1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
27 #include "fold-const.h"
28 #include "stor-layout.h"
29 #include "stringpool.h"
31 #include "print-tree.h"
36 #include "insn-config.h"
44 #include "diagnostic-core.h"
46 #include "langhooks.h"
50 #include "tree-inline.h"
51 #include "tree-dump.h"
54 /* Data type for the expressions representing sizes of data types.
55 It is the first integer type laid out. */
56 tree sizetype_tab
[(int) stk_type_kind_last
];
58 /* If nonzero, this is an upper limit on alignment of structure fields.
59 The value is measured in bits. */
60 unsigned int maximum_field_alignment
= TARGET_DEFAULT_PACK_STRUCT
* BITS_PER_UNIT
;
62 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
63 in the address spaces' address_mode, not pointer_mode. Set only by
64 internal_reference_types called only by a front end. */
65 static int reference_types_internal
= 0;
67 static tree
self_referential_size (tree
);
68 static void finalize_record_size (record_layout_info
);
69 static void finalize_type_size (tree
);
70 static void place_union_field (record_layout_info
, tree
);
71 static int excess_unit_span (HOST_WIDE_INT
, HOST_WIDE_INT
, HOST_WIDE_INT
,
73 extern void debug_rli (record_layout_info
);
75 /* Show that REFERENCE_TYPES are internal and should use address_mode.
76 Called only by front end. */
79 internal_reference_types (void)
81 reference_types_internal
= 1;
84 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
85 to serve as the actual size-expression for a type or decl. */
88 variable_size (tree size
)
91 if (TREE_CONSTANT (size
))
94 /* If the size is self-referential, we can't make a SAVE_EXPR (see
95 save_expr for the rationale). But we can do something else. */
96 if (CONTAINS_PLACEHOLDER_P (size
))
97 return self_referential_size (size
);
99 /* If we are in the global binding level, we can't make a SAVE_EXPR
100 since it may end up being shared across functions, so it is up
101 to the front-end to deal with this case. */
102 if (lang_hooks
.decls
.global_bindings_p ())
105 return save_expr (size
);
108 /* An array of functions used for self-referential size computation. */
109 static GTY(()) vec
<tree
, va_gc
> *size_functions
;
111 /* Return true if T is a self-referential component reference. */
114 self_referential_component_ref_p (tree t
)
116 if (TREE_CODE (t
) != COMPONENT_REF
)
119 while (REFERENCE_CLASS_P (t
))
120 t
= TREE_OPERAND (t
, 0);
122 return (TREE_CODE (t
) == PLACEHOLDER_EXPR
);
125 /* Similar to copy_tree_r but do not copy component references involving
126 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
127 and substituted in substitute_in_expr. */
130 copy_self_referential_tree_r (tree
*tp
, int *walk_subtrees
, void *data
)
132 enum tree_code code
= TREE_CODE (*tp
);
134 /* Stop at types, decls, constants like copy_tree_r. */
135 if (TREE_CODE_CLASS (code
) == tcc_type
136 || TREE_CODE_CLASS (code
) == tcc_declaration
137 || TREE_CODE_CLASS (code
) == tcc_constant
)
143 /* This is the pattern built in ada/make_aligning_type. */
144 else if (code
== ADDR_EXPR
145 && TREE_CODE (TREE_OPERAND (*tp
, 0)) == PLACEHOLDER_EXPR
)
151 /* Default case: the component reference. */
152 else if (self_referential_component_ref_p (*tp
))
158 /* We're not supposed to have them in self-referential size trees
159 because we wouldn't properly control when they are evaluated.
160 However, not creating superfluous SAVE_EXPRs requires accurate
161 tracking of readonly-ness all the way down to here, which we
162 cannot always guarantee in practice. So punt in this case. */
163 else if (code
== SAVE_EXPR
)
164 return error_mark_node
;
166 else if (code
== STATEMENT_LIST
)
169 return copy_tree_r (tp
, walk_subtrees
, data
);
172 /* Given a SIZE expression that is self-referential, return an equivalent
173 expression to serve as the actual size expression for a type. */
176 self_referential_size (tree size
)
178 static unsigned HOST_WIDE_INT fnno
= 0;
179 vec
<tree
> self_refs
= vNULL
;
180 tree param_type_list
= NULL
, param_decl_list
= NULL
;
181 tree t
, ref
, return_type
, fntype
, fnname
, fndecl
;
184 vec
<tree
, va_gc
> *args
= NULL
;
186 /* Do not factor out simple operations. */
187 t
= skip_simple_constant_arithmetic (size
);
188 if (TREE_CODE (t
) == CALL_EXPR
|| self_referential_component_ref_p (t
))
191 /* Collect the list of self-references in the expression. */
192 find_placeholder_in_expr (size
, &self_refs
);
193 gcc_assert (self_refs
.length () > 0);
195 /* Obtain a private copy of the expression. */
197 if (walk_tree (&t
, copy_self_referential_tree_r
, NULL
, NULL
) != NULL_TREE
)
201 /* Build the parameter and argument lists in parallel; also
202 substitute the former for the latter in the expression. */
203 vec_alloc (args
, self_refs
.length ());
204 FOR_EACH_VEC_ELT (self_refs
, i
, ref
)
206 tree subst
, param_name
, param_type
, param_decl
;
210 /* We shouldn't have true variables here. */
211 gcc_assert (TREE_READONLY (ref
));
214 /* This is the pattern built in ada/make_aligning_type. */
215 else if (TREE_CODE (ref
) == ADDR_EXPR
)
217 /* Default case: the component reference. */
219 subst
= TREE_OPERAND (ref
, 1);
221 sprintf (buf
, "p%d", i
);
222 param_name
= get_identifier (buf
);
223 param_type
= TREE_TYPE (ref
);
225 = build_decl (input_location
, PARM_DECL
, param_name
, param_type
);
226 DECL_ARG_TYPE (param_decl
) = param_type
;
227 DECL_ARTIFICIAL (param_decl
) = 1;
228 TREE_READONLY (param_decl
) = 1;
230 size
= substitute_in_expr (size
, subst
, param_decl
);
232 param_type_list
= tree_cons (NULL_TREE
, param_type
, param_type_list
);
233 param_decl_list
= chainon (param_decl
, param_decl_list
);
234 args
->quick_push (ref
);
237 self_refs
.release ();
239 /* Append 'void' to indicate that the number of parameters is fixed. */
240 param_type_list
= tree_cons (NULL_TREE
, void_type_node
, param_type_list
);
242 /* The 3 lists have been created in reverse order. */
243 param_type_list
= nreverse (param_type_list
);
244 param_decl_list
= nreverse (param_decl_list
);
246 /* Build the function type. */
247 return_type
= TREE_TYPE (size
);
248 fntype
= build_function_type (return_type
, param_type_list
);
250 /* Build the function declaration. */
251 sprintf (buf
, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED
, fnno
++);
252 fnname
= get_file_function_name (buf
);
253 fndecl
= build_decl (input_location
, FUNCTION_DECL
, fnname
, fntype
);
254 for (t
= param_decl_list
; t
; t
= DECL_CHAIN (t
))
255 DECL_CONTEXT (t
) = fndecl
;
256 DECL_ARGUMENTS (fndecl
) = param_decl_list
;
258 = build_decl (input_location
, RESULT_DECL
, 0, return_type
);
259 DECL_CONTEXT (DECL_RESULT (fndecl
)) = fndecl
;
261 /* The function has been created by the compiler and we don't
262 want to emit debug info for it. */
263 DECL_ARTIFICIAL (fndecl
) = 1;
264 DECL_IGNORED_P (fndecl
) = 1;
266 /* It is supposed to be "const" and never throw. */
267 TREE_READONLY (fndecl
) = 1;
268 TREE_NOTHROW (fndecl
) = 1;
270 /* We want it to be inlined when this is deemed profitable, as
271 well as discarded if every call has been integrated. */
272 DECL_DECLARED_INLINE_P (fndecl
) = 1;
274 /* It is made up of a unique return statement. */
275 DECL_INITIAL (fndecl
) = make_node (BLOCK
);
276 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl
)) = fndecl
;
277 t
= build2 (MODIFY_EXPR
, return_type
, DECL_RESULT (fndecl
), size
);
278 DECL_SAVED_TREE (fndecl
) = build1 (RETURN_EXPR
, void_type_node
, t
);
279 TREE_STATIC (fndecl
) = 1;
281 /* Put it onto the list of size functions. */
282 vec_safe_push (size_functions
, fndecl
);
284 /* Replace the original expression with a call to the size function. */
285 return build_call_expr_loc_vec (UNKNOWN_LOCATION
, fndecl
, args
);
288 /* Take, queue and compile all the size functions. It is essential that
289 the size functions be gimplified at the very end of the compilation
290 in order to guarantee transparent handling of self-referential sizes.
291 Otherwise the GENERIC inliner would not be able to inline them back
292 at each of their call sites, thus creating artificial non-constant
293 size expressions which would trigger nasty problems later on. */
296 finalize_size_functions (void)
301 for (i
= 0; size_functions
&& size_functions
->iterate (i
, &fndecl
); i
++)
303 allocate_struct_function (fndecl
, false);
305 dump_function (TDI_original
, fndecl
);
306 gimplify_function_tree (fndecl
);
307 cgraph_node::finalize_function (fndecl
, false);
310 vec_free (size_functions
);
313 /* Return the machine mode to use for a nonscalar of SIZE bits. The
314 mode must be in class MCLASS, and have exactly that many value bits;
315 it may have padding as well. If LIMIT is nonzero, modes of wider
316 than MAX_FIXED_MODE_SIZE will not be used. */
319 mode_for_size (unsigned int size
, enum mode_class mclass
, int limit
)
324 if (limit
&& size
> MAX_FIXED_MODE_SIZE
)
327 /* Get the first mode which has this size, in the specified class. */
328 for (mode
= GET_CLASS_NARROWEST_MODE (mclass
); mode
!= VOIDmode
;
329 mode
= GET_MODE_WIDER_MODE (mode
))
330 if (GET_MODE_PRECISION (mode
) == size
)
333 if (mclass
== MODE_INT
|| mclass
== MODE_PARTIAL_INT
)
334 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
335 if (int_n_data
[i
].bitsize
== size
336 && int_n_enabled_p
[i
])
337 return int_n_data
[i
].m
;
342 /* Similar, except passed a tree node. */
345 mode_for_size_tree (const_tree size
, enum mode_class mclass
, int limit
)
347 unsigned HOST_WIDE_INT uhwi
;
350 if (!tree_fits_uhwi_p (size
))
352 uhwi
= tree_to_uhwi (size
);
356 return mode_for_size (ui
, mclass
, limit
);
359 /* Similar, but never return BLKmode; return the narrowest mode that
360 contains at least the requested number of value bits. */
363 smallest_mode_for_size (unsigned int size
, enum mode_class mclass
)
365 machine_mode mode
= VOIDmode
;
368 /* Get the first mode which has at least this size, in the
370 for (mode
= GET_CLASS_NARROWEST_MODE (mclass
); mode
!= VOIDmode
;
371 mode
= GET_MODE_WIDER_MODE (mode
))
372 if (GET_MODE_PRECISION (mode
) >= size
)
375 if (mclass
== MODE_INT
|| mclass
== MODE_PARTIAL_INT
)
376 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
377 if (int_n_data
[i
].bitsize
>= size
378 && int_n_data
[i
].bitsize
< GET_MODE_PRECISION (mode
)
379 && int_n_enabled_p
[i
])
380 mode
= int_n_data
[i
].m
;
382 if (mode
== VOIDmode
)
388 /* Find an integer mode of the exact same size, or BLKmode on failure. */
391 int_mode_for_mode (machine_mode mode
)
393 switch (GET_MODE_CLASS (mode
))
396 case MODE_PARTIAL_INT
:
399 case MODE_COMPLEX_INT
:
400 case MODE_COMPLEX_FLOAT
:
402 case MODE_DECIMAL_FLOAT
:
403 case MODE_VECTOR_INT
:
404 case MODE_VECTOR_FLOAT
:
409 case MODE_VECTOR_FRACT
:
410 case MODE_VECTOR_ACCUM
:
411 case MODE_VECTOR_UFRACT
:
412 case MODE_VECTOR_UACCUM
:
413 case MODE_POINTER_BOUNDS
:
414 mode
= mode_for_size (GET_MODE_BITSIZE (mode
), MODE_INT
, 0);
421 /* ... fall through ... */
431 /* Find a mode that can be used for efficient bitwise operations on MODE.
