[AArch64 costs 7/18] Improve SET cost.
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blobd4aaf42b2a5f0eada943dfbfa40a8f39ff155b7b
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "pointer-set.h"
31 #include "tree-ssa-alias.h"
32 #include "internal-fn.h"
33 #include "gimple-expr.h"
34 #include "is-a.h"
35 #include "gimple.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimplify-me.h"
39 #include "gimple-ssa.h"
40 #include "tree-cfg.h"
41 #include "tree-phinodes.h"
42 #include "ssa-iterators.h"
43 #include "stringpool.h"
44 #include "tree-ssanames.h"
45 #include "expr.h"
46 #include "tree-dfa.h"
47 #include "tree-pass.h"
48 #include "langhooks.h"
49 #include "domwalk.h"
50 #include "cfgloop.h"
51 #include "tree-data-ref.h"
52 #include "gimple-pretty-print.h"
53 #include "insn-config.h"
54 #include "expr.h"
55 #include "optabs.h"
56 #include "tree-scalar-evolution.h"
57 #include "tree-inline.h"
59 #ifndef HAVE_conditional_move
60 #define HAVE_conditional_move (0)
61 #endif
63 static unsigned int tree_ssa_phiopt_worker (bool, bool);
64 static bool conditional_replacement (basic_block, basic_block,
65 edge, edge, gimple, tree, tree);
66 static int value_replacement (basic_block, basic_block,
67 edge, edge, gimple, tree, tree);
68 static bool minmax_replacement (basic_block, basic_block,
69 edge, edge, gimple, tree, tree);
70 static bool abs_replacement (basic_block, basic_block,
71 edge, edge, gimple, tree, tree);
72 static bool neg_replacement (basic_block, basic_block,
73 edge, edge, gimple, tree, tree);
74 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
75 struct pointer_set_t *);
76 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
77 static struct pointer_set_t * get_non_trapping (void);
78 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
79 static void hoist_adjacent_loads (basic_block, basic_block,
80 basic_block, basic_block);
81 static bool gate_hoist_loads (void);
83 /* This pass tries to transform conditional stores into unconditional
84 ones, enabling further simplifications with the simpler then and else
85 blocks. In particular it replaces this:
87 bb0:
88 if (cond) goto bb2; else goto bb1;
89 bb1:
90 *p = RHS;
91 bb2:
93 with
95 bb0:
96 if (cond) goto bb1; else goto bb2;
97 bb1:
98 condtmp' = *p;
99 bb2:
100 condtmp = PHI <RHS, condtmp'>
101 *p = condtmp;
103 This transformation can only be done under several constraints,
104 documented below. It also replaces:
106 bb0:
107 if (cond) goto bb2; else goto bb1;
108 bb1:
109 *p = RHS1;
110 goto bb3;
111 bb2:
112 *p = RHS2;
113 bb3:
115 with
117 bb0:
118 if (cond) goto bb3; else goto bb1;
119 bb1:
120 bb3:
121 condtmp = PHI <RHS1, RHS2>
122 *p = condtmp; */
124 static unsigned int
125 tree_ssa_cs_elim (void)
127 unsigned todo;
128 /* ??? We are not interested in loop related info, but the following
129 will create it, ICEing as we didn't init loops with pre-headers.
130 An interfacing issue of find_data_references_in_bb. */
131 loop_optimizer_init (LOOPS_NORMAL);
132 scev_initialize ();
133 todo = tree_ssa_phiopt_worker (true, false);
134 scev_finalize ();
135 loop_optimizer_finalize ();
136 return todo;
139 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
141 static gimple
142 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
144 gimple_stmt_iterator i;
145 gimple phi = NULL;
146 if (gimple_seq_singleton_p (seq))
147 return gsi_stmt (gsi_start (seq));
148 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
150 gimple p = gsi_stmt (i);
151 /* If the PHI arguments are equal then we can skip this PHI. */
152 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
153 gimple_phi_arg_def (p, e1->dest_idx)))
154 continue;
156 /* If we already have a PHI that has the two edge arguments are
157 different, then return it is not a singleton for these PHIs. */
158 if (phi)
159 return NULL;
161 phi = p;
163 return phi;
166 /* The core routine of conditional store replacement and normal
167 phi optimizations. Both share much of the infrastructure in how
168 to match applicable basic block patterns. DO_STORE_ELIM is true
169 when we want to do conditional store replacement, false otherwise.
170 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
171 of diamond control flow patterns, false otherwise. */
172 static unsigned int
173 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
175 basic_block bb;
176 basic_block *bb_order;
177 unsigned n, i;
178 bool cfgchanged = false;
179 struct pointer_set_t *nontrap = 0;
181 if (do_store_elim)
182 /* Calculate the set of non-trapping memory accesses. */
183 nontrap = get_non_trapping ();
185 /* The replacement of conditional negation with a non-branching
186 sequence is really only a win when optimizing for speed and we
187 can avoid transformations by gimple if-conversion that result
188 in poor RTL generation.
190 Ideally either gimple if-conversion or the RTL expanders will
191 be improved and the code to emit branchless conditional negation
192 can be removed. */
193 bool replace_conditional_negation = false;
194 if (!do_store_elim)
195 replace_conditional_negation
196 = ((!optimize_size && optimize >= 2)
197 || (((flag_tree_loop_vectorize || cfun->has_force_vectorize_loops)
198 && flag_tree_loop_if_convert != 0)
199 || flag_tree_loop_if_convert == 1
200 || flag_tree_loop_if_convert_stores == 1));
202 /* Search every basic block for COND_EXPR we may be able to optimize.
204 We walk the blocks in order that guarantees that a block with
205 a single predecessor is processed before the predecessor.
206 This ensures that we collapse inner ifs before visiting the
207 outer ones, and also that we do not try to visit a removed
208 block. */
209 bb_order = single_pred_before_succ_order ();
210 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
212 for (i = 0; i < n; i++)
214 gimple cond_stmt, phi;
215 basic_block bb1, bb2;
216 edge e1, e2;
217 tree arg0, arg1;
219 bb = bb_order[i];
221 cond_stmt = last_stmt (bb);
222 /* Check to see if the last statement is a GIMPLE_COND. */
223 if (!cond_stmt
224 || gimple_code (cond_stmt) != GIMPLE_COND)
225 continue;
227 e1 = EDGE_SUCC (bb, 0);
228 bb1 = e1->dest;
229 e2 = EDGE_SUCC (bb, 1);
230 bb2 = e2->dest;
232 /* We cannot do the optimization on abnormal edges. */
233 if ((e1->flags & EDGE_ABNORMAL) != 0
234 || (e2->flags & EDGE_ABNORMAL) != 0)
235 continue;
237 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
238 if (EDGE_COUNT (bb1->succs) == 0
239 || bb2 == NULL
240 || EDGE_COUNT (bb2->succs) == 0)
241 continue;
243 /* Find the bb which is the fall through to the other. */
244 if (EDGE_SUCC (bb1, 0)->dest == bb2)
246 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
248 basic_block bb_tmp = bb1;
249 edge e_tmp = e1;
250 bb1 = bb2;
251 bb2 = bb_tmp;
252 e1 = e2;
253 e2 = e_tmp;
255 else if (do_store_elim
256 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
258 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
260 if (!single_succ_p (bb1)
261 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
262 || !single_succ_p (bb2)
263 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
264 || EDGE_COUNT (bb3->preds) != 2)
265 continue;
266 if (cond_if_else_store_replacement (bb1, bb2, bb3))
267 cfgchanged = true;
268 continue;
270 else if (do_hoist_loads
271 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
273 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
275 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
276 && single_succ_p (bb1)
277 && single_succ_p (bb2)
278 && single_pred_p (bb1)
279 && single_pred_p (bb2)
280 && EDGE_COUNT (bb->succs) == 2
281 && EDGE_COUNT (bb3->preds) == 2
282 /* If one edge or the other is dominant, a conditional move
283 is likely to perform worse than the well-predicted branch. */
284 && !predictable_edge_p (EDGE_SUCC (bb, 0))
285 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
286 hoist_adjacent_loads (bb, bb1, bb2, bb3);
287 continue;
289 else
290 continue;
292 e1 = EDGE_SUCC (bb1, 0);
294 /* Make sure that bb1 is just a fall through. */
295 if (!single_succ_p (bb1)
296 || (e1->flags & EDGE_FALLTHRU) == 0)
297 continue;
299 /* Also make sure that bb1 only have one predecessor and that it
300 is bb. */
301 if (!single_pred_p (bb1)
302 || single_pred (bb1) != bb)
303 continue;
305 if (do_store_elim)
307 /* bb1 is the middle block, bb2 the join block, bb the split block,
308 e1 the fallthrough edge from bb1 to bb2. We can't do the
309 optimization if the join block has more than two predecessors. */
310 if (EDGE_COUNT (bb2->preds) > 2)
311 continue;
312 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
313 cfgchanged = true;
315 else
317 gimple_seq phis = phi_nodes (bb2);
318 gimple_stmt_iterator gsi;
319 bool candorest = true;
321 /* Value replacement can work with more than one PHI
322 so try that first. */
323 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
325 phi = gsi_stmt (gsi);
326 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
327 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
328 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
330 candorest = false;
331 cfgchanged = true;
332 break;
336 if (!candorest)
337 continue;
339 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
340 if (!phi)
341 continue;
343 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
344 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
346 /* Something is wrong if we cannot find the arguments in the PHI
347 node. */
348 gcc_assert (arg0 != NULL && arg1 != NULL);
350 /* Do the replacement of conditional if it can be done. */
351 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
352 cfgchanged = true;
353 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
354 cfgchanged = true;
355 else if (replace_conditional_negation
356 && neg_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
357 cfgchanged = true;
358 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
359 cfgchanged = true;
363 free (bb_order);
365 if (do_store_elim)
366 pointer_set_destroy (nontrap);
367 /* If the CFG has changed, we should cleanup the CFG. */
368 if (cfgchanged && do_store_elim)
370 /* In cond-store replacement we have added some loads on edges
371 and new VOPS (as we moved the store, and created a load). */
372 gsi_commit_edge_inserts ();
373 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
375 else if (cfgchanged)
376 return TODO_cleanup_cfg;
377 return 0;
380 /* Replace PHI node element whose edge is E in block BB with variable NEW.
