gcc/
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob9dc8d1281d7d2851491d6236cb7daedff13b5e09
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Pakd; use Exp_Pakd;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch10; use Sem_Ch10;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Dim; use Sem_Dim;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Prag; use Sem_Prag;
69 with Sem_Res; use Sem_Res;
70 with Sem_Smem; use Sem_Smem;
71 with Sem_Type; use Sem_Type;
72 with Sem_Util; use Sem_Util;
73 with Sem_Warn; use Sem_Warn;
74 with Stand; use Stand;
75 with Sinfo; use Sinfo;
76 with Sinput; use Sinput;
77 with Snames; use Snames;
78 with Targparm; use Targparm;
79 with Tbuild; use Tbuild;
80 with Ttypes; use Ttypes;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Ch3 is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
91 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
92 -- abstract interface types implemented by a record type or a derived
93 -- record type.
95 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
96 -- Analyze all delayed aspects chained on the contract of object Obj_Id as
97 -- if they appeared at the end of the declarative region. The aspects to be
98 -- considered are:
99 -- Async_Readers
100 -- Async_Writers
101 -- Effective_Reads
102 -- Effective_Writes
103 -- Part_Of
105 procedure Build_Derived_Type
106 (N : Node_Id;
107 Parent_Type : Entity_Id;
108 Derived_Type : Entity_Id;
109 Is_Completion : Boolean;
110 Derive_Subps : Boolean := True);
111 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
112 -- the N_Full_Type_Declaration node containing the derived type definition.
113 -- Parent_Type is the entity for the parent type in the derived type
114 -- definition and Derived_Type the actual derived type. Is_Completion must
115 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
116 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
117 -- completion of a private type declaration. If Is_Completion is set to
118 -- True, N is the completion of a private type declaration and Derived_Type
119 -- is different from the defining identifier inside N (i.e. Derived_Type /=
120 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
121 -- subprograms should be derived. The only case where this parameter is
122 -- False is when Build_Derived_Type is recursively called to process an
123 -- implicit derived full type for a type derived from a private type (in
124 -- that case the subprograms must only be derived for the private view of
125 -- the type).
127 -- ??? These flags need a bit of re-examination and re-documentation:
128 -- ??? are they both necessary (both seem related to the recursion)?
130 procedure Build_Derived_Access_Type
131 (N : Node_Id;
132 Parent_Type : Entity_Id;
133 Derived_Type : Entity_Id);
134 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
135 -- create an implicit base if the parent type is constrained or if the
136 -- subtype indication has a constraint.
138 procedure Build_Derived_Array_Type
139 (N : Node_Id;
140 Parent_Type : Entity_Id;
141 Derived_Type : Entity_Id);
142 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
143 -- create an implicit base if the parent type is constrained or if the
144 -- subtype indication has a constraint.
146 procedure Build_Derived_Concurrent_Type
147 (N : Node_Id;
148 Parent_Type : Entity_Id;
149 Derived_Type : Entity_Id);
150 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
151 -- protected type, inherit entries and protected subprograms, check
152 -- legality of discriminant constraints if any.
154 procedure Build_Derived_Enumeration_Type
155 (N : Node_Id;
156 Parent_Type : Entity_Id;
157 Derived_Type : Entity_Id);
158 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
159 -- type, we must create a new list of literals. Types derived from
160 -- Character and [Wide_]Wide_Character are special-cased.
162 procedure Build_Derived_Numeric_Type
163 (N : Node_Id;
164 Parent_Type : Entity_Id;
165 Derived_Type : Entity_Id);
166 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
167 -- an anonymous base type, and propagate constraint to subtype if needed.
169 procedure Build_Derived_Private_Type
170 (N : Node_Id;
171 Parent_Type : Entity_Id;
172 Derived_Type : Entity_Id;
173 Is_Completion : Boolean;
174 Derive_Subps : Boolean := True);
175 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
176 -- because the parent may or may not have a completion, and the derivation
177 -- may itself be a completion.
179 procedure Build_Derived_Record_Type
180 (N : Node_Id;
181 Parent_Type : Entity_Id;
182 Derived_Type : Entity_Id;
183 Derive_Subps : Boolean := True);
184 -- Subsidiary procedure used for tagged and untagged record types
185 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
186 -- All parameters are as in Build_Derived_Type except that N, in
187 -- addition to being an N_Full_Type_Declaration node, can also be an
188 -- N_Private_Extension_Declaration node. See the definition of this routine
189 -- for much more info. Derive_Subps indicates whether subprograms should be
190 -- derived from the parent type. The only case where Derive_Subps is False
191 -- is for an implicit derived full type for a type derived from a private
192 -- type (see Build_Derived_Type).
194 procedure Build_Discriminal (Discrim : Entity_Id);
195 -- Create the discriminal corresponding to discriminant Discrim, that is
196 -- the parameter corresponding to Discrim to be used in initialization
197 -- procedures for the type where Discrim is a discriminant. Discriminals
198 -- are not used during semantic analysis, and are not fully defined
199 -- entities until expansion. Thus they are not given a scope until
200 -- initialization procedures are built.
202 function Build_Discriminant_Constraints
203 (T : Entity_Id;
204 Def : Node_Id;
205 Derived_Def : Boolean := False) return Elist_Id;
206 -- Validate discriminant constraints and return the list of the constraints
207 -- in order of discriminant declarations, where T is the discriminated
208 -- unconstrained type. Def is the N_Subtype_Indication node where the
209 -- discriminants constraints for T are specified. Derived_Def is True
210 -- when building the discriminant constraints in a derived type definition
211 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
212 -- type and Def is the constraint "(xxx)" on T and this routine sets the
213 -- Corresponding_Discriminant field of the discriminants in the derived
214 -- type D to point to the corresponding discriminants in the parent type T.
216 procedure Build_Discriminated_Subtype
217 (T : Entity_Id;
218 Def_Id : Entity_Id;
219 Elist : Elist_Id;
220 Related_Nod : Node_Id;
221 For_Access : Boolean := False);
222 -- Subsidiary procedure to Constrain_Discriminated_Type and to
223 -- Process_Incomplete_Dependents. Given
225 -- T (a possibly discriminated base type)
226 -- Def_Id (a very partially built subtype for T),
228 -- the call completes Def_Id to be the appropriate E_*_Subtype.
230 -- The Elist is the list of discriminant constraints if any (it is set
231 -- to No_Elist if T is not a discriminated type, and to an empty list if
232 -- T has discriminants but there are no discriminant constraints). The
233 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
234 -- The For_Access says whether or not this subtype is really constraining
235 -- an access type. That is its sole purpose is the designated type of an
236 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
237 -- is built to avoid freezing T when the access subtype is frozen.
239 function Build_Scalar_Bound
240 (Bound : Node_Id;
241 Par_T : Entity_Id;
242 Der_T : Entity_Id) return Node_Id;
243 -- The bounds of a derived scalar type are conversions of the bounds of
244 -- the parent type. Optimize the representation if the bounds are literals.
245 -- Needs a more complete spec--what are the parameters exactly, and what
246 -- exactly is the returned value, and how is Bound affected???
248 procedure Build_Underlying_Full_View
249 (N : Node_Id;
250 Typ : Entity_Id;
251 Par : Entity_Id);
252 -- If the completion of a private type is itself derived from a private
253 -- type, or if the full view of a private subtype is itself private, the
254 -- back-end has no way to compute the actual size of this type. We build
255 -- an internal subtype declaration of the proper parent type to convey
256 -- this information. This extra mechanism is needed because a full
257 -- view cannot itself have a full view (it would get clobbered during
258 -- view exchanges).
260 procedure Check_Access_Discriminant_Requires_Limited
261 (D : Node_Id;
262 Loc : Node_Id);
263 -- Check the restriction that the type to which an access discriminant
264 -- belongs must be a concurrent type or a descendant of a type with
265 -- the reserved word 'limited' in its declaration.
267 procedure Check_Anonymous_Access_Components
268 (Typ_Decl : Node_Id;
269 Typ : Entity_Id;
270 Prev : Entity_Id;
271 Comp_List : Node_Id);
272 -- Ada 2005 AI-382: an access component in a record definition can refer to
273 -- the enclosing record, in which case it denotes the type itself, and not
274 -- the current instance of the type. We create an anonymous access type for
275 -- the component, and flag it as an access to a component, so accessibility
276 -- checks are properly performed on it. The declaration of the access type
277 -- is placed ahead of that of the record to prevent order-of-elaboration
278 -- circularity issues in Gigi. We create an incomplete type for the record
279 -- declaration, which is the designated type of the anonymous access.
281 procedure Check_Delta_Expression (E : Node_Id);
282 -- Check that the expression represented by E is suitable for use as a
283 -- delta expression, i.e. it is of real type and is static.
285 procedure Check_Digits_Expression (E : Node_Id);
286 -- Check that the expression represented by E is suitable for use as a
287 -- digits expression, i.e. it is of integer type, positive and static.
289 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
290 -- Validate the initialization of an object declaration. T is the required
291 -- type, and Exp is the initialization expression.
293 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
294 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
296 procedure Check_Or_Process_Discriminants
297 (N : Node_Id;
298 T : Entity_Id;
299 Prev : Entity_Id := Empty);
300 -- If N is the full declaration of the completion T of an incomplete or
301 -- private type, check its discriminants (which are already known to be
302 -- conformant with those of the partial view, see Find_Type_Name),
303 -- otherwise process them. Prev is the entity of the partial declaration,
304 -- if any.
306 procedure Check_Real_Bound (Bound : Node_Id);
307 -- Check given bound for being of real type and static. If not, post an
308 -- appropriate message, and rewrite the bound with the real literal zero.
310 procedure Constant_Redeclaration
311 (Id : Entity_Id;
312 N : Node_Id;
313 T : out Entity_Id);
314 -- Various checks on legality of full declaration of deferred constant.
315 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
316 -- node. The caller has not yet set any attributes of this entity.
