1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "basic-block.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity
= 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t
*edge_to_cases
;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs
;
81 long num_merged_labels
;
84 static struct cfg_stats_d cfg_stats
;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto
;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
95 static htab_t discriminator_per_locus
;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq
);
99 static void factor_computed_gotos (void);
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block
);
104 static void make_gimple_switch_edges (basic_block
);
105 static void make_goto_expr_edges (basic_block
);
106 static void make_gimple_asm_edges (basic_block
);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t
, basic_block
);
110 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
111 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
112 static unsigned int split_critical_edges (void);
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple
, gimple
);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge
);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple
first_non_label_stmt (basic_block
);
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block
, basic_block
);
123 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
124 static void remove_bb (basic_block
);
125 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
126 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
127 static edge
find_taken_edge_switch_expr (basic_block
, tree
);
128 static tree
find_case_label_for_value (gimple
, tree
);
129 static void group_case_labels_stmt (gimple
);
132 init_empty_tree_cfg_for_function (struct function
*fn
)
134 /* Initialize the basic block array. */
136 profile_status_for_function (fn
) = PROFILE_ABSENT
;
137 n_basic_blocks_for_function (fn
) = NUM_FIXED_BLOCKS
;
138 last_basic_block_for_function (fn
) = NUM_FIXED_BLOCKS
;
139 basic_block_info_for_function (fn
)
140 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
141 VEC_safe_grow_cleared (basic_block
, gc
,
142 basic_block_info_for_function (fn
),
143 initial_cfg_capacity
);
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn
)
147 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
148 VEC_safe_grow_cleared (basic_block
, gc
,
149 label_to_block_map_for_function (fn
),
150 initial_cfg_capacity
);
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, ENTRY_BLOCK
,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, EXIT_BLOCK
,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
));
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn
);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
);
164 init_empty_tree_cfg (void)
166 init_empty_tree_cfg_for_function (cfun
);
169 /*---------------------------------------------------------------------------
171 ---------------------------------------------------------------------------*/
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
177 build_gimple_cfg (gimple_seq seq
)
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
182 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
184 init_empty_tree_cfg ();
186 found_computed_goto
= 0;
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto
)
195 factor_computed_gotos ();
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
199 create_empty_bb (ENTRY_BLOCK_PTR
);
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block
, basic_block_info
) < (size_t) n_basic_blocks
)
203 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, n_basic_blocks
);
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus
= htab_create (13, locus_map_hash
, locus_map_eq
,
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus
);
220 /* Debugging dumps. */
222 /* Write the flowgraph to a VCG file. */
224 int local_dump_flags
;
225 FILE *vcg_file
= dump_begin (TDI_vcg
, &local_dump_flags
);
228 gimple_cfg2vcg (vcg_file
);
229 dump_end (TDI_vcg
, vcg_file
);
235 execute_build_cfg (void)
237 gimple_seq body
= gimple_body (current_function_decl
);
239 build_gimple_cfg (body
);
240 gimple_set_body (current_function_decl
, NULL
);
241 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
243 fprintf (dump_file
, "Scope blocks:\n");
244 dump_scope_blocks (dump_file
, dump_flags
);
249 struct gimple_opt_pass pass_build_cfg
=
255 execute_build_cfg
, /* execute */
258 0, /* static_pass_number */
259 TV_TREE_CFG
, /* tv_id */
260 PROP_gimple_leh
, /* properties_required */
261 PROP_cfg
, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts
| TODO_cleanup_cfg
265 | TODO_dump_func
/* todo_flags_finish */
270 /* Return true if T is a computed goto. */
273 computed_goto_p (gimple t
)
275 return (gimple_code (t
) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
286 factor_computed_gotos (void)
289 tree factored_label_decl
= NULL
;
291 gimple factored_computed_goto_label
= NULL
;
292 gimple factored_computed_goto
= NULL
;
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
300 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
306 last
= gsi_stmt (gsi
);
308 /* Ignore the computed goto we create when we factor the original
310 if (last
== factored_computed_goto
)
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last
))
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto
)
323 basic_block new_bb
= create_empty_bb (bb
);
324 gimple_stmt_iterator new_gsi
= gsi_start_bb (new_bb
);
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
330 var
= create_tmp_var (ptr_type_node
, "gotovar");
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl
= create_artificial_label (UNKNOWN_LOCATION
);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl
);
337 gsi_insert_after (&new_gsi
, factored_computed_goto_label
,
340 /* Build our new computed goto. */
341 factored_computed_goto
= gimple_build_goto (var
);
342 gsi_insert_after (&new_gsi
, factored_computed_goto
, GSI_NEW_STMT
);
345 /* Copy the original computed goto's destination into VAR. */
346 assignment
= gimple_build_assign (var
, gimple_goto_dest (last
));
347 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last
, factored_label_decl
);
356 /* Build a flowgraph for the sequence of stmts SEQ. */
359 make_blocks (gimple_seq seq
)
361 gimple_stmt_iterator i
= gsi_start (seq
);
363 bool start_new_block
= true;
364 bool first_stmt_of_seq
= true;
365 basic_block bb
= ENTRY_BLOCK_PTR
;
367 while (!gsi_end_p (i
))
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
377 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
379 if (!first_stmt_of_seq
)
380 seq
= gsi_split_seq_before (&i
);
381 bb
= create_basic_block (seq
, NULL
, bb
);
382 start_new_block
= false;
385 /* Now add STMT to BB and create the subgraphs for special statement
387 gimple_set_bb (stmt
, bb
);
389 if (computed_goto_p (stmt
))
390 found_computed_goto
= true;
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
394 if (stmt_ends_bb_p (stmt
))
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
401 if (gimple_has_lhs (stmt
)
402 && stmt_can_make_abnormal_goto (stmt
)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
405 tree lhs
= gimple_get_lhs (stmt
);
406 tree tmp
= create_tmp_var (TREE_TYPE (lhs
), NULL
);
407 gimple s
= gimple_build_assign (lhs
, tmp
);
408 gimple_set_location (s
, gimple_location (stmt
));
409 gimple_set_block (s
, gimple_block (stmt
));
410 gimple_set_lhs (stmt
, tmp
);
411 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
413 DECL_GIMPLE_REG_P (tmp
) = 1;
414 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
416 start_new_block
= true;
420 first_stmt_of_seq
= false;
425 /* Create and return a new empty basic block after bb AFTER. */
428 create_bb (void *h
, void *e
, basic_block after
)
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
439 bb
->index
= last_basic_block
;
441 bb
->il
.gimple
= ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb
, h
? (gimple_seq
) h
: gimple_seq_alloc ());
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb
, after
);
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block
== VEC_length (basic_block
, basic_block_info
))
450 size_t new_size
= last_basic_block
+ (last_basic_block
+ 3) / 4;
451 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, new_size
);
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block
, bb
);
464 /*---------------------------------------------------------------------------
466 ---------------------------------------------------------------------------*/
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
471 fold_cond_expr_cond (void)
477 gimple stmt
= last_stmt (bb
);
479 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
481 location_t loc
= gimple_location (stmt
);
485 fold_defer_overflow_warnings ();
486 cond
= fold_binary_loc (loc
, gimple_cond_code (stmt
), boolean_type_node
,
487 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
490 zerop
= integer_zerop (cond
);
491 onep
= integer_onep (cond
);
494 zerop
= onep
= false;
496 fold_undefer_overflow_warnings (zerop
|| onep
,
498 WARN_STRICT_OVERFLOW_CONDITIONAL
);
500 gimple_cond_make_false (stmt
);
502 gimple_cond_make_true (stmt
);
507 /* Join all the blocks in the flowgraph. */
513 struct omp_region
*cur_region
= NULL
;
515 /* Create an edge from entry to the first block with executable
517 make_edge (ENTRY_BLOCK_PTR
, BASIC_BLOCK (NUM_FIXED_BLOCKS
), EDGE_FALLTHRU
);
519 /* Traverse the basic block array placing edges. */
522 gimple last
= last_stmt (bb
);
527 enum gimple_code code
= gimple_code (last
);
531 make_goto_expr_edges (bb
);
535 make_edge (bb
, EXIT_BLOCK_PTR
, 0);
539 make_cond_expr_edges (bb
);
543 make_gimple_switch_edges (bb
);
547 make_eh_edges (last
);
550 case GIMPLE_EH_DISPATCH
:
551 fallthru
= make_eh_dispatch_edges (last
);
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
558 if (stmt_can_make_abnormal_goto (last
))
559 make_abnormal_goto_edges (bb
, true);
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last
);
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
567 make_edge (bb
, EXIT_BLOCK_PTR
, 0), fallthru
= false;
568 /* Some calls are known not to return. */
570 fallthru
= !(gimple_call_flags (last
) & ECF_NORETURN
);
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
576 if (is_ctrl_altering_stmt (last
))
577 make_eh_edges (last
);
582 make_gimple_asm_edges (bb
);
586 case GIMPLE_OMP_PARALLEL
:
587 case GIMPLE_OMP_TASK
:
589 case GIMPLE_OMP_SINGLE
:
590 case GIMPLE_OMP_MASTER
:
591 case GIMPLE_OMP_ORDERED
:
592 case GIMPLE_OMP_CRITICAL
:
593 case GIMPLE_OMP_SECTION
:
594 cur_region
= new_omp_region (bb
, code
, cur_region
);
598 case GIMPLE_OMP_SECTIONS
:
599 cur_region
= new_omp_region (bb
, code
, cur_region
);
603 case GIMPLE_OMP_SECTIONS_SWITCH
:
607 case GIMPLE_OMP_ATOMIC_LOAD
:
608 case GIMPLE_OMP_ATOMIC_STORE
:
612 case GIMPLE_OMP_RETURN
:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
616 cur_region
->exit
= bb
;
617 fallthru
= cur_region
->type
!= GIMPLE_OMP_SECTION
;
618 cur_region
= cur_region
->outer
;
621 case GIMPLE_OMP_CONTINUE
:
622 cur_region
->cont
= bb
;
623 switch (cur_region
->type
)
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
629 single_succ_edge (cur_region
->entry
)->flags
|= EDGE_ABNORMAL
;
630 /* Make the loopback edge. */
631 make_edge (bb
, single_succ (cur_region
->entry
),
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region
->entry
, bb
->next_bb
, EDGE_ABNORMAL
);
638 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
| EDGE_ABNORMAL
);
642 case GIMPLE_OMP_SECTIONS
:
643 /* Wire up the edges into and out of the nested sections. */
645 basic_block switch_bb
= single_succ (cur_region
->entry
);
647 struct omp_region
*i
;
648 for (i
= cur_region
->inner
; i
; i
= i
->next
)
650 gcc_assert (i
->type
== GIMPLE_OMP_SECTION
);
651 make_edge (switch_bb
, i
->entry
, 0);
652 make_edge (i
->exit
, bb
, EDGE_FALLTHRU
);
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb
, switch_bb
, 0);
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb
, bb
->next_bb
, 0);
671 gcc_assert (!stmt_ends_bb_p (last
));
680 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
682 assign_discriminator (gimple_location (last
), bb
->next_bb
);
689 /* Fold COND_EXPR_COND of each COND_EXPR. */
690 fold_cond_expr_cond ();
693 /* Trivial hash function for a location_t. ITEM is a pointer to
694 a hash table entry that maps a location_t to a discriminator. */
697 locus_map_hash (const void *item
)
699 return ((const struct locus_discrim_map
*) item
)->locus
;
702 /* Equality function for the locus-to-discriminator map. VA and VB
703 point to the two hash table entries to compare. */
706 locus_map_eq (const void *va
, const void *vb
)
708 const struct locus_discrim_map
*a
= (const struct locus_discrim_map
*) va
;
709 const struct locus_discrim_map
*b
= (const struct locus_discrim_map
*) vb
;
710 return a
->locus
== b
->locus
;
713 /* Find the next available discriminator value for LOCUS. The
714 discriminator distinguishes among several basic blocks that
715 share a common locus, allowing for more accurate sample-based
719 next_discriminator_for_locus (location_t locus
)
721 struct locus_discrim_map item
;
722 struct locus_discrim_map
**slot
;
725 item
.discriminator
= 0;
726 slot
= (struct locus_discrim_map
**)
727 htab_find_slot_with_hash (discriminator_per_locus
, (void *) &item
,
728 (hashval_t
) locus
, INSERT
);
730 if (*slot
== HTAB_EMPTY_ENTRY
)
732 *slot
= XNEW (struct locus_discrim_map
);
734 (*slot
)->locus
= locus
;
735 (*slot
)->discriminator
= 0;
737 (*slot
)->discriminator
++;
738 return (*slot
)->discriminator
;
741 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
744 same_line_p (location_t locus1
, location_t locus2
)
746 expanded_location from
, to
;
748 if (locus1
== locus2
)
751 from
= expand_location (locus1
);
752 to
= expand_location (locus2
);
754 if (from
.line
!= to
.line
)
756 if (from
.file
== to
.file
)
758 return (from
.file
!= NULL
760 && filename_cmp (from
.file
, to
.file
) == 0);
763 /* Assign a unique discriminator value to block BB if it begins at the same
764 LOCUS as its predecessor block. */
767 assign_discriminator (location_t locus
, basic_block bb
)
769 gimple first_in_to_bb
, last_in_to_bb
;
771 if (locus
== 0 || bb
->discriminator
!= 0)
774 first_in_to_bb
= first_non_label_stmt (bb
);
775 last_in_to_bb
= last_stmt (bb
);
776 if ((first_in_to_bb
&& same_line_p (locus
, gimple_location (first_in_to_bb
)))
777 || (last_in_to_bb
&& same_line_p (locus
, gimple_location (last_in_to_bb
))))
778 bb
->discriminator
= next_discriminator_for_locus (locus
);
781 /* Create the edges for a GIMPLE_COND starting at block BB. */
784 make_cond_expr_edges (basic_block bb
)
786 gimple entry
= last_stmt (bb
);
787 gimple then_stmt
, else_stmt
;
788 basic_block then_bb
, else_bb
;
789 tree then_label
, else_label
;
791 location_t entry_locus
;
794 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
796 entry_locus
= gimple_location (entry
);
798 /* Entry basic blocks for each component. */
799 then_label
= gimple_cond_true_label (entry
);
800 else_label
= gimple_cond_false_label (entry
);
801 then_bb
= label_to_block (then_label
);
802 else_bb
= label_to_block (else_label
);
803 then_stmt
= first_stmt (then_bb
);
804 else_stmt
= first_stmt (else_bb
);
806 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
807 assign_discriminator (entry_locus
, then_bb
);
808 e
->goto_locus
= gimple_location (then_stmt
);
810 e
->goto_block
= gimple_block (then_stmt
);
811 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
814 assign_discriminator (entry_locus
, else_bb
);
815 e
->goto_locus
= gimple_location (else_stmt
);
817 e
->goto_block
= gimple_block (else_stmt
);
820 /* We do not need the labels anymore. */
821 gimple_cond_set_true_label (entry
, NULL_TREE
);
822 gimple_cond_set_false_label (entry
, NULL_TREE
);
826 /* Called for each element in the hash table (P) as we delete the
827 edge to cases hash table.
829 Clear all the TREE_CHAINs to prevent problems with copying of
830 SWITCH_EXPRs and structure sharing rules, then free the hash table
834 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED
, void **value
,
835 void *data ATTRIBUTE_UNUSED
)
839 for (t
= (tree
) *value
; t
; t
= next
)
841 next
= CASE_CHAIN (t
);
842 CASE_CHAIN (t
) = NULL
;
849 /* Start recording information mapping edges to case labels. */
852 start_recording_case_labels (void)
854 gcc_assert (edge_to_cases
== NULL
);
855 edge_to_cases
= pointer_map_create ();
856 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
859 /* Return nonzero if we are recording information for case labels. */
862 recording_case_labels_p (void)
864 return (edge_to_cases
!= NULL
);
867 /* Stop recording information mapping edges to case labels and
868 remove any information we have recorded. */
870 end_recording_case_labels (void)
874 pointer_map_traverse (edge_to_cases
, edge_to_cases_cleanup
, NULL
);
875 pointer_map_destroy (edge_to_cases
);
876 edge_to_cases
= NULL
;
877 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
879 basic_block bb
= BASIC_BLOCK (i
);
882 gimple stmt
= last_stmt (bb
);
883 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
884 group_case_labels_stmt (stmt
);
887 BITMAP_FREE (touched_switch_bbs
);
890 /* If we are inside a {start,end}_recording_cases block, then return
891 a chain of CASE_LABEL_EXPRs from T which reference E.
893 Otherwise return NULL. */
896 get_cases_for_edge (edge e
, gimple t
)
901 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
902 chains available. Return NULL so the caller can detect this case. */
903 if (!recording_case_labels_p ())
906 slot
= pointer_map_contains (edge_to_cases
, e
);
910 /* If we did not find E in the hash table, then this must be the first
911 time we have been queried for information about E & T. Add all the
912 elements from T to the hash table then perform the query again. */
914 n
= gimple_switch_num_labels (t
);
915 for (i
= 0; i
< n
; i
++)
917 tree elt
= gimple_switch_label (t
, i
);
918 tree lab
= CASE_LABEL (elt
);
919 basic_block label_bb
= label_to_block (lab
);
920 edge this_edge
= find_edge (e
->src
, label_bb
);
922 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
924 slot
= pointer_map_insert (edge_to_cases
, this_edge
);
925 CASE_CHAIN (elt
) = (tree
) *slot
;
929 return (tree
) *pointer_map_contains (edge_to_cases
, e
);
932 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
935 make_gimple_switch_edges (basic_block bb
)
937 gimple entry
= last_stmt (bb
);
938 location_t entry_locus
;
941 entry_locus
= gimple_location (entry
);
943 n
= gimple_switch_num_labels (entry
);
945 for (i
= 0; i
< n
; ++i
)
947 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
948 basic_block label_bb
= label_to_block (lab
);
949 make_edge (bb
, label_bb
, 0);
950 assign_discriminator (entry_locus
, label_bb
);
955 /* Return the basic block holding label DEST. */
958 label_to_block_fn (struct function
*ifun
, tree dest
)
960 int uid
= LABEL_DECL_UID (dest
);
962 /* We would die hard when faced by an undefined label. Emit a label to
963 the very first basic block. This will hopefully make even the dataflow
964 and undefined variable warnings quite right. */
965 if (seen_error () && uid
< 0)
967 gimple_stmt_iterator gsi
= gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS
));
970 stmt
= gimple_build_label (dest
);
971 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
972 uid
= LABEL_DECL_UID (dest
);
974 if (VEC_length (basic_block
, ifun
->cfg
->x_label_to_block_map
)
975 <= (unsigned int) uid
)
977 return VEC_index (basic_block
, ifun
->cfg
->x_label_to_block_map
, uid
);
980 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
981 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
984 make_abnormal_goto_edges (basic_block bb
, bool for_call
)
986 basic_block target_bb
;
987 gimple_stmt_iterator gsi
;
989 FOR_EACH_BB (target_bb
)
990 for (gsi
= gsi_start_bb (target_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
992 gimple label_stmt
= gsi_stmt (gsi
);
995 if (gimple_code (label_stmt
) != GIMPLE_LABEL
)
998 target
= gimple_label_label (label_stmt
);
1000 /* Make an edge to every label block that has been marked as a
1001 potential target for a computed goto or a non-local goto. */
1002 if ((FORCED_LABEL (target
) && !for_call
)
1003 || (DECL_NONLOCAL (target
) && for_call
))
1005 make_edge (bb
, target_bb
, EDGE_ABNORMAL
);
1011 /* Create edges for a goto statement at block BB. */
1014 make_goto_expr_edges (basic_block bb
)
1016 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1017 gimple goto_t
= gsi_stmt (last
);
1019 /* A simple GOTO creates normal edges. */
1020 if (simple_goto_p (goto_t
))
1022 tree dest
= gimple_goto_dest (goto_t
);
1023 basic_block label_bb
= label_to_block (dest
);
1024 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1025 e
->goto_locus
= gimple_location (goto_t
);
1026 assign_discriminator (e
->goto_locus
, label_bb
);
1028 e
->goto_block
= gimple_block (goto_t
);
1029 gsi_remove (&last
, true);
1033 /* A computed GOTO creates abnormal edges. */
1034 make_abnormal_goto_edges (bb
, false);
1037 /* Create edges for an asm statement with labels at block BB. */
1040 make_gimple_asm_edges (basic_block bb
)
1042 gimple stmt
= last_stmt (bb
);
1043 location_t stmt_loc
= gimple_location (stmt
);
1044 int i
, n
= gimple_asm_nlabels (stmt
);
1046 for (i
= 0; i
< n
; ++i
)
1048 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1049 basic_block label_bb
= label_to_block (label
);
1050 make_edge (bb
, label_bb
, 0);
1051 assign_discriminator (stmt_loc
, label_bb
);
1055 /*---------------------------------------------------------------------------
1057 ---------------------------------------------------------------------------*/
1059 /* Cleanup useless labels in basic blocks. This is something we wish
1060 to do early because it allows us to group case labels before creating
1061 the edges for the CFG, and it speeds up block statement iterators in
1062 all passes later on.
