2011-04-28 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / tree-cfg.c
blob40f768886ee8e4ee673a99419005a857dfc31793
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t *edge_to_cases;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs;
78 /* CFG statistics. */
79 struct cfg_stats_d
81 long num_merged_labels;
84 static struct cfg_stats_d cfg_stats;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
92 location_t locus;
93 int discriminator;
95 static htab_t discriminator_per_locus;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
163 void
164 init_empty_tree_cfg (void)
166 init_empty_tree_cfg_for_function (cfun);
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
176 static void
177 build_gimple_cfg (gimple_seq seq)
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
184 init_empty_tree_cfg ();
186 found_computed_goto = 0;
187 make_blocks (seq);
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
220 /* Debugging dumps. */
222 /* Write the flowgraph to a VCG file. */
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
234 static unsigned int
235 execute_build_cfg (void)
237 gimple_seq body = gimple_body (current_function_decl);
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
246 return 0;
249 struct gimple_opt_pass pass_build_cfg =
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg
265 | TODO_dump_func /* todo_flags_finish */
270 /* Return true if T is a computed goto. */
272 static bool
273 computed_goto_p (gimple t)
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
285 static void
286 factor_computed_gotos (void)
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
298 FOR_EACH_BB (bb)
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
303 if (gsi_end_p (gsi))
304 continue;
306 last = gsi_stmt (gsi);
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
316 gimple assignment;
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
356 /* Build a flowgraph for the sequence of stmts SEQ. */
358 static void
359 make_blocks (gimple_seq seq)
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
367 while (!gsi_end_p (i))
369 gimple prev_stmt;
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
416 start_new_block = true;
419 gsi_next (&i);
420 first_stmt_of_seq = false;
425 /* Create and return a new empty basic block after bb AFTER. */
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
430 basic_block bb;
432 gcc_assert (!e);
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
457 n_basic_blocks++;
458 last_basic_block++;
460 return bb;
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
470 void
471 fold_cond_expr_cond (void)
473 basic_block bb;
475 FOR_EACH_BB (bb)
477 gimple stmt = last_stmt (bb);
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
493 else
494 zerop = onep = false;
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
507 /* Join all the blocks in the flowgraph. */
509 static void
510 make_edges (void)
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
522 gimple last = last_stmt (bb);
523 bool fallthru;
525 if (last)
527 enum gimple_code code = gimple_code (last);
528 switch (code)
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
645 basic_block switch_bb = single_succ (cur_region->entry);
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
663 break;
665 default:
666 gcc_unreachable ();
668 break;
670 default:
671 gcc_assert (!stmt_ends_bb_p (last));
672 fallthru = true;
675 else
676 fallthru = true;
678 if (fallthru)
680 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
681 if (last)
682 assign_discriminator (gimple_location (last), bb->next_bb);
686 if (root_omp_region)
687 free_omp_regions ();
689 /* Fold COND_EXPR_COND of each COND_EXPR. */
690 fold_cond_expr_cond ();
693 /* Trivial hash function for a location_t. ITEM is a pointer to
694 a hash table entry that maps a location_t to a discriminator. */
696 static unsigned int
697 locus_map_hash (const void *item)
699 return ((const struct locus_discrim_map *) item)->locus;
702 /* Equality function for the locus-to-discriminator map. VA and VB
703 point to the two hash table entries to compare. */
705 static int
706 locus_map_eq (const void *va, const void *vb)
708 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
709 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
710 return a->locus == b->locus;
713 /* Find the next available discriminator value for LOCUS. The
714 discriminator distinguishes among several basic blocks that
715 share a common locus, allowing for more accurate sample-based
716 profiling. */
718 static int
719 next_discriminator_for_locus (location_t locus)
721 struct locus_discrim_map item;
722 struct locus_discrim_map **slot;
724 item.locus = locus;
725 item.discriminator = 0;
726 slot = (struct locus_discrim_map **)
727 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
728 (hashval_t) locus, INSERT);
729 gcc_assert (slot);
730 if (*slot == HTAB_EMPTY_ENTRY)
732 *slot = XNEW (struct locus_discrim_map);
733 gcc_assert (*slot);
734 (*slot)->locus = locus;
735 (*slot)->discriminator = 0;
737 (*slot)->discriminator++;
738 return (*slot)->discriminator;
741 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
743 static bool
744 same_line_p (location_t locus1, location_t locus2)
746 expanded_location from, to;
748 if (locus1 == locus2)
749 return true;
751 from = expand_location (locus1);
752 to = expand_location (locus2);
754 if (from.line != to.line)
755 return false;
756 if (from.file == to.file)
757 return true;
758 return (from.file != NULL
759 && to.file != NULL
760 && filename_cmp (from.file, to.file) == 0);
763 /* Assign a unique discriminator value to block BB if it begins at the same
764 LOCUS as its predecessor block. */
766 static void
767 assign_discriminator (location_t locus, basic_block bb)
769 gimple first_in_to_bb, last_in_to_bb;
771 if (locus == 0 || bb->discriminator != 0)
772 return;
774 first_in_to_bb = first_non_label_stmt (bb);
775 last_in_to_bb = last_stmt (bb);
776 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
777 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
778 bb->discriminator = next_discriminator_for_locus (locus);
781 /* Create the edges for a GIMPLE_COND starting at block BB. */
783 static void
784 make_cond_expr_edges (basic_block bb)
786 gimple entry = last_stmt (bb);
787 gimple then_stmt, else_stmt;
788 basic_block then_bb, else_bb;
789 tree then_label, else_label;
790 edge e;
791 location_t entry_locus;
793 gcc_assert (entry);
794 gcc_assert (gimple_code (entry) == GIMPLE_COND);
796 entry_locus = gimple_location (entry);
798 /* Entry basic blocks for each component. */
799 then_label = gimple_cond_true_label (entry);
800 else_label = gimple_cond_false_label (entry);
801 then_bb = label_to_block (then_label);
802 else_bb = label_to_block (else_label);
803 then_stmt = first_stmt (then_bb);
804 else_stmt = first_stmt (else_bb);
806 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
807 assign_discriminator (entry_locus, then_bb);
808 e->goto_locus = gimple_location (then_stmt);
809 if (e->goto_locus)
810 e->goto_block = gimple_block (then_stmt);
811 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
812 if (e)
814 assign_discriminator (entry_locus, else_bb);
815 e->goto_locus = gimple_location (else_stmt);
816 if (e->goto_locus)
817 e->goto_block = gimple_block (else_stmt);
820 /* We do not need the labels anymore. */
821 gimple_cond_set_true_label (entry, NULL_TREE);
822 gimple_cond_set_false_label (entry, NULL_TREE);
826 /* Called for each element in the hash table (P) as we delete the
827 edge to cases hash table.
829 Clear all the TREE_CHAINs to prevent problems with copying of
830 SWITCH_EXPRs and structure sharing rules, then free the hash table
831 element. */
833 static bool
834 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
835 void *data ATTRIBUTE_UNUSED)
837 tree t, next;
839 for (t = (tree) *value; t; t = next)
841 next = CASE_CHAIN (t);
842 CASE_CHAIN (t) = NULL;
845 *value = NULL;
846 return false;
849 /* Start recording information mapping edges to case labels. */
851 void
852 start_recording_case_labels (void)
854 gcc_assert (edge_to_cases == NULL);
855 edge_to_cases = pointer_map_create ();
856 touched_switch_bbs = BITMAP_ALLOC (NULL);
859 /* Return nonzero if we are recording information for case labels. */
861 static bool
862 recording_case_labels_p (void)
864 return (edge_to_cases != NULL);
867 /* Stop recording information mapping edges to case labels and
868 remove any information we have recorded. */
869 void
870 end_recording_case_labels (void)
872 bitmap_iterator bi;
873 unsigned i;
874 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
875 pointer_map_destroy (edge_to_cases);
876 edge_to_cases = NULL;
877 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
879 basic_block bb = BASIC_BLOCK (i);
880 if (bb)
882 gimple stmt = last_stmt (bb);
883 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
884 group_case_labels_stmt (stmt);
887 BITMAP_FREE (touched_switch_bbs);
890 /* If we are inside a {start,end}_recording_cases block, then return
891 a chain of CASE_LABEL_EXPRs from T which reference E.
893 Otherwise return NULL. */
895 static tree
896 get_cases_for_edge (edge e, gimple t)
898 void **slot;
899 size_t i, n;
901 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
902 chains available. Return NULL so the caller can detect this case. */
903 if (!recording_case_labels_p ())
904 return NULL;
906 slot = pointer_map_contains (edge_to_cases, e);
907 if (slot)
908 return (tree) *slot;
910 /* If we did not find E in the hash table, then this must be the first
911 time we have been queried for information about E & T. Add all the
912 elements from T to the hash table then perform the query again. */
914 n = gimple_switch_num_labels (t);
915 for (i = 0; i < n; i++)
917 tree elt = gimple_switch_label (t, i);
918 tree lab = CASE_LABEL (elt);
919 basic_block label_bb = label_to_block (lab);
920 edge this_edge = find_edge (e->src, label_bb);
922 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
923 a new chain. */
924 slot = pointer_map_insert (edge_to_cases, this_edge);
925 CASE_CHAIN (elt) = (tree) *slot;
926 *slot = elt;
929 return (tree) *pointer_map_contains (edge_to_cases, e);
932 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
934 static void
935 make_gimple_switch_edges (basic_block bb)
937 gimple entry = last_stmt (bb);
938 location_t entry_locus;
939 size_t i, n;
941 entry_locus = gimple_location (entry);
943 n = gimple_switch_num_labels (entry);
945 for (i = 0; i < n; ++i)
947 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
948 basic_block label_bb = label_to_block (lab);
949 make_edge (bb, label_bb, 0);
950 assign_discriminator (entry_locus, label_bb);
955 /* Return the basic block holding label DEST. */
957 basic_block
958 label_to_block_fn (struct function *ifun, tree dest)
960 int uid = LABEL_DECL_UID (dest);
962 /* We would die hard when faced by an undefined label. Emit a label to
963 the very first basic block. This will hopefully make even the dataflow
964 and undefined variable warnings quite right. */
965 if (seen_error () && uid < 0)
967 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
968 gimple stmt;
970 stmt = gimple_build_label (dest);
971 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
972 uid = LABEL_DECL_UID (dest);
974 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
975 <= (unsigned int) uid)
976 return NULL;
977 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
980 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
981 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
983 void
984 make_abnormal_goto_edges (basic_block bb, bool for_call)
986 basic_block target_bb;
987 gimple_stmt_iterator gsi;
989 FOR_EACH_BB (target_bb)
990 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
992 gimple label_stmt = gsi_stmt (gsi);
993 tree target;
995 if (gimple_code (label_stmt) != GIMPLE_LABEL)
996 break;
998 target = gimple_label_label (label_stmt);
1000 /* Make an edge to every label block that has been marked as a
1001 potential target for a computed goto or a non-local goto. */
1002 if ((FORCED_LABEL (target) && !for_call)
1003 || (DECL_NONLOCAL (target) && for_call))
1005 make_edge (bb, target_bb, EDGE_ABNORMAL);
1006 break;
1011 /* Create edges for a goto statement at block BB. */
1013 static void
1014 make_goto_expr_edges (basic_block bb)
1016 gimple_stmt_iterator last = gsi_last_bb (bb);
1017 gimple goto_t = gsi_stmt (last);
1019 /* A simple GOTO creates normal edges. */
1020 if (simple_goto_p (goto_t))
1022 tree dest = gimple_goto_dest (goto_t);
1023 basic_block label_bb = label_to_block (dest);
1024 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1025 e->goto_locus = gimple_location (goto_t);
1026 assign_discriminator (e->goto_locus, label_bb);
1027 if (e->goto_locus)
1028 e->goto_block = gimple_block (goto_t);
1029 gsi_remove (&last, true);
1030 return;
1033 /* A computed GOTO creates abnormal edges. */
1034 make_abnormal_goto_edges (bb, false);
1037 /* Create edges for an asm statement with labels at block BB. */
1039 static void
1040 make_gimple_asm_edges (basic_block bb)
1042 gimple stmt = last_stmt (bb);
1043 location_t stmt_loc = gimple_location (stmt);
1044 int i, n = gimple_asm_nlabels (stmt);
1046 for (i = 0; i < n; ++i)
1048 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1049 basic_block label_bb = label_to_block (label);
1050 make_edge (bb, label_bb, 0);
1051 assign_discriminator (stmt_loc, label_bb);
1055 /*---------------------------------------------------------------------------
1056 Flowgraph analysis
1057 ---------------------------------------------------------------------------*/
1059 /* Cleanup useless labels in basic blocks. This is something we wish
1060 to do early because it allows us to group case labels before creating
1061 the edges for the CFG, and it speeds up block statement iterators in
1062 all passes later on.
1063 We rerun this pass after CFG is created, to get rid of the labels that
1064 are no longer referenced. After then we do not run it any more, since
1065 (almost) no new labels should be created. */
1067 /* A map from basic block index to the leading label of that block. */
1068 static struct label_record
1070 /* The label. */
1071 tree label;
1073 /* True if the label is referenced from somewhere. */
1074 bool used;
1075 } *label_for_bb;
1077 /* Given LABEL return the first label in the same basic block. */
1079 static tree
1080 main_block_label (tree label)
1082 basic_block bb = label_to_block (label);
1083 tree main_label = label_for_bb[bb->index].label;
1085 /* label_to_block possibly inserted undefined label into the chain. */
1086 if (!main_label)
1088 label_for_bb[bb->index].label = label;
1089 main_label = label;
1092 label_for_bb[bb->index].used = true;
1093 return main_label;
1096 /* Clean up redundant labels within the exception tree. */
1098 static void
1099 cleanup_dead_labels_eh (void)
1101 eh_landing_pad lp;
1102 eh_region r;
1103 tree lab;
1104 int i;
1106 if (cfun->eh == NULL)
1107 return;
1109 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1110 if (lp && lp->post_landing_pad)
1112 lab = main_block_label (lp->post_landing_pad);
1113 if (lab != lp->post_landing_pad)
1115 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1116 EH_LANDING_PAD_NR (lab) = lp->index;
1120 FOR_ALL_EH_REGION (r)
1121 switch (r->type)
1123 case ERT_CLEANUP:
1124 case ERT_MUST_NOT_THROW:
1125 break;
1127 case ERT_TRY:
1129 eh_catch c;
1130 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1132 lab = c->label;
1133 if (lab)
1134 c->label = main_block_label (lab);
1137 break;
1139 case ERT_ALLOWED_EXCEPTIONS:
1140 lab = r->u.allowed.label;
1141 if (lab)
1142 r->u.allowed.label = main_block_label (lab);
1143 break;
1148 /* Cleanup redundant labels. This is a three-step process:
1149 1) Find the leading label for each block.
1150 2) Redirect all references to labels to the leading labels.
1151 3) Cleanup all useless labels. */
1153 void
1154 cleanup_dead_labels (void)
1156 basic_block bb;
1157 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1159 /* Find a suitable label for each block. We use the first user-defined
1160 label if there is one, or otherwise just the first label we see. */
1161 FOR_EACH_BB (bb)
1163 gimple_stmt_iterator i;
1165 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1167 tree label;
1168 gimple stmt = gsi_stmt (i);
1170 if (gimple_code (stmt) != GIMPLE_LABEL)
1171 break;
1173 label = gimple_label_label (stmt);
1175 /* If we have not yet seen a label for the current block,
1176 remember this one and see if there are more labels. */
1177 if (!label_for_bb[bb->index].label)
1179 label_for_bb[bb->index].label = label;
1180 continue;
1183 /* If we did see a label for the current block already, but it
1184 is an artificially created label, replace it if the current
1185 label is a user defined label. */
1186 if (!DECL_ARTIFICIAL (label)
1187 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1189 label_for_bb[bb->index].label = label;
1190 break;
1195 /* Now redirect all jumps/branches to the selected label.
1196 First do so for each block ending in a control statement. */
1197 FOR_EACH_BB (bb)
1199 gimple stmt = last_stmt (bb);
1200 if (!stmt)
1201 continue;
1203 switch (gimple_code (stmt))
1205 case GIMPLE_COND:
1207 tree true_label = gimple_cond_true_label (stmt);
1208 tree false_label = gimple_cond_false_label (stmt);
1210 if (true_label)
1211 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1212 if (false_label)
1213 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1214 break;
1217 case GIMPLE_SWITCH:
1219 size_t i, n = gimple_switch_num_labels (stmt);
1221 /* Replace all destination labels. */
1222 for (i = 0; i < n; ++i)
1224 tree case_label = gimple_switch_label (stmt, i);
1225 tree label = main_block_label (CASE_LABEL (case_label));
1226 CASE_LABEL (case_label) = label;
1228 break;
1231 case GIMPLE_ASM:
1233 int i, n = gimple_asm_nlabels (stmt);
1235 for (i = 0; i < n; ++i)
1237 tree cons = gimple_asm_label_op (stmt, i);
1238 tree label = main_block_label (TREE_VALUE (cons));
1239 TREE_VALUE (cons) = label;
1241 break;
1244 /* We have to handle gotos until they're removed, and we don't
1245 remove them until after we've created the CFG edges. */
1246 case GIMPLE_GOTO:
1247 if (!computed_goto_p (stmt))
1249 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1250 gimple_goto_set_dest (stmt, new_dest);
1252 break;
1254 default:
1255 break;
1259 /* Do the same for the exception region tree labels. */
1260 cleanup_dead_labels_eh ();
1262 /* Finally, purge dead labels. All user-defined labels and labels that
1263 can be the target of non-local gotos and labels which have their
1264 address taken are preserved. */
1265 FOR_EACH_BB (bb)
1267 gimple_stmt_iterator i;
1268 tree label_for_this_bb = label_for_bb[bb->index].label;
1270 if (!label_for_this_bb)
1271 continue;
1273 /* If the main label of the block is unused, we may still remove it. */
1274 if (!label_for_bb[bb->index].used)
1275 label_for_this_bb = NULL;
1277 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1279 tree label;
1280 gimple stmt = gsi_stmt (i);
1282 if (gimple_code (stmt) != GIMPLE_LABEL)
1283 break;
1285 label = gimple_label_label (stmt);
1287 if (label == label_for_this_bb
1288 || !DECL_ARTIFICIAL (label)
1289 || DECL_NONLOCAL (label)
1290 || FORCED_LABEL (label))
1291 gsi_next (&i);
1292 else
1293 gsi_remove (&i, true);
1297 free (label_for_bb);
1300 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1301 the ones jumping to the same label.
1302 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1304 static void
1305 group_case_labels_stmt (gimple stmt)
1307 int old_size = gimple_switch_num_labels (stmt);
1308 int i, j, new_size = old_size;
1309 tree default_case = NULL_TREE;
1310 tree default_label = NULL_TREE;
1311 bool has_default;
1313 /* The default label is always the first case in a switch
1314 statement after gimplification if it was not optimized
1315 away */
1316 if (!CASE_LOW (gimple_switch_default_label (stmt))
1317 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1319 default_case = gimple_switch_default_label (stmt);
1320 default_label = CASE_LABEL (default_case);
1321 has_default = true;
1323 else
1324 has_default = false;
1326 /* Look for possible opportunities to merge cases. */
1327 if (has_default)
1328 i = 1;
1329 else
1330 i = 0;
1331 while (i < old_size)
1333 tree base_case, base_label, base_high;
1334 base_case = gimple_switch_label (stmt, i);
1336 gcc_assert (base_case);
1337 base_label = CASE_LABEL (base_case);
1339 /* Discard cases that have the same destination as the
1340 default case. */
1341 if (base_label == default_label)
1343 gimple_switch_set_label (stmt, i, NULL_TREE);
1344 i++;
1345 new_size--;
1346 continue;
1349 base_high = CASE_HIGH (base_case)
1350 ? CASE_HIGH (base_case)
1351 : CASE_LOW (base_case);
1352 i++;
1354 /* Try to merge case labels. Break out when we reach the end
1355 of the label vector or when we cannot merge the next case
1356 label with the current one. */
1357 while (i < old_size)
1359 tree merge_case = gimple_switch_label (stmt, i);
1360 tree merge_label = CASE_LABEL (merge_case);
1361 tree t = int_const_binop (PLUS_EXPR, base_high,
1362 integer_one_node, 1);
1364 /* Merge the cases if they jump to the same place,
1365 and their ranges are consecutive. */
1366 if (merge_label == base_label
1367 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1369 base_high = CASE_HIGH (merge_case) ?