318 function Contain_Interface
319 (Iface : Entity_Id;
320 Ifaces : Elist_Id) return Boolean;
321 -- Ada 2005: Determine whether Iface is present in the list Ifaces
323 procedure Convert_Scalar_Bounds
324 (N : Node_Id;
325 Parent_Type : Entity_Id;
326 Derived_Type : Entity_Id;
327 Loc : Source_Ptr);
328 -- For derived scalar types, convert the bounds in the type definition to
329 -- the derived type, and complete their analysis. Given a constraint of the
330 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
331 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
332 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
333 -- subtype are conversions of those bounds to the derived_type, so that
334 -- their typing is consistent.
336 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
337 -- Copies attributes from array base type T2 to array base type T1. Copies
338 -- only attributes that apply to base types, but not subtypes.
340 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
341 -- Copies attributes from array subtype T2 to array subtype T1. Copies
342 -- attributes that apply to both subtypes and base types.
344 procedure Create_Constrained_Components
345 (Subt : Entity_Id;
346 Decl_Node : Node_Id;
347 Typ : Entity_Id;
348 Constraints : Elist_Id);
349 -- Build the list of entities for a constrained discriminated record
350 -- subtype. If a component depends on a discriminant, replace its subtype
351 -- using the discriminant values in the discriminant constraint. Subt
352 -- is the defining identifier for the subtype whose list of constrained
353 -- entities we will create. Decl_Node is the type declaration node where
354 -- we will attach all the itypes created. Typ is the base discriminated
355 -- type for the subtype Subt. Constraints is the list of discriminant
356 -- constraints for Typ.
358 function Constrain_Component_Type
359 (Comp : Entity_Id;
360 Constrained_Typ : Entity_Id;
361 Related_Node : Node_Id;
362 Typ : Entity_Id;
363 Constraints : Elist_Id) return Entity_Id;
364 -- Given a discriminated base type Typ, a list of discriminant constraint
365 -- Constraints for Typ and a component of Typ, with type Compon_Type,
366 -- create and return the type corresponding to Compon_type where all
367 -- discriminant references are replaced with the corresponding constraint.
368 -- If no discriminant references occur in Compon_Typ then return it as is.
369 -- Constrained_Typ is the final constrained subtype to which the
370 -- constrained Compon_Type belongs. Related_Node is the node where we will
371 -- attach all the itypes created.
373 -- Above description is confused, what is Compon_Type???
375 procedure Constrain_Access
376 (Def_Id : in out Entity_Id;
377 S : Node_Id;
378 Related_Nod : Node_Id);
379 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
380 -- an anonymous type created for a subtype indication. In that case it is
381 -- created in the procedure and attached to Related_Nod.
383 procedure Constrain_Array
384 (Def_Id : in out Entity_Id;
385 SI : Node_Id;
386 Related_Nod : Node_Id;
387 Related_Id : Entity_Id;
388 Suffix : Character);
389 -- Apply a list of index constraints to an unconstrained array type. The
390 -- first parameter is the entity for the resulting subtype. A value of
391 -- Empty for Def_Id indicates that an implicit type must be created, but
392 -- creation is delayed (and must be done by this procedure) because other
393 -- subsidiary implicit types must be created first (which is why Def_Id
394 -- is an in/out parameter). The second parameter is a subtype indication
395 -- node for the constrained array to be created (e.g. something of the
396 -- form string (1 .. 10)). Related_Nod gives the place where this type
397 -- has to be inserted in the tree. The Related_Id and Suffix parameters
398 -- are used to build the associated Implicit type name.
400 procedure Constrain_Concurrent
401 (Def_Id : in out Entity_Id;
402 SI : Node_Id;
403 Related_Nod : Node_Id;
404 Related_Id : Entity_Id;
405 Suffix : Character);
406 -- Apply list of discriminant constraints to an unconstrained concurrent
407 -- type.
409 -- SI is the N_Subtype_Indication node containing the constraint and
410 -- the unconstrained type to constrain.
412 -- Def_Id is the entity for the resulting constrained subtype. A value
413 -- of Empty for Def_Id indicates that an implicit type must be created,
414 -- but creation is delayed (and must be done by this procedure) because
415 -- other subsidiary implicit types must be created first (which is why
416 -- Def_Id is an in/out parameter).
418 -- Related_Nod gives the place where this type has to be inserted
419 -- in the tree
421 -- The last two arguments are used to create its external name if needed.
423 function Constrain_Corresponding_Record
424 (Prot_Subt : Entity_Id;
425 Corr_Rec : Entity_Id;
426 Related_Nod : Node_Id;
427 Related_Id : Entity_Id) return Entity_Id;
428 -- When constraining a protected type or task type with discriminants,
429 -- constrain the corresponding record with the same discriminant values.
431 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
432 -- Constrain a decimal fixed point type with a digits constraint and/or a
433 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
435 procedure Constrain_Discriminated_Type
436 (Def_Id : Entity_Id;
437 S : Node_Id;
438 Related_Nod : Node_Id;
439 For_Access : Boolean := False);
440 -- Process discriminant constraints of composite type. Verify that values
441 -- have been provided for all discriminants, that the original type is
442 -- unconstrained, and that the types of the supplied expressions match
443 -- the discriminant types. The first three parameters are like in routine
444 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
445 -- of For_Access.
447 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
448 -- Constrain an enumeration type with a range constraint. This is identical
449 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
451 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
452 -- Constrain a floating point type with either a digits constraint
453 -- and/or a range constraint, building a E_Floating_Point_Subtype.
455 procedure Constrain_Index
456 (Index : Node_Id;
457 S : Node_Id;
458 Related_Nod : Node_Id;
459 Related_Id : Entity_Id;
460 Suffix : Character;
461 Suffix_Index : Nat);
462 -- Process an index constraint S in a constrained array declaration. The
463 -- constraint can be a subtype name, or a range with or without an explicit
464 -- subtype mark. The index is the corresponding index of the unconstrained
465 -- array. The Related_Id and Suffix parameters are used to build the
466 -- associated Implicit type name.
468 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
469 -- Build subtype of a signed or modular integer type
471 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
472 -- Constrain an ordinary fixed point type with a range constraint, and
473 -- build an E_Ordinary_Fixed_Point_Subtype entity.
475 procedure Copy_And_Swap (Priv, Full : Entity_Id);
476 -- Copy the Priv entity into the entity of its full declaration then swap
477 -- the two entities in such a manner that the former private type is now
478 -- seen as a full type.
480 procedure Decimal_Fixed_Point_Type_Declaration
481 (T : Entity_Id;
482 Def : Node_Id);
483 -- Create a new decimal fixed point type, and apply the constraint to
484 -- obtain a subtype of this new type.
486 procedure Complete_Private_Subtype
487 (Priv : Entity_Id;
488 Full : Entity_Id;
489 Full_Base : Entity_Id;
490 Related_Nod : Node_Id);
491 -- Complete the implicit full view of a private subtype by setting the
492 -- appropriate semantic fields. If the full view of the parent is a record
493 -- type, build constrained components of subtype.
495 procedure Derive_Progenitor_Subprograms
496 (Parent_Type : Entity_Id;
497 Tagged_Type : Entity_Id);
498 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
499 -- operations of progenitors of Tagged_Type, and replace the subsidiary
500 -- subtypes with Tagged_Type, to build the specs of the inherited interface
501 -- primitives. The derived primitives are aliased to those of the
502 -- interface. This routine takes care also of transferring to the full view
503 -- subprograms associated with the partial view of Tagged_Type that cover
504 -- interface primitives.
506 procedure Derived_Standard_Character
507 (N : Node_Id;
508 Parent_Type : Entity_Id;
509 Derived_Type : Entity_Id);
510 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
511 -- derivations from types Standard.Character and Standard.Wide_Character.
513 procedure Derived_Type_Declaration
514 (T : Entity_Id;
515 N : Node_Id;
516 Is_Completion : Boolean);
517 -- Process a derived type declaration. Build_Derived_Type is invoked
518 -- to process the actual derived type definition. Parameters N and
519 -- Is_Completion have the same meaning as in Build_Derived_Type.
520 -- T is the N_Defining_Identifier for the entity defined in the
521 -- N_Full_Type_Declaration node N, that is T is the derived type.
523 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
524 -- Insert each literal in symbol table, as an overloadable identifier. Each
525 -- enumeration type is mapped into a sequence of integers, and each literal
526 -- is defined as a constant with integer value. If any of the literals are
527 -- character literals, the type is a character type, which means that
528 -- strings are legal aggregates for arrays of components of the type.
530 function Expand_To_Stored_Constraint
531 (Typ : Entity_Id;
532 Constraint : Elist_Id) return Elist_Id;
533 -- Given a constraint (i.e. a list of expressions) on the discriminants of
534 -- Typ, expand it into a constraint on the stored discriminants and return
535 -- the new list of expressions constraining the stored discriminants.
537 function Find_Type_Of_Object
538 (Obj_Def : Node_Id;
539 Related_Nod : Node_Id) return Entity_Id;
540 -- Get type entity for object referenced by Obj_Def, attaching the
541 -- implicit types generated to Related_Nod
543 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
544 -- Create a new float and apply the constraint to obtain subtype of it
546 function Has_Range_Constraint (N : Node_Id) return Boolean;
547 -- Given an N_Subtype_Indication node N, return True if a range constraint
548 -- is present, either directly, or as part of a digits or delta constraint.
549 -- In addition, a digits constraint in the decimal case returns True, since
550 -- it establishes a default range if no explicit range is present.
552 function Inherit_Components
553 (N : Node_Id;
554 Parent_Base : Entity_Id;
555 Derived_Base : Entity_Id;
556 Is_Tagged : Boolean;
557 Inherit_Discr : Boolean;
558 Discs : Elist_Id) return Elist_Id;
559 -- Called from Build_Derived_Record_Type to inherit the components of
560 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
561 -- For more information on derived types and component inheritance please
562 -- consult the comment above the body of Build_Derived_Record_Type.
