
7416 value that is being tested, *PTRUE is set to the value if the rtx being
7417 returned has a nonzero value, and *PFALSE is set to the other alternative.
7419 If we return zero, we set *PTRUE and *PFALSE to X. */
7421 static rtx
7422 if_then_else_cond (x, ptrue, pfalse)
7423 rtx x;
7424 rtx *ptrue, *pfalse;
7426 enum machine_mode mode = GET_MODE (x);
7427 enum rtx_code code = GET_CODE (x);
7428 rtx cond0, cond1, true0, true1, false0, false1;
7429 unsigned HOST_WIDE_INT nz;
7431 /* If we are comparing a value against zero, we are done. */
7432 if ((code == NE || code == EQ)
7433 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7435 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7436 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7437 return XEXP (x, 0);
7440 /* If this is a unary operation whose operand has one of two values, apply
7441 our opcode to compute those values. */
7442 else if (GET_RTX_CLASS (code) == '1'
7443 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7445 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7446 *pfalse = simplify_gen_unary (code, mode, false0,
7447 GET_MODE (XEXP (x, 0)));
7448 return cond0;
7451 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7452 make can't possibly match and would suppress other optimizations. */
7453 else if (code == COMPARE)
7456 /* If this is a binary operation, see if either side has only one of two
7457 values. If either one does or if both do and they are conditional on
7458 the same value, compute the new true and false values. */
7459 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7460 || GET_RTX_CLASS (code) == '<')
7462 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7463 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7465 if ((cond0 != 0 || cond1 != 0)
7466 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7468 /* If if_then_else_cond returned zero, then true/false are the
7469 same rtl. We must copy one of them to prevent invalid rtl
7470 sharing. */
7471 if (cond0 == 0)
7472 true0 = copy_rtx (true0);
7473 else if (cond1 == 0)
7474 true1 = copy_rtx (true1);
7476 *ptrue = gen_binary (code, mode, true0, true1);
7477 *pfalse = gen_binary (code, mode, false0, false1);
7478 return cond0 ? cond0 : cond1;
7481 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7482 operands is zero when the other is nonzero, and vice-versa,
7483 and STORE_FLAG_VALUE is 1 or -1. */
7485 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7486 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7487 || code == UMAX)
7488 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7490 rtx op0 = XEXP (XEXP (x, 0), 1);
7491 rtx op1 = XEXP (XEXP (x, 1), 1);
7493 cond0 = XEXP (XEXP (x, 0), 0);
7494 cond1 = XEXP (XEXP (x, 1), 0);
7496 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7497 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7498 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7499 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7500 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7501 || ((swap_condition (GET_CODE (cond0))
7502 == combine_reversed_comparison_code (cond1))
7503 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7504 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7505 && ! side_effects_p (x))
7507 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7508 *pfalse = gen_binary (MULT, mode,
7509 (code == MINUS
7510 ? simplify_gen_unary (NEG, mode, op1,
7511 mode)
7512 : op1),
7513 const_true_rtx);
7514 return cond0;
7518 /* Similarly for MULT, AND and UMIN, except that for these the result
7519 is always zero. */
7520 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7521 && (code == MULT || code == AND || code == UMIN)
7522 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7524 cond0 = XEXP (XEXP (x, 0), 0);
7525 cond1 = XEXP (XEXP (x, 1), 0);
7527 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7528 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7529 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7530 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7531 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7532 || ((swap_condition (GET_CODE (cond0))
7533 == combine_reversed_comparison_code (cond1))
7534 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7535 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7536 && ! side_effects_p (x))
7538 *ptrue = *pfalse = const0_rtx;
7539 return cond0;
7544 else if (code == IF_THEN_ELSE)
7546 /* If we have IF_THEN_ELSE already, extract the condition and
7547 canonicalize it if it is NE or EQ. */
7548 cond0 = XEXP (x, 0);
7549 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7550 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7551 return XEXP (cond0, 0);
7552 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7554 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7555 return XEXP (cond0, 0);
7557 else
7558 return cond0;
7561 /* If X is a SUBREG, we can narrow both the true and false values
7562 if the inner expression, if there is a condition. */
7563 else if (code == SUBREG
7564 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7565 &true0, &false0)))
7567 *ptrue = simplify_gen_subreg (mode, true0,
7568 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7569 *pfalse = simplify_gen_subreg (mode, false0,
7570 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7572 return cond0;
7575 /* If X is a constant, this isn't special and will cause confusions
7576 if we treat it as such. Likewise if it is equivalent to a constant. */
7577 else if (CONSTANT_P (x)
7578 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7581 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7582 will be least confusing to the rest of the compiler. */
7583 else if (mode == BImode)
7585 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7586 return x;
7589 /* If X is known to be either 0 or -1, those are the true and
7590 false values when testing X. */
7591 else if (x == constm1_rtx || x == const0_rtx
7592 || (mode != VOIDmode
7593 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7595 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7596 return x;
7599 /* Likewise for 0 or a single bit. */
7600 else if (mode != VOIDmode
7601 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7602 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7604 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7605 return x;
7608 /* Otherwise fail; show no condition with true and false values the same. */
7609 *ptrue = *pfalse = x;
7610 return 0;
7613 /* Return the value of expression X given the fact that condition COND
7614 is known to be true when applied to REG as its first operand and VAL
7615 as its second. X is known to not be shared and so can be modified in
7616 place.
7618 We only handle the simplest cases, and specifically those cases that
7619 arise with IF_THEN_ELSE expressions. */
7621 static rtx
7622 known_cond (x, cond, reg, val)
7623 rtx x;
7624 enum rtx_code cond;
7625 rtx reg, val;
7627 enum rtx_code code = GET_CODE (x);
7628 rtx temp;
7629 const char *fmt;
7630 int i, j;
7632 if (side_effects_p (x))
7633 return x;
7635 /* If either operand of the condition is a floating point value,
7636 then we have to avoid collapsing an EQ comparison. */
7637 if (cond == EQ
7638 && rtx_equal_p (x, reg)
7639 && ! FLOAT_MODE_P (GET_MODE (x))
7640 && ! FLOAT_MODE_P (GET_MODE (val)))
7641 return val;
7643 if (cond == UNEQ && rtx_equal_p (x, reg))
7644 return val;
7646 /* If X is (abs REG) and we know something about REG's relationship
7647 with zero, we may be able to simplify this. */
7649 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7650 switch (cond)
7652 case GE: case GT: case EQ:
7653 return XEXP (x, 0);
7654 case LT: case LE:
7655 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7656 XEXP (x, 0),
7657 GET_MODE (XEXP (x, 0)));
7658 default:
7659 break;
7662 /* The only other cases we handle are MIN, MAX, and comparisons if the
7663 operands are the same as REG and VAL. */
7665 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7667 if (rtx_equal_p (XEXP (x, 0), val))
7668 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7670 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7672 if (GET_RTX_CLASS (code) == '<')
7674 if (comparison_dominates_p (cond, code))
7675 return const_true_rtx;
7677 code = combine_reversed_comparison_code (x);
7678 if (code != UNKNOWN
7679 && comparison_dominates_p (cond, code))
7680 return const0_rtx;
7681 else
7682 return x;
7684 else if (code == SMAX || code == SMIN
7685 || code == UMIN || code == UMAX)
7687 int unsignedp = (code == UMIN || code == UMAX);
7689 /* Do not reverse the condition when it is NE or EQ.
7690 This is because we cannot conclude anything about
7691 the value of 'SMAX (x, y)' when x is not equal to y,
7692 but we can when x equals y. */
7693 if ((code == SMAX || code == UMAX)
7694 && ! (cond == EQ || cond == NE))
7695 cond = reverse_condition (cond);
7697 switch (cond)
7699 case GE: case GT:
7700 return unsignedp ? x : XEXP (x, 1);
7701 case LE: case LT:
7702 return unsignedp ? x : XEXP (x, 0);
7703 case GEU: case GTU:
7704 return unsignedp ? XEXP (x, 1) : x;
7705 case LEU: case LTU:
7706 return unsignedp ? XEXP (x, 0) : x;
7707 default:
7708 break;
7713 else if (code == SUBREG)
7715 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7716 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7718 if (SUBREG_REG (x) != r)
7720 /* We must simplify subreg here, before we lose track of the
7721 original inner_mode. */
7722 new = simplify_subreg (GET_MODE (x), r,
7723 inner_mode, SUBREG_BYTE (x));
7724 if (new)
7725 return new;
7726 else
7727 SUBST (SUBREG_REG (x), r);
7730 return x;
7732 /* We don't have to handle SIGN_EXTEND here, because even in the
7733 case of replacing something with a modeless CONST_INT, a
7734 CONST_INT is already (supposed to be) a valid sign extension for
7735 its narrower mode, which implies it's already properly
7736 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7737 story is different. */
7738 else if (code == ZERO_EXTEND)
7740 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7741 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7743 if (XEXP (x, 0) != r)
7745 /* We must simplify the zero_extend here, before we lose
7746 track of the original inner_mode. */
7747 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7748 r, inner_mode);
7749 if (new)
7750 return new;
7751 else
7752 SUBST (XEXP (x, 0), r);
7755 return x;
7758 fmt = GET_RTX_FORMAT (code);
7759 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7761 if (fmt[i] == 'e')
7762 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7763 else if (fmt[i] == 'E')
7764 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7765 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7766 cond, reg, val));
7769 return x;
7772 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7773 assignment as a field assignment. */
7775 static int
7776 rtx_equal_for_field_assignment_p (x, y)
7777 rtx x;
7778 rtx y;
7780 if (x == y || rtx_equal_p (x, y))
7781 return 1;
7783 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7784 return 0;
7786 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7787 Note that all SUBREGs of MEM are paradoxical; otherwise they
7788 would have been rewritten. */
7789 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7790 && GET_CODE (SUBREG_REG (y)) == MEM
7791 && rtx_equal_p (SUBREG_REG (y),
7792 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7793 return 1;
7795 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7796 && GET_CODE (SUBREG_REG (x)) == MEM
7797 && rtx_equal_p (SUBREG_REG (x),
7798 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7799 return 1;
7801 /* We used to see if get_last_value of X and Y were the same but that's
7802 not correct. In one direction, we'll cause the assignment to have
7803 the wrong destination and in the case, we'll import a register into this
7804 insn that might have already have been dead. So fail if none of the
7805 above cases are true. */
7806 return 0;
7809 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7810 Return that assignment if so.
7812 We only handle the most common cases. */
7814 static rtx
7815 make_field_assignment (x)
7816 rtx x;
7818 rtx dest = SET_DEST (x);
7819 rtx src = SET_SRC (x);
7820 rtx assign;
7821 rtx rhs, lhs;
7822 HOST_WIDE_INT c1;
7823 HOST_WIDE_INT pos;
7824 unsigned HOST_WIDE_INT len;
7825 rtx other;
7826 enum machine_mode mode;
7828 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7829 a clear of a one-bit field. We will have changed it to
7830 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7831 for a SUBREG. */
7833 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7834 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7835 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7836 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7838 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7839 1, 1, 1, 0);
7840 if (assign != 0)
7841 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7842 return x;
7845 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7846 && subreg_lowpart_p (XEXP (src, 0))
7847 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7848 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7849 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7850 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7851 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7853 assign = make_extraction (VOIDmode, dest, 0,
7854 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7855 1, 1, 1, 0);
7856 if (assign != 0)
7857 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7858 return x;
7861 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7862 one-bit field. */
7863 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7864 && XEXP (XEXP (src, 0), 0) == const1_rtx
7865 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7867 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7868 1, 1, 1, 0);
7869 if (assign != 0)
7870 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7871 return x;
7874 /* The other case we handle is assignments into a constant-position
7875 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7876 a mask that has all one bits except for a group of zero bits and
7877 OTHER is known to have zeros where C1 has ones, this is such an
7878 assignment. Compute the position and length from C1. Shift OTHER
7879 to the appropriate position, force it to the required mode, and
7880 make the extraction. Check for the AND in both operands. */
7882 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7883 return x;
7885 rhs = expand_compound_operation (XEXP (src, 0));
7886 lhs = expand_compound_operation (XEXP (src, 1));
7888 if (GET_CODE (rhs) == AND
7889 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7890 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7891 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7892 else if (GET_CODE (lhs) == AND
7893 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7894 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7895 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7896 else
7897 return x;
7899 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7900 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7901 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7902 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7903 return x;
7905 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7906 if (assign == 0)
7907 return x;
7909 /* The mode to use for the source is the mode of the assignment, or of
7910 what is inside a possible STRICT_LOW_PART. */
7911 mode = (GET_CODE (assign) == STRICT_LOW_PART
7912 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7914 /* Shift OTHER right POS places and make it the source, restricting it
7915 to the proper length and mode. */
7917 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7918 GET_MODE (src), other, pos),
7919 mode,
7920 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7921 ? ~(unsigned HOST_WIDE_INT) 0
7922 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7923 dest, 0);
7925 return gen_rtx_SET (VOIDmode, assign, src);
7928 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7929 if so. */
7931 static rtx
7932 apply_distributive_law (x)
7933 rtx x;
7935 enum rtx_code code = GET_CODE (x);
7936 rtx lhs, rhs, other;
7937 rtx tem;
7938 enum rtx_code inner_code;
7940 /* Distributivity is not true for floating point.
7941 It can change the value. So don't do it.
7942 -- rms and moshier@world.std.com. */
7943 if (FLOAT_MODE_P (GET_MODE (x)))
7944 return x;
7946 /* The outer operation can only be one of the following: */
7947 if (code != IOR && code != AND && code != XOR
7948 && code != PLUS && code != MINUS)
7949 return x;
7951 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7953 /* If either operand is a primitive we can't do anything, so get out
7954 fast. */
7955 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7956 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7957 return x;
7959 lhs = expand_compound_operation (lhs);
7960 rhs = expand_compound_operation (rhs);
7961 inner_code = GET_CODE (lhs);
7962 if (inner_code != GET_CODE (rhs))
7963 return x;
7965 /* See if the inner and outer operations distribute. */
7966 switch (inner_code)
7968 case LSHIFTRT:
7969 case ASHIFTRT:
7970 case AND:
7971 case IOR:
7972 /* These all distribute except over PLUS. */
7973 if (code == PLUS || code == MINUS)
7974 return x;
7975 break;
7977 case MULT:
7978 if (code != PLUS && code != MINUS)
7979 return x;
7980 break;
7982 case ASHIFT:
7983 /* This is also a multiply, so it distributes over everything. */
7984 break;
7986 case SUBREG:
7987 /* Non-paradoxical SUBREGs distributes over all operations, provided
7988 the inner modes and byte offsets are the same, this is an extraction
7989 of a low-order part, we don't convert an fp operation to int or
7990 vice versa, and we would not be converting a single-word
7991 operation into a multi-word operation. The latter test is not
7992 required, but it prevents generating unneeded multi-word operations.
7993 Some of the previous tests are redundant given the latter test, but
7994 are retained because they are required for correctness.
7996 We produce the result slightly differently in this case. */
7998 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7999 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8000 || ! subreg_lowpart_p (lhs)
8001 || (GET_MODE_CLASS (GET_MODE (lhs))
8002 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8003 || (GET_MODE_SIZE (GET_MODE (lhs))
8004 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8005 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8006 return x;
8008 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8009 SUBREG_REG (lhs), SUBREG_REG (rhs));
8010 return gen_lowpart_for_combine (GET_MODE (x), tem);
8012 default:
8013 return x;
8016 /* Set LHS and RHS to the inner operands (A and B in the example
8017 above) and set OTHER to the common operand (C in the example).
8018 These is only one way to do this unless the inner operation is
8019 commutative. */
8020 if (GET_RTX_CLASS (inner_code) == 'c'
8021 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8022 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8023 else if (GET_RTX_CLASS (inner_code) == 'c'
8024 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8025 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8026 else if (GET_RTX_CLASS (inner_code) == 'c'
8027 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8028 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8029 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8030 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8031 else
8032 return x;
8034 /* Form the new inner operation, seeing if it simplifies first. */
8035 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
8037 /* There is one exception to the general way of distributing:
8038 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
8039 if (code == XOR && inner_code == IOR)
8041 inner_code = AND;
8042 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8045 /* We may be able to continuing distributing the result, so call
8046 ourselves recursively on the inner operation before forming the
8047 outer operation, which we return. */
8048 return gen_binary (inner_code, GET_MODE (x),
8049 apply_distributive_law (tem), other);
8052 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8053 in MODE.
8055 Return an equivalent form, if different from X. Otherwise, return X. If
8056 X is zero, we are to always construct the equivalent form. */
8058 static rtx
8059 simplify_and_const_int (x, mode, varop, constop)
8060 rtx x;
8061 enum machine_mode mode;
8062 rtx varop;
8063 unsigned HOST_WIDE_INT constop;
8065 unsigned HOST_WIDE_INT nonzero;
8066 int i;
8068 /* Simplify VAROP knowing that we will be only looking at some of the
8069 bits in it.
8071 Note by passing in CONSTOP, we guarantee that the bits not set in
8072 CONSTOP are not significant and will never be examined. We must
8073 ensure that is the case by explicitly masking out those bits
8074 before returning. */
8075 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8077 /* If VAROP is a CLOBBER, we will fail so return it. */
8078 if (GET_CODE (varop) == CLOBBER)
8079 return varop;
8081 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8082 to VAROP and return the new constant. */
8083 if (GET_CODE (varop) == CONST_INT)
8084 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8086 /* See what bits may be nonzero in VAROP. Unlike the general case of
8087 a call to nonzero_bits, here we don't care about bits outside
8088 MODE. */
8090 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8092 /* Turn off all bits in the constant that are known to already be zero.
8093 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8094 which is tested below. */
8096 constop &= nonzero;
8098 /* If we don't have any bits left, return zero. */
8099 if (constop == 0)
8100 return const0_rtx;
8102 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8103 a power of two, we can replace this with an ASHIFT. */
8104 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8105 && (i = exact_log2 (constop)) >= 0)
8106 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8108 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8109 or XOR, then try to apply the distributive law. This may eliminate
8110 operations if either branch can be simplified because of the AND.
8111 It may also make some cases more complex, but those cases probably
8112 won't match a pattern either with or without this. */
8114 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8115 return
8116 gen_lowpart_for_combine
8117 (mode,
8118 apply_distributive_law
8119 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8120 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8121 XEXP (varop, 0), constop),
8122 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8123 XEXP (varop, 1), constop))));
8125 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8126 the AND and see if one of the operands simplifies to zero. If so, we
8127 may eliminate it. */
8129 if (GET_CODE (varop) == PLUS
8130 && exact_log2 (constop + 1) >= 0)
8132 rtx o0, o1;
8134 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8135 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8136 if (o0 == const0_rtx)
8137 return o1;
8138 if (o1 == const0_rtx)
8139 return o0;
8142 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8143 if we already had one (just check for the simplest cases). */
8144 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8145 && GET_MODE (XEXP (x, 0)) == mode
8146 && SUBREG_REG (XEXP (x, 0)) == varop)
8147 varop = XEXP (x, 0);
8148 else
8149 varop = gen_lowpart_for_combine (mode, varop);
8151 /* If we can't make the SUBREG, try to return what we were given. */
8152 if (GET_CODE (varop) == CLOBBER)
8153 return x ? x : varop;
8155 /* If we are only masking insignificant bits, return VAROP. */
8156 if (constop == nonzero)
8157 x = varop;
8158 else
8160 /* Otherwise, return an AND. */
8161 constop = trunc_int_for_mode (constop, mode);
8162 /* See how much, if any, of X we can use. */
8163 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8164 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8166 else
8168 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8169 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8170 SUBST (XEXP (x, 1), GEN_INT (constop));
8172 SUBST (XEXP (x, 0), varop);
8176 return x;
8179 #define nonzero_bits_with_known(X, MODE) \
8180 cached_nonzero_bits (X, MODE, known_x, known_mode, known_ret)
8182 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
8183 It avoids exponential behavior in nonzero_bits1 when X has
8184 identical subexpressions on the first or the second level. */
8186 static unsigned HOST_WIDE_INT
8187 cached_nonzero_bits (x, mode, known_x, known_mode, known_ret)
8188 rtx x;
8189 enum machine_mode mode;
8190 rtx known_x;
8191 enum machine_mode known_mode;
8192 unsigned HOST_WIDE_INT known_ret;
8194 if (x == known_x && mode == known_mode)
8195 return known_ret;
8197 /* Try to find identical subexpressions. If found call
8198 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
8199 precomputed value for the subexpression as KNOWN_RET. */
8201 if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8202 || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8204 rtx x0 = XEXP (x, 0);
8205 rtx x1 = XEXP (x, 1);
8207 /* Check the first level. */
8208 if (x0 == x1)
8209 return nonzero_bits1 (x, mode, x0, mode,
8210 nonzero_bits_with_known (x0, mode));
8212 /* Check the second level. */
8213 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8214 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8215 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8216 return nonzero_bits1 (x, mode, x1, mode,
8217 nonzero_bits_with_known (x1, mode));
8219 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8220 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8221 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8222 return nonzero_bits1 (x, mode, x0, mode,
8223 nonzero_bits_with_known (x0, mode));
8226 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
8229 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8230 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8231 is less useful. We can't allow both, because that results in exponential
8232 run time recursion. There is a nullstone testcase that triggered
8233 this. This macro avoids accidental uses of num_sign_bit_copies. */
8234 #define cached_num_sign_bit_copies()
8236 /* Given an expression, X, compute which bits in X can be nonzero.