1063 We rerun this pass after CFG is created, to get rid of the labels that
1064 are no longer referenced. After then we do not run it any more, since
1065 (almost) no new labels should be created. */
1067 /* A map from basic block index to the leading label of that block. */
1068 static struct label_record
1073 /* True if the label is referenced from somewhere. */
1077 /* Given LABEL return the first label in the same basic block. */
1080 main_block_label (tree label
)
1082 basic_block bb
= label_to_block (label
);
1083 tree main_label
= label_for_bb
[bb
->index
].label
;
1085 /* label_to_block possibly inserted undefined label into the chain. */
1088 label_for_bb
[bb
->index
].label
= label
;
1092 label_for_bb
[bb
->index
].used
= true;
1096 /* Clean up redundant labels within the exception tree. */
1099 cleanup_dead_labels_eh (void)
1106 if (cfun
->eh
== NULL
)
1109 for (i
= 1; VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, i
, lp
); ++i
)
1110 if (lp
&& lp
->post_landing_pad
)
1112 lab
= main_block_label (lp
->post_landing_pad
);
1113 if (lab
!= lp
->post_landing_pad
)
1115 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1116 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1120 FOR_ALL_EH_REGION (r
)
1124 case ERT_MUST_NOT_THROW
:
1130 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1134 c
->label
= main_block_label (lab
);
1139 case ERT_ALLOWED_EXCEPTIONS
:
1140 lab
= r
->u
.allowed
.label
;
1142 r
->u
.allowed
.label
= main_block_label (lab
);
1148 /* Cleanup redundant labels. This is a three-step process:
1149 1) Find the leading label for each block.
1150 2) Redirect all references to labels to the leading labels.
1151 3) Cleanup all useless labels. */
1154 cleanup_dead_labels (void)
1157 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block
);
1159 /* Find a suitable label for each block. We use the first user-defined
1160 label if there is one, or otherwise just the first label we see. */
1163 gimple_stmt_iterator i
;
1165 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1168 gimple stmt
= gsi_stmt (i
);
1170 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1173 label
= gimple_label_label (stmt
);
1175 /* If we have not yet seen a label for the current block,
1176 remember this one and see if there are more labels. */
1177 if (!label_for_bb
[bb
->index
].label
)
1179 label_for_bb
[bb
->index
].label
= label
;
1183 /* If we did see a label for the current block already, but it
1184 is an artificially created label, replace it if the current
1185 label is a user defined label. */
1186 if (!DECL_ARTIFICIAL (label
)
1187 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1189 label_for_bb
[bb
->index
].label
= label
;
1195 /* Now redirect all jumps/branches to the selected label.
1196 First do so for each block ending in a control statement. */
1199 gimple stmt
= last_stmt (bb
);
1203 switch (gimple_code (stmt
))
1207 tree true_label
= gimple_cond_true_label (stmt
);
1208 tree false_label
= gimple_cond_false_label (stmt
);
1211 gimple_cond_set_true_label (stmt
, main_block_label (true_label
));
1213 gimple_cond_set_false_label (stmt
, main_block_label (false_label
));
1219 size_t i
, n
= gimple_switch_num_labels (stmt
);
1221 /* Replace all destination labels. */
1222 for (i
= 0; i
< n
; ++i
)
1224 tree case_label
= gimple_switch_label (stmt
, i
);
1225 tree label
= main_block_label (CASE_LABEL (case_label
));
1226 CASE_LABEL (case_label
) = label
;
1233 int i
, n
= gimple_asm_nlabels (stmt
);
1235 for (i
= 0; i
< n
; ++i
)
1237 tree cons
= gimple_asm_label_op (stmt
, i
);
1238 tree label
= main_block_label (TREE_VALUE (cons
));
1239 TREE_VALUE (cons
) = label
;
1244 /* We have to handle gotos until they're removed, and we don't
1245 remove them until after we've created the CFG edges. */
1247 if (!computed_goto_p (stmt
))
1249 tree new_dest
= main_block_label (gimple_goto_dest (stmt
));
1250 gimple_goto_set_dest (stmt
, new_dest
);
1259 /* Do the same for the exception region tree labels. */
1260 cleanup_dead_labels_eh ();
1262 /* Finally, purge dead labels. All user-defined labels and labels that
1263 can be the target of non-local gotos and labels which have their
1264 address taken are preserved. */
1267 gimple_stmt_iterator i
;
1268 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1270 if (!label_for_this_bb
)
1273 /* If the main label of the block is unused, we may still remove it. */
1274 if (!label_for_bb
[bb
->index
].used
)
1275 label_for_this_bb
= NULL
;
1277 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1280 gimple stmt
= gsi_stmt (i
);
1282 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1285 label
= gimple_label_label (stmt
);
1287 if (label
== label_for_this_bb
1288 || !DECL_ARTIFICIAL (label
)
1289 || DECL_NONLOCAL (label
)
1290 || FORCED_LABEL (label
))
1293 gsi_remove (&i
, true);
1297 free (label_for_bb
);
1300 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1301 the ones jumping to the same label.
1302 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1305 group_case_labels_stmt (gimple stmt
)
1307 int old_size
= gimple_switch_num_labels (stmt
);
1308 int i
, j
, new_size
= old_size
;
1309 tree default_case
= NULL_TREE
;
1310 tree default_label
= NULL_TREE
;
1313 /* The default label is always the first case in a switch
1314 statement after gimplification if it was not optimized
1316 if (!CASE_LOW (gimple_switch_default_label (stmt
))
1317 && !CASE_HIGH (gimple_switch_default_label (stmt
)))
1319 default_case
= gimple_switch_default_label (stmt
);
1320 default_label
= CASE_LABEL (default_case
);
1324 has_default
= false;
1326 /* Look for possible opportunities to merge cases. */
1331 while (i
< old_size
)
1333 tree base_case
, base_label
, base_high
;
1334 base_case
= gimple_switch_label (stmt
, i
);
1336 gcc_assert (base_case
);
1337 base_label
= CASE_LABEL (base_case
);
1339 /* Discard cases that have the same destination as the
1341 if (base_label
== default_label
)
1343 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1349 base_high
= CASE_HIGH (base_case
)
1350 ? CASE_HIGH (base_case
)
1351 : CASE_LOW (base_case
);
1354 /* Try to merge case labels. Break out when we reach the end
1355 of the label vector or when we cannot merge the next case
1356 label with the current one. */
1357 while (i
< old_size
)
1359 tree merge_case
= gimple_switch_label (stmt
, i
);
1360 tree merge_label
= CASE_LABEL (merge_case
);
1361 tree t
= int_const_binop (PLUS_EXPR
, base_high
,
1362 integer_one_node
, 1);
1364 /* Merge the cases if they jump to the same place,
1365 and their ranges are consecutive. */
1366 if (merge_label
== base_label
1367 && tree_int_cst_equal (CASE_LOW (merge_case
), t
))
1369 base_high
= CASE_HIGH (merge_case
) ?
1370 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1371 CASE_HIGH (base_case
) = base_high
;
1372 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1381 /* Compress the case labels in the label vector, and adjust the
1382 length of the vector. */
1383 for (i
= 0, j
= 0; i
< new_size
; i
++)
1385 while (! gimple_switch_label (stmt
, j
))
1387 gimple_switch_set_label (stmt
, i
,
1388 gimple_switch_label (stmt
, j
++));
1391 gcc_assert (new_size
<= old_size
);
1392 gimple_switch_set_num_labels (stmt
, new_size
);
1395 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1396 and scan the sorted vector of cases. Combine the ones jumping to the
1400 group_case_labels (void)
1406 gimple stmt
= last_stmt (bb
);
1407 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1408 group_case_labels_stmt (stmt
);
1412 /* Checks whether we can merge block B into block A. */
1415 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1418 gimple_stmt_iterator gsi
;
1421 if (!single_succ_p (a
))
1424 if (single_succ_edge (a
)->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
1427 if (single_succ (a
) != b
)
1430 if (!single_pred_p (b
))
1433 if (b
== EXIT_BLOCK_PTR
)
1436 /* If A ends by a statement causing exceptions or something similar, we
1437 cannot merge the blocks. */
1438 stmt
= last_stmt (a
);
1439 if (stmt
&& stmt_ends_bb_p (stmt
))
1442 /* Do not allow a block with only a non-local label to be merged. */
1444 && gimple_code (stmt
) == GIMPLE_LABEL
1445 && DECL_NONLOCAL (gimple_label_label (stmt
)))
1448 /* Examine the labels at the beginning of B. */
1449 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1452 stmt
= gsi_stmt (gsi
);
1453 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1455 lab
= gimple_label_label (stmt
);
1457 /* Do not remove user labels. */
1458 if (!DECL_ARTIFICIAL (lab
))
1462 /* Protect the loop latches. */
1463 if (current_loops
&& b
->loop_father
->latch
== b
)
1466 /* It must be possible to eliminate all phi nodes in B. If ssa form
1467 is not up-to-date and a name-mapping is registered, we cannot eliminate
1468 any phis. Symbols marked for renaming are never a problem though. */
1469 phis
= phi_nodes (b
);
1470 if (!gimple_seq_empty_p (phis
)
1471 && name_mappings_registered_p ())
1474 /* When not optimizing, don't merge if we'd lose goto_locus. */
1476 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1478 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1479 gimple_stmt_iterator prev
, next
;
1480 prev
= gsi_last_nondebug_bb (a
);
1481 next
= gsi_after_labels (b
);
1482 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1483 gsi_next_nondebug (&next
);
1484 if ((gsi_end_p (prev
)
1485 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1486 && (gsi_end_p (next
)
1487 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1494 /* Return true if the var whose chain of uses starts at PTR has no
1497 has_zero_uses_1 (const ssa_use_operand_t
*head
)
1499 const ssa_use_operand_t
*ptr
;
1501 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1502 if (!is_gimple_debug (USE_STMT (ptr
)))
1508 /* Return true if the var whose chain of uses starts at PTR has a
1509 single nondebug use. Set USE_P and STMT to that single nondebug
1510 use, if so, or to NULL otherwise. */
1512 single_imm_use_1 (const ssa_use_operand_t
*head
,
1513 use_operand_p
*use_p
, gimple
*stmt
)
1515 ssa_use_operand_t
*ptr
, *single_use
= 0;
1517 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1518 if (!is_gimple_debug (USE_STMT (ptr
)))
1529 *use_p
= single_use
;
1532 *stmt
= single_use
? single_use
->loc
.stmt
: NULL
;
1534 return !!single_use
;
1537 /* Replaces all uses of NAME by VAL. */
1540 replace_uses_by (tree name
, tree val
)
1542 imm_use_iterator imm_iter
;
1547 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1549 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1551 replace_exp (use
, val
);
1553 if (gimple_code (stmt
) == GIMPLE_PHI
)
1555 e
= gimple_phi_arg_edge (stmt
, PHI_ARG_INDEX_FROM_USE (use
));
1556 if (e
->flags
& EDGE_ABNORMAL
)
1558 /* This can only occur for virtual operands, since
1559 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1560 would prevent replacement. */
1561 gcc_assert (!is_gimple_reg (name
));
1562 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1567 if (gimple_code (stmt
) != GIMPLE_PHI
)
1571 fold_stmt_inplace (stmt
);
1572 if (cfgcleanup_altered_bbs
&& !is_gimple_debug (stmt
))
1573 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1575 /* FIXME. This should go in update_stmt. */
1576 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1578 tree op
= gimple_op (stmt
, i
);
1579 /* Operands may be empty here. For example, the labels
1580 of a GIMPLE_COND are nulled out following the creation
1581 of the corresponding CFG edges. */
1582 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1583 recompute_tree_invariant_for_addr_expr (op
);
1586 maybe_clean_or_replace_eh_stmt (stmt
, stmt
);
1591 gcc_assert (has_zero_uses (name
));
1593 /* Also update the trees stored in loop structures. */
1599 FOR_EACH_LOOP (li
, loop
, 0)
1601 substitute_in_loop_info (loop
, name
, val
);
1606 /* Merge block B into block A. */
1609 gimple_merge_blocks (basic_block a
, basic_block b
)
1611 gimple_stmt_iterator last
, gsi
, psi
;
1612 gimple_seq phis
= phi_nodes (b
);
1615 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1617 /* Remove all single-valued PHI nodes from block B of the form
1618 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1619 gsi
= gsi_last_bb (a
);
1620 for (psi
= gsi_start (phis
); !gsi_end_p (psi
); )
1622 gimple phi
= gsi_stmt (psi
);
1623 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1625 bool may_replace_uses
= !is_gimple_reg (def
)
1626 || may_propagate_copy (def
, use
);
1628 /* In case we maintain loop closed ssa form, do not propagate arguments
1629 of loop exit phi nodes. */
1631 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1632 && is_gimple_reg (def
)
1633 && TREE_CODE (use
) == SSA_NAME
1634 && a
->loop_father
!= b
->loop_father
)
1635 may_replace_uses
= false;
1637 if (!may_replace_uses
)
1639 gcc_assert (is_gimple_reg (def
));
1641 /* Note that just emitting the copies is fine -- there is no problem
1642 with ordering of phi nodes. This is because A is the single
1643 predecessor of B, therefore results of the phi nodes cannot
1644 appear as arguments of the phi nodes. */
1645 copy
= gimple_build_assign (def
, use
);
1646 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
1647 remove_phi_node (&psi
, false);
1651 /* If we deal with a PHI for virtual operands, we can simply
1652 propagate these without fussing with folding or updating
1654 if (!is_gimple_reg (def
))
1656 imm_use_iterator iter
;
1657 use_operand_p use_p
;
1660 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
1661 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
1662 SET_USE (use_p
, use
);
1664 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
1665 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
1668 replace_uses_by (def
, use
);
1670 remove_phi_node (&psi
, true);
1674 /* Ensure that B follows A. */
1675 move_block_after (b
, a
);
1677 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
1678 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
1680 /* Remove labels from B and set gimple_bb to A for other statements. */
1681 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
1683 gimple stmt
= gsi_stmt (gsi
);
1684 if (gimple_code (stmt
) == GIMPLE_LABEL
)
1686 tree label
= gimple_label_label (stmt
);
1689 gsi_remove (&gsi
, false);
1691 /* Now that we can thread computed gotos, we might have
1692 a situation where we have a forced label in block B
1693 However, the label at the start of block B might still be
1694 used in other ways (think about the runtime checking for
1695 Fortran assigned gotos). So we can not just delete the
1696 label. Instead we move the label to the start of block A. */
1697 if (FORCED_LABEL (label
))
1699 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
1700 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
1703 lp_nr
= EH_LANDING_PAD_NR (label
);
1706 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
1707 lp
->post_landing_pad
= NULL
;
1712 gimple_set_bb (stmt
, a
);
1717 /* Merge the sequences. */
1718 last
= gsi_last_bb (a
);
1719 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
1720 set_bb_seq (b
, NULL
);
1722 if (cfgcleanup_altered_bbs
)
1723 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
1727 /* Return the one of two successors of BB that is not reachable by a
1728 complex edge, if there is one. Else, return BB. We use
1729 this in optimizations that use post-dominators for their heuristics,
1730 to catch the cases in C++ where function calls are involved. */
1733 single_noncomplex_succ (basic_block bb
)
1736 if (EDGE_COUNT (bb
->succs
) != 2)
1739 e0
= EDGE_SUCC (bb
, 0);
1740 e1
= EDGE_SUCC (bb
, 1);
1741 if (e0
->flags
& EDGE_COMPLEX
)
1743 if (e1
->flags
& EDGE_COMPLEX
)
1749 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1752 notice_special_calls (gimple call
)
1754 int flags
= gimple_call_flags (call
);
1756 if (flags
& ECF_MAY_BE_ALLOCA
)
1757 cfun
->calls_alloca
= true;
1758 if (flags
& ECF_RETURNS_TWICE
)
1759 cfun
->calls_setjmp
= true;
1763 /* Clear flags set by notice_special_calls. Used by dead code removal
1764 to update the flags. */
1767 clear_special_calls (void)
1769 cfun
->calls_alloca
= false;
1770 cfun
->calls_setjmp
= false;
1773 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1776 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
1778 /* Since this block is no longer reachable, we can just delete all
1779 of its PHI nodes. */
1780 remove_phi_nodes (bb
);
1782 /* Remove edges to BB's successors. */
1783 while (EDGE_COUNT (bb
->succs
) > 0)
1784 remove_edge (EDGE_SUCC (bb
, 0));
1788 /* Remove statements of basic block BB. */
1791 remove_bb (basic_block bb
)
1793 gimple_stmt_iterator i
;
1797 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
1798 if (dump_flags
& TDF_DETAILS
)
1800 dump_bb (bb
, dump_file
, 0);
1801 fprintf (dump_file
, "\n");
1807 struct loop
*loop
= bb
->loop_father
;
1809 /* If a loop gets removed, clean up the information associated
1811 if (loop
->latch
== bb
1812 || loop
->header
== bb
)
1813 free_numbers_of_iterations_estimates_loop (loop
);
1816 /* Remove all the instructions in the block. */
1817 if (bb_seq (bb
) != NULL
)
1819 /* Walk backwards so as to get a chance to substitute all
1820 released DEFs into debug stmts. See
1821 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1823 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
1825 gimple stmt
= gsi_stmt (i
);
1826 if (gimple_code (stmt
) == GIMPLE_LABEL
1827 && (FORCED_LABEL (gimple_label_label (stmt
))
1828 || DECL_NONLOCAL (gimple_label_label (stmt
))))
1831 gimple_stmt_iterator new_gsi
;
1833 /* A non-reachable non-local label may still be referenced.
1834 But it no longer needs to carry the extra semantics of
1836 if (DECL_NONLOCAL (gimple_label_label (stmt
)))
1838 DECL_NONLOCAL (gimple_label_label (stmt
)) = 0;
1839 FORCED_LABEL (gimple_label_label (stmt
)) = 1;
1842 new_bb
= bb
->prev_bb
;
1843 new_gsi
= gsi_start_bb (new_bb
);
1844 gsi_remove (&i
, false);
1845 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
1849 /* Release SSA definitions if we are in SSA. Note that we
1850 may be called when not in SSA. For example,
1851 final_cleanup calls this function via
1852 cleanup_tree_cfg. */
1853 if (gimple_in_ssa_p (cfun
))
1854 release_defs (stmt
);
1856 gsi_remove (&i
, true);
1860 i
= gsi_last_bb (bb
);
1866 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
1867 bb
->il
.gimple
= NULL
;
1871 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1872 predicate VAL, return the edge that will be taken out of the block.
1873 If VAL does not match a unique edge, NULL is returned. */
1876 find_taken_edge (basic_block bb
, tree val
)
1880 stmt
= last_stmt (bb
);
1883 gcc_assert (is_ctrl_stmt (stmt
));
1888 if (!is_gimple_min_invariant (val
))
1891 if (gimple_code (stmt
) == GIMPLE_COND
)
1892 return find_taken_edge_cond_expr (bb
, val
);
1894 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1895 return find_taken_edge_switch_expr (bb
, val
);
1897 if (computed_goto_p (stmt
))
1899 /* Only optimize if the argument is a label, if the argument is
1900 not a label then we can not construct a proper CFG.
