1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
39 #include "langhooks.h"
41 static rtx break_out_memory_refs
PARAMS ((rtx
));
42 static void emit_stack_probe
PARAMS ((rtx
));
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
48 trunc_int_for_mode (c
, mode
)
50 enum machine_mode mode
;
52 int width
= GET_MODE_BITSIZE (mode
);
54 /* You want to truncate to a _what_? */
55 if (! SCALAR_INT_MODE_P (mode
))
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
60 return c
& 1 ? STORE_FLAG_VALUE
: 0;
62 /* Sign-extend for the requested mode. */
64 if (width
< HOST_BITS_PER_WIDE_INT
)
66 HOST_WIDE_INT sign
= 1;
76 /* Return an rtx for the sum of X and the integer C.
78 This function should be used via the `plus_constant' macro. */
81 plus_constant_wide (x
, c
)
87 enum machine_mode mode
;
103 return GEN_INT (INTVAL (x
) + c
);
107 unsigned HOST_WIDE_INT l1
= CONST_DOUBLE_LOW (x
);
108 HOST_WIDE_INT h1
= CONST_DOUBLE_HIGH (x
);
109 unsigned HOST_WIDE_INT l2
= c
;
110 HOST_WIDE_INT h2
= c
< 0 ? ~0 : 0;
111 unsigned HOST_WIDE_INT lv
;
114 add_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
116 return immed_double_const (lv
, hv
, VOIDmode
);
120 /* If this is a reference to the constant pool, try replacing it with
121 a reference to a new constant. If the resulting address isn't
122 valid, don't return it because we have no way to validize it. */
123 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
124 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
127 = force_const_mem (GET_MODE (x
),
128 plus_constant (get_pool_constant (XEXP (x
, 0)),
130 if (memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
136 /* If adding to something entirely constant, set a flag
137 so that we can add a CONST around the result. */
148 /* The interesting case is adding the integer to a sum.
149 Look for constant term in the sum and combine
150 with C. For an integer constant term, we make a combined
151 integer. For a constant term that is not an explicit integer,
152 we cannot really combine, but group them together anyway.
154 Restart or use a recursive call in case the remaining operand is
155 something that we handle specially, such as a SYMBOL_REF.
157 We may not immediately return from the recursive call here, lest
158 all_constant gets lost. */
160 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
162 c
+= INTVAL (XEXP (x
, 1));
164 if (GET_MODE (x
) != VOIDmode
)
165 c
= trunc_int_for_mode (c
, GET_MODE (x
));
170 else if (CONSTANT_P (XEXP (x
, 1)))
172 x
= gen_rtx_PLUS (mode
, XEXP (x
, 0), plus_constant (XEXP (x
, 1), c
));
175 else if (find_constant_term_loc (&y
))
177 /* We need to be careful since X may be shared and we can't
178 modify it in place. */
179 rtx copy
= copy_rtx (x
);
180 rtx
*const_loc
= find_constant_term_loc (©
);
182 *const_loc
= plus_constant (*const_loc
, c
);
193 x
= gen_rtx_PLUS (mode
, x
, GEN_INT (c
));
195 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
197 else if (all_constant
)
198 return gen_rtx_CONST (mode
, x
);
203 /* If X is a sum, return a new sum like X but lacking any constant terms.
204 Add all the removed constant terms into *CONSTPTR.
205 X itself is not altered. The result != X if and only if
206 it is not isomorphic to X. */
209 eliminate_constant_term (x
, constptr
)
216 if (GET_CODE (x
) != PLUS
)
219 /* First handle constants appearing at this level explicitly. */
220 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
221 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
223 && GET_CODE (tem
) == CONST_INT
)
226 return eliminate_constant_term (XEXP (x
, 0), constptr
);
230 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
231 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
232 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
233 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
235 && GET_CODE (tem
) == CONST_INT
)
238 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
244 /* Returns the insn that next references REG after INSN, or 0
245 if REG is clobbered before next referenced or we cannot find
246 an insn that references REG in a straight-line piece of code. */
249 find_next_ref (reg
, insn
)
255 for (insn
= NEXT_INSN (insn
); insn
; insn
= next
)
257 next
= NEXT_INSN (insn
);
258 if (GET_CODE (insn
) == NOTE
)
260 if (GET_CODE (insn
) == CODE_LABEL
261 || GET_CODE (insn
) == BARRIER
)
263 if (GET_CODE (insn
) == INSN
264 || GET_CODE (insn
) == JUMP_INSN
265 || GET_CODE (insn
) == CALL_INSN
)
267 if (reg_set_p (reg
, insn
))
269 if (reg_mentioned_p (reg
, PATTERN (insn
)))
271 if (GET_CODE (insn
) == JUMP_INSN
)
273 if (any_uncondjump_p (insn
))
274 next
= JUMP_LABEL (insn
);
278 if (GET_CODE (insn
) == CALL_INSN
279 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
280 && call_used_regs
[REGNO (reg
)])
289 /* Return an rtx for the size in bytes of the value of EXP. */
295 tree size
= (*lang_hooks
.expr_size
) (exp
);
297 if (TREE_CODE (size
) != INTEGER_CST
298 && contains_placeholder_p (size
))
299 size
= build (WITH_RECORD_EXPR
, sizetype
, size
, exp
);
301 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), 0);
304 /* Return a wide integer for the size in bytes of the value of EXP, or -1
305 if the size can vary or is larger than an integer. */
311 tree t
= (*lang_hooks
.expr_size
) (exp
);
314 || TREE_CODE (t
) != INTEGER_CST
316 || TREE_INT_CST_HIGH (t
) != 0
317 /* If the result would appear negative, it's too big to represent. */
318 || (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) < 0)
321 return TREE_INT_CST_LOW (t
);
324 /* Return a copy of X in which all memory references
325 and all constants that involve symbol refs
326 have been replaced with new temporary registers.
