Typo in last patch.
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob69cc4d097f5bab4338ce5ed2f7d2cbba73a60ecc
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Ch7; use Exp_Ch7;
35 with Fname; use Fname;
36 with Freeze; use Freeze;
37 with Lib.Xref; use Lib.Xref;
38 with Namet; use Namet;
39 with Lib; use Lib;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Output; use Output;
44 with Rtsfind; use Rtsfind;
45 with Sem; use Sem;
46 with Sem_Cat; use Sem_Cat;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch4; use Sem_Ch4;
49 with Sem_Ch5; use Sem_Ch5;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Ch10; use Sem_Ch10;
52 with Sem_Ch12; use Sem_Ch12;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Dist; use Sem_Dist;
55 with Sem_Elim; use Sem_Elim;
56 with Sem_Eval; use Sem_Eval;
57 with Sem_Mech; use Sem_Mech;
58 with Sem_Prag; use Sem_Prag;
59 with Sem_Res; use Sem_Res;
60 with Sem_Util; use Sem_Util;
61 with Sem_Type; use Sem_Type;
62 with Sem_Warn; use Sem_Warn;
63 with Sinput; use Sinput;
64 with Stand; use Stand;
65 with Sinfo; use Sinfo;
66 with Sinfo.CN; use Sinfo.CN;
67 with Snames; use Snames;
68 with Stringt; use Stringt;
69 with Style;
70 with Stylesw; use Stylesw;
71 with Tbuild; use Tbuild;
72 with Uintp; use Uintp;
73 with Urealp; use Urealp;
74 with Validsw; use Validsw;
76 package body Sem_Ch6 is
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
83 -- Analyze a generic subprogram body. N is the body to be analyzed,
84 -- and Gen_Id is the defining entity Id for the corresponding spec.
86 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
87 -- If a subprogram has pragma Inline and inlining is active, use generic
88 -- machinery to build an unexpanded body for the subprogram. This body is
89 -- subsequenty used for inline expansions at call sites. If subprogram can
90 -- be inlined (depending on size and nature of local declarations) this
91 -- function returns true. Otherwise subprogram body is treated normally.
92 -- If proper warnings are enabled and the subprogram contains a construct
93 -- that cannot be inlined, the offending construct is flagged accordingly.
95 type Conformance_Type is
96 (Type_Conformant, Mode_Conformant, Subtype_Conformant, Fully_Conformant);
97 -- Conformance type used for following call, meaning matches the
98 -- RM definitions of the corresponding terms.
100 procedure Check_Conformance
101 (New_Id : Entity_Id;
102 Old_Id : Entity_Id;
103 Ctype : Conformance_Type;
104 Errmsg : Boolean;
105 Conforms : out Boolean;
106 Err_Loc : Node_Id := Empty;
107 Get_Inst : Boolean := False);
108 -- Given two entities, this procedure checks that the profiles associated
109 -- with these entities meet the conformance criterion given by the third
110 -- parameter. If they conform, Conforms is set True and control returns
111 -- to the caller. If they do not conform, Conforms is set to False, and
112 -- in addition, if Errmsg is True on the call, proper messages are output
113 -- to complain about the conformance failure. If Err_Loc is non_Empty
114 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
115 -- error messages are placed on the appropriate part of the construct
116 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
117 -- against a formal access-to-subprogram type so Get_Instance_Of must
118 -- be called.
120 procedure Check_Overriding_Operation
121 (N : Node_Id;
122 Subp : Entity_Id);
123 -- Check that a subprogram with a pragma Overriding or Optional_Overriding
124 -- is legal. This check is performed here rather than in Sem_Prag because
125 -- the pragma must follow immediately the declaration, and can be treated
126 -- as part of the declaration itself, as described in AI-218.
128 procedure Check_Subprogram_Order (N : Node_Id);
129 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
130 -- the alpha ordering rule for N if this ordering requirement applicable.
132 function Is_Non_Overriding_Operation
133 (Prev_E : Entity_Id;
134 New_E : Entity_Id) return Boolean;
135 -- Enforce the rule given in 12.3(18): a private operation in an instance
136 -- overrides an inherited operation only if the corresponding operation
137 -- was overriding in the generic. This can happen for primitive operations
138 -- of types derived (in the generic unit) from formal private or formal
139 -- derived types.
141 procedure Check_Returns
142 (HSS : Node_Id;
143 Mode : Character;
144 Err : out Boolean);
145 -- Called to check for missing return statements in a function body,
146 -- or for returns present in a procedure body which has No_Return set.
147 -- L is the handled statement sequence for the subprogram body. This
148 -- procedure checks all flow paths to make sure they either have a
149 -- return (Mode = 'F') or do not have a return (Mode = 'P'). The flag
150 -- Err is set if there are any control paths not explicitly terminated
151 -- by a return in the function case, and is True otherwise.
153 function Conforming_Types
154 (T1 : Entity_Id;
155 T2 : Entity_Id;
156 Ctype : Conformance_Type;
157 Get_Inst : Boolean := False) return Boolean;
158 -- Check that two formal parameter types conform, checking both
159 -- for equality of base types, and where required statically
160 -- matching subtypes, depending on the setting of Ctype.
162 procedure Enter_Overloaded_Entity (S : Entity_Id);
163 -- This procedure makes S, a new overloaded entity, into the first
164 -- visible entity with that name.
166 procedure Install_Entity (E : Entity_Id);
167 -- Make single entity visible. Used for generic formals as well.
169 procedure Install_Formals (Id : Entity_Id);
170 -- On entry to a subprogram body, make the formals visible. Note
171 -- that simply placing the subprogram on the scope stack is not
172 -- sufficient: the formals must become the current entities for
173 -- their names.
175 procedure Make_Inequality_Operator (S : Entity_Id);
176 -- Create the declaration for an inequality operator that is implicitly
177 -- created by a user-defined equality operator that yields a boolean.
179 procedure May_Need_Actuals (Fun : Entity_Id);
180 -- Flag functions that can be called without parameters, i.e. those that
181 -- have no parameters, or those for which defaults exist for all parameters
183 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id);
184 -- If there is a separate spec for a subprogram or generic subprogram,
185 -- the formals of the body are treated as references to the corresponding
186 -- formals of the spec. This reference does not count as an actual use of
187 -- the formal, in order to diagnose formals that are unused in the body.
189 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
190 -- Formal_Id is an formal parameter entity. This procedure deals with
191 -- setting the proper validity status for this entity, which depends
192 -- on the kind of parameter and the validity checking mode.
194 ---------------------------------------------
195 -- Analyze_Abstract_Subprogram_Declaration --
196 ---------------------------------------------
198 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
199 Designator : constant Entity_Id :=
200 Analyze_Subprogram_Specification (Specification (N));
201 Scop : constant Entity_Id := Current_Scope;
203 begin
204 Generate_Definition (Designator);
205 Set_Is_Abstract (Designator);
206 New_Overloaded_Entity (Designator);
207 Check_Delayed_Subprogram (Designator);
209 Set_Categorization_From_Scope (Designator, Scop);
211 if Ekind (Scope (Designator)) = E_Protected_Type then
212 Error_Msg_N
213 ("abstract subprogram not allowed in protected type", N);
214 end if;
216 Generate_Reference_To_Formals (Designator);
217 end Analyze_Abstract_Subprogram_Declaration;
219 ----------------------------
220 -- Analyze_Function_Call --
221 ----------------------------
223 procedure Analyze_Function_Call (N : Node_Id) is
224 P : constant Node_Id := Name (N);
225 L : constant List_Id := Parameter_Associations (N);
226 Actual : Node_Id;
228 begin
229 Analyze (P);
231 -- If error analyzing name, then set Any_Type as result type and return
233 if Etype (P) = Any_Type then
234 Set_Etype (N, Any_Type);
235 return;
236 end if;
238 -- Otherwise analyze the parameters
240 if Present (L) then
241 Actual := First (L);
243 while Present (Actual) loop
244 Analyze (Actual);
245 Check_Parameterless_Call (Actual);
246 Next (Actual);
247 end loop;
248 end if;
250 Analyze_Call (N);
251 end Analyze_Function_Call;
253 -------------------------------------
254 -- Analyze_Generic_Subprogram_Body --
255 -------------------------------------
257 procedure Analyze_Generic_Subprogram_Body
258 (N : Node_Id;
259 Gen_Id : Entity_Id)
261 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
262 Kind : constant Entity_Kind := Ekind (Gen_Id);
263 Body_Id : Entity_Id;
264 New_N : Node_Id;
265 Spec : Node_Id;
267 begin
268 -- Copy body and disable expansion while analyzing the generic
269 -- For a stub, do not copy the stub (which would load the proper body),
270 -- this will be done when the proper body is analyzed.
272 if Nkind (N) /= N_Subprogram_Body_Stub then
273 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
274 Rewrite (N, New_N);
275 Start_Generic;
276 end if;
278 Spec := Specification (N);
280 -- Within the body of the generic, the subprogram is callable, and
281 -- behaves like the corresponding non-generic unit.
283 Body_Id := Defining_Entity (Spec);
285 if Kind = E_Generic_Procedure
286 and then Nkind (Spec) /= N_Procedure_Specification
287 then
288 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
289 return;
291 elsif Kind = E_Generic_Function
292 and then Nkind (Spec) /= N_Function_Specification
293 then
294 Error_Msg_N ("invalid body for generic function ", Body_Id);
295 return;
296 end if;
298 Set_Corresponding_Body (Gen_Decl, Body_Id);
300 if Has_Completion (Gen_Id)
301 and then Nkind (Parent (N)) /= N_Subunit
302 then
303 Error_Msg_N ("duplicate generic body", N);
304 return;
305 else
306 Set_Has_Completion (Gen_Id);
307 end if;
309 if Nkind (N) = N_Subprogram_Body_Stub then
310 Set_Ekind (Defining_Entity (Specification (N)), Kind);
311 else
312 Set_Corresponding_Spec (N, Gen_Id);
313 end if;
315 if Nkind (Parent (N)) = N_Compilation_Unit then
316 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
317 end if;
319 -- Make generic parameters immediately visible in the body. They are
320 -- needed to process the formals declarations. Then make the formals
321 -- visible in a separate step.
323 New_Scope (Gen_Id);
325 declare
326 E : Entity_Id;
327 First_Ent : Entity_Id;
329 begin
330 First_Ent := First_Entity (Gen_Id);
332 E := First_Ent;
333 while Present (E) and then not Is_Formal (E) loop
334 Install_Entity (E);
335 Next_Entity (E);
336 end loop;
338 Set_Use (Generic_Formal_Declarations (Gen_Decl));
340 -- Now generic formals are visible, and the specification can be
341 -- analyzed, for subsequent conformance check.
343 Body_Id := Analyze_Subprogram_Specification (Spec);
345 -- Make formal parameters visible
347 if Present (E) then
349 -- E is the first formal parameter, we loop through the formals
350 -- installing them so that they will be visible.
352 Set_First_Entity (Gen_Id, E);
353 while Present (E) loop
354 Install_Entity (E);
355 Next_Formal (E);
356 end loop;
357 end if;
359 -- Visible generic entity is callable within its own body.
361 Set_Ekind (Gen_Id, Ekind (Body_Id));
362 Set_Ekind (Body_Id, E_Subprogram_Body);
363 Set_Convention (Body_Id, Convention (Gen_Id));
364 Set_Scope (Body_Id, Scope (Gen_Id));
365 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
367 if Nkind (N) = N_Subprogram_Body_Stub then
369 -- No body to analyze, so restore state of generic unit.
371 Set_Ekind (Gen_Id, Kind);
372 Set_Ekind (Body_Id, Kind);
374 if Present (First_Ent) then
375 Set_First_Entity (Gen_Id, First_Ent);
376 end if;
378 End_Scope;
379 return;
380 end if;
382 -- If this is a compilation unit, it must be made visible
383 -- explicitly, because the compilation of the declaration,
384 -- unlike other library unit declarations, does not. If it
385 -- is not a unit, the following is redundant but harmless.
387 Set_Is_Immediately_Visible (Gen_Id);
388 Reference_Body_Formals (Gen_Id, Body_Id);
390 Set_Actual_Subtypes (N, Current_Scope);
391 Analyze_Declarations (Declarations (N));
392 Check_Completion;
393 Analyze (Handled_Statement_Sequence (N));
395 Save_Global_References (Original_Node (N));
397 -- Prior to exiting the scope, include generic formals again
398 -- (if any are present) in the set of local entities.
400 if Present (First_Ent) then
401 Set_First_Entity (Gen_Id, First_Ent);
402 end if;
404 Check_References (Gen_Id);
405 end;
407 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
408 End_Scope;
409 Check_Subprogram_Order (N);
411 -- Outside of its body, unit is generic again.
413 Set_Ekind (Gen_Id, Kind);
414 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
415 Style.Check_Identifier (Body_Id, Gen_Id);
416 End_Generic;
417 end Analyze_Generic_Subprogram_Body;
419 -----------------------------
420 -- Analyze_Operator_Symbol --
421 -----------------------------
423 -- An operator symbol such as "+" or "and" may appear in context where
424 -- the literal denotes an entity name, such as "+"(x, y) or in a
425 -- context when it is just a string, as in (conjunction = "or"). In
426 -- these cases the parser generates this node, and the semantics does
427 -- the disambiguation. Other such case are actuals in an instantiation,
428 -- the generic unit in an instantiation, and pragma arguments.
430 procedure Analyze_Operator_Symbol (N : Node_Id) is
431 Par : constant Node_Id := Parent (N);
433 begin
434 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
435 or else Nkind (Par) = N_Function_Instantiation
436 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
437 or else (Nkind (Par) = N_Pragma_Argument_Association
438 and then not Is_Pragma_String_Literal (Par))
439 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
440 or else (Nkind (Par) = N_Attribute_Reference
441 and then Attribute_Name (Par) /= Name_Value)
442 then
443 Find_Direct_Name (N);
445 else
446 Change_Operator_Symbol_To_String_Literal (N);
447 Analyze (N);
448 end if;
449 end Analyze_Operator_Symbol;
451 -----------------------------------
452 -- Analyze_Parameter_Association --
453 -----------------------------------
455 procedure Analyze_Parameter_Association (N : Node_Id) is
456 begin
457 Analyze (Explicit_Actual_Parameter (N));
458 end Analyze_Parameter_Association;
460 ----------------------------
461 -- Analyze_Procedure_Call --
462 ----------------------------
464 procedure Analyze_Procedure_Call (N : Node_Id) is
465 Loc : constant Source_Ptr := Sloc (N);
466 P : constant Node_Id := Name (N);
467 Actuals : constant List_Id := Parameter_Associations (N);
468 Actual : Node_Id;
469 New_N : Node_Id;
471 procedure Analyze_Call_And_Resolve;
472 -- Do Analyze and Resolve calls for procedure call
474 ------------------------------
475 -- Analyze_Call_And_Resolve --
476 ------------------------------
478 procedure Analyze_Call_And_Resolve is
479 begin
480 if Nkind (N) = N_Procedure_Call_Statement then
481 Analyze_Call (N);
482 Resolve (N, Standard_Void_Type);
483 else
484 Analyze (N);
485 end if;
486 end Analyze_Call_And_Resolve;
488 -- Start of processing for Analyze_Procedure_Call
490 begin
491 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
492 -- a procedure call or an entry call. The prefix may denote an access
493 -- to subprogram type, in which case an implicit dereference applies.
494 -- If the prefix is an indexed component (without implicit defererence)
495 -- then the construct denotes a call to a member of an entire family.
496 -- If the prefix is a simple name, it may still denote a call to a
497 -- parameterless member of an entry family. Resolution of these various
498 -- interpretations is delicate.
500 Analyze (P);
502 -- If error analyzing prefix, then set Any_Type as result and return
504 if Etype (P) = Any_Type then
505 Set_Etype (N, Any_Type);
506 return;
507 end if;
509 -- Otherwise analyze the parameters
511 if Present (Actuals) then
512 Actual := First (Actuals);
514 while Present (Actual) loop
515 Analyze (Actual);
516 Check_Parameterless_Call (Actual);
517 Next (Actual);
518 end loop;
519 end if;
521 -- Special processing for Elab_Spec and Elab_Body calls
523 if Nkind (P) = N_Attribute_Reference
524 and then (Attribute_Name (P) = Name_Elab_Spec
525 or else Attribute_Name (P) = Name_Elab_Body)
526 then
527 if Present (Actuals) then
528 Error_Msg_N
529 ("no parameters allowed for this call", First (Actuals));
530 return;
531 end if;
533 Set_Etype (N, Standard_Void_Type);
534 Set_Analyzed (N);
536 elsif Is_Entity_Name (P)
537 and then Is_Record_Type (Etype (Entity (P)))
538 and then Remote_AST_I_Dereference (P)
539 then
540 return;
542 elsif Is_Entity_Name (P)
543 and then Ekind (Entity (P)) /= E_Entry_Family
544 then
545 if Is_Access_Type (Etype (P))
546 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
547 and then No (Actuals)
548 and then Comes_From_Source (N)
549 then
550 Error_Msg_N ("missing explicit dereference in call", N);
551 end if;
553 Analyze_Call_And_Resolve;
555 -- If the prefix is the simple name of an entry family, this is
556 -- a parameterless call from within the task body itself.
558 elsif Is_Entity_Name (P)
559 and then Nkind (P) = N_Identifier
560 and then Ekind (Entity (P)) = E_Entry_Family
561 and then Present (Actuals)
562 and then No (Next (First (Actuals)))
563 then
564 -- Can be call to parameterless entry family. What appears to be
565 -- the sole argument is in fact the entry index. Rewrite prefix
566 -- of node accordingly. Source representation is unchanged by this
567 -- transformation.
569 New_N :=
570 Make_Indexed_Component (Loc,
571 Prefix =>
572 Make_Selected_Component (Loc,
573 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
574 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
575 Expressions => Actuals);
576 Set_Name (N, New_N);
577 Set_Etype (New_N, Standard_Void_Type);
578 Set_Parameter_Associations (N, No_List);
579 Analyze_Call_And_Resolve;
581 elsif Nkind (P) = N_Explicit_Dereference then
582 if Ekind (Etype (P)) = E_Subprogram_Type then
583 Analyze_Call_And_Resolve;
584 else
585 Error_Msg_N ("expect access to procedure in call", P);
586 end if;
588 -- The name can be a selected component or an indexed component
589 -- that yields an access to subprogram. Such a prefix is legal if
590 -- the call has parameter associations.
592 elsif Is_Access_Type (Etype (P))
593 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
594 then
595 if Present (Actuals) then
596 Analyze_Call_And_Resolve;
597 else
598 Error_Msg_N ("missing explicit dereference in call ", N);
599 end if;
601 -- If not an access to subprogram, then the prefix must resolve to
602 -- the name of an entry, entry family, or protected operation.
604 -- For the case of a simple entry call, P is a selected component
605 -- where the prefix is the task and the selector name is the entry.
606 -- A call to a protected procedure will have the same syntax. If
607 -- the protected object contains overloaded operations, the entity
608 -- may appear as a function, the context will select the operation
609 -- whose type is Void.
611 elsif Nkind (P) = N_Selected_Component
612 and then (Ekind (Entity (Selector_Name (P))) = E_Entry
613 or else
614 Ekind (Entity (Selector_Name (P))) = E_Procedure
615 or else
616 Ekind (Entity (Selector_Name (P))) = E_Function)
617 then
618 Analyze_Call_And_Resolve;
620 elsif Nkind (P) = N_Selected_Component
621 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
622 and then Present (Actuals)
623 and then No (Next (First (Actuals)))
624 then
625 -- Can be call to parameterless entry family. What appears to be
626 -- the sole argument is in fact the entry index. Rewrite prefix
627 -- of node accordingly. Source representation is unchanged by this
628 -- transformation.
630 New_N :=
631 Make_Indexed_Component (Loc,
632 Prefix => New_Copy (P),
633 Expressions => Actuals);
634 Set_Name (N, New_N);
635 Set_Etype (New_N, Standard_Void_Type);
636 Set_Parameter_Associations (N, No_List);
637 Analyze_Call_And_Resolve;
639 -- For the case of a reference to an element of an entry family, P is
640 -- an indexed component whose prefix is a selected component (task and
641 -- entry family), and whose index is the entry family index.
643 elsif Nkind (P) = N_Indexed_Component
644 and then Nkind (Prefix (P)) = N_Selected_Component
645 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
646 then
647 Analyze_Call_And_Resolve;
649 -- If the prefix is the name of an entry family, it is a call from
650 -- within the task body itself.
652 elsif Nkind (P) = N_Indexed_Component
653 and then Nkind (Prefix (P)) = N_Identifier
654 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
655 then
656 New_N :=
657 Make_Selected_Component (Loc,
658 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
659 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
660 Rewrite (Prefix (P), New_N);
661 Analyze (P);
662 Analyze_Call_And_Resolve;
664 -- Anything else is an error.
