2011-04-28 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / alias.c
blobc2a2c9d865540678f909eeaf5a08ab826f8cb5e3
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "diagnostic-core.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "tree-pass.h"
46 #include "df.h"
47 #include "tree-ssa-alias.h"
48 #include "pointer-set.h"
49 #include "tree-flow.h"
51 /* The aliasing API provided here solves related but different problems:
53 Say there exists (in c)
55 struct X {
56 struct Y y1;
57 struct Z z2;
58 } x1, *px1, *px2;
60 struct Y y2, *py;
61 struct Z z2, *pz;
64 py = &px1.y1;
65 px2 = &x1;
67 Consider the four questions:
69 Can a store to x1 interfere with px2->y1?
70 Can a store to x1 interfere with px2->z2?
71 (*px2).z2
72 Can a store to x1 change the value pointed to by with py?
73 Can a store to x1 change the value pointed to by with pz?
75 The answer to these questions can be yes, yes, yes, and maybe.
77 The first two questions can be answered with a simple examination
78 of the type system. If structure X contains a field of type Y then
79 a store thru a pointer to an X can overwrite any field that is
80 contained (recursively) in an X (unless we know that px1 != px2).
82 The last two of the questions can be solved in the same way as the
83 first two questions but this is too conservative. The observation
84 is that in some cases analysis we can know if which (if any) fields
85 are addressed and if those addresses are used in bad ways. This
86 analysis may be language specific. In C, arbitrary operations may
87 be applied to pointers. However, there is some indication that
88 this may be too conservative for some C++ types.
90 The pass ipa-type-escape does this analysis for the types whose
91 instances do not escape across the compilation boundary.
93 Historically in GCC, these two problems were combined and a single
94 data structure was used to represent the solution to these
95 problems. We now have two similar but different data structures,
96 The data structure to solve the last two question is similar to the
97 first, but does not contain have the fields in it whose address are
98 never taken. For types that do escape the compilation unit, the
99 data structures will have identical information.
102 /* The alias sets assigned to MEMs assist the back-end in determining
103 which MEMs can alias which other MEMs. In general, two MEMs in
104 different alias sets cannot alias each other, with one important
105 exception. Consider something like:
107 struct S { int i; double d; };
109 a store to an `S' can alias something of either type `int' or type
110 `double'. (However, a store to an `int' cannot alias a `double'
111 and vice versa.) We indicate this via a tree structure that looks
112 like:
113 struct S
116 |/_ _\|
117 int double
119 (The arrows are directed and point downwards.)
120 In this situation we say the alias set for `struct S' is the
121 `superset' and that those for `int' and `double' are `subsets'.
123 To see whether two alias sets can point to the same memory, we must
124 see if either alias set is a subset of the other. We need not trace
125 past immediate descendants, however, since we propagate all
126 grandchildren up one level.
128 Alias set zero is implicitly a superset of all other alias sets.
129 However, this is no actual entry for alias set zero. It is an
130 error to attempt to explicitly construct a subset of zero. */
132 struct GTY(()) alias_set_entry_d {
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 alias_set_type alias_set;
136 /* Nonzero if would have a child of zero: this effectively makes this
137 alias set the same as alias set zero. */
138 int has_zero_child;
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
143 struct T { struct S s; float f; }
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 splay_tree GTY((param1_is (int), param2_is (int))) children;
149 typedef struct alias_set_entry_d *alias_set_entry;
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, const_rtx, void *);
154 static int base_alias_check (rtx, rtx, enum machine_mode,
155 enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static alias_set_entry get_alias_set_entry (alias_set_type);
160 static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
161 bool (*) (const_rtx, bool));
162 static int aliases_everything_p (const_rtx);
163 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
164 static tree decl_for_component_ref (tree);
165 static rtx adjust_offset_for_component_ref (tree, rtx);
166 static int write_dependence_p (const_rtx, const_rtx, int);
168 static void memory_modified_1 (rtx, const_rtx, void *);
170 /* Set up all info needed to perform alias analysis on memory references. */
172 /* Returns the size in bytes of the mode of X. */
173 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
175 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
176 different alias sets. We ignore alias sets in functions making use
177 of variable arguments because the va_arg macros on some systems are
178 not legal ANSI C. */
179 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
180 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
182 /* Cap the number of passes we make over the insns propagating alias
183 information through set chains. 10 is a completely arbitrary choice. */
184 #define MAX_ALIAS_LOOP_PASSES 10
186 /* reg_base_value[N] gives an address to which register N is related.
187 If all sets after the first add or subtract to the current value
188 or otherwise modify it so it does not point to a different top level
189 object, reg_base_value[N] is equal to the address part of the source
190 of the first set.
192 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
193 expressions represent certain special values: function arguments and
194 the stack, frame, and argument pointers.
196 The contents of an ADDRESS is not normally used, the mode of the
197 ADDRESS determines whether the ADDRESS is a function argument or some
198 other special value. Pointer equality, not rtx_equal_p, determines whether
199 two ADDRESS expressions refer to the same base address.
201 The only use of the contents of an ADDRESS is for determining if the
202 current function performs nonlocal memory memory references for the
203 purposes of marking the function as a constant function. */
205 static GTY(()) VEC(rtx,gc) *reg_base_value;
206 static rtx *new_reg_base_value;
208 /* We preserve the copy of old array around to avoid amount of garbage
209 produced. About 8% of garbage produced were attributed to this
210 array. */
211 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
213 #define static_reg_base_value \
214 (this_target_rtl->x_static_reg_base_value)
216 #define REG_BASE_VALUE(X) \
217 (REGNO (X) < VEC_length (rtx, reg_base_value) \
218 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
220 /* Vector indexed by N giving the initial (unchanging) value known for
221 pseudo-register N. This array is initialized in init_alias_analysis,
222 and does not change until end_alias_analysis is called. */
223 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
225 /* Indicates number of valid entries in reg_known_value. */
226 static GTY(()) unsigned int reg_known_value_size;
228 /* Vector recording for each reg_known_value whether it is due to a
229 REG_EQUIV note. Future passes (viz., reload) may replace the
230 pseudo with the equivalent expression and so we account for the
231 dependences that would be introduced if that happens.
233 The REG_EQUIV notes created in assign_parms may mention the arg
234 pointer, and there are explicit insns in the RTL that modify the
235 arg pointer. Thus we must ensure that such insns don't get
236 scheduled across each other because that would invalidate the
237 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
238 wrong, but solving the problem in the scheduler will likely give
239 better code, so we do it here. */
240 static bool *reg_known_equiv_p;
242 /* True when scanning insns from the start of the rtl to the
243 NOTE_INSN_FUNCTION_BEG note. */
244 static bool copying_arguments;
246 DEF_VEC_P(alias_set_entry);
247 DEF_VEC_ALLOC_P(alias_set_entry,gc);
249 /* The splay-tree used to store the various alias set entries. */
250 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
252 /* Build a decomposed reference object for querying the alias-oracle
253 from the MEM rtx and store it in *REF.
254 Returns false if MEM is not suitable for the alias-oracle. */
256 static bool
257 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
259 tree expr = MEM_EXPR (mem);
260 tree base;
262 if (!expr)
263 return false;
265 ao_ref_init (ref, expr);
267 /* Get the base of the reference and see if we have to reject or
268 adjust it. */
269 base = ao_ref_base (ref);
270 if (base == NULL_TREE)
271 return false;
273 /* The tree oracle doesn't like to have these. */
274 if (TREE_CODE (base) == FUNCTION_DECL
275 || TREE_CODE (base) == LABEL_DECL)
276 return false;
278 /* If this is a pointer dereference of a non-SSA_NAME punt.
279 ??? We could replace it with a pointer to anything. */
280 if ((INDIRECT_REF_P (base)
281 || TREE_CODE (base) == MEM_REF)
282 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
283 return false;
284 if (TREE_CODE (base) == TARGET_MEM_REF
285 && TMR_BASE (base)
286 && TREE_CODE (TMR_BASE (base)) != SSA_NAME)
287 return false;
289 /* If this is a reference based on a partitioned decl replace the
290 base with an INDIRECT_REF of the pointer representative we
291 created during stack slot partitioning. */
292 if (TREE_CODE (base) == VAR_DECL
293 && ! TREE_STATIC (base)
294 && cfun->gimple_df->decls_to_pointers != NULL)
296 void *namep;
297 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
298 if (namep)
299 ref->base = build_simple_mem_ref (*(tree *)namep);
301 else if (TREE_CODE (base) == TARGET_MEM_REF
302 && TREE_CODE (TMR_BASE (base)) == ADDR_EXPR
303 && TREE_CODE (TREE_OPERAND (TMR_BASE (base), 0)) == VAR_DECL
304 && ! TREE_STATIC (TREE_OPERAND (TMR_BASE (base), 0))
305 && cfun->gimple_df->decls_to_pointers != NULL)
307 void *namep;
308 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers,
309 TREE_OPERAND (TMR_BASE (base), 0));
310 if (namep)
311 ref->base = build_simple_mem_ref (*(tree *)namep);
314 ref->ref_alias_set = MEM_ALIAS_SET (mem);
316 /* If MEM_OFFSET or MEM_SIZE are NULL we have to punt.