432 Return BLKmode if no such mode exists. */
435 bitwise_mode_for_mode (machine_mode mode
)
437 /* Quick exit if we already have a suitable mode. */
438 unsigned int bitsize
= GET_MODE_BITSIZE (mode
);
439 if (SCALAR_INT_MODE_P (mode
) && bitsize
<= MAX_FIXED_MODE_SIZE
)
442 /* Reuse the sanity checks from int_mode_for_mode. */
443 gcc_checking_assert ((int_mode_for_mode (mode
), true));
445 /* Try to replace complex modes with complex modes. In general we
446 expect both components to be processed independently, so we only
447 care whether there is a register for the inner mode. */
448 if (COMPLEX_MODE_P (mode
))
450 machine_mode trial
= mode
;
451 if (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
)
452 trial
= mode_for_size (bitsize
, MODE_COMPLEX_INT
, false);
454 && have_regs_of_mode
[GET_MODE_INNER (trial
)])
458 /* Try to replace vector modes with vector modes. Also try using vector
459 modes if an integer mode would be too big. */
460 if (VECTOR_MODE_P (mode
) || bitsize
> MAX_FIXED_MODE_SIZE
)
462 machine_mode trial
= mode
;
463 if (GET_MODE_CLASS (mode
) != MODE_VECTOR_INT
)
464 trial
= mode_for_size (bitsize
, MODE_VECTOR_INT
, 0);
466 && have_regs_of_mode
[trial
]
467 && targetm
.vector_mode_supported_p (trial
))
471 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
472 return mode_for_size (bitsize
, MODE_INT
, true);
475 /* Find a type that can be used for efficient bitwise operations on MODE.
476 Return null if no such mode exists. */
479 bitwise_type_for_mode (machine_mode mode
)
481 mode
= bitwise_mode_for_mode (mode
);
485 unsigned int inner_size
= GET_MODE_UNIT_BITSIZE (mode
);
486 tree inner_type
= build_nonstandard_integer_type (inner_size
, true);
488 if (VECTOR_MODE_P (mode
))
489 return build_vector_type_for_mode (inner_type
, mode
);
491 if (COMPLEX_MODE_P (mode
))
492 return build_complex_type (inner_type
);
494 gcc_checking_assert (GET_MODE_INNER (mode
) == VOIDmode
);
498 /* Find a mode that is suitable for representing a vector with
499 NUNITS elements of mode INNERMODE. Returns BLKmode if there
500 is no suitable mode. */
503 mode_for_vector (machine_mode innermode
, unsigned nunits
)
507 /* First, look for a supported vector type. */
508 if (SCALAR_FLOAT_MODE_P (innermode
))
509 mode
= MIN_MODE_VECTOR_FLOAT
;
510 else if (SCALAR_FRACT_MODE_P (innermode
))
511 mode
= MIN_MODE_VECTOR_FRACT
;
512 else if (SCALAR_UFRACT_MODE_P (innermode
))
513 mode
= MIN_MODE_VECTOR_UFRACT
;
514 else if (SCALAR_ACCUM_MODE_P (innermode
))
515 mode
= MIN_MODE_VECTOR_ACCUM
;
516 else if (SCALAR_UACCUM_MODE_P (innermode
))
517 mode
= MIN_MODE_VECTOR_UACCUM
;
519 mode
= MIN_MODE_VECTOR_INT
;
521 /* Do not check vector_mode_supported_p here. We'll do that
522 later in vector_type_mode. */
523 for (; mode
!= VOIDmode
; mode
= GET_MODE_WIDER_MODE (mode
))
524 if (GET_MODE_NUNITS (mode
) == nunits
525 && GET_MODE_INNER (mode
) == innermode
)
528 /* For integers, try mapping it to a same-sized scalar mode. */
530 && GET_MODE_CLASS (innermode
) == MODE_INT
)
531 mode
= mode_for_size (nunits
* GET_MODE_BITSIZE (innermode
),
535 || (GET_MODE_CLASS (mode
) == MODE_INT
536 && !have_regs_of_mode
[mode
]))
542 /* Return the alignment of MODE. This will be bounded by 1 and
543 BIGGEST_ALIGNMENT. */
546 get_mode_alignment (machine_mode mode
)
548 return MIN (BIGGEST_ALIGNMENT
, MAX (1, mode_base_align
[mode
]*BITS_PER_UNIT
));
551 /* Return the precision of the mode, or for a complex or vector mode the
552 precision of the mode of its elements. */
555 element_precision (machine_mode mode
)
557 if (COMPLEX_MODE_P (mode
) || VECTOR_MODE_P (mode
))
558 mode
= GET_MODE_INNER (mode
);
560 return GET_MODE_PRECISION (mode
);
563 /* Return the natural mode of an array, given that it is SIZE bytes in
564 total and has elements of type ELEM_TYPE. */
567 mode_for_array (tree elem_type
, tree size
)
570 unsigned HOST_WIDE_INT int_size
, int_elem_size
;
573 /* One-element arrays get the component type's mode. */
574 elem_size
= TYPE_SIZE (elem_type
);
575 if (simple_cst_equal (size
, elem_size
))
576 return TYPE_MODE (elem_type
);
579 if (tree_fits_uhwi_p (size
) && tree_fits_uhwi_p (elem_size
))
581 int_size
= tree_to_uhwi (size
);
582 int_elem_size
= tree_to_uhwi (elem_size
);
583 if (int_elem_size
> 0
584 && int_size
% int_elem_size
== 0
585 && targetm
.array_mode_supported_p (TYPE_MODE (elem_type
),
586 int_size
/ int_elem_size
))
589 return mode_for_size_tree (size
, MODE_INT
, limit_p
);
592 /* Subroutine of layout_decl: Force alignment required for the data type.
593 But if the decl itself wants greater alignment, don't override that. */
596 do_type_align (tree type
, tree decl
)
598 if (TYPE_ALIGN (type
) > DECL_ALIGN (decl
))
600 DECL_ALIGN (decl
) = TYPE_ALIGN (type
);
601 if (TREE_CODE (decl
) == FIELD_DECL
)
602 DECL_USER_ALIGN (decl
) = TYPE_USER_ALIGN (type
);
606 /* Set the size, mode and alignment of a ..._DECL node.
607 TYPE_DECL does need this for C++.
608 Note that LABEL_DECL and CONST_DECL nodes do not need this,
609 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
610 Don't call layout_decl for them.
612 KNOWN_ALIGN is the amount of alignment we can assume this
613 decl has with no special effort. It is relevant only for FIELD_DECLs
614 and depends on the previous fields.
615 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
616 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
617 the record will be aligned to suit. */
620 layout_decl (tree decl
, unsigned int known_align
)
622 tree type
= TREE_TYPE (decl
);
623 enum tree_code code
= TREE_CODE (decl
);
625 location_t loc
= DECL_SOURCE_LOCATION (decl
);
627 if (code
== CONST_DECL
)
630 gcc_assert (code
== VAR_DECL
|| code
== PARM_DECL
|| code
== RESULT_DECL
631 || code
== TYPE_DECL
||code
== FIELD_DECL
);
633 rtl
= DECL_RTL_IF_SET (decl
);
635 if (type
== error_mark_node
)
636 type
= void_type_node
;
638 /* Usually the size and mode come from the data type without change,
639 however, the front-end may set the explicit width of the field, so its
640 size may not be the same as the size of its type. This happens with
641 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
642 also happens with other fields. For example, the C++ front-end creates
643 zero-sized fields corresponding to empty base classes, and depends on
644 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
645 size in bytes from the size in bits. If we have already set the mode,
646 don't set it again since we can be called twice for FIELD_DECLs. */
648 DECL_UNSIGNED (decl
) = TYPE_UNSIGNED (type
);
649 if (DECL_MODE (decl
) == VOIDmode
)
650 DECL_MODE (decl
) = TYPE_MODE (type
);
652 if (DECL_SIZE (decl
) == 0)
654 DECL_SIZE (decl
) = TYPE_SIZE (type
);
655 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (type
);
657 else if (DECL_SIZE_UNIT (decl
) == 0)
658 DECL_SIZE_UNIT (decl
)
659 = fold_convert_loc (loc
, sizetype
,
660 size_binop_loc (loc
, CEIL_DIV_EXPR
, DECL_SIZE (decl
),
663 if (code
!= FIELD_DECL
)
664 /* For non-fields, update the alignment from the type. */
665 do_type_align (type
, decl
);
667 /* For fields, it's a bit more complicated... */
669 bool old_user_align
= DECL_USER_ALIGN (decl
);
670 bool zero_bitfield
= false;
671 bool packed_p
= DECL_PACKED (decl
);
674 if (DECL_BIT_FIELD (decl
))
676 DECL_BIT_FIELD_TYPE (decl
) = type
;
678 /* A zero-length bit-field affects the alignment of the next
679 field. In essence such bit-fields are not influenced by
680 any packing due to #pragma pack or attribute packed. */
681 if (integer_zerop (DECL_SIZE (decl
))
682 && ! targetm
.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl
)))
684 zero_bitfield
= true;
686 if (PCC_BITFIELD_TYPE_MATTERS
)
687 do_type_align (type
, decl
);
690 #ifdef EMPTY_FIELD_BOUNDARY
691 if (EMPTY_FIELD_BOUNDARY
> DECL_ALIGN (decl
))
693 DECL_ALIGN (decl
) = EMPTY_FIELD_BOUNDARY
;
694 DECL_USER_ALIGN (decl
) = 0;
700 /* See if we can use an ordinary integer mode for a bit-field.
701 Conditions are: a fixed size that is correct for another mode,
702 occupying a complete byte or bytes on proper boundary. */
703 if (TYPE_SIZE (type
) != 0
704 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
705 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
)
708 = mode_for_size_tree (DECL_SIZE (decl
), MODE_INT
, 1);
709 unsigned int xalign
= GET_MODE_ALIGNMENT (xmode
);
712 && !(xalign
> BITS_PER_UNIT
&& DECL_PACKED (decl
))
713 && (known_align
== 0 || known_align
>= xalign
))
715 DECL_ALIGN (decl
) = MAX (xalign
, DECL_ALIGN (decl
));
716 DECL_MODE (decl
) = xmode
;
717 DECL_BIT_FIELD (decl
) = 0;
721 /* Turn off DECL_BIT_FIELD if we won't need it set. */
722 if (TYPE_MODE (type
) == BLKmode
&& DECL_MODE (decl
) == BLKmode
723 && known_align
>= TYPE_ALIGN (type
)
724 && DECL_ALIGN (decl
) >= TYPE_ALIGN (type
))
725 DECL_BIT_FIELD (decl
) = 0;
727 else if (packed_p
&& DECL_USER_ALIGN (decl
))
728 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
729 round up; we'll reduce it again below. We want packing to
730 supersede USER_ALIGN inherited from the type, but defer to
731 alignment explicitly specified on the field decl. */;
733 do_type_align (type
, decl
);
735 /* If the field is packed and not explicitly aligned, give it the
736 minimum alignment. Note that do_type_align may set
737 DECL_USER_ALIGN, so we need to check old_user_align instead. */
740 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), BITS_PER_UNIT
);
742 if (! packed_p
&& ! DECL_USER_ALIGN (decl
))
744 /* Some targets (i.e. i386, VMS) limit struct field alignment
745 to a lower boundary than alignment of variables unless
746 it was overridden by attribute aligned. */
747 #ifdef BIGGEST_FIELD_ALIGNMENT
749 = MIN (DECL_ALIGN (decl
), (unsigned) BIGGEST_FIELD_ALIGNMENT
);
751 #ifdef ADJUST_FIELD_ALIGN
752 DECL_ALIGN (decl
) = ADJUST_FIELD_ALIGN (decl
, DECL_ALIGN (decl
));
757 mfa
= initial_max_fld_align
* BITS_PER_UNIT
;
759 mfa
= maximum_field_alignment
;
760 /* Should this be controlled by DECL_USER_ALIGN, too? */
762 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), mfa
);
765 /* Evaluate nonconstant size only once, either now or as soon as safe. */
766 if (DECL_SIZE (decl
) != 0 && TREE_CODE (DECL_SIZE (decl
)) != INTEGER_CST
)
767 DECL_SIZE (decl
) = variable_size (DECL_SIZE (decl
));
768 if (DECL_SIZE_UNIT (decl
) != 0
769 && TREE_CODE (DECL_SIZE_UNIT (decl
)) != INTEGER_CST
)
770 DECL_SIZE_UNIT (decl
) = variable_size (DECL_SIZE_UNIT (decl
));
772 /* If requested, warn about definitions of large data objects. */
774 && (code
== VAR_DECL
|| code
== PARM_DECL
)
775 && ! DECL_EXTERNAL (decl
))
777 tree size
= DECL_SIZE_UNIT (decl
);
779 if (size
!= 0 && TREE_CODE (size
) == INTEGER_CST
780 && compare_tree_int (size
, larger_than_size
) > 0)
782 int size_as_int
= TREE_INT_CST_LOW (size
);
784 if (compare_tree_int (size
, size_as_int
) == 0)
785 warning (OPT_Wlarger_than_
, "size of %q+D is %d bytes", decl
, size_as_int
);
787 warning (OPT_Wlarger_than_
, "size of %q+D is larger than %wd bytes",
788 decl
, larger_than_size
);
792 /* If the RTL was already set, update its mode and mem attributes. */
795 PUT_MODE (rtl
, DECL_MODE (decl
));
796 SET_DECL_RTL (decl
, 0);
797 set_mem_attributes (rtl
, decl
, 1);
798 SET_DECL_RTL (decl
, rtl
);
802 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
803 a previous call to layout_decl and calls it again. */
806 relayout_decl (tree decl
)
808 DECL_SIZE (decl
) = DECL_SIZE_UNIT (decl
) = 0;
809 DECL_MODE (decl
) = VOIDmode
;
810 if (!DECL_USER_ALIGN (decl
))
811 DECL_ALIGN (decl
) = 0;
812 SET_DECL_RTL (decl
, 0);
814 layout_decl (decl
, 0);
817 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
818 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
819 is to be passed to all other layout functions for this record. It is the
820 responsibility of the caller to call `free' for the storage returned.