8237 We don't care about bits outside of those defined in MODE.
8239 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8240 a shift, AND, or zero_extract, we can do better. */
8242 static unsigned HOST_WIDE_INT
8243 nonzero_bits1 (x, mode, known_x, known_mode, known_ret)
8244 rtx x;
8245 enum machine_mode mode;
8246 rtx known_x;
8247 enum machine_mode known_mode;
8248 unsigned HOST_WIDE_INT known_ret;
8250 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8251 unsigned HOST_WIDE_INT inner_nz;
8252 enum rtx_code code;
8253 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8254 rtx tem;
8256 /* For floating-point values, assume all bits are needed. */
8257 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8258 return nonzero;
8260 /* If X is wider than MODE, use its mode instead. */
8261 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8263 mode = GET_MODE (x);
8264 nonzero = GET_MODE_MASK (mode);
8265 mode_width = GET_MODE_BITSIZE (mode);
8268 if (mode_width > HOST_BITS_PER_WIDE_INT)
8269 /* Our only callers in this case look for single bit values. So
8270 just return the mode mask. Those tests will then be false. */
8271 return nonzero;
8273 #ifndef WORD_REGISTER_OPERATIONS
8274 /* If MODE is wider than X, but both are a single word for both the host
8275 and target machines, we can compute this from which bits of the
8276 object might be nonzero in its own mode, taking into account the fact
8277 that on many CISC machines, accessing an object in a wider mode
8278 causes the high-order bits to become undefined. So they are
8279 not known to be zero. */
8281 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8282 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8283 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8284 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8286 nonzero &= nonzero_bits_with_known (x, GET_MODE (x));
8287 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8288 return nonzero;
8290 #endif
8292 code = GET_CODE (x);
8293 switch (code)
8295 case REG:
8296 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8297 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8298 all the bits above ptr_mode are known to be zero. */
8299 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8300 && REG_POINTER (x))
8301 nonzero &= GET_MODE_MASK (ptr_mode);
8302 #endif
8304 /* Include declared information about alignment of pointers. */
8305 /* ??? We don't properly preserve REG_POINTER changes across
8306 pointer-to-integer casts, so we can't trust it except for
8307 things that we know must be pointers. See execute/960116-1.c. */
8308 if ((x == stack_pointer_rtx
8309 || x == frame_pointer_rtx
8310 || x == arg_pointer_rtx)
8311 && REGNO_POINTER_ALIGN (REGNO (x)))
8313 unsigned HOST_WIDE_INT alignment
8314 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8316 #ifdef PUSH_ROUNDING
8317 /* If PUSH_ROUNDING is defined, it is possible for the
8318 stack to be momentarily aligned only to that amount,
8319 so we pick the least alignment. */
8320 if (x == stack_pointer_rtx && PUSH_ARGS)
8321 alignment = MIN (PUSH_ROUNDING (1), alignment);
8322 #endif
8324 nonzero &= ~(alignment - 1);
8327 /* If X is a register whose nonzero bits value is current, use it.
8328 Otherwise, if X is a register whose value we can find, use that
8329 value. Otherwise, use the previously-computed global nonzero bits
8330 for this register. */
8332 if (reg_last_set_value[REGNO (x)] != 0
8333 && (reg_last_set_mode[REGNO (x)] == mode
8334 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8335 && GET_MODE_CLASS (mode) == MODE_INT))
8336 && (reg_last_set_label[REGNO (x)] == label_tick
8337 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8338 && REG_N_SETS (REGNO (x)) == 1
8339 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8340 REGNO (x))))
8341 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8342 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8344 tem = get_last_value (x);
8346 if (tem)
8348 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8349 /* If X is narrower than MODE and TEM is a non-negative
8350 constant that would appear negative in the mode of X,
8351 sign-extend it for use in reg_nonzero_bits because some
8352 machines (maybe most) will actually do the sign-extension
8353 and this is the conservative approach.
8355 ??? For 2.5, try to tighten up the MD files in this regard
8356 instead of this kludge. */
8358 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8359 && GET_CODE (tem) == CONST_INT
8360 && INTVAL (tem) > 0
8361 && 0 != (INTVAL (tem)
8362 & ((HOST_WIDE_INT) 1
8363 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8364 tem = GEN_INT (INTVAL (tem)
8365 | ((HOST_WIDE_INT) (-1)
8366 << GET_MODE_BITSIZE (GET_MODE (x))));
8367 #endif
8368 return nonzero_bits_with_known (tem, mode) & nonzero;
8370 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8372 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8374 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8375 /* We don't know anything about the upper bits. */
8376 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8377 return nonzero & mask;
8379 else
8380 return nonzero;
8382 case CONST_INT:
8383 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8384 /* If X is negative in MODE, sign-extend the value. */
8385 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8386 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8387 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8388 #endif
8390 return INTVAL (x);
8392 case MEM:
8393 #ifdef LOAD_EXTEND_OP
8394 /* In many, if not most, RISC machines, reading a byte from memory
8395 zeros the rest of the register. Noticing that fact saves a lot
8396 of extra zero-extends. */
8397 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8398 nonzero &= GET_MODE_MASK (GET_MODE (x));
8399 #endif
8400 break;
8402 case EQ: case NE:
8403 case UNEQ: case LTGT:
8404 case GT: case GTU: case UNGT:
8405 case LT: case LTU: case UNLT:
8406 case GE: case GEU: case UNGE:
8407 case LE: case LEU: case UNLE:
8408 case UNORDERED: case ORDERED:
8410 /* If this produces an integer result, we know which bits are set.
8411 Code here used to clear bits outside the mode of X, but that is
8412 now done above. */
8414 if (GET_MODE_CLASS (mode) == MODE_INT
8415 && mode_width <= HOST_BITS_PER_WIDE_INT)
8416 nonzero = STORE_FLAG_VALUE;
8417 break;
8419 case NEG:
8420 #if 0
8421 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8422 and num_sign_bit_copies. */
8423 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8424 == GET_MODE_BITSIZE (GET_MODE (x)))
8425 nonzero = 1;
8426 #endif
8428 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8429 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8430 break;
8432 case ABS:
8433 #if 0
8434 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8435 and num_sign_bit_copies. */
8436 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8437 == GET_MODE_BITSIZE (GET_MODE (x)))
8438 nonzero = 1;
8439 #endif
8440 break;
8442 case TRUNCATE:
8443 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8444 & GET_MODE_MASK (mode));
8445 break;
8447 case ZERO_EXTEND:
8448 nonzero &= nonzero_bits_with_known (XEXP (x, 0), mode);
8449 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8450 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8451 break;
8453 case SIGN_EXTEND:
8454 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8455 Otherwise, show all the bits in the outer mode but not the inner
8456 may be nonzero. */
8457 inner_nz = nonzero_bits_with_known (XEXP (x, 0), mode);
8458 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8460 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8461 if (inner_nz
8462 & (((HOST_WIDE_INT) 1
8463 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8464 inner_nz |= (GET_MODE_MASK (mode)
8465 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8468 nonzero &= inner_nz;
8469 break;
8471 case AND:
8472 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8473 & nonzero_bits_with_known (XEXP (x, 1), mode));
8474 break;
8476 case XOR: case IOR:
8477 case UMIN: case UMAX: case SMIN: case SMAX:
8479 unsigned HOST_WIDE_INT nonzero0 =
8480 nonzero_bits_with_known (XEXP (x, 0), mode);
8482 /* Don't call nonzero_bits for the second time if it cannot change
8483 anything. */
8484 if ((nonzero & nonzero0) != nonzero)
8485 nonzero &= (nonzero0
8486 | nonzero_bits_with_known (XEXP (x, 1), mode));
8488 break;
8490 case PLUS: case MINUS:
8491 case MULT:
8492 case DIV: case UDIV:
8493 case MOD: case UMOD:
8494 /* We can apply the rules of arithmetic to compute the number of
8495 high- and low-order zero bits of these operations. We start by
8496 computing the width (position of the highest-order nonzero bit)
8497 and the number of low-order zero bits for each value. */
8499 unsigned HOST_WIDE_INT nz0 =
8500 nonzero_bits_with_known (XEXP (x, 0), mode);
8501 unsigned HOST_WIDE_INT nz1 =
8502 nonzero_bits_with_known (XEXP (x, 1), mode);
8503 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
8504 int width0 = floor_log2 (nz0) + 1;
8505 int width1 = floor_log2 (nz1) + 1;
8506 int low0 = floor_log2 (nz0 & -nz0);
8507 int low1 = floor_log2 (nz1 & -nz1);
8508 HOST_WIDE_INT op0_maybe_minusp
8509 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
8510 HOST_WIDE_INT op1_maybe_minusp
8511 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
8512 unsigned int result_width = mode_width;
8513 int result_low = 0;
8515 switch (code)
8517 case PLUS:
8518 result_width = MAX (width0, width1) + 1;
8519 result_low = MIN (low0, low1);
8520 break;
8521 case MINUS:
8522 result_low = MIN (low0, low1);
8523 break;
8524 case MULT:
8525 result_width = width0 + width1;
8526 result_low = low0 + low1;
8527 break;
8528 case DIV:
8529 if (width1 == 0)
8530 break;
8531 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8532 result_width = width0;
8533 break;
8534 case UDIV:
8535 if (width1 == 0)
8536 break;
8537 result_width = width0;
8538 break;
8539 case MOD:
8540 if (width1 == 0)
8541 break;
8542 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8543 result_width = MIN (width0, width1);
8544 result_low = MIN (low0, low1);
8545 break;
8546 case UMOD:
8547 if (width1 == 0)
8548 break;
8549 result_width = MIN (width0, width1);
8550 result_low = MIN (low0, low1);
8551 break;
8552 default:
8553 abort ();
8556 if (result_width < mode_width)
8557 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8559 if (result_low > 0)
8560 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8562 #ifdef POINTERS_EXTEND_UNSIGNED
8563 /* If pointers extend unsigned and this is an addition or subtraction
8564 to a pointer in Pmode, all the bits above ptr_mode are known to be
8565 zero. */
8566 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8567 && (code == PLUS || code == MINUS)
8568 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8569 nonzero &= GET_MODE_MASK (ptr_mode);
8570 #endif
8572 break;
8574 case ZERO_EXTRACT:
8575 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8576 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8577 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8578 break;
8580 case SUBREG:
8581 /* If this is a SUBREG formed for a promoted variable that has
8582 been zero-extended, we know that at least the high-order bits
8583 are zero, though others might be too. */
8585 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8586 nonzero = (GET_MODE_MASK (GET_MODE (x))
8587 & nonzero_bits_with_known (SUBREG_REG (x), GET_MODE (x)));
8589 /* If the inner mode is a single word for both the host and target
8590 machines, we can compute this from which bits of the inner
8591 object might be nonzero. */
8592 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8593 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8594 <= HOST_BITS_PER_WIDE_INT))
8596 nonzero &= nonzero_bits_with_known (SUBREG_REG (x), mode);
8598 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8599 /* If this is a typical RISC machine, we only have to worry
8600 about the way loads are extended. */
8601 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8602 ? (((nonzero
8603 & (((unsigned HOST_WIDE_INT) 1
8604 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8605 != 0))
8606 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8607 || GET_CODE (SUBREG_REG (x)) != MEM)
8608 #endif
8610 /* On many CISC machines, accessing an object in a wider mode
8611 causes the high-order bits to become undefined. So they are
8612 not known to be zero. */
8613 if (GET_MODE_SIZE (GET_MODE (x))
8614 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8615 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8616 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8619 break;
8621 case ASHIFTRT:
8622 case LSHIFTRT:
8623 case ASHIFT:
8624 case ROTATE:
8625 /* The nonzero bits are in two classes: any bits within MODE
8626 that aren't in GET_MODE (x) are always significant. The rest of the
8627 nonzero bits are those that are significant in the operand of
8628 the shift when shifted the appropriate number of bits. This
8629 shows that high-order bits are cleared by the right shift and
8630 low-order bits by left shifts. */
8631 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8632 && INTVAL (XEXP (x, 1)) >= 0
8633 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8635 enum machine_mode inner_mode = GET_MODE (x);
8636 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8637 int count = INTVAL (XEXP (x, 1));
8638 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8639 unsigned HOST_WIDE_INT op_nonzero =
8640 nonzero_bits_with_known (XEXP (x, 0), mode);
8641 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8642 unsigned HOST_WIDE_INT outer = 0;
8644 if (mode_width > width)
8645 outer = (op_nonzero & nonzero & ~mode_mask);
8647 if (code == LSHIFTRT)
8648 inner >>= count;
8649 else if (code == ASHIFTRT)
8651 inner >>= count;
8653 /* If the sign bit may have been nonzero before the shift, we
8654 need to mark all the places it could have been copied to
8655 by the shift as possibly nonzero. */
8656 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8657 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8659 else if (code == ASHIFT)
8660 inner <<= count;
8661 else
8662 inner = ((inner << (count % width)
8663 | (inner >> (width - (count % width)))) & mode_mask);
8665 nonzero &= (outer | inner);
8667 break;
8669 case FFS:
8670 case POPCOUNT:
8671 /* This is at most the number of bits in the mode. */
8672 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
8673 break;
8675 case CLZ:
8676 /* If CLZ has a known value at zero, then the nonzero bits are
8677 that value, plus the number of bits in the mode minus one. */
8678 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8679 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8680 else
8681 nonzero = -1;
8682 break;
8684 case CTZ:
8685 /* If CTZ has a known value at zero, then the nonzero bits are
8686 that value, plus the number of bits in the mode minus one. */
8687 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8688 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8689 else
8690 nonzero = -1;
8691 break;
8693 case PARITY:
8694 nonzero = 1;
8695 break;
8697 case IF_THEN_ELSE:
8698 nonzero &= (nonzero_bits_with_known (XEXP (x, 1), mode)
8699 | nonzero_bits_with_known (XEXP (x, 2), mode));
8700 break;
8702 default:
8703 break;
8706 return nonzero;
8709 /* See the macro definition above. */
8710 #undef cached_num_sign_bit_copies
8712 #define num_sign_bit_copies_with_known(X, M) \
8713 cached_num_sign_bit_copies (X, M, known_x, known_mode, known_ret)
8715 /* The function cached_num_sign_bit_copies is a wrapper around
8716 num_sign_bit_copies1. It avoids exponential behavior in
8717 num_sign_bit_copies1 when X has identical subexpressions on the
8718 first or the second level. */
8720 static unsigned int
8721 cached_num_sign_bit_copies (x, mode, known_x, known_mode, known_ret)
8722 rtx x;
8723 enum machine_mode mode;
8724 rtx known_x;
8725 enum machine_mode known_mode;
8726 unsigned int known_ret;
8728 if (x == known_x && mode == known_mode)
8729 return known_ret;
8731 /* Try to find identical subexpressions. If found call
8732 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
8733 the precomputed value for the subexpression as KNOWN_RET. */
8735 if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8736 || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8738 rtx x0 = XEXP (x, 0);
8739 rtx x1 = XEXP (x, 1);
8741 /* Check the first level. */
8742 if (x0 == x1)
8743 return
8744 num_sign_bit_copies1 (x, mode, x0, mode,
8745 num_sign_bit_copies_with_known (x0, mode));
8747 /* Check the second level. */
8748 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8749 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8750 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8751 return
8752 num_sign_bit_copies1 (x, mode, x1, mode,
8753 num_sign_bit_copies_with_known (x1, mode));
8755 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8756 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8757 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8758 return
8759 num_sign_bit_copies1 (x, mode, x0, mode,
8760 num_sign_bit_copies_with_known (x0, mode));
8763 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
8766 /* Return the number of bits at the high-order end of X that are known to
8767 be equal to the sign bit. X will be used in mode MODE; if MODE is
8768 VOIDmode, X will be used in its own mode. The returned value will always
8769 be between 1 and the number of bits in MODE. */
8771 static unsigned int
8772 num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret)
8773 rtx x;
8774 enum machine_mode mode;
8775 rtx known_x;
8776 enum machine_mode known_mode;
8777 unsigned int known_ret;
8779 enum rtx_code code = GET_CODE (x);
8780 unsigned int bitwidth;
8781 int num0, num1, result;
8782 unsigned HOST_WIDE_INT nonzero;
8783 rtx tem;
8785 /* If we weren't given a mode, use the mode of X. If the mode is still
8786 VOIDmode, we don't know anything. Likewise if one of the modes is
8787 floating-point. */
8789 if (mode == VOIDmode)
8790 mode = GET_MODE (x);
8792 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8793 return 1;
8795 bitwidth = GET_MODE_BITSIZE (mode);
8797 /* For a smaller object, just ignore the high bits. */
8798 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8800 num0 = num_sign_bit_copies_with_known (x, GET_MODE (x));
8801 return MAX (1,
8802 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8805 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8807 #ifndef WORD_REGISTER_OPERATIONS
8808 /* If this machine does not do all register operations on the entire
8809 register and MODE is wider than the mode of X, we can say nothing
8810 at all about the high-order bits. */
8811 return 1;
8812 #else
8813 /* Likewise on machines that do, if the mode of the object is smaller
8814 than a word and loads of that size don't sign extend, we can say
8815 nothing about the high order bits. */
8816 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8817 #ifdef LOAD_EXTEND_OP
8818 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8819 #endif
8821 return 1;
8822 #endif
8825 switch (code)
8827 case REG:
8829 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8830 /* If pointers extend signed and this is a pointer in Pmode, say that
8831 all the bits above ptr_mode are known to be sign bit copies. */
8832 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8833 && REG_POINTER (x))
8834 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8835 #endif
8837 if (reg_last_set_value[REGNO (x)] != 0
8838 && reg_last_set_mode[REGNO (x)] == mode
8839 && (reg_last_set_label[REGNO (x)] == label_tick
8840 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8841 && REG_N_SETS (REGNO (x)) == 1
8842 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8843 REGNO (x))))
8844 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8845 return reg_last_set_sign_bit_copies[REGNO (x)];
8847 tem = get_last_value (x);
8848 if (tem != 0)
8849 return num_sign_bit_copies_with_known (tem, mode);
8851 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8852 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8853 return reg_sign_bit_copies[REGNO (x)];
8854 break;
8856 case MEM:
8857 #ifdef LOAD_EXTEND_OP
8858 /* Some RISC machines sign-extend all loads of smaller than a word. */
8859 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8860 return MAX (1, ((int) bitwidth
8861 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8862 #endif
8863 break;
8865 case CONST_INT:
8866 /* If the constant is negative, take its 1's complement and remask.