317 Keep points-to related information though. */
318 if (!MEM_OFFSET (mem)
319 || !MEM_SIZE (mem))
321 ref->ref = NULL_TREE;
322 ref->offset = 0;
323 ref->size = -1;
324 ref->max_size = -1;
325 return true;
328 /* If the base decl is a parameter we can have negative MEM_OFFSET in
329 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
330 here. */
331 if (INTVAL (MEM_OFFSET (mem)) < 0
332 && ((INTVAL (MEM_SIZE (mem)) + INTVAL (MEM_OFFSET (mem)))
333 * BITS_PER_UNIT) == ref->size)
334 return true;
336 ref->offset += INTVAL (MEM_OFFSET (mem)) * BITS_PER_UNIT;
337 ref->size = INTVAL (MEM_SIZE (mem)) * BITS_PER_UNIT;
339 /* The MEM may extend into adjacent fields, so adjust max_size if
340 necessary. */
341 if (ref->max_size != -1
342 && ref->size > ref->max_size)
343 ref->max_size = ref->size;
345 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
346 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
347 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
348 && (ref->offset < 0
349 || (DECL_P (ref->base)
350 && (!host_integerp (DECL_SIZE (ref->base), 1)
351 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
352 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
353 return false;
355 return true;
358 /* Query the alias-oracle on whether the two memory rtx X and MEM may
359 alias. If TBAA_P is set also apply TBAA. Returns true if the
360 two rtxen may alias, false otherwise. */
362 static bool
363 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
365 ao_ref ref1, ref2;
367 if (!ao_ref_from_mem (&ref1, x)
368 || !ao_ref_from_mem (&ref2, mem))
369 return true;
371 return refs_may_alias_p_1 (&ref1, &ref2,
372 tbaa_p
373 && MEM_ALIAS_SET (x) != 0
374 && MEM_ALIAS_SET (mem) != 0);
377 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
378 such an entry, or NULL otherwise. */
380 static inline alias_set_entry
381 get_alias_set_entry (alias_set_type alias_set)
383 return VEC_index (alias_set_entry, alias_sets, alias_set);
386 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
387 the two MEMs cannot alias each other. */
389 static inline int
390 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
392 /* Perform a basic sanity check. Namely, that there are no alias sets
393 if we're not using strict aliasing. This helps to catch bugs
394 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
395 where a MEM is allocated in some way other than by the use of
396 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
397 use alias sets to indicate that spilled registers cannot alias each
398 other, we might need to remove this check. */
399 gcc_assert (flag_strict_aliasing
400 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
402 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
405 /* Insert the NODE into the splay tree given by DATA. Used by
406 record_alias_subset via splay_tree_foreach. */
408 static int
409 insert_subset_children (splay_tree_node node, void *data)
411 splay_tree_insert ((splay_tree) data, node->key, node->value);
413 return 0;
416 /* Return true if the first alias set is a subset of the second. */
418 bool
419 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
421 alias_set_entry ase;
423 /* Everything is a subset of the "aliases everything" set. */
424 if (set2 == 0)
425 return true;
427 /* Otherwise, check if set1 is a subset of set2. */
428 ase = get_alias_set_entry (set2);
429 if (ase != 0
430 && (ase->has_zero_child
431 || splay_tree_lookup (ase->children,
432 (splay_tree_key) set1)))
433 return true;
434 return false;
437 /* Return 1 if the two specified alias sets may conflict. */
440 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
442 alias_set_entry ase;
444 /* The easy case. */
445 if (alias_sets_must_conflict_p (set1, set2))
446 return 1;
448 /* See if the first alias set is a subset of the second. */
449 ase = get_alias_set_entry (set1);
450 if (ase != 0
451 && (ase->has_zero_child
452 || splay_tree_lookup (ase->children,
453 (splay_tree_key) set2)))
454 return 1;
456 /* Now do the same, but with the alias sets reversed. */
457 ase = get_alias_set_entry (set2);
458 if (ase != 0
459 && (ase->has_zero_child
460 || splay_tree_lookup (ase->children,
461 (splay_tree_key) set1)))
462 return 1;
464 /* The two alias sets are distinct and neither one is the
465 child of the other. Therefore, they cannot conflict. */
466 return 0;
469 /* Return 1 if the two specified alias sets will always conflict. */
472 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
474 if (set1 == 0 || set2 == 0 || set1 == set2)
475 return 1;
477 return 0;
480 /* Return 1 if any MEM object of type T1 will always conflict (using the
481 dependency routines in this file) with any MEM object of type T2.
482 This is used when allocating temporary storage. If T1 and/or T2 are
483 NULL_TREE, it means we know nothing about the storage. */
486 objects_must_conflict_p (tree t1, tree t2)
488 alias_set_type set1, set2;
490 /* If neither has a type specified, we don't know if they'll conflict
491 because we may be using them to store objects of various types, for
492 example the argument and local variables areas of inlined functions. */
493 if (t1 == 0 && t2 == 0)
494 return 0;
496 /* If they are the same type, they must conflict. */
497 if (t1 == t2
498 /* Likewise if both are volatile. */
499 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
500 return 1;
502 set1 = t1 ? get_alias_set (t1) : 0;
503 set2 = t2 ? get_alias_set (t2) : 0;
505 /* We can't use alias_sets_conflict_p because we must make sure
506 that every subtype of t1 will conflict with every subtype of
507 t2 for which a pair of subobjects of these respective subtypes
508 overlaps on the stack. */
509 return alias_sets_must_conflict_p (set1, set2);
512 /* Return true if all nested component references handled by
513 get_inner_reference in T are such that we should use the alias set
514 provided by the object at the heart of T.
516 This is true for non-addressable components (which don't have their
517 own alias set), as well as components of objects in alias set zero.
518 This later point is a special case wherein we wish to override the
519 alias set used by the component, but we don't have per-FIELD_DECL
520 assignable alias sets. */
522 bool
523 component_uses_parent_alias_set (const_tree t)
525 while (1)
527 /* If we're at the end, it vacuously uses its own alias set. */
528 if (!handled_component_p (t))
529 return false;
531 switch (TREE_CODE (t))
533 case COMPONENT_REF:
534 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
535 return true;
536 break;
538 case ARRAY_REF:
539 case ARRAY_RANGE_REF:
540 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
541 return true;
542 break;
544 case REALPART_EXPR:
545 case IMAGPART_EXPR:
546 break;
548 default:
549 /* Bitfields and casts are never addressable. */
550 return true;
553 t = TREE_OPERAND (t, 0);
554 if (get_alias_set (TREE_TYPE (t)) == 0)
555 return true;
559 /* Return the alias set for the memory pointed to by T, which may be
560 either a type or an expression. Return -1 if there is nothing
561 special about dereferencing T. */
563 static alias_set_type
564 get_deref_alias_set_1 (tree t)
566 /* If we're not doing any alias analysis, just assume everything
567 aliases everything else. */
568 if (!flag_strict_aliasing)
569 return 0;
571 /* All we care about is the type. */
572 if (! TYPE_P (t))
573 t = TREE_TYPE (t);
575 /* If we have an INDIRECT_REF via a void pointer, we don't
576 know anything about what that might alias. Likewise if the
577 pointer is marked that way. */
578 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
579 || TYPE_REF_CAN_ALIAS_ALL (t))
580 return 0;
582 return -1;
585 /* Return the alias set for the memory pointed to by T, which may be
586 either a type or an expression. */
588 alias_set_type
589 get_deref_alias_set (tree t)
591 alias_set_type set = get_deref_alias_set_1 (t);
593 /* Fall back to the alias-set of the pointed-to type. */
594 if (set == -1)
596 if (! TYPE_P (t))
597 t = TREE_TYPE (t);
598 set = get_alias_set (TREE_TYPE (t));
601 return set;
604 /* Return the alias set for T, which may be either a type or an
605 expression. Call language-specific routine for help, if needed. */
607 alias_set_type
608 get_alias_set (tree t)
610 alias_set_type set;
612 /* If we're not doing any alias analysis, just assume everything
613 aliases everything else. Also return 0 if this or its type is
614 an error. */
615 if (! flag_strict_aliasing || t == error_mark_node
616 || (! TYPE_P (t)
617 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
618 return 0;
620 /* We can be passed either an expression or a type. This and the
621 language-specific routine may make mutually-recursive calls to each other
622 to figure out what to do. At each juncture, we see if this is a tree
623 that the language may need to handle specially. First handle things that
624 aren't types. */
625 if (! TYPE_P (t))
627 tree inner;
629 /* Give the language a chance to do something with this tree
630 before we look at it. */
631 STRIP_NOPS (t);
632 set = lang_hooks.get_alias_set (t);
633 if (set != -1)
634 return set;
636 /* Get the base object of the reference. */
637 inner = t;
638 while (handled_component_p (inner))
640 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
641 the type of any component references that wrap it to
642 determine the alias-set. */
643 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
644 t = TREE_OPERAND (inner, 0);
645 inner = TREE_OPERAND (inner, 0);
648 /* Handle pointer dereferences here, they can override the
649 alias-set. */
650 if (INDIRECT_REF_P (inner))
652 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
653 if (set != -1)
654 return set;
656 else if (TREE_CODE (inner) == TARGET_MEM_REF)
657 return get_deref_alias_set (TMR_OFFSET (inner));
658 else if (TREE_CODE (inner) == MEM_REF)
660 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
661 if (set != -1)
662 return set;
665 /* If the innermost reference is a MEM_REF that has a
666 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
667 using the memory access type for determining the alias-set. */
668 if (TREE_CODE (inner) == MEM_REF
669 && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
670 != TYPE_MAIN_VARIANT
671 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
672 return get_deref_alias_set (TREE_OPERAND (inner, 1));
674 /* Otherwise, pick up the outermost object that we could have a pointer
675 to, processing conversions as above. */
676 while (component_uses_parent_alias_set (t))
678 t = TREE_OPERAND (t, 0);
679 STRIP_NOPS (t);
682 /* If we've already determined the alias set for a decl, just return
683 it. This is necessary for C++ anonymous unions, whose component
684 variables don't look like union members (boo!). */
685 if (TREE_CODE (t) == VAR_DECL
686 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
687 return MEM_ALIAS_SET (DECL_RTL (t));
689 /* Now all we care about is the type. */
690 t = TREE_TYPE (t);
693 /* Variant qualifiers don't affect the alias set, so get the main
694 variant. */
695 t = TYPE_MAIN_VARIANT (t);
697 /* Always use the canonical type as well. If this is a type that
698 requires structural comparisons to identify compatible types
699 use alias set zero. */
700 if (TYPE_STRUCTURAL_EQUALITY_P (t))
702 /* Allow the language to specify another alias set for this
703 type. */
704 set = lang_hooks.get_alias_set (t);
705 if (set != -1)
706 return set;
707 return 0;
710 t = TYPE_CANONICAL (t);
712 /* Canonical types shouldn't form a tree nor should the canonical
713 type require structural equality checks. */
714 gcc_checking_assert (TYPE_CANONICAL (t) == t
715 && !TYPE_STRUCTURAL_EQUALITY_P (t));
717 /* If this is a type with a known alias set, return it. */
718 if (TYPE_ALIAS_SET_KNOWN_P (t))
719 return TYPE_ALIAS_SET (t);
721 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
722 if (!COMPLETE_TYPE_P (t))
724 /* For arrays with unknown size the conservative answer is the
725 alias set of the element type. */
726 if (TREE_CODE (t) == ARRAY_TYPE)
727 return get_alias_set (TREE_TYPE (t));
729 /* But return zero as a conservative answer for incomplete types. */
730 return 0;
733 /* See if the language has special handling for this type. */
734 set = lang_hooks.get_alias_set (t);
735 if (set != -1)
736 return set;
738 /* There are no objects of FUNCTION_TYPE, so there's no point in
739 using up an alias set for them. (There are, of course, pointers
740 and references to functions, but that's different.) */
741 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
742 set = 0;
744 /* Unless the language specifies otherwise, let vector types alias
745 their components. This avoids some nasty type punning issues in
746 normal usage. And indeed lets vectors be treated more like an
747 array slice. */
748 else if (TREE_CODE (t) == VECTOR_TYPE)
749 set = get_alias_set (TREE_TYPE (t));
751 /* Unless the language specifies otherwise, treat array types the
752 same as their components. This avoids the asymmetry we get
753 through recording the components. Consider accessing a
754 character(kind=1) through a reference to a character(kind=1)[1:1].