564 -- N is the original derived type declaration
566 -- Is_Tagged is set if we are dealing with tagged types
568 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
569 -- Parent_Base, otherwise no discriminants are inherited.
571 -- Discs gives the list of constraints that apply to Parent_Base in the
572 -- derived type declaration. If Discs is set to No_Elist, then we have
573 -- the following situation:
575 -- type Parent (D1..Dn : ..) is [tagged] record ...;
576 -- type Derived is new Parent [with ...];
578 -- which gets treated as
580 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
582 -- For untagged types the returned value is an association list. The list
583 -- starts from the association (Parent_Base => Derived_Base), and then it
584 -- contains a sequence of the associations of the form
586 -- (Old_Component => New_Component),
588 -- where Old_Component is the Entity_Id of a component in Parent_Base and
589 -- New_Component is the Entity_Id of the corresponding component in
590 -- Derived_Base. For untagged records, this association list is needed when
591 -- copying the record declaration for the derived base. In the tagged case
592 -- the value returned is irrelevant.
594 function Is_Valid_Constraint_Kind
595 (T_Kind : Type_Kind;
596 Constraint_Kind : Node_Kind) return Boolean;
597 -- Returns True if it is legal to apply the given kind of constraint to the
598 -- given kind of type (index constraint to an array type, for example).
600 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
601 -- Create new modular type. Verify that modulus is in bounds
603 procedure New_Concatenation_Op (Typ : Entity_Id);
604 -- Create an abbreviated declaration for an operator in order to
605 -- materialize concatenation on array types.
607 procedure Ordinary_Fixed_Point_Type_Declaration
608 (T : Entity_Id;
609 Def : Node_Id);
610 -- Create a new ordinary fixed point type, and apply the constraint to
611 -- obtain subtype of it.
613 procedure Prepare_Private_Subtype_Completion
614 (Id : Entity_Id;
615 Related_Nod : Node_Id);
616 -- Id is a subtype of some private type. Creates the full declaration
617 -- associated with Id whenever possible, i.e. when the full declaration
618 -- of the base type is already known. Records each subtype into
619 -- Private_Dependents of the base type.
621 procedure Process_Incomplete_Dependents
622 (N : Node_Id;
623 Full_T : Entity_Id;
624 Inc_T : Entity_Id);
625 -- Process all entities that depend on an incomplete type. There include
626 -- subtypes, subprogram types that mention the incomplete type in their
627 -- profiles, and subprogram with access parameters that designate the
628 -- incomplete type.
630 -- Inc_T is the defining identifier of an incomplete type declaration, its
631 -- Ekind is E_Incomplete_Type.
633 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
635 -- Full_T is N's defining identifier.
637 -- Subtypes of incomplete types with discriminants are completed when the
638 -- parent type is. This is simpler than private subtypes, because they can
639 -- only appear in the same scope, and there is no need to exchange views.
640 -- Similarly, access_to_subprogram types may have a parameter or a return
641 -- type that is an incomplete type, and that must be replaced with the
642 -- full type.
644 -- If the full type is tagged, subprogram with access parameters that
645 -- designated the incomplete may be primitive operations of the full type,
646 -- and have to be processed accordingly.
648 procedure Process_Real_Range_Specification (Def : Node_Id);
649 -- Given the type definition for a real type, this procedure processes and
650 -- checks the real range specification of this type definition if one is
651 -- present. If errors are found, error messages are posted, and the
652 -- Real_Range_Specification of Def is reset to Empty.
654 procedure Record_Type_Declaration
655 (T : Entity_Id;
656 N : Node_Id;
657 Prev : Entity_Id);
658 -- Process a record type declaration (for both untagged and tagged
659 -- records). Parameters T and N are exactly like in procedure
660 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
661 -- for this routine. If this is the completion of an incomplete type
662 -- declaration, Prev is the entity of the incomplete declaration, used for
663 -- cross-referencing. Otherwise Prev = T.
665 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
666 -- This routine is used to process the actual record type definition (both
667 -- for untagged and tagged records). Def is a record type definition node.
668 -- This procedure analyzes the components in this record type definition.
669 -- Prev_T is the entity for the enclosing record type. It is provided so
670 -- that its Has_Task flag can be set if any of the component have Has_Task
671 -- set. If the declaration is the completion of an incomplete type
672 -- declaration, Prev_T is the original incomplete type, whose full view is
673 -- the record type.
675 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
676 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
677 -- build a copy of the declaration tree of the parent, and we create
678 -- independently the list of components for the derived type. Semantic
679 -- information uses the component entities, but record representation
680 -- clauses are validated on the declaration tree. This procedure replaces
681 -- discriminants and components in the declaration with those that have
682 -- been created by Inherit_Components.
684 procedure Set_Fixed_Range
685 (E : Entity_Id;
686 Loc : Source_Ptr;
687 Lo : Ureal;
688 Hi : Ureal);
689 -- Build a range node with the given bounds and set it as the Scalar_Range
690 -- of the given fixed-point type entity. Loc is the source location used
691 -- for the constructed range. See body for further details.
693 procedure Set_Scalar_Range_For_Subtype
694 (Def_Id : Entity_Id;
695 R : Node_Id;
696 Subt : Entity_Id);
697 -- This routine is used to set the scalar range field for a subtype given
698 -- Def_Id, the entity for the subtype, and R, the range expression for the
699 -- scalar range. Subt provides the parent subtype to be used to analyze,
700 -- resolve, and check the given range.
702 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
703 -- Create a new signed integer entity, and apply the constraint to obtain
704 -- the required first named subtype of this type.
706 procedure Set_Stored_Constraint_From_Discriminant_Constraint
707 (E : Entity_Id);
708 -- E is some record type. This routine computes E's Stored_Constraint
709 -- from its Discriminant_Constraint.
711 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
712 -- Check that an entity in a list of progenitors is an interface,
713 -- emit error otherwise.
715 -----------------------
716 -- Access_Definition --
717 -----------------------
719 function Access_Definition
720 (Related_Nod : Node_Id;
721 N : Node_Id) return Entity_Id
723 Anon_Type : Entity_Id;
724 Anon_Scope : Entity_Id;
725 Desig_Type : Entity_Id;
726 Enclosing_Prot_Type : Entity_Id := Empty;
728 begin
729 Check_SPARK_Restriction ("access type is not allowed", N);
731 if Is_Entry (Current_Scope)
732 and then Is_Task_Type (Etype (Scope (Current_Scope)))
733 then
734 Error_Msg_N ("task entries cannot have access parameters", N);
735 return Empty;
736 end if;
738 -- Ada 2005: For an object declaration the corresponding anonymous
739 -- type is declared in the current scope.
741 -- If the access definition is the return type of another access to
742 -- function, scope is the current one, because it is the one of the
743 -- current type declaration, except for the pathological case below.
745 if Nkind_In (Related_Nod, N_Object_Declaration,
746 N_Access_Function_Definition)
747 then
748 Anon_Scope := Current_Scope;
750 -- A pathological case: function returning access functions that
751 -- return access functions, etc. Each anonymous access type created
752 -- is in the enclosing scope of the outermost function.
754 declare
755 Par : Node_Id;
757 begin
758 Par := Related_Nod;
759 while Nkind_In (Par, N_Access_Function_Definition,
760 N_Access_Definition)
761 loop
762 Par := Parent (Par);
763 end loop;
765 if Nkind (Par) = N_Function_Specification then
766 Anon_Scope := Scope (Defining_Entity (Par));
767 end if;
768 end;
770 -- For the anonymous function result case, retrieve the scope of the
771 -- function specification's associated entity rather than using the
772 -- current scope. The current scope will be the function itself if the
773 -- formal part is currently being analyzed, but will be the parent scope
774 -- in the case of a parameterless function, and we always want to use
775 -- the function's parent scope. Finally, if the function is a child
776 -- unit, we must traverse the tree to retrieve the proper entity.
778 elsif Nkind (Related_Nod) = N_Function_Specification
779 and then Nkind (Parent (N)) /= N_Parameter_Specification
780 then
781 -- If the current scope is a protected type, the anonymous access
782 -- is associated with one of the protected operations, and must
783 -- be available in the scope that encloses the protected declaration.
784 -- Otherwise the type is in the scope enclosing the subprogram.
786 -- If the function has formals, The return type of a subprogram
787 -- declaration is analyzed in the scope of the subprogram (see
788 -- Process_Formals) and thus the protected type, if present, is
789 -- the scope of the current function scope.
791 if Ekind (Current_Scope) = E_Protected_Type then
792 Enclosing_Prot_Type := Current_Scope;
794 elsif Ekind (Current_Scope) = E_Function
795 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
796 then
797 Enclosing_Prot_Type := Scope (Current_Scope);
798 end if;
800 if Present (Enclosing_Prot_Type) then
801 Anon_Scope := Scope (Enclosing_Prot_Type);
803 else
804 Anon_Scope := Scope (Defining_Entity (Related_Nod));
805 end if;
807 -- For an access type definition, if the current scope is a child
808 -- unit it is the scope of the type.
810 elsif Is_Compilation_Unit (Current_Scope) then
811 Anon_Scope := Current_Scope;
813 -- For access formals, access components, and access discriminants, the
814 -- scope is that of the enclosing declaration,
816 else
817 Anon_Scope := Scope (Current_Scope);
818 end if;
820 Anon_Type :=
821 Create_Itype
822 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
824 if All_Present (N)
825 and then Ada_Version >= Ada_2005
826 then
827 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
828 end if;
830 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
831 -- the corresponding semantic routine
833 if Present (Access_To_Subprogram_Definition (N)) then
835 -- Compiler runtime units are compiled in Ada 2005 mode when building
836 -- the runtime library but must also be compilable in Ada 95 mode
837 -- (when bootstrapping the compiler).
839 Check_Compiler_Unit ("anonymous access to subprogram", N);
841 Access_Subprogram_Declaration
842 (T_Name => Anon_Type,
843 T_Def => Access_To_Subprogram_Definition (N));
845 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
846 Set_Ekind
847 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
848 else
849 Set_Ekind
850 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
851 end if;
853 Set_Can_Use_Internal_Rep
854 (Anon_Type, not Always_Compatible_Rep_On_Target);
856 -- If the anonymous access is associated with a protected operation,
857 -- create a reference to it after the enclosing protected definition
858 -- because the itype will be used in the subsequent bodies.