327 Also emit code to load the memory locations and constants
328 into those registers.
330 If X contains no such constants or memory references,
331 X itself (not a copy) is returned.
333 If a constant is found in the address that is not a legitimate constant
334 in an insn, it is left alone in the hope that it might be valid in the
337 X may contain no arithmetic except addition, subtraction and multiplication.
338 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
341 break_out_memory_refs (x
)
344 if (GET_CODE (x
) == MEM
345 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
346 && GET_MODE (x
) != VOIDmode
))
347 x
= force_reg (GET_MODE (x
), x
);
348 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
349 || GET_CODE (x
) == MULT
)
351 rtx op0
= break_out_memory_refs (XEXP (x
, 0));
352 rtx op1
= break_out_memory_refs (XEXP (x
, 1));
354 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
355 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
361 #ifdef POINTERS_EXTEND_UNSIGNED
363 /* Given X, a memory address in ptr_mode, convert it to an address
364 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
365 the fact that pointers are not allowed to overflow by commuting arithmetic
366 operations over conversions so that address arithmetic insns can be
370 convert_memory_address (to_mode
, x
)
371 enum machine_mode to_mode
;
374 enum machine_mode from_mode
= to_mode
== ptr_mode
? Pmode
: ptr_mode
;
378 /* Here we handle some special cases. If none of them apply, fall through
379 to the default case. */
380 switch (GET_CODE (x
))
384 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
))
386 else if (POINTERS_EXTEND_UNSIGNED
< 0)
388 else if (POINTERS_EXTEND_UNSIGNED
> 0)
392 temp
= simplify_unary_operation (code
, to_mode
, x
, from_mode
);
398 if ((SUBREG_PROMOTED_VAR_P (x
) || REG_POINTER (SUBREG_REG (x
)))
399 && GET_MODE (SUBREG_REG (x
)) == to_mode
)
400 return SUBREG_REG (x
);
404 temp
= gen_rtx_LABEL_REF (to_mode
, XEXP (x
, 0));
405 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
410 temp
= shallow_copy_rtx (x
);
411 PUT_MODE (temp
, to_mode
);
416 return gen_rtx_CONST (to_mode
,
417 convert_memory_address (to_mode
, XEXP (x
, 0)));
422 /* For addition we can safely permute the conversion and addition
423 operation if one operand is a constant and converting the constant
424 does not change it. We can always safely permute them if we are
425 making the address narrower. */
426 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
427 || (GET_CODE (x
) == PLUS
428 && GET_CODE (XEXP (x
, 1)) == CONST_INT
429 && XEXP (x
, 1) == convert_memory_address (to_mode
, XEXP (x
, 1))))
430 return gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
431 convert_memory_address (to_mode
, XEXP (x
, 0)),
439 return convert_modes (to_mode
, from_mode
,
440 x
, POINTERS_EXTEND_UNSIGNED
);
444 /* Given a memory address or facsimile X, construct a new address,
445 currently equivalent, that is stable: future stores won't change it.
447 X must be composed of constants, register and memory references
448 combined with addition, subtraction and multiplication:
449 in other words, just what you can get from expand_expr if sum_ok is 1.
451 Works by making copies of all regs and memory locations used
452 by X and combining them the same way X does.
453 You could also stabilize the reference to this address
454 by copying the address to a register with copy_to_reg;
455 but then you wouldn't get indexed addressing in the reference. */
461 if (GET_CODE (x
) == REG
)
463 if (REGNO (x
) != FRAME_POINTER_REGNUM
464 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 && REGNO (x
) != HARD_FRAME_POINTER_REGNUM
470 else if (GET_CODE (x
) == MEM
)
472 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
473 || GET_CODE (x
) == MULT
)
475 rtx op0
= copy_all_regs (XEXP (x
, 0));
476 rtx op1
= copy_all_regs (XEXP (x
, 1));
477 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
478 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
483 /* Return something equivalent to X but valid as a memory address
484 for something of mode MODE. When X is not itself valid, this
485 works by copying X or subexpressions of it into registers. */
488 memory_address (mode
, x
)
489 enum machine_mode mode
;
494 if (GET_CODE (x
) == ADDRESSOF
)
497 #ifdef POINTERS_EXTEND_UNSIGNED
498 if (GET_MODE (x
) != Pmode
)
499 x
= convert_memory_address (Pmode
, x
);
502 /* By passing constant addresses thru registers
503 we get a chance to cse them. */
504 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
505 x
= force_reg (Pmode
, x
);
507 /* Accept a QUEUED that refers to a REG
508 even though that isn't a valid address.
509 On attempting to put this in an insn we will call protect_from_queue
510 which will turn it into a REG, which is valid. */
511 else if (GET_CODE (x
) == QUEUED
512 && GET_CODE (QUEUED_VAR (x
)) == REG
)
515 /* We get better cse by rejecting indirect addressing at this stage.