8867 Then see how many zero bits we have. */
8868 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8869 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8870 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8871 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8873 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8875 case SUBREG:
8876 /* If this is a SUBREG for a promoted object that is sign-extended
8877 and we are looking at it in a wider mode, we know that at least the
8878 high-order bits are known to be sign bit copies. */
8880 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8882 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8883 return MAX ((int) bitwidth
8884 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8885 num0);
8888 /* For a smaller object, just ignore the high bits. */
8889 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8891 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), VOIDmode);
8892 return MAX (1, (num0
8893 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8894 - bitwidth)));
8897 #ifdef WORD_REGISTER_OPERATIONS
8898 #ifdef LOAD_EXTEND_OP
8899 /* For paradoxical SUBREGs on machines where all register operations
8900 affect the entire register, just look inside. Note that we are
8901 passing MODE to the recursive call, so the number of sign bit copies
8902 will remain relative to that mode, not the inner mode. */
8904 /* This works only if loads sign extend. Otherwise, if we get a
8905 reload for the inner part, it may be loaded from the stack, and
8906 then we lose all sign bit copies that existed before the store
8907 to the stack. */
8909 if ((GET_MODE_SIZE (GET_MODE (x))
8910 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8911 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8912 && GET_CODE (SUBREG_REG (x)) == MEM)
8913 return num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8914 #endif
8915 #endif
8916 break;
8918 case SIGN_EXTRACT:
8919 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8920 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8921 break;
8923 case SIGN_EXTEND:
8924 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8925 + num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode));
8927 case TRUNCATE:
8928 /* For a smaller object, just ignore the high bits. */
8929 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode);
8930 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8931 - bitwidth)));
8933 case NOT:
8934 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8936 case ROTATE: case ROTATERT:
8937 /* If we are rotating left by a number of bits less than the number
8938 of sign bit copies, we can just subtract that amount from the
8939 number. */
8940 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8941 && INTVAL (XEXP (x, 1)) >= 0
8942 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8944 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8945 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8946 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8948 break;
8950 case NEG:
8951 /* In general, this subtracts one sign bit copy. But if the value
8952 is known to be positive, the number of sign bit copies is the
8953 same as that of the input. Finally, if the input has just one bit
8954 that might be nonzero, all the bits are copies of the sign bit. */
8955 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8956 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8957 return num0 > 1 ? num0 - 1 : 1;
8959 nonzero = nonzero_bits (XEXP (x, 0), mode);
8960 if (nonzero == 1)
8961 return bitwidth;
8963 if (num0 > 1
8964 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8965 num0--;
8967 return num0;
8969 case IOR: case AND: case XOR:
8970 case SMIN: case SMAX: case UMIN: case UMAX:
8971 /* Logical operations will preserve the number of sign-bit copies.
8972 MIN and MAX operations always return one of the operands. */
8973 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8974 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8975 return MIN (num0, num1);
8977 case PLUS: case MINUS:
8978 /* For addition and subtraction, we can have a 1-bit carry. However,
8979 if we are subtracting 1 from a positive number, there will not
8980 be such a carry. Furthermore, if the positive number is known to
8981 be 0 or 1, we know the result is either -1 or 0. */
8983 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8984 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8986 nonzero = nonzero_bits (XEXP (x, 0), mode);
8987 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8988 return (nonzero == 1 || nonzero == 0 ? bitwidth
8989 : bitwidth - floor_log2 (nonzero) - 1);
8992 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8993 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8994 result = MAX (1, MIN (num0, num1) - 1);
8996 #ifdef POINTERS_EXTEND_UNSIGNED
8997 /* If pointers extend signed and this is an addition or subtraction
8998 to a pointer in Pmode, all the bits above ptr_mode are known to be
8999 sign bit copies. */
9000 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
9001 && (code == PLUS || code == MINUS)
9002 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
9003 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
9004 - GET_MODE_BITSIZE (ptr_mode) + 1),
9005 result);
9006 #endif
9007 return result;
9009 case MULT:
9010 /* The number of bits of the product is the sum of the number of
9011 bits of both terms. However, unless one of the terms if known
9012 to be positive, we must allow for an additional bit since negating
9013 a negative number can remove one sign bit copy. */
9015 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
9016 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
9018 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
9019 if (result > 0
9020 && (bitwidth > HOST_BITS_PER_WIDE_INT
9021 || (((nonzero_bits (XEXP (x, 0), mode)
9022 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
9023 && ((nonzero_bits (XEXP (x, 1), mode)
9024 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
9025 result--;
9027 return MAX (1, result);
9029 case UDIV:
9030 /* The result must be <= the first operand. If the first operand
9031 has the high bit set, we know nothing about the number of sign
9032 bit copies. */
9033 if (bitwidth > HOST_BITS_PER_WIDE_INT)
9034 return 1;
9035 else if ((nonzero_bits (XEXP (x, 0), mode)
9036 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
9037 return 1;
9038 else
9039 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
9041 case UMOD:
9042 /* The result must be <= the second operand. */
9043 return num_sign_bit_copies_with_known (XEXP (x, 1), mode);
9045 case DIV:
9046 /* Similar to unsigned division, except that we have to worry about
9047 the case where the divisor is negative, in which case we have
9048 to add 1. */
9049 result = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
9050 if (result > 1
9051 && (bitwidth > HOST_BITS_PER_WIDE_INT
9052 || (nonzero_bits (XEXP (x, 1), mode)
9053 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
9054 result--;
9056 return result;
9058 case MOD:
9059 result = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
9060 if (result > 1
9061 && (bitwidth > HOST_BITS_PER_WIDE_INT
9062 || (nonzero_bits (XEXP (x, 1), mode)
9063 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
9064 result--;
9066 return result;
9068 case ASHIFTRT:
9069 /* Shifts by a constant add to the number of bits equal to the
9070 sign bit. */
9071 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
9072 if (GET_CODE (XEXP (x, 1)) == CONST_INT
9073 && INTVAL (XEXP (x, 1)) > 0)
9074 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
9076 return num0;
9078 case ASHIFT:
9079 /* Left shifts destroy copies. */
9080 if (GET_CODE (XEXP (x, 1)) != CONST_INT
9081 || INTVAL (XEXP (x, 1)) < 0
9082 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
9083 return 1;
9085 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
9086 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
9088 case IF_THEN_ELSE:
9089 num0 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
9090 num1 = num_sign_bit_copies_with_known (XEXP (x, 2), mode);
9091 return MIN (num0, num1);
9093 case EQ: case NE: case GE: case GT: case LE: case LT:
9094 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
9095 case GEU: case GTU: case LEU: case LTU:
9096 case UNORDERED: case ORDERED:
9097 /* If the constant is negative, take its 1's complement and remask.
9098 Then see how many zero bits we have. */
9099 nonzero = STORE_FLAG_VALUE;
9100 if (bitwidth <= HOST_BITS_PER_WIDE_INT
9101 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
9102 nonzero = (~nonzero) & GET_MODE_MASK (mode);
9104 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
9105 break;
9107 default:
9108 break;
9111 /* If we haven't been able to figure it out by one of the above rules,
9112 see if some of the high-order bits are known to be zero. If so,
9113 count those bits and return one less than that amount. If we can't
9114 safely compute the mask for this mode, always return BITWIDTH. */
9116 if (bitwidth > HOST_BITS_PER_WIDE_INT)
9117 return 1;
9119 nonzero = nonzero_bits (x, mode);
9120 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
9121 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
9124 /* Return the number of "extended" bits there are in X, when interpreted
9125 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9126 unsigned quantities, this is the number of high-order zero bits.
9127 For signed quantities, this is the number of copies of the sign bit
9128 minus 1. In both case, this function returns the number of "spare"
9129 bits. For example, if two quantities for which this function returns
9130 at least 1 are added, the addition is known not to overflow.
9132 This function will always return 0 unless called during combine, which
9133 implies that it must be called from a define_split. */
9135 unsigned int
9136 extended_count (x, mode, unsignedp)
9137 rtx x;
9138 enum machine_mode mode;
9139 int unsignedp;
9141 if (nonzero_sign_valid == 0)
9142 return 0;
9144 return (unsignedp
9145 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9146 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9147 - floor_log2 (nonzero_bits (x, mode)))
9148 : 0)
9149 : num_sign_bit_copies (x, mode) - 1);
9152 /* This function is called from `simplify_shift_const' to merge two
9153 outer operations. Specifically, we have already found that we need
9154 to perform operation *POP0 with constant *PCONST0 at the outermost
9155 position. We would now like to also perform OP1 with constant CONST1
9156 (with *POP0 being done last).
9158 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9159 the resulting operation. *PCOMP_P is set to 1 if we would need to
9160 complement the innermost operand, otherwise it is unchanged.
9162 MODE is the mode in which the operation will be done. No bits outside
9163 the width of this mode matter. It is assumed that the width of this mode
9164 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9166 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
9167 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9168 result is simply *PCONST0.
9170 If the resulting operation cannot be expressed as one operation, we
9171 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9173 static int
9174 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
9175 enum rtx_code *pop0;
9176 HOST_WIDE_INT *pconst0;
9177 enum rtx_code op1;
9178 HOST_WIDE_INT const1;
9179 enum machine_mode mode;
9180 int *pcomp_p;
9182 enum rtx_code op0 = *pop0;
9183 HOST_WIDE_INT const0 = *pconst0;
9185 const0 &= GET_MODE_MASK (mode);
9186 const1 &= GET_MODE_MASK (mode);
9188 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9189 if (op0 == AND)
9190 const1 &= const0;
9192 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
9193 if OP0 is SET. */
9195 if (op1 == NIL || op0 == SET)
9196 return 1;
9198 else if (op0 == NIL)
9199 op0 = op1, const0 = const1;
9201 else if (op0 == op1)
9203 switch (op0)
9205 case AND:
9206 const0 &= const1;
9207 break;
9208 case IOR:
9209 const0 |= const1;
9210 break;
9211 case XOR:
9212 const0 ^= const1;
9213 break;
9214 case PLUS:
9215 const0 += const1;
9216 break;
9217 case NEG:
9218 op0 = NIL;
9219 break;
9220 default:
9221 break;
9225 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9226 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9227 return 0;
9229 /* If the two constants aren't the same, we can't do anything. The
9230 remaining six cases can all be done. */
9231 else if (const0 != const1)
9232 return 0;
9234 else
9235 switch (op0)
9237 case IOR:
9238 if (op1 == AND)
9239 /* (a & b) | b == b */
9240 op0 = SET;
9241 else /* op1 == XOR */
9242 /* (a ^ b) | b == a | b */
9244 break;
9246 case XOR:
9247 if (op1 == AND)
9248 /* (a & b) ^ b == (~a) & b */
9249 op0 = AND, *pcomp_p = 1;
9250 else /* op1 == IOR */
9251 /* (a | b) ^ b == a & ~b */
9252 op0 = AND, *pconst0 = ~const0;
9253 break;
9255 case AND:
9256 if (op1 == IOR)
9257 /* (a | b) & b == b */
9258 op0 = SET;
9259 else /* op1 == XOR */
9260 /* (a ^ b) & b) == (~a) & b */
9261 *pcomp_p = 1;
9262 break;
9263 default:
9264 break;
9267 /* Check for NO-OP cases. */
9268 const0 &= GET_MODE_MASK (mode);
9269 if (const0 == 0
9270 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9271 op0 = NIL;
9272 else if (const0 == 0 && op0 == AND)
9273 op0 = SET;
9274 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9275 && op0 == AND)
9276 op0 = NIL;
9278 /* ??? Slightly redundant with the above mask, but not entirely.
9279 Moving this above means we'd have to sign-extend the mode mask
9280 for the final test. */
9281 const0 = trunc_int_for_mode (const0, mode);
9283 *pop0 = op0;
9284 *pconst0 = const0;
9286 return 1;
9289 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9290 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
9291 that we started with.
9293 The shift is normally computed in the widest mode we find in VAROP, as
9294 long as it isn't a different number of words than RESULT_MODE. Exceptions
9295 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9297 static rtx
9298 simplify_shift_const (x, code, result_mode, varop, orig_count)
9299 rtx x;
9300 enum rtx_code code;
9301 enum machine_mode result_mode;
9302 rtx varop;
9303 int orig_count;
9305 enum rtx_code orig_code = code;
9306 unsigned int count;
9307 int signed_count;
9308 enum machine_mode mode = result_mode;
9309 enum machine_mode shift_mode, tmode;
9310 unsigned int mode_words
9311 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9312 /* We form (outer_op (code varop count) (outer_const)). */
9313 enum rtx_code outer_op = NIL;
9314 HOST_WIDE_INT outer_const = 0;
9315 rtx const_rtx;
9316 int complement_p = 0;
9317 rtx new;
9319 /* Make sure and truncate the "natural" shift on the way in. We don't
9320 want to do this inside the loop as it makes it more difficult to
9321 combine shifts. */
9322 #ifdef SHIFT_COUNT_TRUNCATED
9323 if (SHIFT_COUNT_TRUNCATED)
9324 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9325 #endif
9327 /* If we were given an invalid count, don't do anything except exactly
9328 what was requested. */
9330 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9332 if (x)
9333 return x;
9335 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9338 count = orig_count;
9340 /* Unless one of the branches of the `if' in this loop does a `continue',
9341 we will `break' the loop after the `if'. */
9343 while (count != 0)
9345 /* If we have an operand of (clobber (const_int 0)), just return that
9346 value. */
9347 if (GET_CODE (varop) == CLOBBER)
9348 return varop;
9350 /* If we discovered we had to complement VAROP, leave. Making a NOT
9351 here would cause an infinite loop. */
9352 if (complement_p)
9353 break;
9355 /* Convert ROTATERT to ROTATE. */
9356 if (code == ROTATERT)
9358 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9359 code = ROTATE;
9360 if (VECTOR_MODE_P (result_mode))
9361 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9362 else
9363 count = bitsize - count;
9366 /* We need to determine what mode we will do the shift in. If the
9367 shift is a right shift or a ROTATE, we must always do it in the mode
9368 it was originally done in. Otherwise, we can do it in MODE, the
9369 widest mode encountered. */
9370 shift_mode
9371 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9372 ? result_mode : mode);
9374 /* Handle cases where the count is greater than the size of the mode
9375 minus 1. For ASHIFT, use the size minus one as the count (this can
9376 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9377 take the count modulo the size. For other shifts, the result is
9378 zero.
9380 Since these shifts are being produced by the compiler by combining
9381 multiple operations, each of which are defined, we know what the
9382 result is supposed to be. */
9384 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9386 if (code == ASHIFTRT)
9387 count = GET_MODE_BITSIZE (shift_mode) - 1;
9388 else if (code == ROTATE || code == ROTATERT)
9389 count %= GET_MODE_BITSIZE (shift_mode);
9390 else
9392 /* We can't simply return zero because there may be an
9393 outer op. */
9394 varop = const0_rtx;
9395 count = 0;
9396 break;
9400 /* An arithmetic right shift of a quantity known to be -1 or 0
9401 is a no-op. */
9402 if (code == ASHIFTRT
9403 && (num_sign_bit_copies (varop, shift_mode)
9404 == GET_MODE_BITSIZE (shift_mode)))
9406 count = 0;
9407 break;
9410 /* If we are doing an arithmetic right shift and discarding all but
9411 the sign bit copies, this is equivalent to doing a shift by the
9412 bitsize minus one. Convert it into that shift because it will often
9413 allow other simplifications. */
9415 if (code == ASHIFTRT
9416 && (count + num_sign_bit_copies (varop, shift_mode)
9417 >= GET_MODE_BITSIZE (shift_mode)))
9418 count = GET_MODE_BITSIZE (shift_mode) - 1;
9420 /* We simplify the tests below and elsewhere by converting
9421 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9422 `make_compound_operation' will convert it to an ASHIFTRT for
9423 those machines (such as VAX) that don't have an LSHIFTRT. */
9424 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9425 && code == ASHIFTRT
9426 && ((nonzero_bits (varop, shift_mode)
9427 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9428 == 0))
9429 code = LSHIFTRT;
9431 if (code == LSHIFTRT
9432 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9433 && !(nonzero_bits (varop, shift_mode) >> count))
9434 varop = const0_rtx;
9435 if (code == ASHIFT
9436 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9437 && !((nonzero_bits (varop, shift_mode) << count)
9438 & GET_MODE_MASK (shift_mode)))
9439 varop = const0_rtx;
9441 switch (GET_CODE (varop))
9443 case SIGN_EXTEND:
9444 case ZERO_EXTEND:
9445 case SIGN_EXTRACT:
9446 case ZERO_EXTRACT:
9447 new = expand_compound_operation (varop);
9448 if (new != varop)
9450 varop = new;
9451 continue;
9453 break;
9455 case MEM:
9456 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9457 minus the width of a smaller mode, we can do this with a
9458 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9459 if ((code == ASHIFTRT || code == LSHIFTRT)
9460 && ! mode_dependent_address_p (XEXP (varop, 0))
9461 && ! MEM_VOLATILE_P (varop)
9462 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9463 MODE_INT, 1)) != BLKmode)
9465 new = adjust_address_nv (varop, tmode,
9466 BYTES_BIG_ENDIAN ? 0
9467 : count / BITS_PER_UNIT);
9469 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9470 : ZERO_EXTEND, mode, new);
9471 count = 0;
9472 continue;
9474 break;
9476 case USE:
9477 /* Similar to the case above, except that we can only do this if
9478 the resulting mode is the same as that of the underlying
9479 MEM and adjust the address depending on the *bits* endianness
9480 because of the way that bit-field extract insns are defined. */
9481 if ((code == ASHIFTRT || code == LSHIFTRT)
9482 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9483 MODE_INT, 1)) != BLKmode
9484 && tmode == GET_MODE (XEXP (varop, 0)))
9486 if (BITS_BIG_ENDIAN)
9487 new = XEXP (varop, 0);
9488 else
9490 new = copy_rtx (XEXP (varop, 0));
9491 SUBST (XEXP (new, 0),
9492 plus_constant (XEXP (new, 0),
9493 count / BITS_PER_UNIT));
9496 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9497 : ZERO_EXTEND, mode, new);
9498 count = 0;
9499 continue;
9501 break;
9503 case SUBREG:
9504 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9505 the same number of words as what we've seen so far. Then store
9506 the widest mode in MODE. */
9507 if (subreg_lowpart_p (varop)
9508 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9509 > GET_MODE_SIZE (GET_MODE (varop)))
9510 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9511 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9512 == mode_words)
9514 varop = SUBREG_REG (varop);
9515 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9516 mode = GET_MODE (varop);
9517 continue;
9519 break;
9521 case MULT:
9522 /* Some machines use MULT instead of ASHIFT because MULT
9523 is cheaper. But it is still better on those machines to
9524 merge two shifts into one. */
9525 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9526 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9528 varop
9529 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9530 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9531 continue;
9533 break;
9535 case UDIV:
9536 /* Similar, for when divides are cheaper. */
9537 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9538 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9540 varop
9541 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9542 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9543 continue;
9545 break;
9547 case ASHIFTRT:
9548 /* If we are extracting just the sign bit of an arithmetic
9549 right shift, that shift is not needed. However, the sign
9550 bit of a wider mode may be different from what would be
9551 interpreted as the sign bit in a narrower mode, so, if
9552 the result is narrower, don't discard the shift. */
9553 if (code == LSHIFTRT
9554 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9555 && (GET_MODE_BITSIZE (result_mode)
9556 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9558 varop = XEXP (varop, 0);
9559 continue;
9562 /* ... fall through ... */
9564 case LSHIFTRT:
9565 case ASHIFT:
9566 case ROTATE:
9567 /* Here we have two nested shifts. The result is usually the
9568 AND of a new shift with a mask. We compute the result below. */
9569 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9570 && INTVAL (XEXP (varop, 1)) >= 0
9571 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9572 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9573 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9575 enum rtx_code first_code = GET_CODE (varop);
9576 unsigned int first_count = INTVAL (XEXP (varop, 1));
9577 unsigned HOST_WIDE_INT mask;
9578 rtx mask_rtx;
9580 /* We have one common special case. We can't do any merging if
9581 the inner code is an ASHIFTRT of a smaller mode. However, if
9582 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9583 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9584 we can convert it to
9585 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9586 This simplifies certain SIGN_EXTEND operations. */
9587 if (code == ASHIFT && first_code == ASHIFTRT
9588 && count == (unsigned int)
9589 (GET_MODE_BITSIZE (result_mode)
9590 - GET_MODE_BITSIZE (GET_MODE (varop))))
9592 /* C3 has the low-order C1 bits zero. */
9594 mask = (GET_MODE_MASK (mode)
9595 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9597 varop = simplify_and_const_int (NULL_RTX, result_mode,
9598 XEXP (varop, 0), mask);
9599 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9600 varop, count);
9601 count = first_count;
9602 code = ASHIFTRT;
9603 continue;
9606 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9607 than C1 high-order bits equal to the sign bit, we can convert
9608 this to either an ASHIFT or an ASHIFTRT depending on the
9609 two counts.