860 if Ekind (Current_Scope) = E_Protected_Type then
861 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
862 end if;
864 return Anon_Type;
865 end if;
867 Find_Type (Subtype_Mark (N));
868 Desig_Type := Entity (Subtype_Mark (N));
870 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
871 Set_Etype (Anon_Type, Anon_Type);
873 -- Make sure the anonymous access type has size and alignment fields
874 -- set, as required by gigi. This is necessary in the case of the
875 -- Task_Body_Procedure.
877 if not Has_Private_Component (Desig_Type) then
878 Layout_Type (Anon_Type);
879 end if;
881 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
882 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
883 -- the null value is allowed. In Ada 95 the null value is never allowed.
885 if Ada_Version >= Ada_2005 then
886 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
887 else
888 Set_Can_Never_Be_Null (Anon_Type, True);
889 end if;
891 -- The anonymous access type is as public as the discriminated type or
892 -- subprogram that defines it. It is imported (for back-end purposes)
893 -- if the designated type is.
895 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
897 -- Ada 2005 (AI-231): Propagate the access-constant attribute
899 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
901 -- The context is either a subprogram declaration, object declaration,
902 -- or an access discriminant, in a private or a full type declaration.
903 -- In the case of a subprogram, if the designated type is incomplete,
904 -- the operation will be a primitive operation of the full type, to be
905 -- updated subsequently. If the type is imported through a limited_with
906 -- clause, the subprogram is not a primitive operation of the type
907 -- (which is declared elsewhere in some other scope).
909 if Ekind (Desig_Type) = E_Incomplete_Type
910 and then not From_Limited_With (Desig_Type)
911 and then Is_Overloadable (Current_Scope)
912 then
913 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
914 Set_Has_Delayed_Freeze (Current_Scope);
915 end if;
917 -- Ada 2005: If the designated type is an interface that may contain
918 -- tasks, create a Master entity for the declaration. This must be done
919 -- before expansion of the full declaration, because the declaration may
920 -- include an expression that is an allocator, whose expansion needs the
921 -- proper Master for the created tasks.
923 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
924 then
925 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
926 then
927 Build_Class_Wide_Master (Anon_Type);
929 -- Similarly, if the type is an anonymous access that designates
930 -- tasks, create a master entity for it in the current context.
932 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
933 then
934 Build_Master_Entity (Defining_Identifier (Related_Nod));
935 Build_Master_Renaming (Anon_Type);
936 end if;
937 end if;
939 -- For a private component of a protected type, it is imperative that
940 -- the back-end elaborate the type immediately after the protected
941 -- declaration, because this type will be used in the declarations
942 -- created for the component within each protected body, so we must
943 -- create an itype reference for it now.
945 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
946 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
948 -- Similarly, if the access definition is the return result of a
949 -- function, create an itype reference for it because it will be used
950 -- within the function body. For a regular function that is not a
951 -- compilation unit, insert reference after the declaration. For a
952 -- protected operation, insert it after the enclosing protected type
953 -- declaration. In either case, do not create a reference for a type
954 -- obtained through a limited_with clause, because this would introduce
955 -- semantic dependencies.
957 -- Similarly, do not create a reference if the designated type is a
958 -- generic formal, because no use of it will reach the backend.
960 elsif Nkind (Related_Nod) = N_Function_Specification
961 and then not From_Limited_With (Desig_Type)
962 and then not Is_Generic_Type (Desig_Type)
963 then
964 if Present (Enclosing_Prot_Type) then
965 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
967 elsif Is_List_Member (Parent (Related_Nod))
968 and then Nkind (Parent (N)) /= N_Parameter_Specification
969 then
970 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
971 end if;
973 -- Finally, create an itype reference for an object declaration of an
974 -- anonymous access type. This is strictly necessary only for deferred
975 -- constants, but in any case will avoid out-of-scope problems in the
976 -- back-end.
978 elsif Nkind (Related_Nod) = N_Object_Declaration then
979 Build_Itype_Reference (Anon_Type, Related_Nod);
980 end if;
982 return Anon_Type;
983 end Access_Definition;
985 -----------------------------------
986 -- Access_Subprogram_Declaration --
987 -----------------------------------
989 procedure Access_Subprogram_Declaration
990 (T_Name : Entity_Id;
991 T_Def : Node_Id)
993 procedure Check_For_Premature_Usage (Def : Node_Id);
994 -- Check that type T_Name is not used, directly or recursively, as a
995 -- parameter or a return type in Def. Def is either a subtype, an
996 -- access_definition, or an access_to_subprogram_definition.
998 -------------------------------
999 -- Check_For_Premature_Usage --
1000 -------------------------------
1002 procedure Check_For_Premature_Usage (Def : Node_Id) is
1003 Param : Node_Id;
1005 begin
1006 -- Check for a subtype mark
1008 if Nkind (Def) in N_Has_Etype then
1009 if Etype (Def) = T_Name then
1010 Error_Msg_N
1011 ("type& cannot be used before end of its declaration", Def);
1012 end if;
1014 -- If this is not a subtype, then this is an access_definition
1016 elsif Nkind (Def) = N_Access_Definition then
1017 if Present (Access_To_Subprogram_Definition (Def)) then
1018 Check_For_Premature_Usage
1019 (Access_To_Subprogram_Definition (Def));
1020 else
1021 Check_For_Premature_Usage (Subtype_Mark (Def));
1022 end if;
1024 -- The only cases left are N_Access_Function_Definition and
1025 -- N_Access_Procedure_Definition.
1027 else
1028 if Present (Parameter_Specifications (Def)) then
1029 Param := First (Parameter_Specifications (Def));
1030 while Present (Param) loop
1031 Check_For_Premature_Usage (Parameter_Type (Param));
1032 Param := Next (Param);
1033 end loop;
1034 end if;
1036 if Nkind (Def) = N_Access_Function_Definition then
1037 Check_For_Premature_Usage (Result_Definition (Def));
1038 end if;
1039 end if;
1040 end Check_For_Premature_Usage;
1042 -- Local variables
1044 Formals : constant List_Id := Parameter_Specifications (T_Def);
1045 Formal : Entity_Id;
1046 D_Ityp : Node_Id;
1047 Desig_Type : constant Entity_Id :=
1048 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1050 -- Start of processing for Access_Subprogram_Declaration
1052 begin
1053 Check_SPARK_Restriction ("access type is not allowed", T_Def);
1055 -- Associate the Itype node with the inner full-type declaration or
1056 -- subprogram spec or entry body. This is required to handle nested
1057 -- anonymous declarations. For example:
1059 -- procedure P
1060 -- (X : access procedure
1061 -- (Y : access procedure
1062 -- (Z : access T)))
1064 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1065 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1066 N_Private_Type_Declaration,
1067 N_Private_Extension_Declaration,
1068 N_Procedure_Specification,
1069 N_Function_Specification,
1070 N_Entry_Body)
1072 or else
1073 Nkind_In (D_Ityp, N_Object_Declaration,
1074 N_Object_Renaming_Declaration,
1075 N_Formal_Object_Declaration,
1076 N_Formal_Type_Declaration,
1077 N_Task_Type_Declaration,
1078 N_Protected_Type_Declaration))
1079 loop
1080 D_Ityp := Parent (D_Ityp);
1081 pragma Assert (D_Ityp /= Empty);
1082 end loop;
1084 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1086 if Nkind_In (D_Ityp, N_Procedure_Specification,
1087 N_Function_Specification)
1088 then
1089 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1091 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1092 N_Object_Declaration,
1093 N_Object_Renaming_Declaration,
1094 N_Formal_Type_Declaration)
1095 then
1096 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1097 end if;
1099 if Nkind (T_Def) = N_Access_Function_Definition then
1100 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1101 declare
1102 Acc : constant Node_Id := Result_Definition (T_Def);
1104 begin
1105 if Present (Access_To_Subprogram_Definition (Acc))
1106 and then
1107 Protected_Present (Access_To_Subprogram_Definition (Acc))
1108 then
1109 Set_Etype
1110 (Desig_Type,
1111 Replace_Anonymous_Access_To_Protected_Subprogram
1112 (T_Def));
1114 else
1115 Set_Etype
1116 (Desig_Type,
1117 Access_Definition (T_Def, Result_Definition (T_Def)));
1118 end if;
1119 end;
1121 else
1122 Analyze (Result_Definition (T_Def));
1124 declare
1125 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1127 begin
1128 -- If a null exclusion is imposed on the result type, then
1129 -- create a null-excluding itype (an access subtype) and use
1130 -- it as the function's Etype.
1132 if Is_Access_Type (Typ)
1133 and then Null_Exclusion_In_Return_Present (T_Def)
1134 then
1135 Set_Etype (Desig_Type,
1136 Create_Null_Excluding_Itype
1137 (T => Typ,
1138 Related_Nod => T_Def,
1139 Scope_Id => Current_Scope));
1141 else
1142 if From_Limited_With (Typ) then
1144 -- AI05-151: Incomplete types are allowed in all basic
1145 -- declarations, including access to subprograms.
1147 if Ada_Version >= Ada_2012 then
1148 null;
1150 else
1151 Error_Msg_NE
1152 ("illegal use of incomplete type&",
1153 Result_Definition (T_Def), Typ);
1154 end if;
1156 elsif Ekind (Current_Scope) = E_Package
1157 and then In_Private_Part (Current_Scope)
1158 then
1159 if Ekind (Typ) = E_Incomplete_Type then
1160 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1162 elsif Is_Class_Wide_Type (Typ)
1163 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1164 then
1165 Append_Elmt
1166 (Desig_Type, Private_Dependents (Etype (Typ)));
1167 end if;
1168 end if;
1170 Set_Etype (Desig_Type, Typ);
1171 end if;
1172 end;
1173 end if;
1175 if not (Is_Type (Etype (Desig_Type))) then
1176 Error_Msg_N
1177 ("expect type in function specification",
1178 Result_Definition (T_Def));
1179 end if;
1181 else
1182 Set_Etype (Desig_Type, Standard_Void_Type);
1183 end if;
1185 if Present (Formals) then
1186 Push_Scope (Desig_Type);
1188 -- A bit of a kludge here. These kludges will be removed when Itypes
1189 -- have proper parent pointers to their declarations???