516 Let the combiner create indirect addresses where appropriate.
517 For now, generate the code so that the subexpressions useful to share
518 are visible. But not if cse won't be done! */
521 if (! cse_not_expected
&& GET_CODE (x
) != REG
)
522 x
= break_out_memory_refs (x
);
524 /* At this point, any valid address is accepted. */
525 GO_IF_LEGITIMATE_ADDRESS (mode
, x
, win
);
527 /* If it was valid before but breaking out memory refs invalidated it,
528 use it the old way. */
529 if (memory_address_p (mode
, oldx
))
532 /* Perform machine-dependent transformations on X
533 in certain cases. This is not necessary since the code
534 below can handle all possible cases, but machine-dependent
535 transformations can make better code. */
536 LEGITIMIZE_ADDRESS (x
, oldx
, mode
, win
);
538 /* PLUS and MULT can appear in special ways
539 as the result of attempts to make an address usable for indexing.
540 Usually they are dealt with by calling force_operand, below.
541 But a sum containing constant terms is special
542 if removing them makes the sum a valid address:
543 then we generate that address in a register
544 and index off of it. We do this because it often makes
545 shorter code, and because the addresses thus generated
546 in registers often become common subexpressions. */
547 if (GET_CODE (x
) == PLUS
)
549 rtx constant_term
= const0_rtx
;
550 rtx y
= eliminate_constant_term (x
, &constant_term
);
551 if (constant_term
== const0_rtx
552 || ! memory_address_p (mode
, y
))
553 x
= force_operand (x
, NULL_RTX
);
556 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
557 if (! memory_address_p (mode
, y
))
558 x
= force_operand (x
, NULL_RTX
);
564 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
565 x
= force_operand (x
, NULL_RTX
);
567 /* If we have a register that's an invalid address,
568 it must be a hard reg of the wrong class. Copy it to a pseudo. */
569 else if (GET_CODE (x
) == REG
)
572 /* Last resort: copy the value to a register, since
573 the register is a valid address. */
575 x
= force_reg (Pmode
, x
);
582 if (flag_force_addr
&& ! cse_not_expected
&& GET_CODE (x
) != REG
583 /* Don't copy an addr via a reg if it is one of our stack slots. */
584 && ! (GET_CODE (x
) == PLUS
585 && (XEXP (x
, 0) == virtual_stack_vars_rtx
586 || XEXP (x
, 0) == virtual_incoming_args_rtx
)))
588 if (general_operand (x
, Pmode
))
589 x
= force_reg (Pmode
, x
);
591 x
= force_operand (x
, NULL_RTX
);
597 /* If we didn't change the address, we are done. Otherwise, mark
598 a reg as a pointer if we have REG or REG + CONST_INT. */
601 else if (GET_CODE (x
) == REG
)
602 mark_reg_pointer (x
, BITS_PER_UNIT
);
603 else if (GET_CODE (x
) == PLUS
604 && GET_CODE (XEXP (x
, 0)) == REG
605 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
606 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
608 /* OLDX may have been the address on a temporary. Update the address
609 to indicate that X is now used. */
610 update_temp_slot_address (oldx
, x
);
615 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
618 memory_address_noforce (mode
, x
)
619 enum machine_mode mode
;
622 int ambient_force_addr
= flag_force_addr
;
626 val
= memory_address (mode
, x
);
627 flag_force_addr
= ambient_force_addr
;
631 /* Convert a mem ref into one with a valid memory address.
632 Pass through anything else unchanged. */
638 if (GET_CODE (ref
) != MEM
)
640 if (! (flag_force_addr
&& CONSTANT_ADDRESS_P (XEXP (ref
, 0)))
641 && memory_address_p (GET_MODE (ref
), XEXP (ref
, 0)))
644 /* Don't alter REF itself, since that is probably a stack slot. */
645 return replace_equiv_address (ref
, XEXP (ref
, 0));
648 /* Given REF, either a MEM or a REG, and T, either the type of X or
649 the expression corresponding to REF, set RTX_UNCHANGING_P if
653 maybe_set_unchanging (ref
, t
)
657 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
658 initialization is only executed once, or whose initializer always
659 has the same value. Currently we simplify this to PARM_DECLs in the
660 first case, and decls with TREE_CONSTANT initializers in the second. */
661 if ((TREE_READONLY (t
) && DECL_P (t
)
662 && (TREE_CODE (t
) == PARM_DECL
663 || (DECL_INITIAL (t
) && TREE_CONSTANT (DECL_INITIAL (t
)))))
664 || TREE_CODE_CLASS (TREE_CODE (t
)) == 'c')
665 RTX_UNCHANGING_P (ref
) = 1;
668 /* Return a modified copy of X with its memory address copied
669 into a temporary register to protect it from side effects.