755 Or consider if we want to assign integer(kind=4)[0:D.1387] and
756 integer(kind=4)[4] the same alias set or not.
757 Just be pragmatic here and make sure the array and its element
758 type get the same alias set assigned. */
759 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
760 set = get_alias_set (TREE_TYPE (t));
762 /* From the former common C and C++ langhook implementation:
764 Unfortunately, there is no canonical form of a pointer type.
765 In particular, if we have `typedef int I', then `int *', and
766 `I *' are different types. So, we have to pick a canonical
767 representative. We do this below.
769 Technically, this approach is actually more conservative that
770 it needs to be. In particular, `const int *' and `int *'
771 should be in different alias sets, according to the C and C++
772 standard, since their types are not the same, and so,
773 technically, an `int **' and `const int **' cannot point at
774 the same thing.
776 But, the standard is wrong. In particular, this code is
777 legal C++:
779 int *ip;
780 int **ipp = &ip;
781 const int* const* cipp = ipp;
782 And, it doesn't make sense for that to be legal unless you
783 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
784 the pointed-to types. This issue has been reported to the
785 C++ committee.
787 In addition to the above canonicalization issue, with LTO
788 we should also canonicalize `T (*)[]' to `T *' avoiding
789 alias issues with pointer-to element types and pointer-to
790 array types.
792 Likewise we need to deal with the situation of incomplete
793 pointed-to types and make `*(struct X **)&a' and
794 `*(struct X {} **)&a' alias. Otherwise we will have to
795 guarantee that all pointer-to incomplete type variants
796 will be replaced by pointer-to complete type variants if
797 they are available.
799 With LTO the convenient situation of using `void *' to
800 access and store any pointer type will also become
801 more apparent (and `void *' is just another pointer-to
802 incomplete type). Assigning alias-set zero to `void *'
803 and all pointer-to incomplete types is a not appealing
804 solution. Assigning an effective alias-set zero only
805 affecting pointers might be - by recording proper subset
806 relationships of all pointer alias-sets.
808 Pointer-to function types are another grey area which
809 needs caution. Globbing them all into one alias-set
810 or the above effective zero set would work.
812 For now just assign the same alias-set to all pointers.
813 That's simple and avoids all the above problems. */
814 else if (POINTER_TYPE_P (t)
815 && t != ptr_type_node)
816 return get_alias_set (ptr_type_node);
818 /* Otherwise make a new alias set for this type. */
819 else
820 set = new_alias_set ();
822 TYPE_ALIAS_SET (t) = set;
824 /* If this is an aggregate type or a complex type, we must record any
825 component aliasing information. */
826 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
827 record_component_aliases (t);
829 return set;
832 /* Return a brand-new alias set. */
834 alias_set_type
835 new_alias_set (void)
837 if (flag_strict_aliasing)
839 if (alias_sets == 0)
840 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
841 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
842 return VEC_length (alias_set_entry, alias_sets) - 1;
844 else
845 return 0;
848 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
849 not everything that aliases SUPERSET also aliases SUBSET. For example,
850 in C, a store to an `int' can alias a load of a structure containing an
851 `int', and vice versa. But it can't alias a load of a 'double' member
852 of the same structure. Here, the structure would be the SUPERSET and
853 `int' the SUBSET. This relationship is also described in the comment at
854 the beginning of this file.
856 This function should be called only once per SUPERSET/SUBSET pair.
858 It is illegal for SUPERSET to be zero; everything is implicitly a
859 subset of alias set zero. */
861 void
862 record_alias_subset (alias_set_type superset, alias_set_type subset)
864 alias_set_entry superset_entry;
865 alias_set_entry subset_entry;
867 /* It is possible in complex type situations for both sets to be the same,
868 in which case we can ignore this operation. */
869 if (superset == subset)
870 return;
872 gcc_assert (superset);
874 superset_entry = get_alias_set_entry (superset);
875 if (superset_entry == 0)
877 /* Create an entry for the SUPERSET, so that we have a place to
878 attach the SUBSET. */
879 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
880 superset_entry->alias_set = superset;
881 superset_entry->children
882 = splay_tree_new_ggc (splay_tree_compare_ints,
883 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
884 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
885 superset_entry->has_zero_child = 0;
886 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
889 if (subset == 0)
890 superset_entry->has_zero_child = 1;
891 else
893 subset_entry = get_alias_set_entry (subset);
894 /* If there is an entry for the subset, enter all of its children
895 (if they are not already present) as children of the SUPERSET. */
896 if (subset_entry)
898 if (subset_entry->has_zero_child)
899 superset_entry->has_zero_child = 1;
901 splay_tree_foreach (subset_entry->children, insert_subset_children,
902 superset_entry->children);
905 /* Enter the SUBSET itself as a child of the SUPERSET. */
906 splay_tree_insert (superset_entry->children,
907 (splay_tree_key) subset, 0);
911 /* Record that component types of TYPE, if any, are part of that type for
912 aliasing purposes. For record types, we only record component types
913 for fields that are not marked non-addressable. For array types, we
914 only record the component type if it is not marked non-aliased. */
916 void
917 record_component_aliases (tree type)
919 alias_set_type superset = get_alias_set (type);
920 tree field;
922 if (superset == 0)
923 return;
925 switch (TREE_CODE (type))
927 case RECORD_TYPE:
928 case UNION_TYPE:
929 case QUAL_UNION_TYPE:
930 /* Recursively record aliases for the base classes, if there are any. */
931 if (TYPE_BINFO (type))
933 int i;
934 tree binfo, base_binfo;
936 for (binfo = TYPE_BINFO (type), i = 0;
937 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
938 record_alias_subset (superset,
939 get_alias_set (BINFO_TYPE (base_binfo)));
941 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
942 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
943 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
944 break;
946 case COMPLEX_TYPE:
947 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
948 break;
950 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
951 element type. */
953 default:
954 break;
958 /* Allocate an alias set for use in storing and reading from the varargs
959 spill area. */
961 static GTY(()) alias_set_type varargs_set = -1;
963 alias_set_type
964 get_varargs_alias_set (void)
966 #if 1
967 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
968 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
969 consistently use the varargs alias set for loads from the varargs
970 area. So don't use it anywhere. */
971 return 0;
972 #else
973 if (varargs_set == -1)
974 varargs_set = new_alias_set ();
976 return varargs_set;
977 #endif
980 /* Likewise, but used for the fixed portions of the frame, e.g., register
981 save areas. */
983 static GTY(()) alias_set_type frame_set = -1;
985 alias_set_type
986 get_frame_alias_set (void)
988 if (frame_set == -1)
989 frame_set = new_alias_set ();
991 return frame_set;
994 /* Inside SRC, the source of a SET, find a base address. */
996 static rtx
997 find_base_value (rtx src)
999 unsigned int regno;
1001 #if defined (FIND_BASE_TERM)
1002 /* Try machine-dependent ways to find the base term. */
1003 src = FIND_BASE_TERM (src);
1004 #endif
1006 switch (GET_CODE (src))
1008 case SYMBOL_REF:
1009 case LABEL_REF:
1010 return src;
1012 case REG:
1013 regno = REGNO (src);
1014 /* At the start of a function, argument registers have known base
1015 values which may be lost later. Returning an ADDRESS
1016 expression here allows optimization based on argument values
1017 even when the argument registers are used for other purposes. */
1018 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1019 return new_reg_base_value[regno];
1021 /* If a pseudo has a known base value, return it. Do not do this
1022 for non-fixed hard regs since it can result in a circular
1023 dependency chain for registers which have values at function entry.