1370 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1371 CASE_HIGH (base_case) = base_high;
1372 gimple_switch_set_label (stmt, i, NULL_TREE);
1373 new_size--;
1374 i++;
1376 else
1377 break;
1381 /* Compress the case labels in the label vector, and adjust the
1382 length of the vector. */
1383 for (i = 0, j = 0; i < new_size; i++)
1385 while (! gimple_switch_label (stmt, j))
1386 j++;
1387 gimple_switch_set_label (stmt, i,
1388 gimple_switch_label (stmt, j++));
1391 gcc_assert (new_size <= old_size);
1392 gimple_switch_set_num_labels (stmt, new_size);
1395 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1396 and scan the sorted vector of cases. Combine the ones jumping to the
1397 same label. */
1399 void
1400 group_case_labels (void)
1402 basic_block bb;
1404 FOR_EACH_BB (bb)
1406 gimple stmt = last_stmt (bb);
1407 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1408 group_case_labels_stmt (stmt);
1412 /* Checks whether we can merge block B into block A. */
1414 static bool
1415 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1417 gimple stmt;
1418 gimple_stmt_iterator gsi;
1419 gimple_seq phis;
1421 if (!single_succ_p (a))
1422 return false;
1424 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1425 return false;
1427 if (single_succ (a) != b)
1428 return false;
1430 if (!single_pred_p (b))
1431 return false;
1433 if (b == EXIT_BLOCK_PTR)
1434 return false;
1436 /* If A ends by a statement causing exceptions or something similar, we
1437 cannot merge the blocks. */
1438 stmt = last_stmt (a);
1439 if (stmt && stmt_ends_bb_p (stmt))
1440 return false;
1442 /* Do not allow a block with only a non-local label to be merged. */
1443 if (stmt
1444 && gimple_code (stmt) == GIMPLE_LABEL
1445 && DECL_NONLOCAL (gimple_label_label (stmt)))
1446 return false;
1448 /* Examine the labels at the beginning of B. */
1449 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1451 tree lab;
1452 stmt = gsi_stmt (gsi);
1453 if (gimple_code (stmt) != GIMPLE_LABEL)
1454 break;
1455 lab = gimple_label_label (stmt);
1457 /* Do not remove user labels. */
1458 if (!DECL_ARTIFICIAL (lab))
1459 return false;
1462 /* Protect the loop latches. */
1463 if (current_loops && b->loop_father->latch == b)
1464 return false;
1466 /* It must be possible to eliminate all phi nodes in B. If ssa form
1467 is not up-to-date and a name-mapping is registered, we cannot eliminate
1468 any phis. Symbols marked for renaming are never a problem though. */
1469 phis = phi_nodes (b);
1470 if (!gimple_seq_empty_p (phis)
1471 && name_mappings_registered_p ())
1472 return false;
1474 /* When not optimizing, don't merge if we'd lose goto_locus. */
1475 if (!optimize
1476 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1478 location_t goto_locus = single_succ_edge (a)->goto_locus;
1479 gimple_stmt_iterator prev, next;
1480 prev = gsi_last_nondebug_bb (a);
1481 next = gsi_after_labels (b);
1482 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1483 gsi_next_nondebug (&next);
1484 if ((gsi_end_p (prev)
1485 || gimple_location (gsi_stmt (prev)) != goto_locus)
1486 && (gsi_end_p (next)
1487 || gimple_location (gsi_stmt (next)) != goto_locus))
1488 return false;
1491 return true;
1494 /* Return true if the var whose chain of uses starts at PTR has no
1495 nondebug uses. */
1496 bool
1497 has_zero_uses_1 (const ssa_use_operand_t *head)
1499 const ssa_use_operand_t *ptr;
1501 for (ptr = head->next; ptr != head; ptr = ptr->next)
1502 if (!is_gimple_debug (USE_STMT (ptr)))
1503 return false;
1505 return true;
1508 /* Return true if the var whose chain of uses starts at PTR has a
1509 single nondebug use. Set USE_P and STMT to that single nondebug
1510 use, if so, or to NULL otherwise. */
1511 bool
1512 single_imm_use_1 (const ssa_use_operand_t *head,
1513 use_operand_p *use_p, gimple *stmt)
1515 ssa_use_operand_t *ptr, *single_use = 0;
1517 for (ptr = head->next; ptr != head; ptr = ptr->next)
1518 if (!is_gimple_debug (USE_STMT (ptr)))
1520 if (single_use)
1522 single_use = NULL;
1523 break;
1525 single_use = ptr;
1528 if (use_p)
1529 *use_p = single_use;
1531 if (stmt)
1532 *stmt = single_use ? single_use->loc.stmt : NULL;
1534 return !!single_use;
1537 /* Replaces all uses of NAME by VAL. */
1539 void
1540 replace_uses_by (tree name, tree val)
1542 imm_use_iterator imm_iter;
1543 use_operand_p use;
1544 gimple stmt;
1545 edge e;
1547 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1549 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1551 replace_exp (use, val);
1553 if (gimple_code (stmt) == GIMPLE_PHI)
1555 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1556 if (e->flags & EDGE_ABNORMAL)
1558 /* This can only occur for virtual operands, since
1559 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1560 would prevent replacement. */
1561 gcc_assert (!is_gimple_reg (name));
1562 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1567 if (gimple_code (stmt) != GIMPLE_PHI)
1569 size_t i;
1571 fold_stmt_inplace (stmt);
1572 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1573 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1575 /* FIXME. This should go in update_stmt. */
1576 for (i = 0; i < gimple_num_ops (stmt); i++)
1578 tree op = gimple_op (stmt, i);
1579 /* Operands may be empty here. For example, the labels
1580 of a GIMPLE_COND are nulled out following the creation
1581 of the corresponding CFG edges. */
1582 if (op && TREE_CODE (op) == ADDR_EXPR)
1583 recompute_tree_invariant_for_addr_expr (op);
1586 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1587 update_stmt (stmt);
1591 gcc_assert (has_zero_uses (name));
1593 /* Also update the trees stored in loop structures. */
1594 if (current_loops)
1596 struct loop *loop;
1597 loop_iterator li;
1599 FOR_EACH_LOOP (li, loop, 0)
1601 substitute_in_loop_info (loop, name, val);
1606 /* Merge block B into block A. */
1608 static void
1609 gimple_merge_blocks (basic_block a, basic_block b)
1611 gimple_stmt_iterator last, gsi, psi;
1612 gimple_seq phis = phi_nodes (b);
1614 if (dump_file)
1615 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1617 /* Remove all single-valued PHI nodes from block B of the form
1618 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1619 gsi = gsi_last_bb (a);
1620 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1622 gimple phi = gsi_stmt (psi);
1623 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1624 gimple copy;
1625 bool may_replace_uses = !is_gimple_reg (def)
1626 || may_propagate_copy (def, use);
1628 /* In case we maintain loop closed ssa form, do not propagate arguments
1629 of loop exit phi nodes. */
1630 if (current_loops
1631 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1632 && is_gimple_reg (def)
1633 && TREE_CODE (use) == SSA_NAME
1634 && a->loop_father != b->loop_father)
1635 may_replace_uses = false;
1637 if (!may_replace_uses)
1639 gcc_assert (is_gimple_reg (def));
1641 /* Note that just emitting the copies is fine -- there is no problem
1642 with ordering of phi nodes. This is because A is the single
1643 predecessor of B, therefore results of the phi nodes cannot
1644 appear as arguments of the phi nodes. */
1645 copy = gimple_build_assign (def, use);
1646 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1647 remove_phi_node (&psi, false);
1649 else
1651 /* If we deal with a PHI for virtual operands, we can simply
1652 propagate these without fussing with folding or updating
1653 the stmt. */
1654 if (!is_gimple_reg (def))
1656 imm_use_iterator iter;
1657 use_operand_p use_p;
1658 gimple stmt;
1660 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1661 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1662 SET_USE (use_p, use);
1664 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1665 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1667 else
1668 replace_uses_by (def, use);
1670 remove_phi_node (&psi, true);
1674 /* Ensure that B follows A. */
1675 move_block_after (b, a);
1677 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1678 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1680 /* Remove labels from B and set gimple_bb to A for other statements. */
1681 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1683 gimple stmt = gsi_stmt (gsi);
1684 if (gimple_code (stmt) == GIMPLE_LABEL)
1686 tree label = gimple_label_label (stmt);
1687 int lp_nr;
1689 gsi_remove (&gsi, false);
1691 /* Now that we can thread computed gotos, we might have
1692 a situation where we have a forced label in block B
1693 However, the label at the start of block B might still be
1694 used in other ways (think about the runtime checking for
1695 Fortran assigned gotos). So we can not just delete the
1696 label. Instead we move the label to the start of block A. */
1697 if (FORCED_LABEL (label))
1699 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1700 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1703 lp_nr = EH_LANDING_PAD_NR (label);
1704 if (lp_nr)
1706 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1707 lp->post_landing_pad = NULL;
1710 else
1712 gimple_set_bb (stmt, a);
1713 gsi_next (&gsi);
1717 /* Merge the sequences. */
1718 last = gsi_last_bb (a);
1719 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1720 set_bb_seq (b, NULL);
1722 if (cfgcleanup_altered_bbs)
1723 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1727 /* Return the one of two successors of BB that is not reachable by a
1728 complex edge, if there is one. Else, return BB. We use
1729 this in optimizations that use post-dominators for their heuristics,
1730 to catch the cases in C++ where function calls are involved. */
1732 basic_block
1733 single_noncomplex_succ (basic_block bb)
1735 edge e0, e1;
1736 if (EDGE_COUNT (bb->succs) != 2)
1737 return bb;
1739 e0 = EDGE_SUCC (bb, 0);
1740 e1 = EDGE_SUCC (bb, 1);
1741 if (e0->flags & EDGE_COMPLEX)
1742 return e1->dest;
1743 if (e1->flags & EDGE_COMPLEX)
1744 return e0->dest;
1746 return bb;
1749 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1751 void
1752 notice_special_calls (gimple call)
1754 int flags = gimple_call_flags (call);
1756 if (flags & ECF_MAY_BE_ALLOCA)
1757 cfun->calls_alloca = true;
1758 if (flags & ECF_RETURNS_TWICE)
1759 cfun->calls_setjmp = true;
1763 /* Clear flags set by notice_special_calls. Used by dead code removal
1764 to update the flags. */
1766 void
1767 clear_special_calls (void)
1769 cfun->calls_alloca = false;
1770 cfun->calls_setjmp = false;
1773 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1775 static void
1776 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1778 /* Since this block is no longer reachable, we can just delete all
1779 of its PHI nodes. */
1780 remove_phi_nodes (bb);
1782 /* Remove edges to BB's successors. */
1783 while (EDGE_COUNT (bb->succs) > 0)
1784 remove_edge (EDGE_SUCC (bb, 0));
1788 /* Remove statements of basic block BB. */
1790 static void
1791 remove_bb (basic_block bb)
1793 gimple_stmt_iterator i;
1795 if (dump_file)
1797 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1798 if (dump_flags & TDF_DETAILS)
1800 dump_bb (bb, dump_file, 0);
1801 fprintf (dump_file, "\n");
1805 if (current_loops)
1807 struct loop *loop = bb->loop_father;
1809 /* If a loop gets removed, clean up the information associated
1810 with it. */
1811 if (loop->latch == bb
1812 || loop->header == bb)
1813 free_numbers_of_iterations_estimates_loop (loop);
1816 /* Remove all the instructions in the block. */
1817 if (bb_seq (bb) != NULL)
1819 /* Walk backwards so as to get a chance to substitute all
1820 released DEFs into debug stmts. See
1821 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1822 details. */
1823 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1825 gimple stmt = gsi_stmt (i);
1826 if (gimple_code (stmt) == GIMPLE_LABEL
1827 && (FORCED_LABEL (gimple_label_label (stmt))
1828 || DECL_NONLOCAL (gimple_label_label (stmt))))
1830 basic_block new_bb;
1831 gimple_stmt_iterator new_gsi;
1833 /* A non-reachable non-local label may still be referenced.
1834 But it no longer needs to carry the extra semantics of
1835 non-locality. */
1836 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1838 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1839 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1842 new_bb = bb->prev_bb;
1843 new_gsi = gsi_start_bb (new_bb);
1844 gsi_remove (&i, false);
1845 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1847 else
1849 /* Release SSA definitions if we are in SSA. Note that we
1850 may be called when not in SSA. For example,
1851 final_cleanup calls this function via
1852 cleanup_tree_cfg. */
1853 if (gimple_in_ssa_p (cfun))
1854 release_defs (stmt);
1856 gsi_remove (&i, true);
1859 if (gsi_end_p (i))
1860 i = gsi_last_bb (bb);
1861 else
1862 gsi_prev (&i);
1866 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1867 bb->il.gimple = NULL;
1871 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1872 predicate VAL, return the edge that will be taken out of the block.
1873 If VAL does not match a unique edge, NULL is returned. */
1875 edge
1876 find_taken_edge (basic_block bb, tree val)
1878 gimple stmt;
1880 stmt = last_stmt (bb);
1882 gcc_assert (stmt);
1883 gcc_assert (is_ctrl_stmt (stmt));
1885 if (val == NULL)
1886 return NULL;
1888 if (!is_gimple_min_invariant (val))
1889 return NULL;
1891 if (gimple_code (stmt) == GIMPLE_COND)
1892 return find_taken_edge_cond_expr (bb, val);
1894 if (gimple_code (stmt) == GIMPLE_SWITCH)
1895 return find_taken_edge_switch_expr (bb, val);
1897 if (computed_goto_p (stmt))
1899 /* Only optimize if the argument is a label, if the argument is
1900 not a label then we can not construct a proper CFG.
1902 It may be the case that we only need to allow the LABEL_REF to
1903 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1904 appear inside a LABEL_EXPR just to be safe. */
1905 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1906 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1907 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1908 return NULL;
1911 gcc_unreachable ();
1914 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1915 statement, determine which of the outgoing edges will be taken out of the
1916 block. Return NULL if either edge may be taken. */
1918 static edge
1919 find_taken_edge_computed_goto (basic_block bb, tree val)
1921 basic_block dest;
1922 edge e = NULL;
1924 dest = label_to_block (val);
1925 if (dest)
1927 e = find_edge (bb, dest);
1928 gcc_assert (e != NULL);
1931 return e;
1934 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1935 statement, determine which of the two edges will be taken out of the
1936 block. Return NULL if either edge may be taken. */
1938 static edge
1939 find_taken_edge_cond_expr (basic_block bb, tree val)
1941 edge true_edge, false_edge;
1943 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1945 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1946 return (integer_zerop (val) ? false_edge : true_edge);
1949 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1950 statement, determine which edge will be taken out of the block. Return
1951 NULL if any edge may be taken. */
1953 static edge
1954 find_taken_edge_switch_expr (basic_block bb, tree val)
1956 basic_block dest_bb;
1957 edge e;
1958 gimple switch_stmt;
1959 tree taken_case;
1961 switch_stmt = last_stmt (bb);
1962 taken_case = find_case_label_for_value (switch_stmt, val);
1963 dest_bb = label_to_block (CASE_LABEL (taken_case));
1965 e = find_edge (bb, dest_bb);
1966 gcc_assert (e);
1967 return e;
1971 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1972 We can make optimal use here of the fact that the case labels are
1973 sorted: We can do a binary search for a case matching VAL. */
1975 static tree
1976 find_case_label_for_value (gimple switch_stmt, tree val)
1978 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1979 tree default_case = gimple_switch_default_label (switch_stmt);
1981 for (low = 0, high = n; high - low > 1; )
1983 size_t i = (high + low) / 2;
1984 tree t = gimple_switch_label (switch_stmt, i);
1985 int cmp;
1987 /* Cache the result of comparing CASE_LOW and val. */
1988 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1990 if (cmp > 0)
1991 high = i;
1992 else
1993 low = i;
1995 if (CASE_HIGH (t) == NULL)
1997 /* A singe-valued case label. */
1998 if (cmp == 0)
1999 return t;
2001 else
2003 /* A case range. We can only handle integer ranges. */
2004 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2005 return t;
2009 return default_case;
2013 /* Dump a basic block on stderr. */
2015 void
2016 gimple_debug_bb (basic_block bb)
2018 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2022 /* Dump basic block with index N on stderr. */
2024 basic_block
2025 gimple_debug_bb_n (int n)
2027 gimple_debug_bb (BASIC_BLOCK (n));
2028 return BASIC_BLOCK (n);
2032 /* Dump the CFG on stderr.
2034 FLAGS are the same used by the tree dumping functions
2035 (see TDF_* in tree-pass.h). */
2037 void
2038 gimple_debug_cfg (int flags)
2040 gimple_dump_cfg (stderr, flags);
2044 /* Dump the program showing basic block boundaries on the given FILE.
2046 FLAGS are the same used by the tree dumping functions (see TDF_* in
2047 tree.h). */
2049 void
2050 gimple_dump_cfg (FILE *file, int flags)
2052 if (flags & TDF_DETAILS)
2054 const char *funcname
2055 = lang_hooks.decl_printable_name (current_function_decl, 2);
2057 fputc ('\n', file);
2058 fprintf (file, ";; Function %s\n\n", funcname);
2059 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2060 n_basic_blocks, n_edges, last_basic_block);
2062 brief_dump_cfg (file);
2063 fprintf (file, "\n");
2066 if (flags & TDF_STATS)
2067 dump_cfg_stats (file);
2069 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2073 /* Dump CFG statistics on FILE. */
2075 void
2076 dump_cfg_stats (FILE *file)
2078 static long max_num_merged_labels = 0;
2079 unsigned long size, total = 0;
2080 long num_edges;
2081 basic_block bb;
2082 const char * const fmt_str = "%-30s%-13s%12s\n";
2083 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2084 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2085 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2086 const char *funcname
2087 = lang_hooks.decl_printable_name (current_function_decl, 2);
2090 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2092 fprintf (file, "---------------------------------------------------------\n");
2093 fprintf (file, fmt_str, "", " Number of ", "Memory");
2094 fprintf (file, fmt_str, "", " instances ", "used ");
2095 fprintf (file, "---------------------------------------------------------\n");
2097 size = n_basic_blocks * sizeof (struct basic_block_def);
2098 total += size;
2099 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2100 SCALE (size), LABEL (size));
2102 num_edges = 0;
2103 FOR_EACH_BB (bb)
2104 num_edges += EDGE_COUNT (bb->succs);
2105 size = num_edges * sizeof (struct edge_def);
2106 total += size;
2107 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2109 fprintf (file, "---------------------------------------------------------\n");
2110 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2111 LABEL (total));
2112 fprintf (file, "---------------------------------------------------------\n");
2113 fprintf (file, "\n");
2115 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2116 max_num_merged_labels = cfg_stats.num_merged_labels;
2118 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2119 cfg_stats.num_merged_labels, max_num_merged_labels);
2121 fprintf (file, "\n");
2125 /* Dump CFG statistics on stderr. Keep extern so that it's always
2126 linked in the final executable. */
2128 DEBUG_FUNCTION void
2129 debug_cfg_stats (void)
2131 dump_cfg_stats (stderr);
2135 /* Dump the flowgraph to a .vcg FILE. */
2137 static void
2138 gimple_cfg2vcg (FILE *file)
2140 edge e;
2141 edge_iterator ei;
2142 basic_block bb;
2143 const char *funcname
2144 = lang_hooks.decl_printable_name (current_function_decl, 2);
2146 /* Write the file header. */
2147 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2148 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2149 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2151 /* Write blocks and edges. */
2152 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2154 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2155 e->dest->index);
2157 if (e->flags & EDGE_FAKE)
2158 fprintf (file, " linestyle: dotted priority: 10");
2159 else
2160 fprintf (file, " linestyle: solid priority: 100");
2162 fprintf (file, " }\n");
2164 fputc ('\n', file);
2166 FOR_EACH_BB (bb)
2168 enum gimple_code head_code, end_code;
2169 const char *head_name, *end_name;
2170 int head_line = 0;
2171 int end_line = 0;
2172 gimple first = first_stmt (bb);
2173 gimple last = last_stmt (bb);
2175 if (first)
2177 head_code = gimple_code (first);
2178 head_name = gimple_code_name[head_code];
2179 head_line = get_lineno (first);
2181 else
2182 head_name = "no-statement";
2184 if (last)
2186 end_code = gimple_code (last);
2187 end_name = gimple_code_name[end_code];
2188 end_line = get_lineno (last);
2190 else
2191 end_name = "no-statement";
2193 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2194 bb->index, bb->index, head_name, head_line, end_name,
2195 end_line);
2197 FOR_EACH_EDGE (e, ei, bb->succs)
2199 if (e->dest == EXIT_BLOCK_PTR)
2200 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2201 else
2202 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2204 if (e->flags & EDGE_FAKE)
2205 fprintf (file, " priority: 10 linestyle: dotted");
2206 else
2207 fprintf (file, " priority: 100 linestyle: solid");
2209 fprintf (file, " }\n");
2212 if (bb->next_bb != EXIT_BLOCK_PTR)
2213 fputc ('\n', file);
2216 fputs ("}\n\n", file);
2221 /*---------------------------------------------------------------------------
2222 Miscellaneous helpers
2223 ---------------------------------------------------------------------------*/
2225 /* Return true if T represents a stmt that always transfers control. */
2227 bool
2228 is_ctrl_stmt (gimple t)
2230 switch (gimple_code (t))
2232 case GIMPLE_COND:
2233 case GIMPLE_SWITCH:
2234 case GIMPLE_GOTO:
2235 case GIMPLE_RETURN:
2236 case GIMPLE_RESX:
2237 return true;
2238 default:
2239 return false;
2244 /* Return true if T is a statement that may alter the flow of control
2245 (e.g., a call to a non-returning function). */
2247 bool
2248 is_ctrl_altering_stmt (gimple t)
2250 gcc_assert (t);
2252 switch (gimple_code (t))
2254 case GIMPLE_CALL:
2256 int flags = gimple_call_flags (t);
2258 /* A non-pure/const call alters flow control if the current
2259 function has nonlocal labels. */
2260 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2261 && cfun->has_nonlocal_label)
2262 return true;
2264 /* A call also alters control flow if it does not return. */
2265 if (flags & ECF_NORETURN)
2266 return true;
2268 /* BUILT_IN_RETURN call is same as return statement. */
2269 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2270 return true;
2272 break;
2274 case GIMPLE_EH_DISPATCH:
2275 /* EH_DISPATCH branches to the individual catch handlers at
2276 this level of a try or allowed-exceptions region. It can
2277 fallthru to the next statement as well. */
2278 return true;
2280 case GIMPLE_ASM:
2281 if (gimple_asm_nlabels (t) > 0)
2282 return true;
2283 break;
2285 CASE_GIMPLE_OMP:
2286 /* OpenMP directives alter control flow. */
2287 return true;
2289 default:
2290 break;
2293 /* If a statement can throw, it alters control flow. */
2294 return stmt_can_throw_internal (t);
2298 /* Return true if T is a simple local goto. */
2300 bool
2301 simple_goto_p (gimple t)
2303 return (gimple_code (t) == GIMPLE_GOTO
2304 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2308 /* Return true if T can make an abnormal transfer of control flow.