670 If X is not a MEM, it is returned unchanged (and not copied).
671 Perhaps even if it is a MEM, if there is no need to change it. */
678 if (GET_CODE (x
) != MEM
679 || ! rtx_unstable_p (XEXP (x
, 0)))
683 replace_equiv_address (x
, force_reg (Pmode
, copy_all_regs (XEXP (x
, 0))));
686 /* Copy the value or contents of X to a new temp reg and return that reg. */
692 rtx temp
= gen_reg_rtx (GET_MODE (x
));
694 /* If not an operand, must be an address with PLUS and MULT so
695 do the computation. */
696 if (! general_operand (x
, VOIDmode
))
697 x
= force_operand (x
, temp
);
700 emit_move_insn (temp
, x
);
705 /* Like copy_to_reg but always give the new register mode Pmode
706 in case X is a constant. */
712 return copy_to_mode_reg (Pmode
, x
);
715 /* Like copy_to_reg but always give the new register mode MODE
716 in case X is a constant. */
719 copy_to_mode_reg (mode
, x
)
720 enum machine_mode mode
;
723 rtx temp
= gen_reg_rtx (mode
);
725 /* If not an operand, must be an address with PLUS and MULT so
726 do the computation. */
727 if (! general_operand (x
, VOIDmode
))
728 x
= force_operand (x
, temp
);
730 if (GET_MODE (x
) != mode
&& GET_MODE (x
) != VOIDmode
)
733 emit_move_insn (temp
, x
);
737 /* Load X into a register if it is not already one.
738 Use mode MODE for the register.
739 X should be valid for mode MODE, but it may be a constant which
740 is valid for all integer modes; that's why caller must specify MODE.
742 The caller must not alter the value in the register we return,
743 since we mark it as a "constant" register. */
747 enum machine_mode mode
;
752 if (GET_CODE (x
) == REG
)
755 if (general_operand (x
, mode
))
757 temp
= gen_reg_rtx (mode
);
758 insn
= emit_move_insn (temp
, x
);
762 temp
= force_operand (x
, NULL_RTX
);
763 if (GET_CODE (temp
) == REG
)
764 insn
= get_last_insn ();
767 rtx temp2
= gen_reg_rtx (mode
);
768 insn
= emit_move_insn (temp2
, temp
);
773 /* Let optimizers know that TEMP's value never changes
774 and that X can be substituted for it. Don't get confused
775 if INSN set something else (such as a SUBREG of TEMP). */
777 && (set
= single_set (insn
)) != 0
778 && SET_DEST (set
) == temp
779 && ! rtx_equal_p (x
, SET_SRC (set
)))
780 set_unique_reg_note (insn
, REG_EQUAL
, x
);
785 /* If X is a memory ref, copy its contents to a new temp reg and return
786 that reg. Otherwise, return X. */
794 if (GET_CODE (x
) != MEM
|| GET_MODE (x
) == BLKmode
)
797 temp
= gen_reg_rtx (GET_MODE (x
));
798 emit_move_insn (temp
, x
);
802 /* Copy X to TARGET (if it's nonzero and a reg)
803 or to a new temp reg and return that reg.
804 MODE is the mode to use for X in case it is a constant. */
807 copy_to_suggested_reg (x
, target
, mode
)
809 enum machine_mode mode
;
813 if (target
&& GET_CODE (target
) == REG
)
816 temp
= gen_reg_rtx (mode
);
818 emit_move_insn (temp
, x
);
822 /* Return the mode to use to store a scalar of TYPE and MODE.
823 PUNSIGNEDP points to the signedness of the type and may be adjusted
824 to show what signedness to use on extension operations.
826 FOR_CALL is nonzero if this call is promoting args for a call. */
829 promote_mode (type
, mode
, punsignedp
, for_call
)
831 enum machine_mode mode
;
833 int for_call ATTRIBUTE_UNUSED
;
835 enum tree_code code
= TREE_CODE (type
);
836 int unsignedp
= *punsignedp
;
838 #ifdef PROMOTE_FOR_CALL_ONLY
846 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
847 case CHAR_TYPE
: case REAL_TYPE
: case OFFSET_TYPE
:
848 PROMOTE_MODE (mode
, unsignedp
, type
);
852 #ifdef POINTERS_EXTEND_UNSIGNED
856 unsignedp
= POINTERS_EXTEND_UNSIGNED
;
864 *punsignedp
= unsignedp
;
868 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
869 This pops when ADJUST is positive. ADJUST need not be constant. */
872 adjust_stack (adjust
)
876 adjust
= protect_from_queue (adjust
, 0);
878 if (adjust
== const0_rtx
)
881 /* We expect all variable sized adjustments to be multiple of
882 PREFERRED_STACK_BOUNDARY. */
883 if (GET_CODE (adjust
) == CONST_INT
)
884 stack_pointer_delta
-= INTVAL (adjust
);
886 temp
= expand_binop (Pmode
,
887 #ifdef STACK_GROWS_DOWNWARD
892 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
895 if (temp
!= stack_pointer_rtx
)
896 emit_move_insn (stack_pointer_rtx
, temp
);
899 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
900 This pushes when ADJUST is positive. ADJUST need not be constant. */
903 anti_adjust_stack (adjust
)
907 adjust
= protect_from_queue (adjust
, 0);
909 if (adjust
== const0_rtx
)
912 /* We expect all variable sized adjustments to be multiple of
913 PREFERRED_STACK_BOUNDARY. */
914 if (GET_CODE (adjust
) == CONST_INT
)
915 stack_pointer_delta
+= INTVAL (adjust
);
917 temp
= expand_binop (Pmode
,
918 #ifdef STACK_GROWS_DOWNWARD
923 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
926 if (temp
!= stack_pointer_rtx
)
927 emit_move_insn (stack_pointer_rtx
, temp
);
930 /* Round the size of a block to be pushed up to the boundary required
931 by this machine. SIZE is the desired size, which need not be constant. */
937 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
940 if (GET_CODE (size
) == CONST_INT
)
942 int new = (INTVAL (size
) + align
- 1) / align
* align
;
943 if (INTVAL (size
) != new)
944 size
= GEN_INT (new);
948 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
949 but we know it can't. So add ourselves and then do
951 size
= expand_binop (Pmode
, add_optab
, size
, GEN_INT (align
- 1),
952 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
953 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, GEN_INT (align
),
955 size
= expand_mult (Pmode
, size
, GEN_INT (align
), NULL_RTX
, 1);
960 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
961 to a previously-created save area. If no save area has been allocated,
962 this function will allocate one. If a save area is specified, it
963 must be of the proper mode.