381 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
382 is known to have two edges, one of which must reach BB). */
384 static void
385 replace_phi_edge_with_variable (basic_block cond_block,
386 edge e, gimple phi, tree new_tree)
388 basic_block bb = gimple_bb (phi);
389 basic_block block_to_remove;
390 gimple_stmt_iterator gsi;
392 /* Change the PHI argument to new. */
393 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
395 /* Remove the empty basic block. */
396 if (EDGE_SUCC (cond_block, 0)->dest == bb)
398 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
399 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
400 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
401 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
403 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
405 else
407 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
408 EDGE_SUCC (cond_block, 1)->flags
409 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
410 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
411 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
413 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
415 delete_basic_block (block_to_remove);
417 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
418 gsi = gsi_last_bb (cond_block);
419 gsi_remove (&gsi, true);
421 if (dump_file && (dump_flags & TDF_DETAILS))
422 fprintf (dump_file,
423 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
424 cond_block->index,
425 bb->index);
428 /* The function conditional_replacement does the main work of doing the
429 conditional replacement. Return true if the replacement is done.
430 Otherwise return false.
431 BB is the basic block where the replacement is going to be done on. ARG0
432 is argument 0 from PHI. Likewise for ARG1. */
434 static bool
435 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
436 edge e0, edge e1, gimple phi,
437 tree arg0, tree arg1)
439 tree result;
440 gimple stmt, new_stmt;
441 tree cond;
442 gimple_stmt_iterator gsi;
443 edge true_edge, false_edge;
444 tree new_var, new_var2;
445 bool neg;
447 /* FIXME: Gimplification of complex type is too hard for now. */
448 /* We aren't prepared to handle vectors either (and it is a question
449 if it would be worthwhile anyway). */
450 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
451 || POINTER_TYPE_P (TREE_TYPE (arg0)))
452 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
453 || POINTER_TYPE_P (TREE_TYPE (arg1))))
454 return false;
456 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
457 convert it to the conditional. */
458 if ((integer_zerop (arg0) && integer_onep (arg1))
459 || (integer_zerop (arg1) && integer_onep (arg0)))
460 neg = false;
461 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
462 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
463 neg = true;
464 else
465 return false;
467 if (!empty_block_p (middle_bb))
468 return false;
470 /* At this point we know we have a GIMPLE_COND with two successors.
471 One successor is BB, the other successor is an empty block which
472 falls through into BB.
474 There is a single PHI node at the join point (BB) and its arguments
475 are constants (0, 1) or (0, -1).
477 So, given the condition COND, and the two PHI arguments, we can
478 rewrite this PHI into non-branching code:
480 dest = (COND) or dest = COND'
482 We use the condition as-is if the argument associated with the
483 true edge has the value one or the argument associated with the
484 false edge as the value zero. Note that those conditions are not
485 the same since only one of the outgoing edges from the GIMPLE_COND
486 will directly reach BB and thus be associated with an argument. */
488 stmt = last_stmt (cond_bb);
489 result = PHI_RESULT (phi);
491 /* To handle special cases like floating point comparison, it is easier and
492 less error-prone to build a tree and gimplify it on the fly though it is
493 less efficient. */
494 cond = fold_build2_loc (gimple_location (stmt),
495 gimple_cond_code (stmt), boolean_type_node,
496 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
498 /* We need to know which is the true edge and which is the false
499 edge so that we know when to invert the condition below. */
500 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
501 if ((e0 == true_edge && integer_zerop (arg0))
502 || (e0 == false_edge && !integer_zerop (arg0))
503 || (e1 == true_edge && integer_zerop (arg1))
504 || (e1 == false_edge && !integer_zerop (arg1)))
505 cond = fold_build1_loc (gimple_location (stmt),
506 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
508 if (neg)
510 cond = fold_convert_loc (gimple_location (stmt),
511 TREE_TYPE (result), cond);
512 cond = fold_build1_loc (gimple_location (stmt),
513 NEGATE_EXPR, TREE_TYPE (cond), cond);
516 /* Insert our new statements at the end of conditional block before the
517 COND_STMT. */
518 gsi = gsi_for_stmt (stmt);
519 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
520 GSI_SAME_STMT);
522 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
524 source_location locus_0, locus_1;
526 new_var2 = make_ssa_name (TREE_TYPE (result), NULL);
527 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
528 new_var, NULL);
529 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
530 new_var = new_var2;
532 /* Set the locus to the first argument, unless is doesn't have one. */
533 locus_0 = gimple_phi_arg_location (phi, 0);
534 locus_1 = gimple_phi_arg_location (phi, 1);
535 if (locus_0 == UNKNOWN_LOCATION)
536 locus_0 = locus_1;
537 gimple_set_location (new_stmt, locus_0);
540 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
542 /* Note that we optimized this PHI. */
543 return true;
546 /* Update *ARG which is defined in STMT so that it contains the
547 computed value if that seems profitable. Return true if the
548 statement is made dead by that rewriting. */
550 static bool
551 jump_function_from_stmt (tree *arg, gimple stmt)
553 enum tree_code code = gimple_assign_rhs_code (stmt);
554 if (code == ADDR_EXPR)
556 /* For arg = &p->i transform it to p, if possible. */
557 tree rhs1 = gimple_assign_rhs1 (stmt);
558 HOST_WIDE_INT offset;
559 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
560 &offset);
561 if (tem
562 && TREE_CODE (tem) == MEM_REF
563 && (mem_ref_offset (tem) + offset) == 0)
565 *arg = TREE_OPERAND (tem, 0);
566 return true;
569 /* TODO: Much like IPA-CP jump-functions we want to handle constant
570 additions symbolically here, and we'd need to update the comparison
571 code that compares the arg + cst tuples in our caller. For now the
572 code above exactly handles the VEC_BASE pattern from vec.h. */
573 return false;
576 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
577 of the form SSA_NAME NE 0.
579 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
580 the two input values of the EQ_EXPR match arg0 and arg1.
582 If so update *code and return TRUE. Otherwise return FALSE. */
584 static bool
585 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
586 enum tree_code *code, const_tree rhs)
588 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
589 statement. */
590 if (TREE_CODE (rhs) == SSA_NAME)
592 gimple def1 = SSA_NAME_DEF_STMT (rhs);
594 /* Verify the defining statement has an EQ_EXPR on the RHS. */
595 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
597 /* Finally verify the source operands of the EQ_EXPR are equal
598 to arg0 and arg1. */
599 tree op0 = gimple_assign_rhs1 (def1);
600 tree op1 = gimple_assign_rhs2 (def1);
601 if ((operand_equal_for_phi_arg_p (arg0, op0)
602 && operand_equal_for_phi_arg_p (arg1, op1))
603 || (operand_equal_for_phi_arg_p (arg0, op1)
604 && operand_equal_for_phi_arg_p (arg1, op0)))
606 /* We will perform the optimization. */
607 *code = gimple_assign_rhs_code (def1);
608 return true;
612 return false;
615 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
617 Also return TRUE if arg0/arg1 are equal to the source arguments of a
618 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
620 Return FALSE otherwise. */
622 static bool
623 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
624 enum tree_code *code, gimple cond)
626 gimple def;
627 tree lhs = gimple_cond_lhs (cond);
628 tree rhs = gimple_cond_rhs (cond);
630 if ((operand_equal_for_phi_arg_p (arg0, lhs)
631 && operand_equal_for_phi_arg_p (arg1, rhs))
632 || (operand_equal_for_phi_arg_p (arg1, lhs)
633 && operand_equal_for_phi_arg_p (arg0, rhs)))
634 return true;
636 /* Now handle more complex case where we have an EQ comparison
637 which feeds a BIT_AND_EXPR which feeds COND.