821 Note that garbage collection is not permitted until we finish laying
825 start_record_layout (tree t
)
827 record_layout_info rli
= XNEW (struct record_layout_info_s
);
831 /* If the type has a minimum specified alignment (via an attribute
832 declaration, for example) use it -- otherwise, start with a
833 one-byte alignment. */
834 rli
->record_align
= MAX (BITS_PER_UNIT
, TYPE_ALIGN (t
));
835 rli
->unpacked_align
= rli
->record_align
;
836 rli
->offset_align
= MAX (rli
->record_align
, BIGGEST_ALIGNMENT
);
838 #ifdef STRUCTURE_SIZE_BOUNDARY
839 /* Packed structures don't need to have minimum size. */
840 if (! TYPE_PACKED (t
))
844 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
845 tmp
= (unsigned) STRUCTURE_SIZE_BOUNDARY
;
846 if (maximum_field_alignment
!= 0)
847 tmp
= MIN (tmp
, maximum_field_alignment
);
848 rli
->record_align
= MAX (rli
->record_align
, tmp
);
852 rli
->offset
= size_zero_node
;
853 rli
->bitpos
= bitsize_zero_node
;
855 rli
->pending_statics
= 0;
856 rli
->packed_maybe_necessary
= 0;
857 rli
->remaining_in_alignment
= 0;
862 /* Return the combined bit position for the byte offset OFFSET and the
865 These functions operate on byte and bit positions present in FIELD_DECLs
866 and assume that these expressions result in no (intermediate) overflow.
867 This assumption is necessary to fold the expressions as much as possible,
868 so as to avoid creating artificially variable-sized types in languages
869 supporting variable-sized types like Ada. */
872 bit_from_pos (tree offset
, tree bitpos
)
874 if (TREE_CODE (offset
) == PLUS_EXPR
)
875 offset
= size_binop (PLUS_EXPR
,
876 fold_convert (bitsizetype
, TREE_OPERAND (offset
, 0)),
877 fold_convert (bitsizetype
, TREE_OPERAND (offset
, 1)));
879 offset
= fold_convert (bitsizetype
, offset
);
880 return size_binop (PLUS_EXPR
, bitpos
,
881 size_binop (MULT_EXPR
, offset
, bitsize_unit_node
));
884 /* Return the combined truncated byte position for the byte offset OFFSET and
885 the bit position BITPOS. */
888 byte_from_pos (tree offset
, tree bitpos
)
891 if (TREE_CODE (bitpos
) == MULT_EXPR
892 && tree_int_cst_equal (TREE_OPERAND (bitpos
, 1), bitsize_unit_node
))
893 bytepos
= TREE_OPERAND (bitpos
, 0);
895 bytepos
= size_binop (TRUNC_DIV_EXPR
, bitpos
, bitsize_unit_node
);
896 return size_binop (PLUS_EXPR
, offset
, fold_convert (sizetype
, bytepos
));
899 /* Split the bit position POS into a byte offset *POFFSET and a bit
900 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
903 pos_from_bit (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
,
906 tree toff_align
= bitsize_int (off_align
);
907 if (TREE_CODE (pos
) == MULT_EXPR
908 && tree_int_cst_equal (TREE_OPERAND (pos
, 1), toff_align
))
910 *poffset
= size_binop (MULT_EXPR
,
911 fold_convert (sizetype
, TREE_OPERAND (pos
, 0)),
912 size_int (off_align
/ BITS_PER_UNIT
));
913 *pbitpos
= bitsize_zero_node
;
917 *poffset
= size_binop (MULT_EXPR
,
918 fold_convert (sizetype
,
919 size_binop (FLOOR_DIV_EXPR
, pos
,
921 size_int (off_align
/ BITS_PER_UNIT
));
922 *pbitpos
= size_binop (FLOOR_MOD_EXPR
, pos
, toff_align
);
926 /* Given a pointer to bit and byte offsets and an offset alignment,
927 normalize the offsets so they are within the alignment. */
930 normalize_offset (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
)
932 /* If the bit position is now larger than it should be, adjust it
934 if (compare_tree_int (*pbitpos
, off_align
) >= 0)
937 pos_from_bit (&offset
, &bitpos
, off_align
, *pbitpos
);
938 *poffset
= size_binop (PLUS_EXPR
, *poffset
, offset
);
943 /* Print debugging information about the information in RLI. */
946 debug_rli (record_layout_info rli
)
948 print_node_brief (stderr
, "type", rli
->t
, 0);
949 print_node_brief (stderr
, "\noffset", rli
->offset
, 0);
950 print_node_brief (stderr
, " bitpos", rli
->bitpos
, 0);
952 fprintf (stderr
, "\naligns: rec = %u, unpack = %u, off = %u\n",
953 rli
->record_align
, rli
->unpacked_align
,
956 /* The ms_struct code is the only that uses this. */
957 if (targetm
.ms_bitfield_layout_p (rli
->t
))
958 fprintf (stderr
, "remaining in alignment = %u\n", rli
->remaining_in_alignment
);
960 if (rli
->packed_maybe_necessary
)
961 fprintf (stderr
, "packed may be necessary\n");
963 if (!vec_safe_is_empty (rli
->pending_statics
))
965 fprintf (stderr
, "pending statics:\n");
966 debug_vec_tree (rli
->pending_statics
);
970 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
971 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
974 normalize_rli (record_layout_info rli
)
976 normalize_offset (&rli
->offset
, &rli
->bitpos
, rli
->offset_align
);
979 /* Returns the size in bytes allocated so far. */
982 rli_size_unit_so_far (record_layout_info rli
)
984 return byte_from_pos (rli
->offset
, rli
->bitpos
);
987 /* Returns the size in bits allocated so far. */
990 rli_size_so_far (record_layout_info rli
)
992 return bit_from_pos (rli
->offset
, rli
->bitpos
);
995 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
996 the next available location within the record is given by KNOWN_ALIGN.
997 Update the variable alignment fields in RLI, and return the alignment
998 to give the FIELD. */
1001 update_alignment_for_field (record_layout_info rli
, tree field
,
1002 unsigned int known_align
)
1004 /* The alignment required for FIELD. */
1005 unsigned int desired_align
;
1006 /* The type of this field. */
1007 tree type
= TREE_TYPE (field
);
1008 /* True if the field was explicitly aligned by the user. */
1012 /* Do not attempt to align an ERROR_MARK node */
1013 if (TREE_CODE (type
) == ERROR_MARK
)
1016 /* Lay out the field so we know what alignment it needs. */
1017 layout_decl (field
, known_align
);
1018 desired_align
= DECL_ALIGN (field
);
1019 user_align
= DECL_USER_ALIGN (field
);
1021 is_bitfield
= (type
!= error_mark_node
1022 && DECL_BIT_FIELD_TYPE (field
)
1023 && ! integer_zerop (TYPE_SIZE (type
)));
1025 /* Record must have at least as much alignment as any field.
1026 Otherwise, the alignment of the field within the record is
1028 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1030 /* Here, the alignment of the underlying type of a bitfield can
1031 affect the alignment of a record; even a zero-sized field
1032 can do this. The alignment should be to the alignment of
1033 the type, except that for zero-size bitfields this only
1034 applies if there was an immediately prior, nonzero-size
1035 bitfield. (That's the way it is, experimentally.) */
1036 if ((!is_bitfield
&& !DECL_PACKED (field
))
1037 || ((DECL_SIZE (field
) == NULL_TREE
1038 || !integer_zerop (DECL_SIZE (field
)))
1039 ? !DECL_PACKED (field
)
1041 && DECL_BIT_FIELD_TYPE (rli
->prev_field
)
1042 && ! integer_zerop (DECL_SIZE (rli
->prev_field
)))))
1044 unsigned int type_align
= TYPE_ALIGN (type
);
1045 type_align
= MAX (type_align
, desired_align
);
1046 if (maximum_field_alignment
!= 0)
1047 type_align
= MIN (type_align
, maximum_field_alignment
);
1048 rli
->record_align
= MAX (rli
->record_align
, type_align
);
1049 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1052 else if (is_bitfield
&& PCC_BITFIELD_TYPE_MATTERS
)
1054 /* Named bit-fields cause the entire structure to have the
1055 alignment implied by their type. Some targets also apply the same
1056 rules to unnamed bitfields. */
1057 if (DECL_NAME (field
) != 0
1058 || targetm
.align_anon_bitfield ())
1060 unsigned int type_align
= TYPE_ALIGN (type
);
1062 #ifdef ADJUST_FIELD_ALIGN
1063 if (! TYPE_USER_ALIGN (type
))
1064 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1067 /* Targets might chose to handle unnamed and hence possibly
1068 zero-width bitfield. Those are not influenced by #pragmas
1069 or packed attributes. */
1070 if (integer_zerop (DECL_SIZE (field
)))
1072 if (initial_max_fld_align
)
1073 type_align
= MIN (type_align
,
1074 initial_max_fld_align
* BITS_PER_UNIT
);
1076 else if (maximum_field_alignment
!= 0)
1077 type_align
= MIN (type_align
, maximum_field_alignment
);
1078 else if (DECL_PACKED (field
))
1079 type_align
= MIN (type_align
, BITS_PER_UNIT
);
1081 /* The alignment of the record is increased to the maximum
1082 of the current alignment, the alignment indicated on the
1083 field (i.e., the alignment specified by an __aligned__
1084 attribute), and the alignment indicated by the type of
1086 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
1087 rli
->record_align
= MAX (rli
->record_align
, type_align
);
1090 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1091 user_align
|= TYPE_USER_ALIGN (type
);
1096 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
1097 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1100 TYPE_USER_ALIGN (rli
->t
) |= user_align
;
1102 return desired_align
;
1105 /* Called from place_field to handle unions. */
1108 place_union_field (record_layout_info rli
, tree field
)
1110 update_alignment_for_field (rli
, field
, /*known_align=*/0);
1112 DECL_FIELD_OFFSET (field
) = size_zero_node
;
1113 DECL_FIELD_BIT_OFFSET (field
) = bitsize_zero_node
;
1114 SET_DECL_OFFSET_ALIGN (field
, BIGGEST_ALIGNMENT
);
1116 /* If this is an ERROR_MARK return *after* having set the
1117 field at the start of the union. This helps when parsing
1119 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
)
1122 /* We assume the union's size will be a multiple of a byte so we don't
1123 bother with BITPOS. */
1124 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
1125 rli
->offset
= size_binop (MAX_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1126 else if (TREE_CODE (rli
->t
) == QUAL_UNION_TYPE
)
1127 rli
->offset
= fold_build3 (COND_EXPR
, sizetype
, DECL_QUALIFIER (field
),
1128 DECL_SIZE_UNIT (field
), rli
->offset
);
1131 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1132 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1133 units of alignment than the underlying TYPE. */
1135 excess_unit_span (HOST_WIDE_INT byte_offset
, HOST_WIDE_INT bit_offset
,
1136 HOST_WIDE_INT size
, HOST_WIDE_INT align
, tree type
)
1138 /* Note that the calculation of OFFSET might overflow; we calculate it so
1139 that we still get the right result as long as ALIGN is a power of two. */
1140 unsigned HOST_WIDE_INT offset
= byte_offset
* BITS_PER_UNIT
+ bit_offset
;
1142 offset
= offset
% align
;
1143 return ((offset
+ size
+ align
- 1) / align
1144 > tree_to_uhwi (TYPE_SIZE (type
)) / align
);
1147 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1148 is a FIELD_DECL to be added after those fields already present in
1149 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1150 callers that desire that behavior must manually perform that step.) */
1153 place_field (record_layout_info rli
, tree field
)
1155 /* The alignment required for FIELD. */
1156 unsigned int desired_align
;
1157 /* The alignment FIELD would have if we just dropped it into the
1158 record as it presently stands. */
1159 unsigned int known_align
;
1160 unsigned int actual_align
;
1161 /* The type of this field. */
1162 tree type
= TREE_TYPE (field
);
1164 gcc_assert (TREE_CODE (field
) != ERROR_MARK
);
1166 /* If FIELD is static, then treat it like a separate variable, not
1167 really like a structure field. If it is a FUNCTION_DECL, it's a
1168 method. In both cases, all we do is lay out the decl, and we do
1169 it *after* the record is laid out. */
1170 if (TREE_CODE (field
) == VAR_DECL
)
1172 vec_safe_push (rli
->pending_statics
, field
);
1176 /* Enumerators and enum types which are local to this class need not
1177 be laid out. Likewise for initialized constant fields. */
1178 else if (TREE_CODE (field
) != FIELD_DECL
)
1181 /* Unions are laid out very differently than records, so split
1182 that code off to another function. */
1183 else if (TREE_CODE (rli
->t
) != RECORD_TYPE
)
1185 place_union_field (rli
, field
);
1189 else if (TREE_CODE (type
) == ERROR_MARK
)
1191 /* Place this field at the current allocation position, so we
1192 maintain monotonicity. */
1193 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1194 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1195 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1199 /* Work out the known alignment so far. Note that A & (-A) is the
1200 value of the least-significant bit in A that is one. */
1201 if (! integer_zerop (rli
->bitpos
))
1202 known_align
= (tree_to_uhwi (rli
->bitpos
)
1203 & - tree_to_uhwi (rli
->bitpos
));
1204 else if (integer_zerop (rli
->offset
))
1206 else if (tree_fits_uhwi_p (rli
->offset
))
1207 known_align
= (BITS_PER_UNIT
1208 * (tree_to_uhwi (rli
->offset
)
1209 & - tree_to_uhwi (rli
->offset
)));
1211 known_align
= rli
->offset_align
;
1213 desired_align
= update_alignment_for_field (rli
, field
, known_align
);
1214 if (known_align
== 0)
1215 known_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1217 if (warn_packed
&& DECL_PACKED (field
))
1219 if (known_align
>= TYPE_ALIGN (type
))
1221 if (TYPE_ALIGN (type
) > desired_align
)
1223 if (STRICT_ALIGNMENT
)
1224 warning (OPT_Wattributes
, "packed attribute causes "
1225 "inefficient alignment for %q+D", field
);
1226 /* Don't warn if DECL_PACKED was set by the type. */
1227 else if (!TYPE_PACKED (rli
->t
))
1228 warning (OPT_Wattributes
, "packed attribute is "
1229 "unnecessary for %q+D", field
);
1233 rli
->packed_maybe_necessary
= 1;
1236 /* Does this field automatically have alignment it needs by virtue
1237 of the fields that precede it and the record's own alignment? */
1238 if (known_align
< desired_align
)
1240 /* No, we need to skip space before this field.