2309 Transfers of control flow associated with EH are excluded. */
2311 bool
2312 stmt_can_make_abnormal_goto (gimple t)
2314 if (computed_goto_p (t))
2315 return true;
2316 if (is_gimple_call (t))
2317 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2318 && !(gimple_call_flags (t) & ECF_LEAF));
2319 return false;
2323 /* Return true if STMT should start a new basic block. PREV_STMT is
2324 the statement preceding STMT. It is used when STMT is a label or a
2325 case label. Labels should only start a new basic block if their
2326 previous statement wasn't a label. Otherwise, sequence of labels
2327 would generate unnecessary basic blocks that only contain a single
2328 label. */
2330 static inline bool
2331 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2333 if (stmt == NULL)
2334 return false;
2336 /* Labels start a new basic block only if the preceding statement
2337 wasn't a label of the same type. This prevents the creation of
2338 consecutive blocks that have nothing but a single label. */
2339 if (gimple_code (stmt) == GIMPLE_LABEL)
2341 /* Nonlocal and computed GOTO targets always start a new block. */
2342 if (DECL_NONLOCAL (gimple_label_label (stmt))
2343 || FORCED_LABEL (gimple_label_label (stmt)))
2344 return true;
2346 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2348 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2349 return true;
2351 cfg_stats.num_merged_labels++;
2352 return false;
2354 else
2355 return true;
2358 return false;
2362 /* Return true if T should end a basic block. */
2364 bool
2365 stmt_ends_bb_p (gimple t)
2367 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2370 /* Remove block annotations and other data structures. */
2372 void
2373 delete_tree_cfg_annotations (void)
2375 label_to_block_map = NULL;
2379 /* Return the first statement in basic block BB. */
2381 gimple
2382 first_stmt (basic_block bb)
2384 gimple_stmt_iterator i = gsi_start_bb (bb);
2385 gimple stmt = NULL;
2387 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2389 gsi_next (&i);
2390 stmt = NULL;
2392 return stmt;
2395 /* Return the first non-label statement in basic block BB. */
2397 static gimple
2398 first_non_label_stmt (basic_block bb)
2400 gimple_stmt_iterator i = gsi_start_bb (bb);
2401 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2402 gsi_next (&i);
2403 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2406 /* Return the last statement in basic block BB. */
2408 gimple
2409 last_stmt (basic_block bb)
2411 gimple_stmt_iterator i = gsi_last_bb (bb);
2412 gimple stmt = NULL;
2414 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2416 gsi_prev (&i);
2417 stmt = NULL;
2419 return stmt;
2422 /* Return the last statement of an otherwise empty block. Return NULL
2423 if the block is totally empty, or if it contains more than one
2424 statement. */
2426 gimple
2427 last_and_only_stmt (basic_block bb)
2429 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2430 gimple last, prev;
2432 if (gsi_end_p (i))
2433 return NULL;
2435 last = gsi_stmt (i);
2436 gsi_prev_nondebug (&i);
2437 if (gsi_end_p (i))
2438 return last;
2440 /* Empty statements should no longer appear in the instruction stream.
2441 Everything that might have appeared before should be deleted by
2442 remove_useless_stmts, and the optimizers should just gsi_remove
2443 instead of smashing with build_empty_stmt.
2445 Thus the only thing that should appear here in a block containing
2446 one executable statement is a label. */
2447 prev = gsi_stmt (i);
2448 if (gimple_code (prev) == GIMPLE_LABEL)
2449 return last;
2450 else
2451 return NULL;
2454 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2456 static void
2457 reinstall_phi_args (edge new_edge, edge old_edge)
2459 edge_var_map_vector v;
2460 edge_var_map *vm;
2461 int i;
2462 gimple_stmt_iterator phis;
2464 v = redirect_edge_var_map_vector (old_edge);
2465 if (!v)
2466 return;
2468 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2469 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2470 i++, gsi_next (&phis))
2472 gimple phi = gsi_stmt (phis);
2473 tree result = redirect_edge_var_map_result (vm);
2474 tree arg = redirect_edge_var_map_def (vm);
2476 gcc_assert (result == gimple_phi_result (phi));
2478 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2481 redirect_edge_var_map_clear (old_edge);
2484 /* Returns the basic block after which the new basic block created
2485 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2486 near its "logical" location. This is of most help to humans looking
2487 at debugging dumps. */
2489 static basic_block
2490 split_edge_bb_loc (edge edge_in)
2492 basic_block dest = edge_in->dest;
2493 basic_block dest_prev = dest->prev_bb;
2495 if (dest_prev)
2497 edge e = find_edge (dest_prev, dest);
2498 if (e && !(e->flags & EDGE_COMPLEX))
2499 return edge_in->src;
2501 return dest_prev;
2504 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2505 Abort on abnormal edges. */
2507 static basic_block
2508 gimple_split_edge (edge edge_in)
2510 basic_block new_bb, after_bb, dest;
2511 edge new_edge, e;
2513 /* Abnormal edges cannot be split. */
2514 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2516 dest = edge_in->dest;
2518 after_bb = split_edge_bb_loc (edge_in);
2520 new_bb = create_empty_bb (after_bb);
2521 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2522 new_bb->count = edge_in->count;
2523 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2524 new_edge->probability = REG_BR_PROB_BASE;
2525 new_edge->count = edge_in->count;
2527 e = redirect_edge_and_branch (edge_in, new_bb);
2528 gcc_assert (e == edge_in);
2529 reinstall_phi_args (new_edge, e);
2531 return new_bb;
2535 /* Verify properties of the address expression T with base object BASE. */
2537 static tree
2538 verify_address (tree t, tree base)
2540 bool old_constant;
2541 bool old_side_effects;
2542 bool new_constant;
2543 bool new_side_effects;
2545 old_constant = TREE_CONSTANT (t);
2546 old_side_effects = TREE_SIDE_EFFECTS (t);
2548 recompute_tree_invariant_for_addr_expr (t);
2549 new_side_effects = TREE_SIDE_EFFECTS (t);
2550 new_constant = TREE_CONSTANT (t);
2552 if (old_constant != new_constant)
2554 error ("constant not recomputed when ADDR_EXPR changed");
2555 return t;
2557 if (old_side_effects != new_side_effects)
2559 error ("side effects not recomputed when ADDR_EXPR changed");
2560 return t;
2563 if (!(TREE_CODE (base) == VAR_DECL
2564 || TREE_CODE (base) == PARM_DECL
2565 || TREE_CODE (base) == RESULT_DECL))
2566 return NULL_TREE;
2568 if (DECL_GIMPLE_REG_P (base))
2570 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2571 return base;
2574 return NULL_TREE;
2577 /* Callback for walk_tree, check that all elements with address taken are
2578 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2579 inside a PHI node. */
2581 static tree
2582 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2584 tree t = *tp, x;
2586 if (TYPE_P (t))
2587 *walk_subtrees = 0;
2589 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2590 #define CHECK_OP(N, MSG) \
2591 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2592 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2594 switch (TREE_CODE (t))
2596 case SSA_NAME:
2597 if (SSA_NAME_IN_FREE_LIST (t))
2599 error ("SSA name in freelist but still referenced");
2600 return *tp;
2602 break;
2604 case INDIRECT_REF:
2605 error ("INDIRECT_REF in gimple IL");
2606 return t;
2608 case MEM_REF:
2609 x = TREE_OPERAND (t, 0);
2610 if (!POINTER_TYPE_P (TREE_TYPE (x))
2611 || !is_gimple_mem_ref_addr (x))
2613 error ("invalid first operand of MEM_REF");
2614 return x;
2616 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2617 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2619 error ("invalid offset operand of MEM_REF");
2620 return TREE_OPERAND (t, 1);
2622 if (TREE_CODE (x) == ADDR_EXPR
2623 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2624 return x;
2625 *walk_subtrees = 0;
2626 break;
2628 case ASSERT_EXPR:
2629 x = fold (ASSERT_EXPR_COND (t));
2630 if (x == boolean_false_node)
2632 error ("ASSERT_EXPR with an always-false condition");
2633 return *tp;
2635 break;
2637 case MODIFY_EXPR:
2638 error ("MODIFY_EXPR not expected while having tuples");
2639 return *tp;
2641 case ADDR_EXPR:
2643 tree tem;
2645 gcc_assert (is_gimple_address (t));
2647 /* Skip any references (they will be checked when we recurse down the
2648 tree) and ensure that any variable used as a prefix is marked
2649 addressable. */
2650 for (x = TREE_OPERAND (t, 0);
2651 handled_component_p (x);
2652 x = TREE_OPERAND (x, 0))
2655 if ((tem = verify_address (t, x)))
2656 return tem;
2658 if (!(TREE_CODE (x) == VAR_DECL
2659 || TREE_CODE (x) == PARM_DECL
2660 || TREE_CODE (x) == RESULT_DECL))
2661 return NULL;
2663 if (!TREE_ADDRESSABLE (x))
2665 error ("address taken, but ADDRESSABLE bit not set");
2666 return x;
2669 break;
2672 case COND_EXPR:
2673 x = COND_EXPR_COND (t);
2674 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2676 error ("non-integral used in condition");
2677 return x;
2679 if (!is_gimple_condexpr (x))
2681 error ("invalid conditional operand");
2682 return x;
2684 break;
2686 case NON_LVALUE_EXPR:
2687 gcc_unreachable ();
2689 CASE_CONVERT:
2690 case FIX_TRUNC_EXPR:
2691 case FLOAT_EXPR:
2692 case NEGATE_EXPR:
2693 case ABS_EXPR:
2694 case BIT_NOT_EXPR:
2695 case TRUTH_NOT_EXPR:
2696 CHECK_OP (0, "invalid operand to unary operator");
2697 break;
2699 case REALPART_EXPR:
2700 case IMAGPART_EXPR:
2701 case COMPONENT_REF:
2702 case ARRAY_REF:
2703 case ARRAY_RANGE_REF:
2704 case BIT_FIELD_REF:
2705 case VIEW_CONVERT_EXPR:
2706 /* We have a nest of references. Verify that each of the operands
2707 that determine where to reference is either a constant or a variable,
2708 verify that the base is valid, and then show we've already checked
2709 the subtrees. */
2710 while (handled_component_p (t))
2712 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2713 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2714 else if (TREE_CODE (t) == ARRAY_REF
2715 || TREE_CODE (t) == ARRAY_RANGE_REF)
2717 CHECK_OP (1, "invalid array index");
2718 if (TREE_OPERAND (t, 2))
2719 CHECK_OP (2, "invalid array lower bound");
2720 if (TREE_OPERAND (t, 3))
2721 CHECK_OP (3, "invalid array stride");
2723 else if (TREE_CODE (t) == BIT_FIELD_REF)
2725 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2726 || !host_integerp (TREE_OPERAND (t, 2), 1))
2728 error ("invalid position or size operand to BIT_FIELD_REF");
2729 return t;
2731 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2732 && (TYPE_PRECISION (TREE_TYPE (t))
2733 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2735 error ("integral result type precision does not match "
2736 "field size of BIT_FIELD_REF");
2737 return t;
2739 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2740 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2741 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2743 error ("mode precision of non-integral result does not "
2744 "match field size of BIT_FIELD_REF");
2745 return t;
2749 t = TREE_OPERAND (t, 0);
2752 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2754 error ("invalid reference prefix");
2755 return t;
2757 *walk_subtrees = 0;
2758 break;
2759 case PLUS_EXPR:
2760 case MINUS_EXPR:
2761 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2762 POINTER_PLUS_EXPR. */
2763 if (POINTER_TYPE_P (TREE_TYPE (t)))
2765 error ("invalid operand to plus/minus, type is a pointer");
2766 return t;
2768 CHECK_OP (0, "invalid operand to binary operator");
2769 CHECK_OP (1, "invalid operand to binary operator");
2770 break;
2772 case POINTER_PLUS_EXPR:
2773 /* Check to make sure the first operand is a pointer or reference type. */
2774 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2776 error ("invalid operand to pointer plus, first operand is not a pointer");
2777 return t;
2779 /* Check to make sure the second operand is an integer with type of
2780 sizetype. */
2781 if (!useless_type_conversion_p (sizetype,
2782 TREE_TYPE (TREE_OPERAND (t, 1))))
2784 error ("invalid operand to pointer plus, second operand is not an "
2785 "integer with type of sizetype");
2786 return t;
2788 /* FALLTHROUGH */
2789 case LT_EXPR:
2790 case LE_EXPR:
2791 case GT_EXPR:
2792 case GE_EXPR:
2793 case EQ_EXPR:
2794 case NE_EXPR:
2795 case UNORDERED_EXPR:
2796 case ORDERED_EXPR:
2797 case UNLT_EXPR:
2798 case UNLE_EXPR:
2799 case UNGT_EXPR:
2800 case UNGE_EXPR:
2801 case UNEQ_EXPR:
2802 case LTGT_EXPR:
2803 case MULT_EXPR:
2804 case TRUNC_DIV_EXPR:
2805 case CEIL_DIV_EXPR:
2806 case FLOOR_DIV_EXPR:
2807 case ROUND_DIV_EXPR:
2808 case TRUNC_MOD_EXPR:
2809 case CEIL_MOD_EXPR:
2810 case FLOOR_MOD_EXPR:
2811 case ROUND_MOD_EXPR:
2812 case RDIV_EXPR:
2813 case EXACT_DIV_EXPR:
2814 case MIN_EXPR:
2815 case MAX_EXPR:
2816 case LSHIFT_EXPR:
2817 case RSHIFT_EXPR:
2818 case LROTATE_EXPR:
2819 case RROTATE_EXPR:
2820 case BIT_IOR_EXPR:
2821 case BIT_XOR_EXPR:
2822 case BIT_AND_EXPR:
2823 CHECK_OP (0, "invalid operand to binary operator");
2824 CHECK_OP (1, "invalid operand to binary operator");
2825 break;
2827 case CONSTRUCTOR:
2828 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2829 *walk_subtrees = 0;
2830 break;
2832 default:
2833 break;
2835 return NULL;
2837 #undef CHECK_OP
2841 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2842 Returns true if there is an error, otherwise false. */
2844 static bool
2845 verify_types_in_gimple_min_lval (tree expr)
2847 tree op;
2849 if (is_gimple_id (expr))
2850 return false;
2852 if (TREE_CODE (expr) != TARGET_MEM_REF
2853 && TREE_CODE (expr) != MEM_REF)
2855 error ("invalid expression for min lvalue");
2856 return true;
2859 /* TARGET_MEM_REFs are strange beasts. */
2860 if (TREE_CODE (expr) == TARGET_MEM_REF)
2861 return false;
2863 op = TREE_OPERAND (expr, 0);
2864 if (!is_gimple_val (op))
2866 error ("invalid operand in indirect reference");
2867 debug_generic_stmt (op);
2868 return true;
2870 /* Memory references now generally can involve a value conversion. */
2872 return false;
2875 /* Verify if EXPR is a valid GIMPLE reference expression. If
2876 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2877 if there is an error, otherwise false. */
2879 static bool
2880 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2882 while (handled_component_p (expr))
2884 tree op = TREE_OPERAND (expr, 0);
2886 if (TREE_CODE (expr) == ARRAY_REF
2887 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2889 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2890 || (TREE_OPERAND (expr, 2)
2891 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2892 || (TREE_OPERAND (expr, 3)
2893 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2895 error ("invalid operands to array reference");
2896 debug_generic_stmt (expr);
2897 return true;
2901 /* Verify if the reference array element types are compatible. */
2902 if (TREE_CODE (expr) == ARRAY_REF
2903 && !useless_type_conversion_p (TREE_TYPE (expr),
2904 TREE_TYPE (TREE_TYPE (op))))
2906 error ("type mismatch in array reference");
2907 debug_generic_stmt (TREE_TYPE (expr));
2908 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2909 return true;
2911 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2912 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2913 TREE_TYPE (TREE_TYPE (op))))
2915 error ("type mismatch in array range reference");
2916 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2918 return true;
2921 if ((TREE_CODE (expr) == REALPART_EXPR
2922 || TREE_CODE (expr) == IMAGPART_EXPR)
2923 && !useless_type_conversion_p (TREE_TYPE (expr),
2924 TREE_TYPE (TREE_TYPE (op))))
2926 error ("type mismatch in real/imagpart reference");
2927 debug_generic_stmt (TREE_TYPE (expr));
2928 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2929 return true;
2932 if (TREE_CODE (expr) == COMPONENT_REF
2933 && !useless_type_conversion_p (TREE_TYPE (expr),
2934 TREE_TYPE (TREE_OPERAND (expr, 1))))
2936 error ("type mismatch in component reference");
2937 debug_generic_stmt (TREE_TYPE (expr));
2938 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2939 return true;
2942 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2944 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2945 that their operand is not an SSA name or an invariant when
2946 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2947 bug). Otherwise there is nothing to verify, gross mismatches at
2948 most invoke undefined behavior. */
2949 if (require_lvalue
2950 && (TREE_CODE (op) == SSA_NAME
2951 || is_gimple_min_invariant (op)))
2953 error ("conversion of an SSA_NAME on the left hand side");
2954 debug_generic_stmt (expr);
2955 return true;
2957 else if (TREE_CODE (op) == SSA_NAME
2958 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2960 error ("conversion of register to a different size");
2961 debug_generic_stmt (expr);
2962 return true;
2964 else if (!handled_component_p (op))
2965 return false;
2968 expr = op;
2971 if (TREE_CODE (expr) == MEM_REF)
2973 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2975 error ("invalid address operand in MEM_REF");
2976 debug_generic_stmt (expr);
2977 return true;
2979 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2980 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2982 error ("invalid offset operand in MEM_REF");
2983 debug_generic_stmt (expr);
2984 return true;
2987 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2989 if (!TMR_BASE (expr)
2990 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2992 error ("invalid address operand in TARGET_MEM_REF");
2993 return true;
2995 if (!TMR_OFFSET (expr)
2996 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2997 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
2999 error ("invalid offset operand in TARGET_MEM_REF");
3000 debug_generic_stmt (expr);
3001 return true;
3005 return ((require_lvalue || !is_gimple_min_invariant (expr))
3006 && verify_types_in_gimple_min_lval (expr));
3009 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3010 list of pointer-to types that is trivially convertible to DEST. */
3012 static bool
3013 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3015 tree src;
3017 if (!TYPE_POINTER_TO (src_obj))
3018 return true;
3020 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3021 if (useless_type_conversion_p (dest, src))
3022 return true;
3024 return false;
3027 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3028 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3030 static bool
3031 valid_fixed_convert_types_p (tree type1, tree type2)
3033 return (FIXED_POINT_TYPE_P (type1)
3034 && (INTEGRAL_TYPE_P (type2)
3035 || SCALAR_FLOAT_TYPE_P (type2)
3036 || FIXED_POINT_TYPE_P (type2)));
3039 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3040 is a problem, otherwise false. */
3042 static bool
3043 verify_gimple_call (gimple stmt)
3045 tree fn = gimple_call_fn (stmt);
3046 tree fntype, fndecl;
3047 unsigned i;
3049 if (gimple_call_internal_p (stmt))
3051 if (fn)
3053 error ("gimple call has two targets");
3054 debug_generic_stmt (fn);
3055 return true;
3058 else
3060 if (!fn)
3062 error ("gimple call has no target");
3063 return true;
3067 if (fn && !is_gimple_call_addr (fn))
3069 error ("invalid function in gimple call");
3070 debug_generic_stmt (fn);
3071 return true;
3074 if (fn
3075 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3076 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3077 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3079 error ("non-function in gimple call");
3080 return true;
3083 fndecl = gimple_call_fndecl (stmt);
3084 if (fndecl
3085 && TREE_CODE (fndecl) == FUNCTION_DECL
3086 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3087 && !DECL_PURE_P (fndecl)
3088 && !TREE_READONLY (fndecl))
3090 error ("invalid pure const state for function");
3091 return true;
3094 if (gimple_call_lhs (stmt)
3095 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3096 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3098 error ("invalid LHS in gimple call");
3099 return true;
3102 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3104 error ("LHS in noreturn call");
3105 return true;
3108 fntype = gimple_call_fntype (stmt);
3109 if (fntype
3110 && gimple_call_lhs (stmt)
3111 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3112 TREE_TYPE (fntype))
3113 /* ??? At least C++ misses conversions at assignments from
3114 void * call results.
3115 ??? Java is completely off. Especially with functions
3116 returning java.lang.Object.
3117 For now simply allow arbitrary pointer type conversions. */
3118 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3119 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3121 error ("invalid conversion in gimple call");
3122 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3123 debug_generic_stmt (TREE_TYPE (fntype));
3124 return true;
3127 if (gimple_call_chain (stmt)
3128 && !is_gimple_val (gimple_call_chain (stmt)))
3130 error ("invalid static chain in gimple call");
3131 debug_generic_stmt (gimple_call_chain (stmt));
3132 return true;
3135 /* If there is a static chain argument, this should not be an indirect
3136 call, and the decl should have DECL_STATIC_CHAIN set. */
3137 if (gimple_call_chain (stmt))
3139 if (!gimple_call_fndecl (stmt))
3141 error ("static chain in indirect gimple call");
3142 return true;
3144 fn = TREE_OPERAND (fn, 0);
3146 if (!DECL_STATIC_CHAIN (fn))
3148 error ("static chain with function that doesn%'t use one");
3149 return true;
3153 /* ??? The C frontend passes unpromoted arguments in case it
3154 didn't see a function declaration before the call. So for now
3155 leave the call arguments mostly unverified. Once we gimplify
3156 unit-at-a-time we have a chance to fix this. */
3158 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3160 tree arg = gimple_call_arg (stmt, i);
3161 if ((is_gimple_reg_type (TREE_TYPE (arg))
3162 && !is_gimple_val (arg))
3163 || (!is_gimple_reg_type (TREE_TYPE (arg))
3164 && !is_gimple_lvalue (arg)))
3166 error ("invalid argument to gimple call");
3167 debug_generic_expr (arg);
3168 return true;
3172 return false;
3175 /* Verifies the gimple comparison with the result type TYPE and
3176 the operands OP0 and OP1. */
3178 static bool
3179 verify_gimple_comparison (tree type, tree op0, tree op1)
3181 tree op0_type = TREE_TYPE (op0);
3182 tree op1_type = TREE_TYPE (op1);
3184 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3186 error ("invalid operands in gimple comparison");
3187 return true;
3190 /* For comparisons we do not have the operations type as the
3191 effective type the comparison is carried out in. Instead
3192 we require that either the first operand is trivially
3193 convertible into the second, or the other way around.
3194 The resulting type of a comparison may be any integral type.
3195 Because we special-case pointers to void we allow
3196 comparisons of pointers with the same mode as well. */
3197 if ((!useless_type_conversion_p (op0_type, op1_type)
3198 && !useless_type_conversion_p (op1_type, op0_type)
3199 && (!POINTER_TYPE_P (op0_type)
3200 || !POINTER_TYPE_P (op1_type)
3201 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3202 || !INTEGRAL_TYPE_P (type))
3204 error ("type mismatch in comparison expression");
3205 debug_generic_expr (type);
3206 debug_generic_expr (op0_type);
3207 debug_generic_expr (op1_type);
3208 return true;
3211 return false;
3214 /* Verify a gimple assignment statement STMT with an unary rhs.