1191 -- Kludge 1) Link defining_identifier of formals. Required by
1192 -- First_Formal to provide its functionality.
1194 declare
1195 F : Node_Id;
1197 begin
1198 F := First (Formals);
1200 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1201 -- when it is part of an unconstrained type and subtype expansion
1202 -- is disabled. To avoid back-end problems with shared profiles,
1203 -- use previous subprogram type as the designated type, and then
1204 -- remove scope added above.
1206 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1207 then
1208 Set_Etype (T_Name, T_Name);
1209 Init_Size_Align (T_Name);
1210 Set_Directly_Designated_Type (T_Name,
1211 Scope (Defining_Identifier (F)));
1212 End_Scope;
1213 return;
1214 end if;
1216 while Present (F) loop
1217 if No (Parent (Defining_Identifier (F))) then
1218 Set_Parent (Defining_Identifier (F), F);
1219 end if;
1221 Next (F);
1222 end loop;
1223 end;
1225 Process_Formals (Formals, Parent (T_Def));
1227 -- Kludge 2) End_Scope requires that the parent pointer be set to
1228 -- something reasonable, but Itypes don't have parent pointers. So
1229 -- we set it and then unset it ???
1231 Set_Parent (Desig_Type, T_Name);
1232 End_Scope;
1233 Set_Parent (Desig_Type, Empty);
1234 end if;
1236 -- Check for premature usage of the type being defined
1238 Check_For_Premature_Usage (T_Def);
1240 -- The return type and/or any parameter type may be incomplete. Mark the
1241 -- subprogram_type as depending on the incomplete type, so that it can
1242 -- be updated when the full type declaration is seen. This only applies
1243 -- to incomplete types declared in some enclosing scope, not to limited
1244 -- views from other packages.
1246 -- Prior to Ada 2012, access to functions can only have in_parameters.
1248 if Present (Formals) then
1249 Formal := First_Formal (Desig_Type);
1250 while Present (Formal) loop
1251 if Ekind (Formal) /= E_In_Parameter
1252 and then Nkind (T_Def) = N_Access_Function_Definition
1253 and then Ada_Version < Ada_2012
1254 then
1255 Error_Msg_N ("functions can only have IN parameters", Formal);
1256 end if;
1258 if Ekind (Etype (Formal)) = E_Incomplete_Type
1259 and then In_Open_Scopes (Scope (Etype (Formal)))
1260 then
1261 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1262 Set_Has_Delayed_Freeze (Desig_Type);
1263 end if;
1265 Next_Formal (Formal);
1266 end loop;
1267 end if;
1269 -- Check whether an indirect call without actuals may be possible. This
1270 -- is used when resolving calls whose result is then indexed.
1272 May_Need_Actuals (Desig_Type);
1274 -- If the return type is incomplete, this is legal as long as the type
1275 -- is declared in the current scope and will be completed in it (rather
1276 -- than being part of limited view).
1278 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1279 and then not Has_Delayed_Freeze (Desig_Type)
1280 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1281 then
1282 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1283 Set_Has_Delayed_Freeze (Desig_Type);
1284 end if;
1286 Check_Delayed_Subprogram (Desig_Type);
1288 if Protected_Present (T_Def) then
1289 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1290 Set_Convention (Desig_Type, Convention_Protected);
1291 else
1292 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1293 end if;
1295 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1297 Set_Etype (T_Name, T_Name);
1298 Init_Size_Align (T_Name);
1299 Set_Directly_Designated_Type (T_Name, Desig_Type);
1301 Generate_Reference_To_Formals (T_Name);
1303 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1305 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1307 Check_Restriction (No_Access_Subprograms, T_Def);
1308 end Access_Subprogram_Declaration;
1310 ----------------------------
1311 -- Access_Type_Declaration --
1312 ----------------------------
1314 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1315 P : constant Node_Id := Parent (Def);
1316 S : constant Node_Id := Subtype_Indication (Def);
1318 Full_Desig : Entity_Id;
1320 begin
1321 Check_SPARK_Restriction ("access type is not allowed", Def);
1323 -- Check for permissible use of incomplete type
1325 if Nkind (S) /= N_Subtype_Indication then
1326 Analyze (S);
1328 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1329 Set_Directly_Designated_Type (T, Entity (S));
1330 else
1331 Set_Directly_Designated_Type (T,
1332 Process_Subtype (S, P, T, 'P'));
1333 end if;
1335 else
1336 Set_Directly_Designated_Type (T,
1337 Process_Subtype (S, P, T, 'P'));
1338 end if;
1340 if All_Present (Def) or Constant_Present (Def) then
1341 Set_Ekind (T, E_General_Access_Type);
1342 else
1343 Set_Ekind (T, E_Access_Type);
1344 end if;
1346 Full_Desig := Designated_Type (T);
1348 if Base_Type (Full_Desig) = T then
1349 Error_Msg_N ("access type cannot designate itself", S);
1351 -- In Ada 2005, the type may have a limited view through some unit in
1352 -- its own context, allowing the following circularity that cannot be
1353 -- detected earlier
1355 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1356 then
1357 Error_Msg_N
1358 ("access type cannot designate its own classwide type", S);
1360 -- Clean up indication of tagged status to prevent cascaded errors
1362 Set_Is_Tagged_Type (T, False);
1363 end if;
1365 Set_Etype (T, T);
1367 -- If the type has appeared already in a with_type clause, it is frozen
1368 -- and the pointer size is already set. Else, initialize.
1370 if not From_Limited_With (T) then
1371 Init_Size_Align (T);
1372 end if;
1374 -- Note that Has_Task is always false, since the access type itself
1375 -- is not a task type. See Einfo for more description on this point.
1376 -- Exactly the same consideration applies to Has_Controlled_Component.
1378 Set_Has_Task (T, False);
1379 Set_Has_Controlled_Component (T, False);
1381 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1382 -- problems where an incomplete view of this entity has been previously
1383 -- established by a limited with and an overlaid version of this field
1384 -- (Stored_Constraint) was initialized for the incomplete view.
1386 -- This reset is performed in most cases except where the access type
1387 -- has been created for the purposes of allocating or deallocating a
1388 -- build-in-place object. Such access types have explicitly set pools
1389 -- and finalization masters.
1391 if No (Associated_Storage_Pool (T)) then
1392 Set_Finalization_Master (T, Empty);
1393 end if;
1395 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1396 -- attributes
1398 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1399 Set_Is_Access_Constant (T, Constant_Present (Def));
1400 end Access_Type_Declaration;
1402 ----------------------------------
1403 -- Add_Interface_Tag_Components --
1404 ----------------------------------
1406 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1407 Loc : constant Source_Ptr := Sloc (N);
1408 L : List_Id;
1409 Last_Tag : Node_Id;
1411 procedure Add_Tag (Iface : Entity_Id);
1412 -- Add tag for one of the progenitor interfaces
1414 -------------
1415 -- Add_Tag --
1416 -------------
1418 procedure Add_Tag (Iface : Entity_Id) is
1419 Decl : Node_Id;
1420 Def : Node_Id;
1421 Tag : Entity_Id;
1422 Offset : Entity_Id;
1424 begin
1425 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1427 -- This is a reasonable place to propagate predicates
1429 if Has_Predicates (Iface) then
1430 Set_Has_Predicates (Typ);
1431 end if;
1433 Def :=
1434 Make_Component_Definition (Loc,
1435 Aliased_Present => True,
1436 Subtype_Indication =>
1437 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1439 Tag := Make_Temporary (Loc, 'V');
1441 Decl :=
1442 Make_Component_Declaration (Loc,
1443 Defining_Identifier => Tag,
1444 Component_Definition => Def);
1446 Analyze_Component_Declaration (Decl);
1448 Set_Analyzed (Decl);
1449 Set_Ekind (Tag, E_Component);
1450 Set_Is_Tag (Tag);
1451 Set_Is_Aliased (Tag);
1452 Set_Related_Type (Tag, Iface);
1453 Init_Component_Location (Tag);
1455 pragma Assert (Is_Frozen (Iface));
1457 Set_DT_Entry_Count (Tag,
1458 DT_Entry_Count (First_Entity (Iface)));
1460 if No (Last_Tag) then
1461 Prepend (Decl, L);
1462 else
1463 Insert_After (Last_Tag, Decl);
1464 end if;
1466 Last_Tag := Decl;
1468 -- If the ancestor has discriminants we need to give special support
1469 -- to store the offset_to_top value of the secondary dispatch tables.
1470 -- For this purpose we add a supplementary component just after the
1471 -- field that contains the tag associated with each secondary DT.