639 First verify that COND is of the form SSA_NAME NE 0. */
640 if (*code != NE_EXPR || !integer_zerop (rhs)
641 || TREE_CODE (lhs) != SSA_NAME)
642 return false;
644 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
645 def = SSA_NAME_DEF_STMT (lhs);
646 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
647 return false;
649 /* Now verify arg0/arg1 correspond to the source arguments of an
650 EQ comparison feeding the BIT_AND_EXPR. */
652 tree tmp = gimple_assign_rhs1 (def);
653 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
654 return true;
656 tmp = gimple_assign_rhs2 (def);
657 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
658 return true;
660 return false;
663 /* Returns true if ARG is a neutral element for operation CODE
664 on the RIGHT side. */
666 static bool
667 neutral_element_p (tree_code code, tree arg, bool right)
669 switch (code)
671 case PLUS_EXPR:
672 case BIT_IOR_EXPR:
673 case BIT_XOR_EXPR:
674 return integer_zerop (arg);
676 case LROTATE_EXPR:
677 case RROTATE_EXPR:
678 case LSHIFT_EXPR:
679 case RSHIFT_EXPR:
680 case MINUS_EXPR:
681 case POINTER_PLUS_EXPR:
682 return right && integer_zerop (arg);
684 case MULT_EXPR:
685 return integer_onep (arg);
687 case TRUNC_DIV_EXPR:
688 case CEIL_DIV_EXPR:
689 case FLOOR_DIV_EXPR:
690 case ROUND_DIV_EXPR:
691 case EXACT_DIV_EXPR:
692 return right && integer_onep (arg);
694 case BIT_AND_EXPR:
695 return integer_all_onesp (arg);
697 default:
698 return false;
702 /* Returns true if ARG is an absorbing element for operation CODE. */
704 static bool
705 absorbing_element_p (tree_code code, tree arg)
707 switch (code)
709 case BIT_IOR_EXPR:
710 return integer_all_onesp (arg);
712 case MULT_EXPR:
713 case BIT_AND_EXPR:
714 return integer_zerop (arg);
716 default:
717 return false;
721 /* The function value_replacement does the main work of doing the value
722 replacement. Return non-zero if the replacement is done. Otherwise return
723 0. If we remove the middle basic block, return 2.
724 BB is the basic block where the replacement is going to be done on. ARG0
725 is argument 0 from the PHI. Likewise for ARG1. */
727 static int
728 value_replacement (basic_block cond_bb, basic_block middle_bb,
729 edge e0, edge e1, gimple phi,
730 tree arg0, tree arg1)
732 gimple_stmt_iterator gsi;
733 gimple cond;
734 edge true_edge, false_edge;
735 enum tree_code code;
736 bool emtpy_or_with_defined_p = true;
738 /* If the type says honor signed zeros we cannot do this
739 optimization. */
740 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
741 return 0;
743 /* If there is a statement in MIDDLE_BB that defines one of the PHI
744 arguments, then adjust arg0 or arg1. */
745 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
746 while (!gsi_end_p (gsi))
748 gimple stmt = gsi_stmt (gsi);
749 tree lhs;
750 gsi_next_nondebug (&gsi);
751 if (!is_gimple_assign (stmt))
753 emtpy_or_with_defined_p = false;
754 continue;
756 /* Now try to adjust arg0 or arg1 according to the computation
757 in the statement. */
758 lhs = gimple_assign_lhs (stmt);
759 if (!(lhs == arg0
760 && jump_function_from_stmt (&arg0, stmt))
761 || (lhs == arg1
762 && jump_function_from_stmt (&arg1, stmt)))
763 emtpy_or_with_defined_p = false;
766 cond = last_stmt (cond_bb);
767 code = gimple_cond_code (cond);
769 /* This transformation is only valid for equality comparisons. */
770 if (code != NE_EXPR && code != EQ_EXPR)
771 return 0;
773 /* We need to know which is the true edge and which is the false
774 edge so that we know if have abs or negative abs. */
775 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
777 /* At this point we know we have a COND_EXPR with two successors.
778 One successor is BB, the other successor is an empty block which
779 falls through into BB.
781 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
783 There is a single PHI node at the join point (BB) with two arguments.
785 We now need to verify that the two arguments in the PHI node match
786 the two arguments to the equality comparison. */
788 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
790 edge e;
791 tree arg;
793 /* For NE_EXPR, we want to build an assignment result = arg where
794 arg is the PHI argument associated with the true edge. For
795 EQ_EXPR we want the PHI argument associated with the false edge. */
796 e = (code == NE_EXPR ? true_edge : false_edge);
798 /* Unfortunately, E may not reach BB (it may instead have gone to
799 OTHER_BLOCK). If that is the case, then we want the single outgoing
800 edge from OTHER_BLOCK which reaches BB and represents the desired
801 path from COND_BLOCK. */
802 if (e->dest == middle_bb)
803 e = single_succ_edge (e->dest);
805 /* Now we know the incoming edge to BB that has the argument for the
806 RHS of our new assignment statement. */
807 if (e0 == e)
808 arg = arg0;
809 else
810 arg = arg1;
812 /* If the middle basic block was empty or is defining the
813 PHI arguments and this is a single phi where the args are different
814 for the edges e0 and e1 then we can remove the middle basic block. */
815 if (emtpy_or_with_defined_p
816 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
817 e0, e1))
819 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
820 /* Note that we optimized this PHI. */
821 return 2;
823 else
825 /* Replace the PHI arguments with arg. */
826 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
827 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
828 if (dump_file && (dump_flags & TDF_DETAILS))
830 fprintf (dump_file, "PHI ");
831 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
832 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
833 cond_bb->index);
834 print_generic_expr (dump_file, arg, 0);
835 fprintf (dump_file, ".\n");
837 return 1;
842 /* Now optimize (x != 0) ? x + y : y to just y.
843 The following condition is too restrictive, there can easily be another
844 stmt in middle_bb, for instance a CONVERT_EXPR for the second argument. */
845 gimple assign = last_and_only_stmt (middle_bb);
846 if (!assign || gimple_code (assign) != GIMPLE_ASSIGN
847 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
848 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
849 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
850 return 0;
852 /* Size-wise, this is always profitable. */
853 if (optimize_bb_for_speed_p (cond_bb)
854 /* The special case is useless if it has a low probability. */
855 && profile_status_for_fn (cfun) != PROFILE_ABSENT
856 && EDGE_PRED (middle_bb, 0)->probability < PROB_EVEN
857 /* If assign is cheap, there is no point avoiding it. */
858 && estimate_num_insns (assign, &eni_time_weights)
859 >= 3 * estimate_num_insns (cond, &eni_time_weights))
860 return 0;
862 tree lhs = gimple_assign_lhs (assign);
863 tree rhs1 = gimple_assign_rhs1 (assign);
864 tree rhs2 = gimple_assign_rhs2 (assign);
865 enum tree_code code_def = gimple_assign_rhs_code (assign);
866 tree cond_lhs = gimple_cond_lhs (cond);
867 tree cond_rhs = gimple_cond_rhs (cond);
869 if (((code == NE_EXPR && e1 == false_edge)
870 || (code == EQ_EXPR && e1 == true_edge))
871 && arg0 == lhs
872 && ((arg1 == rhs1
873 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
874 && neutral_element_p (code_def, cond_rhs, true))
875 || (arg1 == rhs2
876 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
877 && neutral_element_p (code_def, cond_rhs, false))
878 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
879 && (operand_equal_for_phi_arg_p (rhs2, cond_lhs)
880 || operand_equal_for_phi_arg_p (rhs1, cond_lhs))
881 && absorbing_element_p (code_def, cond_rhs))))
883 gsi = gsi_for_stmt (cond);
884 gimple_stmt_iterator gsi_from = gsi_for_stmt (assign);
885 gsi_move_before (&gsi_from, &gsi);
886 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
887 return 2;
890 return 0;
893 /* The function minmax_replacement does the main work of doing the minmax
894 replacement. Return true if the replacement is done. Otherwise return
895 false.