1241 Bump the cumulative size to multiple of field alignment. */
1243 if (!targetm
.ms_bitfield_layout_p (rli
->t
)
1244 && DECL_SOURCE_LOCATION (field
) != BUILTINS_LOCATION
)
1245 warning (OPT_Wpadded
, "padding struct to align %q+D", field
);
1247 /* If the alignment is still within offset_align, just align
1248 the bit position. */
1249 if (desired_align
< rli
->offset_align
)
1250 rli
->bitpos
= round_up (rli
->bitpos
, desired_align
);
1253 /* First adjust OFFSET by the partial bits, then align. */
1255 = size_binop (PLUS_EXPR
, rli
->offset
,
1256 fold_convert (sizetype
,
1257 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1258 bitsize_unit_node
)));
1259 rli
->bitpos
= bitsize_zero_node
;
1261 rli
->offset
= round_up (rli
->offset
, desired_align
/ BITS_PER_UNIT
);
1264 if (! TREE_CONSTANT (rli
->offset
))
1265 rli
->offset_align
= desired_align
;
1266 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1267 rli
->prev_field
= NULL
;
1270 /* Handle compatibility with PCC. Note that if the record has any
1271 variable-sized fields, we need not worry about compatibility. */
1272 if (PCC_BITFIELD_TYPE_MATTERS
1273 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1274 && TREE_CODE (field
) == FIELD_DECL
1275 && type
!= error_mark_node
1276 && DECL_BIT_FIELD (field
)
1277 && (! DECL_PACKED (field
)
1278 /* Enter for these packed fields only to issue a warning. */
1279 || TYPE_ALIGN (type
) <= BITS_PER_UNIT
)
1280 && maximum_field_alignment
== 0
1281 && ! integer_zerop (DECL_SIZE (field
))
1282 && tree_fits_uhwi_p (DECL_SIZE (field
))
1283 && tree_fits_uhwi_p (rli
->offset
)
1284 && tree_fits_uhwi_p (TYPE_SIZE (type
)))
1286 unsigned int type_align
= TYPE_ALIGN (type
);
1287 tree dsize
= DECL_SIZE (field
);
1288 HOST_WIDE_INT field_size
= tree_to_uhwi (dsize
);
1289 HOST_WIDE_INT offset
= tree_to_uhwi (rli
->offset
);
1290 HOST_WIDE_INT bit_offset
= tree_to_shwi (rli
->bitpos
);
1292 #ifdef ADJUST_FIELD_ALIGN
1293 if (! TYPE_USER_ALIGN (type
))
1294 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1297 /* A bit field may not span more units of alignment of its type
1298 than its type itself. Advance to next boundary if necessary. */
1299 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1301 if (DECL_PACKED (field
))
1303 if (warn_packed_bitfield_compat
== 1)
1306 "offset of packed bit-field %qD has changed in GCC 4.4",
1310 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1313 if (! DECL_PACKED (field
))
1314 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1317 #ifdef BITFIELD_NBYTES_LIMITED
1318 if (BITFIELD_NBYTES_LIMITED
1319 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1320 && TREE_CODE (field
) == FIELD_DECL
1321 && type
!= error_mark_node
1322 && DECL_BIT_FIELD_TYPE (field
)
1323 && ! DECL_PACKED (field
)
1324 && ! integer_zerop (DECL_SIZE (field
))
1325 && tree_fits_uhwi_p (DECL_SIZE (field
))
1326 && tree_fits_uhwi_p (rli
->offset
)
1327 && tree_fits_uhwi_p (TYPE_SIZE (type
)))
1329 unsigned int type_align
= TYPE_ALIGN (type
);
1330 tree dsize
= DECL_SIZE (field
);
1331 HOST_WIDE_INT field_size
= tree_to_uhwi (dsize
);
1332 HOST_WIDE_INT offset
= tree_to_uhwi (rli
->offset
);
1333 HOST_WIDE_INT bit_offset
= tree_to_shwi (rli
->bitpos
);
1335 #ifdef ADJUST_FIELD_ALIGN
1336 if (! TYPE_USER_ALIGN (type
))
1337 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1340 if (maximum_field_alignment
!= 0)
1341 type_align
= MIN (type_align
, maximum_field_alignment
);
1342 /* ??? This test is opposite the test in the containing if
1343 statement, so this code is unreachable currently. */
1344 else if (DECL_PACKED (field
))
1345 type_align
= MIN (type_align
, BITS_PER_UNIT
);
1347 /* A bit field may not span the unit of alignment of its type.
1348 Advance to next boundary if necessary. */
1349 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1350 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1352 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1356 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1358 When a bit field is inserted into a packed record, the whole
1359 size of the underlying type is used by one or more same-size
1360 adjacent bitfields. (That is, if its long:3, 32 bits is
1361 used in the record, and any additional adjacent long bitfields are
1362 packed into the same chunk of 32 bits. However, if the size
1363 changes, a new field of that size is allocated.) In an unpacked
1364 record, this is the same as using alignment, but not equivalent
1367 Note: for compatibility, we use the type size, not the type alignment
1368 to determine alignment, since that matches the documentation */
1370 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1372 tree prev_saved
= rli
->prev_field
;
1373 tree prev_type
= prev_saved
? DECL_BIT_FIELD_TYPE (prev_saved
) : NULL
;
1375 /* This is a bitfield if it exists. */
1376 if (rli
->prev_field
)
1378 /* If both are bitfields, nonzero, and the same size, this is
1379 the middle of a run. Zero declared size fields are special
1380 and handled as "end of run". (Note: it's nonzero declared
1381 size, but equal type sizes!) (Since we know that both
1382 the current and previous fields are bitfields by the
1383 time we check it, DECL_SIZE must be present for both.) */
1384 if (DECL_BIT_FIELD_TYPE (field
)
1385 && !integer_zerop (DECL_SIZE (field
))
1386 && !integer_zerop (DECL_SIZE (rli
->prev_field
))
1387 && tree_fits_shwi_p (DECL_SIZE (rli
->prev_field
))
1388 && tree_fits_uhwi_p (TYPE_SIZE (type
))
1389 && simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
)))
1391 /* We're in the middle of a run of equal type size fields; make
1392 sure we realign if we run out of bits. (Not decl size,
1394 HOST_WIDE_INT bitsize
= tree_to_uhwi (DECL_SIZE (field
));
1396 if (rli
->remaining_in_alignment
< bitsize
)
1398 HOST_WIDE_INT typesize
= tree_to_uhwi (TYPE_SIZE (type
));
1400 /* out of bits; bump up to next 'word'. */
1402 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1403 bitsize_int (rli
->remaining_in_alignment
));
1404 rli
->prev_field
= field
;
1405 if (typesize
< bitsize
)
1406 rli
->remaining_in_alignment
= 0;
1408 rli
->remaining_in_alignment
= typesize
- bitsize
;
1411 rli
->remaining_in_alignment
-= bitsize
;
1415 /* End of a run: if leaving a run of bitfields of the same type
1416 size, we have to "use up" the rest of the bits of the type
1419 Compute the new position as the sum of the size for the prior
1420 type and where we first started working on that type.
1421 Note: since the beginning of the field was aligned then
1422 of course the end will be too. No round needed. */
1424 if (!integer_zerop (DECL_SIZE (rli
->prev_field
)))
1427 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1428 bitsize_int (rli
->remaining_in_alignment
));
1431 /* We "use up" size zero fields; the code below should behave
1432 as if the prior field was not a bitfield. */
1435 /* Cause a new bitfield to be captured, either this time (if
1436 currently a bitfield) or next time we see one. */
1437 if (!DECL_BIT_FIELD_TYPE (field
)
1438 || integer_zerop (DECL_SIZE (field
)))
1439 rli
->prev_field
= NULL
;
1442 normalize_rli (rli
);
1445 /* If we're starting a new run of same type size bitfields
1446 (or a run of non-bitfields), set up the "first of the run"
1449 That is, if the current field is not a bitfield, or if there
1450 was a prior bitfield the type sizes differ, or if there wasn't
1451 a prior bitfield the size of the current field is nonzero.