1473 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1474 Def :=
1475 Make_Component_Definition (Loc,
1476 Subtype_Indication =>
1477 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1479 Offset := Make_Temporary (Loc, 'V');
1481 Decl :=
1482 Make_Component_Declaration (Loc,
1483 Defining_Identifier => Offset,
1484 Component_Definition => Def);
1486 Analyze_Component_Declaration (Decl);
1488 Set_Analyzed (Decl);
1489 Set_Ekind (Offset, E_Component);
1490 Set_Is_Aliased (Offset);
1491 Set_Related_Type (Offset, Iface);
1492 Init_Component_Location (Offset);
1493 Insert_After (Last_Tag, Decl);
1494 Last_Tag := Decl;
1495 end if;
1496 end Add_Tag;
1498 -- Local variables
1500 Elmt : Elmt_Id;
1501 Ext : Node_Id;
1502 Comp : Node_Id;
1504 -- Start of processing for Add_Interface_Tag_Components
1506 begin
1507 if not RTE_Available (RE_Interface_Tag) then
1508 Error_Msg
1509 ("(Ada 2005) interface types not supported by this run-time!",
1510 Sloc (N));
1511 return;
1512 end if;
1514 if Ekind (Typ) /= E_Record_Type
1515 or else (Is_Concurrent_Record_Type (Typ)
1516 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1517 or else (not Is_Concurrent_Record_Type (Typ)
1518 and then No (Interfaces (Typ))
1519 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1520 then
1521 return;
1522 end if;
1524 -- Find the current last tag
1526 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1527 Ext := Record_Extension_Part (Type_Definition (N));
1528 else
1529 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1530 Ext := Type_Definition (N);
1531 end if;
1533 Last_Tag := Empty;
1535 if not (Present (Component_List (Ext))) then
1536 Set_Null_Present (Ext, False);
1537 L := New_List;
1538 Set_Component_List (Ext,
1539 Make_Component_List (Loc,
1540 Component_Items => L,
1541 Null_Present => False));
1542 else
1543 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1544 L := Component_Items
1545 (Component_List
1546 (Record_Extension_Part
1547 (Type_Definition (N))));
1548 else
1549 L := Component_Items
1550 (Component_List
1551 (Type_Definition (N)));
1552 end if;
1554 -- Find the last tag component
1556 Comp := First (L);
1557 while Present (Comp) loop
1558 if Nkind (Comp) = N_Component_Declaration
1559 and then Is_Tag (Defining_Identifier (Comp))
1560 then
1561 Last_Tag := Comp;
1562 end if;
1564 Next (Comp);
1565 end loop;
1566 end if;
1568 -- At this point L references the list of components and Last_Tag
1569 -- references the current last tag (if any). Now we add the tag
1570 -- corresponding with all the interfaces that are not implemented
1571 -- by the parent.
1573 if Present (Interfaces (Typ)) then
1574 Elmt := First_Elmt (Interfaces (Typ));
1575 while Present (Elmt) loop
1576 Add_Tag (Node (Elmt));
1577 Next_Elmt (Elmt);
1578 end loop;
1579 end if;
1580 end Add_Interface_Tag_Components;
1582 -------------------------------------
1583 -- Add_Internal_Interface_Entities --
1584 -------------------------------------
1586 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1587 Elmt : Elmt_Id;
1588 Iface : Entity_Id;
1589 Iface_Elmt : Elmt_Id;
1590 Iface_Prim : Entity_Id;
1591 Ifaces_List : Elist_Id;
1592 New_Subp : Entity_Id := Empty;
1593 Prim : Entity_Id;
1594 Restore_Scope : Boolean := False;
1596 begin
1597 pragma Assert (Ada_Version >= Ada_2005
1598 and then Is_Record_Type (Tagged_Type)
1599 and then Is_Tagged_Type (Tagged_Type)
1600 and then Has_Interfaces (Tagged_Type)
1601 and then not Is_Interface (Tagged_Type));
1603 -- Ensure that the internal entities are added to the scope of the type
1605 if Scope (Tagged_Type) /= Current_Scope then
1606 Push_Scope (Scope (Tagged_Type));
1607 Restore_Scope := True;
1608 end if;
1610 Collect_Interfaces (Tagged_Type, Ifaces_List);
1612 Iface_Elmt := First_Elmt (Ifaces_List);
1613 while Present (Iface_Elmt) loop
1614 Iface := Node (Iface_Elmt);
1616 -- Originally we excluded here from this processing interfaces that
1617 -- are parents of Tagged_Type because their primitives are located
1618 -- in the primary dispatch table (and hence no auxiliary internal
1619 -- entities are required to handle secondary dispatch tables in such
1620 -- case). However, these auxiliary entities are also required to
1621 -- handle derivations of interfaces in formals of generics (see
1622 -- Derive_Subprograms).
1624 Elmt := First_Elmt (Primitive_Operations (Iface));
1625 while Present (Elmt) loop
1626 Iface_Prim := Node (Elmt);
1628 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1629 Prim :=
1630 Find_Primitive_Covering_Interface
1631 (Tagged_Type => Tagged_Type,
1632 Iface_Prim => Iface_Prim);
1634 if No (Prim) and then Serious_Errors_Detected > 0 then
1635 goto Continue;
1636 end if;
1638 pragma Assert (Present (Prim));
1640 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1641 -- differs from the name of the interface primitive then it is
1642 -- a private primitive inherited from a parent type. In such
1643 -- case, given that Tagged_Type covers the interface, the
1644 -- inherited private primitive becomes visible. For such
1645 -- purpose we add a new entity that renames the inherited
1646 -- private primitive.
1648 if Chars (Prim) /= Chars (Iface_Prim) then
1649 pragma Assert (Has_Suffix (Prim, 'P'));
1650 Derive_Subprogram
1651 (New_Subp => New_Subp,
1652 Parent_Subp => Iface_Prim,
1653 Derived_Type => Tagged_Type,
1654 Parent_Type => Iface);
1655 Set_Alias (New_Subp, Prim);
1656 Set_Is_Abstract_Subprogram
1657 (New_Subp, Is_Abstract_Subprogram (Prim));
1658 end if;
1660 Derive_Subprogram
1661 (New_Subp => New_Subp,
1662 Parent_Subp => Iface_Prim,
1663 Derived_Type => Tagged_Type,
1664 Parent_Type => Iface);
1666 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1667 -- associated with interface types. These entities are
1668 -- only registered in the list of primitives of its
1669 -- corresponding tagged type because they are only used
1670 -- to fill the contents of the secondary dispatch tables.
1671 -- Therefore they are removed from the homonym chains.
1673 Set_Is_Hidden (New_Subp);
1674 Set_Is_Internal (New_Subp);
1675 Set_Alias (New_Subp, Prim);
1676 Set_Is_Abstract_Subprogram
1677 (New_Subp, Is_Abstract_Subprogram (Prim));
1678 Set_Interface_Alias (New_Subp, Iface_Prim);
1680 -- If the returned type is an interface then propagate it to
1681 -- the returned type. Needed by the thunk to generate the code
1682 -- which displaces "this" to reference the corresponding
1683 -- secondary dispatch table in the returned object.
1685 if Is_Interface (Etype (Iface_Prim)) then
1686 Set_Etype (New_Subp, Etype (Iface_Prim));
1687 end if;
1689 -- Internal entities associated with interface types are
1690 -- only registered in the list of primitives of the tagged
1691 -- type. They are only used to fill the contents of the
1692 -- secondary dispatch tables. Therefore they are not needed
1693 -- in the homonym chains.
1695 Remove_Homonym (New_Subp);
1697 -- Hidden entities associated with interfaces must have set
1698 -- the Has_Delay_Freeze attribute to ensure that, in case of
1699 -- locally defined tagged types (or compiling with static
1700 -- dispatch tables generation disabled) the corresponding
1701 -- entry of the secondary dispatch table is filled when
1702 -- such an entity is frozen.
1704 Set_Has_Delayed_Freeze (New_Subp);
1705 end if;
1707 <<Continue>>
1708 Next_Elmt (Elmt);
1709 end loop;
1711 Next_Elmt (Iface_Elmt);
1712 end loop;
1714 if Restore_Scope then
1715 Pop_Scope;
1716 end if;
1717 end Add_Internal_Interface_Entities;
1719 -----------------------------------
1720 -- Analyze_Component_Declaration --
1721 -----------------------------------
1723 procedure Analyze_Component_Declaration (N : Node_Id) is
1724 Id : constant Entity_Id := Defining_Identifier (N);
1725 E : constant Node_Id := Expression (N);
1726 Typ : constant Node_Id :=
1727 Subtype_Indication (Component_Definition (N));
1728 T : Entity_Id;
1729 P : Entity_Id;
1731 function Contains_POC (Constr : Node_Id) return Boolean;
1732 -- Determines whether a constraint uses the discriminant of a record
1733 -- type thus becoming a per-object constraint (POC).
1735 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1736 -- Typ is the type of the current component, check whether this type is
1737 -- a limited type. Used to validate declaration against that of
1738 -- enclosing record.
1740 ------------------
1741 -- Contains_POC --
1742 ------------------
1744 function Contains_POC (Constr : Node_Id) return Boolean is
1745 begin
1746 -- Prevent cascaded errors
1748 if Error_Posted (Constr) then
1749 return False;
1750 end if;
1752 case Nkind (Constr) is
1753 when N_Attribute_Reference =>
1754 return Attribute_Name (Constr) = Name_Access
1755 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1757 when N_Discriminant_Association =>
1758 return Denotes_Discriminant (Expression (Constr));
1760 when N_Identifier =>
1761 return Denotes_Discriminant (Constr);
1763 when N_Index_Or_Discriminant_Constraint =>
1764 declare
1765 IDC : Node_Id;
1767 begin
1768 IDC := First (Constraints (Constr));
1769 while Present (IDC) loop
1771 -- One per-object constraint is sufficient
1773 if Contains_POC (IDC) then
1774 return True;
1775 end if;
1777 Next (IDC);
1778 end loop;
1780 return False;
1781 end;
1783 when N_Range =>
1784 return Denotes_Discriminant (Low_Bound (Constr))
1785 or else
1786 Denotes_Discriminant (High_Bound (Constr));
1788 when N_Range_Constraint =>
1789 return Denotes_Discriminant (Range_Expression (Constr));
1791 when others =>
1792 return False;
1794 end case;
1795 end Contains_POC;
1797 ----------------------
1798 -- Is_Known_Limited --
1799 ----------------------
1801 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1802 P : constant Entity_Id := Etype (Typ);
1803 R : constant Entity_Id := Root_Type (Typ);
1805 begin
1806 if Is_Limited_Record (Typ) then
1807 return True;
1809 -- If the root type is limited (and not a limited interface)
1810 -- so is the current type
1812 elsif Is_Limited_Record (R)
1813 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1814 then
1815 return True;
1817 -- Else the type may have a limited interface progenitor, but a
1818 -- limited record parent.