9611 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9613 if (code == ASHIFTRT && first_code == ASHIFT
9614 && GET_MODE (varop) == shift_mode
9615 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9616 > first_count))
9618 varop = XEXP (varop, 0);
9620 signed_count = count - first_count;
9621 if (signed_count < 0)
9622 count = -signed_count, code = ASHIFT;
9623 else
9624 count = signed_count;
9626 continue;
9629 /* There are some cases we can't do. If CODE is ASHIFTRT,
9630 we can only do this if FIRST_CODE is also ASHIFTRT.
9632 We can't do the case when CODE is ROTATE and FIRST_CODE is
9633 ASHIFTRT.
9635 If the mode of this shift is not the mode of the outer shift,
9636 we can't do this if either shift is a right shift or ROTATE.
9638 Finally, we can't do any of these if the mode is too wide
9639 unless the codes are the same.
9641 Handle the case where the shift codes are the same
9642 first. */
9644 if (code == first_code)
9646 if (GET_MODE (varop) != result_mode
9647 && (code == ASHIFTRT || code == LSHIFTRT
9648 || code == ROTATE))
9649 break;
9651 count += first_count;
9652 varop = XEXP (varop, 0);
9653 continue;
9656 if (code == ASHIFTRT
9657 || (code == ROTATE && first_code == ASHIFTRT)
9658 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9659 || (GET_MODE (varop) != result_mode
9660 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9661 || first_code == ROTATE
9662 || code == ROTATE)))
9663 break;
9665 /* To compute the mask to apply after the shift, shift the
9666 nonzero bits of the inner shift the same way the
9667 outer shift will. */
9669 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9671 mask_rtx
9672 = simplify_binary_operation (code, result_mode, mask_rtx,
9673 GEN_INT (count));
9675 /* Give up if we can't compute an outer operation to use. */
9676 if (mask_rtx == 0
9677 || GET_CODE (mask_rtx) != CONST_INT
9678 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9679 INTVAL (mask_rtx),
9680 result_mode, &complement_p))
9681 break;
9683 /* If the shifts are in the same direction, we add the
9684 counts. Otherwise, we subtract them. */
9685 signed_count = count;
9686 if ((code == ASHIFTRT || code == LSHIFTRT)
9687 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9688 signed_count += first_count;
9689 else
9690 signed_count -= first_count;
9692 /* If COUNT is positive, the new shift is usually CODE,
9693 except for the two exceptions below, in which case it is
9694 FIRST_CODE. If the count is negative, FIRST_CODE should
9695 always be used */
9696 if (signed_count > 0
9697 && ((first_code == ROTATE && code == ASHIFT)
9698 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9699 code = first_code, count = signed_count;
9700 else if (signed_count < 0)
9701 code = first_code, count = -signed_count;
9702 else
9703 count = signed_count;
9705 varop = XEXP (varop, 0);
9706 continue;
9709 /* If we have (A << B << C) for any shift, we can convert this to
9710 (A << C << B). This wins if A is a constant. Only try this if
9711 B is not a constant. */
9713 else if (GET_CODE (varop) == code
9714 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9715 && 0 != (new
9716 = simplify_binary_operation (code, mode,
9717 XEXP (varop, 0),
9718 GEN_INT (count))))
9720 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9721 count = 0;
9722 continue;
9724 break;
9726 case NOT:
9727 /* Make this fit the case below. */
9728 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9729 GEN_INT (GET_MODE_MASK (mode)));
9730 continue;
9732 case IOR:
9733 case AND:
9734 case XOR:
9735 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9736 with C the size of VAROP - 1 and the shift is logical if
9737 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9738 we have an (le X 0) operation. If we have an arithmetic shift
9739 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9740 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9742 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9743 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9744 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9745 && (code == LSHIFTRT || code == ASHIFTRT)
9746 && count == (unsigned int)
9747 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9748 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9750 count = 0;
9751 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9752 const0_rtx);
9754 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9755 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9757 continue;
9760 /* If we have (shift (logical)), move the logical to the outside
9761 to allow it to possibly combine with another logical and the
9762 shift to combine with another shift. This also canonicalizes to
9763 what a ZERO_EXTRACT looks like. Also, some machines have
9764 (and (shift)) insns. */
9766 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9767 && (new = simplify_binary_operation (code, result_mode,
9768 XEXP (varop, 1),
9769 GEN_INT (count))) != 0
9770 && GET_CODE (new) == CONST_INT
9771 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9772 INTVAL (new), result_mode, &complement_p))
9774 varop = XEXP (varop, 0);
9775 continue;
9778 /* If we can't do that, try to simplify the shift in each arm of the
9779 logical expression, make a new logical expression, and apply
9780 the inverse distributive law. */
9782 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9783 XEXP (varop, 0), count);
9784 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9785 XEXP (varop, 1), count);
9787 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9788 varop = apply_distributive_law (varop);
9790 count = 0;
9792 break;
9794 case EQ:
9795 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9796 says that the sign bit can be tested, FOO has mode MODE, C is
9797 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9798 that may be nonzero. */
9799 if (code == LSHIFTRT
9800 && XEXP (varop, 1) == const0_rtx
9801 && GET_MODE (XEXP (varop, 0)) == result_mode
9802 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9803 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9804 && ((STORE_FLAG_VALUE
9805 & ((HOST_WIDE_INT) 1
9806 < (GET_MODE_BITSIZE (result_mode) - 1))))
9807 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9808 && merge_outer_ops (&outer_op, &outer_const, XOR,
9809 (HOST_WIDE_INT) 1, result_mode,
9810 &complement_p))
9812 varop = XEXP (varop, 0);
9813 count = 0;
9814 continue;
9816 break;
9818 case NEG:
9819 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9820 than the number of bits in the mode is equivalent to A. */
9821 if (code == LSHIFTRT
9822 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9823 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9825 varop = XEXP (varop, 0);
9826 count = 0;
9827 continue;
9830 /* NEG commutes with ASHIFT since it is multiplication. Move the
9831 NEG outside to allow shifts to combine. */
9832 if (code == ASHIFT
9833 && merge_outer_ops (&outer_op, &outer_const, NEG,
9834 (HOST_WIDE_INT) 0, result_mode,
9835 &complement_p))
9837 varop = XEXP (varop, 0);
9838 continue;
9840 break;
9842 case PLUS:
9843 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9844 is one less than the number of bits in the mode is
9845 equivalent to (xor A 1). */
9846 if (code == LSHIFTRT
9847 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9848 && XEXP (varop, 1) == constm1_rtx
9849 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9850 && merge_outer_ops (&outer_op, &outer_const, XOR,
9851 (HOST_WIDE_INT) 1, result_mode,
9852 &complement_p))
9854 count = 0;
9855 varop = XEXP (varop, 0);
9856 continue;
9859 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9860 that might be nonzero in BAR are those being shifted out and those
9861 bits are known zero in FOO, we can replace the PLUS with FOO.
9862 Similarly in the other operand order. This code occurs when
9863 we are computing the size of a variable-size array. */
9865 if ((code == ASHIFTRT || code == LSHIFTRT)
9866 && count < HOST_BITS_PER_WIDE_INT
9867 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9868 && (nonzero_bits (XEXP (varop, 1), result_mode)
9869 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9871 varop = XEXP (varop, 0);
9872 continue;
9874 else if ((code == ASHIFTRT || code == LSHIFTRT)
9875 && count < HOST_BITS_PER_WIDE_INT
9876 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9877 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9878 >> count)
9879 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9880 & nonzero_bits (XEXP (varop, 1),
9881 result_mode)))
9883 varop = XEXP (varop, 1);
9884 continue;
9887 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9888 if (code == ASHIFT
9889 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9890 && (new = simplify_binary_operation (ASHIFT, result_mode,
9891 XEXP (varop, 1),
9892 GEN_INT (count))) != 0
9893 && GET_CODE (new) == CONST_INT
9894 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9895 INTVAL (new), result_mode, &complement_p))
9897 varop = XEXP (varop, 0);
9898 continue;
9900 break;
9902 case MINUS:
9903 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9904 with C the size of VAROP - 1 and the shift is logical if
9905 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9906 we have a (gt X 0) operation. If the shift is arithmetic with
9907 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9908 we have a (neg (gt X 0)) operation. */
9910 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9911 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9912 && count == (unsigned int)
9913 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9914 && (code == LSHIFTRT || code == ASHIFTRT)
9915 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9916 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9917 == count
9918 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9920 count = 0;
9921 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9922 const0_rtx);
9924 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9925 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9927 continue;
9929 break;
9931 case TRUNCATE:
9932 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9933 if the truncate does not affect the value. */
9934 if (code == LSHIFTRT
9935 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9936 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9937 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9938 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9939 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9941 rtx varop_inner = XEXP (varop, 0);
9943 varop_inner
9944 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9945 XEXP (varop_inner, 0),
9946 GEN_INT
9947 (count + INTVAL (XEXP (varop_inner, 1))));
9948 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9949 count = 0;
9950 continue;
9952 break;
9954 default:
9955 break;
9958 break;
9961 /* We need to determine what mode to do the shift in. If the shift is
9962 a right shift or ROTATE, we must always do it in the mode it was
9963 originally done in. Otherwise, we can do it in MODE, the widest mode
9964 encountered. The code we care about is that of the shift that will
9965 actually be done, not the shift that was originally requested. */
9966 shift_mode
9967 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9968 ? result_mode : mode);
9970 /* We have now finished analyzing the shift. The result should be
9971 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9972 OUTER_OP is non-NIL, it is an operation that needs to be applied
9973 to the result of the shift. OUTER_CONST is the relevant constant,
9974 but we must turn off all bits turned off in the shift.
9976 If we were passed a value for X, see if we can use any pieces of
9977 it. If not, make new rtx. */
9979 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9980 && GET_CODE (XEXP (x, 1)) == CONST_INT
9981 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9982 const_rtx = XEXP (x, 1);
9983 else
9984 const_rtx = GEN_INT (count);
9986 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9987 && GET_MODE (XEXP (x, 0)) == shift_mode
9988 && SUBREG_REG (XEXP (x, 0)) == varop)
9989 varop = XEXP (x, 0);
9990 else if (GET_MODE (varop) != shift_mode)
9991 varop = gen_lowpart_for_combine (shift_mode, varop);
9993 /* If we can't make the SUBREG, try to return what we were given. */
9994 if (GET_CODE (varop) == CLOBBER)
9995 return x ? x : varop;
9997 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9998 if (new != 0)
9999 x = new;
10000 else
10001 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
10003 /* If we have an outer operation and we just made a shift, it is
10004 possible that we could have simplified the shift were it not
10005 for the outer operation. So try to do the simplification
10006 recursively. */
10008 if (outer_op != NIL && GET_CODE (x) == code
10009 && GET_CODE (XEXP (x, 1)) == CONST_INT)
10010 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
10011 INTVAL (XEXP (x, 1)));
10013 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10014 turn off all the bits that the shift would have turned off. */
10015 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10016 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10017 GET_MODE_MASK (result_mode) >> orig_count);
10019 /* Do the remainder of the processing in RESULT_MODE. */
10020 x = gen_lowpart_for_combine (result_mode, x);
10022 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10023 operation. */
10024 if (complement_p)
10025 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10027 if (outer_op != NIL)
10029 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
10030 outer_const = trunc_int_for_mode (outer_const, result_mode);
10032 if (outer_op == AND)
10033 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10034 else if (outer_op == SET)
10035 /* This means that we have determined that the result is
10036 equivalent to a constant. This should be rare. */
10037 x = GEN_INT (outer_const);
10038 else if (GET_RTX_CLASS (outer_op) == '1')
10039 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10040 else
10041 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
10044 return x;
10047 /* Like recog, but we receive the address of a pointer to a new pattern.
10048 We try to match the rtx that the pointer points to.
10049 If that fails, we may try to modify or replace the pattern,
10050 storing the replacement into the same pointer object.
10052 Modifications include deletion or addition of CLOBBERs.
10054 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10055 the CLOBBERs are placed.
10057 The value is the final insn code from the pattern ultimately matched,
10058 or -1. */
10060 static int
10061 recog_for_combine (pnewpat, insn, pnotes)
10062 rtx *pnewpat;
10063 rtx insn;
10064 rtx *pnotes;
10066 rtx pat = *pnewpat;
10067 int insn_code_number;
10068 int num_clobbers_to_add = 0;
10069 int i;
10070 rtx notes = 0;
10071 rtx dummy_insn;
10073 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10074 we use to indicate that something didn't match. If we find such a
10075 thing, force rejection. */
10076 if (GET_CODE (pat) == PARALLEL)
10077 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10078 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10079 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10080 return -1;
10082 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
10083 instruction for pattern recognition. */
10084 dummy_insn = shallow_copy_rtx (insn);
10085 PATTERN (dummy_insn) = pat;
10086 REG_NOTES (dummy_insn) = 0;
10088 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
10090 /* If it isn't, there is the possibility that we previously had an insn
10091 that clobbered some register as a side effect, but the combined
10092 insn doesn't need to do that. So try once more without the clobbers
10093 unless this represents an ASM insn. */
10095 if (insn_code_number < 0 && ! check_asm_operands (pat)
10096 && GET_CODE (pat) == PARALLEL)
10098 int pos;
10100 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10101 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10103 if (i != pos)
10104 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10105 pos++;
10108 SUBST_INT (XVECLEN (pat, 0), pos);
10110 if (pos == 1)
10111 pat = XVECEXP (pat, 0, 0);
10113 PATTERN (dummy_insn) = pat;
10114 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
10117 /* Recognize all noop sets, these will be killed by followup pass. */
10118 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10119 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10121 /* If we had any clobbers to add, make a new pattern than contains
10122 them. Then check to make sure that all of them are dead. */
10123 if (num_clobbers_to_add)
10125 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10126 rtvec_alloc (GET_CODE (pat) == PARALLEL
10127 ? (XVECLEN (pat, 0)
10128 + num_clobbers_to_add)
10129 : num_clobbers_to_add + 1));
10131 if (GET_CODE (pat) == PARALLEL)
10132 for (i = 0; i < XVECLEN (pat, 0); i++)
10133 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10134 else
10135 XVECEXP (newpat, 0, 0) = pat;
10137 add_clobbers (newpat, insn_code_number);
10139 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10140 i < XVECLEN (newpat, 0); i++)
10142 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
10143 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10144 return -1;
10145 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
10146 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10148 pat = newpat;
10151 *pnewpat = pat;
10152 *pnotes = notes;
10154 return insn_code_number;
10157 /* Like gen_lowpart but for use by combine. In combine it is not possible
10158 to create any new pseudoregs. However, it is safe to create
10159 invalid memory addresses, because combine will try to recognize
10160 them and all they will do is make the combine attempt fail.
10162 If for some reason this cannot do its job, an rtx
10163 (clobber (const_int 0)) is returned.
10164 An insn containing that will not be recognized. */
10166 #undef gen_lowpart
10168 static rtx
10169 gen_lowpart_for_combine (mode, x)
10170 enum machine_mode mode;
10171 rtx x;
10173 rtx result;
10175 if (GET_MODE (x) == mode)
10176 return x;
10178 /* We can only support MODE being wider than a word if X is a
10179 constant integer or has a mode the same size. */
10181 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
10182 && ! ((GET_MODE (x) == VOIDmode
10183 && (GET_CODE (x) == CONST_INT
10184 || GET_CODE (x) == CONST_DOUBLE))
10185 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
10186 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10188 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10189 won't know what to do. So we will strip off the SUBREG here and
10190 process normally. */
10191 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
10193 x = SUBREG_REG (x);
10194 if (GET_MODE (x) == mode)
10195 return x;
10198 result = gen_lowpart_common (mode, x);
10199 #ifdef CANNOT_CHANGE_MODE_CLASS
10200 if (result != 0
10201 && GET_CODE (result) == SUBREG
10202 && GET_CODE (SUBREG_REG (result)) == REG
10203 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
10204 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (result))
10205 * MAX_MACHINE_MODE
10206 + GET_MODE (result));
10207 #endif
10209 if (result)
10210 return result;
10212 if (GET_CODE (x) == MEM)
10214 int offset = 0;
10216 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10217 address. */
10218 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10219 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10221 /* If we want to refer to something bigger than the original memref,
10222 generate a perverse subreg instead. That will force a reload
10223 of the original memref X. */
10224 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
10225 return gen_rtx_SUBREG (mode, x, 0);
10227 if (WORDS_BIG_ENDIAN)
10228 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
10229 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
10231 if (BYTES_BIG_ENDIAN)
10233 /* Adjust the address so that the address-after-the-data is
10234 unchanged. */
10235 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
10236 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
10239 return adjust_address_nv (x, mode, offset);
10242 /* If X is a comparison operator, rewrite it in a new mode. This
10243 probably won't match, but may allow further simplifications. */
10244 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
10245 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
10247 /* If we couldn't simplify X any other way, just enclose it in a
10248 SUBREG. Normally, this SUBREG won't match, but some patterns may
10249 include an explicit SUBREG or we may simplify it further in combine. */
10250 else
10252 int offset = 0;
10253 rtx res;
10254 enum machine_mode sub_mode = GET_MODE (x);
10256 offset = subreg_lowpart_offset (mode, sub_mode);
10257 if (sub_mode == VOIDmode)
10259 sub_mode = int_mode_for_mode (mode);
10260 x = gen_lowpart_common (sub_mode, x);
10262 res = simplify_gen_subreg (mode, x, sub_mode, offset);
10263 if (res)
10264 return res;
10265 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10269 /* These routines make binary and unary operations by first seeing if they
10270 fold; if not, a new expression is allocated. */
10272 static rtx
10273 gen_binary (code, mode, op0, op1)
10274 enum rtx_code code;
10275 enum machine_mode mode;
10276 rtx op0, op1;
10278 rtx result;
10279 rtx tem;
10281 if (GET_RTX_CLASS (code) == 'c'
10282 && swap_commutative_operands_p (op0, op1))
10283 tem = op0, op0 = op1, op1 = tem;
10285 if (GET_RTX_CLASS (code) == '<')
10287 enum machine_mode op_mode = GET_MODE (op0);
10289 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10290 just (REL_OP X Y). */
10291 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10293 op1 = XEXP (op0, 1);
10294 op0 = XEXP (op0, 0);
10295 op_mode = GET_MODE (op0);
10298 if (op_mode == VOIDmode)
10299 op_mode = GET_MODE (op1);
10300 result = simplify_relational_operation (code, op_mode, op0, op1);
10302 else
10303 result = simplify_binary_operation (code, mode, op0, op1);
10305 if (result)
10306 return result;
10308 /* Put complex operands first and constants second. */
10309 if (GET_RTX_CLASS (code) == 'c'
10310 && swap_commutative_operands_p (op0, op1))
10311 return gen_rtx_fmt_ee (code, mode, op1, op0);
10313 /* If we are turning off bits already known off in OP0, we need not do
10314 an AND. */
10315 else if (code == AND && GET_CODE (op1) == CONST_INT
10316 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10317 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10318 return op0;
10320 return gen_rtx_fmt_ee (code, mode, op0, op1);
10323 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10324 comparison code that will be tested.
10326 The result is a possibly different comparison code to use. *POP0 and
10327 *POP1 may be updated.