1025 The test above is not sufficient because the scheduler may move
1026 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1027 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1028 && regno < VEC_length (rtx, reg_base_value))
1030 /* If we're inside init_alias_analysis, use new_reg_base_value
1031 to reduce the number of relaxation iterations. */
1032 if (new_reg_base_value && new_reg_base_value[regno]
1033 && DF_REG_DEF_COUNT (regno) == 1)
1034 return new_reg_base_value[regno];
1036 if (VEC_index (rtx, reg_base_value, regno))
1037 return VEC_index (rtx, reg_base_value, regno);
1040 return 0;
1042 case MEM:
1043 /* Check for an argument passed in memory. Only record in the
1044 copying-arguments block; it is too hard to track changes
1045 otherwise. */
1046 if (copying_arguments
1047 && (XEXP (src, 0) == arg_pointer_rtx
1048 || (GET_CODE (XEXP (src, 0)) == PLUS
1049 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1050 return gen_rtx_ADDRESS (VOIDmode, src);
1051 return 0;
1053 case CONST:
1054 src = XEXP (src, 0);
1055 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1056 break;
1058 /* ... fall through ... */
1060 case PLUS:
1061 case MINUS:
1063 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1065 /* If either operand is a REG that is a known pointer, then it
1066 is the base. */
1067 if (REG_P (src_0) && REG_POINTER (src_0))
1068 return find_base_value (src_0);
1069 if (REG_P (src_1) && REG_POINTER (src_1))
1070 return find_base_value (src_1);
1072 /* If either operand is a REG, then see if we already have
1073 a known value for it. */
1074 if (REG_P (src_0))
1076 temp = find_base_value (src_0);
1077 if (temp != 0)
1078 src_0 = temp;
1081 if (REG_P (src_1))
1083 temp = find_base_value (src_1);
1084 if (temp!= 0)
1085 src_1 = temp;
1088 /* If either base is named object or a special address
1089 (like an argument or stack reference), then use it for the
1090 base term. */
1091 if (src_0 != 0
1092 && (GET_CODE (src_0) == SYMBOL_REF
1093 || GET_CODE (src_0) == LABEL_REF
1094 || (GET_CODE (src_0) == ADDRESS
1095 && GET_MODE (src_0) != VOIDmode)))
1096 return src_0;
1098 if (src_1 != 0
1099 && (GET_CODE (src_1) == SYMBOL_REF
1100 || GET_CODE (src_1) == LABEL_REF
1101 || (GET_CODE (src_1) == ADDRESS
1102 && GET_MODE (src_1) != VOIDmode)))
1103 return src_1;
1105 /* Guess which operand is the base address:
1106 If either operand is a symbol, then it is the base. If
1107 either operand is a CONST_INT, then the other is the base. */
1108 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1109 return find_base_value (src_0);
1110 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1111 return find_base_value (src_1);
1113 return 0;
1116 case LO_SUM:
1117 /* The standard form is (lo_sum reg sym) so look only at the
1118 second operand. */
1119 return find_base_value (XEXP (src, 1));
1121 case AND:
1122 /* If the second operand is constant set the base
1123 address to the first operand. */
1124 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1125 return find_base_value (XEXP (src, 0));
1126 return 0;
1128 case TRUNCATE:
1129 /* As we do not know which address space the pointer is refering to, we can
1130 handle this only if the target does not support different pointer or
1131 address modes depending on the address space. */
1132 if (!target_default_pointer_address_modes_p ())
1133 break;
1134 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1135 break;
1136 /* Fall through. */
1137 case HIGH:
1138 case PRE_INC:
1139 case PRE_DEC:
1140 case POST_INC:
1141 case POST_DEC:
1142 case PRE_MODIFY:
1143 case POST_MODIFY:
1144 return find_base_value (XEXP (src, 0));
1146 case ZERO_EXTEND:
1147 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1148 /* As we do not know which address space the pointer is refering to, we can
1149 handle this only if the target does not support different pointer or
1150 address modes depending on the address space. */
1151 if (!target_default_pointer_address_modes_p ())
1152 break;
1155 rtx temp = find_base_value (XEXP (src, 0));
1157 if (temp != 0 && CONSTANT_P (temp))
1158 temp = convert_memory_address (Pmode, temp);
1160 return temp;
1163 default:
1164 break;
1167 return 0;
1170 /* Called from init_alias_analysis indirectly through note_stores. */
1172 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1173 register N has been set in this function. */
1174 static char *reg_seen;
1176 /* Addresses which are known not to alias anything else are identified
1177 by a unique integer. */
1178 static int unique_id;
1180 static void
1181 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1183 unsigned regno;
1184 rtx src;
1185 int n;
1187 if (!REG_P (dest))
1188 return;
1190 regno = REGNO (dest);
1192 gcc_checking_assert (regno < VEC_length (rtx, reg_base_value));
1194 /* If this spans multiple hard registers, then we must indicate that every
1195 register has an unusable value. */
1196 if (regno < FIRST_PSEUDO_REGISTER)
1197 n = hard_regno_nregs[regno][GET_MODE (dest)];
1198 else
1199 n = 1;
1200 if (n != 1)
1202 while (--n >= 0)
1204 reg_seen[regno + n] = 1;
1205 new_reg_base_value[regno + n] = 0;
1207 return;
1210 if (set)
1212 /* A CLOBBER wipes out any old value but does not prevent a previously
1213 unset register from acquiring a base address (i.e. reg_seen is not
1214 set). */
1215 if (GET_CODE (set) == CLOBBER)
1217 new_reg_base_value[regno] = 0;
1218 return;
1220 src = SET_SRC (set);
1222 else
1224 if (reg_seen[regno])
1226 new_reg_base_value[regno] = 0;
1227 return;
1229 reg_seen[regno] = 1;
1230 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1231 GEN_INT (unique_id++));
1232 return;
1235 /* If this is not the first set of REGNO, see whether the new value
1236 is related to the old one. There are two cases of interest:
1238 (1) The register might be assigned an entirely new value
1239 that has the same base term as the original set.
1241 (2) The set might be a simple self-modification that
1242 cannot change REGNO's base value.
1244 If neither case holds, reject the original base value as invalid.
1245 Note that the following situation is not detected:
1247 extern int x, y; int *p = &x; p += (&y-&x);
1249 ANSI C does not allow computing the difference of addresses
1250 of distinct top level objects. */
1251 if (new_reg_base_value[regno] != 0
1252 && find_base_value (src) != new_reg_base_value[regno])
1253 switch (GET_CODE (src))
1255 case LO_SUM:
1256 case MINUS:
1257 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1258 new_reg_base_value[regno] = 0;
1259 break;
1260 case PLUS:
1261 /* If the value we add in the PLUS is also a valid base value,
1262 this might be the actual base value, and the original value
1263 an index. */
1265 rtx other = NULL_RTX;
1267 if (XEXP (src, 0) == dest)
1268 other = XEXP (src, 1);
1269 else if (XEXP (src, 1) == dest)
1270 other = XEXP (src, 0);
1272 if (! other || find_base_value (other))
1273 new_reg_base_value[regno] = 0;
1274 break;
1276 case AND:
1277 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1278 new_reg_base_value[regno] = 0;
1279 break;
1280 default:
1281 new_reg_base_value[regno] = 0;
1282 break;
1284 /* If this is the first set of a register, record the value. */
1285 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1286 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1287 new_reg_base_value[regno] = find_base_value (src);
1289 reg_seen[regno] = 1;
1292 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1293 using hard registers with non-null REG_BASE_VALUE for renaming. */
1295 get_reg_base_value (unsigned int regno)
1297 return VEC_index (rtx, reg_base_value, regno);
1300 /* If a value is known for REGNO, return it. */
1303 get_reg_known_value (unsigned int regno)
1305 if (regno >= FIRST_PSEUDO_REGISTER)
1307 regno -= FIRST_PSEUDO_REGISTER;
1308 if (regno < reg_known_value_size)
1309 return reg_known_value[regno];
1311 return NULL;
1314 /* Set it. */
1316 static void
1317 set_reg_known_value (unsigned int regno, rtx val)
1319 if (regno >= FIRST_PSEUDO_REGISTER)
1321 regno -= FIRST_PSEUDO_REGISTER;
1322 if (regno < reg_known_value_size)
1323 reg_known_value[regno] = val;
1327 /* Similarly for reg_known_equiv_p. */
1329 bool
1330 get_reg_known_equiv_p (unsigned int regno)
1332 if (regno >= FIRST_PSEUDO_REGISTER)
1334 regno -= FIRST_PSEUDO_REGISTER;
1335 if (regno < reg_known_value_size)
1336 return reg_known_equiv_p[regno];
1338 return false;
1341 static void
1342 set_reg_known_equiv_p (unsigned int regno, bool val)
1344 if (regno >= FIRST_PSEUDO_REGISTER)
1346 regno -= FIRST_PSEUDO_REGISTER;
1347 if (regno < reg_known_value_size)
1348 reg_known_equiv_p[regno] = val;
1353 /* Returns a canonical version of X, from the point of view alias
1354 analysis. (For example, if X is a MEM whose address is a register,
1355 and the register has a known value (say a SYMBOL_REF), then a MEM
1356 whose address is the SYMBOL_REF is returned.) */
1359 canon_rtx (rtx x)
1361 /* Recursively look for equivalences. */
1362 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1364 rtx t = get_reg_known_value (REGNO (x));
1365 if (t == x)
1366 return x;
1367 if (t)
1368 return canon_rtx (t);
1371 if (GET_CODE (x) == PLUS)
1373 rtx x0 = canon_rtx (XEXP (x, 0));
1374 rtx x1 = canon_rtx (XEXP (x, 1));
1376 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1378 if (CONST_INT_P (x0))
1379 return plus_constant (x1, INTVAL (x0));
1380 else if (CONST_INT_P (x1))
1381 return plus_constant (x0, INTVAL (x1));
1382 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1386 /* This gives us much better alias analysis when called from
1387 the loop optimizer. Note we want to leave the original
1388 MEM alone, but need to return the canonicalized MEM with
1389 all the flags with their original values. */
1390 else if (MEM_P (x))
1391 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1393 return x;
1396 /* Return 1 if X and Y are identical-looking rtx's.
1397 Expect that X and Y has been already canonicalized.
1399 We use the data in reg_known_value above to see if two registers with
1400 different numbers are, in fact, equivalent. */
1402 static int
1403 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1405 int i;
1406 int j;
1407 enum rtx_code code;
1408 const char *fmt;
1410 if (x == 0 && y == 0)
1411 return 1;
1412 if (x == 0 || y == 0)
1413 return 0;
1415 if (x == y)
1416 return 1;
1418 code = GET_CODE (x);
1419 /* Rtx's of different codes cannot be equal. */
1420 if (code != GET_CODE (y))
1421 return 0;
1423 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1424 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1426 if (GET_MODE (x) != GET_MODE (y))
1427 return 0;
1429 /* Some RTL can be compared without a recursive examination. */
1430 switch (code)
1432 case REG:
1433 return REGNO (x) == REGNO (y);
1435 case LABEL_REF:
1436 return XEXP (x, 0) == XEXP (y, 0);
1438 case SYMBOL_REF:
1439 return XSTR (x, 0) == XSTR (y, 0);
1441 case VALUE:
1442 case CONST_INT:
1443 case CONST_DOUBLE:
1444 case CONST_FIXED:
1445 /* There's no need to compare the contents of CONST_DOUBLEs or
1446 CONST_INTs because pointer equality is a good enough
1447 comparison for these nodes. */
1448 return 0;
1450 default:
1451 break;
1454 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1455 if (code == PLUS)
1456 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1457 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1458 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1459 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1460 /* For commutative operations, the RTX match if the operand match in any
1461 order. Also handle the simple binary and unary cases without a loop. */
1462 if (COMMUTATIVE_P (x))
1464 rtx xop0 = canon_rtx (XEXP (x, 0));
1465 rtx yop0 = canon_rtx (XEXP (y, 0));
1466 rtx yop1 = canon_rtx (XEXP (y, 1));
1468 return ((rtx_equal_for_memref_p (xop0, yop0)
1469 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1470 || (rtx_equal_for_memref_p (xop0, yop1)
1471 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1473 else if (NON_COMMUTATIVE_P (x))
1475 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1476 canon_rtx (XEXP (y, 0)))
1477 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1478 canon_rtx (XEXP (y, 1))));
1480 else if (UNARY_P (x))
1481 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1482 canon_rtx (XEXP (y, 0)));
1484 /* Compare the elements. If any pair of corresponding elements
1485 fail to match, return 0 for the whole things.