965 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
966 are emitted at the current position. */
969 emit_stack_save (save_level
, psave
, after
)
970 enum save_level save_level
;
975 /* The default is that we use a move insn and save in a Pmode object. */
976 rtx (*fcn
) PARAMS ((rtx
, rtx
)) = gen_move_insn
;
977 enum machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
979 /* See if this machine has anything special to do for this kind of save. */
982 #ifdef HAVE_save_stack_block
984 if (HAVE_save_stack_block
)
985 fcn
= gen_save_stack_block
;
988 #ifdef HAVE_save_stack_function
990 if (HAVE_save_stack_function
)
991 fcn
= gen_save_stack_function
;
994 #ifdef HAVE_save_stack_nonlocal
996 if (HAVE_save_stack_nonlocal
)
997 fcn
= gen_save_stack_nonlocal
;
1004 /* If there is no save area and we have to allocate one, do so. Otherwise
1005 verify the save area is the proper mode. */
1009 if (mode
!= VOIDmode
)
1011 if (save_level
== SAVE_NONLOCAL
)
1012 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
1014 *psave
= sa
= gen_reg_rtx (mode
);
1019 if (mode
== VOIDmode
|| GET_MODE (sa
) != mode
)
1028 /* We must validize inside the sequence, to ensure that any instructions
1029 created by the validize call also get moved to the right place. */
1031 sa
= validize_mem (sa
);
1032 emit_insn (fcn (sa
, stack_pointer_rtx
));
1035 emit_insn_after (seq
, after
);
1040 sa
= validize_mem (sa
);
1041 emit_insn (fcn (sa
, stack_pointer_rtx
));
1045 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1046 area made by emit_stack_save. If it is zero, we have nothing to do.
1048 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1049 current position. */
1052 emit_stack_restore (save_level
, sa
, after
)
1053 enum save_level save_level
;
1057 /* The default is that we use a move insn. */
1058 rtx (*fcn
) PARAMS ((rtx
, rtx
)) = gen_move_insn
;
1060 /* See if this machine has anything special to do for this kind of save. */
1063 #ifdef HAVE_restore_stack_block
1065 if (HAVE_restore_stack_block
)
1066 fcn
= gen_restore_stack_block
;
1069 #ifdef HAVE_restore_stack_function
1071 if (HAVE_restore_stack_function
)
1072 fcn
= gen_restore_stack_function
;
1075 #ifdef HAVE_restore_stack_nonlocal
1077 if (HAVE_restore_stack_nonlocal
)
1078 fcn
= gen_restore_stack_nonlocal
;
1087 sa
= validize_mem (sa
);
1088 /* These clobbers prevent the scheduler from moving
1089 references to variable arrays below the code
1090 that deletes (pops) the arrays. */
1091 emit_insn (gen_rtx_CLOBBER (VOIDmode
,
1092 gen_rtx_MEM (BLKmode
,
1093 gen_rtx_SCRATCH (VOIDmode
))));
1094 emit_insn (gen_rtx_CLOBBER (VOIDmode
,
1095 gen_rtx_MEM (BLKmode
, stack_pointer_rtx
)));
1103 emit_insn (fcn (stack_pointer_rtx
, sa
));
1106 emit_insn_after (seq
, after
);
1109 emit_insn (fcn (stack_pointer_rtx
, sa
));
1112 #ifdef SETJMP_VIA_SAVE_AREA
1113 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1114 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1115 platforms, the dynamic stack space used can corrupt the original
1116 frame, thus causing a crash if a longjmp unwinds to it. */
1119 optimize_save_area_alloca (insns
)
1124 for (insn
= insns
; insn
; insn
= NEXT_INSN(insn
))
1128 if (GET_CODE (insn
) != INSN
)
1131 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1133 if (REG_NOTE_KIND (note
) != REG_SAVE_AREA
)
1136 if (!current_function_calls_setjmp
)
1138 rtx pat
= PATTERN (insn
);
1140 /* If we do not see the note in a pattern matching
1141 these precise characteristics, we did something
1142 entirely wrong in allocate_dynamic_stack_space.