10329 It is possible that we might detect that a comparison is either always
10330 true or always false. However, we do not perform general constant
10331 folding in combine, so this knowledge isn't useful. Such tautologies
10332 should have been detected earlier. Hence we ignore all such cases. */
10334 static enum rtx_code
10335 simplify_comparison (code, pop0, pop1)
10336 enum rtx_code code;
10337 rtx *pop0;
10338 rtx *pop1;
10340 rtx op0 = *pop0;
10341 rtx op1 = *pop1;
10342 rtx tem, tem1;
10343 int i;
10344 enum machine_mode mode, tmode;
10346 /* Try a few ways of applying the same transformation to both operands. */
10347 while (1)
10349 #ifndef WORD_REGISTER_OPERATIONS
10350 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10351 so check specially. */
10352 if (code != GTU && code != GEU && code != LTU && code != LEU
10353 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10354 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10355 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10356 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10357 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10358 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10359 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10360 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10361 && GET_CODE (XEXP (op1, 1)) == CONST_INT
10362 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10363 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
10364 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
10365 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
10366 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
10367 && (INTVAL (XEXP (op0, 1))
10368 == (GET_MODE_BITSIZE (GET_MODE (op0))
10369 - (GET_MODE_BITSIZE
10370 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10372 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10373 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10375 #endif
10377 /* If both operands are the same constant shift, see if we can ignore the
10378 shift. We can if the shift is a rotate or if the bits shifted out of
10379 this shift are known to be zero for both inputs and if the type of
10380 comparison is compatible with the shift. */
10381 if (GET_CODE (op0) == GET_CODE (op1)
10382 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10383 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10384 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10385 && (code != GT && code != LT && code != GE && code != LE))
10386 || (GET_CODE (op0) == ASHIFTRT
10387 && (code != GTU && code != LTU
10388 && code != GEU && code != LEU)))
10389 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10390 && INTVAL (XEXP (op0, 1)) >= 0
10391 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10392 && XEXP (op0, 1) == XEXP (op1, 1))
10394 enum machine_mode mode = GET_MODE (op0);
10395 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10396 int shift_count = INTVAL (XEXP (op0, 1));
10398 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10399 mask &= (mask >> shift_count) << shift_count;
10400 else if (GET_CODE (op0) == ASHIFT)
10401 mask = (mask & (mask << shift_count)) >> shift_count;
10403 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10404 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10405 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10406 else
10407 break;
10410 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10411 SUBREGs are of the same mode, and, in both cases, the AND would
10412 be redundant if the comparison was done in the narrower mode,
10413 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10414 and the operand's possibly nonzero bits are 0xffffff01; in that case
10415 if we only care about QImode, we don't need the AND). This case
10416 occurs if the output mode of an scc insn is not SImode and
10417 STORE_FLAG_VALUE == 1 (e.g., the 386).
10419 Similarly, check for a case where the AND's are ZERO_EXTEND
10420 operations from some narrower mode even though a SUBREG is not
10421 present. */
10423 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10424 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10425 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10427 rtx inner_op0 = XEXP (op0, 0);
10428 rtx inner_op1 = XEXP (op1, 0);
10429 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10430 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10431 int changed = 0;
10433 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10434 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10435 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10436 && (GET_MODE (SUBREG_REG (inner_op0))
10437 == GET_MODE (SUBREG_REG (inner_op1)))
10438 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10439 <= HOST_BITS_PER_WIDE_INT)
10440 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10441 GET_MODE (SUBREG_REG (inner_op0)))))
10442 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10443 GET_MODE (SUBREG_REG (inner_op1))))))
10445 op0 = SUBREG_REG (inner_op0);
10446 op1 = SUBREG_REG (inner_op1);
10448 /* The resulting comparison is always unsigned since we masked
10449 off the original sign bit. */
10450 code = unsigned_condition (code);
10452 changed = 1;
10455 else if (c0 == c1)
10456 for (tmode = GET_CLASS_NARROWEST_MODE
10457 (GET_MODE_CLASS (GET_MODE (op0)));
10458 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10459 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10461 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10462 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10463 code = unsigned_condition (code);
10464 changed = 1;
10465 break;
10468 if (! changed)
10469 break;
10472 /* If both operands are NOT, we can strip off the outer operation
10473 and adjust the comparison code for swapped operands; similarly for
10474 NEG, except that this must be an equality comparison. */
10475 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10476 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10477 && (code == EQ || code == NE)))
10478 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10480 else
10481 break;
10484 /* If the first operand is a constant, swap the operands and adjust the
10485 comparison code appropriately, but don't do this if the second operand
10486 is already a constant integer. */
10487 if (swap_commutative_operands_p (op0, op1))
10489 tem = op0, op0 = op1, op1 = tem;
10490 code = swap_condition (code);
10493 /* We now enter a loop during which we will try to simplify the comparison.
10494 For the most part, we only are concerned with comparisons with zero,
10495 but some things may really be comparisons with zero but not start
10496 out looking that way. */
10498 while (GET_CODE (op1) == CONST_INT)
10500 enum machine_mode mode = GET_MODE (op0);
10501 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10502 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10503 int equality_comparison_p;
10504 int sign_bit_comparison_p;
10505 int unsigned_comparison_p;
10506 HOST_WIDE_INT const_op;
10508 /* We only want to handle integral modes. This catches VOIDmode,
10509 CCmode, and the floating-point modes. An exception is that we
10510 can handle VOIDmode if OP0 is a COMPARE or a comparison
10511 operation. */
10513 if (GET_MODE_CLASS (mode) != MODE_INT
10514 && ! (mode == VOIDmode
10515 && (GET_CODE (op0) == COMPARE
10516 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10517 break;
10519 /* Get the constant we are comparing against and turn off all bits
10520 not on in our mode. */
10521 const_op = INTVAL (op1);
10522 if (mode != VOIDmode)
10523 const_op = trunc_int_for_mode (const_op, mode);
10524 op1 = GEN_INT (const_op);
10526 /* If we are comparing against a constant power of two and the value
10527 being compared can only have that single bit nonzero (e.g., it was
10528 `and'ed with that bit), we can replace this with a comparison
10529 with zero. */
10530 if (const_op
10531 && (code == EQ || code == NE || code == GE || code == GEU
10532 || code == LT || code == LTU)
10533 && mode_width <= HOST_BITS_PER_WIDE_INT
10534 && exact_log2 (const_op) >= 0
10535 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10537 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10538 op1 = const0_rtx, const_op = 0;
10541 /* Similarly, if we are comparing a value known to be either -1 or
10542 0 with -1, change it to the opposite comparison against zero. */
10544 if (const_op == -1
10545 && (code == EQ || code == NE || code == GT || code == LE
10546 || code == GEU || code == LTU)
10547 && num_sign_bit_copies (op0, mode) == mode_width)
10549 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10550 op1 = const0_rtx, const_op = 0;
10553 /* Do some canonicalizations based on the comparison code. We prefer
10554 comparisons against zero and then prefer equality comparisons.
10555 If we can reduce the size of a constant, we will do that too. */
10557 switch (code)
10559 case LT:
10560 /* < C is equivalent to <= (C - 1) */
10561 if (const_op > 0)
10563 const_op -= 1;
10564 op1 = GEN_INT (const_op);
10565 code = LE;
10566 /* ... fall through to LE case below. */
10568 else
10569 break;
10571 case LE:
10572 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10573 if (const_op < 0)
10575 const_op += 1;
10576 op1 = GEN_INT (const_op);
10577 code = LT;
10580 /* If we are doing a <= 0 comparison on a value known to have
10581 a zero sign bit, we can replace this with == 0. */
10582 else if (const_op == 0
10583 && mode_width <= HOST_BITS_PER_WIDE_INT
10584 && (nonzero_bits (op0, mode)
10585 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10586 code = EQ;
10587 break;
10589 case GE:
10590 /* >= C is equivalent to > (C - 1). */
10591 if (const_op > 0)
10593 const_op -= 1;
10594 op1 = GEN_INT (const_op);
10595 code = GT;
10596 /* ... fall through to GT below. */
10598 else
10599 break;
10601 case GT:
10602 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10603 if (const_op < 0)
10605 const_op += 1;
10606 op1 = GEN_INT (const_op);
10607 code = GE;
10610 /* If we are doing a > 0 comparison on a value known to have
10611 a zero sign bit, we can replace this with != 0. */
10612 else if (const_op == 0
10613 && mode_width <= HOST_BITS_PER_WIDE_INT
10614 && (nonzero_bits (op0, mode)
10615 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10616 code = NE;
10617 break;
10619 case LTU:
10620 /* < C is equivalent to <= (C - 1). */
10621 if (const_op > 0)
10623 const_op -= 1;
10624 op1 = GEN_INT (const_op);
10625 code = LEU;
10626 /* ... fall through ... */
10629 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10630 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10631 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10633 const_op = 0, op1 = const0_rtx;
10634 code = GE;
10635 break;
10637 else
10638 break;
10640 case LEU:
10641 /* unsigned <= 0 is equivalent to == 0 */
10642 if (const_op == 0)
10643 code = EQ;
10645 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10646 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10647 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10649 const_op = 0, op1 = const0_rtx;
10650 code = GE;
10652 break;
10654 case GEU:
10655 /* >= C is equivalent to < (C - 1). */
10656 if (const_op > 1)
10658 const_op -= 1;
10659 op1 = GEN_INT (const_op);
10660 code = GTU;
10661 /* ... fall through ... */
10664 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10665 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10666 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10668 const_op = 0, op1 = const0_rtx;
10669 code = LT;
10670 break;
10672 else
10673 break;
10675 case GTU:
10676 /* unsigned > 0 is equivalent to != 0 */
10677 if (const_op == 0)
10678 code = NE;
10680 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10681 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10682 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10684 const_op = 0, op1 = const0_rtx;
10685 code = LT;
10687 break;
10689 default:
10690 break;
10693 /* Compute some predicates to simplify code below. */
10695 equality_comparison_p = (code == EQ || code == NE);
10696 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10697 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10698 || code == GEU);
10700 /* If this is a sign bit comparison and we can do arithmetic in
10701 MODE, say that we will only be needing the sign bit of OP0. */
10702 if (sign_bit_comparison_p
10703 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10704 op0 = force_to_mode (op0, mode,
10705 ((HOST_WIDE_INT) 1
10706 << (GET_MODE_BITSIZE (mode) - 1)),
10707 NULL_RTX, 0);
10709 /* Now try cases based on the opcode of OP0. If none of the cases
10710 does a "continue", we exit this loop immediately after the
10711 switch. */
10713 switch (GET_CODE (op0))
10715 case ZERO_EXTRACT:
10716 /* If we are extracting a single bit from a variable position in
10717 a constant that has only a single bit set and are comparing it
10718 with zero, we can convert this into an equality comparison
10719 between the position and the location of the single bit. */
10721 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10722 && XEXP (op0, 1) == const1_rtx
10723 && equality_comparison_p && const_op == 0
10724 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10726 if (BITS_BIG_ENDIAN)
10728 enum machine_mode new_mode
10729 = mode_for_extraction (EP_extzv, 1);
10730 if (new_mode == MAX_MACHINE_MODE)
10731 i = BITS_PER_WORD - 1 - i;
10732 else
10734 mode = new_mode;
10735 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10739 op0 = XEXP (op0, 2);
10740 op1 = GEN_INT (i);
10741 const_op = i;
10743 /* Result is nonzero iff shift count is equal to I. */
10744 code = reverse_condition (code);
10745 continue;
10748 /* ... fall through ... */
10750 case SIGN_EXTRACT:
10751 tem = expand_compound_operation (op0);
10752 if (tem != op0)
10754 op0 = tem;
10755 continue;
10757 break;
10759 case NOT:
10760 /* If testing for equality, we can take the NOT of the constant. */
10761 if (equality_comparison_p
10762 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10764 op0 = XEXP (op0, 0);
10765 op1 = tem;
10766 continue;
10769 /* If just looking at the sign bit, reverse the sense of the
10770 comparison. */
10771 if (sign_bit_comparison_p)
10773 op0 = XEXP (op0, 0);
10774 code = (code == GE ? LT : GE);
10775 continue;
10777 break;
10779 case NEG:
10780 /* If testing for equality, we can take the NEG of the constant. */
10781 if (equality_comparison_p
10782 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10784 op0 = XEXP (op0, 0);
10785 op1 = tem;
10786 continue;
10789 /* The remaining cases only apply to comparisons with zero. */
10790 if (const_op != 0)
10791 break;
10793 /* When X is ABS or is known positive,
10794 (neg X) is < 0 if and only if X != 0. */
10796 if (sign_bit_comparison_p
10797 && (GET_CODE (XEXP (op0, 0)) == ABS
10798 || (mode_width <= HOST_BITS_PER_WIDE_INT
10799 && (nonzero_bits (XEXP (op0, 0), mode)
10800 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10802 op0 = XEXP (op0, 0);
10803 code = (code == LT ? NE : EQ);
10804 continue;
10807 /* If we have NEG of something whose two high-order bits are the
10808 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10809 if (num_sign_bit_copies (op0, mode) >= 2)
10811 op0 = XEXP (op0, 0);
10812 code = swap_condition (code);
10813 continue;
10815 break;
10817 case ROTATE:
10818 /* If we are testing equality and our count is a constant, we
10819 can perform the inverse operation on our RHS. */
10820 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10821 && (tem = simplify_binary_operation (ROTATERT, mode,
10822 op1, XEXP (op0, 1))) != 0)
10824 op0 = XEXP (op0, 0);
10825 op1 = tem;
10826 continue;
10829 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10830 a particular bit. Convert it to an AND of a constant of that
10831 bit. This will be converted into a ZERO_EXTRACT. */
10832 if (const_op == 0 && sign_bit_comparison_p
10833 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10834 && mode_width <= HOST_BITS_PER_WIDE_INT)
10836 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10837 ((HOST_WIDE_INT) 1
10838 << (mode_width - 1
10839 - INTVAL (XEXP (op0, 1)))));
10840 code = (code == LT ? NE : EQ);
10841 continue;
10844 /* Fall through. */
10846 case ABS:
10847 /* ABS is ignorable inside an equality comparison with zero. */
10848 if (const_op == 0 && equality_comparison_p)
10850 op0 = XEXP (op0, 0);
10851 continue;
10853 break;
10855 case SIGN_EXTEND:
10856 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10857 to (compare FOO CONST) if CONST fits in FOO's mode and we
10858 are either testing inequality or have an unsigned comparison
10859 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10860 if (! unsigned_comparison_p
10861 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10862 <= HOST_BITS_PER_WIDE_INT)
10863 && ((unsigned HOST_WIDE_INT) const_op
10864 < (((unsigned HOST_WIDE_INT) 1
10865 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10867 op0 = XEXP (op0, 0);
10868 continue;
10870 break;
10872 case SUBREG:
10873 /* Check for the case where we are comparing A - C1 with C2,
10874 both constants are smaller than 1/2 the maximum positive
10875 value in MODE, and the comparison is equality or unsigned.