1453 Note: we must be sure to test ONLY the type size if there was
1454 a prior bitfield and ONLY for the current field being zero if
1457 if (!DECL_BIT_FIELD_TYPE (field
)
1458 || (prev_saved
!= NULL
1459 ? !simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
))
1460 : !integer_zerop (DECL_SIZE (field
)) ))
1462 /* Never smaller than a byte for compatibility. */
1463 unsigned int type_align
= BITS_PER_UNIT
;
1465 /* (When not a bitfield), we could be seeing a flex array (with
1466 no DECL_SIZE). Since we won't be using remaining_in_alignment
1467 until we see a bitfield (and come by here again) we just skip
1469 if (DECL_SIZE (field
) != NULL
1470 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field
)))
1471 && tree_fits_uhwi_p (DECL_SIZE (field
)))
1473 unsigned HOST_WIDE_INT bitsize
1474 = tree_to_uhwi (DECL_SIZE (field
));
1475 unsigned HOST_WIDE_INT typesize
1476 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field
)));
1478 if (typesize
< bitsize
)
1479 rli
->remaining_in_alignment
= 0;
1481 rli
->remaining_in_alignment
= typesize
- bitsize
;
1484 /* Now align (conventionally) for the new type. */
1485 type_align
= TYPE_ALIGN (TREE_TYPE (field
));
1487 if (maximum_field_alignment
!= 0)
1488 type_align
= MIN (type_align
, maximum_field_alignment
);
1490 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1492 /* If we really aligned, don't allow subsequent bitfields
1494 rli
->prev_field
= NULL
;
1498 /* Offset so far becomes the position of this field after normalizing. */
1499 normalize_rli (rli
);
1500 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1501 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1502 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1504 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1505 if (TREE_CODE (DECL_FIELD_OFFSET (field
)) != INTEGER_CST
)
1506 DECL_FIELD_OFFSET (field
) = variable_size (DECL_FIELD_OFFSET (field
));
1508 /* If this field ended up more aligned than we thought it would be (we
1509 approximate this by seeing if its position changed), lay out the field
1510 again; perhaps we can use an integral mode for it now. */
1511 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field
)))
1512 actual_align
= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
1513 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
)));
1514 else if (integer_zerop (DECL_FIELD_OFFSET (field
)))
1515 actual_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1516 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
)))
1517 actual_align
= (BITS_PER_UNIT
1518 * (tree_to_uhwi (DECL_FIELD_OFFSET (field
))
1519 & - tree_to_uhwi (DECL_FIELD_OFFSET (field
))));
1521 actual_align
= DECL_OFFSET_ALIGN (field
);
1522 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1523 store / extract bit field operations will check the alignment of the
1524 record against the mode of bit fields. */
1526 if (known_align
!= actual_align
)
1527 layout_decl (field
, actual_align
);
1529 if (rli
->prev_field
== NULL
&& DECL_BIT_FIELD_TYPE (field
))
1530 rli
->prev_field
= field
;
1532 /* Now add size of this field to the size of the record. If the size is
1533 not constant, treat the field as being a multiple of bytes and just
1534 adjust the offset, resetting the bit position. Otherwise, apportion the
1535 size amongst the bit position and offset. First handle the case of an
1536 unspecified size, which can happen when we have an invalid nested struct
1537 definition, such as struct j { struct j { int i; } }. The error message
1538 is printed in finish_struct. */
1539 if (DECL_SIZE (field
) == 0)
1541 else if (TREE_CODE (DECL_SIZE (field
)) != INTEGER_CST
1542 || TREE_OVERFLOW (DECL_SIZE (field
)))
1545 = size_binop (PLUS_EXPR
, rli
->offset
,
1546 fold_convert (sizetype
,
1547 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1548 bitsize_unit_node
)));
1550 = size_binop (PLUS_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1551 rli
->bitpos
= bitsize_zero_node
;
1552 rli
->offset_align
= MIN (rli
->offset_align
, desired_align
);
1554 else if (targetm
.ms_bitfield_layout_p (rli
->t
))
1556 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1558 /* If we ended a bitfield before the full length of the type then
1559 pad the struct out to the full length of the last type. */
1560 if ((DECL_CHAIN (field
) == NULL
1561 || TREE_CODE (DECL_CHAIN (field
)) != FIELD_DECL
)
1562 && DECL_BIT_FIELD_TYPE (field
)
1563 && !integer_zerop (DECL_SIZE (field
)))
1564 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
,
1565 bitsize_int (rli
->remaining_in_alignment
));
1567 normalize_rli (rli
);
1571 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1572 normalize_rli (rli
);
1576 /* Assuming that all the fields have been laid out, this function uses
1577 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1578 indicated by RLI. */
1581 finalize_record_size (record_layout_info rli
)
1583 tree unpadded_size
, unpadded_size_unit
;
1585 /* Now we want just byte and bit offsets, so set the offset alignment
1586 to be a byte and then normalize. */
1587 rli
->offset_align
= BITS_PER_UNIT
;
1588 normalize_rli (rli
);
1590 /* Determine the desired alignment. */
1591 #ifdef ROUND_TYPE_ALIGN
1592 TYPE_ALIGN (rli
->t
) = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
),
1595 TYPE_ALIGN (rli
->t
) = MAX (TYPE_ALIGN (rli
->t
), rli
->record_align
);
1598 /* Compute the size so far. Be sure to allow for extra bits in the
1599 size in bytes. We have guaranteed above that it will be no more
1600 than a single byte. */
1601 unpadded_size
= rli_size_so_far (rli
);
1602 unpadded_size_unit
= rli_size_unit_so_far (rli
);
1603 if (! integer_zerop (rli
->bitpos
))
1605 = size_binop (PLUS_EXPR
, unpadded_size_unit
, size_one_node
);
1607 /* Round the size up to be a multiple of the required alignment. */
1608 TYPE_SIZE (rli
->t
) = round_up (unpadded_size
, TYPE_ALIGN (rli
->t
));
1609 TYPE_SIZE_UNIT (rli
->t
)
1610 = round_up (unpadded_size_unit
, TYPE_ALIGN_UNIT (rli
->t
));
1612 if (TREE_CONSTANT (unpadded_size
)
1613 && simple_cst_equal (unpadded_size
, TYPE_SIZE (rli
->t
)) == 0
1614 && input_location
!= BUILTINS_LOCATION
)
1615 warning (OPT_Wpadded
, "padding struct size to alignment boundary");
1617 if (warn_packed
&& TREE_CODE (rli
->t
) == RECORD_TYPE
1618 && TYPE_PACKED (rli
->t
) && ! rli
->packed_maybe_necessary
1619 && TREE_CONSTANT (unpadded_size
))
1623 #ifdef ROUND_TYPE_ALIGN
1625 = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1627 rli
->unpacked_align
= MAX (TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1630 unpacked_size
= round_up (TYPE_SIZE (rli
->t
), rli
->unpacked_align
);
1631 if (simple_cst_equal (unpacked_size
, TYPE_SIZE (rli
->t
)))
1633 if (TYPE_NAME (rli
->t
))
1637 if (TREE_CODE (TYPE_NAME (rli
->t
)) == IDENTIFIER_NODE
)
1638 name
= TYPE_NAME (rli
->t
);
1640 name
= DECL_NAME (TYPE_NAME (rli
->t
));
1642 if (STRICT_ALIGNMENT
)
1643 warning (OPT_Wpacked
, "packed attribute causes inefficient "
1644 "alignment for %qE", name
);
1646 warning (OPT_Wpacked
,
1647 "packed attribute is unnecessary for %qE", name
);
1651 if (STRICT_ALIGNMENT
)
1652 warning (OPT_Wpacked
,
1653 "packed attribute causes inefficient alignment");
1655 warning (OPT_Wpacked
, "packed attribute is unnecessary");
1661 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1664 compute_record_mode (tree type
)
1667 machine_mode mode
= VOIDmode
;
1669 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1670 However, if possible, we use a mode that fits in a register
1671 instead, in order to allow for better optimization down the
1673 SET_TYPE_MODE (type
, BLKmode
);
1675 if (! tree_fits_uhwi_p (TYPE_SIZE (type
)))
1678 /* A record which has any BLKmode members must itself be
1679 BLKmode; it can't go in a register. Unless the member is
1680 BLKmode only because it isn't aligned. */
1681 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
1683 if (TREE_CODE (field
) != FIELD_DECL
)
1686 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
1687 || (TYPE_MODE (TREE_TYPE (field
)) == BLKmode
1688 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field
))
1689 && !(TYPE_SIZE (TREE_TYPE (field
)) != 0
1690 && integer_zerop (TYPE_SIZE (TREE_TYPE (field
)))))
1691 || ! tree_fits_uhwi_p (bit_position (field
))
1692 || DECL_SIZE (field
) == 0
1693 || ! tree_fits_uhwi_p (DECL_SIZE (field
)))
1696 /* If this field is the whole struct, remember its mode so
1697 that, say, we can put a double in a class into a DF
1698 register instead of forcing it to live in the stack. */
1699 if (simple_cst_equal (TYPE_SIZE (type
), DECL_SIZE (field
)))
1700 mode
= DECL_MODE (field
);
1702 /* With some targets, it is sub-optimal to access an aligned
1703 BLKmode structure as a scalar. */
1704 if (targetm
.member_type_forces_blk (field
, mode
))
1708 /* If we only have one real field; use its mode if that mode's size
1709 matches the type's size. This only applies to RECORD_TYPE. This
1710 does not apply to unions. */
1711 if (TREE_CODE (type
) == RECORD_TYPE
&& mode
!= VOIDmode
1712 && tree_fits_uhwi_p (TYPE_SIZE (type
))
1713 && GET_MODE_BITSIZE (mode
) == tree_to_uhwi (TYPE_SIZE (type
)))
1714 SET_TYPE_MODE (type
, mode
);
1716 SET_TYPE_MODE (type
, mode_for_size_tree (TYPE_SIZE (type
), MODE_INT
, 1));
1718 /* If structure's known alignment is less than what the scalar
1719 mode would need, and it matters, then stick with BLKmode. */
1720 if (TYPE_MODE (type
) != BLKmode
1722 && ! (TYPE_ALIGN (type
) >= BIGGEST_ALIGNMENT
1723 || TYPE_ALIGN (type
) >= GET_MODE_ALIGNMENT (TYPE_MODE (type
))))
1725 /* If this is the only reason this type is BLKmode, then
1726 don't force containing types to be BLKmode. */
1727 TYPE_NO_FORCE_BLK (type
) = 1;
1728 SET_TYPE_MODE (type
, BLKmode
);
1732 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1736 finalize_type_size (tree type
)
1738 /* Normally, use the alignment corresponding to the mode chosen.
1739 However, where strict alignment is not required, avoid
1740 over-aligning structures, since most compilers do not do this
1742 if (TYPE_MODE (type
) != BLKmode
1743 && TYPE_MODE (type
) != VOIDmode
1744 && (STRICT_ALIGNMENT
|| !AGGREGATE_TYPE_P (type
)))
1746 unsigned mode_align
= GET_MODE_ALIGNMENT (TYPE_MODE (type
));
1748 /* Don't override a larger alignment requirement coming from a user
1749 alignment of one of the fields. */
1750 if (mode_align
>= TYPE_ALIGN (type
))
1752 TYPE_ALIGN (type
) = mode_align
;
1753 TYPE_USER_ALIGN (type
) = 0;
1757 /* Do machine-dependent extra alignment. */
1758 #ifdef ROUND_TYPE_ALIGN
1760 = ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (type
), BITS_PER_UNIT
);
1763 /* If we failed to find a simple way to calculate the unit size
1764 of the type, find it by division. */
1765 if (TYPE_SIZE_UNIT (type
) == 0 && TYPE_SIZE (type
) != 0)
1766 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1767 result will fit in sizetype. We will get more efficient code using
1768 sizetype, so we force a conversion. */
1769 TYPE_SIZE_UNIT (type
)
1770 = fold_convert (sizetype
,
1771 size_binop (FLOOR_DIV_EXPR
, TYPE_SIZE (type
),
1772 bitsize_unit_node
));
1774 if (TYPE_SIZE (type
) != 0)
1776 TYPE_SIZE (type
) = round_up (TYPE_SIZE (type
), TYPE_ALIGN (type
));
1777 TYPE_SIZE_UNIT (type
)
1778 = round_up (TYPE_SIZE_UNIT (type
), TYPE_ALIGN_UNIT (type
));
1781 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1782 if (TYPE_SIZE (type
) != 0 && TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
1783 TYPE_SIZE (type
) = variable_size (TYPE_SIZE (type
));
1784 if (TYPE_SIZE_UNIT (type
) != 0
1785 && TREE_CODE (TYPE_SIZE_UNIT (type
)) != INTEGER_CST
)
1786 TYPE_SIZE_UNIT (type
) = variable_size (TYPE_SIZE_UNIT (type
));
1788 /* Also layout any other variants of the type. */
1789 if (TYPE_NEXT_VARIANT (type
)
1790 || type
!= TYPE_MAIN_VARIANT (type
))
1793 /* Record layout info of this variant. */
1794 tree size
= TYPE_SIZE (type
);
1795 tree size_unit
= TYPE_SIZE_UNIT (type
);
1796 unsigned int align
= TYPE_ALIGN (type
);
1797 unsigned int precision
= TYPE_PRECISION (type
);
1798 unsigned int user_align
= TYPE_USER_ALIGN (type
);
1799 machine_mode mode
= TYPE_MODE (type
);
1801 /* Copy it into all variants. */
1802 for (variant
= TYPE_MAIN_VARIANT (type
);
1804 variant
= TYPE_NEXT_VARIANT (variant
))
1806 TYPE_SIZE (variant
) = size
;
1807 TYPE_SIZE_UNIT (variant
) = size_unit
;
1808 unsigned valign
= align
;
1809 if (TYPE_USER_ALIGN (variant
))
1810 valign
= MAX (valign
, TYPE_ALIGN (variant
));
1812 TYPE_USER_ALIGN (variant
) = user_align
;
1813 TYPE_ALIGN (variant
) = valign
;
1814 TYPE_PRECISION (variant
) = precision
;
1815 SET_TYPE_MODE (variant
, mode
);
1820 /* Return a new underlying object for a bitfield started with FIELD. */
1823 start_bitfield_representative (tree field
)
1825 tree repr
= make_node (FIELD_DECL
);
1826 DECL_FIELD_OFFSET (repr
) = DECL_FIELD_OFFSET (field
);
1827 /* Force the representative to begin at a BITS_PER_UNIT aligned
1828 boundary - C++ may use tail-padding of a base object to
1829 continue packing bits so the bitfield region does not start
1830 at bit zero (see g++.dg/abi/bitfield5.C for example).