3215 Returns true if anything is wrong. */
3217 static bool
3218 verify_gimple_assign_unary (gimple stmt)
3220 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3221 tree lhs = gimple_assign_lhs (stmt);
3222 tree lhs_type = TREE_TYPE (lhs);
3223 tree rhs1 = gimple_assign_rhs1 (stmt);
3224 tree rhs1_type = TREE_TYPE (rhs1);
3226 if (!is_gimple_reg (lhs))
3228 error ("non-register as LHS of unary operation");
3229 return true;
3232 if (!is_gimple_val (rhs1))
3234 error ("invalid operand in unary operation");
3235 return true;
3238 /* First handle conversions. */
3239 switch (rhs_code)
3241 CASE_CONVERT:
3243 /* Allow conversions between integral types and pointers only if
3244 there is no sign or zero extension involved.
3245 For targets were the precision of sizetype doesn't match that
3246 of pointers we need to allow arbitrary conversions from and
3247 to sizetype. */
3248 if ((POINTER_TYPE_P (lhs_type)
3249 && INTEGRAL_TYPE_P (rhs1_type)
3250 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3251 || rhs1_type == sizetype))
3252 || (POINTER_TYPE_P (rhs1_type)
3253 && INTEGRAL_TYPE_P (lhs_type)
3254 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3255 || lhs_type == sizetype)))
3256 return false;
3258 /* Allow conversion from integer to offset type and vice versa. */
3259 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3260 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3261 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3262 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3263 return false;
3265 /* Otherwise assert we are converting between types of the
3266 same kind. */
3267 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3269 error ("invalid types in nop conversion");
3270 debug_generic_expr (lhs_type);
3271 debug_generic_expr (rhs1_type);
3272 return true;
3275 return false;
3278 case ADDR_SPACE_CONVERT_EXPR:
3280 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3281 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3282 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3284 error ("invalid types in address space conversion");
3285 debug_generic_expr (lhs_type);
3286 debug_generic_expr (rhs1_type);
3287 return true;
3290 return false;
3293 case FIXED_CONVERT_EXPR:
3295 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3296 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3298 error ("invalid types in fixed-point conversion");
3299 debug_generic_expr (lhs_type);
3300 debug_generic_expr (rhs1_type);
3301 return true;
3304 return false;
3307 case FLOAT_EXPR:
3309 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3311 error ("invalid types in conversion to floating point");
3312 debug_generic_expr (lhs_type);
3313 debug_generic_expr (rhs1_type);
3314 return true;
3317 return false;
3320 case FIX_TRUNC_EXPR:
3322 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3324 error ("invalid types in conversion to integer");
3325 debug_generic_expr (lhs_type);
3326 debug_generic_expr (rhs1_type);
3327 return true;
3330 return false;
3333 case VEC_UNPACK_HI_EXPR:
3334 case VEC_UNPACK_LO_EXPR:
3335 case REDUC_MAX_EXPR:
3336 case REDUC_MIN_EXPR:
3337 case REDUC_PLUS_EXPR:
3338 case VEC_UNPACK_FLOAT_HI_EXPR:
3339 case VEC_UNPACK_FLOAT_LO_EXPR:
3340 /* FIXME. */
3341 return false;
3343 case TRUTH_NOT_EXPR:
3344 case NEGATE_EXPR:
3345 case ABS_EXPR:
3346 case BIT_NOT_EXPR:
3347 case PAREN_EXPR:
3348 case NON_LVALUE_EXPR:
3349 case CONJ_EXPR:
3350 break;
3352 default:
3353 gcc_unreachable ();
3356 /* For the remaining codes assert there is no conversion involved. */
3357 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3359 error ("non-trivial conversion in unary operation");
3360 debug_generic_expr (lhs_type);
3361 debug_generic_expr (rhs1_type);
3362 return true;
3365 return false;
3368 /* Verify a gimple assignment statement STMT with a binary rhs.
3369 Returns true if anything is wrong. */
3371 static bool
3372 verify_gimple_assign_binary (gimple stmt)
3374 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3375 tree lhs = gimple_assign_lhs (stmt);
3376 tree lhs_type = TREE_TYPE (lhs);
3377 tree rhs1 = gimple_assign_rhs1 (stmt);
3378 tree rhs1_type = TREE_TYPE (rhs1);
3379 tree rhs2 = gimple_assign_rhs2 (stmt);
3380 tree rhs2_type = TREE_TYPE (rhs2);
3382 if (!is_gimple_reg (lhs))
3384 error ("non-register as LHS of binary operation");
3385 return true;
3388 if (!is_gimple_val (rhs1)
3389 || !is_gimple_val (rhs2))
3391 error ("invalid operands in binary operation");
3392 return true;
3395 /* First handle operations that involve different types. */
3396 switch (rhs_code)
3398 case COMPLEX_EXPR:
3400 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3401 || !(INTEGRAL_TYPE_P (rhs1_type)
3402 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3403 || !(INTEGRAL_TYPE_P (rhs2_type)
3404 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3406 error ("type mismatch in complex expression");
3407 debug_generic_expr (lhs_type);
3408 debug_generic_expr (rhs1_type);
3409 debug_generic_expr (rhs2_type);
3410 return true;
3413 return false;
3416 case LSHIFT_EXPR:
3417 case RSHIFT_EXPR:
3418 case LROTATE_EXPR:
3419 case RROTATE_EXPR:
3421 /* Shifts and rotates are ok on integral types, fixed point
3422 types and integer vector types. */
3423 if ((!INTEGRAL_TYPE_P (rhs1_type)
3424 && !FIXED_POINT_TYPE_P (rhs1_type)
3425 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3426 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3427 || (!INTEGRAL_TYPE_P (rhs2_type)
3428 /* Vector shifts of vectors are also ok. */
3429 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3430 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3431 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3432 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3433 || !useless_type_conversion_p (lhs_type, rhs1_type))
3435 error ("type mismatch in shift expression");
3436 debug_generic_expr (lhs_type);
3437 debug_generic_expr (rhs1_type);
3438 debug_generic_expr (rhs2_type);
3439 return true;
3442 return false;
3445 case VEC_LSHIFT_EXPR:
3446 case VEC_RSHIFT_EXPR:
3448 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3449 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3450 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3451 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3452 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3453 || (!INTEGRAL_TYPE_P (rhs2_type)
3454 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3455 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3456 || !useless_type_conversion_p (lhs_type, rhs1_type))
3458 error ("type mismatch in vector shift expression");
3459 debug_generic_expr (lhs_type);
3460 debug_generic_expr (rhs1_type);
3461 debug_generic_expr (rhs2_type);
3462 return true;
3464 /* For shifting a vector of non-integral components we
3465 only allow shifting by a constant multiple of the element size. */
3466 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3467 && (TREE_CODE (rhs2) != INTEGER_CST
3468 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3469 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3471 error ("non-element sized vector shift of floating point vector");
3472 return true;
3475 return false;
3478 case PLUS_EXPR:
3479 case MINUS_EXPR:
3481 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3482 ??? This just makes the checker happy and may not be what is
3483 intended. */
3484 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3485 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3487 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3488 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3490 error ("invalid non-vector operands to vector valued plus");
3491 return true;
3493 lhs_type = TREE_TYPE (lhs_type);
3494 rhs1_type = TREE_TYPE (rhs1_type);
3495 rhs2_type = TREE_TYPE (rhs2_type);
3496 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3497 the pointer to 2nd place. */
3498 if (POINTER_TYPE_P (rhs2_type))
3500 tree tem = rhs1_type;
3501 rhs1_type = rhs2_type;
3502 rhs2_type = tem;
3504 goto do_pointer_plus_expr_check;
3506 if (POINTER_TYPE_P (lhs_type)
3507 || POINTER_TYPE_P (rhs1_type)
3508 || POINTER_TYPE_P (rhs2_type))
3510 error ("invalid (pointer) operands to plus/minus");
3511 return true;
3514 /* Continue with generic binary expression handling. */
3515 break;
3518 case POINTER_PLUS_EXPR:
3520 do_pointer_plus_expr_check:
3521 if (!POINTER_TYPE_P (rhs1_type)
3522 || !useless_type_conversion_p (lhs_type, rhs1_type)
3523 || !useless_type_conversion_p (sizetype, rhs2_type))
3525 error ("type mismatch in pointer plus expression");
3526 debug_generic_stmt (lhs_type);
3527 debug_generic_stmt (rhs1_type);
3528 debug_generic_stmt (rhs2_type);
3529 return true;
3532 return false;
3535 case TRUTH_ANDIF_EXPR:
3536 case TRUTH_ORIF_EXPR:
3537 gcc_unreachable ();
3539 case TRUTH_AND_EXPR:
3540 case TRUTH_OR_EXPR:
3541 case TRUTH_XOR_EXPR:
3543 /* We allow any kind of integral typed argument and result. */
3544 if (!INTEGRAL_TYPE_P (rhs1_type)
3545 || !INTEGRAL_TYPE_P (rhs2_type)
3546 || !INTEGRAL_TYPE_P (lhs_type))
3548 error ("type mismatch in binary truth expression");
3549 debug_generic_expr (lhs_type);
3550 debug_generic_expr (rhs1_type);
3551 debug_generic_expr (rhs2_type);
3552 return true;
3555 return false;
3558 case LT_EXPR:
3559 case LE_EXPR:
3560 case GT_EXPR:
3561 case GE_EXPR:
3562 case EQ_EXPR:
3563 case NE_EXPR:
3564 case UNORDERED_EXPR:
3565 case ORDERED_EXPR:
3566 case UNLT_EXPR:
3567 case UNLE_EXPR:
3568 case UNGT_EXPR:
3569 case UNGE_EXPR:
3570 case UNEQ_EXPR:
3571 case LTGT_EXPR:
3572 /* Comparisons are also binary, but the result type is not
3573 connected to the operand types. */
3574 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3576 case WIDEN_MULT_EXPR:
3577 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3578 return true;
3579 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3580 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3582 case WIDEN_SUM_EXPR:
3583 case VEC_WIDEN_MULT_HI_EXPR:
3584 case VEC_WIDEN_MULT_LO_EXPR:
3585 case VEC_PACK_TRUNC_EXPR:
3586 case VEC_PACK_SAT_EXPR:
3587 case VEC_PACK_FIX_TRUNC_EXPR:
3588 case VEC_EXTRACT_EVEN_EXPR:
3589 case VEC_EXTRACT_ODD_EXPR:
3590 case VEC_INTERLEAVE_HIGH_EXPR:
3591 case VEC_INTERLEAVE_LOW_EXPR:
3592 /* FIXME. */
3593 return false;
3595 case MULT_EXPR:
3596 case TRUNC_DIV_EXPR:
3597 case CEIL_DIV_EXPR:
3598 case FLOOR_DIV_EXPR:
3599 case ROUND_DIV_EXPR:
3600 case TRUNC_MOD_EXPR:
3601 case CEIL_MOD_EXPR:
3602 case FLOOR_MOD_EXPR:
3603 case ROUND_MOD_EXPR:
3604 case RDIV_EXPR:
3605 case EXACT_DIV_EXPR:
3606 case MIN_EXPR:
3607 case MAX_EXPR:
3608 case BIT_IOR_EXPR:
3609 case BIT_XOR_EXPR:
3610 case BIT_AND_EXPR:
3611 /* Continue with generic binary expression handling. */
3612 break;
3614 default:
3615 gcc_unreachable ();
3618 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3619 || !useless_type_conversion_p (lhs_type, rhs2_type))
3621 error ("type mismatch in binary expression");
3622 debug_generic_stmt (lhs_type);
3623 debug_generic_stmt (rhs1_type);
3624 debug_generic_stmt (rhs2_type);
3625 return true;
3628 return false;
3631 /* Verify a gimple assignment statement STMT with a ternary rhs.
3632 Returns true if anything is wrong. */
3634 static bool
3635 verify_gimple_assign_ternary (gimple stmt)
3637 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3638 tree lhs = gimple_assign_lhs (stmt);
3639 tree lhs_type = TREE_TYPE (lhs);
3640 tree rhs1 = gimple_assign_rhs1 (stmt);
3641 tree rhs1_type = TREE_TYPE (rhs1);
3642 tree rhs2 = gimple_assign_rhs2 (stmt);
3643 tree rhs2_type = TREE_TYPE (rhs2);
3644 tree rhs3 = gimple_assign_rhs3 (stmt);
3645 tree rhs3_type = TREE_TYPE (rhs3);
3647 if (!is_gimple_reg (lhs))
3649 error ("non-register as LHS of ternary operation");
3650 return true;
3653 if (!is_gimple_val (rhs1)
3654 || !is_gimple_val (rhs2)
3655 || !is_gimple_val (rhs3))
3657 error ("invalid operands in ternary operation");
3658 return true;
3661 /* First handle operations that involve different types. */
3662 switch (rhs_code)
3664 case WIDEN_MULT_PLUS_EXPR:
3665 case WIDEN_MULT_MINUS_EXPR:
3666 if ((!INTEGRAL_TYPE_P (rhs1_type)
3667 && !FIXED_POINT_TYPE_P (rhs1_type))
3668 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3669 || !useless_type_conversion_p (lhs_type, rhs3_type)
3670 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3671 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3673 error ("type mismatch in widening multiply-accumulate expression");
3674 debug_generic_expr (lhs_type);
3675 debug_generic_expr (rhs1_type);
3676 debug_generic_expr (rhs2_type);
3677 debug_generic_expr (rhs3_type);
3678 return true;
3680 break;
3682 case FMA_EXPR:
3683 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3684 || !useless_type_conversion_p (lhs_type, rhs2_type)
3685 || !useless_type_conversion_p (lhs_type, rhs3_type))
3687 error ("type mismatch in fused multiply-add expression");
3688 debug_generic_expr (lhs_type);
3689 debug_generic_expr (rhs1_type);
3690 debug_generic_expr (rhs2_type);
3691 debug_generic_expr (rhs3_type);
3692 return true;
3694 break;
3696 case DOT_PROD_EXPR:
3697 case REALIGN_LOAD_EXPR:
3698 /* FIXME. */
3699 return false;
3701 default:
3702 gcc_unreachable ();
3704 return false;
3707 /* Verify a gimple assignment statement STMT with a single rhs.
3708 Returns true if anything is wrong. */
3710 static bool
3711 verify_gimple_assign_single (gimple stmt)
3713 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3714 tree lhs = gimple_assign_lhs (stmt);
3715 tree lhs_type = TREE_TYPE (lhs);
3716 tree rhs1 = gimple_assign_rhs1 (stmt);
3717 tree rhs1_type = TREE_TYPE (rhs1);
3718 bool res = false;
3720 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3722 error ("non-trivial conversion at assignment");
3723 debug_generic_expr (lhs_type);
3724 debug_generic_expr (rhs1_type);
3725 return true;
3728 if (handled_component_p (lhs))
3729 res |= verify_types_in_gimple_reference (lhs, true);
3731 /* Special codes we cannot handle via their class. */
3732 switch (rhs_code)
3734 case ADDR_EXPR:
3736 tree op = TREE_OPERAND (rhs1, 0);
3737 if (!is_gimple_addressable (op))
3739 error ("invalid operand in unary expression");
3740 return true;
3743 /* Technically there is no longer a need for matching types, but
3744 gimple hygiene asks for this check. In LTO we can end up
3745 combining incompatible units and thus end up with addresses
3746 of globals that change their type to a common one. */
3747 if (!in_lto_p
3748 && !types_compatible_p (TREE_TYPE (op),
3749 TREE_TYPE (TREE_TYPE (rhs1)))
3750 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3751 TREE_TYPE (op)))
3753 error ("type mismatch in address expression");
3754 debug_generic_stmt (TREE_TYPE (rhs1));
3755 debug_generic_stmt (TREE_TYPE (op));
3756 return true;
3759 return verify_types_in_gimple_reference (op, true);
3762 /* tcc_reference */
3763 case INDIRECT_REF:
3764 error ("INDIRECT_REF in gimple IL");
3765 return true;
3767 case COMPONENT_REF:
3768 case BIT_FIELD_REF:
3769 case ARRAY_REF:
3770 case ARRAY_RANGE_REF:
3771 case VIEW_CONVERT_EXPR:
3772 case REALPART_EXPR:
3773 case IMAGPART_EXPR:
3774 case TARGET_MEM_REF:
3775 case MEM_REF:
3776 if (!is_gimple_reg (lhs)
3777 && is_gimple_reg_type (TREE_TYPE (lhs)))
3779 error ("invalid rhs for gimple memory store");
3780 debug_generic_stmt (lhs);
3781 debug_generic_stmt (rhs1);
3782 return true;
3784 return res || verify_types_in_gimple_reference (rhs1, false);
3786 /* tcc_constant */
3787 case SSA_NAME:
3788 case INTEGER_CST:
3789 case REAL_CST:
3790 case FIXED_CST:
3791 case COMPLEX_CST:
3792 case VECTOR_CST:
3793 case STRING_CST:
3794 return res;
3796 /* tcc_declaration */
3797 case CONST_DECL:
3798 return res;
3799 case VAR_DECL:
3800 case PARM_DECL:
3801 if (!is_gimple_reg (lhs)
3802 && !is_gimple_reg (rhs1)
3803 && is_gimple_reg_type (TREE_TYPE (lhs)))
3805 error ("invalid rhs for gimple memory store");
3806 debug_generic_stmt (lhs);
3807 debug_generic_stmt (rhs1);
3808 return true;
3810 return res;
3812 case COND_EXPR:
3813 if (!is_gimple_reg (lhs)
3814 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3815 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3816 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3817 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3818 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3819 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3821 error ("invalid COND_EXPR in gimple assignment");
3822 debug_generic_stmt (rhs1);
3823 return true;
3825 return res;
3827 case CONSTRUCTOR:
3828 case OBJ_TYPE_REF:
3829 case ASSERT_EXPR:
3830 case WITH_SIZE_EXPR:
3831 case VEC_COND_EXPR:
3832 /* FIXME. */
3833 return res;
3835 default:;
3838 return res;
3841 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3842 is a problem, otherwise false. */
3844 static bool
3845 verify_gimple_assign (gimple stmt)
3847 switch (gimple_assign_rhs_class (stmt))
3849 case GIMPLE_SINGLE_RHS:
3850 return verify_gimple_assign_single (stmt);
3852 case GIMPLE_UNARY_RHS:
3853 return verify_gimple_assign_unary (stmt);
3855 case GIMPLE_BINARY_RHS:
3856 return verify_gimple_assign_binary (stmt);
3858 case GIMPLE_TERNARY_RHS:
3859 return verify_gimple_assign_ternary (stmt);
3861 default:
3862 gcc_unreachable ();
3866 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3867 is a problem, otherwise false. */
3869 static bool
3870 verify_gimple_return (gimple stmt)
3872 tree op = gimple_return_retval (stmt);
3873 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3875 /* We cannot test for present return values as we do not fix up missing
3876 return values from the original source. */
3877 if (op == NULL)
3878 return false;
3880 if (!is_gimple_val (op)
3881 && TREE_CODE (op) != RESULT_DECL)
3883 error ("invalid operand in return statement");
3884 debug_generic_stmt (op);
3885 return true;
3888 if ((TREE_CODE (op) == RESULT_DECL
3889 && DECL_BY_REFERENCE (op))
3890 || (TREE_CODE (op) == SSA_NAME
3891 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3892 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3893 op = TREE_TYPE (op);
3895 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3897 error ("invalid conversion in return statement");
3898 debug_generic_stmt (restype);
3899 debug_generic_stmt (TREE_TYPE (op));
3900 return true;
3903 return false;
3907 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3908 is a problem, otherwise false. */
3910 static bool
3911 verify_gimple_goto (gimple stmt)
3913 tree dest = gimple_goto_dest (stmt);
3915 /* ??? We have two canonical forms of direct goto destinations, a
3916 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3917 if (TREE_CODE (dest) != LABEL_DECL
3918 && (!is_gimple_val (dest)
3919 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3921 error ("goto destination is neither a label nor a pointer");
3922 return true;
3925 return false;
3928 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3929 is a problem, otherwise false. */
3931 static bool
3932 verify_gimple_switch (gimple stmt)
3934 if (!is_gimple_val (gimple_switch_index (stmt)))
3936 error ("invalid operand to switch statement");
3937 debug_generic_stmt (gimple_switch_index (stmt));
3938 return true;
3941 return false;
3945 /* Verify a gimple debug statement STMT.
3946 Returns true if anything is wrong. */
3948 static bool
3949 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3951 /* There isn't much that could be wrong in a gimple debug stmt. A
3952 gimple debug bind stmt, for example, maps a tree, that's usually
3953 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3954 component or member of an aggregate type, to another tree, that
3955 can be an arbitrary expression. These stmts expand into debug
3956 insns, and are converted to debug notes by var-tracking.c. */
3957 return false;
3960 /* Verify a gimple label statement STMT.