1902 It may be the case that we only need to allow the LABEL_REF to
1903 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1904 appear inside a LABEL_EXPR just to be safe. */
1905 if ((TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
1906 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
1907 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
1914 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1915 statement, determine which of the outgoing edges will be taken out of the
1916 block. Return NULL if either edge may be taken. */
1919 find_taken_edge_computed_goto (basic_block bb
, tree val
)
1924 dest
= label_to_block (val
);
1927 e
= find_edge (bb
, dest
);
1928 gcc_assert (e
!= NULL
);
1934 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1935 statement, determine which of the two edges will be taken out of the
1936 block. Return NULL if either edge may be taken. */
1939 find_taken_edge_cond_expr (basic_block bb
, tree val
)
1941 edge true_edge
, false_edge
;
1943 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
1945 gcc_assert (TREE_CODE (val
) == INTEGER_CST
);
1946 return (integer_zerop (val
) ? false_edge
: true_edge
);
1949 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1950 statement, determine which edge will be taken out of the block. Return
1951 NULL if any edge may be taken. */
1954 find_taken_edge_switch_expr (basic_block bb
, tree val
)
1956 basic_block dest_bb
;
1961 switch_stmt
= last_stmt (bb
);
1962 taken_case
= find_case_label_for_value (switch_stmt
, val
);
1963 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
1965 e
= find_edge (bb
, dest_bb
);
1971 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1972 We can make optimal use here of the fact that the case labels are
1973 sorted: We can do a binary search for a case matching VAL. */
1976 find_case_label_for_value (gimple switch_stmt
, tree val
)
1978 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
1979 tree default_case
= gimple_switch_default_label (switch_stmt
);
1981 for (low
= 0, high
= n
; high
- low
> 1; )
1983 size_t i
= (high
+ low
) / 2;
1984 tree t
= gimple_switch_label (switch_stmt
, i
);
1987 /* Cache the result of comparing CASE_LOW and val. */
1988 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
1995 if (CASE_HIGH (t
) == NULL
)
1997 /* A singe-valued case label. */
2003 /* A case range. We can only handle integer ranges. */
2004 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2009 return default_case
;
2013 /* Dump a basic block on stderr. */
2016 gimple_debug_bb (basic_block bb
)
2018 gimple_dump_bb (bb
, stderr
, 0, TDF_VOPS
|TDF_MEMSYMS
);
2022 /* Dump basic block with index N on stderr. */
2025 gimple_debug_bb_n (int n
)
2027 gimple_debug_bb (BASIC_BLOCK (n
));
2028 return BASIC_BLOCK (n
);
2032 /* Dump the CFG on stderr.
2034 FLAGS are the same used by the tree dumping functions
2035 (see TDF_* in tree-pass.h). */
2038 gimple_debug_cfg (int flags
)
2040 gimple_dump_cfg (stderr
, flags
);
2044 /* Dump the program showing basic block boundaries on the given FILE.
2046 FLAGS are the same used by the tree dumping functions (see TDF_* in
2050 gimple_dump_cfg (FILE *file
, int flags
)
2052 if (flags
& TDF_DETAILS
)
2054 const char *funcname
2055 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2058 fprintf (file
, ";; Function %s\n\n", funcname
);
2059 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2060 n_basic_blocks
, n_edges
, last_basic_block
);
2062 brief_dump_cfg (file
);
2063 fprintf (file
, "\n");
2066 if (flags
& TDF_STATS
)
2067 dump_cfg_stats (file
);
2069 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2073 /* Dump CFG statistics on FILE. */
2076 dump_cfg_stats (FILE *file
)
2078 static long max_num_merged_labels
= 0;
2079 unsigned long size
, total
= 0;
2082 const char * const fmt_str
= "%-30s%-13s%12s\n";
2083 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2084 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2085 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2086 const char *funcname
2087 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2090 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2092 fprintf (file
, "---------------------------------------------------------\n");
2093 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2094 fprintf (file
, fmt_str
, "", " instances ", "used ");
2095 fprintf (file
, "---------------------------------------------------------\n");
2097 size
= n_basic_blocks
* sizeof (struct basic_block_def
);
2099 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks
,
2100 SCALE (size
), LABEL (size
));
2104 num_edges
+= EDGE_COUNT (bb
->succs
);
2105 size
= num_edges
* sizeof (struct edge_def
);
2107 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2109 fprintf (file
, "---------------------------------------------------------\n");
2110 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2112 fprintf (file
, "---------------------------------------------------------\n");
2113 fprintf (file
, "\n");
2115 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2116 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2118 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2119 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2121 fprintf (file
, "\n");
2125 /* Dump CFG statistics on stderr. Keep extern so that it's always
2126 linked in the final executable. */
2129 debug_cfg_stats (void)
2131 dump_cfg_stats (stderr
);
2135 /* Dump the flowgraph to a .vcg FILE. */
2138 gimple_cfg2vcg (FILE *file
)
2143 const char *funcname
2144 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2146 /* Write the file header. */
2147 fprintf (file
, "graph: { title: \"%s\"\n", funcname
);
2148 fprintf (file
, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2149 fprintf (file
, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2151 /* Write blocks and edges. */
2152 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
2154 fprintf (file
, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2157 if (e
->flags
& EDGE_FAKE
)
2158 fprintf (file
, " linestyle: dotted priority: 10");
2160 fprintf (file
, " linestyle: solid priority: 100");
2162 fprintf (file
, " }\n");
2168 enum gimple_code head_code
, end_code
;
2169 const char *head_name
, *end_name
;
2172 gimple first
= first_stmt (bb
);
2173 gimple last
= last_stmt (bb
);
2177 head_code
= gimple_code (first
);
2178 head_name
= gimple_code_name
[head_code
];
2179 head_line
= get_lineno (first
);
2182 head_name
= "no-statement";
2186 end_code
= gimple_code (last
);
2187 end_name
= gimple_code_name
[end_code
];
2188 end_line
= get_lineno (last
);
2191 end_name
= "no-statement";
2193 fprintf (file
, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2194 bb
->index
, bb
->index
, head_name
, head_line
, end_name
,
2197 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2199 if (e
->dest
== EXIT_BLOCK_PTR
)
2200 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb
->index
);
2202 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb
->index
, e
->dest
->index
);
2204 if (e
->flags
& EDGE_FAKE
)
2205 fprintf (file
, " priority: 10 linestyle: dotted");
2207 fprintf (file
, " priority: 100 linestyle: solid");
2209 fprintf (file
, " }\n");
2212 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
2216 fputs ("}\n\n", file
);
2221 /*---------------------------------------------------------------------------
2222 Miscellaneous helpers
2223 ---------------------------------------------------------------------------*/
2225 /* Return true if T represents a stmt that always transfers control. */
2228 is_ctrl_stmt (gimple t
)
2230 switch (gimple_code (t
))
2244 /* Return true if T is a statement that may alter the flow of control
2245 (e.g., a call to a non-returning function). */
2248 is_ctrl_altering_stmt (gimple t
)
2252 switch (gimple_code (t
))
2256 int flags
= gimple_call_flags (t
);
2258 /* A non-pure/const call alters flow control if the current
2259 function has nonlocal labels. */
2260 if (!(flags
& (ECF_CONST
| ECF_PURE
| ECF_LEAF
))
2261 && cfun
->has_nonlocal_label
)
2264 /* A call also alters control flow if it does not return. */
2265 if (flags
& ECF_NORETURN
)
2268 /* BUILT_IN_RETURN call is same as return statement. */
2269 if (gimple_call_builtin_p (t
, BUILT_IN_RETURN
))
2274 case GIMPLE_EH_DISPATCH
:
2275 /* EH_DISPATCH branches to the individual catch handlers at
2276 this level of a try or allowed-exceptions region. It can
2277 fallthru to the next statement as well. */
2281 if (gimple_asm_nlabels (t
) > 0)
2286 /* OpenMP directives alter control flow. */
2293 /* If a statement can throw, it alters control flow. */
2294 return stmt_can_throw_internal (t
);
2298 /* Return true if T is a simple local goto. */
2301 simple_goto_p (gimple t
)
2303 return (gimple_code (t
) == GIMPLE_GOTO
2304 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2308 /* Return true if T can make an abnormal transfer of control flow.
2309 Transfers of control flow associated with EH are excluded. */
2312 stmt_can_make_abnormal_goto (gimple t
)
2314 if (computed_goto_p (t
))
2316 if (is_gimple_call (t
))
2317 return (gimple_has_side_effects (t
) && cfun
->has_nonlocal_label
2318 && !(gimple_call_flags (t
) & ECF_LEAF
));
2323 /* Return true if STMT should start a new basic block. PREV_STMT is
2324 the statement preceding STMT. It is used when STMT is a label or a
2325 case label. Labels should only start a new basic block if their
2326 previous statement wasn't a label. Otherwise, sequence of labels
2327 would generate unnecessary basic blocks that only contain a single
2331 stmt_starts_bb_p (gimple stmt
, gimple prev_stmt
)
2336 /* Labels start a new basic block only if the preceding statement
2337 wasn't a label of the same type. This prevents the creation of
2338 consecutive blocks that have nothing but a single label. */
2339 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2341 /* Nonlocal and computed GOTO targets always start a new block. */
2342 if (DECL_NONLOCAL (gimple_label_label (stmt
))
2343 || FORCED_LABEL (gimple_label_label (stmt
)))
2346 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2348 if (DECL_NONLOCAL (gimple_label_label (prev_stmt
)))
2351 cfg_stats
.num_merged_labels
++;
2362 /* Return true if T should end a basic block. */
2365 stmt_ends_bb_p (gimple t
)
2367 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2370 /* Remove block annotations and other data structures. */
2373 delete_tree_cfg_annotations (void)
2375 label_to_block_map
= NULL
;
2379 /* Return the first statement in basic block BB. */
2382 first_stmt (basic_block bb
)
2384 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2387 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2395 /* Return the first non-label statement in basic block BB. */
2398 first_non_label_stmt (basic_block bb
)
2400 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2401 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2403 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2406 /* Return the last statement in basic block BB. */
2409 last_stmt (basic_block bb
)
2411 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2414 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2422 /* Return the last statement of an otherwise empty block. Return NULL
2423 if the block is totally empty, or if it contains more than one
2427 last_and_only_stmt (basic_block bb
)
2429 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2435 last
= gsi_stmt (i
);
2436 gsi_prev_nondebug (&i
);
2440 /* Empty statements should no longer appear in the instruction stream.
2441 Everything that might have appeared before should be deleted by
2442 remove_useless_stmts, and the optimizers should just gsi_remove
2443 instead of smashing with build_empty_stmt.
2445 Thus the only thing that should appear here in a block containing
2446 one executable statement is a label. */
2447 prev
= gsi_stmt (i
);
2448 if (gimple_code (prev
) == GIMPLE_LABEL
)
2454 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2457 reinstall_phi_args (edge new_edge
, edge old_edge
)
2459 edge_var_map_vector v
;
2462 gimple_stmt_iterator phis
;
2464 v
= redirect_edge_var_map_vector (old_edge
);
2468 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2469 VEC_iterate (edge_var_map
, v
, i
, vm
) && !gsi_end_p (phis
);
2470 i
++, gsi_next (&phis
))
2472 gimple phi
= gsi_stmt (phis
);
2473 tree result
= redirect_edge_var_map_result (vm
);
2474 tree arg
= redirect_edge_var_map_def (vm
);
2476 gcc_assert (result
== gimple_phi_result (phi
));
2478 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2481 redirect_edge_var_map_clear (old_edge
);
2484 /* Returns the basic block after which the new basic block created
2485 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2486 near its "logical" location. This is of most help to humans looking
2487 at debugging dumps. */
2490 split_edge_bb_loc (edge edge_in
)
2492 basic_block dest
= edge_in
->dest
;
2493 basic_block dest_prev
= dest
->prev_bb
;
2497 edge e
= find_edge (dest_prev
, dest
);
2498 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2499 return edge_in
->src
;
2504 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2505 Abort on abnormal edges. */
2508 gimple_split_edge (edge edge_in
)
2510 basic_block new_bb
, after_bb
, dest
;
2513 /* Abnormal edges cannot be split. */
2514 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2516 dest
= edge_in
->dest
;
2518 after_bb
= split_edge_bb_loc (edge_in
);
2520 new_bb
= create_empty_bb (after_bb
);
2521 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2522 new_bb
->count
= edge_in
->count
;
2523 new_edge
= make_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2524 new_edge
->probability
= REG_BR_PROB_BASE
;
2525 new_edge
->count
= edge_in
->count
;
2527 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2528 gcc_assert (e
== edge_in
);
2529 reinstall_phi_args (new_edge
, e
);
2535 /* Verify properties of the address expression T with base object BASE. */
2538 verify_address (tree t
, tree base
)
2541 bool old_side_effects
;
2543 bool new_side_effects
;
2545 old_constant
= TREE_CONSTANT (t
);
2546 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2548 recompute_tree_invariant_for_addr_expr (t
);
2549 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2550 new_constant
= TREE_CONSTANT (t
);
2552 if (old_constant
!= new_constant
)
2554 error ("constant not recomputed when ADDR_EXPR changed");
2557 if (old_side_effects
!= new_side_effects
)
2559 error ("side effects not recomputed when ADDR_EXPR changed");
2563 if (!(TREE_CODE (base
) == VAR_DECL
2564 || TREE_CODE (base
) == PARM_DECL
2565 || TREE_CODE (base
) == RESULT_DECL
))
2568 if (DECL_GIMPLE_REG_P (base
))
2570 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2577 /* Callback for walk_tree, check that all elements with address taken are
2578 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2579 inside a PHI node. */
2582 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2589 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2590 #define CHECK_OP(N, MSG) \
2591 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2592 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2594 switch (TREE_CODE (t
))
2597 if (SSA_NAME_IN_FREE_LIST (t
))
2599 error ("SSA name in freelist but still referenced");
2605 error ("INDIRECT_REF in gimple IL");
2609 x
= TREE_OPERAND (t
, 0);
2610 if (!POINTER_TYPE_P (TREE_TYPE (x
))
2611 || !is_gimple_mem_ref_addr (x
))
2613 error ("invalid first operand of MEM_REF");
2616 if (TREE_CODE (TREE_OPERAND (t
, 1)) != INTEGER_CST
2617 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
2619 error ("invalid offset operand of MEM_REF");
2620 return TREE_OPERAND (t
, 1);
2622 if (TREE_CODE (x
) == ADDR_EXPR
2623 && (x
= verify_address (x
, TREE_OPERAND (x
, 0))))
2629 x
= fold (ASSERT_EXPR_COND (t
));
2630 if (x
== boolean_false_node
)
2632 error ("ASSERT_EXPR with an always-false condition");
2638 error ("MODIFY_EXPR not expected while having tuples");
2645 gcc_assert (is_gimple_address (t
));
2647 /* Skip any references (they will be checked when we recurse down the
2648 tree) and ensure that any variable used as a prefix is marked
2650 for (x
= TREE_OPERAND (t
, 0);
2651 handled_component_p (x
);
2652 x
= TREE_OPERAND (x
, 0))
2655 if ((tem
= verify_address (t
, x
)))
2658 if (!(TREE_CODE (x
) == VAR_DECL
2659 || TREE_CODE (x
) == PARM_DECL
2660 || TREE_CODE (x
) == RESULT_DECL
))
2663 if (!TREE_ADDRESSABLE (x
))
2665 error ("address taken, but ADDRESSABLE bit not set");
2673 x
= COND_EXPR_COND (t
);
2674 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
2676 error ("non-integral used in condition");
2679 if (!is_gimple_condexpr (x
))
2681 error ("invalid conditional operand");
2686 case NON_LVALUE_EXPR
:
2690 case FIX_TRUNC_EXPR
:
2695 case TRUTH_NOT_EXPR
:
2696 CHECK_OP (0, "invalid operand to unary operator");
2703 case ARRAY_RANGE_REF
:
2705 case VIEW_CONVERT_EXPR
:
2706 /* We have a nest of references. Verify that each of the operands
2707 that determine where to reference is either a constant or a variable,
2708 verify that the base is valid, and then show we've already checked
2710 while (handled_component_p (t
))
2712 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
2713 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2714 else if (TREE_CODE (t
) == ARRAY_REF
2715 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
2717 CHECK_OP (1, "invalid array index");
2718 if (TREE_OPERAND (t
, 2))
2719 CHECK_OP (2, "invalid array lower bound");
2720 if (TREE_OPERAND (t
, 3))
2721 CHECK_OP (3, "invalid array stride");
2723 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
2725 if (!host_integerp (TREE_OPERAND (t
, 1), 1)
2726 || !host_integerp (TREE_OPERAND (t
, 2), 1))
2728 error ("invalid position or size operand to BIT_FIELD_REF");
2731 else if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
2732 && (TYPE_PRECISION (TREE_TYPE (t
))
2733 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2735 error ("integral result type precision does not match "
2736 "field size of BIT_FIELD_REF");
2739 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
2740 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t
)))
2741 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2743 error ("mode precision of non-integral result does not "
2744 "match field size of BIT_FIELD_REF");
2749 t
= TREE_OPERAND (t
, 0);
2752 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
2754 error ("invalid reference prefix");
2761 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2762 POINTER_PLUS_EXPR. */
2763 if (POINTER_TYPE_P (TREE_TYPE (t
)))
2765 error ("invalid operand to plus/minus, type is a pointer");
2768 CHECK_OP (0, "invalid operand to binary operator");
2769 CHECK_OP (1, "invalid operand to binary operator");
2772 case POINTER_PLUS_EXPR
:
2773 /* Check to make sure the first operand is a pointer or reference type. */
2774 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
2776 error ("invalid operand to pointer plus, first operand is not a pointer");
2779 /* Check to make sure the second operand is an integer with type of
2781 if (!useless_type_conversion_p (sizetype
,
2782 TREE_TYPE (TREE_OPERAND (t
, 1))))
2784 error ("invalid operand to pointer plus, second operand is not an "
2785 "integer with type of sizetype");
2795 case UNORDERED_EXPR
:
2804 case TRUNC_DIV_EXPR
:
2806 case FLOOR_DIV_EXPR
:
2807 case ROUND_DIV_EXPR
:
2808 case TRUNC_MOD_EXPR
:
2810 case FLOOR_MOD_EXPR
:
2811 case ROUND_MOD_EXPR
:
2813 case EXACT_DIV_EXPR
:
2823 CHECK_OP (0, "invalid operand to binary operator");
2824 CHECK_OP (1, "invalid operand to binary operator");
2828 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
2841 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2842 Returns true if there is an error, otherwise false. */
2845 verify_types_in_gimple_min_lval (tree expr
)
2849 if (is_gimple_id (expr
))
2852 if (TREE_CODE (expr
) != TARGET_MEM_REF
2853 && TREE_CODE (expr
) != MEM_REF
)
2855 error ("invalid expression for min lvalue");
2859 /* TARGET_MEM_REFs are strange beasts. */
2860 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2863 op
= TREE_OPERAND (expr
, 0);
2864 if (!is_gimple_val (op
))
2866 error ("invalid operand in indirect reference");
2867 debug_generic_stmt (op
);
2870 /* Memory references now generally can involve a value conversion. */
2875 /* Verify if EXPR is a valid GIMPLE reference expression. If
2876 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2877 if there is an error, otherwise false. */
2880 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
2882 while (handled_component_p (expr
))
2884 tree op
= TREE_OPERAND (expr
, 0);
2886 if (TREE_CODE (expr
) == ARRAY_REF
2887 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
2889 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
2890 || (TREE_OPERAND (expr
, 2)
2891 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
2892 || (TREE_OPERAND (expr
, 3)
2893 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
2895 error ("invalid operands to array reference");
2896 debug_generic_stmt (expr
);
2901 /* Verify if the reference array element types are compatible. */
2902 if (TREE_CODE (expr
) == ARRAY_REF
2903 && !useless_type_conversion_p (TREE_TYPE (expr
),
2904 TREE_TYPE (TREE_TYPE (op
))))
2906 error ("type mismatch in array reference");
2907 debug_generic_stmt (TREE_TYPE (expr
));
2908 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2911 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
2912 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
2913 TREE_TYPE (TREE_TYPE (op
))))
2915 error ("type mismatch in array range reference");
2916 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2921 if ((TREE_CODE (expr
) == REALPART_EXPR
2922 || TREE_CODE (expr
) == IMAGPART_EXPR
)
2923 && !useless_type_conversion_p (TREE_TYPE (expr
),
2924 TREE_TYPE (TREE_TYPE (op
))))
2926 error ("type mismatch in real/imagpart reference");
2927 debug_generic_stmt (TREE_TYPE (expr
));
2928 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2932 if (TREE_CODE (expr
) == COMPONENT_REF
2933 && !useless_type_conversion_p (TREE_TYPE (expr
),
2934 TREE_TYPE (TREE_OPERAND (expr
, 1))))
2936 error ("type mismatch in component reference");
2937 debug_generic_stmt (TREE_TYPE (expr
));
2938 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
2942 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
2944 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2945 that their operand is not an SSA name or an invariant when
2946 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2947 bug). Otherwise there is nothing to verify, gross mismatches at
2948 most invoke undefined behavior. */
2950 && (TREE_CODE (op
) == SSA_NAME
2951 || is_gimple_min_invariant (op
)))
2953 error ("conversion of an SSA_NAME on the left hand side");
2954 debug_generic_stmt (expr
);
2957 else if (TREE_CODE (op
) == SSA_NAME
2958 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
2960 error ("conversion of register to a different size");
2961 debug_generic_stmt (expr
);
2964 else if (!handled_component_p (op
))
2971 if (TREE_CODE (expr
) == MEM_REF
)
2973 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
2975 error ("invalid address operand in MEM_REF");
2976 debug_generic_stmt (expr
);
2979 if (TREE_CODE (TREE_OPERAND (expr
, 1)) != INTEGER_CST
2980 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
2982 error ("invalid offset operand in MEM_REF");
2983 debug_generic_stmt (expr
);
2987 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2989 if (!TMR_BASE (expr
)
2990 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
2992 error ("invalid address operand in TARGET_MEM_REF");
2995 if (!TMR_OFFSET (expr
)
2996 || TREE_CODE (TMR_OFFSET (expr
)) != INTEGER_CST
2997 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
2999 error ("invalid offset operand in TARGET_MEM_REF");
3000 debug_generic_stmt (expr
);
3005 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3006 && verify_types_in_gimple_min_lval (expr
));
3009 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3010 list of pointer-to types that is trivially convertible to DEST. */
3013 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3017 if (!TYPE_POINTER_TO (src_obj
))
3020 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3021 if (useless_type_conversion_p (dest
, src
))
3027 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3028 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3031 valid_fixed_convert_types_p (tree type1
, tree type2
)
3033 return (FIXED_POINT_TYPE_P (type1
)
3034 && (INTEGRAL_TYPE_P (type2
)
3035 || SCALAR_FLOAT_TYPE_P (type2
)
3036 || FIXED_POINT_TYPE_P (type2
)));
3039 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3040 is a problem, otherwise false. */
3043 verify_gimple_call (gimple stmt
)
3045 tree fn
= gimple_call_fn (stmt
);
3046 tree fntype
, fndecl
;
3049 if (gimple_call_internal_p (stmt
))
3053 error ("gimple call has two targets");
3054 debug_generic_stmt (fn
);
3062 error ("gimple call has no target");
3067 if (fn
&& !is_gimple_call_addr (fn
))
3069 error ("invalid function in gimple call");
3070 debug_generic_stmt (fn
);
3075 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3076 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3077 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3079 error ("non-function in gimple call");
3083 fndecl
= gimple_call_fndecl (stmt
);
3085 && TREE_CODE (fndecl
) == FUNCTION_DECL
3086 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3087 && !DECL_PURE_P (fndecl
)
3088 && !TREE_READONLY (fndecl
))
3090 error ("invalid pure const state for function");
3094 if (gimple_call_lhs (stmt
)
3095 && (!is_gimple_lvalue (gimple_call_lhs (stmt
))
3096 || verify_types_in_gimple_reference (gimple_call_lhs (stmt
), true)))
3098 error ("invalid LHS in gimple call");
3102 if (gimple_call_lhs (stmt
) && gimple_call_noreturn_p (stmt
))
3104 error ("LHS in noreturn call");
3108 fntype
= gimple_call_fntype (stmt
);
3110 && gimple_call_lhs (stmt
)
3111 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt
)),
3113 /* ??? At least C++ misses conversions at assignments from
3114 void * call results.