1820 elsif R /= P and then Is_Limited_Record (P) then
1821 return True;
1823 else
1824 return False;
1825 end if;
1826 end Is_Known_Limited;
1828 -- Start of processing for Analyze_Component_Declaration
1830 begin
1831 Generate_Definition (Id);
1832 Enter_Name (Id);
1834 if Present (Typ) then
1835 T := Find_Type_Of_Object
1836 (Subtype_Indication (Component_Definition (N)), N);
1838 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1839 Check_SPARK_Restriction ("subtype mark required", Typ);
1840 end if;
1842 -- Ada 2005 (AI-230): Access Definition case
1844 else
1845 pragma Assert (Present
1846 (Access_Definition (Component_Definition (N))));
1848 T := Access_Definition
1849 (Related_Nod => N,
1850 N => Access_Definition (Component_Definition (N)));
1851 Set_Is_Local_Anonymous_Access (T);
1853 -- Ada 2005 (AI-254)
1855 if Present (Access_To_Subprogram_Definition
1856 (Access_Definition (Component_Definition (N))))
1857 and then Protected_Present (Access_To_Subprogram_Definition
1858 (Access_Definition
1859 (Component_Definition (N))))
1860 then
1861 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1862 end if;
1863 end if;
1865 -- If the subtype is a constrained subtype of the enclosing record,
1866 -- (which must have a partial view) the back-end does not properly
1867 -- handle the recursion. Rewrite the component declaration with an
1868 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1869 -- the tree directly because side effects have already been removed from
1870 -- discriminant constraints.
1872 if Ekind (T) = E_Access_Subtype
1873 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1874 and then Comes_From_Source (T)
1875 and then Nkind (Parent (T)) = N_Subtype_Declaration
1876 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1877 then
1878 Rewrite
1879 (Subtype_Indication (Component_Definition (N)),
1880 New_Copy_Tree (Subtype_Indication (Parent (T))));
1881 T := Find_Type_Of_Object
1882 (Subtype_Indication (Component_Definition (N)), N);
1883 end if;
1885 -- If the component declaration includes a default expression, then we
1886 -- check that the component is not of a limited type (RM 3.7(5)),
1887 -- and do the special preanalysis of the expression (see section on
1888 -- "Handling of Default and Per-Object Expressions" in the spec of
1889 -- package Sem).
1891 if Present (E) then
1892 Check_SPARK_Restriction ("default expression is not allowed", E);
1893 Preanalyze_Spec_Expression (E, T);
1894 Check_Initialization (T, E);
1896 if Ada_Version >= Ada_2005
1897 and then Ekind (T) = E_Anonymous_Access_Type
1898 and then Etype (E) /= Any_Type
1899 then
1900 -- Check RM 3.9.2(9): "if the expected type for an expression is
1901 -- an anonymous access-to-specific tagged type, then the object
1902 -- designated by the expression shall not be dynamically tagged
1903 -- unless it is a controlling operand in a call on a dispatching
1904 -- operation"
1906 if Is_Tagged_Type (Directly_Designated_Type (T))
1907 and then
1908 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1909 and then
1910 Ekind (Directly_Designated_Type (Etype (E))) =
1911 E_Class_Wide_Type
1912 then
1913 Error_Msg_N
1914 ("access to specific tagged type required (RM 3.9.2(9))", E);
1915 end if;
1917 -- (Ada 2005: AI-230): Accessibility check for anonymous
1918 -- components
1920 if Type_Access_Level (Etype (E)) >
1921 Deepest_Type_Access_Level (T)
1922 then
1923 Error_Msg_N
1924 ("expression has deeper access level than component " &
1925 "(RM 3.10.2 (12.2))", E);
1926 end if;
1928 -- The initialization expression is a reference to an access
1929 -- discriminant. The type of the discriminant is always deeper
1930 -- than any access type.
1932 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1933 and then Is_Entity_Name (E)
1934 and then Ekind (Entity (E)) = E_In_Parameter
1935 and then Present (Discriminal_Link (Entity (E)))
1936 then
1937 Error_Msg_N
1938 ("discriminant has deeper accessibility level than target",
1940 end if;
1941 end if;
1942 end if;
1944 -- The parent type may be a private view with unknown discriminants,
1945 -- and thus unconstrained. Regular components must be constrained.
1947 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1948 if Is_Class_Wide_Type (T) then
1949 Error_Msg_N
1950 ("class-wide subtype with unknown discriminants" &
1951 " in component declaration",
1952 Subtype_Indication (Component_Definition (N)));
1953 else
1954 Error_Msg_N
1955 ("unconstrained subtype in component declaration",
1956 Subtype_Indication (Component_Definition (N)));
1957 end if;
1959 -- Components cannot be abstract, except for the special case of
1960 -- the _Parent field (case of extending an abstract tagged type)
1962 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
1963 Error_Msg_N ("type of a component cannot be abstract", N);
1964 end if;
1966 Set_Etype (Id, T);
1967 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1969 -- The component declaration may have a per-object constraint, set
1970 -- the appropriate flag in the defining identifier of the subtype.
1972 if Present (Subtype_Indication (Component_Definition (N))) then
1973 declare
1974 Sindic : constant Node_Id :=
1975 Subtype_Indication (Component_Definition (N));
1976 begin
1977 if Nkind (Sindic) = N_Subtype_Indication
1978 and then Present (Constraint (Sindic))
1979 and then Contains_POC (Constraint (Sindic))
1980 then
1981 Set_Has_Per_Object_Constraint (Id);
1982 end if;
1983 end;
1984 end if;
1986 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1987 -- out some static checks.
1989 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
1990 Null_Exclusion_Static_Checks (N);
1991 end if;
1993 -- If this component is private (or depends on a private type), flag the
1994 -- record type to indicate that some operations are not available.
1996 P := Private_Component (T);
1998 if Present (P) then
2000 -- Check for circular definitions
2002 if P = Any_Type then
2003 Set_Etype (Id, Any_Type);
2005 -- There is a gap in the visibility of operations only if the
2006 -- component type is not defined in the scope of the record type.
2008 elsif Scope (P) = Scope (Current_Scope) then
2009 null;
2011 elsif Is_Limited_Type (P) then
2012 Set_Is_Limited_Composite (Current_Scope);
2014 else
2015 Set_Is_Private_Composite (Current_Scope);
2016 end if;
2017 end if;
2019 if P /= Any_Type
2020 and then Is_Limited_Type (T)
2021 and then Chars (Id) /= Name_uParent
2022 and then Is_Tagged_Type (Current_Scope)
2023 then
2024 if Is_Derived_Type (Current_Scope)
2025 and then not Is_Known_Limited (Current_Scope)
2026 then
2027 Error_Msg_N
2028 ("extension of nonlimited type cannot have limited components",
2031 if Is_Interface (Root_Type (Current_Scope)) then
2032 Error_Msg_N
2033 ("\limitedness is not inherited from limited interface", N);
2034 Error_Msg_N ("\add LIMITED to type indication", N);
2035 end if;
2037 Explain_Limited_Type (T, N);
2038 Set_Etype (Id, Any_Type);
2039 Set_Is_Limited_Composite (Current_Scope, False);
2041 elsif not Is_Derived_Type (Current_Scope)
2042 and then not Is_Limited_Record (Current_Scope)
2043 and then not Is_Concurrent_Type (Current_Scope)
2044 then
2045 Error_Msg_N
2046 ("nonlimited tagged type cannot have limited components", N);
2047 Explain_Limited_Type (T, N);
2048 Set_Etype (Id, Any_Type);
2049 Set_Is_Limited_Composite (Current_Scope, False);
2050 end if;
2051 end if;
2053 Set_Original_Record_Component (Id, Id);
2055 if Has_Aspects (N) then
2056 Analyze_Aspect_Specifications (N, Id);
2057 end if;
2059 Analyze_Dimension (N);
2060 end Analyze_Component_Declaration;
2062 --------------------------
2063 -- Analyze_Declarations --
2064 --------------------------
2066 procedure Analyze_Declarations (L : List_Id) is
2067 Decl : Node_Id;
2069 procedure Adjust_Decl;
2070 -- Adjust Decl not to include implicit label declarations, since these
2071 -- have strange Sloc values that result in elaboration check problems.
2072 -- (They have the sloc of the label as found in the source, and that
2073 -- is ahead of the current declarative part).
2075 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2076 -- Determine whether Body_Decl denotes the body of a late controlled
2077 -- primitive (either Initialize, Adjust or Finalize). If this is the
2078 -- case, add a proper spec if the body lacks one. The spec is inserted
2079 -- before Body_Decl and immedately analyzed.
2081 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2082 -- Spec_Id is the entity of a package that may define abstract states.
2083 -- If the states have visible refinement, remove the visibility of each
2084 -- constituent at the end of the package body declarations.
2086 -----------------
2087 -- Adjust_Decl --
2088 -----------------
2090 procedure Adjust_Decl is
2091 begin
2092 while Present (Prev (Decl))
2093 and then Nkind (Decl) = N_Implicit_Label_Declaration
2094 loop
2095 Prev (Decl);
2096 end loop;
2097 end Adjust_Decl;
2099 --------------------------------------
2100 -- Handle_Late_Controlled_Primitive --
2101 --------------------------------------
2103 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2104 Body_Spec : constant Node_Id := Specification (Body_Decl);
2105 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2106 Loc : constant Source_Ptr := Sloc (Body_Id);
2107 Params : constant List_Id :=
2108 Parameter_Specifications (Body_Spec);
2109 Spec : Node_Id;
2110 Spec_Id : Entity_Id;
2112 Dummy : Entity_Id;
2113 pragma Unreferenced (Dummy);
2114 -- A dummy variable used to capture the unused result of subprogram
2115 -- spec analysis.
2117 begin
2118 -- Consider only procedure bodies whose name matches one of the three
2119 -- controlled primitives.