896 BB is the basic block where the replacement is going to be done on. ARG0
897 is argument 0 from the PHI. Likewise for ARG1. */
899 static bool
900 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
901 edge e0, edge e1, gimple phi,
902 tree arg0, tree arg1)
904 tree result, type;
905 gimple cond, new_stmt;
906 edge true_edge, false_edge;
907 enum tree_code cmp, minmax, ass_code;
908 tree smaller, larger, arg_true, arg_false;
909 gimple_stmt_iterator gsi, gsi_from;
911 type = TREE_TYPE (PHI_RESULT (phi));
913 /* The optimization may be unsafe due to NaNs. */
914 if (HONOR_NANS (TYPE_MODE (type)))
915 return false;
917 cond = last_stmt (cond_bb);
918 cmp = gimple_cond_code (cond);
920 /* This transformation is only valid for order comparisons. Record which
921 operand is smaller/larger if the result of the comparison is true. */
922 if (cmp == LT_EXPR || cmp == LE_EXPR)
924 smaller = gimple_cond_lhs (cond);
925 larger = gimple_cond_rhs (cond);
927 else if (cmp == GT_EXPR || cmp == GE_EXPR)
929 smaller = gimple_cond_rhs (cond);
930 larger = gimple_cond_lhs (cond);
932 else
933 return false;
935 /* We need to know which is the true edge and which is the false
936 edge so that we know if have abs or negative abs. */
937 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
939 /* Forward the edges over the middle basic block. */
940 if (true_edge->dest == middle_bb)
941 true_edge = EDGE_SUCC (true_edge->dest, 0);
942 if (false_edge->dest == middle_bb)
943 false_edge = EDGE_SUCC (false_edge->dest, 0);
945 if (true_edge == e0)
947 gcc_assert (false_edge == e1);
948 arg_true = arg0;
949 arg_false = arg1;
951 else
953 gcc_assert (false_edge == e0);
954 gcc_assert (true_edge == e1);
955 arg_true = arg1;
956 arg_false = arg0;
959 if (empty_block_p (middle_bb))
961 if (operand_equal_for_phi_arg_p (arg_true, smaller)
962 && operand_equal_for_phi_arg_p (arg_false, larger))
964 /* Case
966 if (smaller < larger)
967 rslt = smaller;
968 else
969 rslt = larger; */
970 minmax = MIN_EXPR;
972 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
973 && operand_equal_for_phi_arg_p (arg_true, larger))
974 minmax = MAX_EXPR;
975 else
976 return false;
978 else
980 /* Recognize the following case, assuming d <= u:
982 if (a <= u)
983 b = MAX (a, d);
984 x = PHI <b, u>
986 This is equivalent to
988 b = MAX (a, d);
989 x = MIN (b, u); */
991 gimple assign = last_and_only_stmt (middle_bb);
992 tree lhs, op0, op1, bound;
994 if (!assign
995 || gimple_code (assign) != GIMPLE_ASSIGN)
996 return false;
998 lhs = gimple_assign_lhs (assign);
999 ass_code = gimple_assign_rhs_code (assign);
1000 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1001 return false;
1002 op0 = gimple_assign_rhs1 (assign);
1003 op1 = gimple_assign_rhs2 (assign);
1005 if (true_edge->src == middle_bb)
1007 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1008 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1009 return false;
1011 if (operand_equal_for_phi_arg_p (arg_false, larger))
1013 /* Case
1015 if (smaller < larger)
1017 r' = MAX_EXPR (smaller, bound)
1019 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1020 if (ass_code != MAX_EXPR)
1021 return false;
1023 minmax = MIN_EXPR;
1024 if (operand_equal_for_phi_arg_p (op0, smaller))
1025 bound = op1;
1026 else if (operand_equal_for_phi_arg_p (op1, smaller))
1027 bound = op0;
1028 else
1029 return false;
1031 /* We need BOUND <= LARGER. */
1032 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1033 bound, larger)))
1034 return false;
1036 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
1038 /* Case
1040 if (smaller < larger)
1042 r' = MIN_EXPR (larger, bound)
1044 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1045 if (ass_code != MIN_EXPR)
1046 return false;
1048 minmax = MAX_EXPR;
1049 if (operand_equal_for_phi_arg_p (op0, larger))
1050 bound = op1;
1051 else if (operand_equal_for_phi_arg_p (op1, larger))
1052 bound = op0;
1053 else
1054 return false;
1056 /* We need BOUND >= SMALLER. */
1057 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1058 bound, smaller)))
1059 return false;
1061 else
1062 return false;
1064 else
1066 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1067 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1068 return false;
1070 if (operand_equal_for_phi_arg_p (arg_true, larger))
1072 /* Case
1074 if (smaller > larger)
1076 r' = MIN_EXPR (smaller, bound)
1078 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1079 if (ass_code != MIN_EXPR)
1080 return false;
1082 minmax = MAX_EXPR;
1083 if (operand_equal_for_phi_arg_p (op0, smaller))
1084 bound = op1;
1085 else if (operand_equal_for_phi_arg_p (op1, smaller))
1086 bound = op0;
1087 else
1088 return false;
1090 /* We need BOUND >= LARGER. */
1091 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1092 bound, larger)))
1093 return false;
1095 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
1097 /* Case
1099 if (smaller > larger)
1101 r' = MAX_EXPR (larger, bound)
1103 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1104 if (ass_code != MAX_EXPR)
1105 return false;
1107 minmax = MIN_EXPR;
1108 if (operand_equal_for_phi_arg_p (op0, larger))
1109 bound = op1;
1110 else if (operand_equal_for_phi_arg_p (op1, larger))
1111 bound = op0;
1112 else
1113 return false;
1115 /* We need BOUND <= SMALLER. */
1116 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1117 bound, smaller)))
1118 return false;
1120 else
1121 return false;
1124 /* Move the statement from the middle block. */
1125 gsi = gsi_last_bb (cond_bb);
1126 gsi_from = gsi_last_nondebug_bb (middle_bb);
1127 gsi_move_before (&gsi_from, &gsi);
1130 /* Emit the statement to compute min/max. */
1131 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
1132 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
1133 gsi = gsi_last_bb (cond_bb);
1134 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1136 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1137 return true;
1140 /* The function absolute_replacement does the main work of doing the absolute
1141 replacement. Return true if the replacement is done. Otherwise return
1142 false.
1143 bb is the basic block where the replacement is going to be done on. arg0
1144 is argument 0 from the phi. Likewise for arg1. */
1146 static bool
1147 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1148 edge e0 ATTRIBUTE_UNUSED, edge e1,
1149 gimple phi, tree arg0, tree arg1)
1151 tree result;
1152 gimple new_stmt, cond;
1153 gimple_stmt_iterator gsi;
1154 edge true_edge, false_edge;
1155 gimple assign;
1156 edge e;
1157 tree rhs, lhs;
1158 bool negate;
1159 enum tree_code cond_code;
1161 /* If the type says honor signed zeros we cannot do this
1162 optimization. */
1163 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
1164 return false;
1166 /* OTHER_BLOCK must have only one executable statement which must have the
1167 form arg0 = -arg1 or arg1 = -arg0. */
1169 assign = last_and_only_stmt (middle_bb);
1170 /* If we did not find the proper negation assignment, then we can not
1171 optimize. */
1172 if (assign == NULL)
1173 return false;
1175 /* If we got here, then we have found the only executable statement
1176 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1177 arg1 = -arg0, then we can not optimize. */
1178 if (gimple_code (assign) != GIMPLE_ASSIGN)
1179 return false;
1181 lhs = gimple_assign_lhs (assign);
1183 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1184 return false;
1186 rhs = gimple_assign_rhs1 (assign);
1188 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1189 if (!(lhs == arg0 && rhs == arg1)
1190 && !(lhs == arg1 && rhs == arg0))
1191 return false;
1193 cond = last_stmt (cond_bb);
1194 result = PHI_RESULT (phi);
1196 /* Only relationals comparing arg[01] against zero are interesting. */
1197 cond_code = gimple_cond_code (cond);
1198 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1199 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1200 return false;
1202 /* Make sure the conditional is arg[01] OP y. */
1203 if (gimple_cond_lhs (cond) != rhs)
1204 return false;
1206 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1207 ? real_zerop (gimple_cond_rhs (cond))
1208 : integer_zerop (gimple_cond_rhs (cond)))
1210 else
1211 return false;
1213 /* We need to know which is the true edge and which is the false
1214 edge so that we know if have abs or negative abs. */
1215 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1217 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1218 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1219 the false edge goes to OTHER_BLOCK. */
1220 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1221 e = true_edge;
1222 else
1223 e = false_edge;
1225 if (e->dest == middle_bb)
1226 negate = true;
1227 else
1228 negate = false;
1230 result = duplicate_ssa_name (result, NULL);
1232 if (negate)
1233 lhs = make_ssa_name (TREE_TYPE (result), NULL);
1234 else
1235 lhs = result;
1237 /* Build the modify expression with abs expression. */
1238 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
1240 gsi = gsi_last_bb (cond_bb);
1241 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1243 if (negate)
1245 /* Get the right GSI. We want to insert after the recently
1246 added ABS_EXPR statement (which we know is the first statement
1247 in the block. */
1248 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
1250 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1253 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1255 /* Note that we optimized this PHI. */
1256 return true;
1259 /* The function neg_replacement replaces conditional negation with
1260 equivalent straight line code. Returns TRUE if replacement is done,
1261 otherwise returns FALSE.