1144 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1145 was defined on a machine where stacks grow towards higher
1148 Right now only supported port with stack that grow upward
1149 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1150 if (GET_CODE (pat
) != SET
1151 || SET_DEST (pat
) != stack_pointer_rtx
1152 || GET_CODE (SET_SRC (pat
)) != MINUS
1153 || XEXP (SET_SRC (pat
), 0) != stack_pointer_rtx
)
1156 /* This will now be transformed into a (set REG REG)
1157 so we can just blow away all the other notes. */
1158 XEXP (SET_SRC (pat
), 1) = XEXP (note
, 0);
1159 REG_NOTES (insn
) = NULL_RTX
;
1163 /* setjmp was called, we must remove the REG_SAVE_AREA
1164 note so that later passes do not get confused by its
1166 if (note
== REG_NOTES (insn
))
1168 REG_NOTES (insn
) = XEXP (note
, 1);
1174 for (srch
= REG_NOTES (insn
); srch
; srch
= XEXP (srch
, 1))
1175 if (XEXP (srch
, 1) == note
)
1178 if (srch
== NULL_RTX
)
1181 XEXP (srch
, 1) = XEXP (note
, 1);
1184 /* Once we've seen the note of interest, we need not look at
1185 the rest of them. */
1190 #endif /* SETJMP_VIA_SAVE_AREA */
1192 /* Return an rtx representing the address of an area of memory dynamically
1193 pushed on the stack. This region of memory is always aligned to
1194 a multiple of BIGGEST_ALIGNMENT.
1196 Any required stack pointer alignment is preserved.
1198 SIZE is an rtx representing the size of the area.
1199 TARGET is a place in which the address can be placed.
1201 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1204 allocate_dynamic_stack_space (size
, target
, known_align
)
1209 #ifdef SETJMP_VIA_SAVE_AREA
1210 rtx setjmpless_size
= NULL_RTX
;
1213 /* If we're asking for zero bytes, it doesn't matter what we point
1214 to since we can't dereference it. But return a reasonable
1216 if (size
== const0_rtx
)
1217 return virtual_stack_dynamic_rtx
;
1219 /* Otherwise, show we're calling alloca or equivalent. */
1220 current_function_calls_alloca
= 1;
1222 /* Ensure the size is in the proper mode. */
1223 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1224 size
= convert_to_mode (Pmode
, size
, 1);
1226 /* We can't attempt to minimize alignment necessary, because we don't
1227 know the final value of preferred_stack_boundary yet while executing
1229 cfun
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1231 /* We will need to ensure that the address we return is aligned to
1232 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1233 always know its final value at this point in the compilation (it
1234 might depend on the size of the outgoing parameter lists, for
1235 example), so we must align the value to be returned in that case.
1236 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1237 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1238 We must also do an alignment operation on the returned value if
1239 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1241 If we have to align, we must leave space in SIZE for the hole
1242 that might result from the alignment operation. */
1244 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1245 #define MUST_ALIGN 1
1247 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1252 = force_operand (plus_constant (size
,
1253 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1256 #ifdef SETJMP_VIA_SAVE_AREA
1257 /* If setjmp restores regs from a save area in the stack frame,
1258 avoid clobbering the reg save area. Note that the offset of
1259 virtual_incoming_args_rtx includes the preallocated stack args space.
1260 It would be no problem to clobber that, but it's on the wrong side
1261 of the old save area. */
1264 = expand_binop (Pmode
, sub_optab
, virtual_stack_dynamic_rtx
,
1265 stack_pointer_rtx
, NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1267 if (!current_function_calls_setjmp
)
1269 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
1271 /* See optimize_save_area_alloca to understand what is being
1274 /* ??? Code below assumes that the save area needs maximal
1275 alignment. This constraint may be too strong. */
1276 if (PREFERRED_STACK_BOUNDARY
!= BIGGEST_ALIGNMENT
)
1279 if (GET_CODE (size
) == CONST_INT
)
1281 HOST_WIDE_INT
new = INTVAL (size
) / align
* align
;
1283 if (INTVAL (size
) != new)
1284 setjmpless_size
= GEN_INT (new);
1286 setjmpless_size
= size
;
1290 /* Since we know overflow is not possible, we avoid using
1291 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1292 setjmpless_size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
,
1293 GEN_INT (align
), NULL_RTX
, 1);
1294 setjmpless_size
= expand_mult (Pmode
, setjmpless_size
,
1295 GEN_INT (align
), NULL_RTX
, 1);
1297 /* Our optimization works based upon being able to perform a simple
1298 transformation of this RTL into a (set REG REG) so make sure things
1299 did in fact end up in a REG. */
1300 if (!register_operand (setjmpless_size
, Pmode
))
1301 setjmpless_size
= force_reg (Pmode
, setjmpless_size
);
1304 size
= expand_binop (Pmode
, add_optab
, size
, dynamic_offset
,
1305 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1307 #endif /* SETJMP_VIA_SAVE_AREA */
1309 /* Round the size to a multiple of the required stack alignment.
1310 Since the stack if presumed to be rounded before this allocation,
1311 this will maintain the required alignment.