3961 Returns true if anything is wrong. */
3963 static bool
3964 verify_gimple_label (gimple stmt)
3966 tree decl = gimple_label_label (stmt);
3967 int uid;
3968 bool err = false;
3970 if (TREE_CODE (decl) != LABEL_DECL)
3971 return true;
3973 uid = LABEL_DECL_UID (decl);
3974 if (cfun->cfg
3975 && (uid == -1
3976 || VEC_index (basic_block,
3977 label_to_block_map, uid) != gimple_bb (stmt)))
3979 error ("incorrect entry in label_to_block_map");
3980 err |= true;
3983 uid = EH_LANDING_PAD_NR (decl);
3984 if (uid)
3986 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
3987 if (decl != lp->post_landing_pad)
3989 error ("incorrect setting of landing pad number");
3990 err |= true;
3994 return err;
3997 /* Verify the GIMPLE statement STMT. Returns true if there is an
3998 error, otherwise false. */
4000 static bool
4001 verify_gimple_stmt (gimple stmt)
4003 switch (gimple_code (stmt))
4005 case GIMPLE_ASSIGN:
4006 return verify_gimple_assign (stmt);
4008 case GIMPLE_LABEL:
4009 return verify_gimple_label (stmt);
4011 case GIMPLE_CALL:
4012 return verify_gimple_call (stmt);
4014 case GIMPLE_COND:
4015 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4017 error ("invalid comparison code in gimple cond");
4018 return true;
4020 if (!(!gimple_cond_true_label (stmt)
4021 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4022 || !(!gimple_cond_false_label (stmt)
4023 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4025 error ("invalid labels in gimple cond");
4026 return true;
4029 return verify_gimple_comparison (boolean_type_node,
4030 gimple_cond_lhs (stmt),
4031 gimple_cond_rhs (stmt));
4033 case GIMPLE_GOTO:
4034 return verify_gimple_goto (stmt);
4036 case GIMPLE_SWITCH:
4037 return verify_gimple_switch (stmt);
4039 case GIMPLE_RETURN:
4040 return verify_gimple_return (stmt);
4042 case GIMPLE_ASM:
4043 return false;
4045 /* Tuples that do not have tree operands. */
4046 case GIMPLE_NOP:
4047 case GIMPLE_PREDICT:
4048 case GIMPLE_RESX:
4049 case GIMPLE_EH_DISPATCH:
4050 case GIMPLE_EH_MUST_NOT_THROW:
4051 return false;
4053 CASE_GIMPLE_OMP:
4054 /* OpenMP directives are validated by the FE and never operated
4055 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4056 non-gimple expressions when the main index variable has had
4057 its address taken. This does not affect the loop itself
4058 because the header of an GIMPLE_OMP_FOR is merely used to determine
4059 how to setup the parallel iteration. */
4060 return false;
4062 case GIMPLE_DEBUG:
4063 return verify_gimple_debug (stmt);
4065 default:
4066 gcc_unreachable ();
4070 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4071 and false otherwise. */
4073 static bool
4074 verify_gimple_phi (gimple phi)
4076 bool err = false;
4077 unsigned i;
4078 tree phi_result = gimple_phi_result (phi);
4079 bool virtual_p;
4081 if (!phi_result)
4083 error ("invalid PHI result");
4084 return true;
4087 virtual_p = !is_gimple_reg (phi_result);
4088 if (TREE_CODE (phi_result) != SSA_NAME
4089 || (virtual_p
4090 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4092 error ("invalid PHI result");
4093 err = true;
4096 for (i = 0; i < gimple_phi_num_args (phi); i++)
4098 tree t = gimple_phi_arg_def (phi, i);
4100 if (!t)
4102 error ("missing PHI def");
4103 err |= true;
4104 continue;
4106 /* Addressable variables do have SSA_NAMEs but they
4107 are not considered gimple values. */
4108 else if ((TREE_CODE (t) == SSA_NAME
4109 && virtual_p != !is_gimple_reg (t))
4110 || (virtual_p
4111 && (TREE_CODE (t) != SSA_NAME
4112 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4113 || (!virtual_p
4114 && !is_gimple_val (t)))
4116 error ("invalid PHI argument");
4117 debug_generic_expr (t);
4118 err |= true;
4120 #ifdef ENABLE_TYPES_CHECKING
4121 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4123 error ("incompatible types in PHI argument %u", i);
4124 debug_generic_stmt (TREE_TYPE (phi_result));
4125 debug_generic_stmt (TREE_TYPE (t));
4126 err |= true;
4128 #endif
4131 return err;
4134 /* Verify the GIMPLE statements inside the sequence STMTS. */
4136 static bool
4137 verify_gimple_in_seq_2 (gimple_seq stmts)
4139 gimple_stmt_iterator ittr;
4140 bool err = false;
4142 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4144 gimple stmt = gsi_stmt (ittr);
4146 switch (gimple_code (stmt))
4148 case GIMPLE_BIND:
4149 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4150 break;
4152 case GIMPLE_TRY:
4153 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4154 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4155 break;
4157 case GIMPLE_EH_FILTER:
4158 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4159 break;
4161 case GIMPLE_CATCH:
4162 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4163 break;
4165 default:
4167 bool err2 = verify_gimple_stmt (stmt);
4168 if (err2)
4169 debug_gimple_stmt (stmt);
4170 err |= err2;
4175 return err;
4179 /* Verify the GIMPLE statements inside the statement list STMTS. */
4181 DEBUG_FUNCTION void
4182 verify_gimple_in_seq (gimple_seq stmts)
4184 timevar_push (TV_TREE_STMT_VERIFY);
4185 if (verify_gimple_in_seq_2 (stmts))
4186 internal_error ("verify_gimple failed");
4187 timevar_pop (TV_TREE_STMT_VERIFY);
4190 /* Return true when the T can be shared. */
4192 bool
4193 tree_node_can_be_shared (tree t)
4195 if (IS_TYPE_OR_DECL_P (t)
4196 || is_gimple_min_invariant (t)
4197 || TREE_CODE (t) == SSA_NAME
4198 || t == error_mark_node
4199 || TREE_CODE (t) == IDENTIFIER_NODE)
4200 return true;
4202 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4203 return true;
4205 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4206 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4207 || TREE_CODE (t) == COMPONENT_REF
4208 || TREE_CODE (t) == REALPART_EXPR
4209 || TREE_CODE (t) == IMAGPART_EXPR)
4210 t = TREE_OPERAND (t, 0);
4212 if (DECL_P (t))
4213 return true;
4215 return false;
4218 /* Called via walk_gimple_stmt. Verify tree sharing. */
4220 static tree
4221 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4223 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4224 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4226 if (tree_node_can_be_shared (*tp))
4228 *walk_subtrees = false;
4229 return NULL;
4232 if (pointer_set_insert (visited, *tp))
4233 return *tp;
4235 return NULL;
4238 static bool eh_error_found;
4239 static int
4240 verify_eh_throw_stmt_node (void **slot, void *data)
4242 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4243 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4245 if (!pointer_set_contains (visited, node->stmt))
4247 error ("dead STMT in EH table");
4248 debug_gimple_stmt (node->stmt);
4249 eh_error_found = true;
4251 return 1;
4254 /* Verify the GIMPLE statements in the CFG of FN. */
4256 DEBUG_FUNCTION void
4257 verify_gimple_in_cfg (struct function *fn)
4259 basic_block bb;
4260 bool err = false;
4261 struct pointer_set_t *visited, *visited_stmts;
4263 timevar_push (TV_TREE_STMT_VERIFY);
4264 visited = pointer_set_create ();
4265 visited_stmts = pointer_set_create ();
4267 FOR_EACH_BB_FN (bb, fn)
4269 gimple_stmt_iterator gsi;
4271 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4273 gimple phi = gsi_stmt (gsi);
4274 bool err2 = false;
4275 unsigned i;
4277 pointer_set_insert (visited_stmts, phi);
4279 if (gimple_bb (phi) != bb)
4281 error ("gimple_bb (phi) is set to a wrong basic block");
4282 err2 = true;
4285 err2 |= verify_gimple_phi (phi);
4287 for (i = 0; i < gimple_phi_num_args (phi); i++)
4289 tree arg = gimple_phi_arg_def (phi, i);
4290 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4291 if (addr)
4293 error ("incorrect sharing of tree nodes");
4294 debug_generic_expr (addr);
4295 err2 |= true;
4299 if (err2)
4300 debug_gimple_stmt (phi);
4301 err |= err2;
4304 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4306 gimple stmt = gsi_stmt (gsi);
4307 bool err2 = false;
4308 struct walk_stmt_info wi;
4309 tree addr;
4310 int lp_nr;
4312 pointer_set_insert (visited_stmts, stmt);
4314 if (gimple_bb (stmt) != bb)
4316 error ("gimple_bb (stmt) is set to a wrong basic block");
4317 err2 = true;
4320 err2 |= verify_gimple_stmt (stmt);
4322 memset (&wi, 0, sizeof (wi));
4323 wi.info = (void *) visited;
4324 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4325 if (addr)
4327 error ("incorrect sharing of tree nodes");
4328 debug_generic_expr (addr);
4329 err2 |= true;
4332 /* ??? Instead of not checking these stmts at all the walker
4333 should know its context via wi. */
4334 if (!is_gimple_debug (stmt)
4335 && !is_gimple_omp (stmt))
4337 memset (&wi, 0, sizeof (wi));
4338 addr = walk_gimple_op (stmt, verify_expr, &wi);
4339 if (addr)
4341 debug_generic_expr (addr);
4342 inform (gimple_location (stmt), "in statement");
4343 err2 |= true;
4347 /* If the statement is marked as part of an EH region, then it is
4348 expected that the statement could throw. Verify that when we
4349 have optimizations that simplify statements such that we prove
4350 that they cannot throw, that we update other data structures
4351 to match. */
4352 lp_nr = lookup_stmt_eh_lp (stmt);
4353 if (lp_nr != 0)
4355 if (!stmt_could_throw_p (stmt))
4357 error ("statement marked for throw, but doesn%'t");
4358 err2 |= true;
4360 else if (lp_nr > 0
4361 && !gsi_one_before_end_p (gsi)
4362 && stmt_can_throw_internal (stmt))
4364 error ("statement marked for throw in middle of block");
4365 err2 |= true;
4369 if (err2)
4370 debug_gimple_stmt (stmt);
4371 err |= err2;
4375 eh_error_found = false;
4376 if (get_eh_throw_stmt_table (cfun))
4377 htab_traverse (get_eh_throw_stmt_table (cfun),
4378 verify_eh_throw_stmt_node,
4379 visited_stmts);
4381 if (err || eh_error_found)
4382 internal_error ("verify_gimple failed");
4384 pointer_set_destroy (visited);
4385 pointer_set_destroy (visited_stmts);
4386 verify_histograms ();
4387 timevar_pop (TV_TREE_STMT_VERIFY);
4391 /* Verifies that the flow information is OK. */
4393 static int
4394 gimple_verify_flow_info (void)
4396 int err = 0;
4397 basic_block bb;
4398 gimple_stmt_iterator gsi;
4399 gimple stmt;
4400 edge e;
4401 edge_iterator ei;
4403 if (ENTRY_BLOCK_PTR->il.gimple)
4405 error ("ENTRY_BLOCK has IL associated with it");
4406 err = 1;
4409 if (EXIT_BLOCK_PTR->il.gimple)
4411 error ("EXIT_BLOCK has IL associated with it");
4412 err = 1;
4415 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4416 if (e->flags & EDGE_FALLTHRU)
4418 error ("fallthru to exit from bb %d", e->src->index);
4419 err = 1;
4422 FOR_EACH_BB (bb)
4424 bool found_ctrl_stmt = false;
4426 stmt = NULL;
4428 /* Skip labels on the start of basic block. */
4429 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4431 tree label;
4432 gimple prev_stmt = stmt;
4434 stmt = gsi_stmt (gsi);
4436 if (gimple_code (stmt) != GIMPLE_LABEL)
4437 break;
4439 label = gimple_label_label (stmt);
4440 if (prev_stmt && DECL_NONLOCAL (label))
4442 error ("nonlocal label ");
4443 print_generic_expr (stderr, label, 0);
4444 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4445 bb->index);
4446 err = 1;
4449 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4451 error ("EH landing pad label ");
4452 print_generic_expr (stderr, label, 0);
4453 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4454 bb->index);
4455 err = 1;
4458 if (label_to_block (label) != bb)
4460 error ("label ");
4461 print_generic_expr (stderr, label, 0);
4462 fprintf (stderr, " to block does not match in bb %d",
4463 bb->index);
4464 err = 1;
4467 if (decl_function_context (label) != current_function_decl)
4469 error ("label ");
4470 print_generic_expr (stderr, label, 0);
4471 fprintf (stderr, " has incorrect context in bb %d",
4472 bb->index);
4473 err = 1;
4477 /* Verify that body of basic block BB is free of control flow. */
4478 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4480 gimple stmt = gsi_stmt (gsi);
4482 if (found_ctrl_stmt)
4484 error ("control flow in the middle of basic block %d",
4485 bb->index);
4486 err = 1;
4489 if (stmt_ends_bb_p (stmt))
4490 found_ctrl_stmt = true;
4492 if (gimple_code (stmt) == GIMPLE_LABEL)
4494 error ("label ");
4495 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4496 fprintf (stderr, " in the middle of basic block %d", bb->index);
4497 err = 1;
4501 gsi = gsi_last_bb (bb);
4502 if (gsi_end_p (gsi))
4503 continue;
4505 stmt = gsi_stmt (gsi);
4507 if (gimple_code (stmt) == GIMPLE_LABEL)
4508 continue;
4510 err |= verify_eh_edges (stmt);
4512 if (is_ctrl_stmt (stmt))
4514 FOR_EACH_EDGE (e, ei, bb->succs)
4515 if (e->flags & EDGE_FALLTHRU)
4517 error ("fallthru edge after a control statement in bb %d",
4518 bb->index);
4519 err = 1;
4523 if (gimple_code (stmt) != GIMPLE_COND)
4525 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4526 after anything else but if statement. */
4527 FOR_EACH_EDGE (e, ei, bb->succs)
4528 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4530 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4531 bb->index);
4532 err = 1;
4536 switch (gimple_code (stmt))
4538 case GIMPLE_COND:
4540 edge true_edge;
4541 edge false_edge;
4543 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4545 if (!true_edge
4546 || !false_edge
4547 || !(true_edge->flags & EDGE_TRUE_VALUE)
4548 || !(false_edge->flags & EDGE_FALSE_VALUE)
4549 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4550 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4551 || EDGE_COUNT (bb->succs) >= 3)
4553 error ("wrong outgoing edge flags at end of bb %d",
4554 bb->index);
4555 err = 1;
4558 break;
4560 case GIMPLE_GOTO:
4561 if (simple_goto_p (stmt))
4563 error ("explicit goto at end of bb %d", bb->index);
4564 err = 1;
4566 else
4568 /* FIXME. We should double check that the labels in the
4569 destination blocks have their address taken. */
4570 FOR_EACH_EDGE (e, ei, bb->succs)
4571 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4572 | EDGE_FALSE_VALUE))
4573 || !(e->flags & EDGE_ABNORMAL))
4575 error ("wrong outgoing edge flags at end of bb %d",
4576 bb->index);
4577 err = 1;
4580 break;
4582 case GIMPLE_CALL:
4583 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4584 break;
4585 /* ... fallthru ... */
4586 case GIMPLE_RETURN:
4587 if (!single_succ_p (bb)
4588 || (single_succ_edge (bb)->flags
4589 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4590 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4592 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4593 err = 1;
4595 if (single_succ (bb) != EXIT_BLOCK_PTR)
4597 error ("return edge does not point to exit in bb %d",
4598 bb->index);
4599 err = 1;
4601 break;
4603 case GIMPLE_SWITCH:
4605 tree prev;
4606 edge e;
4607 size_t i, n;
4609 n = gimple_switch_num_labels (stmt);
4611 /* Mark all the destination basic blocks. */
4612 for (i = 0; i < n; ++i)
4614 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4615 basic_block label_bb = label_to_block (lab);
4616 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4617 label_bb->aux = (void *)1;
4620 /* Verify that the case labels are sorted. */
4621 prev = gimple_switch_label (stmt, 0);
4622 for (i = 1; i < n; ++i)
4624 tree c = gimple_switch_label (stmt, i);
4625 if (!CASE_LOW (c))
4627 error ("found default case not at the start of "
4628 "case vector");
4629 err = 1;
4630 continue;
4632 if (CASE_LOW (prev)
4633 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4635 error ("case labels not sorted: ");
4636 print_generic_expr (stderr, prev, 0);
4637 fprintf (stderr," is greater than ");
4638 print_generic_expr (stderr, c, 0);
4639 fprintf (stderr," but comes before it.\n");
4640 err = 1;
4642 prev = c;
4644 /* VRP will remove the default case if it can prove it will
4645 never be executed. So do not verify there always exists
4646 a default case here. */
4648 FOR_EACH_EDGE (e, ei, bb->succs)
4650 if (!e->dest->aux)
4652 error ("extra outgoing edge %d->%d",
4653 bb->index, e->dest->index);
4654 err = 1;
4657 e->dest->aux = (void *)2;
4658 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4659 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4661 error ("wrong outgoing edge flags at end of bb %d",
4662 bb->index);
4663 err = 1;
4667 /* Check that we have all of them. */
4668 for (i = 0; i < n; ++i)
4670 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4671 basic_block label_bb = label_to_block (lab);
4673 if (label_bb->aux != (void *)2)
4675 error ("missing edge %i->%i", bb->index, label_bb->index);
4676 err = 1;
4680 FOR_EACH_EDGE (e, ei, bb->succs)
4681 e->dest->aux = (void *)0;
4683 break;
4685 case GIMPLE_EH_DISPATCH:
4686 err |= verify_eh_dispatch_edge (stmt);
4687 break;
4689 default:
4690 break;
4694 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4695 verify_dominators (CDI_DOMINATORS);
4697 return err;
4701 /* Updates phi nodes after creating a forwarder block joined
4702 by edge FALLTHRU. */
4704 static void
4705 gimple_make_forwarder_block (edge fallthru)
4707 edge e;
4708 edge_iterator ei;
4709 basic_block dummy, bb;
4710 tree var;
4711 gimple_stmt_iterator gsi;
4713 dummy = fallthru->src;
4714 bb = fallthru->dest;
4716 if (single_pred_p (bb))
4717 return;
4719 /* If we redirected a branch we must create new PHI nodes at the
4720 start of BB. */
4721 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4723 gimple phi, new_phi;
4725 phi = gsi_stmt (gsi);
4726 var = gimple_phi_result (phi);
4727 new_phi = create_phi_node (var, bb);
4728 SSA_NAME_DEF_STMT (var) = new_phi;
4729 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4730 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4731 UNKNOWN_LOCATION);
4734 /* Add the arguments we have stored on edges. */
4735 FOR_EACH_EDGE (e, ei, bb->preds)
4737 if (e == fallthru)
4738 continue;
4740 flush_pending_stmts (e);
4745 /* Return a non-special label in the head of basic block BLOCK.
4746 Create one if it doesn't exist. */
4748 tree
4749 gimple_block_label (basic_block bb)
4751 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4752 bool first = true;
4753 tree label;
4754 gimple stmt;
4756 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4758 stmt = gsi_stmt (i);
4759 if (gimple_code (stmt) != GIMPLE_LABEL)
4760 break;
4761 label = gimple_label_label (stmt);
4762 if (!DECL_NONLOCAL (label))
4764 if (!first)
4765 gsi_move_before (&i, &s);
4766 return label;
4770 label = create_artificial_label (UNKNOWN_LOCATION);
4771 stmt = gimple_build_label (label);
4772 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4773 return label;
4777 /* Attempt to perform edge redirection by replacing a possibly complex
4778 jump instruction by a goto or by removing the jump completely.
4779 This can apply only if all edges now point to the same block. The
4780 parameters and return values are equivalent to
4781 redirect_edge_and_branch. */
4783 static edge
4784 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4786 basic_block src = e->src;
4787 gimple_stmt_iterator i;
4788 gimple stmt;
4790 /* We can replace or remove a complex jump only when we have exactly
4791 two edges. */
4792 if (EDGE_COUNT (src->succs) != 2
4793 /* Verify that all targets will be TARGET. Specifically, the
4794 edge that is not E must also go to TARGET. */
4795 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4796 return NULL;
4798 i = gsi_last_bb (src);
4799 if (gsi_end_p (i))
4800 return NULL;
4802 stmt = gsi_stmt (i);
4804 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4806 gsi_remove (&i, true);
4807 e = ssa_redirect_edge (e, target);
4808 e->flags = EDGE_FALLTHRU;
4809 return e;
4812 return NULL;
4816 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4817 edge representing the redirected branch. */
4819 static edge
4820 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4822 basic_block bb = e->src;
4823 gimple_stmt_iterator gsi;
4824 edge ret;
4825 gimple stmt;
4827 if (e->flags & EDGE_ABNORMAL)
4828 return NULL;
4830 if (e->dest == dest)
4831 return NULL;
4833 if (e->flags & EDGE_EH)
4834 return redirect_eh_edge (e, dest);
4836 if (e->src != ENTRY_BLOCK_PTR)
4838 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4839 if (ret)
4840 return ret;
4843 gsi = gsi_last_bb (bb);
4844 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4846 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4848 case GIMPLE_COND:
4849 /* For COND_EXPR, we only need to redirect the edge. */
4850 break;
4852 case GIMPLE_GOTO:
4853 /* No non-abnormal edges should lead from a non-simple goto, and
4854 simple ones should be represented implicitly. */
4855 gcc_unreachable ();
4857 case GIMPLE_SWITCH:
4859 tree label = gimple_block_label (dest);
4860 tree cases = get_cases_for_edge (e, stmt);
4862 /* If we have a list of cases associated with E, then use it
4863 as it's a lot faster than walking the entire case vector. */
4864 if (cases)
4866 edge e2 = find_edge (e->src, dest);
4867 tree last, first;
4869 first = cases;
4870 while (cases)
4872 last = cases;
4873 CASE_LABEL (cases) = label;
4874 cases = CASE_CHAIN (cases);
4877 /* If there was already an edge in the CFG, then we need
4878 to move all the cases associated with E to E2. */
4879 if (e2)
4881 tree cases2 = get_cases_for_edge (e2, stmt);
4883 CASE_CHAIN (last) = CASE_CHAIN (cases2);
4884 CASE_CHAIN (cases2) = first;
4886 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4888 else
4890 size_t i, n = gimple_switch_num_labels (stmt);
4892 for (i = 0; i < n; i++)
4894 tree elt = gimple_switch_label (stmt, i);
4895 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4896 CASE_LABEL (elt) = label;
4900 break;
4902 case GIMPLE_ASM:
4904 int i, n = gimple_asm_nlabels (stmt);
4905 tree label = NULL;
4907 for (i = 0; i < n; ++i)
4909 tree cons = gimple_asm_label_op (stmt, i);
4910 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4912 if (!label)
4913 label = gimple_block_label (dest);
4914 TREE_VALUE (cons) = label;
4918 /* If we didn't find any label matching the former edge in the
4919 asm labels, we must be redirecting the fallthrough
4920 edge. */
4921 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4923 break;
4925 case GIMPLE_RETURN:
4926 gsi_remove (&gsi, true);
4927 e->flags |= EDGE_FALLTHRU;
4928 break;
4930 case GIMPLE_OMP_RETURN:
4931 case GIMPLE_OMP_CONTINUE:
4932 case GIMPLE_OMP_SECTIONS_SWITCH:
4933 case GIMPLE_OMP_FOR:
4934 /* The edges from OMP constructs can be simply redirected. */
4935 break;
4937 case GIMPLE_EH_DISPATCH:
4938 if (!(e->flags & EDGE_FALLTHRU))
4939 redirect_eh_dispatch_edge (stmt, e, dest);
4940 break;
4942 default:
4943 /* Otherwise it must be a fallthru edge, and we don't need to
4944 do anything besides redirecting it. */
4945 gcc_assert (e->flags & EDGE_FALLTHRU);
4946 break;
4949 /* Update/insert PHI nodes as necessary. */
4951 /* Now update the edges in the CFG. */
4952 e = ssa_redirect_edge (e, dest);
4954 return e;
4957 /* Returns true if it is possible to remove edge E by redirecting
4958 it to the destination of the other edge from E->src. */
4960 static bool
4961 gimple_can_remove_branch_p (const_edge e)
4963 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4964 return false;
4966 return true;
4969 /* Simple wrapper, as we can always redirect fallthru edges. */
4971 static basic_block
4972 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4974 e = gimple_redirect_edge_and_branch (e, dest);
4975 gcc_assert (e);
4977 return NULL;
4981 /* Splits basic block BB after statement STMT (but at least after the
4982 labels). If STMT is NULL, BB is split just after the labels. */
4984 static basic_block
4985 gimple_split_block (basic_block bb, void *stmt)
4987 gimple_stmt_iterator gsi;
4988 gimple_stmt_iterator gsi_tgt;
4989 gimple act;
4990 gimple_seq list;
4991 basic_block new_bb;
4992 edge e;
4993 edge_iterator ei;
4995 new_bb = create_empty_bb (bb);
4997 /* Redirect the outgoing edges. */
4998 new_bb->succs = bb->succs;
4999 bb->succs = NULL;
5000 FOR_EACH_EDGE (e, ei, new_bb->succs)
5001 e->src = new_bb;
5003 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5004 stmt = NULL;
5006 /* Move everything from GSI to the new basic block. */
5007 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5009 act = gsi_stmt (gsi);
5010 if (gimple_code (act) == GIMPLE_LABEL)
5011 continue;
5013 if (!stmt)
5014 break;
5016 if (stmt == act)
5018 gsi_next (&gsi);
5019 break;
5023 if (gsi_end_p (gsi))
5024 return new_bb;
5026 /* Split the statement list - avoid re-creating new containers as this
5027 brings ugly quadratic memory consumption in the inliner.