3115 ??? Java is completely off. Especially with functions
3116 returning java.lang.Object.
3117 For now simply allow arbitrary pointer type conversions. */
3118 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt
)))
3119 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3121 error ("invalid conversion in gimple call");
3122 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt
)));
3123 debug_generic_stmt (TREE_TYPE (fntype
));
3127 if (gimple_call_chain (stmt
)
3128 && !is_gimple_val (gimple_call_chain (stmt
)))
3130 error ("invalid static chain in gimple call");
3131 debug_generic_stmt (gimple_call_chain (stmt
));
3135 /* If there is a static chain argument, this should not be an indirect
3136 call, and the decl should have DECL_STATIC_CHAIN set. */
3137 if (gimple_call_chain (stmt
))
3139 if (!gimple_call_fndecl (stmt
))
3141 error ("static chain in indirect gimple call");
3144 fn
= TREE_OPERAND (fn
, 0);
3146 if (!DECL_STATIC_CHAIN (fn
))
3148 error ("static chain with function that doesn%'t use one");
3153 /* ??? The C frontend passes unpromoted arguments in case it
3154 didn't see a function declaration before the call. So for now
3155 leave the call arguments mostly unverified. Once we gimplify
3156 unit-at-a-time we have a chance to fix this. */
3158 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3160 tree arg
= gimple_call_arg (stmt
, i
);
3161 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3162 && !is_gimple_val (arg
))
3163 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3164 && !is_gimple_lvalue (arg
)))
3166 error ("invalid argument to gimple call");
3167 debug_generic_expr (arg
);
3175 /* Verifies the gimple comparison with the result type TYPE and
3176 the operands OP0 and OP1. */
3179 verify_gimple_comparison (tree type
, tree op0
, tree op1
)
3181 tree op0_type
= TREE_TYPE (op0
);
3182 tree op1_type
= TREE_TYPE (op1
);
3184 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3186 error ("invalid operands in gimple comparison");
3190 /* For comparisons we do not have the operations type as the
3191 effective type the comparison is carried out in. Instead
3192 we require that either the first operand is trivially
3193 convertible into the second, or the other way around.
3194 The resulting type of a comparison may be any integral type.
3195 Because we special-case pointers to void we allow
3196 comparisons of pointers with the same mode as well. */
3197 if ((!useless_type_conversion_p (op0_type
, op1_type
)
3198 && !useless_type_conversion_p (op1_type
, op0_type
)
3199 && (!POINTER_TYPE_P (op0_type
)
3200 || !POINTER_TYPE_P (op1_type
)
3201 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3202 || !INTEGRAL_TYPE_P (type
))
3204 error ("type mismatch in comparison expression");
3205 debug_generic_expr (type
);
3206 debug_generic_expr (op0_type
);
3207 debug_generic_expr (op1_type
);
3214 /* Verify a gimple assignment statement STMT with an unary rhs.
3215 Returns true if anything is wrong. */
3218 verify_gimple_assign_unary (gimple stmt
)
3220 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3221 tree lhs
= gimple_assign_lhs (stmt
);
3222 tree lhs_type
= TREE_TYPE (lhs
);
3223 tree rhs1
= gimple_assign_rhs1 (stmt
);
3224 tree rhs1_type
= TREE_TYPE (rhs1
);
3226 if (!is_gimple_reg (lhs
))
3228 error ("non-register as LHS of unary operation");
3232 if (!is_gimple_val (rhs1
))
3234 error ("invalid operand in unary operation");
3238 /* First handle conversions. */
3243 /* Allow conversions between integral types and pointers only if
3244 there is no sign or zero extension involved.
3245 For targets were the precision of sizetype doesn't match that
3246 of pointers we need to allow arbitrary conversions from and
3248 if ((POINTER_TYPE_P (lhs_type
)
3249 && INTEGRAL_TYPE_P (rhs1_type
)
3250 && (TYPE_PRECISION (lhs_type
) >= TYPE_PRECISION (rhs1_type
)
3251 || rhs1_type
== sizetype
))
3252 || (POINTER_TYPE_P (rhs1_type
)
3253 && INTEGRAL_TYPE_P (lhs_type
)
3254 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3255 || lhs_type
== sizetype
)))
3258 /* Allow conversion from integer to offset type and vice versa. */
3259 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3260 && TREE_CODE (rhs1_type
) == INTEGER_TYPE
)
3261 || (TREE_CODE (lhs_type
) == INTEGER_TYPE
3262 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3265 /* Otherwise assert we are converting between types of the
3267 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3269 error ("invalid types in nop conversion");
3270 debug_generic_expr (lhs_type
);
3271 debug_generic_expr (rhs1_type
);
3278 case ADDR_SPACE_CONVERT_EXPR
:
3280 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3281 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3282 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3284 error ("invalid types in address space conversion");
3285 debug_generic_expr (lhs_type
);
3286 debug_generic_expr (rhs1_type
);
3293 case FIXED_CONVERT_EXPR
:
3295 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3296 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3298 error ("invalid types in fixed-point conversion");
3299 debug_generic_expr (lhs_type
);
3300 debug_generic_expr (rhs1_type
);
3309 if (!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3311 error ("invalid types in conversion to floating point");
3312 debug_generic_expr (lhs_type
);
3313 debug_generic_expr (rhs1_type
);
3320 case FIX_TRUNC_EXPR
:
3322 if (!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3324 error ("invalid types in conversion to integer");
3325 debug_generic_expr (lhs_type
);
3326 debug_generic_expr (rhs1_type
);
3333 case VEC_UNPACK_HI_EXPR
:
3334 case VEC_UNPACK_LO_EXPR
:
3335 case REDUC_MAX_EXPR
:
3336 case REDUC_MIN_EXPR
:
3337 case REDUC_PLUS_EXPR
:
3338 case VEC_UNPACK_FLOAT_HI_EXPR
:
3339 case VEC_UNPACK_FLOAT_LO_EXPR
:
3343 case TRUTH_NOT_EXPR
:
3348 case NON_LVALUE_EXPR
:
3356 /* For the remaining codes assert there is no conversion involved. */
3357 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3359 error ("non-trivial conversion in unary operation");
3360 debug_generic_expr (lhs_type
);
3361 debug_generic_expr (rhs1_type
);
3368 /* Verify a gimple assignment statement STMT with a binary rhs.
3369 Returns true if anything is wrong. */
3372 verify_gimple_assign_binary (gimple stmt
)
3374 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3375 tree lhs
= gimple_assign_lhs (stmt
);
3376 tree lhs_type
= TREE_TYPE (lhs
);
3377 tree rhs1
= gimple_assign_rhs1 (stmt
);
3378 tree rhs1_type
= TREE_TYPE (rhs1
);
3379 tree rhs2
= gimple_assign_rhs2 (stmt
);
3380 tree rhs2_type
= TREE_TYPE (rhs2
);
3382 if (!is_gimple_reg (lhs
))
3384 error ("non-register as LHS of binary operation");
3388 if (!is_gimple_val (rhs1
)
3389 || !is_gimple_val (rhs2
))
3391 error ("invalid operands in binary operation");
3395 /* First handle operations that involve different types. */
3400 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3401 || !(INTEGRAL_TYPE_P (rhs1_type
)
3402 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3403 || !(INTEGRAL_TYPE_P (rhs2_type
)
3404 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3406 error ("type mismatch in complex expression");
3407 debug_generic_expr (lhs_type
);
3408 debug_generic_expr (rhs1_type
);
3409 debug_generic_expr (rhs2_type
);
3421 /* Shifts and rotates are ok on integral types, fixed point
3422 types and integer vector types. */
3423 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3424 && !FIXED_POINT_TYPE_P (rhs1_type
)
3425 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3426 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3427 || (!INTEGRAL_TYPE_P (rhs2_type
)
3428 /* Vector shifts of vectors are also ok. */
3429 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3430 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3431 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3432 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3433 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3435 error ("type mismatch in shift expression");
3436 debug_generic_expr (lhs_type
);
3437 debug_generic_expr (rhs1_type
);
3438 debug_generic_expr (rhs2_type
);
3445 case VEC_LSHIFT_EXPR
:
3446 case VEC_RSHIFT_EXPR
:
3448 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3449 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3450 || POINTER_TYPE_P (TREE_TYPE (rhs1_type
))
3451 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type
))
3452 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3453 || (!INTEGRAL_TYPE_P (rhs2_type
)
3454 && (TREE_CODE (rhs2_type
) != VECTOR_TYPE
3455 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3456 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3458 error ("type mismatch in vector shift expression");
3459 debug_generic_expr (lhs_type
);
3460 debug_generic_expr (rhs1_type
);
3461 debug_generic_expr (rhs2_type
);
3464 /* For shifting a vector of non-integral components we
3465 only allow shifting by a constant multiple of the element size. */
3466 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3467 && (TREE_CODE (rhs2
) != INTEGER_CST
3468 || !div_if_zero_remainder (EXACT_DIV_EXPR
, rhs2
,
3469 TYPE_SIZE (TREE_TYPE (rhs1_type
)))))
3471 error ("non-element sized vector shift of floating point vector");
3481 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3482 ??? This just makes the checker happy and may not be what is
3484 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
3485 && POINTER_TYPE_P (TREE_TYPE (lhs_type
)))
3487 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3488 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3490 error ("invalid non-vector operands to vector valued plus");
3493 lhs_type
= TREE_TYPE (lhs_type
);
3494 rhs1_type
= TREE_TYPE (rhs1_type
);
3495 rhs2_type
= TREE_TYPE (rhs2_type
);
3496 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3497 the pointer to 2nd place. */
3498 if (POINTER_TYPE_P (rhs2_type
))
3500 tree tem
= rhs1_type
;
3501 rhs1_type
= rhs2_type
;
3504 goto do_pointer_plus_expr_check
;
3506 if (POINTER_TYPE_P (lhs_type
)
3507 || POINTER_TYPE_P (rhs1_type
)
3508 || POINTER_TYPE_P (rhs2_type
))
3510 error ("invalid (pointer) operands to plus/minus");
3514 /* Continue with generic binary expression handling. */
3518 case POINTER_PLUS_EXPR
:
3520 do_pointer_plus_expr_check
:
3521 if (!POINTER_TYPE_P (rhs1_type
)
3522 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3523 || !useless_type_conversion_p (sizetype
, rhs2_type
))
3525 error ("type mismatch in pointer plus expression");
3526 debug_generic_stmt (lhs_type
);
3527 debug_generic_stmt (rhs1_type
);
3528 debug_generic_stmt (rhs2_type
);
3535 case TRUTH_ANDIF_EXPR
:
3536 case TRUTH_ORIF_EXPR
:
3539 case TRUTH_AND_EXPR
:
3541 case TRUTH_XOR_EXPR
:
3543 /* We allow any kind of integral typed argument and result. */
3544 if (!INTEGRAL_TYPE_P (rhs1_type
)
3545 || !INTEGRAL_TYPE_P (rhs2_type
)
3546 || !INTEGRAL_TYPE_P (lhs_type
))
3548 error ("type mismatch in binary truth expression");
3549 debug_generic_expr (lhs_type
);
3550 debug_generic_expr (rhs1_type
);
3551 debug_generic_expr (rhs2_type
);
3564 case UNORDERED_EXPR
:
3572 /* Comparisons are also binary, but the result type is not
3573 connected to the operand types. */
3574 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
);
3576 case WIDEN_MULT_EXPR
:
3577 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3579 return ((2 * TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (lhs_type
))
3580 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3582 case WIDEN_SUM_EXPR
:
3583 case VEC_WIDEN_MULT_HI_EXPR
:
3584 case VEC_WIDEN_MULT_LO_EXPR
:
3585 case VEC_PACK_TRUNC_EXPR
:
3586 case VEC_PACK_SAT_EXPR
:
3587 case VEC_PACK_FIX_TRUNC_EXPR
:
3588 case VEC_EXTRACT_EVEN_EXPR
:
3589 case VEC_EXTRACT_ODD_EXPR
:
3590 case VEC_INTERLEAVE_HIGH_EXPR
:
3591 case VEC_INTERLEAVE_LOW_EXPR
:
3596 case TRUNC_DIV_EXPR
:
3598 case FLOOR_DIV_EXPR
:
3599 case ROUND_DIV_EXPR
:
3600 case TRUNC_MOD_EXPR
:
3602 case FLOOR_MOD_EXPR
:
3603 case ROUND_MOD_EXPR
:
3605 case EXACT_DIV_EXPR
:
3611 /* Continue with generic binary expression handling. */
3618 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3619 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3621 error ("type mismatch in binary expression");
3622 debug_generic_stmt (lhs_type
);
3623 debug_generic_stmt (rhs1_type
);
3624 debug_generic_stmt (rhs2_type
);
3631 /* Verify a gimple assignment statement STMT with a ternary rhs.
3632 Returns true if anything is wrong. */
3635 verify_gimple_assign_ternary (gimple stmt
)
3637 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3638 tree lhs
= gimple_assign_lhs (stmt
);
3639 tree lhs_type
= TREE_TYPE (lhs
);
3640 tree rhs1
= gimple_assign_rhs1 (stmt
);
3641 tree rhs1_type
= TREE_TYPE (rhs1
);
3642 tree rhs2
= gimple_assign_rhs2 (stmt
);
3643 tree rhs2_type
= TREE_TYPE (rhs2
);
3644 tree rhs3
= gimple_assign_rhs3 (stmt
);
3645 tree rhs3_type
= TREE_TYPE (rhs3
);
3647 if (!is_gimple_reg (lhs
))
3649 error ("non-register as LHS of ternary operation");
3653 if (!is_gimple_val (rhs1
)
3654 || !is_gimple_val (rhs2
)
3655 || !is_gimple_val (rhs3
))
3657 error ("invalid operands in ternary operation");
3661 /* First handle operations that involve different types. */
3664 case WIDEN_MULT_PLUS_EXPR
:
3665 case WIDEN_MULT_MINUS_EXPR
:
3666 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3667 && !FIXED_POINT_TYPE_P (rhs1_type
))
3668 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
3669 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
3670 || 2 * TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (lhs_type
)
3671 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
3673 error ("type mismatch in widening multiply-accumulate expression");
3674 debug_generic_expr (lhs_type
);
3675 debug_generic_expr (rhs1_type
);
3676 debug_generic_expr (rhs2_type
);
3677 debug_generic_expr (rhs3_type
);
3683 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3684 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3685 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3687 error ("type mismatch in fused multiply-add expression");
3688 debug_generic_expr (lhs_type
);
3689 debug_generic_expr (rhs1_type
);
3690 debug_generic_expr (rhs2_type
);
3691 debug_generic_expr (rhs3_type
);
3697 case REALIGN_LOAD_EXPR
:
3707 /* Verify a gimple assignment statement STMT with a single rhs.
3708 Returns true if anything is wrong. */
3711 verify_gimple_assign_single (gimple stmt
)
3713 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3714 tree lhs
= gimple_assign_lhs (stmt
);
3715 tree lhs_type
= TREE_TYPE (lhs
);
3716 tree rhs1
= gimple_assign_rhs1 (stmt
);
3717 tree rhs1_type
= TREE_TYPE (rhs1
);
3720 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3722 error ("non-trivial conversion at assignment");
3723 debug_generic_expr (lhs_type
);
3724 debug_generic_expr (rhs1_type
);
3728 if (handled_component_p (lhs
))
3729 res
|= verify_types_in_gimple_reference (lhs
, true);
3731 /* Special codes we cannot handle via their class. */
3736 tree op
= TREE_OPERAND (rhs1
, 0);
3737 if (!is_gimple_addressable (op
))
3739 error ("invalid operand in unary expression");
3743 /* Technically there is no longer a need for matching types, but
3744 gimple hygiene asks for this check. In LTO we can end up
3745 combining incompatible units and thus end up with addresses
3746 of globals that change their type to a common one. */
3748 && !types_compatible_p (TREE_TYPE (op
),
3749 TREE_TYPE (TREE_TYPE (rhs1
)))
3750 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
3753 error ("type mismatch in address expression");
3754 debug_generic_stmt (TREE_TYPE (rhs1
));
3755 debug_generic_stmt (TREE_TYPE (op
));
3759 return verify_types_in_gimple_reference (op
, true);
3764 error ("INDIRECT_REF in gimple IL");
3770 case ARRAY_RANGE_REF
:
3771 case VIEW_CONVERT_EXPR
:
3774 case TARGET_MEM_REF
:
3776 if (!is_gimple_reg (lhs
)
3777 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3779 error ("invalid rhs for gimple memory store");
3780 debug_generic_stmt (lhs
);
3781 debug_generic_stmt (rhs1
);
3784 return res
|| verify_types_in_gimple_reference (rhs1
, false);
3796 /* tcc_declaration */
3801 if (!is_gimple_reg (lhs
)
3802 && !is_gimple_reg (rhs1
)
3803 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3805 error ("invalid rhs for gimple memory store");
3806 debug_generic_stmt (lhs
);
3807 debug_generic_stmt (rhs1
);
3813 if (!is_gimple_reg (lhs
)
3814 || (!is_gimple_reg (TREE_OPERAND (rhs1
, 0))
3815 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1
, 0)))
3816 || (!is_gimple_reg (TREE_OPERAND (rhs1
, 1))
3817 && !is_gimple_min_invariant (TREE_OPERAND (rhs1
, 1)))
3818 || (!is_gimple_reg (TREE_OPERAND (rhs1
, 2))
3819 && !is_gimple_min_invariant (TREE_OPERAND (rhs1
, 2))))
3821 error ("invalid COND_EXPR in gimple assignment");
3822 debug_generic_stmt (rhs1
);
3830 case WITH_SIZE_EXPR
:
3841 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3842 is a problem, otherwise false. */
3845 verify_gimple_assign (gimple stmt
)
3847 switch (gimple_assign_rhs_class (stmt
))
3849 case GIMPLE_SINGLE_RHS
:
3850 return verify_gimple_assign_single (stmt
);
3852 case GIMPLE_UNARY_RHS
:
3853 return verify_gimple_assign_unary (stmt
);
3855 case GIMPLE_BINARY_RHS
:
3856 return verify_gimple_assign_binary (stmt
);
3858 case GIMPLE_TERNARY_RHS
:
3859 return verify_gimple_assign_ternary (stmt
);
3866 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3867 is a problem, otherwise false. */
3870 verify_gimple_return (gimple stmt
)
3872 tree op
= gimple_return_retval (stmt
);
3873 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
3875 /* We cannot test for present return values as we do not fix up missing
3876 return values from the original source. */
3880 if (!is_gimple_val (op
)
3881 && TREE_CODE (op
) != RESULT_DECL
)
3883 error ("invalid operand in return statement");
3884 debug_generic_stmt (op
);
3888 if ((TREE_CODE (op
) == RESULT_DECL
3889 && DECL_BY_REFERENCE (op
))
3890 || (TREE_CODE (op
) == SSA_NAME
3891 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
3892 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
3893 op
= TREE_TYPE (op
);
3895 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
3897 error ("invalid conversion in return statement");
3898 debug_generic_stmt (restype
);
3899 debug_generic_stmt (TREE_TYPE (op
));
3907 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3908 is a problem, otherwise false. */
3911 verify_gimple_goto (gimple stmt
)
3913 tree dest
= gimple_goto_dest (stmt
);
3915 /* ??? We have two canonical forms of direct goto destinations, a
3916 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3917 if (TREE_CODE (dest
) != LABEL_DECL
3918 && (!is_gimple_val (dest
)
3919 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
3921 error ("goto destination is neither a label nor a pointer");
3928 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3929 is a problem, otherwise false. */
3932 verify_gimple_switch (gimple stmt
)
3934 if (!is_gimple_val (gimple_switch_index (stmt
)))
3936 error ("invalid operand to switch statement");
3937 debug_generic_stmt (gimple_switch_index (stmt
));
3945 /* Verify a gimple debug statement STMT.