1313 If the stack grows downward, we could save an insn by subtracting
1314 SIZE from the stack pointer and then aligning the stack pointer.
1315 The problem with this is that the stack pointer may be unaligned
1316 between the execution of the subtraction and alignment insns and
1317 some machines do not allow this. Even on those that do, some
1318 signal handlers malfunction if a signal should occur between those
1319 insns. Since this is an extremely rare event, we have no reliable
1320 way of knowing which systems have this problem. So we avoid even
1321 momentarily mis-aligning the stack. */
1323 /* If we added a variable amount to SIZE,
1324 we can no longer assume it is aligned. */
1325 #if !defined (SETJMP_VIA_SAVE_AREA)
1326 if (MUST_ALIGN
|| known_align
% PREFERRED_STACK_BOUNDARY
!= 0)
1328 size
= round_push (size
);
1330 do_pending_stack_adjust ();
1332 /* We ought to be called always on the toplevel and stack ought to be aligned
1334 if (stack_pointer_delta
% (PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
))
1337 /* If needed, check that we have the required amount of stack. Take into
1338 account what has already been checked. */
1339 if (flag_stack_check
&& ! STACK_CHECK_BUILTIN
)
1340 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE
+ STACK_CHECK_PROTECT
, size
);
1342 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1343 if (target
== 0 || GET_CODE (target
) != REG
1344 || REGNO (target
) < FIRST_PSEUDO_REGISTER
1345 || GET_MODE (target
) != Pmode
)
1346 target
= gen_reg_rtx (Pmode
);
1348 mark_reg_pointer (target
, known_align
);
1350 /* Perform the required allocation from the stack. Some systems do
1351 this differently than simply incrementing/decrementing from the
1352 stack pointer, such as acquiring the space by calling malloc(). */
1353 #ifdef HAVE_allocate_stack
1354 if (HAVE_allocate_stack
)
1356 enum machine_mode mode
= STACK_SIZE_MODE
;
1357 insn_operand_predicate_fn pred
;
1359 /* We don't have to check against the predicate for operand 0 since
1360 TARGET is known to be a pseudo of the proper mode, which must
1361 be valid for the operand. For operand 1, convert to the
1362 proper mode and validate. */
1363 if (mode
== VOIDmode
)
1364 mode
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].mode
;
1366 pred
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].predicate
;
1367 if (pred
&& ! ((*pred
) (size
, mode
)))
1368 size
= copy_to_mode_reg (mode
, size
);
1370 emit_insn (gen_allocate_stack (target
, size
));
1375 #ifndef STACK_GROWS_DOWNWARD
1376 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1379 /* Check stack bounds if necessary. */
1380 if (current_function_limit_stack
)
1383 rtx space_available
= gen_label_rtx ();
1384 #ifdef STACK_GROWS_DOWNWARD
1385 available
= expand_binop (Pmode
, sub_optab
,
1386 stack_pointer_rtx
, stack_limit_rtx
,
1387 NULL_RTX
, 1, OPTAB_WIDEN
);
1389 available
= expand_binop (Pmode
, sub_optab
,
1390 stack_limit_rtx
, stack_pointer_rtx
,
1391 NULL_RTX
, 1, OPTAB_WIDEN
);
1393 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1397 emit_insn (gen_trap ());
1400 error ("stack limits not supported on this target");
1402 emit_label (space_available
);
1405 anti_adjust_stack (size
);
1406 #ifdef SETJMP_VIA_SAVE_AREA
1407 if (setjmpless_size
!= NULL_RTX
)
1409 rtx note_target
= get_last_insn ();
1411 REG_NOTES (note_target
)
1412 = gen_rtx_EXPR_LIST (REG_SAVE_AREA
, setjmpless_size
,
1413 REG_NOTES (note_target
));
1415 #endif /* SETJMP_VIA_SAVE_AREA */
1417 #ifdef STACK_GROWS_DOWNWARD
1418 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1424 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1425 but we know it can't. So add ourselves and then do
1427 target
= expand_binop (Pmode
, add_optab
, target
,
1428 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1429 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1430 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1431 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1433 target
= expand_mult (Pmode
, target
,
1434 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1438 /* Some systems require a particular insn to refer to the stack
1439 to make the pages exist. */
1442 emit_insn (gen_probe ());
1445 /* Record the new stack level for nonlocal gotos. */
1446 if (nonlocal_goto_handler_slots
!= 0)
1447 emit_stack_save (SAVE_NONLOCAL
, &nonlocal_goto_stack_level
, NULL_RTX
);
1452 /* A front end may want to override GCC's stack checking by providing a
1453 run-time routine to call to check the stack, so provide a mechanism for
1454 calling that routine. */
1456 static GTY(()) rtx stack_check_libfunc
;
1459 set_stack_check_libfunc (libfunc
)
1462 stack_check_libfunc
= libfunc
;
1465 /* Emit one stack probe at ADDRESS, an address within the stack. */
1468 emit_stack_probe (address
)
1471 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1473 MEM_VOLATILE_P (memref
) = 1;
1475 if (STACK_CHECK_PROBE_LOAD
)
1476 emit_move_insn (gen_reg_rtx (word_mode
), memref
);
1478 emit_move_insn (memref
, const0_rtx
);
1481 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1482 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1483 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1484 subtract from the stack. If SIZE is constant, this is done
1485 with a fixed number of probes. Otherwise, we must make a loop. */