5028 (We are still quadratic since we need to update stmt BB pointers,
5029 sadly.) */
5030 list = gsi_split_seq_before (&gsi);
5031 set_bb_seq (new_bb, list);
5032 for (gsi_tgt = gsi_start (list);
5033 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5034 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5036 return new_bb;
5040 /* Moves basic block BB after block AFTER. */
5042 static bool
5043 gimple_move_block_after (basic_block bb, basic_block after)
5045 if (bb->prev_bb == after)
5046 return true;
5048 unlink_block (bb);
5049 link_block (bb, after);
5051 return true;
5055 /* Return true if basic_block can be duplicated. */
5057 static bool
5058 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5060 return true;
5063 /* Create a duplicate of the basic block BB. NOTE: This does not
5064 preserve SSA form. */
5066 static basic_block
5067 gimple_duplicate_bb (basic_block bb)
5069 basic_block new_bb;
5070 gimple_stmt_iterator gsi, gsi_tgt;
5071 gimple_seq phis = phi_nodes (bb);
5072 gimple phi, stmt, copy;
5074 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5076 /* Copy the PHI nodes. We ignore PHI node arguments here because
5077 the incoming edges have not been setup yet. */
5078 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5080 phi = gsi_stmt (gsi);
5081 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5082 create_new_def_for (gimple_phi_result (copy), copy,
5083 gimple_phi_result_ptr (copy));
5086 gsi_tgt = gsi_start_bb (new_bb);
5087 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5089 def_operand_p def_p;
5090 ssa_op_iter op_iter;
5092 stmt = gsi_stmt (gsi);
5093 if (gimple_code (stmt) == GIMPLE_LABEL)
5094 continue;
5096 /* Create a new copy of STMT and duplicate STMT's virtual
5097 operands. */
5098 copy = gimple_copy (stmt);
5099 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5101 maybe_duplicate_eh_stmt (copy, stmt);
5102 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5104 /* Create new names for all the definitions created by COPY and
5105 add replacement mappings for each new name. */
5106 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5107 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5110 return new_bb;
5113 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5115 static void
5116 add_phi_args_after_copy_edge (edge e_copy)
5118 basic_block bb, bb_copy = e_copy->src, dest;
5119 edge e;
5120 edge_iterator ei;
5121 gimple phi, phi_copy;
5122 tree def;
5123 gimple_stmt_iterator psi, psi_copy;
5125 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5126 return;
5128 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5130 if (e_copy->dest->flags & BB_DUPLICATED)
5131 dest = get_bb_original (e_copy->dest);
5132 else
5133 dest = e_copy->dest;
5135 e = find_edge (bb, dest);
5136 if (!e)
5138 /* During loop unrolling the target of the latch edge is copied.
5139 In this case we are not looking for edge to dest, but to
5140 duplicated block whose original was dest. */
5141 FOR_EACH_EDGE (e, ei, bb->succs)
5143 if ((e->dest->flags & BB_DUPLICATED)
5144 && get_bb_original (e->dest) == dest)
5145 break;
5148 gcc_assert (e != NULL);
5151 for (psi = gsi_start_phis (e->dest),
5152 psi_copy = gsi_start_phis (e_copy->dest);
5153 !gsi_end_p (psi);
5154 gsi_next (&psi), gsi_next (&psi_copy))
5156 phi = gsi_stmt (psi);
5157 phi_copy = gsi_stmt (psi_copy);
5158 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5159 add_phi_arg (phi_copy, def, e_copy,
5160 gimple_phi_arg_location_from_edge (phi, e));
5165 /* Basic block BB_COPY was created by code duplication. Add phi node
5166 arguments for edges going out of BB_COPY. The blocks that were
5167 duplicated have BB_DUPLICATED set. */
5169 void
5170 add_phi_args_after_copy_bb (basic_block bb_copy)
5172 edge e_copy;
5173 edge_iterator ei;
5175 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5177 add_phi_args_after_copy_edge (e_copy);
5181 /* Blocks in REGION_COPY array of length N_REGION were created by
5182 duplication of basic blocks. Add phi node arguments for edges
5183 going from these blocks. If E_COPY is not NULL, also add
5184 phi node arguments for its destination.*/
5186 void
5187 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5188 edge e_copy)
5190 unsigned i;
5192 for (i = 0; i < n_region; i++)
5193 region_copy[i]->flags |= BB_DUPLICATED;
5195 for (i = 0; i < n_region; i++)
5196 add_phi_args_after_copy_bb (region_copy[i]);
5197 if (e_copy)
5198 add_phi_args_after_copy_edge (e_copy);
5200 for (i = 0; i < n_region; i++)
5201 region_copy[i]->flags &= ~BB_DUPLICATED;
5204 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5205 important exit edge EXIT. By important we mean that no SSA name defined
5206 inside region is live over the other exit edges of the region. All entry
5207 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5208 to the duplicate of the region. SSA form, dominance and loop information
5209 is updated. The new basic blocks are stored to REGION_COPY in the same
5210 order as they had in REGION, provided that REGION_COPY is not NULL.
5211 The function returns false if it is unable to copy the region,
5212 true otherwise. */
5214 bool
5215 gimple_duplicate_sese_region (edge entry, edge exit,
5216 basic_block *region, unsigned n_region,
5217 basic_block *region_copy)
5219 unsigned i;
5220 bool free_region_copy = false, copying_header = false;
5221 struct loop *loop = entry->dest->loop_father;
5222 edge exit_copy;
5223 VEC (basic_block, heap) *doms;
5224 edge redirected;
5225 int total_freq = 0, entry_freq = 0;
5226 gcov_type total_count = 0, entry_count = 0;
5228 if (!can_copy_bbs_p (region, n_region))
5229 return false;
5231 /* Some sanity checking. Note that we do not check for all possible
5232 missuses of the functions. I.e. if you ask to copy something weird,
5233 it will work, but the state of structures probably will not be
5234 correct. */
5235 for (i = 0; i < n_region; i++)
5237 /* We do not handle subloops, i.e. all the blocks must belong to the
5238 same loop. */
5239 if (region[i]->loop_father != loop)
5240 return false;
5242 if (region[i] != entry->dest
5243 && region[i] == loop->header)
5244 return false;
5247 set_loop_copy (loop, loop);
5249 /* In case the function is used for loop header copying (which is the primary
5250 use), ensure that EXIT and its copy will be new latch and entry edges. */
5251 if (loop->header == entry->dest)
5253 copying_header = true;
5254 set_loop_copy (loop, loop_outer (loop));
5256 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5257 return false;
5259 for (i = 0; i < n_region; i++)
5260 if (region[i] != exit->src
5261 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5262 return false;
5265 if (!region_copy)
5267 region_copy = XNEWVEC (basic_block, n_region);
5268 free_region_copy = true;
5271 gcc_assert (!need_ssa_update_p (cfun));
5273 /* Record blocks outside the region that are dominated by something
5274 inside. */
5275 doms = NULL;
5276 initialize_original_copy_tables ();
5278 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5280 if (entry->dest->count)
5282 total_count = entry->dest->count;
5283 entry_count = entry->count;
5284 /* Fix up corner cases, to avoid division by zero or creation of negative
5285 frequencies. */
5286 if (entry_count > total_count)
5287 entry_count = total_count;
5289 else
5291 total_freq = entry->dest->frequency;
5292 entry_freq = EDGE_FREQUENCY (entry);
5293 /* Fix up corner cases, to avoid division by zero or creation of negative
5294 frequencies. */
5295 if (total_freq == 0)
5296 total_freq = 1;
5297 else if (entry_freq > total_freq)
5298 entry_freq = total_freq;
5301 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5302 split_edge_bb_loc (entry));
5303 if (total_count)
5305 scale_bbs_frequencies_gcov_type (region, n_region,
5306 total_count - entry_count,
5307 total_count);
5308 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5309 total_count);
5311 else
5313 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5314 total_freq);
5315 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5318 if (copying_header)
5320 loop->header = exit->dest;
5321 loop->latch = exit->src;
5324 /* Redirect the entry and add the phi node arguments. */
5325 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5326 gcc_assert (redirected != NULL);
5327 flush_pending_stmts (entry);
5329 /* Concerning updating of dominators: We must recount dominators
5330 for entry block and its copy. Anything that is outside of the
5331 region, but was dominated by something inside needs recounting as
5332 well. */
5333 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5334 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5335 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5336 VEC_free (basic_block, heap, doms);
5338 /* Add the other PHI node arguments. */
5339 add_phi_args_after_copy (region_copy, n_region, NULL);
5341 /* Update the SSA web. */
5342 update_ssa (TODO_update_ssa);
5344 if (free_region_copy)
5345 free (region_copy);
5347 free_original_copy_tables ();
5348 return true;
5351 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5352 are stored to REGION_COPY in the same order in that they appear
5353 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5354 the region, EXIT an exit from it. The condition guarding EXIT
5355 is moved to ENTRY. Returns true if duplication succeeds, false
5356 otherwise.
5358 For example,
5360 some_code;
5361 if (cond)
5363 else
5366 is transformed to
5368 if (cond)
5370 some_code;
5373 else
5375 some_code;
5380 bool
5381 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5382 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5383 basic_block *region_copy ATTRIBUTE_UNUSED)
5385 unsigned i;
5386 bool free_region_copy = false;
5387 struct loop *loop = exit->dest->loop_father;
5388 struct loop *orig_loop = entry->dest->loop_father;
5389 basic_block switch_bb, entry_bb, nentry_bb;
5390 VEC (basic_block, heap) *doms;
5391 int total_freq = 0, exit_freq = 0;
5392 gcov_type total_count = 0, exit_count = 0;
5393 edge exits[2], nexits[2], e;
5394 gimple_stmt_iterator gsi,gsi1;
5395 gimple cond_stmt;
5396 edge sorig, snew;
5397 basic_block exit_bb;
5398 basic_block iters_bb;
5399 tree new_rhs;
5400 gimple_stmt_iterator psi;
5401 gimple phi;
5402 tree def;
5404 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5405 exits[0] = exit;
5406 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5408 if (!can_copy_bbs_p (region, n_region))
5409 return false;
5411 initialize_original_copy_tables ();
5412 set_loop_copy (orig_loop, loop);
5413 duplicate_subloops (orig_loop, loop);
5415 if (!region_copy)
5417 region_copy = XNEWVEC (basic_block, n_region);
5418 free_region_copy = true;
5421 gcc_assert (!need_ssa_update_p (cfun));
5423 /* Record blocks outside the region that are dominated by something
5424 inside. */
5425 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5427 if (exit->src->count)
5429 total_count = exit->src->count;
5430 exit_count = exit->count;
5431 /* Fix up corner cases, to avoid division by zero or creation of negative
5432 frequencies. */
5433 if (exit_count > total_count)
5434 exit_count = total_count;
5436 else
5438 total_freq = exit->src->frequency;
5439 exit_freq = EDGE_FREQUENCY (exit);
5440 /* Fix up corner cases, to avoid division by zero or creation of negative
5441 frequencies. */
5442 if (total_freq == 0)
5443 total_freq = 1;
5444 if (exit_freq > total_freq)
5445 exit_freq = total_freq;
5448 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5449 split_edge_bb_loc (exit));
5450 if (total_count)
5452 scale_bbs_frequencies_gcov_type (region, n_region,
5453 total_count - exit_count,
5454 total_count);
5455 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5456 total_count);
5458 else
5460 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5461 total_freq);
5462 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5465 /* Create the switch block, and put the exit condition to it. */
5466 entry_bb = entry->dest;
5467 nentry_bb = get_bb_copy (entry_bb);
5468 if (!last_stmt (entry->src)
5469 || !stmt_ends_bb_p (last_stmt (entry->src)))
5470 switch_bb = entry->src;
5471 else
5472 switch_bb = split_edge (entry);
5473 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5475 gsi = gsi_last_bb (switch_bb);
5476 cond_stmt = last_stmt (exit->src);
5477 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5478 cond_stmt = gimple_copy (cond_stmt);
5480 /* If the block consisting of the exit condition has the latch as
5481 successor, then the body of the loop is executed before
5482 the exit condition is tested. In such case, moving the
5483 condition to the entry, causes that the loop will iterate
5484 one less iteration (which is the wanted outcome, since we
5485 peel out the last iteration). If the body is executed after
5486 the condition, moving the condition to the entry requires
5487 decrementing one iteration. */
5488 if (exits[1]->dest == orig_loop->latch)
5489 new_rhs = gimple_cond_rhs (cond_stmt);
5490 else
5492 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5493 gimple_cond_rhs (cond_stmt),
5494 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5496 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5498 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5499 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5500 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5501 break;
5503 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5504 NULL_TREE,false,GSI_CONTINUE_LINKING);
5507 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5508 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5509 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5511 sorig = single_succ_edge (switch_bb);
5512 sorig->flags = exits[1]->flags;
5513 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5515 /* Register the new edge from SWITCH_BB in loop exit lists. */
5516 rescan_loop_exit (snew, true, false);
5518 /* Add the PHI node arguments. */
5519 add_phi_args_after_copy (region_copy, n_region, snew);
5521 /* Get rid of now superfluous conditions and associated edges (and phi node
5522 arguments). */
5523 exit_bb = exit->dest;
5525 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5526 PENDING_STMT (e) = NULL;
5528 /* The latch of ORIG_LOOP was copied, and so was the backedge
5529 to the original header. We redirect this backedge to EXIT_BB. */
5530 for (i = 0; i < n_region; i++)
5531 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5533 gcc_assert (single_succ_edge (region_copy[i]));
5534 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5535 PENDING_STMT (e) = NULL;
5536 for (psi = gsi_start_phis (exit_bb);
5537 !gsi_end_p (psi);
5538 gsi_next (&psi))
5540 phi = gsi_stmt (psi);
5541 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5542 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5545 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5546 PENDING_STMT (e) = NULL;
5548 /* Anything that is outside of the region, but was dominated by something
5549 inside needs to update dominance info. */
5550 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5551 VEC_free (basic_block, heap, doms);
5552 /* Update the SSA web. */
5553 update_ssa (TODO_update_ssa);
5555 if (free_region_copy)
5556 free (region_copy);
5558 free_original_copy_tables ();
5559 return true;
5562 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5563 adding blocks when the dominator traversal reaches EXIT. This
5564 function silently assumes that ENTRY strictly dominates EXIT. */
5566 void
5567 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5568 VEC(basic_block,heap) **bbs_p)
5570 basic_block son;
5572 for (son = first_dom_son (CDI_DOMINATORS, entry);
5573 son;
5574 son = next_dom_son (CDI_DOMINATORS, son))
5576 VEC_safe_push (basic_block, heap, *bbs_p, son);
5577 if (son != exit)
5578 gather_blocks_in_sese_region (son, exit, bbs_p);
5582 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5583 The duplicates are recorded in VARS_MAP. */
5585 static void
5586 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5587 tree to_context)
5589 tree t = *tp, new_t;
5590 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5591 void **loc;
5593 if (DECL_CONTEXT (t) == to_context)
5594 return;
5596 loc = pointer_map_contains (vars_map, t);
5598 if (!loc)
5600 loc = pointer_map_insert (vars_map, t);
5602 if (SSA_VAR_P (t))
5604 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5605 add_local_decl (f, new_t);
5607 else
5609 gcc_assert (TREE_CODE (t) == CONST_DECL);
5610 new_t = copy_node (t);
5612 DECL_CONTEXT (new_t) = to_context;
5614 *loc = new_t;
5616 else
5617 new_t = (tree) *loc;
5619 *tp = new_t;
5623 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5624 VARS_MAP maps old ssa names and var_decls to the new ones. */
5626 static tree
5627 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5628 tree to_context)
5630 void **loc;
5631 tree new_name, decl = SSA_NAME_VAR (name);
5633 gcc_assert (is_gimple_reg (name));
5635 loc = pointer_map_contains (vars_map, name);
5637 if (!loc)
5639 replace_by_duplicate_decl (&decl, vars_map, to_context);
5641 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5642 if (gimple_in_ssa_p (cfun))
5643 add_referenced_var (decl);
5645 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5646 if (SSA_NAME_IS_DEFAULT_DEF (name))
5647 set_default_def (decl, new_name);
5648 pop_cfun ();
5650 loc = pointer_map_insert (vars_map, name);
5651 *loc = new_name;
5653 else
5654 new_name = (tree) *loc;
5656 return new_name;
5659 struct move_stmt_d
5661 tree orig_block;
5662 tree new_block;
5663 tree from_context;
5664 tree to_context;
5665 struct pointer_map_t *vars_map;
5666 htab_t new_label_map;
5667 struct pointer_map_t *eh_map;
5668 bool remap_decls_p;
5671 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5672 contained in *TP if it has been ORIG_BLOCK previously and change the
5673 DECL_CONTEXT of every local variable referenced in *TP. */
5675 static tree
5676 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5678 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5679 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5680 tree t = *tp;
5682 if (EXPR_P (t))
5683 /* We should never have TREE_BLOCK set on non-statements. */
5684 gcc_assert (!TREE_BLOCK (t));
5686 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5688 if (TREE_CODE (t) == SSA_NAME)
5689 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5690 else if (TREE_CODE (t) == LABEL_DECL)
5692 if (p->new_label_map)
5694 struct tree_map in, *out;
5695 in.base.from = t;
5696 out = (struct tree_map *)
5697 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5698 if (out)
5699 *tp = t = out->to;
5702 DECL_CONTEXT (t) = p->to_context;
5704 else if (p->remap_decls_p)
5706 /* Replace T with its duplicate. T should no longer appear in the
5707 parent function, so this looks wasteful; however, it may appear
5708 in referenced_vars, and more importantly, as virtual operands of
5709 statements, and in alias lists of other variables. It would be
5710 quite difficult to expunge it from all those places. ??? It might
5711 suffice to do this for addressable variables. */
5712 if ((TREE_CODE (t) == VAR_DECL
5713 && !is_global_var (t))
5714 || TREE_CODE (t) == CONST_DECL)
5715 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5717 if (SSA_VAR_P (t)
5718 && gimple_in_ssa_p (cfun))
5720 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5721 add_referenced_var (*tp);
5722 pop_cfun ();
5725 *walk_subtrees = 0;
5727 else if (TYPE_P (t))
5728 *walk_subtrees = 0;
5730 return NULL_TREE;
5733 /* Helper for move_stmt_r. Given an EH region number for the source
5734 function, map that to the duplicate EH regio number in the dest. */
5736 static int
5737 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5739 eh_region old_r, new_r;
5740 void **slot;
5742 old_r = get_eh_region_from_number (old_nr);
5743 slot = pointer_map_contains (p->eh_map, old_r);
5744 new_r = (eh_region) *slot;
5746 return new_r->index;
5749 /* Similar, but operate on INTEGER_CSTs. */
5751 static tree
5752 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5754 int old_nr, new_nr;
5756 old_nr = tree_low_cst (old_t_nr, 0);
5757 new_nr = move_stmt_eh_region_nr (old_nr, p);
5759 return build_int_cst (NULL, new_nr);
5762 /* Like move_stmt_op, but for gimple statements.