3946 Returns true if anything is wrong. */
3949 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED
)
3951 /* There isn't much that could be wrong in a gimple debug stmt. A
3952 gimple debug bind stmt, for example, maps a tree, that's usually
3953 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3954 component or member of an aggregate type, to another tree, that
3955 can be an arbitrary expression. These stmts expand into debug
3956 insns, and are converted to debug notes by var-tracking.c. */
3960 /* Verify a gimple label statement STMT.
3961 Returns true if anything is wrong. */
3964 verify_gimple_label (gimple stmt
)
3966 tree decl
= gimple_label_label (stmt
);
3970 if (TREE_CODE (decl
) != LABEL_DECL
)
3973 uid
= LABEL_DECL_UID (decl
);
3976 || VEC_index (basic_block
,
3977 label_to_block_map
, uid
) != gimple_bb (stmt
)))
3979 error ("incorrect entry in label_to_block_map");
3983 uid
= EH_LANDING_PAD_NR (decl
);
3986 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
3987 if (decl
!= lp
->post_landing_pad
)
3989 error ("incorrect setting of landing pad number");
3997 /* Verify the GIMPLE statement STMT. Returns true if there is an
3998 error, otherwise false. */
4001 verify_gimple_stmt (gimple stmt
)
4003 switch (gimple_code (stmt
))
4006 return verify_gimple_assign (stmt
);
4009 return verify_gimple_label (stmt
);
4012 return verify_gimple_call (stmt
);
4015 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4017 error ("invalid comparison code in gimple cond");
4020 if (!(!gimple_cond_true_label (stmt
)
4021 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4022 || !(!gimple_cond_false_label (stmt
)
4023 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4025 error ("invalid labels in gimple cond");
4029 return verify_gimple_comparison (boolean_type_node
,
4030 gimple_cond_lhs (stmt
),
4031 gimple_cond_rhs (stmt
));
4034 return verify_gimple_goto (stmt
);
4037 return verify_gimple_switch (stmt
);
4040 return verify_gimple_return (stmt
);
4045 /* Tuples that do not have tree operands. */
4047 case GIMPLE_PREDICT
:
4049 case GIMPLE_EH_DISPATCH
:
4050 case GIMPLE_EH_MUST_NOT_THROW
:
4054 /* OpenMP directives are validated by the FE and never operated
4055 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4056 non-gimple expressions when the main index variable has had
4057 its address taken. This does not affect the loop itself
4058 because the header of an GIMPLE_OMP_FOR is merely used to determine
4059 how to setup the parallel iteration. */
4063 return verify_gimple_debug (stmt
);
4070 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4071 and false otherwise. */
4074 verify_gimple_phi (gimple phi
)
4078 tree phi_result
= gimple_phi_result (phi
);
4083 error ("invalid PHI result");
4087 virtual_p
= !is_gimple_reg (phi_result
);
4088 if (TREE_CODE (phi_result
) != SSA_NAME
4090 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4092 error ("invalid PHI result");
4096 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4098 tree t
= gimple_phi_arg_def (phi
, i
);
4102 error ("missing PHI def");
4106 /* Addressable variables do have SSA_NAMEs but they
4107 are not considered gimple values. */
4108 else if ((TREE_CODE (t
) == SSA_NAME
4109 && virtual_p
!= !is_gimple_reg (t
))
4111 && (TREE_CODE (t
) != SSA_NAME
4112 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4114 && !is_gimple_val (t
)))
4116 error ("invalid PHI argument");
4117 debug_generic_expr (t
);
4120 #ifdef ENABLE_TYPES_CHECKING
4121 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4123 error ("incompatible types in PHI argument %u", i
);
4124 debug_generic_stmt (TREE_TYPE (phi_result
));
4125 debug_generic_stmt (TREE_TYPE (t
));
4134 /* Verify the GIMPLE statements inside the sequence STMTS. */
4137 verify_gimple_in_seq_2 (gimple_seq stmts
)
4139 gimple_stmt_iterator ittr
;
4142 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4144 gimple stmt
= gsi_stmt (ittr
);
4146 switch (gimple_code (stmt
))
4149 err
|= verify_gimple_in_seq_2 (gimple_bind_body (stmt
));
4153 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
4154 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
4157 case GIMPLE_EH_FILTER
:
4158 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
4162 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (stmt
));
4167 bool err2
= verify_gimple_stmt (stmt
);
4169 debug_gimple_stmt (stmt
);
4179 /* Verify the GIMPLE statements inside the statement list STMTS. */
4182 verify_gimple_in_seq (gimple_seq stmts
)
4184 timevar_push (TV_TREE_STMT_VERIFY
);
4185 if (verify_gimple_in_seq_2 (stmts
))
4186 internal_error ("verify_gimple failed");
4187 timevar_pop (TV_TREE_STMT_VERIFY
);
4190 /* Return true when the T can be shared. */
4193 tree_node_can_be_shared (tree t
)
4195 if (IS_TYPE_OR_DECL_P (t
)
4196 || is_gimple_min_invariant (t
)
4197 || TREE_CODE (t
) == SSA_NAME
4198 || t
== error_mark_node
4199 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4202 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
4205 while (((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
4206 && is_gimple_min_invariant (TREE_OPERAND (t
, 1)))
4207 || TREE_CODE (t
) == COMPONENT_REF
4208 || TREE_CODE (t
) == REALPART_EXPR
4209 || TREE_CODE (t
) == IMAGPART_EXPR
)
4210 t
= TREE_OPERAND (t
, 0);
4218 /* Called via walk_gimple_stmt. Verify tree sharing. */
4221 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
4223 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4224 struct pointer_set_t
*visited
= (struct pointer_set_t
*) wi
->info
;
4226 if (tree_node_can_be_shared (*tp
))
4228 *walk_subtrees
= false;
4232 if (pointer_set_insert (visited
, *tp
))
4238 static bool eh_error_found
;
4240 verify_eh_throw_stmt_node (void **slot
, void *data
)
4242 struct throw_stmt_node
*node
= (struct throw_stmt_node
*)*slot
;
4243 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4245 if (!pointer_set_contains (visited
, node
->stmt
))
4247 error ("dead STMT in EH table");
4248 debug_gimple_stmt (node
->stmt
);
4249 eh_error_found
= true;
4254 /* Verify the GIMPLE statements in the CFG of FN. */
4257 verify_gimple_in_cfg (struct function
*fn
)
4261 struct pointer_set_t
*visited
, *visited_stmts
;
4263 timevar_push (TV_TREE_STMT_VERIFY
);
4264 visited
= pointer_set_create ();
4265 visited_stmts
= pointer_set_create ();
4267 FOR_EACH_BB_FN (bb
, fn
)
4269 gimple_stmt_iterator gsi
;
4271 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4273 gimple phi
= gsi_stmt (gsi
);
4277 pointer_set_insert (visited_stmts
, phi
);
4279 if (gimple_bb (phi
) != bb
)
4281 error ("gimple_bb (phi) is set to a wrong basic block");
4285 err2
|= verify_gimple_phi (phi
);
4287 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4289 tree arg
= gimple_phi_arg_def (phi
, i
);
4290 tree addr
= walk_tree (&arg
, verify_node_sharing
, visited
, NULL
);
4293 error ("incorrect sharing of tree nodes");
4294 debug_generic_expr (addr
);
4300 debug_gimple_stmt (phi
);
4304 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4306 gimple stmt
= gsi_stmt (gsi
);
4308 struct walk_stmt_info wi
;
4312 pointer_set_insert (visited_stmts
, stmt
);
4314 if (gimple_bb (stmt
) != bb
)
4316 error ("gimple_bb (stmt) is set to a wrong basic block");
4320 err2
|= verify_gimple_stmt (stmt
);
4322 memset (&wi
, 0, sizeof (wi
));
4323 wi
.info
= (void *) visited
;
4324 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
4327 error ("incorrect sharing of tree nodes");
4328 debug_generic_expr (addr
);
4332 /* ??? Instead of not checking these stmts at all the walker
4333 should know its context via wi. */
4334 if (!is_gimple_debug (stmt
)
4335 && !is_gimple_omp (stmt
))
4337 memset (&wi
, 0, sizeof (wi
));
4338 addr
= walk_gimple_op (stmt
, verify_expr
, &wi
);
4341 debug_generic_expr (addr
);
4342 inform (gimple_location (stmt
), "in statement");
4347 /* If the statement is marked as part of an EH region, then it is
4348 expected that the statement could throw. Verify that when we
4349 have optimizations that simplify statements such that we prove
4350 that they cannot throw, that we update other data structures
4352 lp_nr
= lookup_stmt_eh_lp (stmt
);
4355 if (!stmt_could_throw_p (stmt
))
4357 error ("statement marked for throw, but doesn%'t");
4361 && !gsi_one_before_end_p (gsi
)
4362 && stmt_can_throw_internal (stmt
))
4364 error ("statement marked for throw in middle of block");
4370 debug_gimple_stmt (stmt
);
4375 eh_error_found
= false;
4376 if (get_eh_throw_stmt_table (cfun
))
4377 htab_traverse (get_eh_throw_stmt_table (cfun
),
4378 verify_eh_throw_stmt_node
,
4381 if (err
|| eh_error_found
)
4382 internal_error ("verify_gimple failed");
4384 pointer_set_destroy (visited
);
4385 pointer_set_destroy (visited_stmts
);
4386 verify_histograms ();
4387 timevar_pop (TV_TREE_STMT_VERIFY
);
4391 /* Verifies that the flow information is OK. */
4394 gimple_verify_flow_info (void)
4398 gimple_stmt_iterator gsi
;
4403 if (ENTRY_BLOCK_PTR
->il
.gimple
)
4405 error ("ENTRY_BLOCK has IL associated with it");
4409 if (EXIT_BLOCK_PTR
->il
.gimple
)
4411 error ("EXIT_BLOCK has IL associated with it");
4415 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
4416 if (e
->flags
& EDGE_FALLTHRU
)
4418 error ("fallthru to exit from bb %d", e
->src
->index
);
4424 bool found_ctrl_stmt
= false;
4428 /* Skip labels on the start of basic block. */
4429 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4432 gimple prev_stmt
= stmt
;
4434 stmt
= gsi_stmt (gsi
);
4436 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4439 label
= gimple_label_label (stmt
);
4440 if (prev_stmt
&& DECL_NONLOCAL (label
))
4442 error ("nonlocal label ");
4443 print_generic_expr (stderr
, label
, 0);
4444 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4449 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
4451 error ("EH landing pad label ");
4452 print_generic_expr (stderr
, label
, 0);
4453 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4458 if (label_to_block (label
) != bb
)
4461 print_generic_expr (stderr
, label
, 0);
4462 fprintf (stderr
, " to block does not match in bb %d",
4467 if (decl_function_context (label
) != current_function_decl
)
4470 print_generic_expr (stderr
, label
, 0);
4471 fprintf (stderr
, " has incorrect context in bb %d",
4477 /* Verify that body of basic block BB is free of control flow. */
4478 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
4480 gimple stmt
= gsi_stmt (gsi
);
4482 if (found_ctrl_stmt
)
4484 error ("control flow in the middle of basic block %d",
4489 if (stmt_ends_bb_p (stmt
))
4490 found_ctrl_stmt
= true;
4492 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4495 print_generic_expr (stderr
, gimple_label_label (stmt
), 0);
4496 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
4501 gsi
= gsi_last_bb (bb
);
4502 if (gsi_end_p (gsi
))
4505 stmt
= gsi_stmt (gsi
);
4507 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4510 err
|= verify_eh_edges (stmt
);
4512 if (is_ctrl_stmt (stmt
))
4514 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4515 if (e
->flags
& EDGE_FALLTHRU
)
4517 error ("fallthru edge after a control statement in bb %d",
4523 if (gimple_code (stmt
) != GIMPLE_COND
)
4525 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4526 after anything else but if statement. */
4527 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4528 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
4530 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4536 switch (gimple_code (stmt
))
4543 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
4547 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
4548 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
4549 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4550 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4551 || EDGE_COUNT (bb
->succs
) >= 3)
4553 error ("wrong outgoing edge flags at end of bb %d",
4561 if (simple_goto_p (stmt
))
4563 error ("explicit goto at end of bb %d", bb
->index
);
4568 /* FIXME. We should double check that the labels in the
4569 destination blocks have their address taken. */
4570 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4571 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
4572 | EDGE_FALSE_VALUE
))
4573 || !(e
->flags
& EDGE_ABNORMAL
))
4575 error ("wrong outgoing edge flags at end of bb %d",
4583 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
4585 /* ... fallthru ... */
4587 if (!single_succ_p (bb
)
4588 || (single_succ_edge (bb
)->flags
4589 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
4590 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4592 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
4595 if (single_succ (bb
) != EXIT_BLOCK_PTR
)
4597 error ("return edge does not point to exit in bb %d",
4609 n
= gimple_switch_num_labels (stmt
);
4611 /* Mark all the destination basic blocks. */
4612 for (i
= 0; i
< n
; ++i
)
4614 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4615 basic_block label_bb
= label_to_block (lab
);
4616 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
4617 label_bb
->aux
= (void *)1;
4620 /* Verify that the case labels are sorted. */
4621 prev
= gimple_switch_label (stmt
, 0);
4622 for (i
= 1; i
< n
; ++i
)
4624 tree c
= gimple_switch_label (stmt
, i
);
4627 error ("found default case not at the start of "
4633 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
4635 error ("case labels not sorted: ");
4636 print_generic_expr (stderr
, prev
, 0);
4637 fprintf (stderr
," is greater than ");
4638 print_generic_expr (stderr
, c
, 0);
4639 fprintf (stderr
," but comes before it.\n");
4644 /* VRP will remove the default case if it can prove it will
4645 never be executed. So do not verify there always exists
4646 a default case here. */
4648 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4652 error ("extra outgoing edge %d->%d",
4653 bb
->index
, e
->dest
->index
);
4657 e
->dest
->aux
= (void *)2;
4658 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
4659 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4661 error ("wrong outgoing edge flags at end of bb %d",
4667 /* Check that we have all of them. */
4668 for (i
= 0; i
< n
; ++i
)
4670 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4671 basic_block label_bb
= label_to_block (lab
);
4673 if (label_bb
->aux
!= (void *)2)
4675 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
4680 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4681 e
->dest
->aux
= (void *)0;
4685 case GIMPLE_EH_DISPATCH
:
4686 err
|= verify_eh_dispatch_edge (stmt
);
4694 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
4695 verify_dominators (CDI_DOMINATORS
);
4701 /* Updates phi nodes after creating a forwarder block joined
4702 by edge FALLTHRU. */
4705 gimple_make_forwarder_block (edge fallthru
)
4709 basic_block dummy
, bb
;
4711 gimple_stmt_iterator gsi
;
4713 dummy
= fallthru
->src
;
4714 bb
= fallthru
->dest
;
4716 if (single_pred_p (bb
))
4719 /* If we redirected a branch we must create new PHI nodes at the
4721 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4723 gimple phi
, new_phi
;
4725 phi
= gsi_stmt (gsi
);
4726 var
= gimple_phi_result (phi
);
4727 new_phi
= create_phi_node (var
, bb
);
4728 SSA_NAME_DEF_STMT (var
) = new_phi
;
4729 gimple_phi_set_result (phi
, make_ssa_name (SSA_NAME_VAR (var
), phi
));
4730 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
4734 /* Add the arguments we have stored on edges. */
4735 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4740 flush_pending_stmts (e
);
4745 /* Return a non-special label in the head of basic block BLOCK.
4746 Create one if it doesn't exist. */
4749 gimple_block_label (basic_block bb
)
4751 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
4756 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
4758 stmt
= gsi_stmt (i
);
4759 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4761 label
= gimple_label_label (stmt
);
4762 if (!DECL_NONLOCAL (label
))
4765 gsi_move_before (&i
, &s
);
4770 label
= create_artificial_label (UNKNOWN_LOCATION
);
4771 stmt
= gimple_build_label (label
);
4772 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
4777 /* Attempt to perform edge redirection by replacing a possibly complex
4778 jump instruction by a goto or by removing the jump completely.
4779 This can apply only if all edges now point to the same block. The
4780 parameters and return values are equivalent to
4781 redirect_edge_and_branch. */
4784 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
4786 basic_block src
= e
->src
;
4787 gimple_stmt_iterator i
;
4790 /* We can replace or remove a complex jump only when we have exactly
4792 if (EDGE_COUNT (src
->succs
) != 2
4793 /* Verify that all targets will be TARGET. Specifically, the
4794 edge that is not E must also go to TARGET. */
4795 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
4798 i
= gsi_last_bb (src
);
4802 stmt
= gsi_stmt (i
);
4804 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
4806 gsi_remove (&i
, true);
4807 e
= ssa_redirect_edge (e
, target
);
4808 e
->flags
= EDGE_FALLTHRU
;
4816 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4817 edge representing the redirected branch. */
4820 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
4822 basic_block bb
= e
->src
;
4823 gimple_stmt_iterator gsi
;
4827 if (e
->flags
& EDGE_ABNORMAL
)
4830 if (e
->dest
== dest
)
4833 if (e
->flags
& EDGE_EH
)
4834 return redirect_eh_edge (e
, dest
);
4836 if (e
->src
!= ENTRY_BLOCK_PTR
)
4838 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
4843 gsi
= gsi_last_bb (bb
);
4844 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
4846 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
4849 /* For COND_EXPR, we only need to redirect the edge. */
4853 /* No non-abnormal edges should lead from a non-simple goto, and
4854 simple ones should be represented implicitly. */
4859 tree label
= gimple_block_label (dest
);
4860 tree cases
= get_cases_for_edge (e
, stmt
);
4862 /* If we have a list of cases associated with E, then use it
4863 as it's a lot faster than walking the entire case vector. */
4866 edge e2
= find_edge (e
->src
, dest
);
4873 CASE_LABEL (cases
) = label
;
4874 cases
= CASE_CHAIN (cases
);
4877 /* If there was already an edge in the CFG, then we need
4878 to move all the cases associated with E to E2. */
4881 tree cases2
= get_cases_for_edge (e2
, stmt
);
4883 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
4884 CASE_CHAIN (cases2
) = first
;
4886 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
4890 size_t i
, n
= gimple_switch_num_labels (stmt
);
4892 for (i
= 0; i
< n
; i
++)
4894 tree elt
= gimple_switch_label (stmt
, i
);
4895 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
4896 CASE_LABEL (elt
) = label
;
4904 int i
, n
= gimple_asm_nlabels (stmt
);
4907 for (i
= 0; i
< n
; ++i
)
4909 tree cons
= gimple_asm_label_op (stmt
, i
);
4910 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
4913 label
= gimple_block_label (dest
);
4914 TREE_VALUE (cons
) = label
;
4918 /* If we didn't find any label matching the former edge in the
4919 asm labels, we must be redirecting the fallthrough
4921 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
4926 gsi_remove (&gsi
, true);
4927 e
->flags
|= EDGE_FALLTHRU
;
4930 case GIMPLE_OMP_RETURN
:
4931 case GIMPLE_OMP_CONTINUE
:
4932 case GIMPLE_OMP_SECTIONS_SWITCH
:
4933 case GIMPLE_OMP_FOR
:
4934 /* The edges from OMP constructs can be simply redirected. */
4937 case GIMPLE_EH_DISPATCH
:
4938 if (!(e
->flags
& EDGE_FALLTHRU
))
4939 redirect_eh_dispatch_edge (stmt
, e
, dest
);
4943 /* Otherwise it must be a fallthru edge, and we don't need to
4944 do anything besides redirecting it. */
4945 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
4949 /* Update/insert PHI nodes as necessary. */
4951 /* Now update the edges in the CFG. */
4952 e
= ssa_redirect_edge (e
, dest
);
4957 /* Returns true if it is possible to remove edge E by redirecting
4958 it to the destination of the other edge from E->src. */
4961 gimple_can_remove_branch_p (const_edge e
)
4963 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
4969 /* Simple wrapper, as we can always redirect fallthru edges. */
4972 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
4974 e
= gimple_redirect_edge_and_branch (e
, dest
);
4981 /* Splits basic block BB after statement STMT (but at least after the
4982 labels). If STMT is NULL, BB is split just after the labels. */
4985 gimple_split_block (basic_block bb
, void *stmt
)
4987 gimple_stmt_iterator gsi
;
4988 gimple_stmt_iterator gsi_tgt
;
4995 new_bb
= create_empty_bb (bb
);
4997 /* Redirect the outgoing edges. */
4998 new_bb
->succs
= bb
->succs
;
5000 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5003 if (stmt
&& gimple_code ((gimple
) stmt
) == GIMPLE_LABEL
)
5006 /* Move everything from GSI to the new basic block. */
5007 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5009 act
= gsi_stmt (gsi
);
5010 if (gimple_code (act
) == GIMPLE_LABEL
)
5023 if (gsi_end_p (gsi
))
5026 /* Split the statement list - avoid re-creating new containers as this
5027 brings ugly quadratic memory consumption in the inliner.