666 else
667 Error_Msg_N ("Invalid procedure or entry call", N);
668 end if;
669 end Analyze_Procedure_Call;
671 ------------------------------
672 -- Analyze_Return_Statement --
673 ------------------------------
675 procedure Analyze_Return_Statement (N : Node_Id) is
676 Loc : constant Source_Ptr := Sloc (N);
677 Expr : Node_Id;
678 Scope_Id : Entity_Id;
679 Kind : Entity_Kind;
680 R_Type : Entity_Id;
682 begin
683 -- Find subprogram or accept statement enclosing the return statement
685 Scope_Id := Empty;
686 for J in reverse 0 .. Scope_Stack.Last loop
687 Scope_Id := Scope_Stack.Table (J).Entity;
688 exit when Ekind (Scope_Id) /= E_Block and then
689 Ekind (Scope_Id) /= E_Loop;
690 end loop;
692 pragma Assert (Present (Scope_Id));
694 Kind := Ekind (Scope_Id);
695 Expr := Expression (N);
697 if Kind /= E_Function
698 and then Kind /= E_Generic_Function
699 and then Kind /= E_Procedure
700 and then Kind /= E_Generic_Procedure
701 and then Kind /= E_Entry
702 and then Kind /= E_Entry_Family
703 then
704 Error_Msg_N ("illegal context for return statement", N);
706 elsif Present (Expr) then
707 if Kind = E_Function or else Kind = E_Generic_Function then
708 Set_Return_Present (Scope_Id);
709 R_Type := Etype (Scope_Id);
710 Set_Return_Type (N, R_Type);
711 Analyze_And_Resolve (Expr, R_Type);
713 if (Is_Class_Wide_Type (Etype (Expr))
714 or else Is_Dynamically_Tagged (Expr))
715 and then not Is_Class_Wide_Type (R_Type)
716 then
717 Error_Msg_N
718 ("dynamically tagged expression not allowed!", Expr);
719 end if;
721 Apply_Constraint_Check (Expr, R_Type);
723 -- ??? A real run-time accessibility check is needed
724 -- in cases involving dereferences of access parameters.
725 -- For now we just check the static cases.
727 if Is_Return_By_Reference_Type (Etype (Scope_Id))
728 and then Object_Access_Level (Expr)
729 > Subprogram_Access_Level (Scope_Id)
730 then
731 Rewrite (N,
732 Make_Raise_Program_Error (Loc,
733 Reason => PE_Accessibility_Check_Failed));
734 Analyze (N);
736 Error_Msg_N
737 ("cannot return a local value by reference?", N);
738 Error_Msg_NE
739 ("& will be raised at run time?!",
740 N, Standard_Program_Error);
741 end if;
743 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
744 Error_Msg_N ("procedure cannot return value (use function)", N);
746 else
747 Error_Msg_N ("accept statement cannot return value", N);
748 end if;
750 -- No expression present
752 else
753 if Kind = E_Function or Kind = E_Generic_Function then
754 Error_Msg_N ("missing expression in return from function", N);
755 end if;
757 if (Ekind (Scope_Id) = E_Procedure
758 or else Ekind (Scope_Id) = E_Generic_Procedure)
759 and then No_Return (Scope_Id)
760 then
761 Error_Msg_N
762 ("RETURN statement not allowed (No_Return)", N);
763 end if;
764 end if;
766 Check_Unreachable_Code (N);
767 end Analyze_Return_Statement;
769 -----------------------------
770 -- Analyze_Subprogram_Body --
771 -----------------------------
773 -- This procedure is called for regular subprogram bodies, generic bodies,
774 -- and for subprogram stubs of both kinds. In the case of stubs, only the
775 -- specification matters, and is used to create a proper declaration for
776 -- the subprogram, or to perform conformance checks.
778 procedure Analyze_Subprogram_Body (N : Node_Id) is
779 Loc : constant Source_Ptr := Sloc (N);
780 Body_Spec : constant Node_Id := Specification (N);
781 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
782 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
783 Body_Deleted : constant Boolean := False;
785 HSS : Node_Id;
786 Spec_Id : Entity_Id;
787 Spec_Decl : Node_Id := Empty;
788 Last_Formal : Entity_Id := Empty;
789 Conformant : Boolean;
790 Missing_Ret : Boolean;
791 P_Ent : Entity_Id;
793 procedure Check_Following_Pragma;
794 -- If front-end inlining is enabled, look ahead to recognize a pragma
795 -- that may appear after the body.
797 procedure Check_Following_Pragma is
798 Prag : Node_Id;
800 begin
801 if Front_End_Inlining
802 and then Is_List_Member (N)
803 and then Present (Spec_Decl)
804 and then List_Containing (N) = List_Containing (Spec_Decl)
805 then
806 Prag := Next (N);
808 if Present (Prag)
809 and then Nkind (Prag) = N_Pragma
810 and then Get_Pragma_Id (Chars (Prag)) = Pragma_Inline
811 and then
812 Chars
813 (Expression (First (Pragma_Argument_Associations (Prag))))
814 = Chars (Body_Id)
815 then
816 Analyze (Prag);
817 end if;
818 end if;
819 end Check_Following_Pragma;
821 -- Start of processing for Analyze_Subprogram_Body
823 begin
824 if Debug_Flag_C then
825 Write_Str ("==== Compiling subprogram body ");
826 Write_Name (Chars (Body_Id));
827 Write_Str (" from ");
828 Write_Location (Loc);
829 Write_Eol;
830 end if;
832 Trace_Scope (N, Body_Id, " Analyze subprogram");
834 -- Generic subprograms are handled separately. They always have
835 -- a generic specification. Determine whether current scope has
836 -- a previous declaration.
838 -- If the subprogram body is defined within an instance of the
839 -- same name, the instance appears as a package renaming, and
840 -- will be hidden within the subprogram.
842 if Present (Prev_Id)
843 and then not Is_Overloadable (Prev_Id)
844 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
845 or else Comes_From_Source (Prev_Id))
846 then
847 if Is_Generic_Subprogram (Prev_Id) then
848 Spec_Id := Prev_Id;
849 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
850 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
852 Analyze_Generic_Subprogram_Body (N, Spec_Id);
853 return;
855 else
856 -- Previous entity conflicts with subprogram name.
857 -- Attempting to enter name will post error.
859 Enter_Name (Body_Id);
860 return;
861 end if;
863 -- Non-generic case, find the subprogram declaration, if one was
864 -- seen, or enter new overloaded entity in the current scope.
865 -- If the current_entity is the body_id itself, the unit is being
866 -- analyzed as part of the context of one of its subunits. No need
867 -- to redo the analysis.
869 elsif Prev_Id = Body_Id
870 and then Has_Completion (Body_Id)
871 then
872 return;
874 else
875 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
877 if Nkind (N) = N_Subprogram_Body_Stub
878 or else No (Corresponding_Spec (N))
879 then
880 Spec_Id := Find_Corresponding_Spec (N);
882 -- If this is a duplicate body, no point in analyzing it
884 if Error_Posted (N) then
885 return;
886 end if;
888 -- A subprogram body should cause freezing of its own
889 -- declaration, but if there was no previous explicit
890 -- declaration, then the subprogram will get frozen too
891 -- late (there may be code within the body that depends
892 -- on the subprogram having been frozen, such as uses of
893 -- extra formals), so we force it to be frozen here.
894 -- Same holds if the body and the spec are compilation units.
896 if No (Spec_Id) then
897 Freeze_Before (N, Body_Id);
899 elsif Nkind (Parent (N)) = N_Compilation_Unit then
900 Freeze_Before (N, Spec_Id);
901 end if;
902 else
903 Spec_Id := Corresponding_Spec (N);
904 end if;
905 end if;
907 -- Do not inline any subprogram that contains nested subprograms,
908 -- since the backend inlining circuit seems to generate uninitialized
909 -- references in this case. We know this happens in the case of front
910 -- end ZCX support, but it also appears it can happen in other cases
911 -- as well. The backend often rejects attempts to inline in the case
912 -- of nested procedures anyway, so little if anything is lost by this.
914 -- Do not do this test if errors have been detected, because in some
915 -- error cases, this code blows up, and we don't need it anyway if
916 -- there have been errors, since we won't get to the linker anyway.
918 if Serious_Errors_Detected = 0 then
919 P_Ent := Body_Id;
920 loop
921 P_Ent := Scope (P_Ent);
922 exit when No (P_Ent) or else P_Ent = Standard_Standard;
924 if Is_Subprogram (P_Ent) then
925 Set_Is_Inlined (P_Ent, False);
927 if Comes_From_Source (P_Ent)
928 and then Has_Pragma_Inline (P_Ent)
929 then
930 Cannot_Inline
931 ("cannot inline& (nested subprogram)?",
932 N, P_Ent);
933 end if;
934 end if;
935 end loop;
936 end if;
938 -- Case of fully private operation in the body of the protected type.
939 -- We must create a declaration for the subprogram, in order to attach
940 -- the protected subprogram that will be used in internal calls.
942 if No (Spec_Id)
943 and then Comes_From_Source (N)
944 and then Is_Protected_Type (Current_Scope)
945 then
946 declare
947 Decl : Node_Id;
948 Plist : List_Id;
949 Formal : Entity_Id;
950 New_Spec : Node_Id;
952 begin
953 Formal := First_Formal (Body_Id);
955 -- The protected operation always has at least one formal,
956 -- namely the object itself, but it is only placed in the
957 -- parameter list if expansion is enabled.
959 if Present (Formal)
960 or else Expander_Active
961 then
962 Plist := New_List;
964 else
965 Plist := No_List;
966 end if;
968 while Present (Formal) loop
969 Append
970 (Make_Parameter_Specification (Loc,
971 Defining_Identifier =>
972 Make_Defining_Identifier (Sloc (Formal),
973 Chars => Chars (Formal)),
974 In_Present => In_Present (Parent (Formal)),
975 Out_Present => Out_Present (Parent (Formal)),
976 Parameter_Type =>
977 New_Reference_To (Etype (Formal), Loc),
978 Expression =>
979 New_Copy_Tree (Expression (Parent (Formal)))),
980 Plist);
982 Next_Formal (Formal);
983 end loop;
985 if Nkind (Body_Spec) = N_Procedure_Specification then
986 New_Spec :=
987 Make_Procedure_Specification (Loc,
988 Defining_Unit_Name =>
989 Make_Defining_Identifier (Sloc (Body_Id),
990 Chars => Chars (Body_Id)),
991 Parameter_Specifications => Plist);
992 else
993 New_Spec :=
994 Make_Function_Specification (Loc,
995 Defining_Unit_Name =>
996 Make_Defining_Identifier (Sloc (Body_Id),
997 Chars => Chars (Body_Id)),
998 Parameter_Specifications => Plist,
999 Subtype_Mark => New_Occurrence_Of (Etype (Body_Id), Loc));
1000 end if;
1002 Decl :=
1003 Make_Subprogram_Declaration (Loc,
1004 Specification => New_Spec);
1005 Insert_Before (N, Decl);
1006 Spec_Id := Defining_Unit_Name (New_Spec);
1008 -- Indicate that the entity comes from source, to ensure that
1009 -- cross-reference information is properly generated.
1010 -- The body itself is rewritten during expansion, and the
1011 -- body entity will not appear in calls to the operation.
1013 Set_Comes_From_Source (Spec_Id, True);
1014 Analyze (Decl);
1015 Set_Has_Completion (Spec_Id);
1016 Set_Convention (Spec_Id, Convention_Protected);
1017 end;
1019 elsif Present (Spec_Id) then
1020 Spec_Decl := Unit_Declaration_Node (Spec_Id);
1021 end if;
1023 -- Place subprogram on scope stack, and make formals visible. If there
1024 -- is a spec, the visible entity remains that of the spec.
1026 if Present (Spec_Id) then
1027 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
1028 if Style_Check then
1029 Style.Check_Identifier (Body_Id, Spec_Id);
1030 end if;
1032 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
1033 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
1035 if Is_Abstract (Spec_Id) then
1036 Error_Msg_N ("an abstract subprogram cannot have a body", N);
1037 return;
1038 else
1039 Set_Convention (Body_Id, Convention (Spec_Id));
1040 Set_Has_Completion (Spec_Id);
1042 if Is_Protected_Type (Scope (Spec_Id)) then
1043 Set_Privals_Chain (Spec_Id, New_Elmt_List);
1044 end if;
1046 -- If this is a body generated for a renaming, do not check for
1047 -- full conformance. The check is redundant, because the spec of
1048 -- the body is a copy of the spec in the renaming declaration,
1049 -- and the test can lead to spurious errors on nested defaults.
1051 if Present (Spec_Decl)
1052 and then not Comes_From_Source (N)
1053 and then
1054 (Nkind (Original_Node (Spec_Decl)) =
1055 N_Subprogram_Renaming_Declaration
1056 or else (Present (Corresponding_Body (Spec_Decl))
1057 and then
1058 Nkind (Unit_Declaration_Node
1059 (Corresponding_Body (Spec_Decl))) =
1060 N_Subprogram_Renaming_Declaration))
1061 then
1062 Conformant := True;
1063 else
1064 Check_Conformance
1065 (Body_Id, Spec_Id,
1066 Fully_Conformant, True, Conformant, Body_Id);
1067 end if;
1069 -- If the body is not fully conformant, we have to decide if we
1070 -- should analyze it or not. If it has a really messed up profile
1071 -- then we probably should not analyze it, since we will get too
1072 -- many bogus messages.
1074 -- Our decision is to go ahead in the non-fully conformant case
1075 -- only if it is at least mode conformant with the spec. Note
1076 -- that the call to Check_Fully_Conformant has issued the proper
1077 -- error messages to complain about the lack of conformance.
1079 if not Conformant
1080 and then not Mode_Conformant (Body_Id, Spec_Id)
1081 then
1082 return;
1083 end if;
1084 end if;
1086 if Spec_Id /= Body_Id then
1087 Reference_Body_Formals (Spec_Id, Body_Id);
1088 end if;
1090 if Nkind (N) /= N_Subprogram_Body_Stub then
1091 Set_Corresponding_Spec (N, Spec_Id);
1092 Install_Formals (Spec_Id);
1093 Last_Formal := Last_Entity (Spec_Id);
1094 New_Scope (Spec_Id);
1096 -- Make sure that the subprogram is immediately visible. For
1097 -- child units that have no separate spec this is indispensable.
1098 -- Otherwise it is safe albeit redundant.
1100 Set_Is_Immediately_Visible (Spec_Id);
1101 end if;
1103 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
1104 Set_Ekind (Body_Id, E_Subprogram_Body);
1105 Set_Scope (Body_Id, Scope (Spec_Id));
1107 -- Case of subprogram body with no previous spec
1109 else
1110 if Style_Check
1111 and then Comes_From_Source (Body_Id)
1112 and then not Suppress_Style_Checks (Body_Id)
1113 and then not In_Instance
1114 then
1115 Style.Body_With_No_Spec (N);
1116 end if;
1118 New_Overloaded_Entity (Body_Id);
1120 if Nkind (N) /= N_Subprogram_Body_Stub then
1121 Set_Acts_As_Spec (N);
1122 Generate_Definition (Body_Id);
1123 Generate_Reference
1124 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
1125 Generate_Reference_To_Formals (Body_Id);
1126 Install_Formals (Body_Id);
1127 New_Scope (Body_Id);
1128 end if;
1129 end if;
1131 -- If this is the proper body of a stub, we must verify that the stub
1132 -- conforms to the body, and to the previous spec if one was present.
1133 -- we know already that the body conforms to that spec. This test is
1134 -- only required for subprograms that come from source.
1136 if Nkind (Parent (N)) = N_Subunit
1137 and then Comes_From_Source (N)
1138 and then not Error_Posted (Body_Id)
1139 then
1140 declare
1141 Old_Id : constant Entity_Id :=
1142 Defining_Entity
1143 (Specification (Corresponding_Stub (Parent (N))));
1145 Conformant : Boolean := False;
1147 begin
1148 if No (Spec_Id) then
1149 Check_Fully_Conformant (Body_Id, Old_Id);
1151 else
1152 Check_Conformance
1153 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
1155 if not Conformant then
1157 -- The stub was taken to be a new declaration. Indicate
1158 -- that it lacks a body.
1160 Set_Has_Completion (Old_Id, False);
1161 end if;
1162 end if;
1163 end;
1164 end if;
1166 Set_Has_Completion (Body_Id);
1167 Check_Eliminated (Body_Id);
1169 if Nkind (N) = N_Subprogram_Body_Stub then
1170 return;
1172 elsif Present (Spec_Id)
1173 and then Expander_Active
1174 then
1175 Check_Following_Pragma;
1177 if Is_Always_Inlined (Spec_Id)
1178 or else (Has_Pragma_Inline (Spec_Id)
1179 and then (Front_End_Inlining or else Configurable_Run_Time_Mode))
1180 then
1181 Build_Body_To_Inline (N, Spec_Id);
1182 end if;
1183 end if;
1185 -- Ada 0Y (AI-262): In library subprogram bodies, after the analysis
1186 -- if its specification we have to install the private withed units.
1188 if Is_Compilation_Unit (Body_Id)
1189 and then Scope (Body_Id) = Standard_Standard
1190 then
1191 Install_Private_With_Clauses (Body_Id);
1192 end if;
1194 -- Now we can go on to analyze the body
1196 HSS := Handled_Statement_Sequence (N);
1197 Set_Actual_Subtypes (N, Current_Scope);
1198 Analyze_Declarations (Declarations (N));
1199 Check_Completion;
1200 Analyze (HSS);
1201 Process_End_Label (HSS, 't', Current_Scope);
1202 End_Scope;
1203 Check_Subprogram_Order (N);
1204 Set_Analyzed (Body_Id);
1206 -- If we have a separate spec, then the analysis of the declarations
1207 -- caused the entities in the body to be chained to the spec id, but
1208 -- we want them chained to the body id. Only the formal parameters
1209 -- end up chained to the spec id in this case.
1211 if Present (Spec_Id) then
1213 -- If a parent unit is categorized, the context of a subunit
1214 -- must conform to the categorization. Conversely, if a child
1215 -- unit is categorized, the parents themselves must conform.
1217 if Nkind (Parent (N)) = N_Subunit then
1218 Validate_Categorization_Dependency (N, Spec_Id);
1220 elsif Is_Child_Unit (Spec_Id) then
1221 Validate_Categorization_Dependency
1222 (Unit_Declaration_Node (Spec_Id), Spec_Id);
1223 end if;
1225 if Present (Last_Formal) then
1226 Set_Next_Entity
1227 (Last_Entity (Body_Id), Next_Entity (Last_Formal));
1228 Set_Next_Entity (Last_Formal, Empty);
1229 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
1230 Set_Last_Entity (Spec_Id, Last_Formal);
1232 else
1233 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
1234 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
1235 Set_First_Entity (Spec_Id, Empty);
1236 Set_Last_Entity (Spec_Id, Empty);
1237 end if;
1238 end if;
1240 -- If function, check return statements
1242 if Nkind (Body_Spec) = N_Function_Specification then
1243 declare
1244 Id : Entity_Id;
1246 begin
1247 if Present (Spec_Id) then
1248 Id := Spec_Id;
1249 else
1250 Id := Body_Id;
1251 end if;
1253 if Return_Present (Id) then
1254 Check_Returns (HSS, 'F', Missing_Ret);
1256 if Missing_Ret then
1257 Set_Has_Missing_Return (Id);
1258 end if;
1260 elsif not Is_Machine_Code_Subprogram (Id)
1261 and then not Body_Deleted
1262 then
1263 Error_Msg_N ("missing RETURN statement in function body", N);
1264 end if;
1265 end;
1267 -- If procedure with No_Return, check returns
1269 elsif Nkind (Body_Spec) = N_Procedure_Specification
1270 and then Present (Spec_Id)
1271 and then No_Return (Spec_Id)
1272 then
1273 Check_Returns (HSS, 'P', Missing_Ret);
1274 end if;
1276 -- Now we are going to check for variables that are never modified
1277 -- in the body of the procedure. We omit these checks if the first
1278 -- statement of the procedure raises an exception. In particular
1279 -- this deals with the common idiom of a stubbed function, which
1280 -- might appear as something like
1282 -- function F (A : Integer) return Some_Type;
1283 -- X : Some_Type;
1284 -- begin
1285 -- raise Program_Error;
1286 -- return X;
1287 -- end F;
1289 -- Here the purpose of X is simply to satisfy the (annoying)
1290 -- requirement in Ada that there be at least one return, and
1291 -- we certainly do not want to go posting warnings on X that
1292 -- it is not initialized!
1294 declare
1295 Stm : Node_Id := First (Statements (HSS));
1297 begin
1298 -- Skip an initial label (for one thing this occurs when we
1299 -- are in front end ZCX mode, but in any case it is irrelevant).
1301 if Nkind (Stm) = N_Label then
1302 Next (Stm);
1303 end if;
1305 -- Do the test on the original statement before expansion
1307 declare
1308 Ostm : constant Node_Id := Original_Node (Stm);
1310 begin
1311 -- If explicit raise statement, return with no checks
1313 if Nkind (Ostm) = N_Raise_Statement then
1314 return;
1316 -- Check for explicit call cases which likely raise an exception
1318 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
1319 if Is_Entity_Name (Name (Ostm)) then
1320 declare
1321 Ent : constant Entity_Id := Entity (Name (Ostm));
1323 begin
1324 -- If the procedure is marked No_Return, then likely it
1325 -- raises an exception, but in any case it is not coming
1326 -- back here, so no need to check beyond the call.