10876 In that case, if A is either zero-extended to MODE or has
10877 sufficient sign bits so that the high-order bit in MODE
10878 is a copy of the sign in the inner mode, we can prove that it is
10879 safe to do the operation in the wider mode. This simplifies
10880 many range checks. */
10882 if (mode_width <= HOST_BITS_PER_WIDE_INT
10883 && subreg_lowpart_p (op0)
10884 && GET_CODE (SUBREG_REG (op0)) == PLUS
10885 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10886 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10887 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10888 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10889 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10890 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10891 GET_MODE (SUBREG_REG (op0)))
10892 & ~GET_MODE_MASK (mode))
10893 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10894 GET_MODE (SUBREG_REG (op0)))
10895 > (unsigned int)
10896 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10897 - GET_MODE_BITSIZE (mode)))))
10899 op0 = SUBREG_REG (op0);
10900 continue;
10903 /* If the inner mode is narrower and we are extracting the low part,
10904 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10905 if (subreg_lowpart_p (op0)
10906 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10907 /* Fall through */ ;
10908 else
10909 break;
10911 /* ... fall through ... */
10913 case ZERO_EXTEND:
10914 if ((unsigned_comparison_p || equality_comparison_p)
10915 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10916 <= HOST_BITS_PER_WIDE_INT)
10917 && ((unsigned HOST_WIDE_INT) const_op
10918 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10920 op0 = XEXP (op0, 0);
10921 continue;
10923 break;
10925 case PLUS:
10926 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10927 this for equality comparisons due to pathological cases involving
10928 overflows. */
10929 if (equality_comparison_p
10930 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10931 op1, XEXP (op0, 1))))
10933 op0 = XEXP (op0, 0);
10934 op1 = tem;
10935 continue;
10938 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10939 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10940 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10942 op0 = XEXP (XEXP (op0, 0), 0);
10943 code = (code == LT ? EQ : NE);
10944 continue;
10946 break;
10948 case MINUS:
10949 /* We used to optimize signed comparisons against zero, but that
10950 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10951 arrive here as equality comparisons, or (GEU, LTU) are
10952 optimized away. No need to special-case them. */
10954 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10955 (eq B (minus A C)), whichever simplifies. We can only do
10956 this for equality comparisons due to pathological cases involving
10957 overflows. */
10958 if (equality_comparison_p
10959 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10960 XEXP (op0, 1), op1)))
10962 op0 = XEXP (op0, 0);
10963 op1 = tem;
10964 continue;
10967 if (equality_comparison_p
10968 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10969 XEXP (op0, 0), op1)))
10971 op0 = XEXP (op0, 1);
10972 op1 = tem;
10973 continue;
10976 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10977 of bits in X minus 1, is one iff X > 0. */
10978 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10979 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10980 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10981 == mode_width - 1
10982 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10984 op0 = XEXP (op0, 1);
10985 code = (code == GE ? LE : GT);
10986 continue;
10988 break;
10990 case XOR:
10991 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10992 if C is zero or B is a constant. */
10993 if (equality_comparison_p
10994 && 0 != (tem = simplify_binary_operation (XOR, mode,
10995 XEXP (op0, 1), op1)))
10997 op0 = XEXP (op0, 0);
10998 op1 = tem;
10999 continue;
11001 break;
11003 case EQ: case NE:
11004 case UNEQ: case LTGT:
11005 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11006 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11007 case UNORDERED: case ORDERED:
11008 /* We can't do anything if OP0 is a condition code value, rather
11009 than an actual data value. */
11010 if (const_op != 0
11011 || CC0_P (XEXP (op0, 0))
11012 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11013 break;
11015 /* Get the two operands being compared. */
11016 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11017 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11018 else
11019 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11021 /* Check for the cases where we simply want the result of the
11022 earlier test or the opposite of that result. */
11023 if (code == NE || code == EQ
11024 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11025 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11026 && (STORE_FLAG_VALUE
11027 & (((HOST_WIDE_INT) 1
11028 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
11029 && (code == LT || code == GE)))
11031 enum rtx_code new_code;
11032 if (code == LT || code == NE)
11033 new_code = GET_CODE (op0);
11034 else
11035 new_code = combine_reversed_comparison_code (op0);
11037 if (new_code != UNKNOWN)
11039 code = new_code;
11040 op0 = tem;
11041 op1 = tem1;
11042 continue;
11045 break;
11047 case IOR:
11048 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11049 iff X <= 0. */
11050 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11051 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11052 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11054 op0 = XEXP (op0, 1);
11055 code = (code == GE ? GT : LE);
11056 continue;
11058 break;
11060 case AND:
11061 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11062 will be converted to a ZERO_EXTRACT later. */
11063 if (const_op == 0 && equality_comparison_p
11064 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11065 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11067 op0 = simplify_and_const_int
11068 (op0, mode, gen_rtx_LSHIFTRT (mode,
11069 XEXP (op0, 1),
11070 XEXP (XEXP (op0, 0), 1)),
11071 (HOST_WIDE_INT) 1);
11072 continue;
11075 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11076 zero and X is a comparison and C1 and C2 describe only bits set
11077 in STORE_FLAG_VALUE, we can compare with X. */
11078 if (const_op == 0 && equality_comparison_p
11079 && mode_width <= HOST_BITS_PER_WIDE_INT
11080 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11081 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11082 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11083 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11084 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11086 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11087 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11088 if ((~STORE_FLAG_VALUE & mask) == 0
11089 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
11090 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11091 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
11093 op0 = XEXP (XEXP (op0, 0), 0);
11094 continue;
11098 /* If we are doing an equality comparison of an AND of a bit equal
11099 to the sign bit, replace this with a LT or GE comparison of
11100 the underlying value. */
11101 if (equality_comparison_p
11102 && const_op == 0
11103 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11104 && mode_width <= HOST_BITS_PER_WIDE_INT
11105 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11106 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11108 op0 = XEXP (op0, 0);
11109 code = (code == EQ ? GE : LT);
11110 continue;
11113 /* If this AND operation is really a ZERO_EXTEND from a narrower
11114 mode, the constant fits within that mode, and this is either an
11115 equality or unsigned comparison, try to do this comparison in
11116 the narrower mode. */
11117 if ((equality_comparison_p || unsigned_comparison_p)
11118 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11119 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
11120 & GET_MODE_MASK (mode))
11121 + 1)) >= 0
11122 && const_op >> i == 0
11123 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
11125 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
11126 continue;
11129 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
11130 in both M1 and M2 and the SUBREG is either paradoxical or
11131 represents the low part, permute the SUBREG and the AND and
11132 try again. */
11133 if (GET_CODE (XEXP (op0, 0)) == SUBREG
11134 /* Require an integral mode, to avoid creating something like
11135 (AND:SF ...). */
11136 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
11137 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
11138 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
11139 As originally written the upper bits have a defined value
11140 due to the AND operation. However, if we commute the AND
11141 inside the SUBREG then they no longer have defined values
11142 and the meaning of the code has been changed. */
11143 && (0
11144 #ifdef WORD_REGISTER_OPERATIONS
11145 || ((mode_width
11146 > (GET_MODE_BITSIZE
11147 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
11148 && mode_width <= BITS_PER_WORD)
11149 #endif
11150 || ((mode_width
11151 <= (GET_MODE_BITSIZE
11152 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
11153 && subreg_lowpart_p (XEXP (op0, 0))))
11154 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11155 && mode_width <= HOST_BITS_PER_WIDE_INT
11156 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
11157 <= HOST_BITS_PER_WIDE_INT)
11158 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
11159 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
11160 & INTVAL (XEXP (op0, 1)))
11161 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
11162 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11163 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
11167 = gen_lowpart_for_combine
11168 (mode,
11169 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
11170 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
11171 continue;
11174 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11175 (eq (and (lshiftrt X) 1) 0). */
11176 if (const_op == 0 && equality_comparison_p
11177 && XEXP (op0, 1) == const1_rtx
11178 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11179 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
11181 op0 = simplify_and_const_int
11182 (op0, mode,
11183 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
11184 XEXP (XEXP (op0, 0), 1)),
11185 (HOST_WIDE_INT) 1);
11186 code = (code == NE ? EQ : NE);
11187 continue;
11189 break;
11191 case ASHIFT:
11192 /* If we have (compare (ashift FOO N) (const_int C)) and
11193 the high order N bits of FOO (N+1 if an inequality comparison)
11194 are known to be zero, we can do this by comparing FOO with C
11195 shifted right N bits so long as the low-order N bits of C are
11196 zero. */
11197 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11198 && INTVAL (XEXP (op0, 1)) >= 0
11199 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11200 < HOST_BITS_PER_WIDE_INT)
11201 && ((const_op
11202 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11203 && mode_width <= HOST_BITS_PER_WIDE_INT
11204 && (nonzero_bits (XEXP (op0, 0), mode)
11205 & ~(mask >> (INTVAL (XEXP (op0, 1))
11206 + ! equality_comparison_p))) == 0)
11208 /* We must perform a logical shift, not an arithmetic one,
11209 as we want the top N bits of C to be zero. */
11210 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11212 temp >>= INTVAL (XEXP (op0, 1));
11213 op1 = gen_int_mode (temp, mode);
11214 op0 = XEXP (op0, 0);
11215 continue;
11218 /* If we are doing a sign bit comparison, it means we are testing
11219 a particular bit. Convert it to the appropriate AND. */
11220 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
11221 && mode_width <= HOST_BITS_PER_WIDE_INT)
11223 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11224 ((HOST_WIDE_INT) 1
11225 << (mode_width - 1
11226 - INTVAL (XEXP (op0, 1)))));
11227 code = (code == LT ? NE : EQ);
11228 continue;
11231 /* If this an equality comparison with zero and we are shifting
11232 the low bit to the sign bit, we can convert this to an AND of the
11233 low-order bit. */
11234 if (const_op == 0 && equality_comparison_p
11235 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11236 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11237 == mode_width - 1)
11239 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11240 (HOST_WIDE_INT) 1);
11241 continue;
11243 break;
11245 case ASHIFTRT:
11246 /* If this is an equality comparison with zero, we can do this
11247 as a logical shift, which might be much simpler. */
11248 if (equality_comparison_p && const_op == 0
11249 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
11251 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11252 XEXP (op0, 0),
11253 INTVAL (XEXP (op0, 1)));
11254 continue;
11257 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11258 do the comparison in a narrower mode. */
11259 if (! unsigned_comparison_p
11260 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11261 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11262 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11263 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11264 MODE_INT, 1)) != BLKmode
11265 && (((unsigned HOST_WIDE_INT) const_op
11266 + (GET_MODE_MASK (tmode) >> 1) + 1)
11267 <= GET_MODE_MASK (tmode)))
11269 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
11270 continue;
11273 /* Likewise if OP0 is a PLUS of a sign extension with a
11274 constant, which is usually represented with the PLUS
11275 between the shifts. */
11276 if (! unsigned_comparison_p
11277 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11278 && GET_CODE (XEXP (op0, 0)) == PLUS
11279 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11280 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11281 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11282 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11283 MODE_INT, 1)) != BLKmode
11284 && (((unsigned HOST_WIDE_INT) const_op
11285 + (GET_MODE_MASK (tmode) >> 1) + 1)
11286 <= GET_MODE_MASK (tmode)))
11288 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11289 rtx add_const = XEXP (XEXP (op0, 0), 1);
11290 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11291 XEXP (op0, 1));
11293 op0 = gen_binary (PLUS, tmode,
11294 gen_lowpart_for_combine (tmode, inner),
11295 new_const);
11296 continue;
11299 /* ... fall through ... */
11300 case LSHIFTRT:
11301 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11302 the low order N bits of FOO are known to be zero, we can do this
11303 by comparing FOO with C shifted left N bits so long as no
11304 overflow occurs. */
11305 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11306 && INTVAL (XEXP (op0, 1)) >= 0
11307 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11308 && mode_width <= HOST_BITS_PER_WIDE_INT
11309 && (nonzero_bits (XEXP (op0, 0), mode)
11310 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11311 && (((unsigned HOST_WIDE_INT) const_op
11312 + (GET_CODE (op0) != LSHIFTRT
11313 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11314 + 1)
11315 : 0))
11316 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11318 /* If the shift was logical, then we must make the condition
11319 unsigned. */
11320 if (GET_CODE (op0) == LSHIFTRT)
11321 code = unsigned_condition (code);
11323 const_op <<= INTVAL (XEXP (op0, 1));
11324 op1 = GEN_INT (const_op);
11325 op0 = XEXP (op0, 0);
11326 continue;
11329 /* If we are using this shift to extract just the sign bit, we
11330 can replace this with an LT or GE comparison. */
11331 if (const_op == 0
11332 && (equality_comparison_p || sign_bit_comparison_p)
11333 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11334 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11335 == mode_width - 1)
11337 op0 = XEXP (op0, 0);
11338 code = (code == NE || code == GT ? LT : GE);
11339 continue;
11341 break;
11343 default:
11344 break;
11347 break;
11350 /* Now make any compound operations involved in this comparison. Then,
11351 check for an outmost SUBREG on OP0 that is not doing anything or is
11352 paradoxical. The latter transformation must only be performed when
11353 it is known that the "extra" bits will be the same in op0 and op1 or
11354 that they don't matter. There are three cases to consider:
11356 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11357 care bits and we can assume they have any convenient value. So
11358 making the transformation is safe.
11360 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11361 In this case the upper bits of op0 are undefined. We should not make
11362 the simplification in that case as we do not know the contents of
11363 those bits.
11365 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11366 NIL. In that case we know those bits are zeros or ones. We must
11367 also be sure that they are the same as the upper bits of op1.
11369 We can never remove a SUBREG for a non-equality comparison because
11370 the sign bit is in a different place in the underlying object. */
11372 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11373 op1 = make_compound_operation (op1, SET);
11375 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11376 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
11377 implemented. */
11378 && GET_CODE (SUBREG_REG (op0)) == REG
11379 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11380 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11381 && (code == NE || code == EQ))
11383 if (GET_MODE_SIZE (GET_MODE (op0))
11384 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11386 op0 = SUBREG_REG (op0);
11387 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11389 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11390 <= HOST_BITS_PER_WIDE_INT)
11391 && (nonzero_bits (SUBREG_REG (op0),
11392 GET_MODE (SUBREG_REG (op0)))
11393 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11395 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11397 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11398 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11399 op0 = SUBREG_REG (op0), op1 = tem;
11403 /* We now do the opposite procedure: Some machines don't have compare
11404 insns in all modes. If OP0's mode is an integer mode smaller than a
11405 word and we can't do a compare in that mode, see if there is a larger
11406 mode for which we can do the compare. There are a number of cases in
11407 which we can use the wider mode. */
11409 mode = GET_MODE (op0);
11410 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11411 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11412 && ! have_insn_for (COMPARE, mode))
11413 for (tmode = GET_MODE_WIDER_MODE (mode);
11414 (tmode != VOIDmode
11415 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11416 tmode = GET_MODE_WIDER_MODE (tmode))
11417 if (have_insn_for (COMPARE, tmode))
11419 int zero_extended;
11421 /* If the only nonzero bits in OP0 and OP1 are those in the
11422 narrower mode and this is an equality or unsigned comparison,
11423 we can use the wider mode. Similarly for sign-extended
11424 values, in which case it is true for all comparisons. */
11425 zero_extended = ((code == EQ || code == NE
11426 || code == GEU || code == GTU
11427 || code == LEU || code == LTU)
11428 && (nonzero_bits (op0, tmode)
11429 & ~GET_MODE_MASK (mode)) == 0
11430 && ((GET_CODE (op1) == CONST_INT
11431 || (nonzero_bits (op1, tmode)
11432 & ~GET_MODE_MASK (mode)) == 0)));
11434 if (zero_extended
11435 || ((num_sign_bit_copies (op0, tmode)
11436 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11437 - GET_MODE_BITSIZE (mode)))
11438 && (num_sign_bit_copies (op1, tmode)
11439 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11440 - GET_MODE_BITSIZE (mode)))))
11442 /* If OP0 is an AND and we don't have an AND in MODE either,
11443 make a new AND in the proper mode. */
11444 if (GET_CODE (op0) == AND
11445 && !have_insn_for (AND, mode))
11446 op0 = gen_binary (AND, tmode,
11447 gen_lowpart_for_combine (tmode,
11448 XEXP (op0, 0)),
11449 gen_lowpart_for_combine (tmode,
11450 XEXP (op0, 1)));
11452 op0 = gen_lowpart_for_combine (tmode, op0);
11453 if (zero_extended && GET_CODE (op1) == CONST_INT)
11454 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11455 op1 = gen_lowpart_for_combine (tmode, op1);
11456 break;
11459 /* If this is a test for negative, we can make an explicit
11460 test of the sign bit. */
11462 if (op1 == const0_rtx && (code == LT || code == GE)
11463 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11465 op0 = gen_binary (AND, tmode,
11466 gen_lowpart_for_combine (tmode, op0),
11467 GEN_INT ((HOST_WIDE_INT) 1
11468 << (GET_MODE_BITSIZE (mode) - 1)));
11469 code = (code == LT) ? NE : EQ;
11470 break;
11474 #ifdef CANONICALIZE_COMPARISON
11475 /* If this machine only supports a subset of valid comparisons, see if we
11476 can convert an unsupported one into a supported one. */
11477 CANONICALIZE_COMPARISON (code, op0, op1);
11478 #endif
11480 *pop0 = op0;
11481 *pop1 = op1;
11483 return code;
11486 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11487 searching backward. */
11488 static enum rtx_code
11489 combine_reversed_comparison_code (exp)
11490 rtx exp;
11492 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11493 rtx x;
11495 if (code1 != UNKNOWN
11496 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11497 return code1;
11498 /* Otherwise try and find where the condition codes were last set and
11499 use that. */
11500 x = get_last_value (XEXP (exp, 0));
11501 if (!x || GET_CODE (x) != COMPARE)
11502 return UNKNOWN;
11503 return reversed_comparison_code_parts (GET_CODE (exp),
11504 XEXP (x, 0), XEXP (x, 1), NULL);
11507 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11508 Return NULL_RTX in case we fail to do the reversal. */
11509 static rtx
11510 reversed_comparison (exp, mode, op0, op1)
11511 rtx exp, op0, op1;
11512 enum machine_mode mode;
11514 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11515 if (reversed_code == UNKNOWN)
11516 return NULL_RTX;
11517 else
11518 return gen_binary (reversed_code, mode, op0, op1);
11521 /* Utility function for following routine. Called when X is part of a value
11522 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11523 for each register mentioned. Similar to mention_regs in cse.c */
11525 static void
11526 update_table_tick (x)
11527 rtx x;
11529 enum rtx_code code = GET_CODE (x);
11530 const char *fmt = GET_RTX_FORMAT (code);
11531 int i;
11533 if (code == REG)
11535 unsigned int regno = REGNO (x);
11536 unsigned int endregno
11537 = regno + (regno < FIRST_PSEUDO_REGISTER
11538 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11539 unsigned int r;
11541 for (r = regno; r < endregno; r++)
11542 reg_last_set_table_tick[r] = label_tick;
11544 return;
11547 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11548 /* Note that we can't have an "E" in values stored; see
11549 get_last_value_validate. */
11550 if (fmt[i] == 'e')
11552 /* Check for identical subexpressions. If x contains
11553 identical subexpression we only have to traverse one of
11554 them. */
11555 if (i == 0
11556 && (GET_RTX_CLASS (code) == '2'
11557 || GET_RTX_CLASS (code) == 'c'))
11559 /* Note that at this point x1 has already been
11560 processed. */
11561 rtx x0 = XEXP (x, 0);
11562 rtx x1 = XEXP (x, 1);
11564 /* If x0 and x1 are identical then there is no need to
11565 process x0. */
11566 if (x0 == x1)
11567 break;
11569 /* If x0 is identical to a subexpression of x1 then while
11570 processing x1, x0 has already been processed. Thus we
11571 are done with x. */
11572 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11573 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11574 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11575 break;
11577 /* If x1 is identical to a subexpression of x0 then we
11578 still have to process the rest of x0. */
11579 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11580 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11581 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11583 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11584 break;
11588 update_table_tick (XEXP (x, i));
11592 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11593 are saying that the register is clobbered and we no longer know its
11594 value. If INSN is zero, don't update reg_last_set; this is only permitted
11595 with VALUE also zero and is used to invalidate the register. */
11597 static void
11598 record_value_for_reg (reg, insn, value)
11599 rtx reg;
11600 rtx insn;
11601 rtx value;
11603 unsigned int regno = REGNO (reg);
11604 unsigned int endregno
11605 = regno + (regno < FIRST_PSEUDO_REGISTER
11606 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11607 unsigned int i;
11609 /* If VALUE contains REG and we have a previous value for REG, substitute
11610 the previous value. */
11611 if (value && insn && reg_overlap_mentioned_p (reg, value))
11613 rtx tem;
11615 /* Set things up so get_last_value is allowed to see anything set up to
11616 our insn. */
11617 subst_low_cuid = INSN_CUID (insn);
11618 tem = get_last_value (reg);
11620 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11621 it isn't going to be useful and will take a lot of time to process,
11622 so just use the CLOBBER. */
11624 if (tem)
11626 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11627 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11628 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11629 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11630 tem = XEXP (tem, 0);
11632 value = replace_rtx (copy_rtx (value), reg, tem);
11636 /* For each register modified, show we don't know its value, that
11637 we don't know about its bitwise content, that its value has been
11638 updated, and that we don't know the location of the death of the
11639 register. */
11640 for (i = regno; i < endregno; i++)
11642 if (insn)
11643 reg_last_set[i] = insn;
11645 reg_last_set_value[i] = 0;
11646 reg_last_set_mode[i] = 0;
11647 reg_last_set_nonzero_bits[i] = 0;
11648 reg_last_set_sign_bit_copies[i] = 0;
11649 reg_last_death[i] = 0;
11652 /* Mark registers that are being referenced in this value. */
11653 if (value)
11654 update_table_tick (value);
11656 /* Now update the status of each register being set.
11657 If someone is using this register in this block, set this register
11658 to invalid since we will get confused between the two lives in this
11659 basic block. This makes using this register always invalid. In cse, we
11660 scan the table to invalidate all entries using this register, but this
11661 is too much work for us. */
11663 for (i = regno; i < endregno; i++)
11665 reg_last_set_label[i] = label_tick;
11666 if (value && reg_last_set_table_tick[i] == label_tick)
11667 reg_last_set_invalid[i] = 1;
11668 else
11669 reg_last_set_invalid[i] = 0;
11672 /* The value being assigned might refer to X (like in "x++;"). In that
11673 case, we must replace it with (clobber (const_int 0)) to prevent
11674 infinite loops. */
11675 if (value && ! get_last_value_validate (&value, insn,
11676 reg_last_set_label[regno], 0))
11678 value = copy_rtx (value);
11679 if (! get_last_value_validate (&value, insn,
11680 reg_last_set_label[regno], 1))
11681 value = 0;
11684 /* For the main register being modified, update the value, the mode, the
11685 nonzero bits, and the number of sign bit copies. */
11687 reg_last_set_value[regno] = value;
11689 if (value)
11691 enum machine_mode mode = GET_MODE (reg);
11692 subst_low_cuid = INSN_CUID (insn);
11693 reg_last_set_mode[regno] = mode;
11694 if (GET_MODE_CLASS (mode) == MODE_INT
11695 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11696 mode = nonzero_bits_mode;
11697 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11698 reg_last_set_sign_bit_copies[regno]
11699 = num_sign_bit_copies (value, GET_MODE (reg));
11703 /* Called via note_stores from record_dead_and_set_regs to handle one
11704 SET or CLOBBER in an insn. DATA is the instruction in which the
11705 set is occurring. */
11707 static void
11708 record_dead_and_set_regs_1 (dest, setter, data)
11709 rtx dest, setter;
11710 void *data;
11712 rtx record_dead_insn = (rtx) data;
11714 if (GET_CODE (dest) == SUBREG)
11715 dest = SUBREG_REG (dest);
11717 if (GET_CODE (dest) == REG)
11719 /* If we are setting the whole register, we know its value. Otherwise
11720 show that we don't know the value. We can handle SUBREG in
11721 some cases. */
11722 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11723 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11724 else if (GET_CODE (setter) == SET
11725 && GET_CODE (SET_DEST (setter)) == SUBREG
11726 && SUBREG_REG (SET_DEST (setter)) == dest
11727 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11728 && subreg_lowpart_p (SET_DEST (setter)))
11729 record_value_for_reg (dest, record_dead_insn,
11730 gen_lowpart_for_combine (GET_MODE (dest),
11731 SET_SRC (setter)));
11732 else
11733 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11735 else if (GET_CODE (dest) == MEM
11736 /* Ignore pushes, they clobber nothing. */
11737 && ! push_operand (dest, GET_MODE (dest)))
11738 mem_last_set = INSN_CUID (record_dead_insn);
11741 /* Update the records of when each REG was most recently set or killed
11742 for the things done by INSN. This is the last thing done in processing
11743 INSN in the combiner loop.
11745 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11746 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11747 and also the similar information mem_last_set (which insn most recently
11748 modified memory) and last_call_cuid (which insn was the most recent
11749 subroutine call). */
11751 static void
11752 record_dead_and_set_regs (insn)
11753 rtx insn;
11755 rtx link;
11756 unsigned int i;
11758 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11760 if (REG_NOTE_KIND (link) == REG_DEAD
11761 && GET_CODE (XEXP (link, 0)) == REG)
11763 unsigned int regno = REGNO (XEXP (link, 0));
11764 unsigned int endregno
11765 = regno + (regno < FIRST_PSEUDO_REGISTER
11766 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11767 : 1);
11769 for (i = regno; i < endregno; i++)
11770 reg_last_death[i] = insn;
11772 else if (REG_NOTE_KIND (link) == REG_INC)
11773 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11776 if (GET_CODE (insn) == CALL_INSN)
11778 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11779 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11781 reg_last_set_value[i] = 0;
11782 reg_last_set_mode[i] = 0;
11783 reg_last_set_nonzero_bits[i] = 0;
11784 reg_last_set_sign_bit_copies[i] = 0;
11785 reg_last_death[i] = 0;
11788 last_call_cuid = mem_last_set = INSN_CUID (insn);
11790 /* Don't bother recording what this insn does. It might set the
11791 return value register, but we can't combine into a call
11792 pattern anyway, so there's no point trying (and it may cause
11793 a crash, if e.g. we wind up asking for last_set_value of a
11794 SUBREG of the return value register). */
11795 return;
11798 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11801 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11802 register present in the SUBREG, so for each such SUBREG go back and
11803 adjust nonzero and sign bit information of the registers that are
11804 known to have some zero/sign bits set.