5028 (We are still quadratic since we need to update stmt BB pointers,
5030 list
= gsi_split_seq_before (&gsi
);
5031 set_bb_seq (new_bb
, list
);
5032 for (gsi_tgt
= gsi_start (list
);
5033 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
5034 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
5040 /* Moves basic block BB after block AFTER. */
5043 gimple_move_block_after (basic_block bb
, basic_block after
)
5045 if (bb
->prev_bb
== after
)
5049 link_block (bb
, after
);
5055 /* Return true if basic_block can be duplicated. */
5058 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
5063 /* Create a duplicate of the basic block BB. NOTE: This does not
5064 preserve SSA form. */
5067 gimple_duplicate_bb (basic_block bb
)
5070 gimple_stmt_iterator gsi
, gsi_tgt
;
5071 gimple_seq phis
= phi_nodes (bb
);
5072 gimple phi
, stmt
, copy
;
5074 new_bb
= create_empty_bb (EXIT_BLOCK_PTR
->prev_bb
);
5076 /* Copy the PHI nodes. We ignore PHI node arguments here because
5077 the incoming edges have not been setup yet. */
5078 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5080 phi
= gsi_stmt (gsi
);
5081 copy
= create_phi_node (gimple_phi_result (phi
), new_bb
);
5082 create_new_def_for (gimple_phi_result (copy
), copy
,
5083 gimple_phi_result_ptr (copy
));
5086 gsi_tgt
= gsi_start_bb (new_bb
);
5087 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5089 def_operand_p def_p
;
5090 ssa_op_iter op_iter
;
5092 stmt
= gsi_stmt (gsi
);
5093 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5096 /* Create a new copy of STMT and duplicate STMT's virtual
5098 copy
= gimple_copy (stmt
);
5099 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
5101 maybe_duplicate_eh_stmt (copy
, stmt
);
5102 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
5104 /* Create new names for all the definitions created by COPY and
5105 add replacement mappings for each new name. */
5106 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
5107 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
5113 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5116 add_phi_args_after_copy_edge (edge e_copy
)
5118 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
5121 gimple phi
, phi_copy
;
5123 gimple_stmt_iterator psi
, psi_copy
;
5125 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
5128 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
5130 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
5131 dest
= get_bb_original (e_copy
->dest
);
5133 dest
= e_copy
->dest
;
5135 e
= find_edge (bb
, dest
);
5138 /* During loop unrolling the target of the latch edge is copied.
5139 In this case we are not looking for edge to dest, but to
5140 duplicated block whose original was dest. */
5141 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5143 if ((e
->dest
->flags
& BB_DUPLICATED
)
5144 && get_bb_original (e
->dest
) == dest
)
5148 gcc_assert (e
!= NULL
);
5151 for (psi
= gsi_start_phis (e
->dest
),
5152 psi_copy
= gsi_start_phis (e_copy
->dest
);
5154 gsi_next (&psi
), gsi_next (&psi_copy
))
5156 phi
= gsi_stmt (psi
);
5157 phi_copy
= gsi_stmt (psi_copy
);
5158 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
5159 add_phi_arg (phi_copy
, def
, e_copy
,
5160 gimple_phi_arg_location_from_edge (phi
, e
));
5165 /* Basic block BB_COPY was created by code duplication. Add phi node
5166 arguments for edges going out of BB_COPY. The blocks that were
5167 duplicated have BB_DUPLICATED set. */
5170 add_phi_args_after_copy_bb (basic_block bb_copy
)
5175 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
5177 add_phi_args_after_copy_edge (e_copy
);
5181 /* Blocks in REGION_COPY array of length N_REGION were created by
5182 duplication of basic blocks. Add phi node arguments for edges
5183 going from these blocks. If E_COPY is not NULL, also add
5184 phi node arguments for its destination.*/
5187 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
5192 for (i
= 0; i
< n_region
; i
++)
5193 region_copy
[i
]->flags
|= BB_DUPLICATED
;
5195 for (i
= 0; i
< n_region
; i
++)
5196 add_phi_args_after_copy_bb (region_copy
[i
]);
5198 add_phi_args_after_copy_edge (e_copy
);
5200 for (i
= 0; i
< n_region
; i
++)
5201 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
5204 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5205 important exit edge EXIT. By important we mean that no SSA name defined
5206 inside region is live over the other exit edges of the region. All entry
5207 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5208 to the duplicate of the region. SSA form, dominance and loop information
5209 is updated. The new basic blocks are stored to REGION_COPY in the same
5210 order as they had in REGION, provided that REGION_COPY is not NULL.
5211 The function returns false if it is unable to copy the region,
5215 gimple_duplicate_sese_region (edge entry
, edge exit
,
5216 basic_block
*region
, unsigned n_region
,
5217 basic_block
*region_copy
)
5220 bool free_region_copy
= false, copying_header
= false;
5221 struct loop
*loop
= entry
->dest
->loop_father
;
5223 VEC (basic_block
, heap
) *doms
;
5225 int total_freq
= 0, entry_freq
= 0;
5226 gcov_type total_count
= 0, entry_count
= 0;
5228 if (!can_copy_bbs_p (region
, n_region
))
5231 /* Some sanity checking. Note that we do not check for all possible
5232 missuses of the functions. I.e. if you ask to copy something weird,
5233 it will work, but the state of structures probably will not be
5235 for (i
= 0; i
< n_region
; i
++)
5237 /* We do not handle subloops, i.e. all the blocks must belong to the
5239 if (region
[i
]->loop_father
!= loop
)
5242 if (region
[i
] != entry
->dest
5243 && region
[i
] == loop
->header
)
5247 set_loop_copy (loop
, loop
);
5249 /* In case the function is used for loop header copying (which is the primary
5250 use), ensure that EXIT and its copy will be new latch and entry edges. */
5251 if (loop
->header
== entry
->dest
)
5253 copying_header
= true;
5254 set_loop_copy (loop
, loop_outer (loop
));
5256 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
5259 for (i
= 0; i
< n_region
; i
++)
5260 if (region
[i
] != exit
->src
5261 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
5267 region_copy
= XNEWVEC (basic_block
, n_region
);
5268 free_region_copy
= true;
5271 gcc_assert (!need_ssa_update_p (cfun
));
5273 /* Record blocks outside the region that are dominated by something
5276 initialize_original_copy_tables ();
5278 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5280 if (entry
->dest
->count
)
5282 total_count
= entry
->dest
->count
;
5283 entry_count
= entry
->count
;
5284 /* Fix up corner cases, to avoid division by zero or creation of negative
5286 if (entry_count
> total_count
)
5287 entry_count
= total_count
;
5291 total_freq
= entry
->dest
->frequency
;
5292 entry_freq
= EDGE_FREQUENCY (entry
);
5293 /* Fix up corner cases, to avoid division by zero or creation of negative
5295 if (total_freq
== 0)
5297 else if (entry_freq
> total_freq
)
5298 entry_freq
= total_freq
;
5301 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
5302 split_edge_bb_loc (entry
));
5305 scale_bbs_frequencies_gcov_type (region
, n_region
,
5306 total_count
- entry_count
,
5308 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, entry_count
,
5313 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
5315 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
5320 loop
->header
= exit
->dest
;
5321 loop
->latch
= exit
->src
;
5324 /* Redirect the entry and add the phi node arguments. */
5325 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
5326 gcc_assert (redirected
!= NULL
);
5327 flush_pending_stmts (entry
);
5329 /* Concerning updating of dominators: We must recount dominators
5330 for entry block and its copy. Anything that is outside of the
5331 region, but was dominated by something inside needs recounting as
5333 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
5334 VEC_safe_push (basic_block
, heap
, doms
, get_bb_original (entry
->dest
));
5335 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5336 VEC_free (basic_block
, heap
, doms
);
5338 /* Add the other PHI node arguments. */
5339 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
5341 /* Update the SSA web. */
5342 update_ssa (TODO_update_ssa
);
5344 if (free_region_copy
)
5347 free_original_copy_tables ();
5351 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5352 are stored to REGION_COPY in the same order in that they appear
5353 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5354 the region, EXIT an exit from it. The condition guarding EXIT
5355 is moved to ENTRY. Returns true if duplication succeeds, false
5381 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED
, edge exit ATTRIBUTE_UNUSED
,
5382 basic_block
*region ATTRIBUTE_UNUSED
, unsigned n_region ATTRIBUTE_UNUSED
,
5383 basic_block
*region_copy ATTRIBUTE_UNUSED
)
5386 bool free_region_copy
= false;
5387 struct loop
*loop
= exit
->dest
->loop_father
;
5388 struct loop
*orig_loop
= entry
->dest
->loop_father
;
5389 basic_block switch_bb
, entry_bb
, nentry_bb
;
5390 VEC (basic_block
, heap
) *doms
;
5391 int total_freq
= 0, exit_freq
= 0;
5392 gcov_type total_count
= 0, exit_count
= 0;
5393 edge exits
[2], nexits
[2], e
;
5394 gimple_stmt_iterator gsi
,gsi1
;
5397 basic_block exit_bb
;
5398 basic_block iters_bb
;
5400 gimple_stmt_iterator psi
;
5404 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
5406 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
5408 if (!can_copy_bbs_p (region
, n_region
))
5411 initialize_original_copy_tables ();
5412 set_loop_copy (orig_loop
, loop
);
5413 duplicate_subloops (orig_loop
, loop
);
5417 region_copy
= XNEWVEC (basic_block
, n_region
);
5418 free_region_copy
= true;
5421 gcc_assert (!need_ssa_update_p (cfun
));
5423 /* Record blocks outside the region that are dominated by something
5425 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5427 if (exit
->src
->count
)
5429 total_count
= exit
->src
->count
;
5430 exit_count
= exit
->count
;
5431 /* Fix up corner cases, to avoid division by zero or creation of negative
5433 if (exit_count
> total_count
)
5434 exit_count
= total_count
;
5438 total_freq
= exit
->src
->frequency
;
5439 exit_freq
= EDGE_FREQUENCY (exit
);
5440 /* Fix up corner cases, to avoid division by zero or creation of negative
5442 if (total_freq
== 0)
5444 if (exit_freq
> total_freq
)
5445 exit_freq
= total_freq
;
5448 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
5449 split_edge_bb_loc (exit
));
5452 scale_bbs_frequencies_gcov_type (region
, n_region
,
5453 total_count
- exit_count
,
5455 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, exit_count
,
5460 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
5462 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
5465 /* Create the switch block, and put the exit condition to it. */
5466 entry_bb
= entry
->dest
;
5467 nentry_bb
= get_bb_copy (entry_bb
);
5468 if (!last_stmt (entry
->src
)
5469 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
5470 switch_bb
= entry
->src
;
5472 switch_bb
= split_edge (entry
);
5473 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
5475 gsi
= gsi_last_bb (switch_bb
);
5476 cond_stmt
= last_stmt (exit
->src
);
5477 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
5478 cond_stmt
= gimple_copy (cond_stmt
);
5480 /* If the block consisting of the exit condition has the latch as
5481 successor, then the body of the loop is executed before
5482 the exit condition is tested. In such case, moving the
5483 condition to the entry, causes that the loop will iterate
5484 one less iteration (which is the wanted outcome, since we
5485 peel out the last iteration). If the body is executed after
5486 the condition, moving the condition to the entry requires
5487 decrementing one iteration. */
5488 if (exits
[1]->dest
== orig_loop
->latch
)
5489 new_rhs
= gimple_cond_rhs (cond_stmt
);
5492 new_rhs
= fold_build2 (MINUS_EXPR
, TREE_TYPE (gimple_cond_rhs (cond_stmt
)),
5493 gimple_cond_rhs (cond_stmt
),
5494 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt
)), 1));
5496 if (TREE_CODE (gimple_cond_rhs (cond_stmt
)) == SSA_NAME
)
5498 iters_bb
= gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt
)));
5499 for (gsi1
= gsi_start_bb (iters_bb
); !gsi_end_p (gsi1
); gsi_next (&gsi1
))
5500 if (gsi_stmt (gsi1
) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt
)))
5503 new_rhs
= force_gimple_operand_gsi (&gsi1
, new_rhs
, true,
5504 NULL_TREE
,false,GSI_CONTINUE_LINKING
);
5507 gimple_cond_set_rhs (cond_stmt
, unshare_expr (new_rhs
));
5508 gimple_cond_set_lhs (cond_stmt
, unshare_expr (gimple_cond_lhs (cond_stmt
)));
5509 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
5511 sorig
= single_succ_edge (switch_bb
);
5512 sorig
->flags
= exits
[1]->flags
;
5513 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
5515 /* Register the new edge from SWITCH_BB in loop exit lists. */
5516 rescan_loop_exit (snew
, true, false);
5518 /* Add the PHI node arguments. */
5519 add_phi_args_after_copy (region_copy
, n_region
, snew
);
5521 /* Get rid of now superfluous conditions and associated edges (and phi node
5523 exit_bb
= exit
->dest
;
5525 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
5526 PENDING_STMT (e
) = NULL
;
5528 /* The latch of ORIG_LOOP was copied, and so was the backedge
5529 to the original header. We redirect this backedge to EXIT_BB. */
5530 for (i
= 0; i
< n_region
; i
++)
5531 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
5533 gcc_assert (single_succ_edge (region_copy
[i
]));
5534 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
5535 PENDING_STMT (e
) = NULL
;
5536 for (psi
= gsi_start_phis (exit_bb
);
5540 phi
= gsi_stmt (psi
);
5541 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
5542 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
5545 e
= redirect_edge_and_branch (nexits
[0], nexits
[1]->dest
);
5546 PENDING_STMT (e
) = NULL
;
5548 /* Anything that is outside of the region, but was dominated by something
5549 inside needs to update dominance info. */
5550 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5551 VEC_free (basic_block
, heap
, doms
);
5552 /* Update the SSA web. */
5553 update_ssa (TODO_update_ssa
);
5555 if (free_region_copy
)
5558 free_original_copy_tables ();
5562 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5563 adding blocks when the dominator traversal reaches EXIT. This
5564 function silently assumes that ENTRY strictly dominates EXIT. */
5567 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
5568 VEC(basic_block
,heap
) **bbs_p
)
5572 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
5574 son
= next_dom_son (CDI_DOMINATORS
, son
))
5576 VEC_safe_push (basic_block
, heap
, *bbs_p
, son
);
5578 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
5582 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5583 The duplicates are recorded in VARS_MAP. */
5586 replace_by_duplicate_decl (tree
*tp
, struct pointer_map_t
*vars_map
,
5589 tree t
= *tp
, new_t
;
5590 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
5593 if (DECL_CONTEXT (t
) == to_context
)
5596 loc
= pointer_map_contains (vars_map
, t
);
5600 loc
= pointer_map_insert (vars_map
, t
);
5604 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
5605 add_local_decl (f
, new_t
);
5609 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
5610 new_t
= copy_node (t
);
5612 DECL_CONTEXT (new_t
) = to_context
;
5617 new_t
= (tree
) *loc
;
5623 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5624 VARS_MAP maps old ssa names and var_decls to the new ones. */
5627 replace_ssa_name (tree name
, struct pointer_map_t
*vars_map
,
5631 tree new_name
, decl
= SSA_NAME_VAR (name
);
5633 gcc_assert (is_gimple_reg (name
));
5635 loc
= pointer_map_contains (vars_map
, name
);
5639 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
5641 push_cfun (DECL_STRUCT_FUNCTION (to_context
));
5642 if (gimple_in_ssa_p (cfun
))
5643 add_referenced_var (decl
);
5645 new_name
= make_ssa_name (decl
, SSA_NAME_DEF_STMT (name
));
5646 if (SSA_NAME_IS_DEFAULT_DEF (name
))
5647 set_default_def (decl
, new_name
);
5650 loc
= pointer_map_insert (vars_map
, name
);
5654 new_name
= (tree
) *loc
;
5665 struct pointer_map_t
*vars_map
;
5666 htab_t new_label_map
;
5667 struct pointer_map_t
*eh_map
;
5671 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5672 contained in *TP if it has been ORIG_BLOCK previously and change the
5673 DECL_CONTEXT of every local variable referenced in *TP. */
5676 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
5678 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5679 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5683 /* We should never have TREE_BLOCK set on non-statements. */
5684 gcc_assert (!TREE_BLOCK (t
));
5686 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
5688 if (TREE_CODE (t
) == SSA_NAME
)
5689 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
5690 else if (TREE_CODE (t
) == LABEL_DECL
)
5692 if (p
->new_label_map
)
5694 struct tree_map in
, *out
;
5696 out
= (struct tree_map
*)
5697 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
5702 DECL_CONTEXT (t
) = p
->to_context
;
5704 else if (p
->remap_decls_p
)
5706 /* Replace T with its duplicate. T should no longer appear in the
5707 parent function, so this looks wasteful; however, it may appear
5708 in referenced_vars, and more importantly, as virtual operands of
5709 statements, and in alias lists of other variables. It would be
5710 quite difficult to expunge it from all those places. ??? It might
5711 suffice to do this for addressable variables. */
5712 if ((TREE_CODE (t
) == VAR_DECL
5713 && !is_global_var (t
))
5714 || TREE_CODE (t
) == CONST_DECL
)
5715 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
5718 && gimple_in_ssa_p (cfun
))
5720 push_cfun (DECL_STRUCT_FUNCTION (p
->to_context
));
5721 add_referenced_var (*tp
);
5727 else if (TYPE_P (t
))
5733 /* Helper for move_stmt_r. Given an EH region number for the source
5734 function, map that to the duplicate EH regio number in the dest. */
5737 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
5739 eh_region old_r
, new_r
;
5742 old_r
= get_eh_region_from_number (old_nr
);
5743 slot
= pointer_map_contains (p
->eh_map
, old_r
);
5744 new_r
= (eh_region
) *slot
;
5746 return new_r
->index
;
5749 /* Similar, but operate on INTEGER_CSTs. */
5752 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
5756 old_nr
= tree_low_cst (old_t_nr
, 0);
5757 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
5759 return build_int_cst (NULL
, new_nr
);
5762 /* Like move_stmt_op, but for gimple statements.