1263 COND_BB branches around negation occuring in MIDDLE_BB.
1265 E0 and E1 are edges out of COND_BB. E0 reaches MIDDLE_BB and
1266 E1 reaches the other successor which should contain PHI with
1267 arguments ARG0 and ARG1.
1269 Assuming negation is to occur when the condition is true,
1270 then the non-branching sequence is:
1272 result = (rhs ^ -cond) + cond
1274 Inverting the condition or its result gives us negation
1275 when the original condition is false. */
1277 static bool
1278 neg_replacement (basic_block cond_bb, basic_block middle_bb,
1279 edge e0 ATTRIBUTE_UNUSED, edge e1,
1280 gimple phi, tree arg0, tree arg1)
1282 gimple new_stmt, cond;
1283 gimple_stmt_iterator gsi;
1284 gimple assign;
1285 edge true_edge, false_edge;
1286 tree rhs, lhs;
1287 enum tree_code cond_code;
1288 bool invert = false;
1290 /* This transformation performs logical operations on the
1291 incoming arguments. So force them to be integral types. */
1292 if (!INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
1293 return false;
1295 /* OTHER_BLOCK must have only one executable statement which must have the
1296 form arg0 = -arg1 or arg1 = -arg0. */
1298 assign = last_and_only_stmt (middle_bb);
1299 /* If we did not find the proper negation assignment, then we can not
1300 optimize. */
1301 if (assign == NULL)
1302 return false;
1304 /* If we got here, then we have found the only executable statement
1305 in OTHER_BLOCK. If it is anything other than arg0 = -arg1 or
1306 arg1 = -arg0, then we can not optimize. */
1307 if (gimple_code (assign) != GIMPLE_ASSIGN)
1308 return false;
1310 lhs = gimple_assign_lhs (assign);
1312 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1313 return false;
1315 rhs = gimple_assign_rhs1 (assign);
1317 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1318 if (!(lhs == arg0 && rhs == arg1)
1319 && !(lhs == arg1 && rhs == arg0))
1320 return false;
1322 /* The basic sequence assumes we negate when the condition is true.
1323 If we need the opposite, then we will either need to invert the
1324 condition or its result. */
1325 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1326 invert = false_edge->dest == middle_bb;
1328 /* Unlike abs_replacement, we can handle arbitrary conditionals here. */
1329 cond = last_stmt (cond_bb);
1330 cond_code = gimple_cond_code (cond);
1332 /* If inversion is needed, first try to invert the test since
1333 that's cheapest. */
1334 if (invert)
1336 bool honor_nans
1337 = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (cond))));
1338 enum tree_code new_code = invert_tree_comparison (cond_code, honor_nans);
1340 /* If invert_tree_comparison was successful, then use its return
1341 value as the new code and note that inversion is no longer
1342 needed. */
1343 if (new_code != ERROR_MARK)
1345 cond_code = new_code;
1346 invert = false;
1350 tree cond_val = make_ssa_name (boolean_type_node, NULL);
1351 new_stmt = gimple_build_assign_with_ops (cond_code, cond_val,
1352 gimple_cond_lhs (cond),
1353 gimple_cond_rhs (cond));
1354 gsi = gsi_last_bb (cond_bb);
1355 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1357 /* If we still need inversion, then invert the result of the
1358 condition. */
1359 if (invert)
1361 tree tmp = make_ssa_name (boolean_type_node, NULL);
1362 new_stmt = gimple_build_assign_with_ops (BIT_XOR_EXPR, tmp,
1363 cond_val, boolean_true_node);
1364 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1365 cond_val = tmp;
1368 /* Get the condition in the right type so that we can perform
1369 logical and arithmetic operations on it. */
1370 tree cond_val_converted = make_ssa_name (TREE_TYPE (rhs), NULL);
1371 new_stmt = gimple_build_assign_with_ops (NOP_EXPR, cond_val_converted,
1372 cond_val, NULL_TREE);
1373 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1375 tree neg_cond_val_converted = make_ssa_name (TREE_TYPE (rhs), NULL);
1376 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, neg_cond_val_converted,
1377 cond_val_converted, NULL_TREE);
1378 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1380 tree tmp = make_ssa_name (TREE_TYPE (rhs), NULL);
1381 new_stmt = gimple_build_assign_with_ops (BIT_XOR_EXPR, tmp,
1382 rhs, neg_cond_val_converted);
1383 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1385 tree new_lhs = make_ssa_name (TREE_TYPE (rhs), NULL);
1386 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, new_lhs,
1387 tmp, cond_val_converted);
1388 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1390 replace_phi_edge_with_variable (cond_bb, e1, phi, new_lhs);
1392 /* Note that we optimized this PHI. */
1393 return true;
1396 /* Auxiliary functions to determine the set of memory accesses which
1397 can't trap because they are preceded by accesses to the same memory
1398 portion. We do that for MEM_REFs, so we only need to track
1399 the SSA_NAME of the pointer indirectly referenced. The algorithm
1400 simply is a walk over all instructions in dominator order. When
1401 we see an MEM_REF we determine if we've already seen a same
1402 ref anywhere up to the root of the dominator tree. If we do the
1403 current access can't trap. If we don't see any dominating access
1404 the current access might trap, but might also make later accesses
1405 non-trapping, so we remember it. We need to be careful with loads
1406 or stores, for instance a load might not trap, while a store would,
1407 so if we see a dominating read access this doesn't mean that a later
1408 write access would not trap. Hence we also need to differentiate the
1409 type of access(es) seen.
1411 ??? We currently are very conservative and assume that a load might
1412 trap even if a store doesn't (write-only memory). This probably is
1413 overly conservative. */
1415 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1416 through it was seen, which would constitute a no-trap region for
1417 same accesses. */
1418 struct name_to_bb
1420 unsigned int ssa_name_ver;
1421 unsigned int phase;
1422 bool store;
1423 HOST_WIDE_INT offset, size;
1424 basic_block bb;
1427 /* Hashtable helpers. */
1429 struct ssa_names_hasher : typed_free_remove <name_to_bb>
1431 typedef name_to_bb value_type;
1432 typedef name_to_bb compare_type;
1433 static inline hashval_t hash (const value_type *);
1434 static inline bool equal (const value_type *, const compare_type *);
1437 /* Used for quick clearing of the hash-table when we see calls.
1438 Hash entries with phase < nt_call_phase are invalid. */
1439 static unsigned int nt_call_phase;
1441 /* The hash function. */
1443 inline hashval_t
1444 ssa_names_hasher::hash (const value_type *n)
1446 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1447 ^ (n->offset << 6) ^ (n->size << 3);
1450 /* The equality function of *P1 and *P2. */
1452 inline bool
1453 ssa_names_hasher::equal (const value_type *n1, const compare_type *n2)
1455 return n1->ssa_name_ver == n2->ssa_name_ver
1456 && n1->store == n2->store
1457 && n1->offset == n2->offset
1458 && n1->size == n2->size;
1461 /* The hash table for remembering what we've seen. */
1462 static hash_table <ssa_names_hasher> seen_ssa_names;
1464 /* We see the expression EXP in basic block BB. If it's an interesting
1465 expression (an MEM_REF through an SSA_NAME) possibly insert the
1466 expression into the set NONTRAP or the hash table of seen expressions.