1328 if Ekind (Ent) = E_Procedure
1329 and then No_Return (Ent)
1330 then
1331 return;
1333 -- If the procedure name is Raise_Exception, then also
1334 -- assume that it raises an exception. The main target
1335 -- here is Ada.Exceptions.Raise_Exception, but this name
1336 -- is pretty evocative in any context! Note that the
1337 -- procedure in Ada.Exceptions is not marked No_Return
1338 -- because of the annoying case of the null exception Id.
1340 elsif Chars (Ent) = Name_Raise_Exception then
1341 return;
1342 end if;
1343 end;
1344 end if;
1345 end if;
1346 end;
1347 end;
1349 -- Check for variables that are never modified
1351 declare
1352 E1, E2 : Entity_Id;
1354 begin
1355 -- If there is a separate spec, then transfer Never_Set_In_Source
1356 -- flags from out parameters to the corresponding entities in the
1357 -- body. The reason we do that is we want to post error flags on
1358 -- the body entities, not the spec entities.
1360 if Present (Spec_Id) then
1361 E1 := First_Entity (Spec_Id);
1363 while Present (E1) loop
1364 if Ekind (E1) = E_Out_Parameter then
1365 E2 := First_Entity (Body_Id);
1366 while Present (E2) loop
1367 exit when Chars (E1) = Chars (E2);
1368 Next_Entity (E2);
1369 end loop;
1371 if Present (E2) then
1372 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
1373 end if;
1374 end if;
1376 Next_Entity (E1);
1377 end loop;
1378 end if;
1380 -- Check references in body unless it was deleted. Note that the
1381 -- check of Body_Deleted here is not just for efficiency, it is
1382 -- necessary to avoid junk warnings on formal parameters.
1384 if not Body_Deleted then
1385 Check_References (Body_Id);
1386 end if;
1387 end;
1388 end Analyze_Subprogram_Body;
1390 ------------------------------------
1391 -- Analyze_Subprogram_Declaration --
1392 ------------------------------------
1394 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
1395 Designator : constant Entity_Id :=
1396 Analyze_Subprogram_Specification (Specification (N));
1397 Scop : constant Entity_Id := Current_Scope;
1399 -- Start of processing for Analyze_Subprogram_Declaration
1401 begin
1402 Generate_Definition (Designator);
1404 -- Check for RCI unit subprogram declarations against in-lined
1405 -- subprograms and subprograms having access parameter or limited
1406 -- parameter without Read and Write (RM E.2.3(12-13)).
1408 Validate_RCI_Subprogram_Declaration (N);
1410 Trace_Scope
1412 Defining_Entity (N),
1413 " Analyze subprogram spec. ");
1415 if Debug_Flag_C then
1416 Write_Str ("==== Compiling subprogram spec ");
1417 Write_Name (Chars (Designator));
1418 Write_Str (" from ");
1419 Write_Location (Sloc (N));
1420 Write_Eol;
1421 end if;
1423 New_Overloaded_Entity (Designator);
1424 Check_Delayed_Subprogram (Designator);
1426 -- What is the following code for, it used to be
1428 -- ??? Set_Suppress_Elaboration_Checks
1429 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
1431 -- The following seems equivalent, but a bit dubious
1433 if Elaboration_Checks_Suppressed (Designator) then
1434 Set_Kill_Elaboration_Checks (Designator);
1435 end if;
1437 if Scop /= Standard_Standard
1438 and then not Is_Child_Unit (Designator)
1439 then
1440 Set_Categorization_From_Scope (Designator, Scop);
1441 else
1442 -- For a compilation unit, check for library-unit pragmas.
1444 New_Scope (Designator);
1445 Set_Categorization_From_Pragmas (N);
1446 Validate_Categorization_Dependency (N, Designator);
1447 Pop_Scope;
1448 end if;
1450 -- For a compilation unit, set body required. This flag will only be
1451 -- reset if a valid Import or Interface pragma is processed later on.
1453 if Nkind (Parent (N)) = N_Compilation_Unit then
1454 Set_Body_Required (Parent (N), True);
1455 end if;
1457 Generate_Reference_To_Formals (Designator);
1458 Check_Eliminated (Designator);
1460 if Comes_From_Source (N)
1461 and then Is_List_Member (N)
1462 then
1463 Check_Overriding_Operation (N, Designator);
1464 end if;
1466 end Analyze_Subprogram_Declaration;
1468 --------------------------------------
1469 -- Analyze_Subprogram_Specification --
1470 --------------------------------------
1472 -- Reminder: N here really is a subprogram specification (not a subprogram
1473 -- declaration). This procedure is called to analyze the specification in
1474 -- both subprogram bodies and subprogram declarations (specs).
1476 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
1477 Designator : constant Entity_Id := Defining_Entity (N);
1478 Formals : constant List_Id := Parameter_Specifications (N);
1479 Typ : Entity_Id;
1481 begin
1482 Generate_Definition (Designator);
1484 if Nkind (N) = N_Function_Specification then
1485 Set_Ekind (Designator, E_Function);
1486 Set_Mechanism (Designator, Default_Mechanism);
1488 if Subtype_Mark (N) /= Error then
1489 Find_Type (Subtype_Mark (N));
1490 Typ := Entity (Subtype_Mark (N));
1491 Set_Etype (Designator, Typ);
1493 if Ekind (Typ) = E_Incomplete_Type
1494 or else (Is_Class_Wide_Type (Typ)
1495 and then
1496 Ekind (Root_Type (Typ)) = E_Incomplete_Type)
1497 then
1498 Error_Msg_N
1499 ("invalid use of incomplete type", Subtype_Mark (N));
1500 end if;
1502 else
1503 Set_Etype (Designator, Any_Type);
1504 end if;
1506 else
1507 Set_Ekind (Designator, E_Procedure);
1508 Set_Etype (Designator, Standard_Void_Type);
1509 end if;
1511 if Present (Formals) then
1512 Set_Scope (Designator, Current_Scope);
1513 New_Scope (Designator);
1514 Process_Formals (Formals, N);
1515 End_Scope;
1516 end if;
1518 if Nkind (N) = N_Function_Specification then
1519 if Nkind (Designator) = N_Defining_Operator_Symbol then
1520 Valid_Operator_Definition (Designator);
1521 end if;
1523 May_Need_Actuals (Designator);
1525 if Is_Abstract (Etype (Designator))
1526 and then Nkind (Parent (N)) /= N_Abstract_Subprogram_Declaration
1527 then
1528 Error_Msg_N
1529 ("function that returns abstract type must be abstract", N);
1530 end if;
1531 end if;
1533 return Designator;
1534 end Analyze_Subprogram_Specification;
1536 --------------------------
1537 -- Build_Body_To_Inline --
1538 --------------------------
1540 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
1541 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
1542 Original_Body : Node_Id;
1543 Body_To_Analyze : Node_Id;
1544 Max_Size : constant := 10;
1545 Stat_Count : Integer := 0;
1547 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
1548 -- Check for declarations that make inlining not worthwhile.
1550 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
1551 -- Check for statements that make inlining not worthwhile: any
1552 -- tasking statement, nested at any level. Keep track of total
1553 -- number of elementary statements, as a measure of acceptable size.
1555 function Has_Pending_Instantiation return Boolean;
1556 -- If some enclosing body contains instantiations that appear before
1557 -- the corresponding generic body, the enclosing body has a freeze node
1558 -- so that it can be elaborated after the generic itself. This might
1559 -- conflict with subsequent inlinings, so that it is unsafe to try to
1560 -- inline in such a case.
1562 procedure Remove_Pragmas;
1563 -- A pragma Unreferenced that mentions a formal parameter has no
1564 -- meaning when the body is inlined and the formals are rewritten.
1565 -- Remove it from body to inline. The analysis of the non-inlined
1566 -- body will handle the pragma properly.
1568 ------------------------------
1569 -- Has_Excluded_Declaration --
1570 ------------------------------
1572 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
1573 D : Node_Id;
1575 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
1576 -- Nested subprograms make a given body ineligible for inlining,
1577 -- but we make an exception for instantiations of unchecked
1578 -- conversion. The body has not been analyzed yet, so we check
1579 -- the name, and verify that the visible entity with that name is
1580 -- the predefined unit.
1582 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
1583 Id : constant Node_Id := Name (D);
1584 Conv : Entity_Id;
1586 begin
1587 if Nkind (Id) = N_Identifier
1588 and then Chars (Id) = Name_Unchecked_Conversion
1589 then
1590 Conv := Current_Entity (Id);
1592 elsif Nkind (Id) = N_Selected_Component
1593 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
1594 then
1595 Conv := Current_Entity (Selector_Name (Id));
1597 else
1598 return False;
1599 end if;
1601 return
1602 Present (Conv)
1603 and then Scope (Conv) = Standard_Standard
1604 and then Is_Intrinsic_Subprogram (Conv);
1605 end Is_Unchecked_Conversion;
1607 -- Start of processing for Has_Excluded_Declaration
1609 begin
1610 D := First (Decls);
1612 while Present (D) loop
1613 if (Nkind (D) = N_Function_Instantiation
1614 and then not Is_Unchecked_Conversion (D))
1615 or else Nkind (D) = N_Protected_Type_Declaration
1616 or else Nkind (D) = N_Package_Declaration
1617 or else Nkind (D) = N_Package_Instantiation
1618 or else Nkind (D) = N_Subprogram_Body
1619 or else Nkind (D) = N_Procedure_Instantiation
1620 or else Nkind (D) = N_Task_Type_Declaration
1621 then
1622 Cannot_Inline
1623 ("cannot inline & (non-allowed declaration)?", D, Subp);
1624 return True;
1625 end if;
1627 Next (D);
1628 end loop;
1630 return False;
1631 end Has_Excluded_Declaration;
1633 ----------------------------
1634 -- Has_Excluded_Statement --
1635 ----------------------------
1637 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
1638 S : Node_Id;
1639 E : Node_Id;
1641 begin
1642 S := First (Stats);
1644 while Present (S) loop
1645 Stat_Count := Stat_Count + 1;
1647 if Nkind (S) = N_Abort_Statement
1648 or else Nkind (S) = N_Asynchronous_Select
1649 or else Nkind (S) = N_Conditional_Entry_Call
1650 or else Nkind (S) = N_Delay_Relative_Statement
1651 or else Nkind (S) = N_Delay_Until_Statement
1652 or else Nkind (S) = N_Selective_Accept
1653 or else Nkind (S) = N_Timed_Entry_Call
1654 then
1655 Cannot_Inline
1656 ("cannot inline & (non-allowed statement)?", S, Subp);
1657 return True;
1659 elsif Nkind (S) = N_Block_Statement then
1660 if Present (Declarations (S))
1661 and then Has_Excluded_Declaration (Declarations (S))
1662 then
1663 return True;
1665 elsif Present (Handled_Statement_Sequence (S))
1666 and then
1667 (Present
1668 (Exception_Handlers (Handled_Statement_Sequence (S)))
1669 or else
1670 Has_Excluded_Statement
1671 (Statements (Handled_Statement_Sequence (S))))
1672 then
1673 return True;
1674 end if;
1676 elsif Nkind (S) = N_Case_Statement then
1677 E := First (Alternatives (S));
1679 while Present (E) loop
1680 if Has_Excluded_Statement (Statements (E)) then
1681 return True;
1682 end if;
1684 Next (E);
1685 end loop;
1687 elsif Nkind (S) = N_If_Statement then
1688 if Has_Excluded_Statement (Then_Statements (S)) then
1689 return True;
1690 end if;
1692 if Present (Elsif_Parts (S)) then
1693 E := First (Elsif_Parts (S));
1695 while Present (E) loop
1696 if Has_Excluded_Statement (Then_Statements (E)) then
1697 return True;
1698 end if;
1699 Next (E);
1700 end loop;
1701 end if;
1703 if Present (Else_Statements (S))
1704 and then Has_Excluded_Statement (Else_Statements (S))
1705 then
1706 return True;
1707 end if;
1709 elsif Nkind (S) = N_Loop_Statement
1710 and then Has_Excluded_Statement (Statements (S))
1711 then
1712 return True;
1713 end if;
1715 Next (S);
1716 end loop;
1718 return False;
1719 end Has_Excluded_Statement;
1721 -------------------------------
1722 -- Has_Pending_Instantiation --
1723 -------------------------------
1725 function Has_Pending_Instantiation return Boolean is
1726 S : Entity_Id := Current_Scope;
1728 begin
1729 while Present (S) loop
1730 if Is_Compilation_Unit (S)
1731 or else Is_Child_Unit (S)
1732 then
1733 return False;
1734 elsif Ekind (S) = E_Package
1735 and then Has_Forward_Instantiation (S)
1736 then
1737 return True;
1738 end if;
1740 S := Scope (S);
1741 end loop;
1743 return False;
1744 end Has_Pending_Instantiation;
1746 --------------------
1747 -- Remove_Pragmas --
1748 --------------------
1750 procedure Remove_Pragmas is
1751 Decl : Node_Id;
1752 Nxt : Node_Id;
1754 begin
1755 Decl := First (Declarations (Body_To_Analyze));
1756 while Present (Decl) loop
1757 Nxt := Next (Decl);
1759 if Nkind (Decl) = N_Pragma
1760 and then Chars (Decl) = Name_Unreferenced
1761 then
1762 Remove (Decl);
1763 end if;
1765 Decl := Nxt;
1766 end loop;
1767 end Remove_Pragmas;
1769 -- Start of processing for Build_Body_To_Inline
1771 begin
1772 if Nkind (Decl) = N_Subprogram_Declaration
1773 and then Present (Body_To_Inline (Decl))
1774 then
1775 return; -- Done already.
1777 -- Functions that return unconstrained composite types will require
1778 -- secondary stack handling, and cannot currently be inlined.
1779 -- Ditto for functions that return controlled types, where controlled
1780 -- actions interfere in complex ways with inlining.
1782 elsif Ekind (Subp) = E_Function
1783 and then not Is_Scalar_Type (Etype (Subp))
1784 and then not Is_Access_Type (Etype (Subp))
1785 and then not Is_Constrained (Etype (Subp))
1786 then
1787 Cannot_Inline
1788 ("cannot inline & (unconstrained return type)?", N, Subp);
1789 return;
1791 elsif Ekind (Subp) = E_Function
1792 and then Controlled_Type (Etype (Subp))
1793 then
1794 Cannot_Inline
1795 ("cannot inline & (controlled return type)?", N, Subp);
1796 return;
1797 end if;
1799 if Present (Declarations (N))
1800 and then Has_Excluded_Declaration (Declarations (N))
1801 then
1802 return;
1803 end if;
1805 if Present (Handled_Statement_Sequence (N)) then
1806 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
1807 Cannot_Inline
1808 ("cannot inline& (exception handler)?",
1809 First (Exception_Handlers (Handled_Statement_Sequence (N))),
1810 Subp);
1811 return;
1812 elsif
1813 Has_Excluded_Statement
1814 (Statements (Handled_Statement_Sequence (N)))
1815 then
1816 return;
1817 end if;
1818 end if;
1820 -- We do not inline a subprogram that is too large, unless it is
1821 -- marked Inline_Always. This pragma does not suppress the other
1822 -- checks on inlining (forbidden declarations, handlers, etc).
1824 if Stat_Count > Max_Size
1825 and then not Is_Always_Inlined (Subp)
1826 then
1827 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
1828 return;
1829 end if;
1831 if Has_Pending_Instantiation then
1832 Cannot_Inline
1833 ("cannot inline& (forward instance within enclosing body)?",
1834 N, Subp);
1835 return;
1836 end if;
1838 -- Within an instance, the body to inline must be treated as a nested
1839 -- generic, so that the proper global references are preserved.
1841 if In_Instance then
1842 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1843 Original_Body := Copy_Generic_Node (N, Empty, True);
1844 else
1845 Original_Body := Copy_Separate_Tree (N);
1846 end if;
1848 -- We need to capture references to the formals in order to substitute
1849 -- the actuals at the point of inlining, i.e. instantiation. To treat
1850 -- the formals as globals to the body to inline, we nest it within
1851 -- a dummy parameterless subprogram, declared within the real one.
1852 -- To avoid generating an internal name (which is never public, and
1853 -- which affects serial numbers of other generated names), we use
1854 -- an internal symbol that cannot conflict with user declarations.
1856 Set_Parameter_Specifications (Specification (Original_Body), No_List);
1857 Set_Defining_Unit_Name
1858 (Specification (Original_Body),
1859 Make_Defining_Identifier (Sloc (N), Name_uParent));
1860 Set_Corresponding_Spec (Original_Body, Empty);
1862 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
1864 -- Set return type of function, which is also global and does not need
1865 -- to be resolved.
1867 if Ekind (Subp) = E_Function then
1868 Set_Subtype_Mark (Specification (Body_To_Analyze),
1869 New_Occurrence_Of (Etype (Subp), Sloc (N)));
1870 end if;
1872 if No (Declarations (N)) then
1873 Set_Declarations (N, New_List (Body_To_Analyze));
1874 else
1875 Append (Body_To_Analyze, Declarations (N));
1876 end if;
1878 Expander_Mode_Save_And_Set (False);
1879 Remove_Pragmas;
1881 Analyze (Body_To_Analyze);
1882 New_Scope (Defining_Entity (Body_To_Analyze));
1883 Save_Global_References (Original_Body);
1884 End_Scope;
1885 Remove (Body_To_Analyze);
1887 Expander_Mode_Restore;
1888 Set_Body_To_Inline (Decl, Original_Body);
1889 Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
1890 Set_Is_Inlined (Subp);
1892 if In_Instance then
1893 Restore_Env;
1894 end if;
1895 end Build_Body_To_Inline;
1897 -------------------
1898 -- Cannot_Inline --
1899 -------------------
1901 procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
1902 begin
1903 -- Do not emit warning if this is a predefined unit which is not
1904 -- the main unit. With validity checks enabled, some predefined
1905 -- subprograms may contain nested subprograms and become ineligible
1906 -- for inlining.
1908 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
1909 and then not In_Extended_Main_Source_Unit (Subp)
1910 then
1911 null;
1913 elsif Is_Always_Inlined (Subp) then
1914 Error_Msg_NE (Msg (1 .. Msg'Length - 1), N, Subp);
1916 elsif Ineffective_Inline_Warnings then
1917 Error_Msg_NE (Msg, N, Subp);
1918 end if;
1919 end Cannot_Inline;
1921 -----------------------
1922 -- Check_Conformance --
1923 -----------------------
1925 procedure Check_Conformance
1926 (New_Id : Entity_Id;
1927 Old_Id : Entity_Id;
1928 Ctype : Conformance_Type;
1929 Errmsg : Boolean;
1930 Conforms : out Boolean;
1931 Err_Loc : Node_Id := Empty;
1932 Get_Inst : Boolean := False)
1934 Old_Type : constant Entity_Id := Etype (Old_Id);
1935 New_Type : constant Entity_Id := Etype (New_Id);
1936 Old_Formal : Entity_Id;
1937 New_Formal : Entity_Id;
1939 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
1940 -- Post error message for conformance error on given node.
1941 -- Two messages are output. The first points to the previous
1942 -- declaration with a general "no conformance" message.
1943 -- The second is the detailed reason, supplied as Msg. The
1944 -- parameter N provide information for a possible & insertion
1945 -- in the message, and also provides the location for posting
1946 -- the message in the absence of a specified Err_Loc location.
1948 -----------------------
1949 -- Conformance_Error --
1950 -----------------------
1952 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
1953 Enode : Node_Id;
1955 begin
1956 Conforms := False;
1958 if Errmsg then
1959 if No (Err_Loc) then
1960 Enode := N;
1961 else
1962 Enode := Err_Loc;
1963 end if;
1965 Error_Msg_Sloc := Sloc (Old_Id);
1967 case Ctype is
1968 when Type_Conformant =>
1969 Error_Msg_N
1970 ("not type conformant with declaration#!", Enode);
1972 when Mode_Conformant =>
1973 Error_Msg_N
1974 ("not mode conformant with declaration#!", Enode);
1976 when Subtype_Conformant =>
1977 Error_Msg_N
1978 ("not subtype conformant with declaration#!", Enode);
1980 when Fully_Conformant =>
1981 Error_Msg_N
1982 ("not fully conformant with declaration#!", Enode);
1983 end case;
1985 Error_Msg_NE (Msg, Enode, N);
1986 end if;
1987 end Conformance_Error;
1989 -- Start of processing for Check_Conformance
1991 begin
1992 Conforms := True;
1994 -- We need a special case for operators, since they don't
1995 -- appear explicitly.
1997 if Ctype = Type_Conformant then
1998 if Ekind (New_Id) = E_Operator
1999 and then Operator_Matches_Spec (New_Id, Old_Id)
2000 then
2001 return;
2002 end if;
2003 end if;
2005 -- If both are functions/operators, check return types conform
2007 if Old_Type /= Standard_Void_Type
2008 and then New_Type /= Standard_Void_Type
2009 then
2010 if not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
2011 Conformance_Error ("return type does not match!", New_Id);
2012 return;
2013 end if;
2015 -- If either is a function/operator and the other isn't, error
2017 elsif Old_Type /= Standard_Void_Type
2018 or else New_Type /= Standard_Void_Type
2019 then
2020 Conformance_Error ("functions can only match functions!", New_Id);
2021 return;
2022 end if;
2024 -- In subtype conformant case, conventions must match (RM 6.3.1(16))
2025 -- If this is a renaming as body, refine error message to indicate that
2026 -- the conflict is with the original declaration. If the entity is not
2027 -- frozen, the conventions don't have to match, the one of the renamed
2028 -- entity is inherited.