1831 Unallocated bits may happen for other reasons as well,
1832 for example Ada which allows explicit bit-granular structure layout. */
1833 DECL_FIELD_BIT_OFFSET (repr
)
1834 = size_binop (BIT_AND_EXPR
,
1835 DECL_FIELD_BIT_OFFSET (field
),
1836 bitsize_int (~(BITS_PER_UNIT
- 1)));
1837 SET_DECL_OFFSET_ALIGN (repr
, DECL_OFFSET_ALIGN (field
));
1838 DECL_SIZE (repr
) = DECL_SIZE (field
);
1839 DECL_SIZE_UNIT (repr
) = DECL_SIZE_UNIT (field
);
1840 DECL_PACKED (repr
) = DECL_PACKED (field
);
1841 DECL_CONTEXT (repr
) = DECL_CONTEXT (field
);
1845 /* Finish up a bitfield group that was started by creating the underlying
1846 object REPR with the last field in the bitfield group FIELD. */
1849 finish_bitfield_representative (tree repr
, tree field
)
1851 unsigned HOST_WIDE_INT bitsize
, maxbitsize
;
1855 size
= size_diffop (DECL_FIELD_OFFSET (field
),
1856 DECL_FIELD_OFFSET (repr
));
1857 while (TREE_CODE (size
) == COMPOUND_EXPR
)
1858 size
= TREE_OPERAND (size
, 1);
1859 gcc_assert (tree_fits_uhwi_p (size
));
1860 bitsize
= (tree_to_uhwi (size
) * BITS_PER_UNIT
1861 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
1862 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
))
1863 + tree_to_uhwi (DECL_SIZE (field
)));
1865 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1866 bitsize
= (bitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
1868 /* Now nothing tells us how to pad out bitsize ... */
1869 nextf
= DECL_CHAIN (field
);
1870 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
1871 nextf
= DECL_CHAIN (nextf
);
1875 /* If there was an error, the field may be not laid out
1876 correctly. Don't bother to do anything. */
1877 if (TREE_TYPE (nextf
) == error_mark_node
)
1879 maxsize
= size_diffop (DECL_FIELD_OFFSET (nextf
),
1880 DECL_FIELD_OFFSET (repr
));
1881 if (tree_fits_uhwi_p (maxsize
))
1883 maxbitsize
= (tree_to_uhwi (maxsize
) * BITS_PER_UNIT
1884 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf
))
1885 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
1886 /* If the group ends within a bitfield nextf does not need to be
1887 aligned to BITS_PER_UNIT. Thus round up. */
1888 maxbitsize
= (maxbitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
1891 maxbitsize
= bitsize
;
1895 /* ??? If you consider that tail-padding of this struct might be
1896 re-used when deriving from it we cannot really do the following
1897 and thus need to set maxsize to bitsize? Also we cannot
1898 generally rely on maxsize to fold to an integer constant, so
1899 use bitsize as fallback for this case. */
1900 tree maxsize
= size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field
)),
1901 DECL_FIELD_OFFSET (repr
));
1902 if (tree_fits_uhwi_p (maxsize
))
1903 maxbitsize
= (tree_to_uhwi (maxsize
) * BITS_PER_UNIT
1904 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
1906 maxbitsize
= bitsize
;
1909 /* Only if we don't artificially break up the representative in
1910 the middle of a large bitfield with different possibly
1911 overlapping representatives. And all representatives start
1913 gcc_assert (maxbitsize
% BITS_PER_UNIT
== 0);
1915 /* Find the smallest nice mode to use. */
1916 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1917 mode
= GET_MODE_WIDER_MODE (mode
))
1918 if (GET_MODE_BITSIZE (mode
) >= bitsize
)
1920 if (mode
!= VOIDmode
1921 && (GET_MODE_BITSIZE (mode
) > maxbitsize
1922 || GET_MODE_BITSIZE (mode
) > MAX_FIXED_MODE_SIZE
))
1925 if (mode
== VOIDmode
)
1927 /* We really want a BLKmode representative only as a last resort,
1928 considering the member b in
1929 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1930 Otherwise we simply want to split the representative up
1931 allowing for overlaps within the bitfield region as required for
1932 struct { int a : 7; int b : 7;
1933 int c : 10; int d; } __attribute__((packed));
1934 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1935 DECL_SIZE (repr
) = bitsize_int (bitsize
);
1936 DECL_SIZE_UNIT (repr
) = size_int (bitsize
/ BITS_PER_UNIT
);
1937 DECL_MODE (repr
) = BLKmode
;
1938 TREE_TYPE (repr
) = build_array_type_nelts (unsigned_char_type_node
,
1939 bitsize
/ BITS_PER_UNIT
);
1943 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (mode
);
1944 DECL_SIZE (repr
) = bitsize_int (modesize
);
1945 DECL_SIZE_UNIT (repr
) = size_int (modesize
/ BITS_PER_UNIT
);
1946 DECL_MODE (repr
) = mode
;
1947 TREE_TYPE (repr
) = lang_hooks
.types
.type_for_mode (mode
, 1);
1950 /* Remember whether the bitfield group is at the end of the
1951 structure or not. */
1952 DECL_CHAIN (repr
) = nextf
;
1955 /* Compute and set FIELD_DECLs for the underlying objects we should
1956 use for bitfield access for the structure T. */
1959 finish_bitfield_layout (tree t
)
1962 tree repr
= NULL_TREE
;
1964 /* Unions would be special, for the ease of type-punning optimizations
1965 we could use the underlying type as hint for the representative
1966 if the bitfield would fit and the representative would not exceed
1967 the union in size. */
1968 if (TREE_CODE (t
) != RECORD_TYPE
)
1971 for (prev
= NULL_TREE
, field
= TYPE_FIELDS (t
);
1972 field
; field
= DECL_CHAIN (field
))
1974 if (TREE_CODE (field
) != FIELD_DECL
)
1977 /* In the C++ memory model, consecutive bit fields in a structure are
1978 considered one memory location and updating a memory location
1979 may not store into adjacent memory locations. */
1981 && DECL_BIT_FIELD_TYPE (field
))
1983 /* Start new representative. */
1984 repr
= start_bitfield_representative (field
);
1987 && ! DECL_BIT_FIELD_TYPE (field
))
1989 /* Finish off new representative. */
1990 finish_bitfield_representative (repr
, prev
);
1993 else if (DECL_BIT_FIELD_TYPE (field
))
1995 gcc_assert (repr
!= NULL_TREE
);
1997 /* Zero-size bitfields finish off a representative and
1998 do not have a representative themselves. This is
1999 required by the C++ memory model. */
2000 if (integer_zerop (DECL_SIZE (field
)))
2002 finish_bitfield_representative (repr
, prev
);
2006 /* We assume that either DECL_FIELD_OFFSET of the representative
2007 and each bitfield member is a constant or they are equal.
2008 This is because we need to be able to compute the bit-offset
2009 of each field relative to the representative in get_bit_range
2010 during RTL expansion.
2011 If these constraints are not met, simply force a new
2012 representative to be generated. That will at most
2013 generate worse code but still maintain correctness with
2014 respect to the C++ memory model. */
2015 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr
))
2016 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
)))
2017 || operand_equal_p (DECL_FIELD_OFFSET (repr
),
2018 DECL_FIELD_OFFSET (field
), 0)))
2020 finish_bitfield_representative (repr
, prev
);
2021 repr
= start_bitfield_representative (field
);
2028 DECL_BIT_FIELD_REPRESENTATIVE (field
) = repr
;
2034 finish_bitfield_representative (repr
, prev
);
2037 /* Do all of the work required to layout the type indicated by RLI,
2038 once the fields have been laid out. This function will call `free'
2039 for RLI, unless FREE_P is false. Passing a value other than false
2040 for FREE_P is bad practice; this option only exists to support the
2044 finish_record_layout (record_layout_info rli
, int free_p
)
2048 /* Compute the final size. */
2049 finalize_record_size (rli
);
2051 /* Compute the TYPE_MODE for the record. */
2052 compute_record_mode (rli
->t
);
2054 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2055 finalize_type_size (rli
->t
);
2057 /* Compute bitfield representatives. */
2058 finish_bitfield_layout (rli
->t
);
2060 /* Propagate TYPE_PACKED to variants. With C++ templates,
2061 handle_packed_attribute is too early to do this. */
2062 for (variant
= TYPE_NEXT_VARIANT (rli
->t
); variant
;
2063 variant
= TYPE_NEXT_VARIANT (variant
))
2064 TYPE_PACKED (variant
) = TYPE_PACKED (rli
->t
);
2066 /* Lay out any static members. This is done now because their type
2067 may use the record's type. */
2068 while (!vec_safe_is_empty (rli
->pending_statics
))
2069 layout_decl (rli
->pending_statics
->pop (), 0);
2074 vec_free (rli
->pending_statics
);
2080 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2081 NAME, its fields are chained in reverse on FIELDS.
2083 If ALIGN_TYPE is non-null, it is given the same alignment as
2087 finish_builtin_struct (tree type
, const char *name
, tree fields
,
2092 for (tail
= NULL_TREE
; fields
; tail
= fields
, fields
= next
)
2094 DECL_FIELD_CONTEXT (fields
) = type
;
2095 next
= DECL_CHAIN (fields
);
2096 DECL_CHAIN (fields
) = tail
;
2098 TYPE_FIELDS (type
) = tail
;
2102 TYPE_ALIGN (type
) = TYPE_ALIGN (align_type
);
2103 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (align_type
);
2107 #if 0 /* not yet, should get fixed properly later */
2108 TYPE_NAME (type
) = make_type_decl (get_identifier (name
), type
);
2110 TYPE_NAME (type
) = build_decl (BUILTINS_LOCATION
,
2111 TYPE_DECL
, get_identifier (name
), type
);
2113 TYPE_STUB_DECL (type
) = TYPE_NAME (type
);
2114 layout_decl (TYPE_NAME (type
), 0);
2117 /* Calculate the mode, size, and alignment for TYPE.
2118 For an array type, calculate the element separation as well.
2119 Record TYPE on the chain of permanent or temporary types
2120 so that dbxout will find out about it.
2122 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2123 layout_type does nothing on such a type.