5764 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5765 contained in the current statement in *GSI_P and change the
5766 DECL_CONTEXT of every local variable referenced in the current
5770 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
5771 struct walk_stmt_info
*wi
)
5773 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5774 gimple stmt
= gsi_stmt (*gsi_p
);
5775 tree block
= gimple_block (stmt
);
5777 if (p
->orig_block
== NULL_TREE
5778 || block
== p
->orig_block
5779 || block
== NULL_TREE
)
5780 gimple_set_block (stmt
, p
->new_block
);
5781 #ifdef ENABLE_CHECKING
5782 else if (block
!= p
->new_block
)
5784 while (block
&& block
!= p
->orig_block
)
5785 block
= BLOCK_SUPERCONTEXT (block
);
5790 switch (gimple_code (stmt
))
5793 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5795 tree r
, fndecl
= gimple_call_fndecl (stmt
);
5796 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
5797 switch (DECL_FUNCTION_CODE (fndecl
))
5799 case BUILT_IN_EH_COPY_VALUES
:
5800 r
= gimple_call_arg (stmt
, 1);
5801 r
= move_stmt_eh_region_tree_nr (r
, p
);
5802 gimple_call_set_arg (stmt
, 1, r
);
5805 case BUILT_IN_EH_POINTER
:
5806 case BUILT_IN_EH_FILTER
:
5807 r
= gimple_call_arg (stmt
, 0);
5808 r
= move_stmt_eh_region_tree_nr (r
, p
);
5809 gimple_call_set_arg (stmt
, 0, r
);
5820 int r
= gimple_resx_region (stmt
);
5821 r
= move_stmt_eh_region_nr (r
, p
);
5822 gimple_resx_set_region (stmt
, r
);
5826 case GIMPLE_EH_DISPATCH
:
5828 int r
= gimple_eh_dispatch_region (stmt
);
5829 r
= move_stmt_eh_region_nr (r
, p
);
5830 gimple_eh_dispatch_set_region (stmt
, r
);
5834 case GIMPLE_OMP_RETURN
:
5835 case GIMPLE_OMP_CONTINUE
:
5838 if (is_gimple_omp (stmt
))
5840 /* Do not remap variables inside OMP directives. Variables
5841 referenced in clauses and directive header belong to the
5842 parent function and should not be moved into the child
5844 bool save_remap_decls_p
= p
->remap_decls_p
;
5845 p
->remap_decls_p
= false;
5846 *handled_ops_p
= true;
5848 walk_gimple_seq (gimple_omp_body (stmt
), move_stmt_r
,
5851 p
->remap_decls_p
= save_remap_decls_p
;
5859 /* Move basic block BB from function CFUN to function DEST_FN. The
5860 block is moved out of the original linked list and placed after
5861 block AFTER in the new list. Also, the block is removed from the
5862 original array of blocks and placed in DEST_FN's array of blocks.
5863 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5864 updated to reflect the moved edges.
5866 The local variables are remapped to new instances, VARS_MAP is used
5867 to record the mapping. */
5870 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
5871 basic_block after
, bool update_edge_count_p
,
5872 struct move_stmt_d
*d
)
5874 struct control_flow_graph
*cfg
;
5877 gimple_stmt_iterator si
;
5878 unsigned old_len
, new_len
;
5880 /* Remove BB from dominance structures. */
5881 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
5883 remove_bb_from_loops (bb
);
5885 /* Link BB to the new linked list. */
5886 move_block_after (bb
, after
);
5888 /* Update the edge count in the corresponding flowgraphs. */
5889 if (update_edge_count_p
)
5890 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5892 cfun
->cfg
->x_n_edges
--;
5893 dest_cfun
->cfg
->x_n_edges
++;
5896 /* Remove BB from the original basic block array. */
5897 VEC_replace (basic_block
, cfun
->cfg
->x_basic_block_info
, bb
->index
, NULL
);
5898 cfun
->cfg
->x_n_basic_blocks
--;
5900 /* Grow DEST_CFUN's basic block array if needed. */
5901 cfg
= dest_cfun
->cfg
;
5902 cfg
->x_n_basic_blocks
++;
5903 if (bb
->index
>= cfg
->x_last_basic_block
)
5904 cfg
->x_last_basic_block
= bb
->index
+ 1;
5906 old_len
= VEC_length (basic_block
, cfg
->x_basic_block_info
);
5907 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
5909 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
5910 VEC_safe_grow_cleared (basic_block
, gc
, cfg
->x_basic_block_info
,
5914 VEC_replace (basic_block
, cfg
->x_basic_block_info
,
5917 /* Remap the variables in phi nodes. */
5918 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); )
5920 gimple phi
= gsi_stmt (si
);
5922 tree op
= PHI_RESULT (phi
);
5925 if (!is_gimple_reg (op
))
5927 /* Remove the phi nodes for virtual operands (alias analysis will be
5928 run for the new function, anyway). */
5929 remove_phi_node (&si
, true);
5933 SET_PHI_RESULT (phi
,
5934 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
5935 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
5937 op
= USE_FROM_PTR (use
);
5938 if (TREE_CODE (op
) == SSA_NAME
)
5939 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
5945 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5947 gimple stmt
= gsi_stmt (si
);
5948 struct walk_stmt_info wi
;
5950 memset (&wi
, 0, sizeof (wi
));
5952 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
5954 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5956 tree label
= gimple_label_label (stmt
);
5957 int uid
= LABEL_DECL_UID (label
);
5959 gcc_assert (uid
> -1);
5961 old_len
= VEC_length (basic_block
, cfg
->x_label_to_block_map
);
5962 if (old_len
<= (unsigned) uid
)
5964 new_len
= 3 * uid
/ 2 + 1;
5965 VEC_safe_grow_cleared (basic_block
, gc
,
5966 cfg
->x_label_to_block_map
, new_len
);
5969 VEC_replace (basic_block
, cfg
->x_label_to_block_map
, uid
, bb
);
5970 VEC_replace (basic_block
, cfun
->cfg
->x_label_to_block_map
, uid
, NULL
);
5972 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
5974 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
5975 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
5978 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
5979 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
5981 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
5982 gimple_remove_stmt_histograms (cfun
, stmt
);
5984 /* We cannot leave any operands allocated from the operand caches of
5985 the current function. */
5986 free_stmt_operands (stmt
);
5987 push_cfun (dest_cfun
);
5992 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5995 tree block
= e
->goto_block
;
5996 if (d
->orig_block
== NULL_TREE
5997 || block
== d
->orig_block
)
5998 e
->goto_block
= d
->new_block
;
5999 #ifdef ENABLE_CHECKING
6000 else if (block
!= d
->new_block
)
6002 while (block
&& block
!= d
->orig_block
)
6003 block
= BLOCK_SUPERCONTEXT (block
);
6010 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6011 the outermost EH region. Use REGION as the incoming base EH region. */
6014 find_outermost_region_in_block (struct function
*src_cfun
,
6015 basic_block bb
, eh_region region
)
6017 gimple_stmt_iterator si
;
6019 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6021 gimple stmt
= gsi_stmt (si
);
6022 eh_region stmt_region
;
6025 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
6026 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
6030 region
= stmt_region
;
6031 else if (stmt_region
!= region
)
6033 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
6034 gcc_assert (region
!= NULL
);
6043 new_label_mapper (tree decl
, void *data
)
6045 htab_t hash
= (htab_t
) data
;
6049 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
6051 m
= XNEW (struct tree_map
);
6052 m
->hash
= DECL_UID (decl
);
6053 m
->base
.from
= decl
;
6054 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
6055 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
6056 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
6057 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
6059 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
6060 gcc_assert (*slot
== NULL
);
6067 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6071 replace_block_vars_by_duplicates (tree block
, struct pointer_map_t
*vars_map
,
6076 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
6079 if (TREE_CODE (t
) != VAR_DECL
&& TREE_CODE (t
) != CONST_DECL
)
6081 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
6084 if (TREE_CODE (*tp
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (*tp
))
6086 SET_DECL_VALUE_EXPR (t
, DECL_VALUE_EXPR (*tp
));
6087 DECL_HAS_VALUE_EXPR_P (t
) = 1;
6089 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
6094 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
6095 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
6098 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6099 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6100 single basic block in the original CFG and the new basic block is
6101 returned. DEST_CFUN must not have a CFG yet.
6103 Note that the region need not be a pure SESE region. Blocks inside
6104 the region may contain calls to abort/exit. The only restriction
6105 is that ENTRY_BB should be the only entry point and it must
6108 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6109 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6110 to the new function.
6112 All local variables referenced in the region are assumed to be in
6113 the corresponding BLOCK_VARS and unexpanded variable lists
6114 associated with DEST_CFUN. */
6117 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
6118 basic_block exit_bb
, tree orig_block
)
6120 VEC(basic_block
,heap
) *bbs
, *dom_bbs
;
6121 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
6122 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
6123 struct function
*saved_cfun
= cfun
;
6124 int *entry_flag
, *exit_flag
;
6125 unsigned *entry_prob
, *exit_prob
;
6126 unsigned i
, num_entry_edges
, num_exit_edges
;
6129 htab_t new_label_map
;
6130 struct pointer_map_t
*vars_map
, *eh_map
;
6131 struct loop
*loop
= entry_bb
->loop_father
;
6132 struct move_stmt_d d
;
6134 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6136 gcc_assert (entry_bb
!= exit_bb
6138 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
6140 /* Collect all the blocks in the region. Manually add ENTRY_BB
6141 because it won't be added by dfs_enumerate_from. */
6143 VEC_safe_push (basic_block
, heap
, bbs
, entry_bb
);
6144 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
6146 /* The blocks that used to be dominated by something in BBS will now be
6147 dominated by the new block. */
6148 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
6149 VEC_address (basic_block
, bbs
),
6150 VEC_length (basic_block
, bbs
));
6152 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6153 the predecessor edges to ENTRY_BB and the successor edges to
6154 EXIT_BB so that we can re-attach them to the new basic block that
6155 will replace the region. */
6156 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
6157 entry_pred
= (basic_block
*) xcalloc (num_entry_edges
, sizeof (basic_block
));
6158 entry_flag
= (int *) xcalloc (num_entry_edges
, sizeof (int));
6159 entry_prob
= XNEWVEC (unsigned, num_entry_edges
);
6161 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
6163 entry_prob
[i
] = e
->probability
;
6164 entry_flag
[i
] = e
->flags
;
6165 entry_pred
[i
++] = e
->src
;
6171 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
6172 exit_succ
= (basic_block
*) xcalloc (num_exit_edges
,
6173 sizeof (basic_block
));
6174 exit_flag
= (int *) xcalloc (num_exit_edges
, sizeof (int));
6175 exit_prob
= XNEWVEC (unsigned, num_exit_edges
);
6177 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
6179 exit_prob
[i
] = e
->probability
;
6180 exit_flag
[i
] = e
->flags
;
6181 exit_succ
[i
++] = e
->dest
;
6193 /* Switch context to the child function to initialize DEST_FN's CFG. */
6194 gcc_assert (dest_cfun
->cfg
== NULL
);
6195 push_cfun (dest_cfun
);
6197 init_empty_tree_cfg ();
6199 /* Initialize EH information for the new function. */
6201 new_label_map
= NULL
;
6204 eh_region region
= NULL
;
6206 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, bb
)
6207 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
6209 init_eh_for_function ();
6212 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
6213 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
6214 new_label_mapper
, new_label_map
);
6220 /* Move blocks from BBS into DEST_CFUN. */
6221 gcc_assert (VEC_length (basic_block
, bbs
) >= 2);
6222 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
6223 vars_map
= pointer_map_create ();
6225 memset (&d
, 0, sizeof (d
));
6226 d
.orig_block
= orig_block
;
6227 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
6228 d
.from_context
= cfun
->decl
;
6229 d
.to_context
= dest_cfun
->decl
;
6230 d
.vars_map
= vars_map
;
6231 d
.new_label_map
= new_label_map
;
6233 d
.remap_decls_p
= true;
6235 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, bb
)
6237 /* No need to update edge counts on the last block. It has
6238 already been updated earlier when we detached the region from
6239 the original CFG. */
6240 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
6244 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6248 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6250 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6251 = BLOCK_SUBBLOCKS (orig_block
);
6252 for (block
= BLOCK_SUBBLOCKS (orig_block
);
6253 block
; block
= BLOCK_CHAIN (block
))
6254 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
6255 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
6258 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
6259 vars_map
, dest_cfun
->decl
);
6262 htab_delete (new_label_map
);
6264 pointer_map_destroy (eh_map
);
6265 pointer_map_destroy (vars_map
);
6267 /* Rewire the entry and exit blocks. The successor to the entry
6268 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6269 the child function. Similarly, the predecessor of DEST_FN's
6270 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6271 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6272 various CFG manipulation function get to the right CFG.
6274 FIXME, this is silly. The CFG ought to become a parameter to
6276 push_cfun (dest_cfun
);
6277 make_edge (ENTRY_BLOCK_PTR
, entry_bb
, EDGE_FALLTHRU
);
6279 make_edge (exit_bb
, EXIT_BLOCK_PTR
, 0);
6282 /* Back in the original function, the SESE region has disappeared,
6283 create a new basic block in its place. */
6284 bb
= create_empty_bb (entry_pred
[0]);
6286 add_bb_to_loop (bb
, loop
);
6287 for (i
= 0; i
< num_entry_edges
; i
++)
6289 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
6290 e
->probability
= entry_prob
[i
];
6293 for (i
= 0; i
< num_exit_edges
; i
++)
6295 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
6296 e
->probability
= exit_prob
[i
];
6299 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
6300 FOR_EACH_VEC_ELT (basic_block
, dom_bbs
, i
, abb
)
6301 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
6302 VEC_free (basic_block
, heap
, dom_bbs
);
6313 VEC_free (basic_block
, heap
, bbs
);
6319 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6323 dump_function_to_file (tree fn
, FILE *file
, int flags
)
6326 struct function
*dsf
;
6327 bool ignore_topmost_bind
= false, any_var
= false;
6331 fprintf (file
, "%s (", lang_hooks
.decl_printable_name (fn
, 2));
6333 arg
= DECL_ARGUMENTS (fn
);
6336 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
6337 fprintf (file
, " ");
6338 print_generic_expr (file
, arg
, dump_flags
);
6339 if (flags
& TDF_VERBOSE
)
6340 print_node (file
, "", arg
, 4);
6341 if (DECL_CHAIN (arg
))
6342 fprintf (file
, ", ");
6343 arg
= DECL_CHAIN (arg
);
6345 fprintf (file
, ")\n");
6347 if (flags
& TDF_VERBOSE
)
6348 print_node (file
, "", fn
, 2);
6350 dsf
= DECL_STRUCT_FUNCTION (fn
);
6351 if (dsf
&& (flags
& TDF_EH
))
6352 dump_eh_tree (file
, dsf
);
6354 if (flags
& TDF_RAW
&& !gimple_has_body_p (fn
))
6356 dump_node (fn
, TDF_SLIM
| flags
, file
);
6360 /* Switch CFUN to point to FN. */
6361 push_cfun (DECL_STRUCT_FUNCTION (fn
));
6363 /* When GIMPLE is lowered, the variables are no longer available in
6364 BIND_EXPRs, so display them separately. */
6365 if (cfun
&& cfun
->decl
== fn
&& !VEC_empty (tree
, cfun
->local_decls
))
6368 ignore_topmost_bind
= true;
6370 fprintf (file
, "{\n");
6371 FOR_EACH_LOCAL_DECL (cfun
, ix
, var
)
6373 print_generic_decl (file
, var
, flags
);
6374 if (flags
& TDF_VERBOSE
)
6375 print_node (file
, "", var
, 4);
6376 fprintf (file
, "\n");
6382 if (cfun
&& cfun
->decl
== fn
&& cfun
->cfg
&& basic_block_info
)
6384 /* If the CFG has been built, emit a CFG-based dump. */
6385 check_bb_profile (ENTRY_BLOCK_PTR
, file
);
6386 if (!ignore_topmost_bind
)
6387 fprintf (file
, "{\n");
6389 if (any_var
&& n_basic_blocks
)
6390 fprintf (file
, "\n");
6393 gimple_dump_bb (bb
, file
, 2, flags
);
6395 fprintf (file
, "}\n");
6396 check_bb_profile (EXIT_BLOCK_PTR
, file
);
6398 else if (DECL_SAVED_TREE (fn
) == NULL
)
6400 /* The function is now in GIMPLE form but the CFG has not been
6401 built yet. Emit the single sequence of GIMPLE statements
6402 that make up its body. */
6403 gimple_seq body
= gimple_body (fn
);
6405 if (gimple_seq_first_stmt (body
)
6406 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
6407 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
6408 print_gimple_seq (file
, body
, 0, flags
);
6411 if (!ignore_topmost_bind
)
6412 fprintf (file
, "{\n");
6415 fprintf (file
, "\n");
6417 print_gimple_seq (file
, body
, 2, flags
);
6418 fprintf (file
, "}\n");
6425 /* Make a tree based dump. */
6426 chain
= DECL_SAVED_TREE (fn
);
6428 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
6430 if (ignore_topmost_bind
)
6432 chain
= BIND_EXPR_BODY (chain
);
6440 if (!ignore_topmost_bind
)
6441 fprintf (file
, "{\n");
6446 fprintf (file
, "\n");
6448 print_generic_stmt_indented (file
, chain
, flags
, indent
);
6449 if (ignore_topmost_bind
)
6450 fprintf (file
, "}\n");
6453 if (flags
& TDF_ENUMERATE_LOCALS
)
6454 dump_enumerated_decls (file
, flags
);
6455 fprintf (file
, "\n\n");
6462 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6465 debug_function (tree fn
, int flags
)
6467 dump_function_to_file (fn
, stderr
, flags
);
6471 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6474 print_pred_bbs (FILE *file
, basic_block bb
)
6479 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6480 fprintf (file
, "bb_%d ", e
->src
->index
);
6484 /* Print on FILE the indexes for the successors of basic_block BB. */
6487 print_succ_bbs (FILE *file
, basic_block bb
)
6492 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6493 fprintf (file
, "bb_%d ", e
->dest
->index
);
6496 /* Print to FILE the basic block BB following the VERBOSITY level. */
6499 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
6501 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
6502 memset ((void *) s_indent
, ' ', (size_t) indent
);
6503 s_indent
[indent
] = '\0';
6505 /* Print basic_block's header. */
6508 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
6509 print_pred_bbs (file
, bb
);
6510 fprintf (file
, "}, succs = {");
6511 print_succ_bbs (file
, bb
);
6512 fprintf (file
, "})\n");
6515 /* Print basic_block's body. */
6518 fprintf (file
, "%s {\n", s_indent
);
6519 gimple_dump_bb (bb
, file
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
6520 fprintf (file
, "%s }\n", s_indent
);
6524 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
6526 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6527 VERBOSITY level this outputs the contents of the loop, or just its
6531 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6539 s_indent
= (char *) alloca ((size_t) indent
+ 1);
6540 memset ((void *) s_indent
, ' ', (size_t) indent
);
6541 s_indent
[indent
] = '\0';
6543 /* Print loop's header. */
6544 fprintf (file
, "%sloop_%d (header = %d, latch = %d", s_indent
,
6545 loop
->num
, loop
->header
->index
, loop
->latch
->index
);
6546 fprintf (file
, ", niter = ");
6547 print_generic_expr (file
, loop
->nb_iterations
, 0);
6549 if (loop
->any_upper_bound
)
6551 fprintf (file
, ", upper_bound = ");
6552 dump_double_int (file
, loop
->nb_iterations_upper_bound
, true);
6555 if (loop
->any_estimate
)
6557 fprintf (file
, ", estimate = ");
6558 dump_double_int (file
, loop
->nb_iterations_estimate
, true);
6560 fprintf (file
, ")\n");
6562 /* Print loop's body. */
6565 fprintf (file
, "%s{\n", s_indent
);
6567 if (bb
->loop_father
== loop
)
6568 print_loops_bb (file
, bb
, indent
, verbosity
);
6570 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
6571 fprintf (file
, "%s}\n", s_indent
);
6575 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6576 spaces. Following VERBOSITY level this outputs the contents of the
6577 loop, or just its structure. */
6580 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6585 print_loop (file
, loop
, indent
, verbosity
);
6586 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
6589 /* Follow a CFG edge from the entry point of the program, and on entry
6590 of a loop, pretty print the loop structure on FILE. */
6593 print_loops (FILE *file
, int verbosity
)
6597 bb
= ENTRY_BLOCK_PTR
;
6598 if (bb
&& bb
->loop_father
)
6599 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
6603 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6606 debug_loops (int verbosity
)
6608 print_loops (stderr
, verbosity
);
6611 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6614 debug_loop (struct loop
*loop
, int verbosity
)
6616 print_loop (stderr
, loop
, 0, verbosity
);
6619 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6623 debug_loop_num (unsigned num
, int verbosity
)
6625 debug_loop (get_loop (num
), verbosity
);
6628 /* Return true if BB ends with a call, possibly followed by some
6629 instructions that must stay with the call. Return false,
6633 gimple_block_ends_with_call_p (basic_block bb
)
6635 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6636 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
6640 /* Return true if BB ends with a conditional branch. Return false,
6644 gimple_block_ends_with_condjump_p (const_basic_block bb
)
6646 gimple stmt
= last_stmt (CONST_CAST_BB (bb
));
6647 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
6651 /* Return true if we need to add fake edge to exit at statement T.