2030 if Ctype >= Subtype_Conformant then
2031 if Convention (Old_Id) /= Convention (New_Id) then
2033 if not Is_Frozen (New_Id) then
2034 null;
2036 elsif Present (Err_Loc)
2037 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
2038 and then Present (Corresponding_Spec (Err_Loc))
2039 then
2040 Error_Msg_Name_1 := Chars (New_Id);
2041 Error_Msg_Name_2 :=
2042 Name_Ada + Convention_Id'Pos (Convention (New_Id));
2044 Conformance_Error ("prior declaration for% has convention %!");
2046 else
2047 Conformance_Error ("calling conventions do not match!");
2048 end if;
2050 return;
2052 elsif Is_Formal_Subprogram (Old_Id)
2053 or else Is_Formal_Subprogram (New_Id)
2054 then
2055 Conformance_Error ("formal subprograms not allowed!");
2056 return;
2057 end if;
2058 end if;
2060 -- Deal with parameters
2062 -- Note: we use the entity information, rather than going directly
2063 -- to the specification in the tree. This is not only simpler, but
2064 -- absolutely necessary for some cases of conformance tests between
2065 -- operators, where the declaration tree simply does not exist!
2067 Old_Formal := First_Formal (Old_Id);
2068 New_Formal := First_Formal (New_Id);
2070 while Present (Old_Formal) and then Present (New_Formal) loop
2071 if Ctype = Fully_Conformant then
2073 -- Names must match. Error message is more accurate if we do
2074 -- this before checking that the types of the formals match.
2076 if Chars (Old_Formal) /= Chars (New_Formal) then
2077 Conformance_Error ("name & does not match!", New_Formal);
2079 -- Set error posted flag on new formal as well to stop
2080 -- junk cascaded messages in some cases.
2082 Set_Error_Posted (New_Formal);
2083 return;
2084 end if;
2085 end if;
2087 -- Types must always match. In the visible part of an instance,
2088 -- usual overloading rules for dispatching operations apply, and
2089 -- we check base types (not the actual subtypes).
2091 if In_Instance_Visible_Part
2092 and then Is_Dispatching_Operation (New_Id)
2093 then
2094 if not Conforming_Types
2095 (Base_Type (Etype (Old_Formal)),
2096 Base_Type (Etype (New_Formal)), Ctype, Get_Inst)
2097 then
2098 Conformance_Error ("type of & does not match!", New_Formal);
2099 return;
2100 end if;
2102 elsif not Conforming_Types
2103 (Etype (Old_Formal), Etype (New_Formal), Ctype, Get_Inst)
2104 then
2105 Conformance_Error ("type of & does not match!", New_Formal);
2106 return;
2107 end if;
2109 -- For mode conformance, mode must match
2111 if Ctype >= Mode_Conformant
2112 and then Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal)
2113 then
2114 Conformance_Error ("mode of & does not match!", New_Formal);
2115 return;
2116 end if;
2118 -- Full conformance checks
2120 if Ctype = Fully_Conformant then
2122 -- We have checked already that names match.
2123 -- Check default expressions for in parameters
2125 if Parameter_Mode (Old_Formal) = E_In_Parameter then
2126 declare
2127 NewD : constant Boolean :=
2128 Present (Default_Value (New_Formal));
2129 OldD : constant Boolean :=
2130 Present (Default_Value (Old_Formal));
2131 begin
2132 if NewD or OldD then
2134 -- The old default value has been analyzed because
2135 -- the current full declaration will have frozen
2136 -- everything before. The new default values have not
2137 -- been analyzed, so analyze them now before we check
2138 -- for conformance.
2140 if NewD then
2141 New_Scope (New_Id);
2142 Analyze_Per_Use_Expression
2143 (Default_Value (New_Formal), Etype (New_Formal));
2144 End_Scope;
2145 end if;
2147 if not (NewD and OldD)
2148 or else not Fully_Conformant_Expressions
2149 (Default_Value (Old_Formal),
2150 Default_Value (New_Formal))
2151 then
2152 Conformance_Error
2153 ("default expression for & does not match!",
2154 New_Formal);
2155 return;
2156 end if;
2157 end if;
2158 end;
2159 end if;
2160 end if;
2162 -- A couple of special checks for Ada 83 mode. These checks are
2163 -- skipped if either entity is an operator in package Standard.
2164 -- or if either old or new instance is not from the source program.
2166 if Ada_83
2167 and then Sloc (Old_Id) > Standard_Location
2168 and then Sloc (New_Id) > Standard_Location
2169 and then Comes_From_Source (Old_Id)
2170 and then Comes_From_Source (New_Id)
2171 then
2172 declare
2173 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
2174 New_Param : constant Node_Id := Declaration_Node (New_Formal);
2176 begin
2177 -- Explicit IN must be present or absent in both cases. This
2178 -- test is required only in the full conformance case.
2180 if In_Present (Old_Param) /= In_Present (New_Param)
2181 and then Ctype = Fully_Conformant
2182 then
2183 Conformance_Error
2184 ("(Ada 83) IN must appear in both declarations",
2185 New_Formal);
2186 return;
2187 end if;
2189 -- Grouping (use of comma in param lists) must be the same
2190 -- This is where we catch a misconformance like:
2192 -- A,B : Integer
2193 -- A : Integer; B : Integer
2195 -- which are represented identically in the tree except
2196 -- for the setting of the flags More_Ids and Prev_Ids.
2198 if More_Ids (Old_Param) /= More_Ids (New_Param)
2199 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
2200 then
2201 Conformance_Error
2202 ("grouping of & does not match!", New_Formal);
2203 return;
2204 end if;
2205 end;
2206 end if;
2208 Next_Formal (Old_Formal);
2209 Next_Formal (New_Formal);
2210 end loop;
2212 if Present (Old_Formal) then
2213 Conformance_Error ("too few parameters!");
2214 return;
2216 elsif Present (New_Formal) then
2217 Conformance_Error ("too many parameters!", New_Formal);
2218 return;
2219 end if;
2221 end Check_Conformance;
2223 ------------------------------
2224 -- Check_Delayed_Subprogram --
2225 ------------------------------
2227 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
2228 F : Entity_Id;
2230 procedure Possible_Freeze (T : Entity_Id);
2231 -- T is the type of either a formal parameter or of the return type.
2232 -- If T is not yet frozen and needs a delayed freeze, then the
2233 -- subprogram itself must be delayed.
2235 procedure Possible_Freeze (T : Entity_Id) is
2236 begin
2237 if Has_Delayed_Freeze (T)
2238 and then not Is_Frozen (T)
2239 then
2240 Set_Has_Delayed_Freeze (Designator);
2242 elsif Is_Access_Type (T)
2243 and then Has_Delayed_Freeze (Designated_Type (T))
2244 and then not Is_Frozen (Designated_Type (T))
2245 then
2246 Set_Has_Delayed_Freeze (Designator);
2247 end if;
2248 end Possible_Freeze;
2250 -- Start of processing for Check_Delayed_Subprogram
2252 begin
2253 -- Never need to freeze abstract subprogram
2255 if Is_Abstract (Designator) then
2256 null;
2257 else
2258 -- Need delayed freeze if return type itself needs a delayed
2259 -- freeze and is not yet frozen.
2261 Possible_Freeze (Etype (Designator));
2262 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
2264 -- Need delayed freeze if any of the formal types themselves need
2265 -- a delayed freeze and are not yet frozen.
2267 F := First_Formal (Designator);
2268 while Present (F) loop
2269 Possible_Freeze (Etype (F));
2270 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
2271 Next_Formal (F);
2272 end loop;
2273 end if;
2275 -- Mark functions that return by reference. Note that it cannot be
2276 -- done for delayed_freeze subprograms because the underlying
2277 -- returned type may not be known yet (for private types)
2279 if not Has_Delayed_Freeze (Designator)
2280 and then Expander_Active
2281 then
2282 declare
2283 Typ : constant Entity_Id := Etype (Designator);
2284 Utyp : constant Entity_Id := Underlying_Type (Typ);
2286 begin
2287 if Is_Return_By_Reference_Type (Typ) then
2288 Set_Returns_By_Ref (Designator);
2290 elsif Present (Utyp) and then Controlled_Type (Utyp) then
2291 Set_Returns_By_Ref (Designator);
2292 end if;
2293 end;
2294 end if;
2295 end Check_Delayed_Subprogram;
2297 ------------------------------------
2298 -- Check_Discriminant_Conformance --
2299 ------------------------------------
2301 procedure Check_Discriminant_Conformance
2302 (N : Node_Id;
2303 Prev : Entity_Id;
2304 Prev_Loc : Node_Id)
2306 Old_Discr : Entity_Id := First_Discriminant (Prev);
2307 New_Discr : Node_Id := First (Discriminant_Specifications (N));
2308 New_Discr_Id : Entity_Id;
2309 New_Discr_Type : Entity_Id;
2311 procedure Conformance_Error (Msg : String; N : Node_Id);
2312 -- Post error message for conformance error on given node.
2313 -- Two messages are output. The first points to the previous
2314 -- declaration with a general "no conformance" message.
2315 -- The second is the detailed reason, supplied as Msg. The
2316 -- parameter N provide information for a possible & insertion
2317 -- in the message.
2319 -----------------------
2320 -- Conformance_Error --
2321 -----------------------
2323 procedure Conformance_Error (Msg : String; N : Node_Id) is
2324 begin
2325 Error_Msg_Sloc := Sloc (Prev_Loc);
2326 Error_Msg_N ("not fully conformant with declaration#!", N);
2327 Error_Msg_NE (Msg, N, N);
2328 end Conformance_Error;
2330 -- Start of processing for Check_Discriminant_Conformance
2332 begin
2333 while Present (Old_Discr) and then Present (New_Discr) loop
2335 New_Discr_Id := Defining_Identifier (New_Discr);
2337 -- The subtype mark of the discriminant on the full type
2338 -- has not been analyzed so we do it here. For an access
2339 -- discriminant a new type is created.
2341 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
2342 New_Discr_Type :=
2343 Access_Definition (N, Discriminant_Type (New_Discr));
2345 else
2346 Analyze (Discriminant_Type (New_Discr));
2347 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
2348 end if;
2350 if not Conforming_Types
2351 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
2352 then
2353 Conformance_Error ("type of & does not match!", New_Discr_Id);
2354 return;
2355 else
2356 -- Treat the new discriminant as an occurrence of the old
2357 -- one, for navigation purposes, and fill in some semantic
2358 -- information, for completeness.
2360 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
2361 Set_Etype (New_Discr_Id, Etype (Old_Discr));
2362 Set_Scope (New_Discr_Id, Scope (Old_Discr));
2363 end if;
2365 -- Names must match
2367 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
2368 Conformance_Error ("name & does not match!", New_Discr_Id);
2369 return;
2370 end if;
2372 -- Default expressions must match
2374 declare
2375 NewD : constant Boolean :=
2376 Present (Expression (New_Discr));
2377 OldD : constant Boolean :=
2378 Present (Expression (Parent (Old_Discr)));
2380 begin
2381 if NewD or OldD then
2383 -- The old default value has been analyzed and expanded,
2384 -- because the current full declaration will have frozen
2385 -- everything before. The new default values have not
2386 -- been expanded, so expand now to check conformance.
2388 if NewD then
2389 Analyze_Per_Use_Expression
2390 (Expression (New_Discr), New_Discr_Type);
2391 end if;
2393 if not (NewD and OldD)
2394 or else not Fully_Conformant_Expressions
2395 (Expression (Parent (Old_Discr)),
2396 Expression (New_Discr))
2398 then
2399 Conformance_Error
2400 ("default expression for & does not match!",
2401 New_Discr_Id);
2402 return;
2403 end if;
2404 end if;
2405 end;
2407 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
2409 if Ada_83 then
2410 declare
2411 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
2413 begin
2414 -- Grouping (use of comma in param lists) must be the same
2415 -- This is where we catch a misconformance like:
2417 -- A,B : Integer
2418 -- A : Integer; B : Integer
2420 -- which are represented identically in the tree except
2421 -- for the setting of the flags More_Ids and Prev_Ids.
2423 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
2424 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
2425 then
2426 Conformance_Error
2427 ("grouping of & does not match!", New_Discr_Id);
2428 return;
2429 end if;
2430 end;
2431 end if;
2433 Next_Discriminant (Old_Discr);
2434 Next (New_Discr);
2435 end loop;
2437 if Present (Old_Discr) then
2438 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
2439 return;
2441 elsif Present (New_Discr) then
2442 Conformance_Error
2443 ("too many discriminants!", Defining_Identifier (New_Discr));
2444 return;
2445 end if;
2446 end Check_Discriminant_Conformance;
2448 ----------------------------
2449 -- Check_Fully_Conformant --
2450 ----------------------------
2452 procedure Check_Fully_Conformant
2453 (New_Id : Entity_Id;
2454 Old_Id : Entity_Id;
2455 Err_Loc : Node_Id := Empty)
2457 Result : Boolean;
2459 begin
2460 Check_Conformance
2461 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
2462 end Check_Fully_Conformant;
2464 ---------------------------
2465 -- Check_Mode_Conformant --
2466 ---------------------------
2468 procedure Check_Mode_Conformant
2469 (New_Id : Entity_Id;
2470 Old_Id : Entity_Id;
2471 Err_Loc : Node_Id := Empty;
2472 Get_Inst : Boolean := False)
2474 Result : Boolean;
2476 begin
2477 Check_Conformance
2478 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
2479 end Check_Mode_Conformant;
2481 --------------------------------
2482 -- Check_Overriding_Operation --
2483 --------------------------------
2485 procedure Check_Overriding_Operation
2486 (N : Node_Id;
2487 Subp : Entity_Id)
2489 Arg1 : Node_Id;
2490 Decl : Node_Id;
2491 Has_Pragma : Boolean := False;
2493 begin
2494 -- See whether there is an overriding pragma immediately following
2495 -- the declaration. Intervening pragmas, such as Inline, are allowed.
2497 Decl := Next (N);
2498 while Present (Decl)
2499 and then Nkind (Decl) = N_Pragma
2500 loop
2501 if Chars (Decl) = Name_Overriding
2502 or else Chars (Decl) = Name_Optional_Overriding
2503 then
2504 -- For now disable the use of these pragmas, until the ARG
2505 -- finalizes the design of this feature.
2507 Error_Msg_N ("?unrecognized pragma", Decl);
2509 if not Is_Overriding_Operation (Subp) then
2511 -- Before emitting an error message, check whether this
2512 -- may override an operation that is not yet visible, as
2513 -- in the case of a derivation of a private operation in
2514 -- a child unit. Such an operation is introduced with a
2515 -- different name, but its alias is the parent operation.
2517 declare
2518 E : Entity_Id;
2520 begin
2521 E := First_Entity (Current_Scope);
2523 while Present (E) loop
2524 if Ekind (E) = Ekind (Subp)
2525 and then not Comes_From_Source (E)
2526 and then Present (Alias (E))
2527 and then Chars (Alias (E)) = Chars (Subp)
2528 and then In_Open_Scopes (Scope (Alias (E)))
2529 then
2530 exit;
2531 else
2532 Next_Entity (E);
2533 end if;
2534 end loop;
2536 if No (E) then
2537 Error_Msg_NE
2538 ("& must override an inherited operation",
2539 Decl, Subp);
2540 end if;
2541 end;
2542 end if;
2544 -- Verify syntax of pragma
2546 Arg1 := First (Pragma_Argument_Associations (Decl));
2548 if Present (Arg1) then
2549 if not Is_Entity_Name (Expression (Arg1)) then
2550 Error_Msg_N ("pragma applies to local subprogram", Decl);
2552 elsif Chars (Expression (Arg1)) /= Chars (Subp) then
2553 Error_Msg_N
2554 ("pragma must apply to preceding subprogram", Decl);
2556 elsif Present (Next (Arg1)) then
2557 Error_Msg_N ("illegal pragma format", Decl);
2558 end if;
2559 end if;
2561 Set_Analyzed (Decl);
2562 Has_Pragma := True;
2563 exit;
2564 end if;
2566 Next (Decl);
2567 end loop;
2569 if not Has_Pragma
2570 and then Explicit_Overriding
2571 and then Is_Overriding_Operation (Subp)
2572 then
2573 Error_Msg_NE ("Missing overriding pragma for&", Subp, Subp);
2574 end if;
2575 end Check_Overriding_Operation;
2577 -------------------
2578 -- Check_Returns --
2579 -------------------
2581 procedure Check_Returns
2582 (HSS : Node_Id;
2583 Mode : Character;
2584 Err : out Boolean)
2586 Handler : Node_Id;
2588 procedure Check_Statement_Sequence (L : List_Id);
2589 -- Internal recursive procedure to check a list of statements for proper
2590 -- termination by a return statement (or a transfer of control or a
2591 -- compound statement that is itself internally properly terminated).
2593 ------------------------------
2594 -- Check_Statement_Sequence --
2595 ------------------------------
2597 procedure Check_Statement_Sequence (L : List_Id) is
2598 Last_Stm : Node_Id;
2599 Kind : Node_Kind;
2601 Raise_Exception_Call : Boolean;
2602 -- Set True if statement sequence terminated by Raise_Exception call
2603 -- or a Reraise_Occurrence call.
2605 begin
2606 Raise_Exception_Call := False;
2608 -- Get last real statement
2610 Last_Stm := Last (L);
2612 -- Don't count pragmas
2614 while Nkind (Last_Stm) = N_Pragma
2616 -- Don't count call to SS_Release (can happen after Raise_Exception)
2618 or else
2619 (Nkind (Last_Stm) = N_Procedure_Call_Statement
2620 and then
2621 Nkind (Name (Last_Stm)) = N_Identifier
2622 and then
2623 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
2625 -- Don't count exception junk
2627 or else
2628 ((Nkind (Last_Stm) = N_Goto_Statement
2629 or else Nkind (Last_Stm) = N_Label
2630 or else Nkind (Last_Stm) = N_Object_Declaration)
2631 and then Exception_Junk (Last_Stm))
2632 loop
2633 Prev (Last_Stm);
2634 end loop;
2636 -- Here we have the "real" last statement
2638 Kind := Nkind (Last_Stm);
2640 -- Transfer of control, OK. Note that in the No_Return procedure
2641 -- case, we already diagnosed any explicit return statements, so
2642 -- we can treat them as OK in this context.
2644 if Is_Transfer (Last_Stm) then
2645 return;
2647 -- Check cases of explicit non-indirect procedure calls
2649 elsif Kind = N_Procedure_Call_Statement
2650 and then Is_Entity_Name (Name (Last_Stm))
2651 then
2652 -- Check call to Raise_Exception procedure which is treated
2653 -- specially, as is a call to Reraise_Occurrence.
2655 -- We suppress the warning in these cases since it is likely that
2656 -- the programmer really does not expect to deal with the case
2657 -- of Null_Occurrence, and thus would find a warning about a
2658 -- missing return curious, and raising Program_Error does not
2659 -- seem such a bad behavior if this does occur.
2661 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
2662 or else
2663 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
2664 then
2665 Raise_Exception_Call := True;
2667 -- For Raise_Exception call, test first argument, if it is
2668 -- an attribute reference for a 'Identity call, then we know
2669 -- that the call cannot possibly return.
2671 declare
2672 Arg : constant Node_Id :=
2673 Original_Node (First_Actual (Last_Stm));
2675 begin
2676 if Nkind (Arg) = N_Attribute_Reference
2677 and then Attribute_Name (Arg) = Name_Identity
2678 then
2679 return;
2680 end if;
2681 end;
2682 end if;
2684 -- If statement, need to look inside if there is an else and check
2685 -- each constituent statement sequence for proper termination.
2687 elsif Kind = N_If_Statement
2688 and then Present (Else_Statements (Last_Stm))
2689 then
2690 Check_Statement_Sequence (Then_Statements (Last_Stm));
2691 Check_Statement_Sequence (Else_Statements (Last_Stm));
2693 if Present (Elsif_Parts (Last_Stm)) then
2694 declare
2695 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
2697 begin
2698 while Present (Elsif_Part) loop
2699 Check_Statement_Sequence (Then_Statements (Elsif_Part));
2700 Next (Elsif_Part);
2701 end loop;
2702 end;
2703 end if;
2705 return;
2707 -- Case statement, check each case for proper termination
2709 elsif Kind = N_Case_Statement then
2710 declare
2711 Case_Alt : Node_Id;
2713 begin
2714 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
2715 while Present (Case_Alt) loop
2716 Check_Statement_Sequence (Statements (Case_Alt));
2717 Next_Non_Pragma (Case_Alt);
2718 end loop;
2719 end;
2721 return;
2723 -- Block statement, check its handled sequence of statements
2725 elsif Kind = N_Block_Statement then
2726 declare
2727 Err1 : Boolean;
2729 begin
2730 Check_Returns
2731 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
2733 if Err1 then
2734 Err := True;
2735 end if;
2737 return;
2738 end;
2740 -- Loop statement. If there is an iteration scheme, we can definitely
2741 -- fall out of the loop. Similarly if there is an exit statement, we
2742 -- can fall out. In either case we need a following return.