2125 If the type is incomplete, its TYPE_SIZE remains zero. */
2128 layout_type (tree type
)
2132 if (type
== error_mark_node
)
2135 /* We don't want finalize_type_size to copy an alignment attribute to
2136 variants that don't have it. */
2137 type
= TYPE_MAIN_VARIANT (type
);
2139 /* Do nothing if type has been laid out before. */
2140 if (TYPE_SIZE (type
))
2143 switch (TREE_CODE (type
))
2146 /* This kind of type is the responsibility
2147 of the language-specific code. */
2153 SET_TYPE_MODE (type
,
2154 smallest_mode_for_size (TYPE_PRECISION (type
), MODE_INT
));
2155 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2156 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2157 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2161 SET_TYPE_MODE (type
,
2162 mode_for_size (TYPE_PRECISION (type
), MODE_FLOAT
, 0));
2163 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2164 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2167 case FIXED_POINT_TYPE
:
2168 /* TYPE_MODE (type) has been set already. */
2169 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2170 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2174 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2175 SET_TYPE_MODE (type
,
2176 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type
)),
2177 (TREE_CODE (TREE_TYPE (type
)) == REAL_TYPE
2178 ? MODE_COMPLEX_FLOAT
: MODE_COMPLEX_INT
),
2180 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2181 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2186 int nunits
= TYPE_VECTOR_SUBPARTS (type
);
2187 tree innertype
= TREE_TYPE (type
);
2189 gcc_assert (!(nunits
& (nunits
- 1)));
2191 /* Find an appropriate mode for the vector type. */
2192 if (TYPE_MODE (type
) == VOIDmode
)
2193 SET_TYPE_MODE (type
,
2194 mode_for_vector (TYPE_MODE (innertype
), nunits
));
2196 TYPE_SATURATING (type
) = TYPE_SATURATING (TREE_TYPE (type
));
2197 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2198 TYPE_SIZE_UNIT (type
) = int_const_binop (MULT_EXPR
,
2199 TYPE_SIZE_UNIT (innertype
),
2201 TYPE_SIZE (type
) = int_const_binop (MULT_EXPR
, TYPE_SIZE (innertype
),
2202 bitsize_int (nunits
));
2204 /* For vector types, we do not default to the mode's alignment.
2205 Instead, query a target hook, defaulting to natural alignment.
2206 This prevents ABI changes depending on whether or not native
2207 vector modes are supported. */
2208 TYPE_ALIGN (type
) = targetm
.vector_alignment (type
);
2210 /* However, if the underlying mode requires a bigger alignment than
2211 what the target hook provides, we cannot use the mode. For now,
2212 simply reject that case. */
2213 gcc_assert (TYPE_ALIGN (type
)
2214 >= GET_MODE_ALIGNMENT (TYPE_MODE (type
)));
2219 /* This is an incomplete type and so doesn't have a size. */
2220 TYPE_ALIGN (type
) = 1;
2221 TYPE_USER_ALIGN (type
) = 0;
2222 SET_TYPE_MODE (type
, VOIDmode
);
2225 case POINTER_BOUNDS_TYPE
:
2226 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2227 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2231 TYPE_SIZE (type
) = bitsize_int (POINTER_SIZE
);
2232 TYPE_SIZE_UNIT (type
) = size_int (POINTER_SIZE_UNITS
);
2233 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2234 integral, which may be an __intN. */
2235 SET_TYPE_MODE (type
, mode_for_size (POINTER_SIZE
, MODE_INT
, 0));
2236 TYPE_PRECISION (type
) = POINTER_SIZE
;
2241 /* It's hard to see what the mode and size of a function ought to
2242 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2243 make it consistent with that. */
2244 SET_TYPE_MODE (type
, mode_for_size (FUNCTION_BOUNDARY
, MODE_INT
, 0));
2245 TYPE_SIZE (type
) = bitsize_int (FUNCTION_BOUNDARY
);
2246 TYPE_SIZE_UNIT (type
) = size_int (FUNCTION_BOUNDARY
/ BITS_PER_UNIT
);
2250 case REFERENCE_TYPE
:
2252 machine_mode mode
= TYPE_MODE (type
);
2253 if (TREE_CODE (type
) == REFERENCE_TYPE
&& reference_types_internal
)
2255 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
2256 mode
= targetm
.addr_space
.address_mode (as
);
2259 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (mode
));
2260 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
2261 TYPE_UNSIGNED (type
) = 1;
2262 TYPE_PRECISION (type
) = GET_MODE_PRECISION (mode
);
2268 tree index
= TYPE_DOMAIN (type
);
2269 tree element
= TREE_TYPE (type
);
2271 build_pointer_type (element
);
2273 /* We need to know both bounds in order to compute the size. */
2274 if (index
&& TYPE_MAX_VALUE (index
) && TYPE_MIN_VALUE (index
)
2275 && TYPE_SIZE (element
))
2277 tree ub
= TYPE_MAX_VALUE (index
);
2278 tree lb
= TYPE_MIN_VALUE (index
);
2279 tree element_size
= TYPE_SIZE (element
);
2282 /* Make sure that an array of zero-sized element is zero-sized
2283 regardless of its extent. */
2284 if (integer_zerop (element_size
))
2285 length
= size_zero_node
;
2287 /* The computation should happen in the original signedness so
2288 that (possible) negative values are handled appropriately
2289 when determining overflow. */
2292 /* ??? When it is obvious that the range is signed
2293 represent it using ssizetype. */
2294 if (TREE_CODE (lb
) == INTEGER_CST
2295 && TREE_CODE (ub
) == INTEGER_CST
2296 && TYPE_UNSIGNED (TREE_TYPE (lb
))
2297 && tree_int_cst_lt (ub
, lb
))
2299 lb
= wide_int_to_tree (ssizetype
,
2300 offset_int::from (lb
, SIGNED
));
2301 ub
= wide_int_to_tree (ssizetype
,
2302 offset_int::from (ub
, SIGNED
));
2305 = fold_convert (sizetype
,
2306 size_binop (PLUS_EXPR
,
2307 build_int_cst (TREE_TYPE (lb
), 1),
2308 size_binop (MINUS_EXPR
, ub
, lb
)));
2311 /* ??? We have no way to distinguish a null-sized array from an
2312 array spanning the whole sizetype range, so we arbitrarily
2313 decide that [0, -1] is the only valid representation. */
2314 if (integer_zerop (length
)
2315 && TREE_OVERFLOW (length
)
2316 && integer_zerop (lb
))
2317 length
= size_zero_node
;
2319 TYPE_SIZE (type
) = size_binop (MULT_EXPR
, element_size
,
2320 fold_convert (bitsizetype
,
2323 /* If we know the size of the element, calculate the total size
2324 directly, rather than do some division thing below. This
2325 optimization helps Fortran assumed-size arrays (where the
2326 size of the array is determined at runtime) substantially. */
2327 if (TYPE_SIZE_UNIT (element
))
2328 TYPE_SIZE_UNIT (type
)
2329 = size_binop (MULT_EXPR
, TYPE_SIZE_UNIT (element
), length
);
2332 /* Now round the alignment and size,
2333 using machine-dependent criteria if any. */
2335 unsigned align
= TYPE_ALIGN (element
);
2336 if (TYPE_USER_ALIGN (type
))
2337 align
= MAX (align
, TYPE_ALIGN (type
));
2339 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (element
);
2340 #ifdef ROUND_TYPE_ALIGN
2341 align
= ROUND_TYPE_ALIGN (type
, align
, BITS_PER_UNIT
);
2343 align
= MAX (align
, BITS_PER_UNIT
);
2345 TYPE_ALIGN (type
) = align
;
2346 SET_TYPE_MODE (type
, BLKmode
);
2347 if (TYPE_SIZE (type
) != 0
2348 && ! targetm
.member_type_forces_blk (type
, VOIDmode
)
2349 /* BLKmode elements force BLKmode aggregate;
2350 else extract/store fields may lose. */
2351 && (TYPE_MODE (TREE_TYPE (type
)) != BLKmode
2352 || TYPE_NO_FORCE_BLK (TREE_TYPE (type
))))
2354 SET_TYPE_MODE (type
, mode_for_array (TREE_TYPE (type
),
2356 if (TYPE_MODE (type
) != BLKmode
2357 && STRICT_ALIGNMENT
&& TYPE_ALIGN (type
) < BIGGEST_ALIGNMENT
2358 && TYPE_ALIGN (type
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
2360 TYPE_NO_FORCE_BLK (type
) = 1;
2361 SET_TYPE_MODE (type
, BLKmode
);
2364 /* When the element size is constant, check that it is at least as
2365 large as the element alignment. */
2366 if (TYPE_SIZE_UNIT (element
)
2367 && TREE_CODE (TYPE_SIZE_UNIT (element
)) == INTEGER_CST
2368 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2370 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element
))
2371 && !integer_zerop (TYPE_SIZE_UNIT (element
))
2372 && compare_tree_int (TYPE_SIZE_UNIT (element
),
2373 TYPE_ALIGN_UNIT (element
)) < 0)
2374 error ("alignment of array elements is greater than element size");
2380 case QUAL_UNION_TYPE
:
2383 record_layout_info rli
;
2385 /* Initialize the layout information. */
2386 rli
= start_record_layout (type
);
2388 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2389 in the reverse order in building the COND_EXPR that denotes
2390 its size. We reverse them again later. */
2391 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2392 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2394 /* Place all the fields. */
2395 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
2396 place_field (rli
, field
);
2398 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2399 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2401 /* Finish laying out the record. */
2402 finish_record_layout (rli
, /*free_p=*/true);
2410 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2411 records and unions, finish_record_layout already called this
2413 if (!RECORD_OR_UNION_TYPE_P (type
))
2414 finalize_type_size (type
);
2416 /* We should never see alias sets on incomplete aggregates. And we
2417 should not call layout_type on not incomplete aggregates. */
2418 if (AGGREGATE_TYPE_P (type
))
2419 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type
));
2422 /* Return the least alignment required for type TYPE. */
2425 min_align_of_type (tree type
)
2427 unsigned int align
= TYPE_ALIGN (type
);
2428 if (!TYPE_USER_ALIGN (type
))
2430 align
= MIN (align
, BIGGEST_ALIGNMENT
);
2431 #ifdef BIGGEST_FIELD_ALIGNMENT
2432 align
= MIN (align
, BIGGEST_FIELD_ALIGNMENT
);
2434 unsigned int field_align
= align
;
2435 #ifdef ADJUST_FIELD_ALIGN
2436 tree field
= build_decl (UNKNOWN_LOCATION
, FIELD_DECL
, NULL_TREE
, type
);
2437 field_align
= ADJUST_FIELD_ALIGN (field
, field_align
);
2440 align
= MIN (align
, field_align
);
2442 return align
/ BITS_PER_UNIT
;
2445 /* Vector types need to re-check the target flags each time we report
2446 the machine mode. We need to do this because attribute target can
2447 change the result of vector_mode_supported_p and have_regs_of_mode
2448 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2449 change on a per-function basis. */
2450 /* ??? Possibly a better solution is to run through all the types
2451 referenced by a function and re-compute the TYPE_MODE once, rather
2452 than make the TYPE_MODE macro call a function. */
2455 vector_type_mode (const_tree t
)
2459 gcc_assert (TREE_CODE (t
) == VECTOR_TYPE
);
2461 mode
= t
->type_common
.mode
;
2462 if (VECTOR_MODE_P (mode
)
2463 && (!targetm
.vector_mode_supported_p (mode
)
2464 || !have_regs_of_mode
[mode
]))
2466 machine_mode innermode
= TREE_TYPE (t
)->type_common
.mode
;
2468 /* For integers, try mapping it to a same-sized scalar mode. */
2469 if (GET_MODE_CLASS (innermode
) == MODE_INT
)
2471 mode
= mode_for_size (TYPE_VECTOR_SUBPARTS (t
)
2472 * GET_MODE_BITSIZE (innermode
), MODE_INT
, 0);
2474 if (mode
!= VOIDmode
&& have_regs_of_mode
[mode
])
2484 /* Create and return a type for signed integers of PRECISION bits. */
2487 make_signed_type (int precision
)
2489 tree type
= make_node (INTEGER_TYPE
);
2491 TYPE_PRECISION (type
) = precision
;
2493 fixup_signed_type (type
);
2497 /* Create and return a type for unsigned integers of PRECISION bits. */
2500 make_unsigned_type (int precision
)
2502 tree type
= make_node (INTEGER_TYPE
);
2504 TYPE_PRECISION (type
) = precision
;
2506 fixup_unsigned_type (type
);
2510 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2514 make_fract_type (int precision
, int unsignedp
, int satp
)
2516 tree type
= make_node (FIXED_POINT_TYPE
);
2518 TYPE_PRECISION (type
) = precision
;
2521 TYPE_SATURATING (type
) = 1;
2523 /* Lay out the type: set its alignment, size, etc. */
2526 TYPE_UNSIGNED (type
) = 1;
2527 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_UFRACT
, 0));
2530 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_FRACT
, 0));
2536 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2540 make_accum_type (int precision
, int unsignedp
, int satp
)
2542 tree type
= make_node (FIXED_POINT_TYPE
);
2544 TYPE_PRECISION (type