6652 Helper function for gimple_flow_call_edges_add. */
6655 need_fake_edge_p (gimple t
)
6657 tree fndecl
= NULL_TREE
;
6660 /* NORETURN and LONGJMP calls already have an edge to exit.
6661 CONST and PURE calls do not need one.
6662 We don't currently check for CONST and PURE here, although
6663 it would be a good idea, because those attributes are
6664 figured out from the RTL in mark_constant_function, and
6665 the counter incrementation code from -fprofile-arcs
6666 leads to different results from -fbranch-probabilities. */
6667 if (is_gimple_call (t
))
6669 fndecl
= gimple_call_fndecl (t
);
6670 call_flags
= gimple_call_flags (t
);
6673 if (is_gimple_call (t
)
6675 && DECL_BUILT_IN (fndecl
)
6676 && (call_flags
& ECF_NOTHROW
)
6677 && !(call_flags
& ECF_RETURNS_TWICE
)
6678 /* fork() doesn't really return twice, but the effect of
6679 wrapping it in __gcov_fork() which calls __gcov_flush()
6680 and clears the counters before forking has the same
6681 effect as returning twice. Force a fake edge. */
6682 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
6683 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
6686 if (is_gimple_call (t
)
6687 && !(call_flags
& ECF_NORETURN
))
6690 if (gimple_code (t
) == GIMPLE_ASM
6691 && (gimple_asm_volatile_p (t
) || gimple_asm_input_p (t
)))
6698 /* Add fake edges to the function exit for any non constant and non
6699 noreturn calls, volatile inline assembly in the bitmap of blocks
6700 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6701 the number of blocks that were split.
6703 The goal is to expose cases in which entering a basic block does
6704 not imply that all subsequent instructions must be executed. */
6707 gimple_flow_call_edges_add (sbitmap blocks
)
6710 int blocks_split
= 0;
6711 int last_bb
= last_basic_block
;
6712 bool check_last_block
= false;
6714 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
6718 check_last_block
= true;
6720 check_last_block
= TEST_BIT (blocks
, EXIT_BLOCK_PTR
->prev_bb
->index
);
6722 /* In the last basic block, before epilogue generation, there will be
6723 a fallthru edge to EXIT. Special care is required if the last insn
6724 of the last basic block is a call because make_edge folds duplicate
6725 edges, which would result in the fallthru edge also being marked
6726 fake, which would result in the fallthru edge being removed by
6727 remove_fake_edges, which would result in an invalid CFG.
6729 Moreover, we can't elide the outgoing fake edge, since the block
6730 profiler needs to take this into account in order to solve the minimal
6731 spanning tree in the case that the call doesn't return.
6733 Handle this by adding a dummy instruction in a new last basic block. */
6734 if (check_last_block
)
6736 basic_block bb
= EXIT_BLOCK_PTR
->prev_bb
;
6737 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6740 if (!gsi_end_p (gsi
))
6743 if (t
&& need_fake_edge_p (t
))
6747 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
6750 gsi_insert_on_edge (e
, gimple_build_nop ());
6751 gsi_commit_edge_inserts ();
6756 /* Now add fake edges to the function exit for any non constant
6757 calls since there is no way that we can determine if they will
6759 for (i
= 0; i
< last_bb
; i
++)
6761 basic_block bb
= BASIC_BLOCK (i
);
6762 gimple_stmt_iterator gsi
;
6763 gimple stmt
, last_stmt
;
6768 if (blocks
&& !TEST_BIT (blocks
, i
))
6771 gsi
= gsi_last_nondebug_bb (bb
);
6772 if (!gsi_end_p (gsi
))
6774 last_stmt
= gsi_stmt (gsi
);
6777 stmt
= gsi_stmt (gsi
);
6778 if (need_fake_edge_p (stmt
))
6782 /* The handling above of the final block before the
6783 epilogue should be enough to verify that there is
6784 no edge to the exit block in CFG already.
6785 Calling make_edge in such case would cause us to
6786 mark that edge as fake and remove it later. */
6787 #ifdef ENABLE_CHECKING
6788 if (stmt
== last_stmt
)
6790 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
6791 gcc_assert (e
== NULL
);
6795 /* Note that the following may create a new basic block
6796 and renumber the existing basic blocks. */
6797 if (stmt
!= last_stmt
)
6799 e
= split_block (bb
, stmt
);
6803 make_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
6807 while (!gsi_end_p (gsi
));
6812 verify_flow_info ();
6814 return blocks_split
;
6817 /* Removes edge E and all the blocks dominated by it, and updates dominance
6818 information. The IL in E->src needs to be updated separately.
6819 If dominance info is not available, only the edge E is removed.*/
6822 remove_edge_and_dominated_blocks (edge e
)
6824 VEC (basic_block
, heap
) *bbs_to_remove
= NULL
;
6825 VEC (basic_block
, heap
) *bbs_to_fix_dom
= NULL
;
6829 bool none_removed
= false;
6831 basic_block bb
, dbb
;
6834 if (!dom_info_available_p (CDI_DOMINATORS
))
6840 /* No updating is needed for edges to exit. */
6841 if (e
->dest
== EXIT_BLOCK_PTR
)
6843 if (cfgcleanup_altered_bbs
)
6844 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
6849 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6850 that is not dominated by E->dest, then this set is empty. Otherwise,
6851 all the basic blocks dominated by E->dest are removed.
6853 Also, to DF_IDOM we store the immediate dominators of the blocks in
6854 the dominance frontier of E (i.e., of the successors of the
6855 removed blocks, if there are any, and of E->dest otherwise). */
6856 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
6861 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
6863 none_removed
= true;
6868 df
= BITMAP_ALLOC (NULL
);
6869 df_idom
= BITMAP_ALLOC (NULL
);
6872 bitmap_set_bit (df_idom
,
6873 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
6876 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
6877 FOR_EACH_VEC_ELT (basic_block
, bbs_to_remove
, i
, bb
)
6879 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
6881 if (f
->dest
!= EXIT_BLOCK_PTR
)
6882 bitmap_set_bit (df
, f
->dest
->index
);
6885 FOR_EACH_VEC_ELT (basic_block
, bbs_to_remove
, i
, bb
)
6886 bitmap_clear_bit (df
, bb
->index
);
6888 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
6890 bb
= BASIC_BLOCK (i
);
6891 bitmap_set_bit (df_idom
,
6892 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
6896 if (cfgcleanup_altered_bbs
)
6898 /* Record the set of the altered basic blocks. */
6899 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
6900 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
6903 /* Remove E and the cancelled blocks. */
6908 /* Walk backwards so as to get a chance to substitute all
6909 released DEFs into debug stmts. See
6910 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6912 for (i
= VEC_length (basic_block
, bbs_to_remove
); i
-- > 0; )
6913 delete_basic_block (VEC_index (basic_block
, bbs_to_remove
, i
));
6916 /* Update the dominance information. The immediate dominator may change only
6917 for blocks whose immediate dominator belongs to DF_IDOM:
6919 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6920 removal. Let Z the arbitrary block such that idom(Z) = Y and
6921 Z dominates X after the removal. Before removal, there exists a path P
6922 from Y to X that avoids Z. Let F be the last edge on P that is
6923 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6924 dominates W, and because of P, Z does not dominate W), and W belongs to
6925 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6926 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
6928 bb
= BASIC_BLOCK (i
);
6929 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
6931 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
6932 VEC_safe_push (basic_block
, heap
, bbs_to_fix_dom
, dbb
);
6935 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
6938 BITMAP_FREE (df_idom
);
6939 VEC_free (basic_block
, heap
, bbs_to_remove
);
6940 VEC_free (basic_block
, heap
, bbs_to_fix_dom
);
6943 /* Purge dead EH edges from basic block BB. */
6946 gimple_purge_dead_eh_edges (basic_block bb
)
6948 bool changed
= false;
6951 gimple stmt
= last_stmt (bb
);
6953 if (stmt
&& stmt_can_throw_internal (stmt
))
6956 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
6958 if (e
->flags
& EDGE_EH
)
6960 remove_edge_and_dominated_blocks (e
);
6970 /* Purge dead EH edges from basic block listed in BLOCKS. */
6973 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
6975 bool changed
= false;
6979 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
6981 basic_block bb
= BASIC_BLOCK (i
);
6983 /* Earlier gimple_purge_dead_eh_edges could have removed
6984 this basic block already. */
6985 gcc_assert (bb
|| changed
);
6987 changed
|= gimple_purge_dead_eh_edges (bb
);
6993 /* Purge dead abnormal call edges from basic block BB. */
6996 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
6998 bool changed
= false;
7001 gimple stmt
= last_stmt (bb
);
7003 if (!cfun
->has_nonlocal_label
)
7006 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
7009 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7011 if (e
->flags
& EDGE_ABNORMAL
)
7013 remove_edge_and_dominated_blocks (e
);
7023 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7026 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
7028 bool changed
= false;
7032 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7034 basic_block bb
= BASIC_BLOCK (i
);
7036 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7037 this basic block already. */
7038 gcc_assert (bb
|| changed
);
7040 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
7046 /* This function is called whenever a new edge is created or
7050 gimple_execute_on_growing_pred (edge e
)
7052 basic_block bb
= e
->dest
;
7054 if (!gimple_seq_empty_p (phi_nodes (bb
)))
7055 reserve_phi_args_for_new_edge (bb
);
7058 /* This function is called immediately before edge E is removed from
7059 the edge vector E->dest->preds. */
7062 gimple_execute_on_shrinking_pred (edge e
)
7064 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
7065 remove_phi_args (e
);
7068 /*---------------------------------------------------------------------------
7069 Helper functions for Loop versioning
7070 ---------------------------------------------------------------------------*/
7072 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7073 of 'first'. Both of them are dominated by 'new_head' basic block. When
7074 'new_head' was created by 'second's incoming edge it received phi arguments
7075 on the edge by split_edge(). Later, additional edge 'e' was created to
7076 connect 'new_head' and 'first'. Now this routine adds phi args on this
7077 additional edge 'e' that new_head to second edge received as part of edge
7081 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
7082 basic_block new_head
, edge e
)
7085 gimple_stmt_iterator psi1
, psi2
;
7087 edge e2
= find_edge (new_head
, second
);
7089 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7090 edge, we should always have an edge from NEW_HEAD to SECOND. */
7091 gcc_assert (e2
!= NULL
);
7093 /* Browse all 'second' basic block phi nodes and add phi args to
7094 edge 'e' for 'first' head. PHI args are always in correct order. */
7096 for (psi2
= gsi_start_phis (second
),
7097 psi1
= gsi_start_phis (first
);
7098 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
7099 gsi_next (&psi2
), gsi_next (&psi1
))
7101 phi1
= gsi_stmt (psi1
);
7102 phi2
= gsi_stmt (psi2
);
7103 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
7104 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
7109 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7110 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7111 the destination of the ELSE part. */
7114 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
7115 basic_block second_head ATTRIBUTE_UNUSED
,
7116 basic_block cond_bb
, void *cond_e
)
7118 gimple_stmt_iterator gsi
;
7119 gimple new_cond_expr
;
7120 tree cond_expr
= (tree
) cond_e
;
7123 /* Build new conditional expr */
7124 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
7125 NULL_TREE
, NULL_TREE
);
7127 /* Add new cond in cond_bb. */
7128 gsi
= gsi_last_bb (cond_bb
);
7129 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
7131 /* Adjust edges appropriately to connect new head with first head
7132 as well as second head. */
7133 e0
= single_succ_edge (cond_bb
);
7134 e0
->flags
&= ~EDGE_FALLTHRU
;
7135 e0
->flags
|= EDGE_FALSE_VALUE
;
7138 struct cfg_hooks gimple_cfg_hooks
= {
7140 gimple_verify_flow_info
,
7141 gimple_dump_bb
, /* dump_bb */
7142 create_bb
, /* create_basic_block */
7143 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
7144 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
7145 gimple_can_remove_branch_p
, /* can_remove_branch_p */
7146 remove_bb
, /* delete_basic_block */
7147 gimple_split_block
, /* split_block */
7148 gimple_move_block_after
, /* move_block_after */
7149 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
7150 gimple_merge_blocks
, /* merge_blocks */
7151 gimple_predict_edge
, /* predict_edge */
7152 gimple_predicted_by_p
, /* predicted_by_p */
7153 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
7154 gimple_duplicate_bb
, /* duplicate_block */
7155 gimple_split_edge
, /* split_edge */
7156 gimple_make_forwarder_block
, /* make_forward_block */
7157 NULL
, /* tidy_fallthru_edge */
7158 NULL
, /* force_nonfallthru */
7159 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
7160 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
7161 gimple_flow_call_edges_add
, /* flow_call_edges_add */
7162 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
7163 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
7164 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
7165 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
7166 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
7167 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
7168 flush_pending_stmts
/* flush_pending_stmts */
7172 /* Split all critical edges. */
7175 split_critical_edges (void)
7181 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7182 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7183 mappings around the calls to split_edge. */
7184 start_recording_case_labels ();
7187 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7189 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
7191 /* PRE inserts statements to edges and expects that
7192 since split_critical_edges was done beforehand, committing edge
7193 insertions will not split more edges. In addition to critical
7194 edges we must split edges that have multiple successors and
7195 end by control flow statements, such as RESX.
7196 Go ahead and split them too. This matches the logic in
7197 gimple_find_edge_insert_loc. */
7198 else if ((!single_pred_p (e
->dest
)
7199 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
7200 || e
->dest
== EXIT_BLOCK_PTR
)
7201 && e
->src
!= ENTRY_BLOCK_PTR
7202 && !(e
->flags
& EDGE_ABNORMAL
))
7204 gimple_stmt_iterator gsi
;
7206 gsi
= gsi_last_bb (e
->src
);
7207 if (!gsi_end_p (gsi
)
7208 && stmt_ends_bb_p (gsi_stmt (gsi
))
7209 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
7210 && !gimple_call_builtin_p (gsi_stmt (gsi
),
7216 end_recording_case_labels ();
7220 struct gimple_opt_pass pass_split_crit_edges
=
7224 "crited", /* name */
7226 split_critical_edges
, /* execute */
7229 0, /* static_pass_number */
7230 TV_TREE_SPLIT_EDGES
, /* tv_id */
7231 PROP_cfg
, /* properties required */
7232 PROP_no_crit_edges
, /* properties_provided */
7233 0, /* properties_destroyed */
7234 0, /* todo_flags_start */
7235 TODO_dump_func
| TODO_verify_flow
/* todo_flags_finish */
7240 /* Build a ternary operation and gimplify it. Emit code before GSI.
7241 Return the gimple_val holding the result. */
7244 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7245 tree type
, tree a
, tree b
, tree c
)
7248 location_t loc
= gimple_location (gsi_stmt (*gsi
));
7250 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
7253 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7257 /* Build a binary operation and gimplify it. Emit code before GSI.
7258 Return the gimple_val holding the result. */
7261 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7262 tree type
, tree a
, tree b
)
7266 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
7269 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7273 /* Build a unary operation and gimplify it. Emit code before GSI.
7274 Return the gimple_val holding the result. */
7277 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
7282 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
7285 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7291 /* Emit return warnings. */
7294 execute_warn_function_return (void)
7296 source_location location
;
7301 /* If we have a path to EXIT, then we do return. */
7302 if (TREE_THIS_VOLATILE (cfun
->decl
)
7303 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0)
7305 location
= UNKNOWN_LOCATION
;
7306 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7308 last
= last_stmt (e
->src
);
7309 if ((gimple_code (last
) == GIMPLE_RETURN
7310 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
7311 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
7314 if (location
== UNKNOWN_LOCATION
)
7315 location
= cfun
->function_end_locus
;
7316 warning_at (location
, 0, "%<noreturn%> function does return");
7319 /* If we see "return;" in some basic block, then we do reach the end
7320 without returning a value. */
7321 else if (warn_return_type
7322 && !TREE_NO_WARNING (cfun
->decl
)
7323 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0
7324 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun
->decl
))))
7326 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7328 gimple last
= last_stmt (e
->src
);
7329 if (gimple_code (last
) == GIMPLE_RETURN
7330 && gimple_return_retval (last
) == NULL
7331 && !gimple_no_warning_p (last
))
7333 location
= gimple_location (last
);
7334 if (location
== UNKNOWN_LOCATION
)
7335 location
= cfun
->function_end_locus
;
7336 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
7337 TREE_NO_WARNING (cfun
->decl
) = 1;
7346 /* Given a basic block B which ends with a conditional and has
7347 precisely two successors, determine which of the edges is taken if
7348 the conditional is true and which is taken if the conditional is
7349 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7352 extract_true_false_edges_from_block (basic_block b
,
7356 edge e
= EDGE_SUCC (b
, 0);
7358 if (e
->flags
& EDGE_TRUE_VALUE
)
7361 *false_edge
= EDGE_SUCC (b
, 1);
7366 *true_edge
= EDGE_SUCC (b
, 1);
7370 struct gimple_opt_pass pass_warn_function_return
=
7374 "*warn_function_return", /* name */
7376 execute_warn_function_return
, /* execute */
7379 0, /* static_pass_number */
7380 TV_NONE
, /* tv_id */
7381 PROP_cfg
, /* properties_required */
7382 0, /* properties_provided */
7383 0, /* properties_destroyed */
7384 0, /* todo_flags_start */
7385 0 /* todo_flags_finish */
7389 /* Emit noreturn warnings. */
7392 execute_warn_function_noreturn (void)
7394 if (!TREE_THIS_VOLATILE (current_function_decl
)
7395 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) == 0)
7396 warn_function_noreturn (current_function_decl
);
7401 gate_warn_function_noreturn (void)
7403 return warn_suggest_attribute_noreturn
;
7406 struct gimple_opt_pass pass_warn_function_noreturn
=
7410 "*warn_function_noreturn", /* name */
7411 gate_warn_function_noreturn
, /* gate */
7412 execute_warn_function_noreturn
, /* execute */
7415 0, /* static_pass_number */
7416 TV_NONE
, /* tv_id */
7417 PROP_cfg
, /* properties_required */
7418 0, /* properties_provided */
7419 0, /* properties_destroyed */
7420 0, /* todo_flags_start */
7421 0 /* todo_flags_finish */
7426 /* Walk a gimplified function and warn for functions whose return value is
7427 ignored and attribute((warn_unused_result)) is set. This is done before
7428 inlining, so we don't have to worry about that. */
7431 do_warn_unused_result (gimple_seq seq
)
7434 gimple_stmt_iterator i
;
7436 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
7438 gimple g
= gsi_stmt (i
);
7440 switch (gimple_code (g
))
7443 do_warn_unused_result (gimple_bind_body (g
));
7446 do_warn_unused_result (gimple_try_eval (g
));
7447 do_warn_unused_result (gimple_try_cleanup (g
));
7450 do_warn_unused_result (gimple_catch_handler (g
));
7452 case GIMPLE_EH_FILTER
:
7453 do_warn_unused_result (gimple_eh_filter_failure (g
));
7457 if (gimple_call_lhs (g
))
7459 if (gimple_call_internal_p (g
))
7462 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7463 LHS. All calls whose value is ignored should be
7464 represented like this. Look for the attribute. */
7465 fdecl
= gimple_call_fndecl (g
);
7466 ftype
= gimple_call_fntype (g
);
7468 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
7470 location_t loc
= gimple_location (g
);
7473 warning_at (loc
, OPT_Wunused_result
,
7474 "ignoring return value of %qD, "
7475 "declared with attribute warn_unused_result",
7478 warning_at (loc
, OPT_Wunused_result
,
7479 "ignoring return value of function "
7480 "declared with attribute warn_unused_result");
7485 /* Not a container, not a call, or a call whose value is used. */
7492 run_warn_unused_result (void)
7494 do_warn_unused_result (gimple_body (current_function_decl
));
7499 gate_warn_unused_result (void)
7501 return flag_warn_unused_result
;
7504 struct gimple_opt_pass pass_warn_unused_result
=
7508 "*warn_unused_result", /* name */
7509 gate_warn_unused_result
, /* gate */
7510 run_warn_unused_result
, /* execute */
7513 0, /* static_pass_number */
7514 TV_NONE
, /* tv_id */
7515 PROP_gimple_any
, /* properties_required */
7516 0, /* properties_provided */
7517 0, /* properties_destroyed */
7518 0, /* todo_flags_start */
7519 0, /* todo_flags_finish */