1487 #ifdef STACK_GROWS_DOWNWARD
1488 #define STACK_GROW_OP MINUS
1490 #define STACK_GROW_OP PLUS
1494 probe_stack_range (first
, size
)
1495 HOST_WIDE_INT first
;
1498 /* First ensure SIZE is Pmode. */
1499 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1500 size
= convert_to_mode (Pmode
, size
, 1);
1502 /* Next see if the front end has set up a function for us to call to
1504 if (stack_check_libfunc
!= 0)
1506 rtx addr
= memory_address (QImode
,
1507 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1509 plus_constant (size
, first
)));
1511 #ifdef POINTERS_EXTEND_UNSIGNED
1512 if (GET_MODE (addr
) != ptr_mode
)
1513 addr
= convert_memory_address (ptr_mode
, addr
);
1516 emit_library_call (stack_check_libfunc
, LCT_NORMAL
, VOIDmode
, 1, addr
,
1520 /* Next see if we have an insn to check the stack. Use it if so. */
1521 #ifdef HAVE_check_stack
1522 else if (HAVE_check_stack
)
1524 insn_operand_predicate_fn pred
;
1526 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1528 plus_constant (size
, first
)),
1531 pred
= insn_data
[(int) CODE_FOR_check_stack
].operand
[0].predicate
;
1532 if (pred
&& ! ((*pred
) (last_addr
, Pmode
)))
1533 last_addr
= copy_to_mode_reg (Pmode
, last_addr
);
1535 emit_insn (gen_check_stack (last_addr
));
1539 /* If we have to generate explicit probes, see if we have a constant
1540 small number of them to generate. If so, that's the easy case. */
1541 else if (GET_CODE (size
) == CONST_INT
1542 && INTVAL (size
) < 10 * STACK_CHECK_PROBE_INTERVAL
)
1544 HOST_WIDE_INT offset
;
1546 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1547 for values of N from 1 until it exceeds LAST. If only one
1548 probe is needed, this will not generate any code. Then probe
1550 for (offset
= first
+ STACK_CHECK_PROBE_INTERVAL
;
1551 offset
< INTVAL (size
);
1552 offset
= offset
+ STACK_CHECK_PROBE_INTERVAL
)
1553 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1557 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1559 plus_constant (size
, first
)));
1562 /* In the variable case, do the same as above, but in a loop. We emit loop
1563 notes so that loop optimization can be done. */
1567 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1569 GEN_INT (first
+ STACK_CHECK_PROBE_INTERVAL
)),
1572 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1574 plus_constant (size
, first
)),
1576 rtx incr
= GEN_INT (STACK_CHECK_PROBE_INTERVAL
);
1577 rtx loop_lab
= gen_label_rtx ();
1578 rtx test_lab
= gen_label_rtx ();
1579 rtx end_lab
= gen_label_rtx ();
1582 if (GET_CODE (test_addr
) != REG
1583 || REGNO (test_addr
) < FIRST_PSEUDO_REGISTER
)
1584 test_addr
= force_reg (Pmode
, test_addr
);
1586 emit_note (NULL
, NOTE_INSN_LOOP_BEG
);
1587 emit_jump (test_lab
);
1589 emit_label (loop_lab
);
1590 emit_stack_probe (test_addr
);
1592 emit_note (NULL
, NOTE_INSN_LOOP_CONT
);
1594 #ifdef STACK_GROWS_DOWNWARD
1595 #define CMP_OPCODE GTU
1596 temp
= expand_binop (Pmode
, sub_optab
, test_addr
, incr
, test_addr
,
1599 #define CMP_OPCODE LTU
1600 temp
= expand_binop (Pmode
, add_optab
, test_addr
, incr
, test_addr
,
1604 if (temp
!= test_addr
)
1607 emit_label (test_lab
);
1608 emit_cmp_and_jump_insns (test_addr
, last_addr
, CMP_OPCODE
,
1609 NULL_RTX
, Pmode
, 1, loop_lab
);
1610 emit_jump (end_lab
);
1611 emit_note (NULL
, NOTE_INSN_LOOP_END
);
1612 emit_label (end_lab
);
1614 emit_stack_probe (last_addr
);
1618 /* Return an rtx representing the register or memory location
1619 in which a scalar value of data type VALTYPE
1620 was returned by a function call to function FUNC.
1621 FUNC is a FUNCTION_DECL node if the precise function is known,
1623 OUTGOING is 1 if on a machine with register windows this function
1624 should return the register in which the function will put its result
1628 hard_function_value (valtype
, func
, outgoing
)
1630 tree func ATTRIBUTE_UNUSED
;
1631 int outgoing ATTRIBUTE_UNUSED
;
1635 #ifdef FUNCTION_OUTGOING_VALUE
1637 val
= FUNCTION_OUTGOING_VALUE (valtype
, func
);
1640 val
= FUNCTION_VALUE (valtype
, func
);
1642 if (GET_CODE (val
) == REG
1643 && GET_MODE (val
) == BLKmode
)
1645 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (valtype
);
1646 enum machine_mode tmpmode
;
1648 /* int_size_in_bytes can return -1. We don't need a check here
1649 since the value of bytes will be large enough that no mode
1650 will match and we will abort later in this function. */
1652 for (tmpmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1653 tmpmode
!= VOIDmode
;
1654 tmpmode
= GET_MODE_WIDER_MODE (tmpmode
))
1656 /* Have we found a large enough mode? */
1657 if (GET_MODE_SIZE (tmpmode
) >= bytes
)
1661 /* No suitable mode found. */
1662 if (tmpmode
== VOIDmode
)
1665 PUT_MODE (val
, tmpmode
);
1670 /* Return an rtx representing the register or memory location
1671 in which a scalar value of mode MODE was returned by a library call. */
1674 hard_libcall_value (mode
)
1675 enum machine_mode mode
;
1677 return LIBCALL_VALUE (mode
);
1680 /* Look up the tree code for a given rtx code
1681 to provide the arithmetic operation for REAL_ARITHMETIC.
1682 The function returns an int because the caller may not know
1683 what `enum tree_code' means. */
1686 rtx_to_tree_code (code
)
1689 enum tree_code tcode
;
1712 tcode
= LAST_AND_UNUSED_TREE_CODE
;
1715 return ((int) tcode
);
1718 #include "gt-explow.h"