1487 Limit cases to types which actually appear in addresses. */
1489 fmt = GET_RTX_FORMAT (code);
1490 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1492 switch (fmt[i])
1494 case 'i':
1495 if (XINT (x, i) != XINT (y, i))
1496 return 0;
1497 break;
1499 case 'E':
1500 /* Two vectors must have the same length. */
1501 if (XVECLEN (x, i) != XVECLEN (y, i))
1502 return 0;
1504 /* And the corresponding elements must match. */
1505 for (j = 0; j < XVECLEN (x, i); j++)
1506 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1507 canon_rtx (XVECEXP (y, i, j))) == 0)
1508 return 0;
1509 break;
1511 case 'e':
1512 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1513 canon_rtx (XEXP (y, i))) == 0)
1514 return 0;
1515 break;
1517 /* This can happen for asm operands. */
1518 case 's':
1519 if (strcmp (XSTR (x, i), XSTR (y, i)))
1520 return 0;
1521 break;
1523 /* This can happen for an asm which clobbers memory. */
1524 case '0':
1525 break;
1527 /* It is believed that rtx's at this level will never
1528 contain anything but integers and other rtx's,
1529 except for within LABEL_REFs and SYMBOL_REFs. */
1530 default:
1531 gcc_unreachable ();
1534 return 1;
1538 find_base_term (rtx x)
1540 cselib_val *val;
1541 struct elt_loc_list *l;
1543 #if defined (FIND_BASE_TERM)
1544 /* Try machine-dependent ways to find the base term. */
1545 x = FIND_BASE_TERM (x);
1546 #endif
1548 switch (GET_CODE (x))
1550 case REG:
1551 return REG_BASE_VALUE (x);
1553 case TRUNCATE:
1554 /* As we do not know which address space the pointer is refering to, we can
1555 handle this only if the target does not support different pointer or
1556 address modes depending on the address space. */
1557 if (!target_default_pointer_address_modes_p ())
1558 return 0;
1559 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1560 return 0;
1561 /* Fall through. */
1562 case HIGH:
1563 case PRE_INC:
1564 case PRE_DEC:
1565 case POST_INC:
1566 case POST_DEC:
1567 case PRE_MODIFY:
1568 case POST_MODIFY:
1569 return find_base_term (XEXP (x, 0));
1571 case ZERO_EXTEND:
1572 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1573 /* As we do not know which address space the pointer is refering to, we can
1574 handle this only if the target does not support different pointer or
1575 address modes depending on the address space. */
1576 if (!target_default_pointer_address_modes_p ())
1577 return 0;
1580 rtx temp = find_base_term (XEXP (x, 0));
1582 if (temp != 0 && CONSTANT_P (temp))
1583 temp = convert_memory_address (Pmode, temp);
1585 return temp;
1588 case VALUE:
1589 val = CSELIB_VAL_PTR (x);
1590 if (!val)
1591 return 0;
1592 for (l = val->locs; l; l = l->next)
1593 if ((x = find_base_term (l->loc)) != 0)
1594 return x;
1595 return 0;
1597 case LO_SUM:
1598 /* The standard form is (lo_sum reg sym) so look only at the
1599 second operand. */
1600 return find_base_term (XEXP (x, 1));
1602 case CONST:
1603 x = XEXP (x, 0);
1604 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1605 return 0;
1606 /* Fall through. */
1607 case PLUS:
1608 case MINUS:
1610 rtx tmp1 = XEXP (x, 0);
1611 rtx tmp2 = XEXP (x, 1);
1613 /* This is a little bit tricky since we have to determine which of
1614 the two operands represents the real base address. Otherwise this
1615 routine may return the index register instead of the base register.
1617 That may cause us to believe no aliasing was possible, when in
1618 fact aliasing is possible.
1620 We use a few simple tests to guess the base register. Additional
1621 tests can certainly be added. For example, if one of the operands
1622 is a shift or multiply, then it must be the index register and the
1623 other operand is the base register. */
1625 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1626 return find_base_term (tmp2);
1628 /* If either operand is known to be a pointer, then use it
1629 to determine the base term. */
1630 if (REG_P (tmp1) && REG_POINTER (tmp1))
1632 rtx base = find_base_term (tmp1);
1633 if (base)
1634 return base;
1637 if (REG_P (tmp2) && REG_POINTER (tmp2))
1639 rtx base = find_base_term (tmp2);
1640 if (base)
1641 return base;
1644 /* Neither operand was known to be a pointer. Go ahead and find the
1645 base term for both operands. */
1646 tmp1 = find_base_term (tmp1);
1647 tmp2 = find_base_term (tmp2);
1649 /* If either base term is named object or a special address
1650 (like an argument or stack reference), then use it for the
1651 base term. */
1652 if (tmp1 != 0
1653 && (GET_CODE (tmp1) == SYMBOL_REF
1654 || GET_CODE (tmp1) == LABEL_REF
1655 || (GET_CODE (tmp1) == ADDRESS
1656 && GET_MODE (tmp1) != VOIDmode)))
1657 return tmp1;
1659 if (tmp2 != 0
1660 && (GET_CODE (tmp2) == SYMBOL_REF
1661 || GET_CODE (tmp2) == LABEL_REF
1662 || (GET_CODE (tmp2) == ADDRESS
1663 && GET_MODE (tmp2) != VOIDmode)))
1664 return tmp2;
1666 /* We could not determine which of the two operands was the
1667 base register and which was the index. So we can determine
1668 nothing from the base alias check. */
1669 return 0;
1672 case AND:
1673 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1674 return find_base_term (XEXP (x, 0));
1675 return 0;
1677 case SYMBOL_REF:
1678 case LABEL_REF:
1679 return x;
1681 default:
1682 return 0;
1686 /* Return 0 if the addresses X and Y are known to point to different
1687 objects, 1 if they might be pointers to the same object. */
1689 static int
1690 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1691 enum machine_mode y_mode)
1693 rtx x_base = find_base_term (x);
1694 rtx y_base = find_base_term (y);
1696 /* If the address itself has no known base see if a known equivalent
1697 value has one. If either address still has no known base, nothing
1698 is known about aliasing. */
1699 if (x_base == 0)
1701 rtx x_c;
1703 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1704 return 1;
1706 x_base = find_base_term (x_c);
1707 if (x_base == 0)
1708 return 1;
1711 if (y_base == 0)
1713 rtx y_c;
1714 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1715 return 1;
1717 y_base = find_base_term (y_c);
1718 if (y_base == 0)
1719 return 1;
1722 /* If the base addresses are equal nothing is known about aliasing. */
1723 if (rtx_equal_p (x_base, y_base))
1724 return 1;
1726 /* The base addresses are different expressions. If they are not accessed
1727 via AND, there is no conflict. We can bring knowledge of object
1728 alignment into play here. For example, on alpha, "char a, b;" can
1729 alias one another, though "char a; long b;" cannot. AND addesses may
1730 implicitly alias surrounding objects; i.e. unaligned access in DImode
1731 via AND address can alias all surrounding object types except those
1732 with aligment 8 or higher. */
1733 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1734 return 1;
1735 if (GET_CODE (x) == AND
1736 && (!CONST_INT_P (XEXP (x, 1))
1737 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1738 return 1;
1739 if (GET_CODE (y) == AND
1740 && (!CONST_INT_P (XEXP (y, 1))
1741 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1742 return 1;
1744 /* Differing symbols not accessed via AND never alias. */
1745 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1746 return 0;
1748 /* If one address is a stack reference there can be no alias:
1749 stack references using different base registers do not alias,
1750 a stack reference can not alias a parameter, and a stack reference
1751 can not alias a global. */
1752 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1753 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1754 return 0;
1756 return 1;
1759 /* Convert the address X into something we can use. This is done by returning
1760 it unchanged unless it is a value; in the latter case we call cselib to get
1761 a more useful rtx. */
1764 get_addr (rtx x)
1766 cselib_val *v;
1767 struct elt_loc_list *l;
1769 if (GET_CODE (x) != VALUE)
1770 return x;
1771 v = CSELIB_VAL_PTR (x);
1772 if (v)
1774 for (l = v->locs; l; l = l->next)
1775 if (CONSTANT_P (l->loc))
1776 return l->loc;
1777 for (l = v->locs; l; l = l->next)
1778 if (!REG_P (l->loc) && !MEM_P (l->loc))
1779 return l->loc;
1780 if (v->locs)
1781 return v->locs->loc;
1783 return x;
1786 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1787 where SIZE is the size in bytes of the memory reference. If ADDR
1788 is not modified by the memory reference then ADDR is returned. */
1790 static rtx
1791 addr_side_effect_eval (rtx addr, int size, int n_refs)
1793 int offset = 0;
1795 switch (GET_CODE (addr))
1797 case PRE_INC:
1798 offset = (n_refs + 1) * size;
1799 break;
1800 case PRE_DEC:
1801 offset = -(n_refs + 1) * size;
1802 break;
1803 case POST_INC:
1804 offset = n_refs * size;
1805 break;
1806 case POST_DEC:
1807 offset = -n_refs * size;
1808 break;
1810 default:
1811 return addr;
1814 if (offset)
1815 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1816 GEN_INT (offset));
1817 else
1818 addr = XEXP (addr, 0);
1819 addr = canon_rtx (addr);
1821 return addr;
1824 /* Return one if X and Y (memory addresses) reference the
1825 same location in memory or if the references overlap.
1826 Return zero if they do not overlap, else return
1827 minus one in which case they still might reference the same location.
1829 C is an offset accumulator. When
1830 C is nonzero, we are testing aliases between X and Y + C.
1831 XSIZE is the size in bytes of the X reference,
1832 similarly YSIZE is the size in bytes for Y.
1833 Expect that canon_rtx has been already called for X and Y.
1835 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1836 referenced (the reference was BLKmode), so make the most pessimistic
1837 assumptions.
1839 If XSIZE or YSIZE is negative, we may access memory outside the object
1840 being referenced as a side effect. This can happen when using AND to
1841 align memory references, as is done on the Alpha.