11806 This is needed because when combine blows the SUBREGs away, the
11807 information on zero/sign bits is lost and further combines can be
11808 missed because of that. */
11810 static void
11811 record_promoted_value (insn, subreg)
11812 rtx insn;
11813 rtx subreg;
11815 rtx links, set;
11816 unsigned int regno = REGNO (SUBREG_REG (subreg));
11817 enum machine_mode mode = GET_MODE (subreg);
11819 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11820 return;
11822 for (links = LOG_LINKS (insn); links;)
11824 insn = XEXP (links, 0);
11825 set = single_set (insn);
11827 if (! set || GET_CODE (SET_DEST (set)) != REG
11828 || REGNO (SET_DEST (set)) != regno
11829 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11831 links = XEXP (links, 1);
11832 continue;
11835 if (reg_last_set[regno] == insn)
11837 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11838 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11841 if (GET_CODE (SET_SRC (set)) == REG)
11843 regno = REGNO (SET_SRC (set));
11844 links = LOG_LINKS (insn);
11846 else
11847 break;
11851 /* Scan X for promoted SUBREGs. For each one found,
11852 note what it implies to the registers used in it. */
11854 static void
11855 check_promoted_subreg (insn, x)
11856 rtx insn;
11857 rtx x;
11859 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11860 && GET_CODE (SUBREG_REG (x)) == REG)
11861 record_promoted_value (insn, x);
11862 else
11864 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11865 int i, j;
11867 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11868 switch (format[i])
11870 case 'e':
11871 check_promoted_subreg (insn, XEXP (x, i));
11872 break;
11873 case 'V':
11874 case 'E':
11875 if (XVEC (x, i) != 0)
11876 for (j = 0; j < XVECLEN (x, i); j++)
11877 check_promoted_subreg (insn, XVECEXP (x, i, j));
11878 break;
11883 /* Utility routine for the following function. Verify that all the registers
11884 mentioned in *LOC are valid when *LOC was part of a value set when
11885 label_tick == TICK. Return 0 if some are not.
11887 If REPLACE is nonzero, replace the invalid reference with
11888 (clobber (const_int 0)) and return 1. This replacement is useful because
11889 we often can get useful information about the form of a value (e.g., if
11890 it was produced by a shift that always produces -1 or 0) even though
11891 we don't know exactly what registers it was produced from. */
11893 static int
11894 get_last_value_validate (loc, insn, tick, replace)
11895 rtx *loc;
11896 rtx insn;
11897 int tick;
11898 int replace;
11900 rtx x = *loc;
11901 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11902 int len = GET_RTX_LENGTH (GET_CODE (x));
11903 int i;
11905 if (GET_CODE (x) == REG)
11907 unsigned int regno = REGNO (x);
11908 unsigned int endregno
11909 = regno + (regno < FIRST_PSEUDO_REGISTER
11910 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11911 unsigned int j;
11913 for (j = regno; j < endregno; j++)
11914 if (reg_last_set_invalid[j]
11915 /* If this is a pseudo-register that was only set once and not
11916 live at the beginning of the function, it is always valid. */
11917 || (! (regno >= FIRST_PSEUDO_REGISTER
11918 && REG_N_SETS (regno) == 1
11919 && (! REGNO_REG_SET_P
11920 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11921 && reg_last_set_label[j] > tick))
11923 if (replace)
11924 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11925 return replace;
11928 return 1;
11930 /* If this is a memory reference, make sure that there were
11931 no stores after it that might have clobbered the value. We don't
11932 have alias info, so we assume any store invalidates it. */
11933 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11934 && INSN_CUID (insn) <= mem_last_set)
11936 if (replace)
11937 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11938 return replace;
11941 for (i = 0; i < len; i++)
11943 if (fmt[i] == 'e')
11945 /* Check for identical subexpressions. If x contains
11946 identical subexpression we only have to traverse one of
11947 them. */
11948 if (i == 1
11949 && (GET_RTX_CLASS (GET_CODE (x)) == '2'
11950 || GET_RTX_CLASS (GET_CODE (x)) == 'c'))
11952 /* Note that at this point x0 has already been checked
11953 and found valid. */
11954 rtx x0 = XEXP (x, 0);
11955 rtx x1 = XEXP (x, 1);
11957 /* If x0 and x1 are identical then x is also valid. */
11958 if (x0 == x1)
11959 return 1;
11961 /* If x1 is identical to a subexpression of x0 then
11962 while checking x0, x1 has already been checked. Thus
11963 it is valid and so as x. */
11964 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11965 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11966 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11967 return 1;
11969 /* If x0 is identical to a subexpression of x1 then x is
11970 valid iff the rest of x1 is valid. */
11971 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11972 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11973 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11974 return
11975 get_last_value_validate (&XEXP (x1,
11976 x0 == XEXP (x1, 0) ? 1 : 0),
11977 insn, tick, replace);
11980 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11981 replace) == 0)
11982 return 0;
11984 /* Don't bother with these. They shouldn't occur anyway. */
11985 else if (fmt[i] == 'E')
11986 return 0;
11989 /* If we haven't found a reason for it to be invalid, it is valid. */
11990 return 1;
11993 /* Get the last value assigned to X, if known. Some registers
11994 in the value may be replaced with (clobber (const_int 0)) if their value
11995 is known longer known reliably. */
11997 static rtx
11998 get_last_value (x)
11999 rtx x;
12001 unsigned int regno;
12002 rtx value;
12004 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12005 then convert it to the desired mode. If this is a paradoxical SUBREG,
12006 we cannot predict what values the "extra" bits might have. */
12007 if (GET_CODE (x) == SUBREG
12008 && subreg_lowpart_p (x)
12009 && (GET_MODE_SIZE (GET_MODE (x))
12010 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
12011 && (value = get_last_value (SUBREG_REG (x))) != 0)
12012 return gen_lowpart_for_combine (GET_MODE (x), value);
12014 if (GET_CODE (x) != REG)
12015 return 0;
12017 regno = REGNO (x);
12018 value = reg_last_set_value[regno];
12020 /* If we don't have a value, or if it isn't for this basic block and
12021 it's either a hard register, set more than once, or it's a live
12022 at the beginning of the function, return 0.
12024 Because if it's not live at the beginning of the function then the reg
12025 is always set before being used (is never used without being set).
12026 And, if it's set only once, and it's always set before use, then all
12027 uses must have the same last value, even if it's not from this basic
12028 block. */
12030 if (value == 0
12031 || (reg_last_set_label[regno] != label_tick
12032 && (regno < FIRST_PSEUDO_REGISTER
12033 || REG_N_SETS (regno) != 1
12034 || (REGNO_REG_SET_P
12035 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
12036 return 0;
12038 /* If the value was set in a later insn than the ones we are processing,
12039 we can't use it even if the register was only set once. */
12040 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
12041 return 0;
12043 /* If the value has all its registers valid, return it. */
12044 if (get_last_value_validate (&value, reg_last_set[regno],
12045 reg_last_set_label[regno], 0))
12046 return value;
12048 /* Otherwise, make a copy and replace any invalid register with
12049 (clobber (const_int 0)). If that fails for some reason, return 0. */
12051 value = copy_rtx (value);
12052 if (get_last_value_validate (&value, reg_last_set[regno],
12053 reg_last_set_label[regno], 1))
12054 return value;
12056 return 0;
12059 /* Return nonzero if expression X refers to a REG or to memory
12060 that is set in an instruction more recent than FROM_CUID. */
12062 static int
12063 use_crosses_set_p (x, from_cuid)
12064 rtx x;
12065 int from_cuid;
12067 const char *fmt;
12068 int i;
12069 enum rtx_code code = GET_CODE (x);
12071 if (code == REG)
12073 unsigned int regno = REGNO (x);
12074 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
12075 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
12077 #ifdef PUSH_ROUNDING
12078 /* Don't allow uses of the stack pointer to be moved,
12079 because we don't know whether the move crosses a push insn. */
12080 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12081 return 1;
12082 #endif
12083 for (; regno < endreg; regno++)
12084 if (reg_last_set[regno]
12085 && INSN_CUID (reg_last_set[regno]) > from_cuid)
12086 return 1;
12087 return 0;
12090 if (code == MEM && mem_last_set > from_cuid)
12091 return 1;
12093 fmt = GET_RTX_FORMAT (code);
12095 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12097 if (fmt[i] == 'E')
12099 int j;
12100 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12101 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
12102 return 1;
12104 else if (fmt[i] == 'e'
12105 && use_crosses_set_p (XEXP (x, i), from_cuid))
12106 return 1;
12108 return 0;
12111 /* Define three variables used for communication between the following
12112 routines. */
12114 static unsigned int reg_dead_regno, reg_dead_endregno;
12115 static int reg_dead_flag;
12117 /* Function called via note_stores from reg_dead_at_p.
12119 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12120 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12122 static void
12123 reg_dead_at_p_1 (dest, x, data)
12124 rtx dest;
12125 rtx x;
12126 void *data ATTRIBUTE_UNUSED;
12128 unsigned int regno, endregno;
12130 if (GET_CODE (dest) != REG)
12131 return;
12133 regno = REGNO (dest);
12134 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
12135 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
12137 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12138 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12141 /* Return nonzero if REG is known to be dead at INSN.
12143 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12144 referencing REG, it is dead. If we hit a SET referencing REG, it is
12145 live. Otherwise, see if it is live or dead at the start of the basic
12146 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12147 must be assumed to be always live. */
12149 static int
12150 reg_dead_at_p (reg, insn)
12151 rtx reg;
12152 rtx insn;
12154 basic_block block;
12155 unsigned int i;
12157 /* Set variables for reg_dead_at_p_1. */
12158 reg_dead_regno = REGNO (reg);
12159 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
12160 ? HARD_REGNO_NREGS (reg_dead_regno,
12161 GET_MODE (reg))
12162 : 1);
12164 reg_dead_flag = 0;
12166 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
12167 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12169 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12170 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
12171 return 0;
12174 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
12175 beginning of function. */
12176 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
12177 insn = prev_nonnote_insn (insn))
12179 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12180 if (reg_dead_flag)
12181 return reg_dead_flag == 1 ? 1 : 0;
12183 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12184 return 1;
12187 /* Get the basic block that we were in. */
12188 if (insn == 0)
12189 block = ENTRY_BLOCK_PTR->next_bb;
12190 else
12192 FOR_EACH_BB (block)
12193 if (insn == block->head)
12194 break;
12196 if (block == EXIT_BLOCK_PTR)
12197 return 0;
12200 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12201 if (REGNO_REG_SET_P (block->global_live_at_start, i))
12202 return 0;
12204 return 1;
12207 /* Note hard registers in X that are used. This code is similar to
12208 that in flow.c, but much simpler since we don't care about pseudos. */
12210 static void
12211 mark_used_regs_combine (x)
12212 rtx x;
12214 RTX_CODE code = GET_CODE (x);
12215 unsigned int regno;
12216 int i;
12218 switch (code)
12220 case LABEL_REF:
12221 case SYMBOL_REF:
12222 case CONST_INT:
12223 case CONST:
12224 case CONST_DOUBLE:
12225 case CONST_VECTOR:
12226 case PC:
12227 case ADDR_VEC:
12228 case ADDR_DIFF_VEC:
12229 case ASM_INPUT:
12230 #ifdef HAVE_cc0
12231 /* CC0 must die in the insn after it is set, so we don't need to take
12232 special note of it here. */
12233 case CC0:
12234 #endif
12235 return;
12237 case CLOBBER:
12238 /* If we are clobbering a MEM, mark any hard registers inside the
12239 address as used. */
12240 if (GET_CODE (XEXP (x, 0)) == MEM)
12241 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12242 return;
12244 case REG:
12245 regno = REGNO (x);
12246 /* A hard reg in a wide mode may really be multiple registers.
12247 If so, mark all of them just like the first. */
12248 if (regno < FIRST_PSEUDO_REGISTER)
12250 unsigned int endregno, r;
12252 /* None of this applies to the stack, frame or arg pointers. */
12253 if (regno == STACK_POINTER_REGNUM
12254 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12255 || regno == HARD_FRAME_POINTER_REGNUM
12256 #endif
12257 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12258 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12259 #endif
12260 || regno == FRAME_POINTER_REGNUM)
12261 return;
12263 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12264 for (r = regno; r < endregno; r++)
12265 SET_HARD_REG_BIT (newpat_used_regs, r);
12267 return;
12269 case SET:
12271 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12272 the address. */
12273 rtx testreg = SET_DEST (x);
12275 while (GET_CODE (testreg) == SUBREG
12276 || GET_CODE (testreg) == ZERO_EXTRACT
12277 || GET_CODE (testreg) == SIGN_EXTRACT
12278 || GET_CODE (testreg) == STRICT_LOW_PART)
12279 testreg = XEXP (testreg, 0);
12281 if (GET_CODE (testreg) == MEM)
12282 mark_used_regs_combine (XEXP (testreg, 0));
12284 mark_used_regs_combine (SET_SRC (x));
12286 return;
12288 default:
12289 break;
12292 /* Recursively scan the operands of this expression. */
12295 const char *fmt = GET_RTX_FORMAT (code);
12297 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12299 if (fmt[i] == 'e')
12300 mark_used_regs_combine (XEXP (x, i));
12301 else if (fmt[i] == 'E')
12303 int j;
12305 for (j = 0; j < XVECLEN (x, i); j++)
12306 mark_used_regs_combine (XVECEXP (x, i, j));
12312 /* Remove register number REGNO from the dead registers list of INSN.
12314 Return the note used to record the death, if there was one. */
12317 remove_death (regno, insn)
12318 unsigned int regno;
12319 rtx insn;
12321 rtx note = find_regno_note (insn, REG_DEAD, regno);
12323 if (note)
12325 REG_N_DEATHS (regno)--;
12326 remove_note (insn, note);
12329 return note;
12332 /* For each register (hardware or pseudo) used within expression X, if its
12333 death is in an instruction with cuid between FROM_CUID (inclusive) and
12334 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12335 list headed by PNOTES.
12337 That said, don't move registers killed by maybe_kill_insn.
12339 This is done when X is being merged by combination into TO_INSN. These
12340 notes will then be distributed as needed. */
12342 static void
12343 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
12344 rtx x;
12345 rtx maybe_kill_insn;
12346 int from_cuid;
12347 rtx to_insn;
12348 rtx *pnotes;
12350 const char *fmt;
12351 int len, i;
12352 enum rtx_code code = GET_CODE (x);
12354 if (code == REG)
12356 unsigned int regno = REGNO (x);
12357 rtx where_dead = reg_last_death[regno];
12358 rtx before_dead, after_dead;
12360 /* Don't move the register if it gets killed in between from and to. */
12361 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12362 && ! reg_referenced_p (x, maybe_kill_insn))
12363 return;
12365 /* WHERE_DEAD could be a USE insn made by combine, so first we
12366 make sure that we have insns with valid INSN_CUID values. */
12367 before_dead = where_dead;
12368 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12369 before_dead = PREV_INSN (before_dead);
12371 after_dead = where_dead;
12372 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12373 after_dead = NEXT_INSN (after_dead);
12375 if (before_dead && after_dead
12376 && INSN_CUID (before_dead) >= from_cuid
12377 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12378 || (where_dead != after_dead
12379 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12381 rtx note = remove_death (regno, where_dead);
12383 /* It is possible for the call above to return 0. This can occur
12384 when reg_last_death points to I2 or I1 that we combined with.
12385 In that case make a new note.
12387 We must also check for the case where X is a hard register
12388 and NOTE is a death note for a range of hard registers
12389 including X. In that case, we must put REG_DEAD notes for
12390 the remaining registers in place of NOTE. */
12392 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12393 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12394 > GET_MODE_SIZE (GET_MODE (x))))
12396 unsigned int deadregno = REGNO (XEXP (note, 0));
12397 unsigned int deadend
12398 = (deadregno + HARD_REGNO_NREGS (deadregno,
12399 GET_MODE (XEXP (note, 0))));
12400 unsigned int ourend
12401 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12402 unsigned int i;
12404 for (i = deadregno; i < deadend; i++)
12405 if (i < regno || i >= ourend)
12406 REG_NOTES (where_dead)
12407 = gen_rtx_EXPR_LIST (REG_DEAD,
12408 regno_reg_rtx[i],
12409 REG_NOTES (where_dead));
12412 /* If we didn't find any note, or if we found a REG_DEAD note that
12413 covers only part of the given reg, and we have a multi-reg hard
12414 register, then to be safe we must check for REG_DEAD notes
12415 for each register other than the first. They could have
12416 their own REG_DEAD notes lying around. */
12417 else if ((note == 0
12418 || (note != 0
12419 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12420 < GET_MODE_SIZE (GET_MODE (x)))))
12421 && regno < FIRST_PSEUDO_REGISTER
12422 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12424 unsigned int ourend
12425 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12426 unsigned int i, offset;
12427 rtx oldnotes = 0;
12429 if (note)
12430 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12431 else
12432 offset = 1;
12434 for (i = regno + offset; i < ourend; i++)
12435 move_deaths (regno_reg_rtx[i],
12436 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12439 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12441 XEXP (note, 1) = *pnotes;
12442 *pnotes = note;
12444 else
12445 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12447 REG_N_DEATHS (regno)++;
12450 return;
12453 else if (GET_CODE (x) == SET)
12455 rtx dest = SET_DEST (x);
12457 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12459 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12460 that accesses one word of a multi-word item, some
12461 piece of everything register in the expression is used by
12462 this insn, so remove any old death. */
12463 /* ??? So why do we test for equality of the sizes? */
12465 if (GET_CODE (dest) == ZERO_EXTRACT
12466 || GET_CODE (dest) == STRICT_LOW_PART
12467 || (GET_CODE (dest) == SUBREG
12468 && (((GET_MODE_SIZE (GET_MODE (dest))
12469 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12470 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12471 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12473 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12474 return;
12477 /* If this is some other SUBREG, we know it replaces the entire
12478 value, so use that as the destination. */
12479 if (GET_CODE (dest) == SUBREG)
12480 dest = SUBREG_REG (dest);
12482 /* If this is a MEM, adjust deaths of anything used in the address.
12483 For a REG (the only other possibility), the entire value is
12484 being replaced so the old value is not used in this insn. */
12486 if (GET_CODE (dest) == MEM)
12487 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12488 to_insn, pnotes);
12489 return;
12492 else if (GET_CODE (x) == CLOBBER)
12493 return;
12495 len = GET_RTX_LENGTH (code);
12496 fmt = GET_RTX_FORMAT (code);
12498 for (i = 0; i < len; i++)
12500 if (fmt[i] == 'E')
12502 int j;
12503 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12504 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12505 to_insn, pnotes);
12507 else if (fmt[i] == 'e')
12508 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12512 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12513 pattern of an insn. X must be a REG. */
12515 static int
12516 reg_bitfield_target_p (x, body)
12517 rtx x;
12518 rtx body;
12520 int i;
12522 if (GET_CODE (body) == SET)
12524 rtx dest = SET_DEST (body);
12525 rtx target;
12526 unsigned int regno, tregno, endregno, endtregno;
12528 if (GET_CODE (dest) == ZERO_EXTRACT)
12529 target = XEXP (dest, 0);
12530 else if (GET_CODE (dest) == STRICT_LOW_PART)
12531 target = SUBREG_REG (XEXP (dest, 0));
12532 else
12533 return 0;
12535 if (GET_CODE (target) == SUBREG)
12536 target = SUBREG_REG (target);
12538 if (GET_CODE (target) != REG)
12539 return 0;
12541 tregno = REGNO (target), regno = REGNO (x);
12542 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12543 return target == x;
12545 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12546 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12548 return endregno > tregno && regno < endtregno;
12551 else if (GET_CODE (body) == PARALLEL)
12552 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12553 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12554 return 1;
12556 return 0;
12559 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12560 as appropriate. I3 and I2 are the insns resulting from the combination
12561 insns including FROM (I2 may be zero).