) = precision
;
2547 TYPE_SATURATING (type
) = 1;
2549 /* Lay out the type: set its alignment, size, etc. */
2552 TYPE_UNSIGNED (type
) = 1;
2553 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_UACCUM
, 0));
2556 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_ACCUM
, 0));
2562 /* Initialize sizetypes so layout_type can use them. */
2565 initialize_sizetypes (void)
2567 int precision
, bprecision
;
2569 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2570 if (strcmp (SIZETYPE
, "unsigned int") == 0)
2571 precision
= INT_TYPE_SIZE
;
2572 else if (strcmp (SIZETYPE
, "long unsigned int") == 0)
2573 precision
= LONG_TYPE_SIZE
;
2574 else if (strcmp (SIZETYPE
, "long long unsigned int") == 0)
2575 precision
= LONG_LONG_TYPE_SIZE
;
2576 else if (strcmp (SIZETYPE
, "short unsigned int") == 0)
2577 precision
= SHORT_TYPE_SIZE
;
2583 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
2584 if (int_n_enabled_p
[i
])
2587 sprintf (name
, "__int%d unsigned", int_n_data
[i
].bitsize
);
2589 if (strcmp (name
, SIZETYPE
) == 0)
2591 precision
= int_n_data
[i
].bitsize
;
2594 if (precision
== -1)
2599 = MIN (precision
+ BITS_PER_UNIT_LOG
+ 1, MAX_FIXED_MODE_SIZE
);
2601 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision
, MODE_INT
));
2602 if (bprecision
> HOST_BITS_PER_DOUBLE_INT
)
2603 bprecision
= HOST_BITS_PER_DOUBLE_INT
;
2605 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2606 sizetype
= make_node (INTEGER_TYPE
);
2607 TYPE_NAME (sizetype
) = get_identifier ("sizetype");
2608 TYPE_PRECISION (sizetype
) = precision
;
2609 TYPE_UNSIGNED (sizetype
) = 1;
2610 bitsizetype
= make_node (INTEGER_TYPE
);
2611 TYPE_NAME (bitsizetype
) = get_identifier ("bitsizetype");
2612 TYPE_PRECISION (bitsizetype
) = bprecision
;
2613 TYPE_UNSIGNED (bitsizetype
) = 1;
2615 /* Now layout both types manually. */
2616 SET_TYPE_MODE (sizetype
, smallest_mode_for_size (precision
, MODE_INT
));
2617 TYPE_ALIGN (sizetype
) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype
));
2618 TYPE_SIZE (sizetype
) = bitsize_int (precision
);
2619 TYPE_SIZE_UNIT (sizetype
) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype
)));
2620 set_min_and_max_values_for_integral_type (sizetype
, precision
, UNSIGNED
);
2622 SET_TYPE_MODE (bitsizetype
, smallest_mode_for_size (bprecision
, MODE_INT
));
2623 TYPE_ALIGN (bitsizetype
) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype
));
2624 TYPE_SIZE (bitsizetype
) = bitsize_int (bprecision
);
2625 TYPE_SIZE_UNIT (bitsizetype
)
2626 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype
)));
2627 set_min_and_max_values_for_integral_type (bitsizetype
, bprecision
, UNSIGNED
);
2629 /* Create the signed variants of *sizetype. */
2630 ssizetype
= make_signed_type (TYPE_PRECISION (sizetype
));
2631 TYPE_NAME (ssizetype
) = get_identifier ("ssizetype");
2632 sbitsizetype
= make_signed_type (TYPE_PRECISION (bitsizetype
));
2633 TYPE_NAME (sbitsizetype
) = get_identifier ("sbitsizetype");
2636 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2637 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2638 for TYPE, based on the PRECISION and whether or not the TYPE
2639 IS_UNSIGNED. PRECISION need not correspond to a width supported
2640 natively by the hardware; for example, on a machine with 8-bit,
2641 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2645 set_min_and_max_values_for_integral_type (tree type
,
2649 /* For bitfields with zero width we end up creating integer types
2650 with zero precision. Don't assign any minimum/maximum values
2651 to those types, they don't have any valid value. */
2655 TYPE_MIN_VALUE (type
)
2656 = wide_int_to_tree (type
, wi::min_value (precision
, sgn
));
2657 TYPE_MAX_VALUE (type
)
2658 = wide_int_to_tree (type
, wi::max_value (precision
, sgn
));
2661 /* Set the extreme values of TYPE based on its precision in bits,
2662 then lay it out. Used when make_signed_type won't do
2663 because the tree code is not INTEGER_TYPE.
2664 E.g. for Pascal, when the -fsigned-char option is given. */
2667 fixup_signed_type (tree type
)
2669 int precision
= TYPE_PRECISION (type
);
2671 set_min_and_max_values_for_integral_type (type
, precision
, SIGNED
);
2673 /* Lay out the type: set its alignment, size, etc. */
2677 /* Set the extreme values of TYPE based on its precision in bits,
2678 then lay it out. This is used both in `make_unsigned_type'
2679 and for enumeral types. */
2682 fixup_unsigned_type (tree type
)
2684 int precision
= TYPE_PRECISION (type
);
2686 TYPE_UNSIGNED (type
) = 1;
2688 set_min_and_max_values_for_integral_type (type
, precision
, UNSIGNED
);
2690 /* Lay out the type: set its alignment, size, etc. */
2694 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2697 BITREGION_START is the bit position of the first bit in this
2698 sequence of bit fields. BITREGION_END is the last bit in this
2699 sequence. If these two fields are non-zero, we should restrict the
2700 memory access to that range. Otherwise, we are allowed to touch
2701 any adjacent non bit-fields.
2703 ALIGN is the alignment of the underlying object in bits.
2704 VOLATILEP says whether the bitfield is volatile. */
2706 bit_field_mode_iterator
2707 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
2708 HOST_WIDE_INT bitregion_start
,
2709 HOST_WIDE_INT bitregion_end
,
2710 unsigned int align
, bool volatilep
)
2711 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT
)), m_bitsize (bitsize
),
2712 m_bitpos (bitpos
), m_bitregion_start (bitregion_start
),
2713 m_bitregion_end (bitregion_end
), m_align (align
),
2714 m_volatilep (volatilep
), m_count (0)
2716 if (!m_bitregion_end
)
2718 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2719 the bitfield is mapped and won't trap, provided that ALIGN isn't
2720 too large. The cap is the biggest required alignment for data,
2721 or at least the word size. And force one such chunk at least. */
2722 unsigned HOST_WIDE_INT units
2723 = MIN (align
, MAX (BIGGEST_ALIGNMENT
, BITS_PER_WORD
));
2726 m_bitregion_end
= bitpos
+ bitsize
+ units
- 1;
2727 m_bitregion_end
-= m_bitregion_end
% units
+ 1;
2731 /* Calls to this function return successively larger modes that can be used
2732 to represent the bitfield. Return true if another bitfield mode is
2733 available, storing it in *OUT_MODE if so. */
2736 bit_field_mode_iterator::next_mode (machine_mode
*out_mode
)
2738 for (; m_mode
!= VOIDmode
; m_mode
= GET_MODE_WIDER_MODE (m_mode
))
2740 unsigned int unit
= GET_MODE_BITSIZE (m_mode
);
2742 /* Skip modes that don't have full precision. */
2743 if (unit
!= GET_MODE_PRECISION (m_mode
))
2746 /* Stop if the mode is too wide to handle efficiently. */
2747 if (unit
> MAX_FIXED_MODE_SIZE
)
2750 /* Don't deliver more than one multiword mode; the smallest one
2752 if (m_count
> 0 && unit
> BITS_PER_WORD
)
2755 /* Skip modes that are too small. */
2756 unsigned HOST_WIDE_INT substart
= (unsigned HOST_WIDE_INT
) m_bitpos
% unit
;
2757 unsigned HOST_WIDE_INT subend
= substart
+ m_bitsize
;
2761 /* Stop if the mode goes outside the bitregion. */
2762 HOST_WIDE_INT start
= m_bitpos
- substart
;
2763 if (m_bitregion_start
&& start
< m_bitregion_start
)
2765 HOST_WIDE_INT end
= start
+ unit
;
2766 if (end
> m_bitregion_end
+ 1)
2769 /* Stop if the mode requires too much alignment. */
2770 if (GET_MODE_ALIGNMENT (m_mode
) > m_align
2771 && SLOW_UNALIGNED_ACCESS (m_mode
, m_align
))
2775 m_mode
= GET_MODE_WIDER_MODE (m_mode
);
2782 /* Return true if smaller modes are generally preferred for this kind
2786 bit_field_mode_iterator::prefer_smaller_modes ()
2789 ? targetm
.narrow_volatile_bitfield ()
2790 : !SLOW_BYTE_ACCESS
);
2793 /* Find the best machine mode to use when referencing a bit field of length
2794 BITSIZE bits starting at BITPOS.
2796 BITREGION_START is the bit position of the first bit in this
2797 sequence of bit fields. BITREGION_END is the last bit in this
2798 sequence. If these two fields are non-zero, we should restrict the
2799 memory access to that range. Otherwise, we are allowed to touch
2800 any adjacent non bit-fields.
2802 The underlying object is known to be aligned to a boundary of ALIGN bits.
2803 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2804 larger than LARGEST_MODE (usually SImode).
2806 If no mode meets all these conditions, we return VOIDmode.
2808 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2809 smallest mode meeting these conditions.
2811 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2812 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2815 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2816 decide which of the above modes should be used. */
2819 get_best_mode (int bitsize
, int bitpos
,
2820 unsigned HOST_WIDE_INT bitregion_start
,
2821 unsigned HOST_WIDE_INT bitregion_end
,
2823 machine_mode largest_mode
, bool volatilep
)
2825 bit_field_mode_iterator
iter (bitsize
, bitpos
, bitregion_start
,
2826 bitregion_end
, align
, volatilep
);
2827 machine_mode widest_mode
= VOIDmode
;
2829 while (iter
.next_mode (&mode
)
2830 /* ??? For historical reasons, reject modes that would normally
2831 receive greater alignment, even if unaligned accesses are
2832 acceptable. This has both advantages and disadvantages.
2833 Removing this check means that something like:
2835 struct s { unsigned int x; unsigned int y; };
2836 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2838 can be implemented using a single load and compare on
2839 64-bit machines that have no alignment restrictions.
2840 For example, on powerpc64-linux-gnu, we would generate:
2862 However, accessing more than one field can make life harder
2863 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2864 has a series of unsigned short copies followed by a series of
2865 unsigned short comparisons. With this check, both the copies
2866 and comparisons remain 16-bit accesses and FRE is able
2867 to eliminate the latter. Without the check, the comparisons
2868 can be done using 2 64-bit operations, which FRE isn't able
2869 to handle in the same way.
2871 Either way, it would probably be worth disabling this check
2872 during expand. One particular example where removing the
2873 check would help is the get_best_mode call in store_bit_field.
2874 If we are given a memory bitregion of 128 bits that is aligned
2875 to a 64-bit boundary, and the bitfield we want to modify is
2876 in the second half of the bitregion, this check causes
2877 store_bitfield to turn the memory into a 64-bit reference
2878 to the _first_ half of the region. We later use
2879 adjust_bitfield_address to get a reference to the correct half,
2880 but doing so looks to adjust_bitfield_address as though we are
2881 moving past the end of the original object, so it drops the
2882 associated MEM_EXPR and MEM_OFFSET. Removing the check
2883 causes store_bit_field to keep a 128-bit memory reference,
2884 so that the final bitfield reference still has a MEM_EXPR
2886 && GET_MODE_ALIGNMENT (mode
) <= align
2887 && (largest_mode
== VOIDmode
2888 || GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (largest_mode
)))
2891 if (iter
.prefer_smaller_modes ())
2897 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2898 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2901 get_mode_bounds (machine_mode mode
, int sign
,
2902 machine_mode target_mode
,
2903 rtx
*mmin
, rtx
*mmax
)
2905 unsigned size
= GET_MODE_PRECISION (mode
);
2906 unsigned HOST_WIDE_INT min_val
, max_val
;
2908 gcc_assert (size
<= HOST_BITS_PER_WIDE_INT
);
2910 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2913 if (STORE_FLAG_VALUE
< 0)
2915 min_val
= STORE_FLAG_VALUE
;
2921 max_val
= STORE_FLAG_VALUE
;
2926 min_val
= -((unsigned HOST_WIDE_INT
) 1 << (size
- 1));
2927 max_val
= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)) - 1;
2932 max_val
= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1) << 1) - 1;
2935 *mmin
= gen_int_mode (min_val
, target_mode
);
2936 *mmax
= gen_int_mode (max_val
, target_mode
);
2939 #include "gt-stor-layout.h"