1843 Nice to notice that varying addresses cannot conflict with fp if no
1844 local variables had their addresses taken, but that's too hard now.
1846 ??? Contrary to the tree alias oracle this does not return
1847 one for X + non-constant and Y + non-constant when X and Y are equal.
1848 If that is fixed the TBAA hack for union type-punning can be removed. */
1850 static int
1851 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1853 if (GET_CODE (x) == VALUE)
1855 if (REG_P (y))
1857 struct elt_loc_list *l = NULL;
1858 if (CSELIB_VAL_PTR (x))
1859 for (l = CSELIB_VAL_PTR (x)->locs; l; l = l->next)
1860 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1861 break;
1862 if (l)
1863 x = y;
1864 else
1865 x = get_addr (x);
1867 /* Don't call get_addr if y is the same VALUE. */
1868 else if (x != y)
1869 x = get_addr (x);
1871 if (GET_CODE (y) == VALUE)
1873 if (REG_P (x))
1875 struct elt_loc_list *l = NULL;
1876 if (CSELIB_VAL_PTR (y))
1877 for (l = CSELIB_VAL_PTR (y)->locs; l; l = l->next)
1878 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1879 break;
1880 if (l)
1881 y = x;
1882 else
1883 y = get_addr (y);
1885 /* Don't call get_addr if x is the same VALUE. */
1886 else if (y != x)
1887 y = get_addr (y);
1889 if (GET_CODE (x) == HIGH)
1890 x = XEXP (x, 0);
1891 else if (GET_CODE (x) == LO_SUM)
1892 x = XEXP (x, 1);
1893 else
1894 x = addr_side_effect_eval (x, xsize, 0);
1895 if (GET_CODE (y) == HIGH)
1896 y = XEXP (y, 0);
1897 else if (GET_CODE (y) == LO_SUM)
1898 y = XEXP (y, 1);
1899 else
1900 y = addr_side_effect_eval (y, ysize, 0);
1902 if (rtx_equal_for_memref_p (x, y))
1904 if (xsize <= 0 || ysize <= 0)
1905 return 1;
1906 if (c >= 0 && xsize > c)
1907 return 1;
1908 if (c < 0 && ysize+c > 0)
1909 return 1;
1910 return 0;
1913 /* This code used to check for conflicts involving stack references and
1914 globals but the base address alias code now handles these cases. */
1916 if (GET_CODE (x) == PLUS)
1918 /* The fact that X is canonicalized means that this
1919 PLUS rtx is canonicalized. */
1920 rtx x0 = XEXP (x, 0);
1921 rtx x1 = XEXP (x, 1);
1923 if (GET_CODE (y) == PLUS)
1925 /* The fact that Y is canonicalized means that this
1926 PLUS rtx is canonicalized. */
1927 rtx y0 = XEXP (y, 0);
1928 rtx y1 = XEXP (y, 1);
1930 if (rtx_equal_for_memref_p (x1, y1))
1931 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1932 if (rtx_equal_for_memref_p (x0, y0))
1933 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1934 if (CONST_INT_P (x1))
1936 if (CONST_INT_P (y1))
1937 return memrefs_conflict_p (xsize, x0, ysize, y0,
1938 c - INTVAL (x1) + INTVAL (y1));
1939 else
1940 return memrefs_conflict_p (xsize, x0, ysize, y,
1941 c - INTVAL (x1));
1943 else if (CONST_INT_P (y1))
1944 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1946 return -1;
1948 else if (CONST_INT_P (x1))
1949 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1951 else if (GET_CODE (y) == PLUS)
1953 /* The fact that Y is canonicalized means that this
1954 PLUS rtx is canonicalized. */
1955 rtx y0 = XEXP (y, 0);
1956 rtx y1 = XEXP (y, 1);
1958 if (CONST_INT_P (y1))
1959 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1960 else
1961 return -1;
1964 if (GET_CODE (x) == GET_CODE (y))
1965 switch (GET_CODE (x))
1967 case MULT:
1969 /* Handle cases where we expect the second operands to be the
1970 same, and check only whether the first operand would conflict
1971 or not. */
1972 rtx x0, y0;
1973 rtx x1 = canon_rtx (XEXP (x, 1));
1974 rtx y1 = canon_rtx (XEXP (y, 1));
1975 if (! rtx_equal_for_memref_p (x1, y1))
1976 return -1;
1977 x0 = canon_rtx (XEXP (x, 0));
1978 y0 = canon_rtx (XEXP (y, 0));
1979 if (rtx_equal_for_memref_p (x0, y0))
1980 return (xsize == 0 || ysize == 0
1981 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1983 /* Can't properly adjust our sizes. */
1984 if (!CONST_INT_P (x1))
1985 return -1;
1986 xsize /= INTVAL (x1);
1987 ysize /= INTVAL (x1);
1988 c /= INTVAL (x1);
1989 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1992 default:
1993 break;
1996 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1997 as an access with indeterminate size. Assume that references
1998 besides AND are aligned, so if the size of the other reference is
1999 at least as large as the alignment, assume no other overlap. */
2000 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2002 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
2003 xsize = -1;
2004 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
2006 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2008 /* ??? If we are indexing far enough into the array/structure, we
2009 may yet be able to determine that we can not overlap. But we
2010 also need to that we are far enough from the end not to overlap
2011 a following reference, so we do nothing with that for now. */
2012 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
2013 ysize = -1;
2014 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
2017 if (CONSTANT_P (x))
2019 if (CONST_INT_P (x) && CONST_INT_P (y))
2021 c += (INTVAL (y) - INTVAL (x));
2022 return (xsize <= 0 || ysize <= 0
2023 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2026 if (GET_CODE (x) == CONST)
2028 if (GET_CODE (y) == CONST)
2029 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2030 ysize, canon_rtx (XEXP (y, 0)), c);
2031 else
2032 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2033 ysize, y, c);
2035 if (GET_CODE (y) == CONST)
2036 return memrefs_conflict_p (xsize, x, ysize,
2037 canon_rtx (XEXP (y, 0)), c);
2039 if (CONSTANT_P (y))
2040 return (xsize <= 0 || ysize <= 0
2041 || (rtx_equal_for_memref_p (x, y)
2042 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
2044 return -1;
2047 return -1;
2050 /* Functions to compute memory dependencies.
2052 Since we process the insns in execution order, we can build tables
2053 to keep track of what registers are fixed (and not aliased), what registers
2054 are varying in known ways, and what registers are varying in unknown
2055 ways.
2057 If both memory references are volatile, then there must always be a
2058 dependence between the two references, since their order can not be
2059 changed. A volatile and non-volatile reference can be interchanged
2060 though.
2062 A MEM_IN_STRUCT reference at a non-AND varying address can never
2063 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
2064 also must allow AND addresses, because they may generate accesses
2065 outside the object being referenced. This is used to generate
2066 aligned addresses from unaligned addresses, for instance, the alpha
2067 storeqi_unaligned pattern. */
2069 /* Read dependence: X is read after read in MEM takes place. There can
2070 only be a dependence here if both reads are volatile. */
2073 read_dependence (const_rtx mem, const_rtx x)
2075 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
2078 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
2079 MEM2 is a reference to a structure at a varying address, or returns
2080 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
2081 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
2082 to decide whether or not an address may vary; it should return
2083 nonzero whenever variation is possible.
2084 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
2086 static const_rtx
2087 fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
2088 rtx mem2_addr,
2089 bool (*varies_p) (const_rtx, bool))
2091 if (! flag_strict_aliasing)
2092 return NULL_RTX;
2094 if (MEM_ALIAS_SET (mem2)
2095 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
2096 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
2097 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
2098 varying address. */
2099 return mem1;
2101 if (MEM_ALIAS_SET (mem1)
2102 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
2103 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
2104 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
2105 varying address. */
2106 return mem2;
2108 return NULL_RTX;
2111 /* Returns nonzero if something about the mode or address format MEM1
2112 indicates that it might well alias *anything*. */
2114 static int
2115 aliases_everything_p (const_rtx mem)
2117 if (GET_CODE (XEXP (mem, 0)) == AND)
2118 /* If the address is an AND, it's very hard to know at what it is
2119 actually pointing. */
2120 return 1;
2122 return 0;
2125 /* Return true if we can determine that the fields referenced cannot
2126 overlap for any pair of objects. */
2128 static bool
2129 nonoverlapping_component_refs_p (const_tree x, const_tree y)
2131 const_tree fieldx, fieldy, typex, typey, orig_y;
2133 if (!flag_strict_aliasing)
2134 return false;
2138 /* The comparison has to be done at a common type, since we don't
2139 know how the inheritance hierarchy works. */
2140 orig_y = y;
2143 fieldx = TREE_OPERAND (x, 1);
2144 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2146 y = orig_y;
2149 fieldy = TREE_OPERAND (y, 1);
2150 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2152 if (typex == typey)
2153 goto found;
2155 y = TREE_OPERAND (y, 0);
2157 while (y && TREE_CODE (y) == COMPONENT_REF);
2159 x = TREE_OPERAND (x, 0);
2161 while (x && TREE_CODE (x) == COMPONENT_REF);
2162 /* Never found a common type. */
2163 return false;
2165 found:
2166 /* If we're left with accessing different fields of a structure,
2167 then no overlap. */
2168 if (TREE_CODE (typex) == RECORD_TYPE
2169 && fieldx != fieldy)
2170 return true;
2172 /* The comparison on the current field failed. If we're accessing
2173 a very nested structure, look at the next outer level. */
2174 x = TREE_OPERAND (x, 0);
2175 y = TREE_OPERAND (y, 0);
2177 while (x && y
2178 && TREE_CODE (x) == COMPONENT_REF
2179 && TREE_CODE (y) == COMPONENT_REF);
2181 return false;
2184 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2186 static tree
2187 decl_for_component_ref (tree x)
2191 x = TREE_OPERAND (x, 0);
2193 while (x && TREE_CODE (x) == COMPONENT_REF);
2195 return x && DECL_P (x) ? x : NULL_TREE;
2198 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2199 offset of the field reference. */
2201 static rtx
2202 adjust_offset_for_component_ref (tree x, rtx offset)
2204 HOST_WIDE_INT ioffset;
2206 if (! offset)
2207 return NULL_RTX;
2209 ioffset = INTVAL (offset);
2212 tree offset = component_ref_field_offset (x);
2213 tree field = TREE_OPERAND (x, 1);
2215 if (! host_integerp (offset, 1))
2216 return NULL_RTX;
2217 ioffset += (tree_low_cst (offset, 1)
2218 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2219 / BITS_PER_UNIT));
2221 x = TREE_OPERAND (x, 0);
2223 while (x && TREE_CODE (x) == COMPONENT_REF);
2225 return GEN_INT (ioffset);