5764 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5765 contained in the current statement in *GSI_P and change the
5766 DECL_CONTEXT of every local variable referenced in the current
5767 statement. */
5769 static tree
5770 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5771 struct walk_stmt_info *wi)
5773 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5774 gimple stmt = gsi_stmt (*gsi_p);
5775 tree block = gimple_block (stmt);
5777 if (p->orig_block == NULL_TREE
5778 || block == p->orig_block
5779 || block == NULL_TREE)
5780 gimple_set_block (stmt, p->new_block);
5781 #ifdef ENABLE_CHECKING
5782 else if (block != p->new_block)
5784 while (block && block != p->orig_block)
5785 block = BLOCK_SUPERCONTEXT (block);
5786 gcc_assert (block);
5788 #endif
5790 switch (gimple_code (stmt))
5792 case GIMPLE_CALL:
5793 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5795 tree r, fndecl = gimple_call_fndecl (stmt);
5796 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5797 switch (DECL_FUNCTION_CODE (fndecl))
5799 case BUILT_IN_EH_COPY_VALUES:
5800 r = gimple_call_arg (stmt, 1);
5801 r = move_stmt_eh_region_tree_nr (r, p);
5802 gimple_call_set_arg (stmt, 1, r);
5803 /* FALLTHRU */
5805 case BUILT_IN_EH_POINTER:
5806 case BUILT_IN_EH_FILTER:
5807 r = gimple_call_arg (stmt, 0);
5808 r = move_stmt_eh_region_tree_nr (r, p);
5809 gimple_call_set_arg (stmt, 0, r);
5810 break;
5812 default:
5813 break;
5816 break;
5818 case GIMPLE_RESX:
5820 int r = gimple_resx_region (stmt);
5821 r = move_stmt_eh_region_nr (r, p);
5822 gimple_resx_set_region (stmt, r);
5824 break;
5826 case GIMPLE_EH_DISPATCH:
5828 int r = gimple_eh_dispatch_region (stmt);
5829 r = move_stmt_eh_region_nr (r, p);
5830 gimple_eh_dispatch_set_region (stmt, r);
5832 break;
5834 case GIMPLE_OMP_RETURN:
5835 case GIMPLE_OMP_CONTINUE:
5836 break;
5837 default:
5838 if (is_gimple_omp (stmt))
5840 /* Do not remap variables inside OMP directives. Variables
5841 referenced in clauses and directive header belong to the
5842 parent function and should not be moved into the child
5843 function. */
5844 bool save_remap_decls_p = p->remap_decls_p;
5845 p->remap_decls_p = false;
5846 *handled_ops_p = true;
5848 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5849 move_stmt_op, wi);
5851 p->remap_decls_p = save_remap_decls_p;
5853 break;
5856 return NULL_TREE;
5859 /* Move basic block BB from function CFUN to function DEST_FN. The
5860 block is moved out of the original linked list and placed after
5861 block AFTER in the new list. Also, the block is removed from the
5862 original array of blocks and placed in DEST_FN's array of blocks.
5863 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5864 updated to reflect the moved edges.
5866 The local variables are remapped to new instances, VARS_MAP is used
5867 to record the mapping. */
5869 static void
5870 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5871 basic_block after, bool update_edge_count_p,
5872 struct move_stmt_d *d)
5874 struct control_flow_graph *cfg;
5875 edge_iterator ei;
5876 edge e;
5877 gimple_stmt_iterator si;
5878 unsigned old_len, new_len;
5880 /* Remove BB from dominance structures. */
5881 delete_from_dominance_info (CDI_DOMINATORS, bb);
5882 if (current_loops)
5883 remove_bb_from_loops (bb);
5885 /* Link BB to the new linked list. */
5886 move_block_after (bb, after);
5888 /* Update the edge count in the corresponding flowgraphs. */
5889 if (update_edge_count_p)
5890 FOR_EACH_EDGE (e, ei, bb->succs)
5892 cfun->cfg->x_n_edges--;
5893 dest_cfun->cfg->x_n_edges++;
5896 /* Remove BB from the original basic block array. */
5897 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5898 cfun->cfg->x_n_basic_blocks--;
5900 /* Grow DEST_CFUN's basic block array if needed. */
5901 cfg = dest_cfun->cfg;
5902 cfg->x_n_basic_blocks++;
5903 if (bb->index >= cfg->x_last_basic_block)
5904 cfg->x_last_basic_block = bb->index + 1;
5906 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5907 if ((unsigned) cfg->x_last_basic_block >= old_len)
5909 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5910 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5911 new_len);
5914 VEC_replace (basic_block, cfg->x_basic_block_info,
5915 bb->index, bb);
5917 /* Remap the variables in phi nodes. */
5918 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5920 gimple phi = gsi_stmt (si);
5921 use_operand_p use;
5922 tree op = PHI_RESULT (phi);
5923 ssa_op_iter oi;
5925 if (!is_gimple_reg (op))
5927 /* Remove the phi nodes for virtual operands (alias analysis will be
5928 run for the new function, anyway). */
5929 remove_phi_node (&si, true);
5930 continue;
5933 SET_PHI_RESULT (phi,
5934 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5935 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5937 op = USE_FROM_PTR (use);
5938 if (TREE_CODE (op) == SSA_NAME)
5939 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5942 gsi_next (&si);
5945 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5947 gimple stmt = gsi_stmt (si);
5948 struct walk_stmt_info wi;
5950 memset (&wi, 0, sizeof (wi));
5951 wi.info = d;
5952 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5954 if (gimple_code (stmt) == GIMPLE_LABEL)
5956 tree label = gimple_label_label (stmt);
5957 int uid = LABEL_DECL_UID (label);
5959 gcc_assert (uid > -1);
5961 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5962 if (old_len <= (unsigned) uid)
5964 new_len = 3 * uid / 2 + 1;
5965 VEC_safe_grow_cleared (basic_block, gc,
5966 cfg->x_label_to_block_map, new_len);
5969 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5970 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5972 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5974 if (uid >= dest_cfun->cfg->last_label_uid)
5975 dest_cfun->cfg->last_label_uid = uid + 1;
5978 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5979 remove_stmt_from_eh_lp_fn (cfun, stmt);
5981 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5982 gimple_remove_stmt_histograms (cfun, stmt);
5984 /* We cannot leave any operands allocated from the operand caches of
5985 the current function. */
5986 free_stmt_operands (stmt);
5987 push_cfun (dest_cfun);
5988 update_stmt (stmt);
5989 pop_cfun ();
5992 FOR_EACH_EDGE (e, ei, bb->succs)
5993 if (e->goto_locus)
5995 tree block = e->goto_block;
5996 if (d->orig_block == NULL_TREE
5997 || block == d->orig_block)
5998 e->goto_block = d->new_block;
5999 #ifdef ENABLE_CHECKING
6000 else if (block != d->new_block)
6002 while (block && block != d->orig_block)
6003 block = BLOCK_SUPERCONTEXT (block);
6004 gcc_assert (block);
6006 #endif
6010 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6011 the outermost EH region. Use REGION as the incoming base EH region. */
6013 static eh_region
6014 find_outermost_region_in_block (struct function *src_cfun,
6015 basic_block bb, eh_region region)
6017 gimple_stmt_iterator si;
6019 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6021 gimple stmt = gsi_stmt (si);
6022 eh_region stmt_region;
6023 int lp_nr;
6025 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6026 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6027 if (stmt_region)
6029 if (region == NULL)
6030 region = stmt_region;
6031 else if (stmt_region != region)
6033 region = eh_region_outermost (src_cfun, stmt_region, region);
6034 gcc_assert (region != NULL);
6039 return region;
6042 static tree
6043 new_label_mapper (tree decl, void *data)
6045 htab_t hash = (htab_t) data;
6046 struct tree_map *m;
6047 void **slot;
6049 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6051 m = XNEW (struct tree_map);
6052 m->hash = DECL_UID (decl);
6053 m->base.from = decl;
6054 m->to = create_artificial_label (UNKNOWN_LOCATION);
6055 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6056 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6057 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6059 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6060 gcc_assert (*slot == NULL);
6062 *slot = m;
6064 return m->to;
6067 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6068 subblocks. */
6070 static void
6071 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6072 tree to_context)
6074 tree *tp, t;
6076 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6078 t = *tp;
6079 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6080 continue;
6081 replace_by_duplicate_decl (&t, vars_map, to_context);
6082 if (t != *tp)
6084 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6086 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6087 DECL_HAS_VALUE_EXPR_P (t) = 1;
6089 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6090 *tp = t;
6094 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6095 replace_block_vars_by_duplicates (block, vars_map, to_context);
6098 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6099 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6100 single basic block in the original CFG and the new basic block is
6101 returned. DEST_CFUN must not have a CFG yet.
6103 Note that the region need not be a pure SESE region. Blocks inside
6104 the region may contain calls to abort/exit. The only restriction
6105 is that ENTRY_BB should be the only entry point and it must
6106 dominate EXIT_BB.
6108 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6109 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6110 to the new function.
6112 All local variables referenced in the region are assumed to be in
6113 the corresponding BLOCK_VARS and unexpanded variable lists
6114 associated with DEST_CFUN. */
6116 basic_block
6117 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6118 basic_block exit_bb, tree orig_block)
6120 VEC(basic_block,heap) *bbs, *dom_bbs;
6121 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6122 basic_block after, bb, *entry_pred, *exit_succ, abb;
6123 struct function *saved_cfun = cfun;
6124 int *entry_flag, *exit_flag;
6125 unsigned *entry_prob, *exit_prob;
6126 unsigned i, num_entry_edges, num_exit_edges;
6127 edge e;
6128 edge_iterator ei;
6129 htab_t new_label_map;
6130 struct pointer_map_t *vars_map, *eh_map;
6131 struct loop *loop = entry_bb->loop_father;
6132 struct move_stmt_d d;
6134 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6135 region. */
6136 gcc_assert (entry_bb != exit_bb
6137 && (!exit_bb
6138 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6140 /* Collect all the blocks in the region. Manually add ENTRY_BB
6141 because it won't be added by dfs_enumerate_from. */
6142 bbs = NULL;
6143 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6144 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6146 /* The blocks that used to be dominated by something in BBS will now be
6147 dominated by the new block. */
6148 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6149 VEC_address (basic_block, bbs),
6150 VEC_length (basic_block, bbs));
6152 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6153 the predecessor edges to ENTRY_BB and the successor edges to
6154 EXIT_BB so that we can re-attach them to the new basic block that
6155 will replace the region. */
6156 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6157 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6158 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6159 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6160 i = 0;
6161 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6163 entry_prob[i] = e->probability;
6164 entry_flag[i] = e->flags;
6165 entry_pred[i++] = e->src;
6166 remove_edge (e);
6169 if (exit_bb)
6171 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6172 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6173 sizeof (basic_block));
6174 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6175 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6176 i = 0;
6177 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6179 exit_prob[i] = e->probability;
6180 exit_flag[i] = e->flags;
6181 exit_succ[i++] = e->dest;
6182 remove_edge (e);
6185 else
6187 num_exit_edges = 0;
6188 exit_succ = NULL;
6189 exit_flag = NULL;
6190 exit_prob = NULL;
6193 /* Switch context to the child function to initialize DEST_FN's CFG. */
6194 gcc_assert (dest_cfun->cfg == NULL);
6195 push_cfun (dest_cfun);
6197 init_empty_tree_cfg ();
6199 /* Initialize EH information for the new function. */
6200 eh_map = NULL;
6201 new_label_map = NULL;
6202 if (saved_cfun->eh)
6204 eh_region region = NULL;
6206 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6207 region = find_outermost_region_in_block (saved_cfun, bb, region);
6209 init_eh_for_function ();
6210 if (region != NULL)
6212 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6213 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6214 new_label_mapper, new_label_map);
6218 pop_cfun ();
6220 /* Move blocks from BBS into DEST_CFUN. */
6221 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6222 after = dest_cfun->cfg->x_entry_block_ptr;
6223 vars_map = pointer_map_create ();
6225 memset (&d, 0, sizeof (d));
6226 d.orig_block = orig_block;
6227 d.new_block = DECL_INITIAL (dest_cfun->decl);
6228 d.from_context = cfun->decl;
6229 d.to_context = dest_cfun->decl;
6230 d.vars_map = vars_map;
6231 d.new_label_map = new_label_map;
6232 d.eh_map = eh_map;
6233 d.remap_decls_p = true;
6235 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6237 /* No need to update edge counts on the last block. It has
6238 already been updated earlier when we detached the region from
6239 the original CFG. */
6240 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6241 after = bb;
6244 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6245 if (orig_block)
6247 tree block;
6248 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6249 == NULL_TREE);
6250 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6251 = BLOCK_SUBBLOCKS (orig_block);
6252 for (block = BLOCK_SUBBLOCKS (orig_block);
6253 block; block = BLOCK_CHAIN (block))
6254 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6255 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6258 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6259 vars_map, dest_cfun->decl);
6261 if (new_label_map)
6262 htab_delete (new_label_map);
6263 if (eh_map)
6264 pointer_map_destroy (eh_map);
6265 pointer_map_destroy (vars_map);
6267 /* Rewire the entry and exit blocks. The successor to the entry
6268 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6269 the child function. Similarly, the predecessor of DEST_FN's
6270 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6271 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6272 various CFG manipulation function get to the right CFG.
6274 FIXME, this is silly. The CFG ought to become a parameter to
6275 these helpers. */
6276 push_cfun (dest_cfun);
6277 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6278 if (exit_bb)
6279 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6280 pop_cfun ();
6282 /* Back in the original function, the SESE region has disappeared,
6283 create a new basic block in its place. */
6284 bb = create_empty_bb (entry_pred[0]);
6285 if (current_loops)
6286 add_bb_to_loop (bb, loop);
6287 for (i = 0; i < num_entry_edges; i++)
6289 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6290 e->probability = entry_prob[i];
6293 for (i = 0; i < num_exit_edges; i++)
6295 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6296 e->probability = exit_prob[i];
6299 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6300 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6301 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6302 VEC_free (basic_block, heap, dom_bbs);
6304 if (exit_bb)
6306 free (exit_prob);
6307 free (exit_flag);
6308 free (exit_succ);
6310 free (entry_prob);
6311 free (entry_flag);
6312 free (entry_pred);
6313 VEC_free (basic_block, heap, bbs);
6315 return bb;
6319 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6322 void
6323 dump_function_to_file (tree fn, FILE *file, int flags)
6325 tree arg, var;
6326 struct function *dsf;
6327 bool ignore_topmost_bind = false, any_var = false;
6328 basic_block bb;
6329 tree chain;
6331 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6333 arg = DECL_ARGUMENTS (fn);
6334 while (arg)
6336 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6337 fprintf (file, " ");
6338 print_generic_expr (file, arg, dump_flags);
6339 if (flags & TDF_VERBOSE)
6340 print_node (file, "", arg, 4);
6341 if (DECL_CHAIN (arg))
6342 fprintf (file, ", ");
6343 arg = DECL_CHAIN (arg);
6345 fprintf (file, ")\n");
6347 if (flags & TDF_VERBOSE)
6348 print_node (file, "", fn, 2);
6350 dsf = DECL_STRUCT_FUNCTION (fn);
6351 if (dsf && (flags & TDF_EH))
6352 dump_eh_tree (file, dsf);
6354 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6356 dump_node (fn, TDF_SLIM | flags, file);
6357 return;
6360 /* Switch CFUN to point to FN. */
6361 push_cfun (DECL_STRUCT_FUNCTION (fn));
6363 /* When GIMPLE is lowered, the variables are no longer available in
6364 BIND_EXPRs, so display them separately. */
6365 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6367 unsigned ix;
6368 ignore_topmost_bind = true;
6370 fprintf (file, "{\n");
6371 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6373 print_generic_decl (file, var, flags);
6374 if (flags & TDF_VERBOSE)
6375 print_node (file, "", var, 4);
6376 fprintf (file, "\n");
6378 any_var = true;
6382 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6384 /* If the CFG has been built, emit a CFG-based dump. */
6385 check_bb_profile (ENTRY_BLOCK_PTR, file);
6386 if (!ignore_topmost_bind)
6387 fprintf (file, "{\n");
6389 if (any_var && n_basic_blocks)
6390 fprintf (file, "\n");
6392 FOR_EACH_BB (bb)
6393 gimple_dump_bb (bb, file, 2, flags);
6395 fprintf (file, "}\n");
6396 check_bb_profile (EXIT_BLOCK_PTR, file);
6398 else if (DECL_SAVED_TREE (fn) == NULL)
6400 /* The function is now in GIMPLE form but the CFG has not been
6401 built yet. Emit the single sequence of GIMPLE statements
6402 that make up its body. */
6403 gimple_seq body = gimple_body (fn);
6405 if (gimple_seq_first_stmt (body)
6406 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6407 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6408 print_gimple_seq (file, body, 0, flags);
6409 else
6411 if (!ignore_topmost_bind)
6412 fprintf (file, "{\n");
6414 if (any_var)
6415 fprintf (file, "\n");
6417 print_gimple_seq (file, body, 2, flags);
6418 fprintf (file, "}\n");
6421 else
6423 int indent;
6425 /* Make a tree based dump. */
6426 chain = DECL_SAVED_TREE (fn);
6428 if (chain && TREE_CODE (chain) == BIND_EXPR)
6430 if (ignore_topmost_bind)
6432 chain = BIND_EXPR_BODY (chain);
6433 indent = 2;
6435 else
6436 indent = 0;
6438 else
6440 if (!ignore_topmost_bind)
6441 fprintf (file, "{\n");
6442 indent = 2;
6445 if (any_var)
6446 fprintf (file, "\n");
6448 print_generic_stmt_indented (file, chain, flags, indent);
6449 if (ignore_topmost_bind)
6450 fprintf (file, "}\n");
6453 if (flags & TDF_ENUMERATE_LOCALS)
6454 dump_enumerated_decls (file, flags);
6455 fprintf (file, "\n\n");
6457 /* Restore CFUN. */
6458 pop_cfun ();
6462 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6464 DEBUG_FUNCTION void
6465 debug_function (tree fn, int flags)
6467 dump_function_to_file (fn, stderr, flags);
6471 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6473 static void
6474 print_pred_bbs (FILE *file, basic_block bb)
6476 edge e;
6477 edge_iterator ei;
6479 FOR_EACH_EDGE (e, ei, bb->preds)
6480 fprintf (file, "bb_%d ", e->src->index);
6484 /* Print on FILE the indexes for the successors of basic_block BB. */
6486 static void
6487 print_succ_bbs (FILE *file, basic_block bb)
6489 edge e;
6490 edge_iterator ei;
6492 FOR_EACH_EDGE (e, ei, bb->succs)
6493 fprintf (file, "bb_%d ", e->dest->index);
6496 /* Print to FILE the basic block BB following the VERBOSITY level. */
6498 void
6499 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6501 char *s_indent = (char *) alloca ((size_t) indent + 1);
6502 memset ((void *) s_indent, ' ', (size_t) indent);
6503 s_indent[indent] = '\0';
6505 /* Print basic_block's header. */
6506 if (verbosity >= 2)
6508 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6509 print_pred_bbs (file, bb);
6510 fprintf (file, "}, succs = {");
6511 print_succ_bbs (file, bb);
6512 fprintf (file, "})\n");
6515 /* Print basic_block's body. */
6516 if (verbosity >= 3)
6518 fprintf (file, "%s {\n", s_indent);
6519 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6520 fprintf (file, "%s }\n", s_indent);
6524 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6526 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6527 VERBOSITY level this outputs the contents of the loop, or just its
6528 structure. */
6530 static void
6531 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6533 char *s_indent;
6534 basic_block bb;
6536 if (loop == NULL)
6537 return;
6539 s_indent = (char *) alloca ((size_t) indent + 1);
6540 memset ((void *) s_indent, ' ', (size_t) indent);
6541 s_indent[indent] = '\0';
6543 /* Print loop's header. */
6544 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6545 loop->num, loop->header->index, loop->latch->index);
6546 fprintf (file, ", niter = ");
6547 print_generic_expr (file, loop->nb_iterations, 0);
6549 if (loop->any_upper_bound)
6551 fprintf (file, ", upper_bound = ");
6552 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6555 if (loop->any_estimate)
6557 fprintf (file, ", estimate = ");
6558 dump_double_int (file, loop->nb_iterations_estimate, true);
6560 fprintf (file, ")\n");
6562 /* Print loop's body. */
6563 if (verbosity >= 1)
6565 fprintf (file, "%s{\n", s_indent);
6566 FOR_EACH_BB (bb)
6567 if (bb->loop_father == loop)
6568 print_loops_bb (file, bb, indent, verbosity);
6570 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6571 fprintf (file, "%s}\n", s_indent);
6575 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6576 spaces. Following VERBOSITY level this outputs the contents of the
6577 loop, or just its structure. */
6579 static void
6580 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6582 if (loop == NULL)
6583 return;
6585 print_loop (file, loop, indent, verbosity);
6586 print_loop_and_siblings (file, loop->next, indent, verbosity);
6589 /* Follow a CFG edge from the entry point of the program, and on entry
6590 of a loop, pretty print the loop structure on FILE. */
6592 void
6593 print_loops (FILE *file, int verbosity)
6595 basic_block bb;
6597 bb = ENTRY_BLOCK_PTR;
6598 if (bb && bb->loop_father)
6599 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6603 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6605 DEBUG_FUNCTION void
6606 debug_loops (int verbosity)
6608 print_loops (stderr, verbosity);
6611 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6613 DEBUG_FUNCTION void
6614 debug_loop (struct loop *loop, int verbosity)
6616 print_loop (stderr, loop, 0, verbosity);
6619 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6620 level. */
6622 DEBUG_FUNCTION void
6623 debug_loop_num (unsigned num, int verbosity)
6625 debug_loop (get_loop (num), verbosity);
6628 /* Return true if BB ends with a call, possibly followed by some
6629 instructions that must stay with the call. Return false,
6630 otherwise. */
6632 static bool
6633 gimple_block_ends_with_call_p (basic_block bb)
6635 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6636 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6640 /* Return true if BB ends with a conditional branch. Return false,
6641 otherwise. */
6643 static bool
6644 gimple_block_ends_with_condjump_p (const_basic_block bb)
6646 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6647 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6651 /* Return true if we need to add fake edge to exit at statement T.
6652 Helper function for gimple_flow_call_edges_add. */
6654 static bool
6655 need_fake_edge_p (gimple t)
6657 tree fndecl = NULL_TREE;
6658 int call_flags = 0;
6660 /* NORETURN and LONGJMP calls already have an edge to exit.