1467 STORE is true if this expression is on the LHS, otherwise it's on
1468 the RHS. */
1469 static void
1470 add_or_mark_expr (basic_block bb, tree exp,
1471 struct pointer_set_t *nontrap, bool store)
1473 HOST_WIDE_INT size;
1475 if (TREE_CODE (exp) == MEM_REF
1476 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1477 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
1478 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1480 tree name = TREE_OPERAND (exp, 0);
1481 struct name_to_bb map;
1482 name_to_bb **slot;
1483 struct name_to_bb *n2bb;
1484 basic_block found_bb = 0;
1486 /* Try to find the last seen MEM_REF through the same
1487 SSA_NAME, which can trap. */
1488 map.ssa_name_ver = SSA_NAME_VERSION (name);
1489 map.phase = 0;
1490 map.bb = 0;
1491 map.store = store;
1492 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
1493 map.size = size;
1495 slot = seen_ssa_names.find_slot (&map, INSERT);
1496 n2bb = *slot;
1497 if (n2bb && n2bb->phase >= nt_call_phase)
1498 found_bb = n2bb->bb;
1500 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1501 (it's in a basic block on the path from us to the dominator root)
1502 then we can't trap. */
1503 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
1505 pointer_set_insert (nontrap, exp);
1507 else
1509 /* EXP might trap, so insert it into the hash table. */
1510 if (n2bb)
1512 n2bb->phase = nt_call_phase;
1513 n2bb->bb = bb;
1515 else
1517 n2bb = XNEW (struct name_to_bb);
1518 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1519 n2bb->phase = nt_call_phase;
1520 n2bb->bb = bb;
1521 n2bb->store = store;
1522 n2bb->offset = map.offset;
1523 n2bb->size = size;
1524 *slot = n2bb;
1530 class nontrapping_dom_walker : public dom_walker
1532 public:
1533 nontrapping_dom_walker (cdi_direction direction, pointer_set_t *ps)
1534 : dom_walker (direction), m_nontrapping (ps) {}
1536 virtual void before_dom_children (basic_block);
1537 virtual void after_dom_children (basic_block);
1539 private:
1540 pointer_set_t *m_nontrapping;
1543 /* Called by walk_dominator_tree, when entering the block BB. */
1544 void
1545 nontrapping_dom_walker::before_dom_children (basic_block bb)
1547 edge e;
1548 edge_iterator ei;
1549 gimple_stmt_iterator gsi;
1551 /* If we haven't seen all our predecessors, clear the hash-table. */
1552 FOR_EACH_EDGE (e, ei, bb->preds)
1553 if ((((size_t)e->src->aux) & 2) == 0)
1555 nt_call_phase++;
1556 break;
1559 /* Mark this BB as being on the path to dominator root and as visited. */
1560 bb->aux = (void*)(1 | 2);
1562 /* And walk the statements in order. */
1563 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1565 gimple stmt = gsi_stmt (gsi);
1567 if (is_gimple_call (stmt) && !nonfreeing_call_p (stmt))
1568 nt_call_phase++;
1569 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1571 add_or_mark_expr (bb, gimple_assign_lhs (stmt), m_nontrapping, true);
1572 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), m_nontrapping, false);
1577 /* Called by walk_dominator_tree, when basic block BB is exited. */
1578 void
1579 nontrapping_dom_walker::after_dom_children (basic_block bb)
1581 /* This BB isn't on the path to dominator root anymore. */
1582 bb->aux = (void*)2;
1585 /* This is the entry point of gathering non trapping memory accesses.
1586 It will do a dominator walk over the whole function, and it will
1587 make use of the bb->aux pointers. It returns a set of trees
1588 (the MEM_REFs itself) which can't trap. */
1589 static struct pointer_set_t *
1590 get_non_trapping (void)
1592 nt_call_phase = 0;
1593 pointer_set_t *nontrap = pointer_set_create ();
1594 seen_ssa_names.create (128);
1595 /* We're going to do a dominator walk, so ensure that we have
1596 dominance information. */
1597 calculate_dominance_info (CDI_DOMINATORS);
1599 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
1600 .walk (cfun->cfg->x_entry_block_ptr);
1602 seen_ssa_names.dispose ();
1604 clear_aux_for_blocks ();
1605 return nontrap;
1608 /* Do the main work of conditional store replacement. We already know
1609 that the recognized pattern looks like so:
1611 split:
1612 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1613 MIDDLE_BB:
1614 something
1615 fallthrough (edge E0)
1616 JOIN_BB:
1617 some more
1619 We check that MIDDLE_BB contains only one store, that that store
1620 doesn't trap (not via NOTRAP, but via checking if an access to the same
1621 memory location dominates us) and that the store has a "simple" RHS. */
1623 static bool
1624 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1625 edge e0, edge e1, struct pointer_set_t *nontrap)
1627 gimple assign = last_and_only_stmt (middle_bb);
1628 tree lhs, rhs, name, name2;
1629 gimple newphi, new_stmt;
1630 gimple_stmt_iterator gsi;
1631 source_location locus;
1633 /* Check if middle_bb contains of only one store. */
1634 if (!assign
1635 || !gimple_assign_single_p (assign)
1636 || gimple_has_volatile_ops (assign))
1637 return false;
1639 locus = gimple_location (assign);
1640 lhs = gimple_assign_lhs (assign);
1641 rhs = gimple_assign_rhs1 (assign);
1642 if (TREE_CODE (lhs) != MEM_REF
1643 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1644 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1645 return false;
1647 /* Prove that we can move the store down. We could also check
1648 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1649 whose value is not available readily, which we want to avoid. */
1650 if (!pointer_set_contains (nontrap, lhs))
1651 return false;
1653 /* Now we've checked the constraints, so do the transformation:
1654 1) Remove the single store. */
1655 gsi = gsi_for_stmt (assign);
1656 unlink_stmt_vdef (assign);
1657 gsi_remove (&gsi, true);
1658 release_defs (assign);
1660 /* 2) Insert a load from the memory of the store to the temporary
1661 on the edge which did not contain the store. */
1662 lhs = unshare_expr (lhs);
1663 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1664 new_stmt = gimple_build_assign (name, lhs);
1665 gimple_set_location (new_stmt, locus);
1666 gsi_insert_on_edge (e1, new_stmt);
1668 /* 3) Create a PHI node at the join block, with one argument
1669 holding the old RHS, and the other holding the temporary
1670 where we stored the old memory contents. */
1671 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1672 newphi = create_phi_node (name2, join_bb);
1673 add_phi_arg (newphi, rhs, e0, locus);
1674 add_phi_arg (newphi, name, e1, locus);
1676 lhs = unshare_expr (lhs);
1677 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1679 /* 4) Insert that PHI node. */
1680 gsi = gsi_after_labels (join_bb);
1681 if (gsi_end_p (gsi))
1683 gsi = gsi_last_bb (join_bb);
1684 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1686 else
1687 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1689 return true;
1692 /* Do the main work of conditional store replacement. */
1694 static bool
1695 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1696 basic_block join_bb, gimple then_assign,
1697 gimple else_assign)
1699 tree lhs_base, lhs, then_rhs, else_rhs, name;
1700 source_location then_locus, else_locus;
1701 gimple_stmt_iterator gsi;
1702 gimple newphi, new_stmt;
1704 if (then_assign == NULL
1705 || !gimple_assign_single_p (then_assign)
1706 || gimple_clobber_p (then_assign)
1707 || gimple_has_volatile_ops (then_assign)
1708 || else_assign == NULL
1709 || !gimple_assign_single_p (else_assign)
1710 || gimple_clobber_p (else_assign)
1711 || gimple_has_volatile_ops (else_assign))
1712 return false;
1714 lhs = gimple_assign_lhs (then_assign);
1715 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1716 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1717 return false;
1719 lhs_base = get_base_address (lhs);
1720 if (lhs_base == NULL_TREE
1721 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1722 return false;
1724 then_rhs = gimple_assign_rhs1 (then_assign);
1725 else_rhs = gimple_assign_rhs1 (else_assign);
1726 then_locus = gimple_location (then_assign);
1727 else_locus = gimple_location (else_assign);
1729 /* Now we've checked the constraints, so do the transformation:
1730 1) Remove the stores. */
1731 gsi = gsi_for_stmt (then_assign);
1732 unlink_stmt_vdef (then_assign);
1733 gsi_remove (&gsi, true);
1734 release_defs (then_assign);
1736 gsi = gsi_for_stmt (else_assign);
1737 unlink_stmt_vdef (else_assign);
1738 gsi_remove (&gsi, true);
1739 release_defs (else_assign);
1741 /* 2) Create a PHI node at the join block, with one argument
1742 holding the old RHS, and the other holding the temporary
1743 where we stored the old memory contents. */