2228 /* Return nonzero if we can determine the exprs corresponding to memrefs
2229 X and Y and they do not overlap.
2230 If LOOP_VARIANT is set, skip offset-based disambiguation */
2233 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2235 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2236 rtx rtlx, rtly;
2237 rtx basex, basey;
2238 rtx moffsetx, moffsety;
2239 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2241 /* Unless both have exprs, we can't tell anything. */
2242 if (exprx == 0 || expry == 0)
2243 return 0;
2245 /* For spill-slot accesses make sure we have valid offsets. */
2246 if ((exprx == get_spill_slot_decl (false)
2247 && ! MEM_OFFSET (x))
2248 || (expry == get_spill_slot_decl (false)
2249 && ! MEM_OFFSET (y)))
2250 return 0;
2252 /* If both are field references, we may be able to determine something. */
2253 if (TREE_CODE (exprx) == COMPONENT_REF
2254 && TREE_CODE (expry) == COMPONENT_REF
2255 && nonoverlapping_component_refs_p (exprx, expry))
2256 return 1;
2259 /* If the field reference test failed, look at the DECLs involved. */
2260 moffsetx = MEM_OFFSET (x);
2261 if (TREE_CODE (exprx) == COMPONENT_REF)
2263 tree t = decl_for_component_ref (exprx);
2264 if (! t)
2265 return 0;
2266 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2267 exprx = t;
2270 moffsety = MEM_OFFSET (y);
2271 if (TREE_CODE (expry) == COMPONENT_REF)
2273 tree t = decl_for_component_ref (expry);
2274 if (! t)
2275 return 0;
2276 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2277 expry = t;
2280 if (! DECL_P (exprx) || ! DECL_P (expry))
2281 return 0;
2283 /* With invalid code we can end up storing into the constant pool.
2284 Bail out to avoid ICEing when creating RTL for this.
2285 See gfortran.dg/lto/20091028-2_0.f90. */
2286 if (TREE_CODE (exprx) == CONST_DECL
2287 || TREE_CODE (expry) == CONST_DECL)
2288 return 1;
2290 rtlx = DECL_RTL (exprx);
2291 rtly = DECL_RTL (expry);
2293 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2294 can't overlap unless they are the same because we never reuse that part
2295 of the stack frame used for locals for spilled pseudos. */
2296 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2297 && ! rtx_equal_p (rtlx, rtly))
2298 return 1;
2300 /* If we have MEMs refering to different address spaces (which can
2301 potentially overlap), we cannot easily tell from the addresses
2302 whether the references overlap. */
2303 if (MEM_P (rtlx) && MEM_P (rtly)
2304 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2305 return 0;
2307 /* Get the base and offsets of both decls. If either is a register, we
2308 know both are and are the same, so use that as the base. The only
2309 we can avoid overlap is if we can deduce that they are nonoverlapping
2310 pieces of that decl, which is very rare. */
2311 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2312 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2313 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2315 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2316 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2317 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2319 /* If the bases are different, we know they do not overlap if both
2320 are constants or if one is a constant and the other a pointer into the
2321 stack frame. Otherwise a different base means we can't tell if they
2322 overlap or not. */
2323 if (! rtx_equal_p (basex, basey))
2324 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2325 || (CONSTANT_P (basex) && REG_P (basey)
2326 && REGNO_PTR_FRAME_P (REGNO (basey)))
2327 || (CONSTANT_P (basey) && REG_P (basex)
2328 && REGNO_PTR_FRAME_P (REGNO (basex))));
2330 /* Offset based disambiguation not appropriate for loop invariant */
2331 if (loop_invariant)
2332 return 0;
2334 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2335 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2336 : -1);
2337 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2338 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2339 -1);
2341 /* If we have an offset for either memref, it can update the values computed
2342 above. */
2343 if (moffsetx)
2344 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2345 if (moffsety)
2346 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2348 /* If a memref has both a size and an offset, we can use the smaller size.
2349 We can't do this if the offset isn't known because we must view this
2350 memref as being anywhere inside the DECL's MEM. */
2351 if (MEM_SIZE (x) && moffsetx)
2352 sizex = INTVAL (MEM_SIZE (x));
2353 if (MEM_SIZE (y) && moffsety)
2354 sizey = INTVAL (MEM_SIZE (y));
2356 /* Put the values of the memref with the lower offset in X's values. */
2357 if (offsetx > offsety)
2359 tem = offsetx, offsetx = offsety, offsety = tem;
2360 tem = sizex, sizex = sizey, sizey = tem;
2363 /* If we don't know the size of the lower-offset value, we can't tell
2364 if they conflict. Otherwise, we do the test. */
2365 return sizex >= 0 && offsety >= offsetx + sizex;
2368 /* Helper for true_dependence and canon_true_dependence.
2369 Checks for true dependence: X is read after store in MEM takes place.
2371 VARIES is the function that should be used as rtx_varies function.
2373 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2374 NULL_RTX, and the canonical addresses of MEM and X are both computed
2375 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2377 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2379 Returns 1 if there is a true dependence, 0 otherwise. */
2381 static int
2382 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2383 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool),
2384 bool mem_canonicalized)
2386 rtx base;
2387 int ret;
2389 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2390 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2392 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2393 return 1;
2395 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2396 This is used in epilogue deallocation functions, and in cselib. */
2397 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2398 return 1;
2399 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2400 return 1;
2401 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2402 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2403 return 1;
2405 /* Read-only memory is by definition never modified, and therefore can't
2406 conflict with anything. We don't expect to find read-only set on MEM,
2407 but stupid user tricks can produce them, so don't die. */
2408 if (MEM_READONLY_P (x))
2409 return 0;
2411 /* If we have MEMs refering to different address spaces (which can
2412 potentially overlap), we cannot easily tell from the addresses
2413 whether the references overlap. */
2414 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2415 return 1;
2417 if (! mem_addr)
2419 mem_addr = XEXP (mem, 0);
2420 if (mem_mode == VOIDmode)
2421 mem_mode = GET_MODE (mem);
2424 if (! x_addr)
2426 x_addr = XEXP (x, 0);
2427 if (!((GET_CODE (x_addr) == VALUE
2428 && GET_CODE (mem_addr) != VALUE
2429 && reg_mentioned_p (x_addr, mem_addr))
2430 || (GET_CODE (x_addr) != VALUE
2431 && GET_CODE (mem_addr) == VALUE
2432 && reg_mentioned_p (mem_addr, x_addr))))
2434 x_addr = get_addr (x_addr);
2435 if (! mem_canonicalized)
2436 mem_addr = get_addr (mem_addr);
2440 base = find_base_term (x_addr);
2441 if (base && (GET_CODE (base) == LABEL_REF
2442 || (GET_CODE (base) == SYMBOL_REF
2443 && CONSTANT_POOL_ADDRESS_P (base))))
2444 return 0;
2446 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2447 return 0;
2449 x_addr = canon_rtx (x_addr);
2450 if (!mem_canonicalized)
2451 mem_addr = canon_rtx (mem_addr);
2453 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2454 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2455 return ret;
2457 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2458 return 0;
2460 if (nonoverlapping_memrefs_p (mem, x, false))
2461 return 0;
2463 if (aliases_everything_p (x))
2464 return 1;
2466 /* We cannot use aliases_everything_p to test MEM, since we must look
2467 at MEM_ADDR, rather than XEXP (mem, 0). */
2468 if (GET_CODE (mem_addr) == AND)
2469 return 1;
2471 /* ??? In true_dependence we also allow BLKmode to alias anything. Why
2472 don't we do this in anti_dependence and output_dependence? */
2473 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2474 return 1;
2476 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2477 return 0;
2479 return rtx_refs_may_alias_p (x, mem, true);
2482 /* True dependence: X is read after store in MEM takes place. */
2485 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2486 bool (*varies) (const_rtx, bool))
2488 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2489 x, NULL_RTX, varies,
2490 /*mem_canonicalized=*/false);
2493 /* Canonical true dependence: X is read after store in MEM takes place.
2494 Variant of true_dependence which assumes MEM has already been
2495 canonicalized (hence we no longer do that here).