12563 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12564 not need REG_DEAD notes because they are being substituted for. This
12565 saves searching in the most common cases.
12567 Each note in the list is either ignored or placed on some insns, depending
12568 on the type of note. */
12570 static void
12571 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12572 rtx notes;
12573 rtx from_insn;
12574 rtx i3, i2;
12575 rtx elim_i2, elim_i1;
12577 rtx note, next_note;
12578 rtx tem;
12580 for (note = notes; note; note = next_note)
12582 rtx place = 0, place2 = 0;
12584 /* If this NOTE references a pseudo register, ensure it references
12585 the latest copy of that register. */
12586 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12587 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12588 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12590 next_note = XEXP (note, 1);
12591 switch (REG_NOTE_KIND (note))
12593 case REG_BR_PROB:
12594 case REG_BR_PRED:
12595 /* Doesn't matter much where we put this, as long as it's somewhere.
12596 It is preferable to keep these notes on branches, which is most
12597 likely to be i3. */
12598 place = i3;
12599 break;
12601 case REG_VTABLE_REF:
12602 /* ??? Should remain with *a particular* memory load. Given the
12603 nature of vtable data, the last insn seems relatively safe. */
12604 place = i3;
12605 break;
12607 case REG_NON_LOCAL_GOTO:
12608 if (GET_CODE (i3) == JUMP_INSN)
12609 place = i3;
12610 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12611 place = i2;
12612 else
12613 abort ();
12614 break;
12616 case REG_EH_REGION:
12617 /* These notes must remain with the call or trapping instruction. */
12618 if (GET_CODE (i3) == CALL_INSN)
12619 place = i3;
12620 else if (i2 && GET_CODE (i2) == CALL_INSN)
12621 place = i2;
12622 else if (flag_non_call_exceptions)
12624 if (may_trap_p (i3))
12625 place = i3;
12626 else if (i2 && may_trap_p (i2))
12627 place = i2;
12628 /* ??? Otherwise assume we've combined things such that we
12629 can now prove that the instructions can't trap. Drop the
12630 note in this case. */
12632 else
12633 abort ();
12634 break;
12636 case REG_NORETURN:
12637 case REG_SETJMP:
12638 /* These notes must remain with the call. It should not be
12639 possible for both I2 and I3 to be a call. */
12640 if (GET_CODE (i3) == CALL_INSN)
12641 place = i3;
12642 else if (i2 && GET_CODE (i2) == CALL_INSN)
12643 place = i2;
12644 else
12645 abort ();
12646 break;
12648 case REG_UNUSED:
12649 /* Any clobbers for i3 may still exist, and so we must process
12650 REG_UNUSED notes from that insn.
12652 Any clobbers from i2 or i1 can only exist if they were added by
12653 recog_for_combine. In that case, recog_for_combine created the
12654 necessary REG_UNUSED notes. Trying to keep any original
12655 REG_UNUSED notes from these insns can cause incorrect output
12656 if it is for the same register as the original i3 dest.
12657 In that case, we will notice that the register is set in i3,
12658 and then add a REG_UNUSED note for the destination of i3, which
12659 is wrong. However, it is possible to have REG_UNUSED notes from
12660 i2 or i1 for register which were both used and clobbered, so
12661 we keep notes from i2 or i1 if they will turn into REG_DEAD
12662 notes. */
12664 /* If this register is set or clobbered in I3, put the note there
12665 unless there is one already. */
12666 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12668 if (from_insn != i3)
12669 break;
12671 if (! (GET_CODE (XEXP (note, 0)) == REG
12672 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12673 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12674 place = i3;
12676 /* Otherwise, if this register is used by I3, then this register
12677 now dies here, so we must put a REG_DEAD note here unless there
12678 is one already. */
12679 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12680 && ! (GET_CODE (XEXP (note, 0)) == REG
12681 ? find_regno_note (i3, REG_DEAD,
12682 REGNO (XEXP (note, 0)))
12683 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12685 PUT_REG_NOTE_KIND (note, REG_DEAD);
12686 place = i3;
12688 break;
12690 case REG_EQUAL:
12691 case REG_EQUIV:
12692 case REG_NOALIAS:
12693 /* These notes say something about results of an insn. We can
12694 only support them if they used to be on I3 in which case they
12695 remain on I3. Otherwise they are ignored.
12697 If the note refers to an expression that is not a constant, we
12698 must also ignore the note since we cannot tell whether the
12699 equivalence is still true. It might be possible to do
12700 slightly better than this (we only have a problem if I2DEST
12701 or I1DEST is present in the expression), but it doesn't
12702 seem worth the trouble. */
12704 if (from_insn == i3
12705 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12706 place = i3;
12707 break;
12709 case REG_INC:
12710 case REG_NO_CONFLICT:
12711 /* These notes say something about how a register is used. They must
12712 be present on any use of the register in I2 or I3. */
12713 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12714 place = i3;
12716 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12718 if (place)
12719 place2 = i2;
12720 else
12721 place = i2;
12723 break;
12725 case REG_LABEL:
12726 /* This can show up in several ways -- either directly in the
12727 pattern, or hidden off in the constant pool with (or without?)
12728 a REG_EQUAL note. */
12729 /* ??? Ignore the without-reg_equal-note problem for now. */
12730 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12731 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12732 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12733 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12734 place = i3;
12736 if (i2
12737 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12738 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12739 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12740 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12742 if (place)
12743 place2 = i2;
12744 else
12745 place = i2;
12748 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12749 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12750 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12752 if (JUMP_LABEL (place) != XEXP (note, 0))
12753 abort ();
12754 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12755 LABEL_NUSES (JUMP_LABEL (place))--;
12756 place = 0;
12758 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12760 if (JUMP_LABEL (place2) != XEXP (note, 0))
12761 abort ();
12762 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12763 LABEL_NUSES (JUMP_LABEL (place2))--;
12764 place2 = 0;
12766 break;
12768 case REG_NONNEG:
12769 case REG_WAS_0:
12770 /* These notes say something about the value of a register prior
12771 to the execution of an insn. It is too much trouble to see
12772 if the note is still correct in all situations. It is better
12773 to simply delete it. */
12774 break;
12776 case REG_RETVAL:
12777 /* If the insn previously containing this note still exists,
12778 put it back where it was. Otherwise move it to the previous
12779 insn. Adjust the corresponding REG_LIBCALL note. */
12780 if (GET_CODE (from_insn) != NOTE)
12781 place = from_insn;
12782 else
12784 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12785 place = prev_real_insn (from_insn);
12786 if (tem && place)
12787 XEXP (tem, 0) = place;
12788 /* If we're deleting the last remaining instruction of a
12789 libcall sequence, don't add the notes. */
12790 else if (XEXP (note, 0) == from_insn)
12791 tem = place = 0;
12793 break;
12795 case REG_LIBCALL:
12796 /* This is handled similarly to REG_RETVAL. */
12797 if (GET_CODE (from_insn) != NOTE)
12798 place = from_insn;
12799 else
12801 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12802 place = next_real_insn (from_insn);
12803 if (tem && place)
12804 XEXP (tem, 0) = place;
12805 /* If we're deleting the last remaining instruction of a
12806 libcall sequence, don't add the notes. */
12807 else if (XEXP (note, 0) == from_insn)
12808 tem = place = 0;
12810 break;
12812 case REG_DEAD:
12813 /* If the register is used as an input in I3, it dies there.
12814 Similarly for I2, if it is nonzero and adjacent to I3.
12816 If the register is not used as an input in either I3 or I2
12817 and it is not one of the registers we were supposed to eliminate,
12818 there are two possibilities. We might have a non-adjacent I2
12819 or we might have somehow eliminated an additional register
12820 from a computation. For example, we might have had A & B where
12821 we discover that B will always be zero. In this case we will
12822 eliminate the reference to A.
12824 In both cases, we must search to see if we can find a previous
12825 use of A and put the death note there. */
12827 if (from_insn
12828 && GET_CODE (from_insn) == CALL_INSN
12829 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12830 place = from_insn;
12831 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12832 place = i3;
12833 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12834 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12835 place = i2;
12837 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12838 || rtx_equal_p (XEXP (note, 0), elim_i1))
12839 break;
12841 if (place == 0)
12843 basic_block bb = this_basic_block;
12845 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12847 if (! INSN_P (tem))
12849 if (tem == bb->head)
12850 break;
12851 continue;
12854 /* If the register is being set at TEM, see if that is all
12855 TEM is doing. If so, delete TEM. Otherwise, make this
12856 into a REG_UNUSED note instead. */
12857 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12859 rtx set = single_set (tem);
12860 rtx inner_dest = 0;
12861 #ifdef HAVE_cc0
12862 rtx cc0_setter = NULL_RTX;
12863 #endif
12865 if (set != 0)
12866 for (inner_dest = SET_DEST (set);
12867 (GET_CODE (inner_dest) == STRICT_LOW_PART
12868 || GET_CODE (inner_dest) == SUBREG
12869 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12870 inner_dest = XEXP (inner_dest, 0))
12873 /* Verify that it was the set, and not a clobber that
12874 modified the register.
12876 CC0 targets must be careful to maintain setter/user
12877 pairs. If we cannot delete the setter due to side
12878 effects, mark the user with an UNUSED note instead
12879 of deleting it. */
12881 if (set != 0 && ! side_effects_p (SET_SRC (set))
12882 && rtx_equal_p (XEXP (note, 0), inner_dest)
12883 #ifdef HAVE_cc0
12884 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12885 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12886 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12887 #endif
12890 /* Move the notes and links of TEM elsewhere.
12891 This might delete other dead insns recursively.
12892 First set the pattern to something that won't use
12893 any register. */
12895 PATTERN (tem) = pc_rtx;
12897 distribute_notes (REG_NOTES (tem), tem, tem,
12898 NULL_RTX, NULL_RTX, NULL_RTX);
12899 distribute_links (LOG_LINKS (tem));
12901 PUT_CODE (tem, NOTE);
12902 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12903 NOTE_SOURCE_FILE (tem) = 0;
12905 #ifdef HAVE_cc0
12906 /* Delete the setter too. */
12907 if (cc0_setter)
12909 PATTERN (cc0_setter) = pc_rtx;
12911 distribute_notes (REG_NOTES (cc0_setter),
12912 cc0_setter, cc0_setter,
12913 NULL_RTX, NULL_RTX, NULL_RTX);
12914 distribute_links (LOG_LINKS (cc0_setter));
12916 PUT_CODE (cc0_setter, NOTE);
12917 NOTE_LINE_NUMBER (cc0_setter)
12918 = NOTE_INSN_DELETED;
12919 NOTE_SOURCE_FILE (cc0_setter) = 0;
12921 #endif
12923 /* If the register is both set and used here, put the
12924 REG_DEAD note here, but place a REG_UNUSED note
12925 here too unless there already is one. */
12926 else if (reg_referenced_p (XEXP (note, 0),
12927 PATTERN (tem)))
12929 place = tem;
12931 if (! find_regno_note (tem, REG_UNUSED,
12932 REGNO (XEXP (note, 0))))
12933 REG_NOTES (tem)
12934 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12935 REG_NOTES (tem));
12937 else
12939 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12941 /* If there isn't already a REG_UNUSED note, put one
12942 here. */
12943 if (! find_regno_note (tem, REG_UNUSED,
12944 REGNO (XEXP (note, 0))))
12945 place = tem;
12946 break;
12949 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12950 || (GET_CODE (tem) == CALL_INSN
12951 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12953 place = tem;
12955 /* If we are doing a 3->2 combination, and we have a
12956 register which formerly died in i3 and was not used
12957 by i2, which now no longer dies in i3 and is used in
12958 i2 but does not die in i2, and place is between i2
12959 and i3, then we may need to move a link from place to
12960 i2. */
12961 if (i2 && INSN_UID (place) <= max_uid_cuid
12962 && INSN_CUID (place) > INSN_CUID (i2)
12963 && from_insn
12964 && INSN_CUID (from_insn) > INSN_CUID (i2)
12965 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12967 rtx links = LOG_LINKS (place);
12968 LOG_LINKS (place) = 0;
12969 distribute_links (links);
12971 break;
12974 if (tem == bb->head)
12975 break;
12978 /* We haven't found an insn for the death note and it
12979 is still a REG_DEAD note, but we have hit the beginning
12980 of the block. If the existing life info says the reg
12981 was dead, there's nothing left to do. Otherwise, we'll
12982 need to do a global life update after combine. */
12983 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12984 && REGNO_REG_SET_P (bb->global_live_at_start,
12985 REGNO (XEXP (note, 0))))
12986 SET_BIT (refresh_blocks, this_basic_block->index);
12989 /* If the register is set or already dead at PLACE, we needn't do
12990 anything with this note if it is still a REG_DEAD note.
12991 We can here if it is set at all, not if is it totally replace,
12992 which is what `dead_or_set_p' checks, so also check for it being
12993 set partially. */
12995 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12997 unsigned int regno = REGNO (XEXP (note, 0));
12999 /* Similarly, if the instruction on which we want to place
13000 the note is a noop, we'll need do a global live update
13001 after we remove them in delete_noop_moves. */
13002 if (noop_move_p (place))
13003 SET_BIT (refresh_blocks, this_basic_block->index);
13005 if (dead_or_set_p (place, XEXP (note, 0))
13006 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13008 /* Unless the register previously died in PLACE, clear
13009 reg_last_death. [I no longer understand why this is
13010 being done.] */
13011 if (reg_last_death[regno] != place)
13012 reg_last_death[regno] = 0;
13013 place = 0;
13015 else
13016 reg_last_death[regno] = place;
13018 /* If this is a death note for a hard reg that is occupying
13019 multiple registers, ensure that we are still using all
13020 parts of the object. If we find a piece of the object
13021 that is unused, we must arrange for an appropriate REG_DEAD
13022 note to be added for it. However, we can't just emit a USE
13023 and tag the note to it, since the register might actually
13024 be dead; so we recourse, and the recursive call then finds
13025 the previous insn that used this register. */
13027 if (place && regno < FIRST_PSEUDO_REGISTER
13028 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
13030 unsigned int endregno
13031 = regno + HARD_REGNO_NREGS (regno,
13032 GET_MODE (XEXP (note, 0)));
13033 int all_used = 1;
13034 unsigned int i;
13036 for (i = regno; i < endregno; i++)
13037 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13038 && ! find_regno_fusage (place, USE, i))
13039 || dead_or_set_regno_p (place, i))
13040 all_used = 0;
13042 if (! all_used)
13044 /* Put only REG_DEAD notes for pieces that are
13045 not already dead or set. */
13047 for (i = regno; i < endregno;
13048 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
13050 rtx piece = regno_reg_rtx[i];
13051 basic_block bb = this_basic_block;
13053 if (! dead_or_set_p (place, piece)
13054 && ! reg_bitfield_target_p (piece,
13055 PATTERN (place)))
13057 rtx new_note
13058 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
13060 distribute_notes (new_note, place, place,
13061 NULL_RTX, NULL_RTX, NULL_RTX);
13063 else if (! refers_to_regno_p (i, i + 1,
13064 PATTERN (place), 0)
13065 && ! find_regno_fusage (place, USE, i))
13066 for (tem = PREV_INSN (place); ;
13067 tem = PREV_INSN (tem))
13069 if (! INSN_P (tem))
13071 if (tem == bb->head)
13073 SET_BIT (refresh_blocks,
13074 this_basic_block->index);
13075 break;
13077 continue;
13079 if (dead_or_set_p (tem, piece)
13080 || reg_bitfield_target_p (piece,
13081 PATTERN (tem)))
13083 REG_NOTES (tem)
13084 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
13085 REG_NOTES (tem));
13086 break;
13092 place = 0;
13096 break;
13098 default:
13099 /* Any other notes should not be present at this point in the
13100 compilation. */
13101 abort ();
13104 if (place)
13106 XEXP (note, 1) = REG_NOTES (place);
13107 REG_NOTES (place) = note;
13109 else if ((REG_NOTE_KIND (note) == REG_DEAD
13110 || REG_NOTE_KIND (note) == REG_UNUSED)
13111 && GET_CODE (XEXP (note, 0)) == REG)
13112 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
13114 if (place2)
13116 if ((REG_NOTE_KIND (note) == REG_DEAD
13117 || REG_NOTE_KIND (note) == REG_UNUSED)
13118 && GET_CODE (XEXP (note, 0)) == REG)
13119 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
13121 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
13122 REG_NOTE_KIND (note),
13123 XEXP (note, 0),
13124 REG_NOTES (place2));
13129 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13130 I3, I2, and I1 to new locations. This is also called in one case to
13131 add a link pointing at I3 when I3's destination is changed. */
13133 static void
13134 distribute_links (links)
13135 rtx links;
13137 rtx link, next_link;
13139 for (link = links; link; link = next_link)
13141 rtx place = 0;
13142 rtx insn;
13143 rtx set, reg;
13145 next_link = XEXP (link, 1);
13147 /* If the insn that this link points to is a NOTE or isn't a single
13148 set, ignore it. In the latter case, it isn't clear what we
13149 can do other than ignore the link, since we can't tell which
13150 register it was for. Such links wouldn't be used by combine
13151 anyway.
13153 It is not possible for the destination of the target of the link to
13154 have been changed by combine. The only potential of this is if we
13155 replace I3, I2, and I1 by I3 and I2. But in that case the
13156 destination of I2 also remains unchanged. */
13158 if (GET_CODE (XEXP (link, 0)) == NOTE
13159 || (set = single_set (XEXP (link, 0))) == 0)
13160 continue;
13162 reg = SET_DEST (set);
13163 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13164 || GET_CODE (reg) == SIGN_EXTRACT
13165 || GET_CODE (reg) == STRICT_LOW_PART)
13166 reg = XEXP (reg, 0);
13168 /* A LOG_LINK is defined as being placed on the first insn that uses
13169 a register and points to the insn that sets the register. Start
13170 searching at the next insn after the target of the link and stop
13171 when we reach a set of the register or the end of the basic block.
13173 Note that this correctly handles the link that used to point from
13174 I3 to I2. Also note that not much searching is typically done here
13175 since most links don't point very far away. */
13177 for (insn = NEXT_INSN (XEXP (link, 0));
13178 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13179 || this_basic_block->next_bb->head != insn));
13180 insn = NEXT_INSN (insn))
13181 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13183 if (reg_referenced_p (reg, PATTERN (insn)))
13184 place = insn;
13185 break;
13187 else if (GET_CODE (insn) == CALL_INSN
13188 && find_reg_fusage (insn, USE, reg))
13190 place = insn;
13191 break;
13194 /* If we found a place to put the link, place it there unless there
13195 is already a link to the same insn as LINK at that point. */
13197 if (place)
13199 rtx link2;
13201 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13202 if (XEXP (link2, 0) == XEXP (link, 0))
13203 break;
13205 if (link2 == 0)
13207 XEXP (link, 1) = LOG_LINKS (place);
13208 LOG_LINKS (place) = link;
13210 /* Set added_links_insn to the earliest insn we added a
13211 link to. */
13212 if (added_links_insn == 0
13213 || INSN_CUID (added_links_insn) > INSN_CUID (place))
13214 added_links_insn = place;
13220 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
13222 static int
13223 insn_cuid (insn)
13224 rtx insn;
13226 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
13227 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
13228 insn = NEXT_INSN (insn);
13230 if (INSN_UID (insn) > max_uid_cuid)
13231 abort ();
13233 return INSN_CUID (insn);
13236 void
13237 dump_combine_stats (file)
13238 FILE *file;
13240 fnotice
13241 (file,
13242 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13243 combine_attempts, combine_merges, combine_extras, combine_successes);
13246 void
13247 dump_combine_total_stats (file)
13248 FILE *file;
13250 fnotice
13251 (file,
13252 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13253 total_attempts, total_merges, total_extras, total_successes);