1744 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1745 newphi = create_phi_node (name, join_bb);
1746 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1747 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1749 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1751 /* 3) Insert that PHI node. */
1752 gsi = gsi_after_labels (join_bb);
1753 if (gsi_end_p (gsi))
1755 gsi = gsi_last_bb (join_bb);
1756 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1758 else
1759 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1761 return true;
1764 /* Conditional store replacement. We already know
1765 that the recognized pattern looks like so:
1767 split:
1768 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1769 THEN_BB:
1771 X = Y;
1773 goto JOIN_BB;
1774 ELSE_BB:
1776 X = Z;
1778 fallthrough (edge E0)
1779 JOIN_BB:
1780 some more
1782 We check that it is safe to sink the store to JOIN_BB by verifying that
1783 there are no read-after-write or write-after-write dependencies in
1784 THEN_BB and ELSE_BB. */
1786 static bool
1787 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1788 basic_block join_bb)
1790 gimple then_assign = last_and_only_stmt (then_bb);
1791 gimple else_assign = last_and_only_stmt (else_bb);
1792 vec<data_reference_p> then_datarefs, else_datarefs;
1793 vec<ddr_p> then_ddrs, else_ddrs;
1794 gimple then_store, else_store;
1795 bool found, ok = false, res;
1796 struct data_dependence_relation *ddr;
1797 data_reference_p then_dr, else_dr;
1798 int i, j;
1799 tree then_lhs, else_lhs;
1800 basic_block blocks[3];
1802 if (MAX_STORES_TO_SINK == 0)
1803 return false;
1805 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1806 if (then_assign && else_assign)
1807 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1808 then_assign, else_assign);
1810 /* Find data references. */
1811 then_datarefs.create (1);
1812 else_datarefs.create (1);
1813 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1814 == chrec_dont_know)
1815 || !then_datarefs.length ()
1816 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1817 == chrec_dont_know)
1818 || !else_datarefs.length ())
1820 free_data_refs (then_datarefs);
1821 free_data_refs (else_datarefs);
1822 return false;
1825 /* Find pairs of stores with equal LHS. */
1826 auto_vec<gimple, 1> then_stores, else_stores;
1827 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
1829 if (DR_IS_READ (then_dr))
1830 continue;
1832 then_store = DR_STMT (then_dr);
1833 then_lhs = gimple_get_lhs (then_store);
1834 if (then_lhs == NULL_TREE)
1835 continue;
1836 found = false;
1838 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
1840 if (DR_IS_READ (else_dr))
1841 continue;
1843 else_store = DR_STMT (else_dr);
1844 else_lhs = gimple_get_lhs (else_store);
1845 if (else_lhs == NULL_TREE)
1846 continue;
1848 if (operand_equal_p (then_lhs, else_lhs, 0))
1850 found = true;
1851 break;
1855 if (!found)
1856 continue;
1858 then_stores.safe_push (then_store);
1859 else_stores.safe_push (else_store);
1862 /* No pairs of stores found. */
1863 if (!then_stores.length ()
1864 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
1866 free_data_refs (then_datarefs);
1867 free_data_refs (else_datarefs);
1868 return false;
1871 /* Compute and check data dependencies in both basic blocks. */
1872 then_ddrs.create (1);
1873 else_ddrs.create (1);
1874 if (!compute_all_dependences (then_datarefs, &then_ddrs,
1875 vNULL, false)
1876 || !compute_all_dependences (else_datarefs, &else_ddrs,
1877 vNULL, false))
1879 free_dependence_relations (then_ddrs);
1880 free_dependence_relations (else_ddrs);
1881 free_data_refs (then_datarefs);
1882 free_data_refs (else_datarefs);
1883 return false;
1885 blocks[0] = then_bb;
1886 blocks[1] = else_bb;
1887 blocks[2] = join_bb;
1888 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1890 /* Check that there are no read-after-write or write-after-write dependencies
1891 in THEN_BB. */
1892 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
1894 struct data_reference *dra = DDR_A (ddr);
1895 struct data_reference *drb = DDR_B (ddr);
1897 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1898 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1899 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1900 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1901 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1902 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1904 free_dependence_relations (then_ddrs);
1905 free_dependence_relations (else_ddrs);
1906 free_data_refs (then_datarefs);
1907 free_data_refs (else_datarefs);
1908 return false;
1912 /* Check that there are no read-after-write or write-after-write dependencies
1913 in ELSE_BB. */
1914 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
1916 struct data_reference *dra = DDR_A (ddr);
1917 struct data_reference *drb = DDR_B (ddr);
1919 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1920 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1921 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1922 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1923 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1924 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1926 free_dependence_relations (then_ddrs);
1927 free_dependence_relations (else_ddrs);
1928 free_data_refs (then_datarefs);
1929 free_data_refs (else_datarefs);
1930 return false;
1934 /* Sink stores with same LHS. */
1935 FOR_EACH_VEC_ELT (then_stores, i, then_store)
1937 else_store = else_stores[i];
1938 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1939 then_store, else_store);
1940 ok = ok || res;
1943 free_dependence_relations (then_ddrs);
1944 free_dependence_relations (else_ddrs);
1945 free_data_refs (then_datarefs);
1946 free_data_refs (else_datarefs);
1948 return ok;
1951 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
1953 static bool
1954 local_mem_dependence (gimple stmt, basic_block bb)
1956 tree vuse = gimple_vuse (stmt);
1957 gimple def;
1959 if (!vuse)
1960 return false;
1962 def = SSA_NAME_DEF_STMT (vuse);
1963 return (def && gimple_bb (def) == bb);
1966 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
1967 BB1 and BB2 are "then" and "else" blocks dependent on this test,
1968 and BB3 rejoins control flow following BB1 and BB2, look for
1969 opportunities to hoist loads as follows. If BB3 contains a PHI of
1970 two loads, one each occurring in BB1 and BB2, and the loads are
1971 provably of adjacent fields in the same structure, then move both
1972 loads into BB0. Of course this can only be done if there are no
1973 dependencies preventing such motion.
1975 One of the hoisted loads will always be speculative, so the
1976 transformation is currently conservative:
1978 - The fields must be strictly adjacent.
1979 - The two fields must occupy a single memory block that is
1980 guaranteed to not cross a page boundary.
1982 The last is difficult to prove, as such memory blocks should be
1983 aligned on the minimum of the stack alignment boundary and the
1984 alignment guaranteed by heap allocation interfaces. Thus we rely
1985 on a parameter for the alignment value.
1987 Provided a good value is used for the last case, the first
1988 restriction could possibly be relaxed. */
1990 static void
1991 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
1992 basic_block bb2, basic_block bb3)
1994 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
1995 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
1996 gimple_stmt_iterator gsi;
1998 /* Walk the phis in bb3 looking for an opportunity. We are looking
1999 for phis of two SSA names, one each of which is defined in bb1 and
2000 bb2. */
2001 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
2003 gimple phi_stmt = gsi_stmt (gsi);
2004 gimple def1, def2, defswap;
2005 tree arg1, arg2, ref1, ref2, field1, field2, fieldswap;
2006 tree tree_offset1, tree_offset2, tree_size2, next;
2007 int offset1, offset2, size2;
2008 unsigned align1;
2009 gimple_stmt_iterator gsi2;
2010 basic_block bb_for_def1, bb_for_def2;
2012 if (gimple_phi_num_args (phi_stmt) != 2
2013 || virtual_operand_p (gimple_phi_result (phi_stmt)))
2014 continue;
2016 arg1 = gimple_phi_arg_def (phi_stmt, 0);
2017 arg2 = gimple_phi_arg_def (phi_stmt, 1);
2019 if (TREE_CODE (arg1) != SSA_NAME
2020 || TREE_CODE (arg2) != SSA_NAME
2021 || SSA_NAME_IS_DEFAULT_DEF (arg1)
2022 || SSA_NAME_IS_DEFAULT_DEF (arg2))
2023 continue;
2025 def1 = SSA_NAME_DEF_STMT (arg1);
2026 def2 = SSA_NAME_DEF_STMT (arg2);
2028 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