2496 The mem_addr argument has been added, since true_dependence_1 computed
2497 this value prior to canonicalizing. */
2500 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2501 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool))
2503 return true_dependence_1 (mem, mem_mode, mem_addr,
2504 x, x_addr, varies,
2505 /*mem_canonicalized=*/true);
2508 /* Returns nonzero if a write to X might alias a previous read from
2509 (or, if WRITEP is nonzero, a write to) MEM. */
2511 static int
2512 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2514 rtx x_addr, mem_addr;
2515 const_rtx fixed_scalar;
2516 rtx base;
2517 int ret;
2519 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2520 return 1;
2522 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2523 This is used in epilogue deallocation functions. */
2524 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2525 return 1;
2526 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2527 return 1;
2528 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2529 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2530 return 1;
2532 /* A read from read-only memory can't conflict with read-write memory. */
2533 if (!writep && MEM_READONLY_P (mem))
2534 return 0;
2536 /* If we have MEMs refering to different address spaces (which can
2537 potentially overlap), we cannot easily tell from the addresses
2538 whether the references overlap. */
2539 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2540 return 1;
2542 x_addr = XEXP (x, 0);
2543 mem_addr = XEXP (mem, 0);
2544 if (!((GET_CODE (x_addr) == VALUE
2545 && GET_CODE (mem_addr) != VALUE
2546 && reg_mentioned_p (x_addr, mem_addr))
2547 || (GET_CODE (x_addr) != VALUE
2548 && GET_CODE (mem_addr) == VALUE
2549 && reg_mentioned_p (mem_addr, x_addr))))
2551 x_addr = get_addr (x_addr);
2552 mem_addr = get_addr (mem_addr);
2555 if (! writep)
2557 base = find_base_term (mem_addr);
2558 if (base && (GET_CODE (base) == LABEL_REF
2559 || (GET_CODE (base) == SYMBOL_REF
2560 && CONSTANT_POOL_ADDRESS_P (base))))
2561 return 0;
2564 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2565 GET_MODE (mem)))
2566 return 0;
2568 x_addr = canon_rtx (x_addr);
2569 mem_addr = canon_rtx (mem_addr);
2571 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2572 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2573 return ret;
2575 if (nonoverlapping_memrefs_p (x, mem, false))
2576 return 0;
2578 fixed_scalar
2579 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2580 rtx_addr_varies_p);
2582 if ((fixed_scalar == mem && !aliases_everything_p (x))
2583 || (fixed_scalar == x && !aliases_everything_p (mem)))
2584 return 0;
2586 return rtx_refs_may_alias_p (x, mem, false);
2589 /* Anti dependence: X is written after read in MEM takes place. */
2592 anti_dependence (const_rtx mem, const_rtx x)
2594 return write_dependence_p (mem, x, /*writep=*/0);
2597 /* Output dependence: X is written after store in MEM takes place. */
2600 output_dependence (const_rtx mem, const_rtx x)
2602 return write_dependence_p (mem, x, /*writep=*/1);
2607 /* Check whether X may be aliased with MEM. Don't do offset-based
2608 memory disambiguation & TBAA. */
2610 may_alias_p (const_rtx mem, const_rtx x)
2612 rtx x_addr, mem_addr;
2614 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2615 return 1;
2617 /* ??? In true_dependence we also allow BLKmode to alias anything. */
2618 if (GET_MODE (mem) == BLKmode || GET_MODE (x) == BLKmode)
2619 return 1;
2621 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2622 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2623 return 1;
2625 /* Read-only memory is by definition never modified, and therefore can't
2626 conflict with anything. We don't expect to find read-only set on MEM,
2627 but stupid user tricks can produce them, so don't die. */
2628 if (MEM_READONLY_P (x))
2629 return 0;
2631 /* If we have MEMs refering to different address spaces (which can
2632 potentially overlap), we cannot easily tell from the addresses
2633 whether the references overlap. */
2634 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2635 return 1;
2637 x_addr = XEXP (x, 0);
2638 mem_addr = XEXP (mem, 0);
2639 if (!((GET_CODE (x_addr) == VALUE
2640 && GET_CODE (mem_addr) != VALUE
2641 && reg_mentioned_p (x_addr, mem_addr))
2642 || (GET_CODE (x_addr) != VALUE
2643 && GET_CODE (mem_addr) == VALUE
2644 && reg_mentioned_p (mem_addr, x_addr))))
2646 x_addr = get_addr (x_addr);
2647 mem_addr = get_addr (mem_addr);
2650 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
2651 return 0;
2653 x_addr = canon_rtx (x_addr);
2654 mem_addr = canon_rtx (mem_addr);
2656 if (nonoverlapping_memrefs_p (mem, x, true))
2657 return 0;
2659 if (aliases_everything_p (x))
2660 return 1;
2662 /* We cannot use aliases_everything_p to test MEM, since we must look
2663 at MEM_ADDR, rather than XEXP (mem, 0). */
2664 if (GET_CODE (mem_addr) == AND)
2665 return 1;
2667 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2668 rtx_addr_varies_p))
2669 return 0;
2671 /* TBAA not valid for loop_invarint */
2672 return rtx_refs_may_alias_p (x, mem, false);
2675 void
2676 init_alias_target (void)
2678 int i;
2680 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2682 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2683 /* Check whether this register can hold an incoming pointer
2684 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2685 numbers, so translate if necessary due to register windows. */
2686 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2687 && HARD_REGNO_MODE_OK (i, Pmode))
2688 static_reg_base_value[i]
2689 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2691 static_reg_base_value[STACK_POINTER_REGNUM]
2692 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2693 static_reg_base_value[ARG_POINTER_REGNUM]
2694 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2695 static_reg_base_value[FRAME_POINTER_REGNUM]
2696 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2697 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2698 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2699 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2700 #endif
2703 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2704 to be memory reference. */
2705 static bool memory_modified;
2706 static void
2707 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2709 if (MEM_P (x))
2711 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2712 memory_modified = true;
2717 /* Return true when INSN possibly modify memory contents of MEM
2718 (i.e. address can be modified). */
2719 bool
2720 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2722 if (!INSN_P (insn))
2723 return false;
2724 memory_modified = false;
2725 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2726 return memory_modified;
2729 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2730 array. */
2732 void
2733 init_alias_analysis (void)
2735 unsigned int maxreg = max_reg_num ();
2736 int changed, pass;
2737 int i;
2738 unsigned int ui;
2739 rtx insn;
2741 timevar_push (TV_ALIAS_ANALYSIS);
2743 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2744 reg_known_value = ggc_alloc_cleared_vec_rtx (reg_known_value_size);
2745 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
2747 /* If we have memory allocated from the previous run, use it. */
2748 if (old_reg_base_value)
2749 reg_base_value = old_reg_base_value;
2751 if (reg_base_value)
2752 VEC_truncate (rtx, reg_base_value, 0);
2754 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2756 new_reg_base_value = XNEWVEC (rtx, maxreg);
2757 reg_seen = XNEWVEC (char, maxreg);
2759 /* The basic idea is that each pass through this loop will use the
2760 "constant" information from the previous pass to propagate alias
2761 information through another level of assignments.
2763 This could get expensive if the assignment chains are long. Maybe
2764 we should throttle the number of iterations, possibly based on
2765 the optimization level or flag_expensive_optimizations.
2767 We could propagate more information in the first pass by making use
2768 of DF_REG_DEF_COUNT to determine immediately that the alias information
2769 for a pseudo is "constant".
2771 A program with an uninitialized variable can cause an infinite loop
2772 here. Instead of doing a full dataflow analysis to detect such problems
2773 we just cap the number of iterations for the loop.
2775 The state of the arrays for the set chain in question does not matter
2776 since the program has undefined behavior. */
2778 pass = 0;
2781 /* Assume nothing will change this iteration of the loop. */
2782 changed = 0;
2784 /* We want to assign the same IDs each iteration of this loop, so
2785 start counting from zero each iteration of the loop. */
2786 unique_id = 0;
2788 /* We're at the start of the function each iteration through the
2789 loop, so we're copying arguments. */
2790 copying_arguments = true;
2792 /* Wipe the potential alias information clean for this pass. */
2793 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2795 /* Wipe the reg_seen array clean. */
2796 memset (reg_seen, 0, maxreg);
2798 /* Mark all hard registers which may contain an address.
2799 The stack, frame and argument pointers may contain an address.
2800 An argument register which can hold a Pmode value may contain
2801 an address even if it is not in BASE_REGS.
2803 The address expression is VOIDmode for an argument and
2804 Pmode for other registers. */
2806 memcpy (new_reg_base_value, static_reg_base_value,
2807 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2809 /* Walk the insns adding values to the new_reg_base_value array. */
2810 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2812 if (INSN_P (insn))
2814 rtx note, set;
2816 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2817 /* The prologue/epilogue insns are not threaded onto the
2818 insn chain until after reload has completed. Thus,
2819 there is no sense wasting time checking if INSN is in
2820 the prologue/epilogue until after reload has completed. */
2821 if (reload_completed
2822 && prologue_epilogue_contains (insn))
2823 continue;
2824 #endif
2826 /* If this insn has a noalias note, process it, Otherwise,
2827 scan for sets. A simple set will have no side effects
2828 which could change the base value of any other register. */
2830 if (GET_CODE (PATTERN (insn)) == SET
2831 && REG_NOTES (insn) != 0
2832 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2833 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2834 else
2835 note_stores (PATTERN (insn), record_set, NULL);
2837 set = single_set (insn);
2839 if (set != 0
2840 && REG_P (SET_DEST (set))
2841 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2843 unsigned int regno = REGNO (SET_DEST (set));
2844 rtx src = SET_SRC (set);
2845 rtx t;
2847 note = find_reg_equal_equiv_note (insn);
2848 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2849 && DF_REG_DEF_COUNT (regno) != 1)
2850 note = NULL_RTX;
2852 if (note != NULL_RTX
2853 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2854 && ! rtx_varies_p (XEXP (note, 0), 1)
2855 && ! reg_overlap_mentioned_p (SET_DEST (set),
2856 XEXP (note, 0)))
2858 set_reg_known_value (regno, XEXP (note, 0));
2859 set_reg_known_equiv_p (regno,
2860 REG_NOTE_KIND (note) == REG_EQUIV);
2862 else if (DF_REG_DEF_COUNT (regno) == 1
2863 && GET_CODE (src) == PLUS
2864 && REG_P (XEXP (src, 0))
2865 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2866 && CONST_INT_P (XEXP (src, 1)))
2868 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2869 set_reg_known_value (regno, t);
2870 set_reg_known_equiv_p (regno, 0);
2872 else if (DF_REG_DEF_COUNT (regno) == 1
2873 && ! rtx_varies_p (src, 1))
2875 set_reg_known_value (regno, src);
2876 set_reg_known_equiv_p (regno, 0);
2880 else if (NOTE_P (insn)
2881 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2882 copying_arguments = false;
2885 /* Now propagate values from new_reg_base_value to reg_base_value. */
2886 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2888 for (ui = 0; ui < maxreg; ui++)
2890 if (new_reg_base_value[ui]
2891 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2892 && ! rtx_equal_p (new_reg_base_value[ui],
2893 VEC_index (rtx, reg_base_value, ui)))
2895 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2896 changed = 1;
2900 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2902 /* Fill in the remaining entries. */
2903 for (i = 0; i < (int)reg_known_value_size; i++)
2904 if (reg_known_value[i] == 0)
2905 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2907 /* Clean up. */
2908 free (new_reg_base_value);
2909 new_reg_base_value = 0;
2910 free (reg_seen);
2911 reg_seen = 0;
2912 timevar_pop (TV_ALIAS_ANALYSIS);
2915 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
2916 Special API for var-tracking pass purposes. */
2918 void
2919 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
2921 VEC_replace (rtx, reg_base_value, REGNO (reg1), REG_BASE_VALUE (reg2));
2924 void
2925 end_alias_analysis (void)
2927 old_reg_base_value = reg_base_value;
2928 ggc_free (reg_known_value);
2929 reg_known_value = 0;
2930 reg_known_value_size = 0;
2931 free (reg_known_equiv_p);
2932 reg_known_equiv_p = 0;
2935 #include "gt-alias.h"