2744 elsif Kind = N_Loop_Statement then
2745 if Present (Iteration_Scheme (Last_Stm))
2746 or else Has_Exit (Entity (Identifier (Last_Stm)))
2747 then
2748 null;
2750 -- A loop with no exit statement or iteration scheme if either
2751 -- an inifite loop, or it has some other exit (raise/return).
2752 -- In either case, no warning is required.
2754 else
2755 return;
2756 end if;
2758 -- Timed entry call, check entry call and delay alternatives
2760 -- Note: in expanded code, the timed entry call has been converted
2761 -- to a set of expanded statements on which the check will work
2762 -- correctly in any case.
2764 elsif Kind = N_Timed_Entry_Call then
2765 declare
2766 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
2767 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
2769 begin
2770 -- If statement sequence of entry call alternative is missing,
2771 -- then we can definitely fall through, and we post the error
2772 -- message on the entry call alternative itself.
2774 if No (Statements (ECA)) then
2775 Last_Stm := ECA;
2777 -- If statement sequence of delay alternative is missing, then
2778 -- we can definitely fall through, and we post the error
2779 -- message on the delay alternative itself.
2781 -- Note: if both ECA and DCA are missing the return, then we
2782 -- post only one message, should be enough to fix the bugs.
2783 -- If not we will get a message next time on the DCA when the
2784 -- ECA is fixed!
2786 elsif No (Statements (DCA)) then
2787 Last_Stm := DCA;
2789 -- Else check both statement sequences
2791 else
2792 Check_Statement_Sequence (Statements (ECA));
2793 Check_Statement_Sequence (Statements (DCA));
2794 return;
2795 end if;
2796 end;
2798 -- Conditional entry call, check entry call and else part
2800 -- Note: in expanded code, the conditional entry call has been
2801 -- converted to a set of expanded statements on which the check
2802 -- will work correctly in any case.
2804 elsif Kind = N_Conditional_Entry_Call then
2805 declare
2806 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
2808 begin
2809 -- If statement sequence of entry call alternative is missing,
2810 -- then we can definitely fall through, and we post the error
2811 -- message on the entry call alternative itself.
2813 if No (Statements (ECA)) then
2814 Last_Stm := ECA;
2816 -- Else check statement sequence and else part
2818 else
2819 Check_Statement_Sequence (Statements (ECA));
2820 Check_Statement_Sequence (Else_Statements (Last_Stm));
2821 return;
2822 end if;
2823 end;
2824 end if;
2826 -- If we fall through, issue appropriate message
2828 if Mode = 'F' then
2830 if not Raise_Exception_Call then
2831 Error_Msg_N
2832 ("?RETURN statement missing following this statement!",
2833 Last_Stm);
2834 Error_Msg_N
2835 ("\?Program_Error may be raised at run time",
2836 Last_Stm);
2837 end if;
2839 -- Note: we set Err even though we have not issued a warning
2840 -- because we still have a case of a missing return. This is
2841 -- an extremely marginal case, probably will never be noticed
2842 -- but we might as well get it right.
2844 Err := True;
2846 else
2847 Error_Msg_N
2848 ("implied return after this statement not allowed (No_Return)",
2849 Last_Stm);
2850 end if;
2851 end Check_Statement_Sequence;
2853 -- Start of processing for Check_Returns
2855 begin
2856 Err := False;
2857 Check_Statement_Sequence (Statements (HSS));
2859 if Present (Exception_Handlers (HSS)) then
2860 Handler := First_Non_Pragma (Exception_Handlers (HSS));
2861 while Present (Handler) loop
2862 Check_Statement_Sequence (Statements (Handler));
2863 Next_Non_Pragma (Handler);
2864 end loop;
2865 end if;
2866 end Check_Returns;
2868 ----------------------------
2869 -- Check_Subprogram_Order --
2870 ----------------------------
2872 procedure Check_Subprogram_Order (N : Node_Id) is
2874 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
2875 -- This is used to check if S1 > S2 in the sense required by this
2876 -- test, for example nameab < namec, but name2 < name10.
2878 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
2879 L1, L2 : Positive;
2880 N1, N2 : Natural;
2882 begin
2883 -- Remove trailing numeric parts
2885 L1 := S1'Last;
2886 while S1 (L1) in '0' .. '9' loop
2887 L1 := L1 - 1;
2888 end loop;
2890 L2 := S2'Last;
2891 while S2 (L2) in '0' .. '9' loop
2892 L2 := L2 - 1;
2893 end loop;
2895 -- If non-numeric parts non-equal, that's decisive
2897 if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
2898 return False;
2900 elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
2901 return True;
2903 -- If non-numeric parts equal, compare suffixed numeric parts. Note
2904 -- that a missing suffix is treated as numeric zero in this test.
2906 else
2907 N1 := 0;
2908 while L1 < S1'Last loop
2909 L1 := L1 + 1;
2910 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
2911 end loop;
2913 N2 := 0;
2914 while L2 < S2'Last loop
2915 L2 := L2 + 1;
2916 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
2917 end loop;
2919 return N1 > N2;
2920 end if;
2921 end Subprogram_Name_Greater;
2923 -- Start of processing for Check_Subprogram_Order
2925 begin
2926 -- Check body in alpha order if this is option
2928 if Style_Check
2929 and then Style_Check_Subprogram_Order
2930 and then Nkind (N) = N_Subprogram_Body
2931 and then Comes_From_Source (N)
2932 and then In_Extended_Main_Source_Unit (N)
2933 then
2934 declare
2935 LSN : String_Ptr
2936 renames Scope_Stack.Table
2937 (Scope_Stack.Last).Last_Subprogram_Name;
2939 Body_Id : constant Entity_Id :=
2940 Defining_Entity (Specification (N));
2942 begin
2943 Get_Decoded_Name_String (Chars (Body_Id));
2945 if LSN /= null then
2946 if Subprogram_Name_Greater
2947 (LSN.all, Name_Buffer (1 .. Name_Len))
2948 then
2949 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
2950 end if;
2952 Free (LSN);
2953 end if;
2955 LSN := new String'(Name_Buffer (1 .. Name_Len));
2956 end;
2957 end if;
2958 end Check_Subprogram_Order;
2960 ------------------------------
2961 -- Check_Subtype_Conformant --
2962 ------------------------------
2964 procedure Check_Subtype_Conformant
2965 (New_Id : Entity_Id;
2966 Old_Id : Entity_Id;
2967 Err_Loc : Node_Id := Empty)
2969 Result : Boolean;
2971 begin
2972 Check_Conformance
2973 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc);
2974 end Check_Subtype_Conformant;
2976 ---------------------------
2977 -- Check_Type_Conformant --
2978 ---------------------------
2980 procedure Check_Type_Conformant
2981 (New_Id : Entity_Id;
2982 Old_Id : Entity_Id;
2983 Err_Loc : Node_Id := Empty)
2985 Result : Boolean;
2987 begin
2988 Check_Conformance
2989 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
2990 end Check_Type_Conformant;
2992 ----------------------
2993 -- Conforming_Types --
2994 ----------------------
2996 function Conforming_Types
2997 (T1 : Entity_Id;
2998 T2 : Entity_Id;
2999 Ctype : Conformance_Type;
3000 Get_Inst : Boolean := False) return Boolean
3002 Type_1 : Entity_Id := T1;
3003 Type_2 : Entity_Id := T2;
3004 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
3006 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
3007 -- If neither T1 nor T2 are generic actual types, or if they are
3008 -- in different scopes (e.g. parent and child instances), then verify
3009 -- that the base types are equal. Otherwise T1 and T2 must be
3010 -- on the same subtype chain. The whole purpose of this procedure
3011 -- is to prevent spurious ambiguities in an instantiation that may
3012 -- arise if two distinct generic types are instantiated with the
3013 -- same actual.
3015 ----------------------
3016 -- Base_Types_Match --
3017 ----------------------
3019 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
3020 begin
3021 if T1 = T2 then
3022 return True;
3024 elsif Base_Type (T1) = Base_Type (T2) then
3026 -- The following is too permissive. A more precise test must
3027 -- check that the generic actual is an ancestor subtype of the
3028 -- other ???.
3030 return not Is_Generic_Actual_Type (T1)
3031 or else not Is_Generic_Actual_Type (T2)
3032 or else Scope (T1) /= Scope (T2);
3034 -- In some cases a type imported through a limited_with clause,
3035 -- and its non-limited view are both visible, for example in an
3036 -- anonymous access_to_classwide type in a formal. Both entities
3037 -- designate the same type.
3039 elsif From_With_Type (T1)
3040 and then Ekind (T1) = E_Incomplete_Type
3041 and then T2 = Non_Limited_View (T1)
3042 then
3043 return True;
3045 else
3046 return False;
3047 end if;
3048 end Base_Types_Match;
3050 begin
3051 -- The context is an instance association for a formal
3052 -- access-to-subprogram type; the formal parameter types
3053 -- require mapping because they may denote other formal
3054 -- parameters of the generic unit.
3056 if Get_Inst then
3057 Type_1 := Get_Instance_Of (T1);
3058 Type_2 := Get_Instance_Of (T2);
3059 end if;
3061 -- First see if base types match
3063 if Base_Types_Match (Type_1, Type_2) then
3064 return Ctype <= Mode_Conformant
3065 or else Subtypes_Statically_Match (Type_1, Type_2);
3067 elsif Is_Incomplete_Or_Private_Type (Type_1)
3068 and then Present (Full_View (Type_1))
3069 and then Base_Types_Match (Full_View (Type_1), Type_2)
3070 then
3071 return Ctype <= Mode_Conformant
3072 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
3074 elsif Ekind (Type_2) = E_Incomplete_Type
3075 and then Present (Full_View (Type_2))
3076 and then Base_Types_Match (Type_1, Full_View (Type_2))
3077 then
3078 return Ctype <= Mode_Conformant
3079 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
3081 elsif Is_Private_Type (Type_2)
3082 and then In_Instance
3083 and then Present (Full_View (Type_2))
3084 and then Base_Types_Match (Type_1, Full_View (Type_2))
3085 then
3086 return Ctype <= Mode_Conformant
3087 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
3088 end if;
3090 -- Ada 0Y (AI-254): Detect anonymous access to subprogram types.
3092 Are_Anonymous_Access_To_Subprogram_Types :=
3094 -- Case 1: Anonymous access to subprogram types
3096 (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
3097 and then Ekind (Type_2) = E_Anonymous_Access_Subprogram_Type)
3099 -- Case 2: Anonymous access to PROTECTED subprogram types. In this
3100 -- case the anonymous type_declaration has been replaced by an
3101 -- occurrence of an internal access to subprogram type declaration
3102 -- available through the Original_Access_Type attribute
3104 or else
3105 (Ekind (Type_1) = E_Access_Protected_Subprogram_Type
3106 and then Ekind (Type_2) = E_Access_Protected_Subprogram_Type
3107 and then not Comes_From_Source (Type_1)
3108 and then not Comes_From_Source (Type_2)
3109 and then Present (Original_Access_Type (Type_1))
3110 and then Present (Original_Access_Type (Type_2))
3111 and then Ekind (Original_Access_Type (Type_1)) =
3112 E_Anonymous_Access_Protected_Subprogram_Type
3113 and then Ekind (Original_Access_Type (Type_2)) =
3114 E_Anonymous_Access_Protected_Subprogram_Type);
3116 -- Test anonymous access type case. For this case, static subtype
3117 -- matching is required for mode conformance (RM 6.3.1(15))
3119 if (Ekind (Type_1) = E_Anonymous_Access_Type
3120 and then Ekind (Type_2) = E_Anonymous_Access_Type)
3121 or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 0Y (AI-254)
3122 then
3123 declare
3124 Desig_1 : Entity_Id;
3125 Desig_2 : Entity_Id;
3127 begin
3128 Desig_1 := Directly_Designated_Type (Type_1);
3130 -- An access parameter can designate an incomplete type
3132 if Ekind (Desig_1) = E_Incomplete_Type
3133 and then Present (Full_View (Desig_1))
3134 then
3135 Desig_1 := Full_View (Desig_1);
3136 end if;
3138 Desig_2 := Directly_Designated_Type (Type_2);
3140 if Ekind (Desig_2) = E_Incomplete_Type
3141 and then Present (Full_View (Desig_2))
3142 then
3143 Desig_2 := Full_View (Desig_2);
3144 end if;
3146 -- The context is an instance association for a formal
3147 -- access-to-subprogram type; formal access parameter
3148 -- designated types require mapping because they may
3149 -- denote other formal parameters of the generic unit.
3151 if Get_Inst then
3152 Desig_1 := Get_Instance_Of (Desig_1);
3153 Desig_2 := Get_Instance_Of (Desig_2);
3154 end if;
3156 -- It is possible for a Class_Wide_Type to be introduced for
3157 -- an incomplete type, in which case there is a separate class_
3158 -- wide type for the full view. The types conform if their
3159 -- Etypes conform, i.e. one may be the full view of the other.
3160 -- This can only happen in the context of an access parameter,
3161 -- other uses of an incomplete Class_Wide_Type are illegal.
3163 if Is_Class_Wide_Type (Desig_1)
3164 and then Is_Class_Wide_Type (Desig_2)
3165 then
3166 return
3167 Conforming_Types
3168 (Etype (Base_Type (Desig_1)),
3169 Etype (Base_Type (Desig_2)), Ctype);
3171 elsif Are_Anonymous_Access_To_Subprogram_Types then
3172 return Ctype = Type_Conformant
3173 or else
3174 Subtypes_Statically_Match (Desig_1, Desig_2);
3176 else
3177 return Base_Type (Desig_1) = Base_Type (Desig_2)
3178 and then (Ctype = Type_Conformant
3179 or else
3180 Subtypes_Statically_Match (Desig_1, Desig_2));
3181 end if;
3182 end;
3184 -- Otherwise definitely no match
3186 else
3187 return False;
3188 end if;
3190 end Conforming_Types;
3192 --------------------------
3193 -- Create_Extra_Formals --
3194 --------------------------
3196 procedure Create_Extra_Formals (E : Entity_Id) is
3197 Formal : Entity_Id;
3198 Last_Extra : Entity_Id;
3199 Formal_Type : Entity_Id;
3200 P_Formal : Entity_Id := Empty;
3202 function Add_Extra_Formal (Typ : Entity_Id) return Entity_Id;
3203 -- Add an extra formal, associated with the current Formal. The
3204 -- extra formal is added to the list of extra formals, and also
3205 -- returned as the result. These formals are always of mode IN.
3207 ----------------------
3208 -- Add_Extra_Formal --
3209 ----------------------
3211 function Add_Extra_Formal (Typ : Entity_Id) return Entity_Id is
3212 EF : constant Entity_Id :=
3213 Make_Defining_Identifier (Sloc (Formal),
3214 Chars => New_External_Name (Chars (Formal), 'F'));
3216 begin
3217 -- We never generate extra formals if expansion is not active
3218 -- because we don't need them unless we are generating code.
3220 if not Expander_Active then
3221 return Empty;
3222 end if;
3224 -- A little optimization. Never generate an extra formal for
3225 -- the _init operand of an initialization procedure, since it
3226 -- could never be used.
3228 if Chars (Formal) = Name_uInit then
3229 return Empty;
3230 end if;
3232 Set_Ekind (EF, E_In_Parameter);
3233 Set_Actual_Subtype (EF, Typ);
3234 Set_Etype (EF, Typ);
3235 Set_Scope (EF, Scope (Formal));
3236 Set_Mechanism (EF, Default_Mechanism);
3237 Set_Formal_Validity (EF);
3239 Set_Extra_Formal (Last_Extra, EF);
3240 Last_Extra := EF;
3241 return EF;
3242 end Add_Extra_Formal;
3244 -- Start of processing for Create_Extra_Formals
3246 begin
3247 -- If this is a derived subprogram then the subtypes of the
3248 -- parent subprogram's formal parameters will be used to
3249 -- to determine the need for extra formals.
3251 if Is_Overloadable (E) and then Present (Alias (E)) then
3252 P_Formal := First_Formal (Alias (E));
3253 end if;
3255 Last_Extra := Empty;
3256 Formal := First_Formal (E);
3257 while Present (Formal) loop
3258 Last_Extra := Formal;
3259 Next_Formal (Formal);
3260 end loop;
3262 -- If Extra_formals where already created, don't do it again
3263 -- This situation may arise for subprogram types created as part
3264 -- of dispatching calls (see Expand_Dispatch_Call)
3266 if Present (Last_Extra) and then
3267 Present (Extra_Formal (Last_Extra))
3268 then
3269 return;
3270 end if;
3272 Formal := First_Formal (E);
3274 while Present (Formal) loop
3276 -- Create extra formal for supporting the attribute 'Constrained.
3277 -- The case of a private type view without discriminants also
3278 -- requires the extra formal if the underlying type has defaulted
3279 -- discriminants.
3281 if Ekind (Formal) /= E_In_Parameter then
3282 if Present (P_Formal) then
3283 Formal_Type := Etype (P_Formal);
3284 else
3285 Formal_Type := Etype (Formal);
3286 end if;
3288 if not Has_Discriminants (Formal_Type)
3289 and then Ekind (Formal_Type) in Private_Kind
3290 and then Present (Underlying_Type (Formal_Type))
3291 then
3292 Formal_Type := Underlying_Type (Formal_Type);
3293 end if;
3295 if Has_Discriminants (Formal_Type)
3296 and then
3297 ((not Is_Constrained (Formal_Type)
3298 and then not Is_Indefinite_Subtype (Formal_Type))
3299 or else Present (Extra_Formal (Formal)))
3300 then
3301 Set_Extra_Constrained
3302 (Formal, Add_Extra_Formal (Standard_Boolean));
3303 end if;
3304 end if;
3306 -- Create extra formal for supporting accessibility checking
3308 -- This is suppressed if we specifically suppress accessibility
3309 -- checks at the pacage level for either the subprogram, or the
3310 -- package in which it resides. However, we do not suppress it
3311 -- simply if the scope has accessibility checks suppressed, since
3312 -- this could cause trouble when clients are compiled with a
3313 -- different suppression setting. The explicit checks at the
3314 -- package level are safe from this point of view.
3316 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
3317 and then not
3318 (Explicit_Suppress (E, Accessibility_Check)
3319 or else
3320 Explicit_Suppress (Scope (E), Accessibility_Check))
3321 and then
3322 (not Present (P_Formal)
3323 or else Present (Extra_Accessibility (P_Formal)))
3324 then
3325 -- Temporary kludge: for now we avoid creating the extra
3326 -- formal for access parameters of protected operations
3327 -- because of problem with the case of internal protected
3328 -- calls. ???
3330 if Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Definition
3331 and then Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Body
3332 then
3333 Set_Extra_Accessibility
3334 (Formal, Add_Extra_Formal (Standard_Natural));
3335 end if;
3336 end if;
3338 if Present (P_Formal) then
3339 Next_Formal (P_Formal);
3340 end if;
3342 Next_Formal (Formal);
3343 end loop;
3344 end Create_Extra_Formals;
3346 -----------------------------
3347 -- Enter_Overloaded_Entity --
3348 -----------------------------
3350 procedure Enter_Overloaded_Entity (S : Entity_Id) is
3351 E : Entity_Id := Current_Entity_In_Scope (S);
3352 C_E : Entity_Id := Current_Entity (S);
3354 begin
3355 if Present (E) then
3356 Set_Has_Homonym (E);
3357 Set_Has_Homonym (S);
3358 end if;
3360 Set_Is_Immediately_Visible (S);
3361 Set_Scope (S, Current_Scope);
3363 -- Chain new entity if front of homonym in current scope, so that
3364 -- homonyms are contiguous.
3366 if Present (E)
3367 and then E /= C_E
3368 then
3369 while Homonym (C_E) /= E loop
3370 C_E := Homonym (C_E);
3371 end loop;
3373 Set_Homonym (C_E, S);
3375 else
3376 E := C_E;
3377 Set_Current_Entity (S);
3378 end if;
3380 Set_Homonym (S, E);
3382 Append_Entity (S, Current_Scope);
3383 Set_Public_Status (S);
3385 if Debug_Flag_E then
3386 Write_Str ("New overloaded entity chain: ");
3387 Write_Name (Chars (S));
3388 E := S;
3390 while Present (E) loop
3391 Write_Str (" "); Write_Int (Int (E));
3392 E := Homonym (E);
3393 end loop;
3395 Write_Eol;
3396 end if;
3398 -- Generate warning for hiding
3400 if Warn_On_Hiding
3401 and then Comes_From_Source (S)
3402 and then In_Extended_Main_Source_Unit (S)
3403 then
3404 E := S;
3405 loop
3406 E := Homonym (E);
3407 exit when No (E);
3409 -- Warn unless genuine overloading
3411 if (not Is_Overloadable (E))
3412 or else Subtype_Conformant (E, S)
3413 then
3414 Error_Msg_Sloc := Sloc (E);
3415 Error_Msg_N ("declaration of & hides one#?", S);
3416 end if;
3417 end loop;
3418 end if;
3419 end Enter_Overloaded_Entity;
3421 -----------------------------
3422 -- Find_Corresponding_Spec --
3423 -----------------------------
3425 function Find_Corresponding_Spec (N : Node_Id) return Entity_Id is
3426 Spec : constant Node_Id := Specification (N);
3427 Designator : constant Entity_Id := Defining_Entity (Spec);
3429 E : Entity_Id;
3431 begin
3432 E := Current_Entity (Designator);
3434 while Present (E) loop
3436 -- We are looking for a matching spec. It must have the same scope,
3437 -- and the same name, and either be type conformant, or be the case
3438 -- of a library procedure spec and its body (which belong to one
3439 -- another regardless of whether they are type conformant or not).