6661 CONST and PURE calls do not need one.
6662 We don't currently check for CONST and PURE here, although
6663 it would be a good idea, because those attributes are
6664 figured out from the RTL in mark_constant_function, and
6665 the counter incrementation code from -fprofile-arcs
6666 leads to different results from -fbranch-probabilities. */
6667 if (is_gimple_call (t))
6669 fndecl = gimple_call_fndecl (t);
6670 call_flags = gimple_call_flags (t);
6673 if (is_gimple_call (t)
6674 && fndecl
6675 && DECL_BUILT_IN (fndecl)
6676 && (call_flags & ECF_NOTHROW)
6677 && !(call_flags & ECF_RETURNS_TWICE)
6678 /* fork() doesn't really return twice, but the effect of
6679 wrapping it in __gcov_fork() which calls __gcov_flush()
6680 and clears the counters before forking has the same
6681 effect as returning twice. Force a fake edge. */
6682 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6683 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6684 return false;
6686 if (is_gimple_call (t)
6687 && !(call_flags & ECF_NORETURN))
6688 return true;
6690 if (gimple_code (t) == GIMPLE_ASM
6691 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6692 return true;
6694 return false;
6698 /* Add fake edges to the function exit for any non constant and non
6699 noreturn calls, volatile inline assembly in the bitmap of blocks
6700 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6701 the number of blocks that were split.
6703 The goal is to expose cases in which entering a basic block does
6704 not imply that all subsequent instructions must be executed. */
6706 static int
6707 gimple_flow_call_edges_add (sbitmap blocks)
6709 int i;
6710 int blocks_split = 0;
6711 int last_bb = last_basic_block;
6712 bool check_last_block = false;
6714 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6715 return 0;
6717 if (! blocks)
6718 check_last_block = true;
6719 else
6720 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6722 /* In the last basic block, before epilogue generation, there will be
6723 a fallthru edge to EXIT. Special care is required if the last insn
6724 of the last basic block is a call because make_edge folds duplicate
6725 edges, which would result in the fallthru edge also being marked
6726 fake, which would result in the fallthru edge being removed by
6727 remove_fake_edges, which would result in an invalid CFG.
6729 Moreover, we can't elide the outgoing fake edge, since the block
6730 profiler needs to take this into account in order to solve the minimal
6731 spanning tree in the case that the call doesn't return.
6733 Handle this by adding a dummy instruction in a new last basic block. */
6734 if (check_last_block)
6736 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6737 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6738 gimple t = NULL;
6740 if (!gsi_end_p (gsi))
6741 t = gsi_stmt (gsi);
6743 if (t && need_fake_edge_p (t))
6745 edge e;
6747 e = find_edge (bb, EXIT_BLOCK_PTR);
6748 if (e)
6750 gsi_insert_on_edge (e, gimple_build_nop ());
6751 gsi_commit_edge_inserts ();
6756 /* Now add fake edges to the function exit for any non constant
6757 calls since there is no way that we can determine if they will
6758 return or not... */
6759 for (i = 0; i < last_bb; i++)
6761 basic_block bb = BASIC_BLOCK (i);
6762 gimple_stmt_iterator gsi;
6763 gimple stmt, last_stmt;
6765 if (!bb)
6766 continue;
6768 if (blocks && !TEST_BIT (blocks, i))
6769 continue;
6771 gsi = gsi_last_nondebug_bb (bb);
6772 if (!gsi_end_p (gsi))
6774 last_stmt = gsi_stmt (gsi);
6777 stmt = gsi_stmt (gsi);
6778 if (need_fake_edge_p (stmt))
6780 edge e;
6782 /* The handling above of the final block before the
6783 epilogue should be enough to verify that there is
6784 no edge to the exit block in CFG already.
6785 Calling make_edge in such case would cause us to
6786 mark that edge as fake and remove it later. */
6787 #ifdef ENABLE_CHECKING
6788 if (stmt == last_stmt)
6790 e = find_edge (bb, EXIT_BLOCK_PTR);
6791 gcc_assert (e == NULL);
6793 #endif
6795 /* Note that the following may create a new basic block
6796 and renumber the existing basic blocks. */
6797 if (stmt != last_stmt)
6799 e = split_block (bb, stmt);
6800 if (e)
6801 blocks_split++;
6803 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6805 gsi_prev (&gsi);
6807 while (!gsi_end_p (gsi));
6811 if (blocks_split)
6812 verify_flow_info ();
6814 return blocks_split;
6817 /* Removes edge E and all the blocks dominated by it, and updates dominance
6818 information. The IL in E->src needs to be updated separately.
6819 If dominance info is not available, only the edge E is removed.*/
6821 void
6822 remove_edge_and_dominated_blocks (edge e)
6824 VEC (basic_block, heap) *bbs_to_remove = NULL;
6825 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6826 bitmap df, df_idom;
6827 edge f;
6828 edge_iterator ei;
6829 bool none_removed = false;
6830 unsigned i;
6831 basic_block bb, dbb;
6832 bitmap_iterator bi;
6834 if (!dom_info_available_p (CDI_DOMINATORS))
6836 remove_edge (e);
6837 return;
6840 /* No updating is needed for edges to exit. */
6841 if (e->dest == EXIT_BLOCK_PTR)
6843 if (cfgcleanup_altered_bbs)
6844 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6845 remove_edge (e);
6846 return;
6849 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6850 that is not dominated by E->dest, then this set is empty. Otherwise,
6851 all the basic blocks dominated by E->dest are removed.
6853 Also, to DF_IDOM we store the immediate dominators of the blocks in
6854 the dominance frontier of E (i.e., of the successors of the
6855 removed blocks, if there are any, and of E->dest otherwise). */
6856 FOR_EACH_EDGE (f, ei, e->dest->preds)
6858 if (f == e)
6859 continue;
6861 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6863 none_removed = true;
6864 break;
6868 df = BITMAP_ALLOC (NULL);
6869 df_idom = BITMAP_ALLOC (NULL);
6871 if (none_removed)
6872 bitmap_set_bit (df_idom,
6873 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6874 else
6876 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6877 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6879 FOR_EACH_EDGE (f, ei, bb->succs)
6881 if (f->dest != EXIT_BLOCK_PTR)
6882 bitmap_set_bit (df, f->dest->index);
6885 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6886 bitmap_clear_bit (df, bb->index);
6888 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6890 bb = BASIC_BLOCK (i);
6891 bitmap_set_bit (df_idom,
6892 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6896 if (cfgcleanup_altered_bbs)
6898 /* Record the set of the altered basic blocks. */
6899 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6900 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6903 /* Remove E and the cancelled blocks. */
6904 if (none_removed)
6905 remove_edge (e);
6906 else
6908 /* Walk backwards so as to get a chance to substitute all
6909 released DEFs into debug stmts. See
6910 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6911 details. */
6912 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6913 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6916 /* Update the dominance information. The immediate dominator may change only
6917 for blocks whose immediate dominator belongs to DF_IDOM:
6919 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6920 removal. Let Z the arbitrary block such that idom(Z) = Y and
6921 Z dominates X after the removal. Before removal, there exists a path P
6922 from Y to X that avoids Z. Let F be the last edge on P that is
6923 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6924 dominates W, and because of P, Z does not dominate W), and W belongs to
6925 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6926 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6928 bb = BASIC_BLOCK (i);
6929 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6930 dbb;
6931 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6932 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6935 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6937 BITMAP_FREE (df);
6938 BITMAP_FREE (df_idom);
6939 VEC_free (basic_block, heap, bbs_to_remove);
6940 VEC_free (basic_block, heap, bbs_to_fix_dom);
6943 /* Purge dead EH edges from basic block BB. */
6945 bool
6946 gimple_purge_dead_eh_edges (basic_block bb)
6948 bool changed = false;
6949 edge e;
6950 edge_iterator ei;
6951 gimple stmt = last_stmt (bb);
6953 if (stmt && stmt_can_throw_internal (stmt))
6954 return false;
6956 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6958 if (e->flags & EDGE_EH)
6960 remove_edge_and_dominated_blocks (e);
6961 changed = true;
6963 else
6964 ei_next (&ei);
6967 return changed;
6970 /* Purge dead EH edges from basic block listed in BLOCKS. */
6972 bool
6973 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6975 bool changed = false;
6976 unsigned i;
6977 bitmap_iterator bi;
6979 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6981 basic_block bb = BASIC_BLOCK (i);
6983 /* Earlier gimple_purge_dead_eh_edges could have removed
6984 this basic block already. */
6985 gcc_assert (bb || changed);
6986 if (bb != NULL)
6987 changed |= gimple_purge_dead_eh_edges (bb);
6990 return changed;
6993 /* Purge dead abnormal call edges from basic block BB. */
6995 bool
6996 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6998 bool changed = false;
6999 edge e;
7000 edge_iterator ei;
7001 gimple stmt = last_stmt (bb);
7003 if (!cfun->has_nonlocal_label)
7004 return false;
7006 if (stmt && stmt_can_make_abnormal_goto (stmt))
7007 return false;
7009 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7011 if (e->flags & EDGE_ABNORMAL)
7013 remove_edge_and_dominated_blocks (e);
7014 changed = true;
7016 else
7017 ei_next (&ei);
7020 return changed;
7023 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7025 bool
7026 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7028 bool changed = false;
7029 unsigned i;
7030 bitmap_iterator bi;
7032 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7034 basic_block bb = BASIC_BLOCK (i);
7036 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7037 this basic block already. */
7038 gcc_assert (bb || changed);
7039 if (bb != NULL)
7040 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7043 return changed;
7046 /* This function is called whenever a new edge is created or
7047 redirected. */
7049 static void
7050 gimple_execute_on_growing_pred (edge e)
7052 basic_block bb = e->dest;
7054 if (!gimple_seq_empty_p (phi_nodes (bb)))
7055 reserve_phi_args_for_new_edge (bb);
7058 /* This function is called immediately before edge E is removed from
7059 the edge vector E->dest->preds. */
7061 static void
7062 gimple_execute_on_shrinking_pred (edge e)
7064 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7065 remove_phi_args (e);
7068 /*---------------------------------------------------------------------------
7069 Helper functions for Loop versioning
7070 ---------------------------------------------------------------------------*/
7072 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7073 of 'first'. Both of them are dominated by 'new_head' basic block. When
7074 'new_head' was created by 'second's incoming edge it received phi arguments
7075 on the edge by split_edge(). Later, additional edge 'e' was created to
7076 connect 'new_head' and 'first'. Now this routine adds phi args on this
7077 additional edge 'e' that new_head to second edge received as part of edge
7078 splitting. */
7080 static void
7081 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7082 basic_block new_head, edge e)
7084 gimple phi1, phi2;
7085 gimple_stmt_iterator psi1, psi2;
7086 tree def;
7087 edge e2 = find_edge (new_head, second);
7089 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7090 edge, we should always have an edge from NEW_HEAD to SECOND. */
7091 gcc_assert (e2 != NULL);
7093 /* Browse all 'second' basic block phi nodes and add phi args to
7094 edge 'e' for 'first' head. PHI args are always in correct order. */
7096 for (psi2 = gsi_start_phis (second),
7097 psi1 = gsi_start_phis (first);
7098 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7099 gsi_next (&psi2), gsi_next (&psi1))
7101 phi1 = gsi_stmt (psi1);
7102 phi2 = gsi_stmt (psi2);
7103 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7104 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7109 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7110 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7111 the destination of the ELSE part. */
7113 static void
7114 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7115 basic_block second_head ATTRIBUTE_UNUSED,
7116 basic_block cond_bb, void *cond_e)
7118 gimple_stmt_iterator gsi;
7119 gimple new_cond_expr;
7120 tree cond_expr = (tree) cond_e;
7121 edge e0;
7123 /* Build new conditional expr */
7124 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7125 NULL_TREE, NULL_TREE);
7127 /* Add new cond in cond_bb. */
7128 gsi = gsi_last_bb (cond_bb);
7129 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7131 /* Adjust edges appropriately to connect new head with first head
7132 as well as second head. */
7133 e0 = single_succ_edge (cond_bb);
7134 e0->flags &= ~EDGE_FALLTHRU;
7135 e0->flags |= EDGE_FALSE_VALUE;
7138 struct cfg_hooks gimple_cfg_hooks = {
7139 "gimple",
7140 gimple_verify_flow_info,
7141 gimple_dump_bb, /* dump_bb */
7142 create_bb, /* create_basic_block */
7143 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7144 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7145 gimple_can_remove_branch_p, /* can_remove_branch_p */
7146 remove_bb, /* delete_basic_block */
7147 gimple_split_block, /* split_block */
7148 gimple_move_block_after, /* move_block_after */
7149 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7150 gimple_merge_blocks, /* merge_blocks */
7151 gimple_predict_edge, /* predict_edge */
7152 gimple_predicted_by_p, /* predicted_by_p */
7153 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7154 gimple_duplicate_bb, /* duplicate_block */
7155 gimple_split_edge, /* split_edge */
7156 gimple_make_forwarder_block, /* make_forward_block */
7157 NULL, /* tidy_fallthru_edge */
7158 NULL, /* force_nonfallthru */
7159 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7160 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7161 gimple_flow_call_edges_add, /* flow_call_edges_add */
7162 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7163 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7164 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7165 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7166 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7167 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7168 flush_pending_stmts /* flush_pending_stmts */
7172 /* Split all critical edges. */
7174 static unsigned int
7175 split_critical_edges (void)
7177 basic_block bb;
7178 edge e;
7179 edge_iterator ei;
7181 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7182 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7183 mappings around the calls to split_edge. */
7184 start_recording_case_labels ();
7185 FOR_ALL_BB (bb)
7187 FOR_EACH_EDGE (e, ei, bb->succs)
7189 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7190 split_edge (e);
7191 /* PRE inserts statements to edges and expects that
7192 since split_critical_edges was done beforehand, committing edge
7193 insertions will not split more edges. In addition to critical
7194 edges we must split edges that have multiple successors and
7195 end by control flow statements, such as RESX.
7196 Go ahead and split them too. This matches the logic in
7197 gimple_find_edge_insert_loc. */
7198 else if ((!single_pred_p (e->dest)
7199 || !gimple_seq_empty_p (phi_nodes (e->dest))
7200 || e->dest == EXIT_BLOCK_PTR)
7201 && e->src != ENTRY_BLOCK_PTR
7202 && !(e->flags & EDGE_ABNORMAL))
7204 gimple_stmt_iterator gsi;
7206 gsi = gsi_last_bb (e->src);
7207 if (!gsi_end_p (gsi)
7208 && stmt_ends_bb_p (gsi_stmt (gsi))
7209 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7210 && !gimple_call_builtin_p (gsi_stmt (gsi),
7211 BUILT_IN_RETURN)))
7212 split_edge (e);
7216 end_recording_case_labels ();
7217 return 0;
7220 struct gimple_opt_pass pass_split_crit_edges =
7223 GIMPLE_PASS,
7224 "crited", /* name */
7225 NULL, /* gate */
7226 split_critical_edges, /* execute */
7227 NULL, /* sub */
7228 NULL, /* next */
7229 0, /* static_pass_number */
7230 TV_TREE_SPLIT_EDGES, /* tv_id */
7231 PROP_cfg, /* properties required */
7232 PROP_no_crit_edges, /* properties_provided */
7233 0, /* properties_destroyed */
7234 0, /* todo_flags_start */
7235 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7240 /* Build a ternary operation and gimplify it. Emit code before GSI.
7241 Return the gimple_val holding the result. */
7243 tree
7244 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7245 tree type, tree a, tree b, tree c)
7247 tree ret;
7248 location_t loc = gimple_location (gsi_stmt (*gsi));
7250 ret = fold_build3_loc (loc, code, type, a, b, c);
7251 STRIP_NOPS (ret);
7253 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7254 GSI_SAME_STMT);
7257 /* Build a binary operation and gimplify it. Emit code before GSI.
7258 Return the gimple_val holding the result. */
7260 tree
7261 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7262 tree type, tree a, tree b)
7264 tree ret;
7266 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7267 STRIP_NOPS (ret);
7269 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7270 GSI_SAME_STMT);
7273 /* Build a unary operation and gimplify it. Emit code before GSI.
7274 Return the gimple_val holding the result. */
7276 tree
7277 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7278 tree a)
7280 tree ret;
7282 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7283 STRIP_NOPS (ret);
7285 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7286 GSI_SAME_STMT);
7291 /* Emit return warnings. */
7293 static unsigned int
7294 execute_warn_function_return (void)
7296 source_location location;
7297 gimple last;
7298 edge e;
7299 edge_iterator ei;
7301 /* If we have a path to EXIT, then we do return. */
7302 if (TREE_THIS_VOLATILE (cfun->decl)
7303 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7305 location = UNKNOWN_LOCATION;
7306 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7308 last = last_stmt (e->src);
7309 if ((gimple_code (last) == GIMPLE_RETURN
7310 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7311 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7312 break;
7314 if (location == UNKNOWN_LOCATION)
7315 location = cfun->function_end_locus;
7316 warning_at (location, 0, "%<noreturn%> function does return");
7319 /* If we see "return;" in some basic block, then we do reach the end
7320 without returning a value. */
7321 else if (warn_return_type
7322 && !TREE_NO_WARNING (cfun->decl)
7323 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7324 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7326 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7328 gimple last = last_stmt (e->src);
7329 if (gimple_code (last) == GIMPLE_RETURN
7330 && gimple_return_retval (last) == NULL
7331 && !gimple_no_warning_p (last))
7333 location = gimple_location (last);
7334 if (location == UNKNOWN_LOCATION)
7335 location = cfun->function_end_locus;
7336 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7337 TREE_NO_WARNING (cfun->decl) = 1;
7338 break;
7342 return 0;
7346 /* Given a basic block B which ends with a conditional and has
7347 precisely two successors, determine which of the edges is taken if
7348 the conditional is true and which is taken if the conditional is
7349 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7351 void
7352 extract_true_false_edges_from_block (basic_block b,
7353 edge *true_edge,
7354 edge *false_edge)
7356 edge e = EDGE_SUCC (b, 0);
7358 if (e->flags & EDGE_TRUE_VALUE)
7360 *true_edge = e;
7361 *false_edge = EDGE_SUCC (b, 1);
7363 else
7365 *false_edge = e;
7366 *true_edge = EDGE_SUCC (b, 1);
7370 struct gimple_opt_pass pass_warn_function_return =
7373 GIMPLE_PASS,
7374 "*warn_function_return", /* name */
7375 NULL, /* gate */
7376 execute_warn_function_return, /* execute */
7377 NULL, /* sub */
7378 NULL, /* next */
7379 0, /* static_pass_number */
7380 TV_NONE, /* tv_id */
7381 PROP_cfg, /* properties_required */
7382 0, /* properties_provided */
7383 0, /* properties_destroyed */
7384 0, /* todo_flags_start */
7385 0 /* todo_flags_finish */
7389 /* Emit noreturn warnings. */
7391 static unsigned int
7392 execute_warn_function_noreturn (void)
7394 if (!TREE_THIS_VOLATILE (current_function_decl)
7395 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7396 warn_function_noreturn (current_function_decl);
7397 return 0;
7400 static bool
7401 gate_warn_function_noreturn (void)
7403 return warn_suggest_attribute_noreturn;
7406 struct gimple_opt_pass pass_warn_function_noreturn =
7409 GIMPLE_PASS,
7410 "*warn_function_noreturn", /* name */
7411 gate_warn_function_noreturn, /* gate */
7412 execute_warn_function_noreturn, /* execute */
7413 NULL, /* sub */
7414 NULL, /* next */
7415 0, /* static_pass_number */
7416 TV_NONE, /* tv_id */
7417 PROP_cfg, /* properties_required */
7418 0, /* properties_provided */
7419 0, /* properties_destroyed */
7420 0, /* todo_flags_start */
7421 0 /* todo_flags_finish */
7426 /* Walk a gimplified function and warn for functions whose return value is
7427 ignored and attribute((warn_unused_result)) is set. This is done before
7428 inlining, so we don't have to worry about that. */
7430 static void
7431 do_warn_unused_result (gimple_seq seq)
7433 tree fdecl, ftype;
7434 gimple_stmt_iterator i;
7436 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7438 gimple g = gsi_stmt (i);
7440 switch (gimple_code (g))
7442 case GIMPLE_BIND:
7443 do_warn_unused_result (gimple_bind_body (g));
7444 break;
7445 case GIMPLE_TRY:
7446 do_warn_unused_result (gimple_try_eval (g));
7447 do_warn_unused_result (gimple_try_cleanup (g));
7448 break;
7449 case GIMPLE_CATCH:
7450 do_warn_unused_result (gimple_catch_handler (g));
7451 break;
7452 case GIMPLE_EH_FILTER:
7453 do_warn_unused_result (gimple_eh_filter_failure (g));
7454 break;
7456 case GIMPLE_CALL:
7457 if (gimple_call_lhs (g))
7458 break;
7459 if (gimple_call_internal_p (g))
7460 break;
7462 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7463 LHS. All calls whose value is ignored should be
7464 represented like this. Look for the attribute. */
7465 fdecl = gimple_call_fndecl (g);
7466 ftype = gimple_call_fntype (g);
7468 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7470 location_t loc = gimple_location (g);
7472 if (fdecl)
7473 warning_at (loc, OPT_Wunused_result,
7474 "ignoring return value of %qD, "
7475 "declared with attribute warn_unused_result",
7476 fdecl);
7477 else
7478 warning_at (loc, OPT_Wunused_result,
7479 "ignoring return value of function "
7480 "declared with attribute warn_unused_result");
7482 break;
7484 default:
7485 /* Not a container, not a call, or a call whose value is used. */
7486 break;
7491 static unsigned int
7492 run_warn_unused_result (void)
7494 do_warn_unused_result (gimple_body (current_function_decl));
7495 return 0;
7498 static bool
7499 gate_warn_unused_result (void)
7501 return flag_warn_unused_result;
7504 struct gimple_opt_pass pass_warn_unused_result =
7507 GIMPLE_PASS,
7508 "*warn_unused_result", /* name */
7509 gate_warn_unused_result, /* gate */
7510 run_warn_unused_result, /* execute */
7511 NULL, /* sub */
7512 NULL, /* next */
7513 0, /* static_pass_number */
7514 TV_NONE, /* tv_id */
7515 PROP_gimple_any, /* properties_required */
7516 0, /* properties_provided */
7517 0, /* properties_destroyed */
7518 0, /* todo_flags_start */
7519 0, /* todo_flags_finish */