2029 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
2030 continue;
2032 /* Check the mode of the arguments to be sure a conditional move
2033 can be generated for it. */
2034 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
2035 == CODE_FOR_nothing)
2036 continue;
2038 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
2039 if (!gimple_assign_single_p (def1)
2040 || !gimple_assign_single_p (def2)
2041 || gimple_has_volatile_ops (def1)
2042 || gimple_has_volatile_ops (def2))
2043 continue;
2045 ref1 = gimple_assign_rhs1 (def1);
2046 ref2 = gimple_assign_rhs1 (def2);
2048 if (TREE_CODE (ref1) != COMPONENT_REF
2049 || TREE_CODE (ref2) != COMPONENT_REF)
2050 continue;
2052 /* The zeroth operand of the two component references must be
2053 identical. It is not sufficient to compare get_base_address of
2054 the two references, because this could allow for different
2055 elements of the same array in the two trees. It is not safe to
2056 assume that the existence of one array element implies the
2057 existence of a different one. */
2058 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
2059 continue;
2061 field1 = TREE_OPERAND (ref1, 1);
2062 field2 = TREE_OPERAND (ref2, 1);
2064 /* Check for field adjacency, and ensure field1 comes first. */
2065 for (next = DECL_CHAIN (field1);
2066 next && TREE_CODE (next) != FIELD_DECL;
2067 next = DECL_CHAIN (next))
2070 if (next != field2)
2072 for (next = DECL_CHAIN (field2);
2073 next && TREE_CODE (next) != FIELD_DECL;
2074 next = DECL_CHAIN (next))
2077 if (next != field1)
2078 continue;
2080 fieldswap = field1;
2081 field1 = field2;
2082 field2 = fieldswap;
2083 defswap = def1;
2084 def1 = def2;
2085 def2 = defswap;
2088 bb_for_def1 = gimple_bb (def1);
2089 bb_for_def2 = gimple_bb (def2);
2091 /* Check for proper alignment of the first field. */
2092 tree_offset1 = bit_position (field1);
2093 tree_offset2 = bit_position (field2);
2094 tree_size2 = DECL_SIZE (field2);
2096 if (!tree_fits_uhwi_p (tree_offset1)
2097 || !tree_fits_uhwi_p (tree_offset2)
2098 || !tree_fits_uhwi_p (tree_size2))
2099 continue;
2101 offset1 = tree_to_uhwi (tree_offset1);
2102 offset2 = tree_to_uhwi (tree_offset2);
2103 size2 = tree_to_uhwi (tree_size2);
2104 align1 = DECL_ALIGN (field1) % param_align_bits;
2106 if (offset1 % BITS_PER_UNIT != 0)
2107 continue;
2109 /* For profitability, the two field references should fit within
2110 a single cache line. */
2111 if (align1 + offset2 - offset1 + size2 > param_align_bits)
2112 continue;
2114 /* The two expressions cannot be dependent upon vdefs defined
2115 in bb1/bb2. */
2116 if (local_mem_dependence (def1, bb_for_def1)
2117 || local_mem_dependence (def2, bb_for_def2))
2118 continue;
2120 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2121 bb0. We hoist the first one first so that a cache miss is handled
2122 efficiently regardless of hardware cache-fill policy. */
2123 gsi2 = gsi_for_stmt (def1);
2124 gsi_move_to_bb_end (&gsi2, bb0);
2125 gsi2 = gsi_for_stmt (def2);
2126 gsi_move_to_bb_end (&gsi2, bb0);
2128 if (dump_file && (dump_flags & TDF_DETAILS))
2130 fprintf (dump_file,
2131 "\nHoisting adjacent loads from %d and %d into %d: \n",
2132 bb_for_def1->index, bb_for_def2->index, bb0->index);
2133 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2134 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2139 /* Determine whether we should attempt to hoist adjacent loads out of
2140 diamond patterns in pass_phiopt. Always hoist loads if
2141 -fhoist-adjacent-loads is specified and the target machine has
2142 both a conditional move instruction and a defined cache line size. */
2144 static bool
2145 gate_hoist_loads (void)
2147 return (flag_hoist_adjacent_loads == 1
2148 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2149 && HAVE_conditional_move);
2152 /* This pass tries to replaces an if-then-else block with an
2153 assignment. We have four kinds of transformations. Some of these
2154 transformations are also performed by the ifcvt RTL optimizer.
2156 Conditional Replacement
2157 -----------------------
2159 This transformation, implemented in conditional_replacement,
2160 replaces
2162 bb0:
2163 if (cond) goto bb2; else goto bb1;
2164 bb1:
2165 bb2:
2166 x = PHI <0 (bb1), 1 (bb0), ...>;
2168 with
2170 bb0:
2171 x' = cond;
2172 goto bb2;
2173 bb2:
2174 x = PHI <x' (bb0), ...>;
2176 We remove bb1 as it becomes unreachable. This occurs often due to
2177 gimplification of conditionals.
2179 Value Replacement
2180 -----------------
2182 This transformation, implemented in value_replacement, replaces
2184 bb0:
2185 if (a != b) goto bb2; else goto bb1;
2186 bb1:
2187 bb2:
2188 x = PHI <a (bb1), b (bb0), ...>;
2190 with
2192 bb0:
2193 bb2:
2194 x = PHI <b (bb0), ...>;
2196 This opportunity can sometimes occur as a result of other
2197 optimizations.
2200 Another case caught by value replacement looks like this:
2202 bb0:
2203 t1 = a == CONST;
2204 t2 = b > c;
2205 t3 = t1 & t2;
2206 if (t3 != 0) goto bb1; else goto bb2;
2207 bb1:
2208 bb2:
2209 x = PHI (CONST, a)
2211 Gets replaced with:
2212 bb0:
2213 bb2:
2214 t1 = a == CONST;
2215 t2 = b > c;
2216 t3 = t1 & t2;
2217 x = a;
2219 ABS Replacement
2220 ---------------
2222 This transformation, implemented in abs_replacement, replaces
2224 bb0:
2225 if (a >= 0) goto bb2; else goto bb1;
2226 bb1:
2227 x = -a;
2228 bb2:
2229 x = PHI <x (bb1), a (bb0), ...>;
2231 with
2233 bb0:
2234 x' = ABS_EXPR< a >;
2235 bb2:
2236 x = PHI <x' (bb0), ...>;
2238 MIN/MAX Replacement
2239 -------------------
2241 This transformation, minmax_replacement replaces
2243 bb0:
2244 if (a <= b) goto bb2; else goto bb1;
2245 bb1:
2246 bb2:
2247 x = PHI <b (bb1), a (bb0), ...>;
2249 with
2251 bb0:
2252 x' = MIN_EXPR (a, b)
2253 bb2:
2254 x = PHI <x' (bb0), ...>;
2256 A similar transformation is done for MAX_EXPR.
2259 This pass also performs a fifth transformation of a slightly different
2260 flavor.
2262 Adjacent Load Hoisting
2263 ----------------------
2265 This transformation replaces
2267 bb0:
2268 if (...) goto bb2; else goto bb1;
2269 bb1:
2270 x1 = (<expr>).field1;
2271 goto bb3;
2272 bb2:
2273 x2 = (<expr>).field2;
2274 bb3:
2275 # x = PHI <x1, x2>;
2277 with
2279 bb0:
2280 x1 = (<expr>).field1;
2281 x2 = (<expr>).field2;
2282 if (...) goto bb2; else goto bb1;
2283 bb1:
2284 goto bb3;
2285 bb2:
2286 bb3:
2287 # x = PHI <x1, x2>;
2289 The purpose of this transformation is to enable generation of conditional
2290 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2291 the loads is speculative, the transformation is restricted to very
2292 specific cases to avoid introducing a page fault. We are looking for
2293 the common idiom:
2295 if (...)
2296 x = y->left;
2297 else
2298 x = y->right;
2300 where left and right are typically adjacent pointers in a tree structure. */
2302 namespace {
2304 const pass_data pass_data_phiopt =
2306 GIMPLE_PASS, /* type */
2307 "phiopt", /* name */
2308 OPTGROUP_NONE, /* optinfo_flags */
2309 true, /* has_execute */
2310 TV_TREE_PHIOPT, /* tv_id */
2311 ( PROP_cfg | PROP_ssa ), /* properties_required */
2312 0, /* properties_provided */
2313 0, /* properties_destroyed */
2314 0, /* todo_flags_start */
2315 0, /* todo_flags_finish */
2318 class pass_phiopt : public gimple_opt_pass
2320 public:
2321 pass_phiopt (gcc::context *ctxt)
2322 : gimple_opt_pass (pass_data_phiopt, ctxt)
2325 /* opt_pass methods: */
2326 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2327 virtual unsigned int execute (function *)
2329 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
2332 }; // class pass_phiopt
2334 } // anon namespace
2336 gimple_opt_pass *
2337 make_pass_phiopt (gcc::context *ctxt)
2339 return new pass_phiopt (ctxt);
2342 namespace {
2344 const pass_data pass_data_cselim =
2346 GIMPLE_PASS, /* type */
2347 "cselim", /* name */
2348 OPTGROUP_NONE, /* optinfo_flags */
2349 true, /* has_execute */
2350 TV_TREE_PHIOPT, /* tv_id */
2351 ( PROP_cfg | PROP_ssa ), /* properties_required */
2352 0, /* properties_provided */
2353 0, /* properties_destroyed */
2354 0, /* todo_flags_start */
2355 0, /* todo_flags_finish */
2358 class pass_cselim : public gimple_opt_pass
2360 public:
2361 pass_cselim (gcc::context *ctxt)
2362 : gimple_opt_pass (pass_data_cselim, ctxt)
2365 /* opt_pass methods: */
2366 virtual bool gate (function *) { return flag_tree_cselim; }
2367 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
2369 }; // class pass_cselim
2371 } // anon namespace
2373 gimple_opt_pass *
2374 make_pass_cselim (gcc::context *ctxt)
2376 return new pass_cselim (ctxt);