3441 if Scope (E) = Current_Scope then
3442 if Current_Scope = Standard_Standard
3443 or else (Ekind (E) = Ekind (Designator)
3444 and then Type_Conformant (E, Designator))
3445 then
3446 -- Within an instantiation, we know that spec and body are
3447 -- subtype conformant, because they were subtype conformant
3448 -- in the generic. We choose the subtype-conformant entity
3449 -- here as well, to resolve spurious ambiguities in the
3450 -- instance that were not present in the generic (i.e. when
3451 -- two different types are given the same actual). If we are
3452 -- looking for a spec to match a body, full conformance is
3453 -- expected.
3455 if In_Instance then
3456 Set_Convention (Designator, Convention (E));
3458 if Nkind (N) = N_Subprogram_Body
3459 and then Present (Homonym (E))
3460 and then not Fully_Conformant (E, Designator)
3461 then
3462 goto Next_Entity;
3464 elsif not Subtype_Conformant (E, Designator) then
3465 goto Next_Entity;
3466 end if;
3467 end if;
3469 if not Has_Completion (E) then
3471 if Nkind (N) /= N_Subprogram_Body_Stub then
3472 Set_Corresponding_Spec (N, E);
3473 end if;
3475 Set_Has_Completion (E);
3476 return E;
3478 elsif Nkind (Parent (N)) = N_Subunit then
3480 -- If this is the proper body of a subunit, the completion
3481 -- flag is set when analyzing the stub.
3483 return E;
3485 -- If body already exists, this is an error unless the
3486 -- previous declaration is the implicit declaration of
3487 -- a derived subprogram, or this is a spurious overloading
3488 -- in an instance.
3490 elsif No (Alias (E))
3491 and then not Is_Intrinsic_Subprogram (E)
3492 and then not In_Instance
3493 then
3494 Error_Msg_Sloc := Sloc (E);
3495 if Is_Imported (E) then
3496 Error_Msg_NE
3497 ("body not allowed for imported subprogram & declared#",
3498 N, E);
3499 else
3500 Error_Msg_NE ("duplicate body for & declared#", N, E);
3501 end if;
3502 end if;
3504 elsif Is_Child_Unit (E)
3505 and then
3506 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
3507 and then
3508 Nkind (Parent (Unit_Declaration_Node (Designator)))
3509 = N_Compilation_Unit
3510 then
3512 -- Child units cannot be overloaded, so a conformance mismatch
3513 -- between body and a previous spec is an error.
3515 Error_Msg_N
3516 ("body of child unit does not match previous declaration", N);
3517 end if;
3518 end if;
3520 <<Next_Entity>>
3521 E := Homonym (E);
3522 end loop;
3524 -- On exit, we know that no previous declaration of subprogram exists
3526 return Empty;
3527 end Find_Corresponding_Spec;
3529 ----------------------
3530 -- Fully_Conformant --
3531 ----------------------
3533 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
3534 Result : Boolean;
3536 begin
3537 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
3538 return Result;
3539 end Fully_Conformant;
3541 ----------------------------------
3542 -- Fully_Conformant_Expressions --
3543 ----------------------------------
3545 function Fully_Conformant_Expressions
3546 (Given_E1 : Node_Id;
3547 Given_E2 : Node_Id) return Boolean
3549 E1 : constant Node_Id := Original_Node (Given_E1);
3550 E2 : constant Node_Id := Original_Node (Given_E2);
3551 -- We always test conformance on original nodes, since it is possible
3552 -- for analysis and/or expansion to make things look as though they
3553 -- conform when they do not, e.g. by converting 1+2 into 3.
3555 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
3556 renames Fully_Conformant_Expressions;
3558 function FCL (L1, L2 : List_Id) return Boolean;
3559 -- Compare elements of two lists for conformance. Elements have to
3560 -- be conformant, and actuals inserted as default parameters do not
3561 -- match explicit actuals with the same value.
3563 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
3564 -- Compare an operator node with a function call.
3566 ---------
3567 -- FCL --
3568 ---------
3570 function FCL (L1, L2 : List_Id) return Boolean is
3571 N1, N2 : Node_Id;
3573 begin
3574 if L1 = No_List then
3575 N1 := Empty;
3576 else
3577 N1 := First (L1);
3578 end if;
3580 if L2 = No_List then
3581 N2 := Empty;
3582 else
3583 N2 := First (L2);
3584 end if;
3586 -- Compare two lists, skipping rewrite insertions (we want to
3587 -- compare the original trees, not the expanded versions!)
3589 loop
3590 if Is_Rewrite_Insertion (N1) then
3591 Next (N1);
3592 elsif Is_Rewrite_Insertion (N2) then
3593 Next (N2);
3594 elsif No (N1) then
3595 return No (N2);
3596 elsif No (N2) then
3597 return False;
3598 elsif not FCE (N1, N2) then
3599 return False;
3600 else
3601 Next (N1);
3602 Next (N2);
3603 end if;
3604 end loop;
3605 end FCL;
3607 ---------
3608 -- FCO --
3609 ---------
3611 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
3612 Actuals : constant List_Id := Parameter_Associations (Call_Node);
3613 Act : Node_Id;
3615 begin
3616 if No (Actuals)
3617 or else Entity (Op_Node) /= Entity (Name (Call_Node))
3618 then
3619 return False;
3621 else
3622 Act := First (Actuals);
3624 if Nkind (Op_Node) in N_Binary_Op then
3626 if not FCE (Left_Opnd (Op_Node), Act) then
3627 return False;
3628 end if;
3630 Next (Act);
3631 end if;
3633 return Present (Act)
3634 and then FCE (Right_Opnd (Op_Node), Act)
3635 and then No (Next (Act));
3636 end if;
3637 end FCO;
3639 -- Start of processing for Fully_Conformant_Expressions
3641 begin
3642 -- Non-conformant if paren count does not match. Note: if some idiot
3643 -- complains that we don't do this right for more than 3 levels of
3644 -- parentheses, they will be treated with the respect they deserve :-)
3646 if Paren_Count (E1) /= Paren_Count (E2) then
3647 return False;
3649 -- If same entities are referenced, then they are conformant
3650 -- even if they have different forms (RM 8.3.1(19-20)).
3652 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
3653 if Present (Entity (E1)) then
3654 return Entity (E1) = Entity (E2)
3655 or else (Chars (Entity (E1)) = Chars (Entity (E2))
3656 and then Ekind (Entity (E1)) = E_Discriminant
3657 and then Ekind (Entity (E2)) = E_In_Parameter);
3659 elsif Nkind (E1) = N_Expanded_Name
3660 and then Nkind (E2) = N_Expanded_Name
3661 and then Nkind (Selector_Name (E1)) = N_Character_Literal
3662 and then Nkind (Selector_Name (E2)) = N_Character_Literal
3663 then
3664 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
3666 else
3667 -- Identifiers in component associations don't always have
3668 -- entities, but their names must conform.
3670 return Nkind (E1) = N_Identifier
3671 and then Nkind (E2) = N_Identifier
3672 and then Chars (E1) = Chars (E2);
3673 end if;
3675 elsif Nkind (E1) = N_Character_Literal
3676 and then Nkind (E2) = N_Expanded_Name
3677 then
3678 return Nkind (Selector_Name (E2)) = N_Character_Literal
3679 and then Chars (E1) = Chars (Selector_Name (E2));
3681 elsif Nkind (E2) = N_Character_Literal
3682 and then Nkind (E1) = N_Expanded_Name
3683 then
3684 return Nkind (Selector_Name (E1)) = N_Character_Literal
3685 and then Chars (E2) = Chars (Selector_Name (E1));
3687 elsif Nkind (E1) in N_Op
3688 and then Nkind (E2) = N_Function_Call
3689 then
3690 return FCO (E1, E2);
3692 elsif Nkind (E2) in N_Op
3693 and then Nkind (E1) = N_Function_Call
3694 then
3695 return FCO (E2, E1);
3697 -- Otherwise we must have the same syntactic entity
3699 elsif Nkind (E1) /= Nkind (E2) then
3700 return False;
3702 -- At this point, we specialize by node type
3704 else
3705 case Nkind (E1) is
3707 when N_Aggregate =>
3708 return
3709 FCL (Expressions (E1), Expressions (E2))
3710 and then FCL (Component_Associations (E1),
3711 Component_Associations (E2));
3713 when N_Allocator =>
3714 if Nkind (Expression (E1)) = N_Qualified_Expression
3715 or else
3716 Nkind (Expression (E2)) = N_Qualified_Expression
3717 then
3718 return FCE (Expression (E1), Expression (E2));
3720 -- Check that the subtype marks and any constraints
3721 -- are conformant
3723 else
3724 declare
3725 Indic1 : constant Node_Id := Expression (E1);
3726 Indic2 : constant Node_Id := Expression (E2);
3727 Elt1 : Node_Id;
3728 Elt2 : Node_Id;
3730 begin
3731 if Nkind (Indic1) /= N_Subtype_Indication then
3732 return
3733 Nkind (Indic2) /= N_Subtype_Indication
3734 and then Entity (Indic1) = Entity (Indic2);
3736 elsif Nkind (Indic2) /= N_Subtype_Indication then
3737 return
3738 Nkind (Indic1) /= N_Subtype_Indication
3739 and then Entity (Indic1) = Entity (Indic2);
3741 else
3742 if Entity (Subtype_Mark (Indic1)) /=
3743 Entity (Subtype_Mark (Indic2))
3744 then
3745 return False;
3746 end if;
3748 Elt1 := First (Constraints (Constraint (Indic1)));
3749 Elt2 := First (Constraints (Constraint (Indic2)));
3751 while Present (Elt1) and then Present (Elt2) loop
3752 if not FCE (Elt1, Elt2) then
3753 return False;
3754 end if;
3756 Next (Elt1);
3757 Next (Elt2);
3758 end loop;
3760 return True;
3761 end if;
3762 end;
3763 end if;
3765 when N_Attribute_Reference =>
3766 return
3767 Attribute_Name (E1) = Attribute_Name (E2)
3768 and then FCL (Expressions (E1), Expressions (E2));
3770 when N_Binary_Op =>
3771 return
3772 Entity (E1) = Entity (E2)
3773 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
3774 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
3776 when N_And_Then | N_Or_Else | N_In | N_Not_In =>
3777 return
3778 FCE (Left_Opnd (E1), Left_Opnd (E2))
3779 and then
3780 FCE (Right_Opnd (E1), Right_Opnd (E2));
3782 when N_Character_Literal =>
3783 return
3784 Char_Literal_Value (E1) = Char_Literal_Value (E2);
3786 when N_Component_Association =>
3787 return
3788 FCL (Choices (E1), Choices (E2))
3789 and then FCE (Expression (E1), Expression (E2));
3791 when N_Conditional_Expression =>
3792 return
3793 FCL (Expressions (E1), Expressions (E2));
3795 when N_Explicit_Dereference =>
3796 return
3797 FCE (Prefix (E1), Prefix (E2));
3799 when N_Extension_Aggregate =>
3800 return
3801 FCL (Expressions (E1), Expressions (E2))
3802 and then Null_Record_Present (E1) =
3803 Null_Record_Present (E2)
3804 and then FCL (Component_Associations (E1),
3805 Component_Associations (E2));
3807 when N_Function_Call =>
3808 return
3809 FCE (Name (E1), Name (E2))
3810 and then FCL (Parameter_Associations (E1),
3811 Parameter_Associations (E2));
3813 when N_Indexed_Component =>
3814 return
3815 FCE (Prefix (E1), Prefix (E2))
3816 and then FCL (Expressions (E1), Expressions (E2));
3818 when N_Integer_Literal =>
3819 return (Intval (E1) = Intval (E2));
3821 when N_Null =>
3822 return True;
3824 when N_Operator_Symbol =>
3825 return
3826 Chars (E1) = Chars (E2);
3828 when N_Others_Choice =>
3829 return True;
3831 when N_Parameter_Association =>
3832 return
3833 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
3834 and then FCE (Explicit_Actual_Parameter (E1),
3835 Explicit_Actual_Parameter (E2));
3837 when N_Qualified_Expression =>
3838 return
3839 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
3840 and then FCE (Expression (E1), Expression (E2));
3842 when N_Range =>
3843 return
3844 FCE (Low_Bound (E1), Low_Bound (E2))
3845 and then FCE (High_Bound (E1), High_Bound (E2));
3847 when N_Real_Literal =>
3848 return (Realval (E1) = Realval (E2));
3850 when N_Selected_Component =>
3851 return
3852 FCE (Prefix (E1), Prefix (E2))
3853 and then FCE (Selector_Name (E1), Selector_Name (E2));
3855 when N_Slice =>
3856 return
3857 FCE (Prefix (E1), Prefix (E2))
3858 and then FCE (Discrete_Range (E1), Discrete_Range (E2));
3860 when N_String_Literal =>
3861 declare
3862 S1 : constant String_Id := Strval (E1);
3863 S2 : constant String_Id := Strval (E2);
3864 L1 : constant Nat := String_Length (S1);
3865 L2 : constant Nat := String_Length (S2);
3867 begin
3868 if L1 /= L2 then
3869 return False;
3871 else
3872 for J in 1 .. L1 loop
3873 if Get_String_Char (S1, J) /=
3874 Get_String_Char (S2, J)
3875 then
3876 return False;
3877 end if;
3878 end loop;
3880 return True;
3881 end if;
3882 end;
3884 when N_Type_Conversion =>
3885 return
3886 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
3887 and then FCE (Expression (E1), Expression (E2));
3889 when N_Unary_Op =>
3890 return
3891 Entity (E1) = Entity (E2)
3892 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
3894 when N_Unchecked_Type_Conversion =>
3895 return
3896 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
3897 and then FCE (Expression (E1), Expression (E2));
3899 -- All other node types cannot appear in this context. Strictly
3900 -- we should raise a fatal internal error. Instead we just ignore
3901 -- the nodes. This means that if anyone makes a mistake in the
3902 -- expander and mucks an expression tree irretrievably, the
3903 -- result will be a failure to detect a (probably very obscure)
3904 -- case of non-conformance, which is better than bombing on some
3905 -- case where two expressions do in fact conform.
3907 when others =>
3908 return True;
3910 end case;
3911 end if;
3912 end Fully_Conformant_Expressions;
3914 ----------------------------------------
3915 -- Fully_Conformant_Discrete_Subtypes --
3916 ----------------------------------------
3918 function Fully_Conformant_Discrete_Subtypes
3919 (Given_S1 : Node_Id;
3920 Given_S2 : Node_Id) return Boolean
3922 S1 : constant Node_Id := Original_Node (Given_S1);
3923 S2 : constant Node_Id := Original_Node (Given_S2);
3925 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
3926 -- Special-case for a bound given by a discriminant, which in the
3927 -- body is replaced with the discriminal of the enclosing type.
3929 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
3930 -- Check both bounds.
3932 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
3933 begin
3934 if Is_Entity_Name (B1)
3935 and then Is_Entity_Name (B2)
3936 and then Ekind (Entity (B1)) = E_Discriminant
3937 then
3938 return Chars (B1) = Chars (B2);
3940 else
3941 return Fully_Conformant_Expressions (B1, B2);
3942 end if;
3943 end Conforming_Bounds;
3945 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
3946 begin
3947 return
3948 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
3949 and then
3950 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
3951 end Conforming_Ranges;
3953 -- Start of processing for Fully_Conformant_Discrete_Subtypes
3955 begin
3956 if Nkind (S1) /= Nkind (S2) then
3957 return False;
3959 elsif Is_Entity_Name (S1) then
3960 return Entity (S1) = Entity (S2);
3962 elsif Nkind (S1) = N_Range then
3963 return Conforming_Ranges (S1, S2);
3965 elsif Nkind (S1) = N_Subtype_Indication then
3966 return
3967 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
3968 and then
3969 Conforming_Ranges
3970 (Range_Expression (Constraint (S1)),
3971 Range_Expression (Constraint (S2)));
3972 else
3973 return True;
3974 end if;
3975 end Fully_Conformant_Discrete_Subtypes;
3977 --------------------
3978 -- Install_Entity --
3979 --------------------
3981 procedure Install_Entity (E : Entity_Id) is
3982 Prev : constant Entity_Id := Current_Entity (E);
3984 begin
3985 Set_Is_Immediately_Visible (E);
3986 Set_Current_Entity (E);
3987 Set_Homonym (E, Prev);
3988 end Install_Entity;
3990 ---------------------
3991 -- Install_Formals --
3992 ---------------------
3994 procedure Install_Formals (Id : Entity_Id) is
3995 F : Entity_Id;
3997 begin
3998 F := First_Formal (Id);
4000 while Present (F) loop
4001 Install_Entity (F);
4002 Next_Formal (F);
4003 end loop;
4004 end Install_Formals;
4006 ---------------------------------
4007 -- Is_Non_Overriding_Operation --
4008 ---------------------------------
4010 function Is_Non_Overriding_Operation
4011 (Prev_E : Entity_Id;
4012 New_E : Entity_Id) return Boolean
4014 Formal : Entity_Id;
4015 F_Typ : Entity_Id;
4016 G_Typ : Entity_Id := Empty;
4018 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
4019 -- If F_Type is a derived type associated with a generic actual
4020 -- subtype, then return its Generic_Parent_Type attribute, else
4021 -- return Empty.
4023 function Types_Correspond
4024 (P_Type : Entity_Id;
4025 N_Type : Entity_Id) return Boolean;
4026 -- Returns true if and only if the types (or designated types
4027 -- in the case of anonymous access types) are the same or N_Type
4028 -- is derived directly or indirectly from P_Type.
4030 -----------------------------
4031 -- Get_Generic_Parent_Type --
4032 -----------------------------
4034 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
4035 G_Typ : Entity_Id;
4036 Indic : Node_Id;
4038 begin
4039 if Is_Derived_Type (F_Typ)
4040 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
4041 then
4042 -- The tree must be traversed to determine the parent
4043 -- subtype in the generic unit, which unfortunately isn't
4044 -- always available via semantic attributes. ???
4045 -- (Note: The use of Original_Node is needed for cases
4046 -- where a full derived type has been rewritten.)
4048 Indic := Subtype_Indication
4049 (Type_Definition (Original_Node (Parent (F_Typ))));
4051 if Nkind (Indic) = N_Subtype_Indication then
4052 G_Typ := Entity (Subtype_Mark (Indic));
4053 else
4054 G_Typ := Entity (Indic);
4055 end if;
4057 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
4058 and then Present (Generic_Parent_Type (Parent (G_Typ)))
4059 then
4060 return Generic_Parent_Type (Parent (G_Typ));
4061 end if;
4062 end if;
4064 return Empty;
4065 end Get_Generic_Parent_Type;
4067 ----------------------
4068 -- Types_Correspond --
4069 ----------------------
4071 function Types_Correspond
4072 (P_Type : Entity_Id;
4073 N_Type : Entity_Id) return Boolean
4075 Prev_Type : Entity_Id := Base_Type (P_Type);
4076 New_Type : Entity_Id := Base_Type (N_Type);
4078 begin
4079 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
4080 Prev_Type := Designated_Type (Prev_Type);
4081 end if;
4083 if Ekind (New_Type) = E_Anonymous_Access_Type then
4084 New_Type := Designated_Type (New_Type);
4085 end if;
4087 if Prev_Type = New_Type then
4088 return True;
4090 elsif not Is_Class_Wide_Type (New_Type) then
4091 while Etype (New_Type) /= New_Type loop
4092 New_Type := Etype (New_Type);
4093 if New_Type = Prev_Type then
4094 return True;
4095 end if;
4096 end loop;
4097 end if;
4098 return False;
4099 end Types_Correspond;
4101 -- Start of processing for Is_Non_Overriding_Operation
4103 begin
4104 -- In the case where both operations are implicit derived
4105 -- subprograms then neither overrides the other. This can
4106 -- only occur in certain obscure cases (e.g., derivation
4107 -- from homographs created in a generic instantiation).
4109 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
4110 return True;
4112 elsif Ekind (Current_Scope) = E_Package
4113 and then Is_Generic_Instance (Current_Scope)
4114 and then In_Private_Part (Current_Scope)
4115 and then Comes_From_Source (New_E)
4116 then
4117 -- We examine the formals and result subtype of the inherited
4118 -- operation, to determine whether their type is derived from
4119 -- (the instance of) a generic type.
4121 Formal := First_Formal (Prev_E);
4123 while Present (Formal) loop
4124 F_Typ := Base_Type (Etype (Formal));
4126 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4127 F_Typ := Designated_Type (F_Typ);
4128 end if;
4130 G_Typ := Get_Generic_Parent_Type (F_Typ);
4132 Next_Formal (Formal);
4133 end loop;
4135 if not Present (G_Typ) and then Ekind (Prev_E) = E_Function then
4136 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
4137 end if;
4139 if No (G_Typ) then
4140 return False;
4141 end if;
4143 -- If the generic type is a private type, then the original
4144 -- operation was not overriding in the generic, because there was
4145 -- no primitive operation to override.
4147 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
4148 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
4149 N_Formal_Private_Type_Definition
4150 then
4151 return True;
4153 -- The generic parent type is the ancestor of a formal derived
4154 -- type declaration. We need to check whether it has a primitive
4155 -- operation that should be overridden by New_E in the generic.
4157 else
4158 declare
4159 P_Formal : Entity_Id;
4160 N_Formal : Entity_Id;
4161 P_Typ : Entity_Id;
4162 N_Typ : Entity_Id;
4163 P_Prim : Entity_Id;
4164 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
4166 begin
4167 while Present (Prim_Elt) loop
4168 P_Prim := Node (Prim_Elt);
4170 if Chars (P_Prim) = Chars (New_E)
4171 and then Ekind (P_Prim) = Ekind (New_E)
4172 then
4173 P_Formal := First_Formal (P_Prim);
4174 N_Formal := First_Formal (New_E);
4175 while Present (P_Formal) and then Present (N_Formal) loop
4176 P_Typ := Etype (P_Formal);
4177 N_Typ := Etype (N_Formal);
4179 if not Types_Correspond (P_Typ, N_Typ) then
4180 exit;
4181 end if;
4183 Next_Entity (P_Formal);
4184 Next_Entity (N_Formal);
4185 end loop;
4187 -- Found a matching primitive operation belonging to
4188 -- the formal ancestor type, so the new subprogram
4189 -- is overriding.
4191 if not Present (P_Formal)
4192 and then not Present (N_Formal)
4193 and then (Ekind (New_E) /= E_Function
4194 or else
4195 Types_Correspond
4196 (Etype (P_Prim), Etype (New_E)))
4197 then
4198 return False;
4199 end if;
4200 end if;
4202 Next_Elmt (Prim_Elt);
4203 end loop;
4205 -- If no match found, then the new subprogram does
4206 -- not override in the generic (nor in the instance).
4208 return True;
4209 end;
4210 end if;
4211 else
4212 return False;
4213 end if;
4214 end Is_Non_Overriding_Operation;
4216 ------------------------------
4217 -- Make_Inequality_Operator --
4218 ------------------------------
4220 -- S is the defining identifier of an equality operator. We build a
4221 -- subprogram declaration with the right signature. This operation is
4222 -- intrinsic, because it is always expanded as the negation of the
4223 -- call to the equality function.
4225 procedure Make_Inequality_Operator (S : Entity_Id) is
4226 Loc : constant Source_Ptr := Sloc (S);
4227 Decl : Node_Id;
4228 Formals : List_Id;
4229 Op_Name : Entity_Id;
4231 A : Entity_Id;
4232 B : Entity_Id;
4234 begin
4235 -- Check that equality was properly defined.
4237 if No (Next_Formal (First_Formal (S))) then
4238 return;
4239 end if;
4241 A := Make_Defining_Identifier (Loc, Chars (First_Formal (S)));
4242 B := Make_Defining_Identifier (Loc,
4243 Chars (Next_Formal (First_Formal (S))));
4245 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
4247 Formals := New_List (
4248 Make_Parameter_Specification (Loc,
4249 Defining_Identifier => A,
4250 Parameter_Type =>
4251 New_Reference_To (Etype (First_Formal (S)), Loc)),
4253 Make_Parameter_Specification (Loc,
4254 Defining_Identifier => B,
4255 Parameter_Type =>
4256 New_Reference_To (Etype (Next_Formal (First_Formal (S))), Loc)));
4258 Decl :=
4259 Make_Subprogram_Declaration (Loc,
4260 Specification =>
4261 Make_Function_Specification (Loc,
4262 Defining_Unit_Name => Op_Name,
4263 Parameter_Specifications => Formals,
4264 Subtype_Mark => New_Reference_To (Standard_Boolean, Loc)));
4266 -- Insert inequality right after equality if it is explicit or after
4267 -- the derived type when implicit. These entities are created only
4268 -- for visibility purposes, and eventually replaced in the course of
4269 -- expansion, so they do not need to be attached to the tree and seen
4270 -- by the back-end. Keeping them internal also avoids spurious freezing
4271 -- problems. The parent field is set simply to make analysis safe.
4273 if No (Alias (S)) then
4274 Set_Parent (Decl, Parent (Unit_Declaration_Node (S)));
4275 else
4276 Set_Parent (Decl, Parent (Parent (Etype (First_Formal (S)))));
4277 end if;
4279 Mark_Rewrite_Insertion (Decl);
4280 Set_Is_Intrinsic_Subprogram (Op_Name);
4281 Analyze (Decl);
4282 Set_Has_Completion (Op_Name);
4283 Set_Corresponding_Equality (Op_Name, S);
4284 Set_Is_Abstract (Op_Name, Is_Abstract (S));
4286 end Make_Inequality_Operator;
4288 ----------------------
4289 -- May_Need_Actuals --
4290 ----------------------
4292 procedure May_Need_Actuals (Fun : Entity_Id) is
4293 F : Entity_Id;
4294 B : Boolean;
4296 begin
4297 F := First_Formal (Fun);
4298 B := True;
4300 while Present (F) loop
4301 if No (Default_Value (F)) then
4302 B := False;
4303 exit;
4304 end if;
4306 Next_Formal (F);
4307 end loop;
4309 Set_Needs_No_Actuals (Fun, B);
4310 end May_Need_Actuals;
4312 ---------------------
4313 -- Mode_Conformant --
4314 ---------------------
4316 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
4317 Result : Boolean;
4319 begin
4320 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
4321 return Result;
4322 end Mode_Conformant;
4324 ---------------------------
4325 -- New_Overloaded_Entity --
4326 ---------------------------
4328 procedure New_Overloaded_Entity
4329 (S : Entity_Id;
4330 Derived_Type : Entity_Id := Empty)
4332 E : Entity_Id;
4333 -- Entity that S overrides
4335 Prev_Vis : Entity_Id := Empty;
4336 -- Needs comment ???
4338 function Is_Private_Declaration (E : Entity_Id) return Boolean;
4339 -- Check that E is declared in the private part of the current package,
4340 -- or in the package body, where it may hide a previous declaration.
4341 -- We can't use In_Private_Part by itself because this flag is also
4342 -- set when freezing entities, so we must examine the place of the
4343 -- declaration in the tree, and recognize wrapper packages as well.
4345 procedure Maybe_Primitive_Operation (Overriding : Boolean := False);
4346 -- If the subprogram being analyzed is a primitive operation of
4347 -- the type of one of its formals, set the corresponding flag.
4349 ----------------------------
4350 -- Is_Private_Declaration --
4351 ----------------------------
4353 function Is_Private_Declaration (E : Entity_Id) return Boolean is
4354 Priv_Decls : List_Id;
4355 Decl : constant Node_Id := Unit_Declaration_Node (E);
4357 begin
4358 if Is_Package (Current_Scope)
4359 and then In_Private_Part (Current_Scope)
4360 then
4361 Priv_Decls :=
4362 Private_Declarations (
4363 Specification (Unit_Declaration_Node (Current_Scope)));
4365 return In_Package_Body (Current_Scope)
4366 or else List_Containing (Decl) = Priv_Decls
4367 or else (Nkind (Parent (Decl)) = N_Package_Specification
4368 and then not Is_Compilation_Unit (
4369 Defining_Entity (Parent (Decl)))
4370 and then List_Containing (Parent (Parent (Decl)))
4371 = Priv_Decls);
4372 else
4373 return False;
4374 end if;
4375 end Is_Private_Declaration;
4377 -------------------------------
4378 -- Maybe_Primitive_Operation --
4379 -------------------------------
4381 procedure Maybe_Primitive_Operation (Overriding : Boolean := False) is
4382 Formal : Entity_Id;
4383 F_Typ : Entity_Id;
4384 B_Typ : Entity_Id;
4386 function Visible_Part_Type (T : Entity_Id) return Boolean;
4387 -- Returns true if T is declared in the visible part of
4388 -- the current package scope; otherwise returns false.
4389 -- Assumes that T is declared in a package.
4391 procedure Check_Private_Overriding (T : Entity_Id);
4392 -- Checks that if a primitive abstract subprogram of a visible
4393 -- abstract type is declared in a private part, then it must
4394 -- override an abstract subprogram declared in the visible part.
4395 -- Also checks that if a primitive function with a controlling
4396 -- result is declared in a private part, then it must override
4397 -- a function declared in the visible part.
4399 ------------------------------
4400 -- Check_Private_Overriding --
4401 ------------------------------
4403 procedure Check_Private_Overriding (T : Entity_Id) is
4404 begin
4405 if Ekind (Current_Scope) = E_Package
4406 and then In_Private_Part (Current_Scope)
4407 and then Visible_Part_Type (T)
4408 and then not In_Instance
4409 then
4410 if Is_Abstract (T)
4411 and then Is_Abstract (S)
4412 and then (not Overriding or else not Is_Abstract (E))
4413 then
4414 Error_Msg_N ("abstract subprograms must be visible "
4415 & "('R'M 3.9.3(10))!", S);
4417 elsif Ekind (S) = E_Function
4418 and then Is_Tagged_Type (T)
4419 and then T = Base_Type (Etype (S))
4420 and then not Overriding
4421 then
4422 Error_Msg_N
4423 ("private function with tagged result must"
4424 & " override visible-part function", S);
4425 Error_Msg_N
4426 ("\move subprogram to the visible part"
4427 & " ('R'M 3.9.3(10))", S);
4428 end if;
4429 end if;
4430 end Check_Private_Overriding;
4432 -----------------------
4433 -- Visible_Part_Type --
4434 -----------------------
4436 function Visible_Part_Type (T : Entity_Id) return Boolean is
4437 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
4438 N : Node_Id;
4440 begin
4441 -- If the entity is a private type, then it must be
4442 -- declared in a visible part.
4444 if Ekind (T) in Private_Kind then
4445 return True;
4446 end if;
4448 -- Otherwise, we traverse the visible part looking for its
4449 -- corresponding declaration. We cannot use the declaration
4450 -- node directly because in the private part the entity of a
4451 -- private type is the one in the full view, which does not
4452 -- indicate that it is the completion of something visible.
4454 N := First (Visible_Declarations (Specification (P)));
4455 while Present (N) loop
4456 if Nkind (N) = N_Full_Type_Declaration
4457 and then Present (Defining_Identifier (N))
4458 and then T = Defining_Identifier (N)
4459 then
4460 return True;
4462 elsif (Nkind (N) = N_Private_Type_Declaration
4463 or else
4464 Nkind (N) = N_Private_Extension_Declaration)
4465 and then Present (Defining_Identifier (N))
4466 and then T = Full_View (Defining_Identifier (N))
4467 then
4468 return True;
4469 end if;
4471 Next (N);
4472 end loop;
4474 return False;
4475 end Visible_Part_Type;
4477 -- Start of processing for Maybe_Primitive_Operation
4479 begin
4480 if not Comes_From_Source (S) then
4481 null;
4483 elsif (Ekind (Current_Scope) = E_Package
4484 and then not In_Package_Body (Current_Scope))
4485 or else Overriding
4486 then
4487 -- For function, check return type
4489 if Ekind (S) = E_Function then
4490 B_Typ := Base_Type (Etype (S));
4492 if Scope (B_Typ) = Current_Scope then
4493 Set_Has_Primitive_Operations (B_Typ);
4494 Check_Private_Overriding (B_Typ);
4495 end if;
4496 end if;
4498 -- For all subprograms, check formals
4500 Formal := First_Formal (S);
4501 while Present (Formal) loop
4502 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
4503 F_Typ := Designated_Type (Etype (Formal));
4504 else
4505 F_Typ := Etype (Formal);
4506 end if;
4508 B_Typ := Base_Type (F_Typ);
4510 if Scope (B_Typ) = Current_Scope then
4511 Set_Has_Primitive_Operations (B_Typ);
4512 Check_Private_Overriding (B_Typ);
4513 end if;
4515 Next_Formal (Formal);
4516 end loop;
4517 end if;
4518 end Maybe_Primitive_Operation;
4520 -- Start of processing for New_Overloaded_Entity
4522 begin
4523 -- We need to look for an entity that S may override. This must be a
4524 -- homonym in the current scope, so we look for the first homonym of
4525 -- S in the current scope as the starting point for the search.
4527 E := Current_Entity_In_Scope (S);
4529 -- If there is no homonym then this is definitely not overriding
4531 if No (E) then
4532 Enter_Overloaded_Entity (S);
4533 Check_Dispatching_Operation (S, Empty);
4534 Maybe_Primitive_Operation;
4536 -- If there is a homonym that is not overloadable, then we have an
4537 -- error, except for the special cases checked explicitly below.
4539 elsif not Is_Overloadable (E) then
4541 -- Check for spurious conflict produced by a subprogram that has the
4542 -- same name as that of the enclosing generic package. The conflict
4543 -- occurs within an instance, between the subprogram and the renaming
4544 -- declaration for the package. After the subprogram, the package
4545 -- renaming declaration becomes hidden.
4547 if Ekind (E) = E_Package
4548 and then Present (Renamed_Object (E))
4549 and then Renamed_Object (E) = Current_Scope
4550 and then Nkind (Parent (Renamed_Object (E))) =
4551 N_Package_Specification
4552 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
4553 then
4554 Set_Is_Hidden (E);
4555 Set_Is_Immediately_Visible (E, False);
4556 Enter_Overloaded_Entity (S);
4557 Set_Homonym (S, Homonym (E));
4558 Check_Dispatching_Operation (S, Empty);
4560 -- If the subprogram is implicit it is hidden by the previous
4561 -- declaration. However if it is dispatching, it must appear in
4562 -- the dispatch table anyway, because it can be dispatched to
4563 -- even if it cannot be called directly.
4565 elsif Present (Alias (S))
4566 and then not Comes_From_Source (S)
4567 then
4568 Set_Scope (S, Current_Scope);
4570 if Is_Dispatching_Operation (Alias (S)) then
4571 Check_Dispatching_Operation (S, Empty);
4572 end if;
4574 return;
4576 else
4577 Error_Msg_Sloc := Sloc (E);
4578 Error_Msg_N ("& conflicts with declaration#", S);
4580 -- Useful additional warning
4582 if Is_Generic_Unit (E) then
4583 Error_Msg_N ("\previous generic unit cannot be overloaded", S);
4584 end if;
4586 return;
4587 end if;
4589 -- E exists and is overloadable
4591 else
4592 -- Loop through E and its homonyms to determine if any of them
4593 -- is the candidate for overriding by S.
4595 while Present (E) loop
4597 -- Definitely not interesting if not in the current scope
4599 if Scope (E) /= Current_Scope then
4600 null;
4602 -- Check if we have type conformance
4604 elsif Type_Conformant (E, S) then
4606 -- If the old and new entities have the same profile and
4607 -- one is not the body of the other, then this is an error,
4608 -- unless one of them is implicitly declared.
4610 -- There are some cases when both can be implicit, for example
4611 -- when both a literal and a function that overrides it are
4612 -- inherited in a derivation, or when an inhertited operation
4613 -- of a tagged full type overrides the ineherited operation of
4614 -- a private extension. Ada 83 had a special rule for the
4615 -- the literal case. In Ada95, the later implicit operation
4616 -- hides the former, and the literal is always the former.
4617 -- In the odd case where both are derived operations declared
4618 -- at the same point, both operations should be declared,
4619 -- and in that case we bypass the following test and proceed
4620 -- to the next part (this can only occur for certain obscure
4621 -- cases involving homographs in instances and can't occur for
4622 -- dispatching operations ???). Note that the following
4623 -- condition is less than clear. For example, it's not at
4624 -- all clear why there's a test for E_Entry here. ???
4626 if Present (Alias (S))
4627 and then (No (Alias (E))
4628 or else Comes_From_Source (E)
4629 or else Is_Dispatching_Operation (E))
4630 and then
4631 (Ekind (E) = E_Entry
4632 or else Ekind (E) /= E_Enumeration_Literal)
4633 then
4634 -- When an derived operation is overloaded it may be due
4635 -- to the fact that the full view of a private extension
4636 -- re-inherits. It has to be dealt with.
4638 if Is_Package (Current_Scope)
4639 and then In_Private_Part (Current_Scope)
4640 then
4641 Check_Operation_From_Private_View (S, E);
4642 end if;
4644 -- In any case the implicit operation remains hidden by
4645 -- the existing declaration, which is overriding.
4647 Set_Is_Overriding_Operation (E);
4648 return;
4650 -- Within an instance, the renaming declarations for
4651 -- actual subprograms may become ambiguous, but they do
4652 -- not hide each other.
4654 elsif Ekind (E) /= E_Entry
4655 and then not Comes_From_Source (E)
4656 and then not Is_Generic_Instance (E)
4657 and then (Present (Alias (E))
4658 or else Is_Intrinsic_Subprogram (E))
4659 and then (not In_Instance
4660 or else No (Parent (E))
4661 or else Nkind (Unit_Declaration_Node (E)) /=
4662 N_Subprogram_Renaming_Declaration)
4663 then
4664 -- A subprogram child unit is not allowed to override
4665 -- an inherited subprogram (10.1.1(20)).
4667 if Is_Child_Unit (S) then
4668 Error_Msg_N
4669 ("child unit overrides inherited subprogram in parent",
4671 return;
4672 end if;
4674 if Is_Non_Overriding_Operation (E, S) then
4675 Enter_Overloaded_Entity (S);
4676 if not Present (Derived_Type)
4677 or else Is_Tagged_Type (Derived_Type)
4678 then
4679 Check_Dispatching_Operation (S, Empty);
4680 end if;
4682 return;
4683 end if;
4685 -- E is a derived operation or an internal operator which
4686 -- is being overridden. Remove E from further visibility.
4687 -- Furthermore, if E is a dispatching operation, it must be
4688 -- replaced in the list of primitive operations of its type
4689 -- (see Override_Dispatching_Operation).
4691 declare
4692 Prev : Entity_Id;
4694 begin
4695 Prev := First_Entity (Current_Scope);
4697 while Present (Prev)
4698 and then Next_Entity (Prev) /= E
4699 loop
4700 Next_Entity (Prev);
4701 end loop;
4703 -- It is possible for E to be in the current scope and
4704 -- yet not in the entity chain. This can only occur in a
4705 -- generic context where E is an implicit concatenation
4706 -- in the formal part, because in a generic body the
4707 -- entity chain starts with the formals.
4709 pragma Assert
4710 (Present (Prev) or else Chars (E) = Name_Op_Concat);
4712 -- E must be removed both from the entity_list of the
4713 -- current scope, and from the visibility chain
4715 if Debug_Flag_E then
4716 Write_Str ("Override implicit operation ");
4717 Write_Int (Int (E));
4718 Write_Eol;
4719 end if;
4721 -- If E is a predefined concatenation, it stands for four
4722 -- different operations. As a result, a single explicit
4723 -- declaration does not hide it. In a possible ambiguous
4724 -- situation, Disambiguate chooses the user-defined op,
4725 -- so it is correct to retain the previous internal one.
4727 if Chars (E) /= Name_Op_Concat
4728 or else Ekind (E) /= E_Operator
4729 then
4730 -- For nondispatching derived operations that are
4731 -- overridden by a subprogram declared in the private
4732 -- part of a package, we retain the derived subprogram
4733 -- but mark it as not immediately visible. If the
4734 -- derived operation was declared in the visible part
4735 -- then this ensures that it will still be visible
4736 -- outside the package with the proper signature
4737 -- (calls from outside must also be directed to this
4738 -- version rather than the overriding one, unlike the
4739 -- dispatching case). Calls from inside the package
4740 -- will still resolve to the overriding subprogram
4741 -- since the derived one is marked as not visible
4742 -- within the package.
4744 -- If the private operation is dispatching, we achieve
4745 -- the overriding by keeping the implicit operation
4746 -- but setting its alias to be the overring one. In
4747 -- this fashion the proper body is executed in all
4748 -- cases, but the original signature is used outside
4749 -- of the package.
4751 -- If the overriding is not in the private part, we
4752 -- remove the implicit operation altogether.
4754 if Is_Private_Declaration (S) then
4756 if not Is_Dispatching_Operation (E) then
4757 Set_Is_Immediately_Visible (E, False);
4758 else
4760 -- work done in Override_Dispatching_Operation.
4762 null;
4763 end if;
4765 else
4766 -- Find predecessor of E in Homonym chain
4768 if E = Current_Entity (E) then
4769 Prev_Vis := Empty;
4770 else
4771 Prev_Vis := Current_Entity (E);
4772 while Homonym (Prev_Vis) /= E loop
4773 Prev_Vis := Homonym (Prev_Vis);
4774 end loop;
4775 end if;
4777 if Prev_Vis /= Empty then
4779 -- Skip E in the visibility chain
4781 Set_Homonym (Prev_Vis, Homonym (E));
4783 else
4784 Set_Name_Entity_Id (Chars (E), Homonym (E));
4785 end if;
4787 Set_Next_Entity (Prev, Next_Entity (E));
4789 if No (Next_Entity (Prev)) then
4790 Set_Last_Entity (Current_Scope, Prev);
4791 end if;
4793 end if;
4794 end if;
4796 Enter_Overloaded_Entity (S);
4797 Set_Is_Overriding_Operation (S);
4799 if Is_Dispatching_Operation (E) then
4801 -- An overriding dispatching subprogram inherits
4802 -- the convention of the overridden subprogram
4803 -- (by AI-117).
4805 Set_Convention (S, Convention (E));
4807 Check_Dispatching_Operation (S, E);
4808 else
4809 Check_Dispatching_Operation (S, Empty);
4810 end if;
4812 Maybe_Primitive_Operation (Overriding => True);
4813 goto Check_Inequality;
4814 end;
4816 -- Apparent redeclarations in instances can occur when two
4817 -- formal types get the same actual type. The subprograms in
4818 -- in the instance are legal, even if not callable from the
4819 -- outside. Calls from within are disambiguated elsewhere.
4820 -- For dispatching operations in the visible part, the usual
4821 -- rules apply, and operations with the same profile are not
4822 -- legal (B830001).
4824 elsif (In_Instance_Visible_Part
4825 and then not Is_Dispatching_Operation (E))
4826 or else In_Instance_Not_Visible
4827 then
4828 null;
4830 -- Here we have a real error (identical profile)
4832 else
4833 Error_Msg_Sloc := Sloc (E);
4835 -- Avoid cascaded errors if the entity appears in
4836 -- subsequent calls.
4838 Set_Scope (S, Current_Scope);
4840 Error_Msg_N ("& conflicts with declaration#", S);
4842 if Is_Generic_Instance (S)
4843 and then not Has_Completion (E)
4844 then
4845 Error_Msg_N
4846 ("\instantiation cannot provide body for it", S);
4847 end if;
4849 return;
4850 end if;
4852 else
4853 null;
4854 end if;
4856 Prev_Vis := E;
4857 E := Homonym (E);
4858 end loop;
4860 -- On exit, we know that S is a new entity
4862 Enter_Overloaded_Entity (S);
4863 Maybe_Primitive_Operation;
4865 -- If S is a derived operation for an untagged type then
4866 -- by definition it's not a dispatching operation (even
4867 -- if the parent operation was dispatching), so we don't
4868 -- call Check_Dispatching_Operation in that case.
4870 if not Present (Derived_Type)
4871 or else Is_Tagged_Type (Derived_Type)
4872 then
4873 Check_Dispatching_Operation (S, Empty);
4874 end if;
4875 end if;
4877 -- If this is a user-defined equality operator that is not
4878 -- a derived subprogram, create the corresponding inequality.
4879 -- If the operation is dispatching, the expansion is done
4880 -- elsewhere, and we do not create an explicit inequality
4881 -- operation.
4883 <<Check_Inequality>>
4884 if Chars (S) = Name_Op_Eq
4885 and then Etype (S) = Standard_Boolean
4886 and then Present (Parent (S))
4887 and then not Is_Dispatching_Operation (S)
4888 then
4889 Make_Inequality_Operator (S);
4890 end if;
4891 end New_Overloaded_Entity;
4893 ---------------------
4894 -- Process_Formals --
4895 ---------------------
4897 procedure Process_Formals
4898 (T : List_Id;
4899 Related_Nod : Node_Id)
4901 Param_Spec : Node_Id;
4902 Formal : Entity_Id;
4903 Formal_Type : Entity_Id;
4904 Default : Node_Id;
4905 Ptype : Entity_Id;
4907 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
4908 -- Check whether the default has a class-wide type. After analysis
4909 -- the default has the type of the formal, so we must also check
4910 -- explicitly for an access attribute.
4912 ---------------------------
4913 -- Is_Class_Wide_Default --
4914 ---------------------------
4916 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
4917 begin
4918 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
4919 or else (Nkind (D) = N_Attribute_Reference
4920 and then Attribute_Name (D) = Name_Access
4921 and then Is_Class_Wide_Type (Etype (Prefix (D))));
4922 end Is_Class_Wide_Default;
4924 -- Start of processing for Process_Formals
4926 begin
4927 -- In order to prevent premature use of the formals in the same formal
4928 -- part, the Ekind is left undefined until all default expressions are
4929 -- analyzed. The Ekind is established in a separate loop at the end.
4931 Param_Spec := First (T);
4933 while Present (Param_Spec) loop
4935 Formal := Defining_Identifier (Param_Spec);
4936 Enter_Name (Formal);
4938 -- Case of ordinary parameters
4940 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
4941 Find_Type (Parameter_Type (Param_Spec));
4942 Ptype := Parameter_Type (Param_Spec);
4944 if Ptype = Error then
4945 goto Continue;
4946 end if;
4948 Formal_Type := Entity (Ptype);
4950 if Ekind (Formal_Type) = E_Incomplete_Type
4951 or else (Is_Class_Wide_Type (Formal_Type)
4952 and then Ekind (Root_Type (Formal_Type)) =
4953 E_Incomplete_Type)
4954 then
4955 -- Ada 0Y (AI-50217): Incomplete tagged types that are made
4956 -- visible through a limited with_clause are valid formal
4957 -- types.
4959 if From_With_Type (Formal_Type)
4960 and then Is_Tagged_Type (Formal_Type)
4961 then
4962 null;
4964 elsif Nkind (Parent (T)) /= N_Access_Function_Definition
4965 and then Nkind (Parent (T)) /= N_Access_Procedure_Definition
4966 then
4967 Error_Msg_N ("invalid use of incomplete type", Param_Spec);
4968 end if;
4970 elsif Ekind (Formal_Type) = E_Void then
4971 Error_Msg_NE ("premature use of&",
4972 Parameter_Type (Param_Spec), Formal_Type);
4973 end if;
4975 -- Ada 0Y (AI-231): Create and decorate an internal subtype
4976 -- declaration corresponding to the null-excluding type of the
4977 -- formal in the enclosing scope. In addition, replace the
4978 -- parameter type of the formal to this internal subtype.
4980 if Null_Exclusion_Present (Param_Spec) then
4981 declare
4982 Loc : constant Source_Ptr := Sloc (Param_Spec);
4984 Anon : constant Entity_Id :=
4985 Make_Defining_Identifier (Loc,
4986 Chars => New_Internal_Name ('S'));
4988 Curr_Scope : constant Scope_Stack_Entry :=
4989 Scope_Stack.Table (Scope_Stack.Last);
4991 Ptype : constant Node_Id := Parameter_Type (Param_Spec);
4992 Decl : Node_Id;
4993 P : Node_Id := Parent (Parent (Related_Nod));
4995 begin
4996 Set_Is_Internal (Anon);
4998 Decl :=
4999 Make_Subtype_Declaration (Loc,
5000 Defining_Identifier => Anon,
5001 Null_Exclusion_Present => True,
5002 Subtype_Indication =>
5003 New_Occurrence_Of (Etype (Ptype), Loc));
5005 -- Propagate the null-excluding attribute to the new entity
5007 if Null_Exclusion_Present (Param_Spec) then
5008 Set_Null_Exclusion_Present (Param_Spec, False);
5009 Set_Can_Never_Be_Null (Anon);
5010 end if;
5012 Mark_Rewrite_Insertion (Decl);
5014 -- Insert the new declaration in the nearest enclosing scope
5016 while not Has_Declarations (P) loop
5017 P := Parent (P);
5018 end loop;
5020 Prepend (Decl, Declarations (P));
5022 Rewrite (Ptype, New_Occurrence_Of (Anon, Loc));
5023 Mark_Rewrite_Insertion (Ptype);
5025 -- Analyze the new declaration in the context of the
5026 -- enclosing scope
5028 Scope_Stack.Decrement_Last;
5029 Analyze (Decl);
5030 Scope_Stack.Append (Curr_Scope);
5032 Formal_Type := Anon;
5033 end;
5034 end if;
5036 -- Ada 0Y (AI-231): Static checks
5038 if Null_Exclusion_Present (Param_Spec)
5039 or else Can_Never_Be_Null (Entity (Ptype))
5040 then
5041 Null_Exclusion_Static_Checks (Param_Spec);
5042 end if;
5044 -- An access formal type
5046 else
5047 Formal_Type :=
5048 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
5050 -- Ada 0Y (AI-254)
5052 declare
5053 AD : constant Node_Id :=
5054 Access_To_Subprogram_Definition
5055 (Parameter_Type (Param_Spec));
5056 begin
5057 if Present (AD) and then Protected_Present (AD) then
5058 Formal_Type :=
5059 Replace_Anonymous_Access_To_Protected_Subprogram
5060 (Param_Spec, Formal_Type);
5061 end if;
5062 end;
5063 end if;
5065 Set_Etype (Formal, Formal_Type);
5066 Default := Expression (Param_Spec);
5068 if Present (Default) then
5069 if Out_Present (Param_Spec) then
5070 Error_Msg_N
5071 ("default initialization only allowed for IN parameters",
5072 Param_Spec);
5073 end if;
5075 -- Do the special preanalysis of the expression (see section on
5076 -- "Handling of Default Expressions" in the spec of package Sem).
5078 Analyze_Per_Use_Expression (Default, Formal_Type);
5080 -- Check that the designated type of an access parameter's
5081 -- default is not a class-wide type unless the parameter's
5082 -- designated type is also class-wide.
5084 if Ekind (Formal_Type) = E_Anonymous_Access_Type
5085 and then Is_Class_Wide_Default (Default)
5086 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
5087 then
5088 Error_Msg_N
5089 ("access to class-wide expression not allowed here", Default);
5090 end if;
5091 end if;
5093 <<Continue>>
5094 Next (Param_Spec);
5095 end loop;
5097 -- Now set the kind (mode) of each formal
5099 Param_Spec := First (T);
5101 while Present (Param_Spec) loop
5102 Formal := Defining_Identifier (Param_Spec);
5103 Set_Formal_Mode (Formal);
5105 if Ekind (Formal) = E_In_Parameter then
5106 Set_Default_Value (Formal, Expression (Param_Spec));
5108 if Present (Expression (Param_Spec)) then
5109 Default := Expression (Param_Spec);
5111 if Is_Scalar_Type (Etype (Default)) then
5112 if Nkind
5113 (Parameter_Type (Param_Spec)) /= N_Access_Definition
5114 then
5115 Formal_Type := Entity (Parameter_Type (Param_Spec));
5117 else
5118 Formal_Type := Access_Definition
5119 (Related_Nod, Parameter_Type (Param_Spec));
5120 end if;
5122 Apply_Scalar_Range_Check (Default, Formal_Type);
5123 end if;
5124 end if;
5125 end if;
5127 Next (Param_Spec);
5128 end loop;
5130 end Process_Formals;
5132 ----------------------------
5133 -- Reference_Body_Formals --
5134 ----------------------------
5136 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
5137 Fs : Entity_Id;
5138 Fb : Entity_Id;
5140 begin
5141 if Error_Posted (Spec) then
5142 return;
5143 end if;
5145 Fs := First_Formal (Spec);
5146 Fb := First_Formal (Bod);
5148 while Present (Fs) loop
5149 Generate_Reference (Fs, Fb, 'b');
5151 if Style_Check then
5152 Style.Check_Identifier (Fb, Fs);
5153 end if;
5155 Set_Spec_Entity (Fb, Fs);
5156 Set_Referenced (Fs, False);
5157 Next_Formal (Fs);
5158 Next_Formal (Fb);
5159 end loop;
5160 end Reference_Body_Formals;
5162 -------------------------
5163 -- Set_Actual_Subtypes --
5164 -------------------------
5166 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
5167 Loc : constant Source_Ptr := Sloc (N);
5168 Decl : Node_Id;
5169 Formal : Entity_Id;
5170 T : Entity_Id;
5171 First_Stmt : Node_Id := Empty;
5172 AS_Needed : Boolean;
5174 begin
5175 -- If this is an emtpy initialization procedure, no need to create
5176 -- actual subtypes (small optimization).
5178 if Ekind (Subp) = E_Procedure
5179 and then Is_Null_Init_Proc (Subp)
5180 then
5181 return;
5182 end if;
5184 Formal := First_Formal (Subp);
5185 while Present (Formal) loop
5186 T := Etype (Formal);
5188 -- We never need an actual subtype for a constrained formal.
5190 if Is_Constrained (T) then
5191 AS_Needed := False;
5193 -- If we have unknown discriminants, then we do not need an
5194 -- actual subtype, or more accurately we cannot figure it out!
5195 -- Note that all class-wide types have unknown discriminants.
5197 elsif Has_Unknown_Discriminants (T) then
5198 AS_Needed := False;
5200 -- At this stage we have an unconstrained type that may need
5201 -- an actual subtype. For sure the actual subtype is needed
5202 -- if we have an unconstrained array type.
5204 elsif Is_Array_Type (T) then
5205 AS_Needed := True;
5207 -- The only other case which needs an actual subtype is an
5208 -- unconstrained record type which is an IN parameter (we
5209 -- cannot generate actual subtypes for the OUT or IN OUT case,
5210 -- since an assignment can change the discriminant values.
5211 -- However we exclude the case of initialization procedures,
5212 -- since discriminants are handled very specially in this context,
5213 -- see the section entitled "Handling of Discriminants" in Einfo.
5214 -- We also exclude the case of Discrim_SO_Functions (functions
5215 -- used in front end layout mode for size/offset values), since
5216 -- in such functions only discriminants are referenced, and not
5217 -- only are such subtypes not needed, but they cannot always
5218 -- be generated, because of order of elaboration issues.
5220 elsif Is_Record_Type (T)
5221 and then Ekind (Formal) = E_In_Parameter
5222 and then Chars (Formal) /= Name_uInit
5223 and then not Is_Discrim_SO_Function (Subp)
5224 then
5225 AS_Needed := True;
5227 -- All other cases do not need an actual subtype
5229 else
5230 AS_Needed := False;
5231 end if;
5233 -- Generate actual subtypes for unconstrained arrays and
5234 -- unconstrained discriminated records.
5236 if AS_Needed then
5237 if Nkind (N) = N_Accept_Statement then
5239 -- If expansion is active, The formal is replaced by a local
5240 -- variable that renames the corresponding entry of the
5241 -- parameter block, and it is this local variable that may
5242 -- require an actual subtype.
5244 if Expander_Active then
5245 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
5246 else
5247 Decl := Build_Actual_Subtype (T, Formal);
5248 end if;
5250 if Present (Handled_Statement_Sequence (N)) then
5251 First_Stmt :=
5252 First (Statements (Handled_Statement_Sequence (N)));
5253 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
5254 Mark_Rewrite_Insertion (Decl);
5255 else
5256 -- If the accept statement has no body, there will be
5257 -- no reference to the actuals, so no need to compute
5258 -- actual subtypes.
5260 return;
5261 end if;
5263 else
5264 Decl := Build_Actual_Subtype (T, Formal);
5265 Prepend (Decl, Declarations (N));
5266 Mark_Rewrite_Insertion (Decl);
5267 end if;
5269 -- The declaration uses the bounds of an existing object,
5270 -- and therefore needs no constraint checks.
5272 Analyze (Decl, Suppress => All_Checks);
5274 -- We need to freeze manually the generated type when it is
5275 -- inserted anywhere else than in a declarative part.
5277 if Present (First_Stmt) then
5278 Insert_List_Before_And_Analyze (First_Stmt,
5279 Freeze_Entity (Defining_Identifier (Decl), Loc));
5280 end if;
5282 if Nkind (N) = N_Accept_Statement
5283 and then Expander_Active
5284 then
5285 Set_Actual_Subtype (Renamed_Object (Formal),
5286 Defining_Identifier (Decl));
5287 else
5288 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
5289 end if;
5290 end if;
5292 Next_Formal (Formal);
5293 end loop;
5294 end Set_Actual_Subtypes;
5296 ---------------------
5297 -- Set_Formal_Mode --
5298 ---------------------
5300 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
5301 Spec : constant Node_Id := Parent (Formal_Id);
5303 begin
5304 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
5305 -- since we ensure that corresponding actuals are always valid at the
5306 -- point of the call.
5308 if Out_Present (Spec) then
5309 if Ekind (Scope (Formal_Id)) = E_Function
5310 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
5311 then
5312 Error_Msg_N ("functions can only have IN parameters", Spec);
5313 Set_Ekind (Formal_Id, E_In_Parameter);
5315 elsif In_Present (Spec) then
5316 Set_Ekind (Formal_Id, E_In_Out_Parameter);
5318 else
5319 Set_Ekind (Formal_Id, E_Out_Parameter);
5320 Set_Never_Set_In_Source (Formal_Id, True);
5321 Set_Is_True_Constant (Formal_Id, False);
5322 Set_Current_Value (Formal_Id, Empty);
5323 end if;
5325 else
5326 Set_Ekind (Formal_Id, E_In_Parameter);
5327 end if;
5329 -- Set Is_Known_Non_Null for access parameters since the language
5330 -- guarantees that access parameters are always non-null. We also
5331 -- set Can_Never_Be_Null, since there is no way to change the value.
5333 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
5335 -- Ada 0Y (AI-231): This behaviour has been modified in Ada 0Y.
5336 -- It is only forced if the null_exclusion appears.
5338 if not Extensions_Allowed
5339 or else Null_Exclusion_Present (Spec)
5340 then
5341 Set_Is_Known_Non_Null (Formal_Id);
5342 Set_Can_Never_Be_Null (Formal_Id);
5343 end if;
5344 end if;
5346 Set_Mechanism (Formal_Id, Default_Mechanism);
5347 Set_Formal_Validity (Formal_Id);
5348 end Set_Formal_Mode;
5350 -------------------------
5351 -- Set_Formal_Validity --
5352 -------------------------
5354 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
5355 begin
5356 -- If no validity checking, then we cannot assume anything about
5357 -- the validity of parameters, since we do not know there is any
5358 -- checking of the validity on the call side.
5360 if not Validity_Checks_On then
5361 return;
5363 -- If validity checking for parameters is enabled, this means we are
5364 -- not supposed to make any assumptions about argument values.
5366 elsif Validity_Check_Parameters then
5367 return;
5369 -- If we are checking in parameters, we will assume that the caller is
5370 -- also checking parameters, so we can assume the parameter is valid.
5372 elsif Ekind (Formal_Id) = E_In_Parameter
5373 and then Validity_Check_In_Params
5374 then
5375 Set_Is_Known_Valid (Formal_Id, True);
5377 -- Similar treatment for IN OUT parameters
5379 elsif Ekind (Formal_Id) = E_In_Out_Parameter
5380 and then Validity_Check_In_Out_Params
5381 then
5382 Set_Is_Known_Valid (Formal_Id, True);
5383 end if;
5384 end Set_Formal_Validity;
5386 ------------------------
5387 -- Subtype_Conformant --
5388 ------------------------
5390 function Subtype_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
5391 Result : Boolean;
5393 begin
5394 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result);
5395 return Result;
5396 end Subtype_Conformant;
5398 ---------------------
5399 -- Type_Conformant --
5400 ---------------------
5402 function Type_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
5403 Result : Boolean;
5404 begin
5405 Check_Conformance (New_Id, Old_Id, Type_Conformant, False, Result);
5406 return Result;
5407 end Type_Conformant;
5409 -------------------------------
5410 -- Valid_Operator_Definition --
5411 -------------------------------
5413 procedure Valid_Operator_Definition (Designator : Entity_Id) is
5414 N : Integer := 0;
5415 F : Entity_Id;
5416 Id : constant Name_Id := Chars (Designator);
5417 N_OK : Boolean;
5419 begin
5420 F := First_Formal (Designator);
5422 while Present (F) loop
5423 N := N + 1;
5425 if Present (Default_Value (F)) then
5426 Error_Msg_N
5427 ("default values not allowed for operator parameters",
5428 Parent (F));
5429 end if;
5431 Next_Formal (F);
5432 end loop;
5434 -- Verify that user-defined operators have proper number of arguments
5435 -- First case of operators which can only be unary
5437 if Id = Name_Op_Not
5438 or else Id = Name_Op_Abs
5439 then
5440 N_OK := (N = 1);
5442 -- Case of operators which can be unary or binary
5444 elsif Id = Name_Op_Add
5445 or Id = Name_Op_Subtract
5446 then
5447 N_OK := (N in 1 .. 2);
5449 -- All other operators can only be binary
5451 else
5452 N_OK := (N = 2);
5453 end if;
5455 if not N_OK then
5456 Error_Msg_N
5457 ("incorrect number of arguments for operator", Designator);
5458 end if;
5460 if Id = Name_Op_Ne
5461 and then Base_Type (Etype (Designator)) = Standard_Boolean
5462 and then not Is_Intrinsic_Subprogram (Designator)
5463 then
5464 Error_Msg_N
5465 ("explicit definition of inequality not allowed", Designator);
5466 end if;
5467 end Valid_Operator_Definition;
5469 end Sem_Ch6;