2121 if Nkind (Body_Spec) /= N_Procedure_Specification
2122 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2123 Name_Finalize,
2124 Name_Initialize)
2125 then
2126 return;
2128 -- A controlled primitive must have exactly one formal
2130 elsif List_Length (Params) /= 1 then
2131 return;
2132 end if;
2134 Dummy := Analyze_Subprogram_Specification (Body_Spec);
2136 -- The type of the formal must be derived from [Limited_]Controlled
2138 if not Is_Controlled (Etype (Defining_Entity (First (Params)))) then
2139 return;
2140 end if;
2142 Spec_Id := Find_Corresponding_Spec (Body_Decl, Post_Error => False);
2144 -- The body has a matching spec, therefore it cannot be a late
2145 -- primitive.
2147 if Present (Spec_Id) then
2148 return;
2149 end if;
2151 -- At this point the body is known to be a late controlled primitive.
2152 -- Generate a matching spec and insert it before the body. Note the
2153 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2154 -- tree in this case.
2156 Spec := Copy_Separate_Tree (Body_Spec);
2158 -- Ensure that the subprogram declaration does not inherit the null
2159 -- indicator from the body as we now have a proper spec/body pair.
2161 Set_Null_Present (Spec, False);
2163 Insert_Before_And_Analyze (Body_Decl,
2164 Make_Subprogram_Declaration (Loc,
2165 Specification => Spec));
2166 end Handle_Late_Controlled_Primitive;
2168 --------------------------------
2169 -- Remove_Visible_Refinements --
2170 --------------------------------
2172 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2173 State_Elmt : Elmt_Id;
2174 begin
2175 if Present (Abstract_States (Spec_Id)) then
2176 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2177 while Present (State_Elmt) loop
2178 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2179 Next_Elmt (State_Elmt);
2180 end loop;
2181 end if;
2182 end Remove_Visible_Refinements;
2184 -- Local variables
2186 Context : Node_Id;
2187 Freeze_From : Entity_Id := Empty;
2188 Next_Decl : Node_Id;
2189 Spec_Id : Entity_Id;
2191 Body_Seen : Boolean := False;
2192 -- Flag set when the first body [stub] is encountered
2194 In_Package_Body : Boolean := False;
2195 -- Flag set when the current declaration list belongs to a package body
2197 -- Start of processing for Analyze_Declarations
2199 begin
2200 if Restriction_Check_Required (SPARK_05) then
2201 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2202 end if;
2204 Decl := First (L);
2205 while Present (Decl) loop
2207 -- Package spec cannot contain a package declaration in SPARK
2209 if Nkind (Decl) = N_Package_Declaration
2210 and then Nkind (Parent (L)) = N_Package_Specification
2211 then
2212 Check_SPARK_Restriction
2213 ("package specification cannot contain a package declaration",
2214 Decl);
2215 end if;
2217 -- Complete analysis of declaration
2219 Analyze (Decl);
2220 Next_Decl := Next (Decl);
2222 if No (Freeze_From) then
2223 Freeze_From := First_Entity (Current_Scope);
2224 end if;
2226 -- At the end of a declarative part, freeze remaining entities
2227 -- declared in it. The end of the visible declarations of package
2228 -- specification is not the end of a declarative part if private
2229 -- declarations are present. The end of a package declaration is a
2230 -- freezing point only if it a library package. A task definition or
2231 -- protected type definition is not a freeze point either. Finally,
2232 -- we do not freeze entities in generic scopes, because there is no
2233 -- code generated for them and freeze nodes will be generated for
2234 -- the instance.
2236 -- The end of a package instantiation is not a freeze point, but
2237 -- for now we make it one, because the generic body is inserted
2238 -- (currently) immediately after. Generic instantiations will not
2239 -- be a freeze point once delayed freezing of bodies is implemented.
2240 -- (This is needed in any case for early instantiations ???).
2242 if No (Next_Decl) then
2243 if Nkind_In (Parent (L), N_Component_List,
2244 N_Task_Definition,
2245 N_Protected_Definition)
2246 then
2247 null;
2249 elsif Nkind (Parent (L)) /= N_Package_Specification then
2250 if Nkind (Parent (L)) = N_Package_Body then
2251 Freeze_From := First_Entity (Current_Scope);
2252 end if;
2254 -- There may have been several freezing points previously,
2255 -- for example object declarations or subprogram bodies, but
2256 -- at the end of a declarative part we check freezing from
2257 -- the beginning, even though entities may already be frozen,
2258 -- in order to perform visibility checks on delayed aspects.
2260 Adjust_Decl;
2261 Freeze_All (First_Entity (Current_Scope), Decl);
2262 Freeze_From := Last_Entity (Current_Scope);
2264 elsif Scope (Current_Scope) /= Standard_Standard
2265 and then not Is_Child_Unit (Current_Scope)
2266 and then No (Generic_Parent (Parent (L)))
2267 then
2268 null;
2270 elsif L /= Visible_Declarations (Parent (L))
2271 or else No (Private_Declarations (Parent (L)))
2272 or else Is_Empty_List (Private_Declarations (Parent (L)))
2273 then
2274 Adjust_Decl;
2275 Freeze_All (First_Entity (Current_Scope), Decl);
2276 Freeze_From := Last_Entity (Current_Scope);
2277 end if;
2279 -- If next node is a body then freeze all types before the body.
2280 -- An exception occurs for some expander-generated bodies. If these
2281 -- are generated at places where in general language rules would not
2282 -- allow a freeze point, then we assume that the expander has
2283 -- explicitly checked that all required types are properly frozen,
2284 -- and we do not cause general freezing here. This special circuit
2285 -- is used when the encountered body is marked as having already
2286 -- been analyzed.
2288 -- In all other cases (bodies that come from source, and expander
2289 -- generated bodies that have not been analyzed yet), freeze all
2290 -- types now. Note that in the latter case, the expander must take
2291 -- care to attach the bodies at a proper place in the tree so as to
2292 -- not cause unwanted freezing at that point.
2294 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2296 -- When a controlled type is frozen, the expander generates stream
2297 -- and controlled type support routines. If the freeze is caused
2298 -- by the stand alone body of Initialize, Adjust and Finalize, the
2299 -- expander will end up using the wrong version of these routines
2300 -- as the body has not been processed yet. To remedy this, detect
2301 -- a late controlled primitive and create a proper spec for it.
2302 -- This ensures that the primitive will override its inherited
2303 -- counterpart before the freeze takes place.
2305 -- If the declaration we just processed is a body, do not attempt
2306 -- to examine Next_Decl as the late primitive idiom can only apply
2307 -- to the first encountered body.
2309 -- The spec of the late primitive is not generated in ASIS mode to
2310 -- ensure a consistent list of primitives that indicates the true
2311 -- semantic structure of the program (which is not relevant when
2312 -- generating executable code.
2314 -- ??? a cleaner approach may be possible and/or this solution
2315 -- could be extended to general-purpose late primitives, TBD.
2317 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2318 then
2319 Body_Seen := True;
2321 if Nkind (Next_Decl) = N_Subprogram_Body then
2322 Handle_Late_Controlled_Primitive (Next_Decl);
2323 end if;
2324 end if;
2326 Adjust_Decl;
2327 Freeze_All (Freeze_From, Decl);
2328 Freeze_From := Last_Entity (Current_Scope);
2329 end if;
2331 Decl := Next_Decl;
2332 end loop;
2334 -- Analyze the contracts of packages and their bodies
2336 if Present (L) then
2337 Context := Parent (L);
2339 if Nkind (Context) = N_Package_Specification then
2341 -- When a package has private declarations, its contract must be
2342 -- analyzed at the end of the said declarations. This way both the
2343 -- analysis and freeze actions are properly synchronized in case
2344 -- of private type use within the contract.
2346 if L = Private_Declarations (Context) then
2347 Analyze_Package_Contract (Defining_Entity (Context));
2349 -- Otherwise the contract is analyzed at the end of the visible
2350 -- declarations.
2352 elsif L = Visible_Declarations (Context)
2353 and then No (Private_Declarations (Context))
2354 then
2355 Analyze_Package_Contract (Defining_Entity (Context));
2356 end if;
2358 elsif Nkind (Context) = N_Package_Body then
2359 In_Package_Body := True;
2360 Spec_Id := Corresponding_Spec (Context);
2362 Analyze_Package_Body_Contract (Defining_Entity (Context));
2363 end if;
2364 end if;
2366 -- Analyze the contracts of subprogram declarations, subprogram bodies
2367 -- and variables now due to the delayed visibility requirements of their
2368 -- aspects.
2370 Decl := First (L);
2371 while Present (Decl) loop
2372 if Nkind (Decl) = N_Object_Declaration then
2373 Analyze_Object_Contract (Defining_Entity (Decl));
2375 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2376 N_Subprogram_Declaration)
2377 then
2378 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2380 elsif Nkind (Decl) = N_Subprogram_Body then
2381 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2383 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2384 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2385 end if;
2387 Next (Decl);
2388 end loop;
2390 -- State refinements are visible upto the end the of the package body
2391 -- declarations. Hide the refinements from visibility to restore the
2392 -- original state conditions.
2394 if In_Package_Body then
2395 Remove_Visible_Refinements (Spec_Id);
2396 end if;
2397 end Analyze_Declarations;
2399 -----------------------------------
2400 -- Analyze_Full_Type_Declaration --
2401 -----------------------------------
2403 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2404 Def : constant Node_Id := Type_Definition (N);
2405 Def_Id : constant Entity_Id := Defining_Identifier (N);
2406 T : Entity_Id;
2407 Prev : Entity_Id;
2409 Is_Remote : constant Boolean :=
2410 (Is_Remote_Types (Current_Scope)
2411 or else Is_Remote_Call_Interface (Current_Scope))
2412 and then not (In_Private_Part (Current_Scope)
2413 or else In_Package_Body (Current_Scope));
2415 procedure Check_Ops_From_Incomplete_Type;
2416 -- If there is a tagged incomplete partial view of the type, traverse
2417 -- the primitives of the incomplete view and change the type of any
2418 -- controlling formals and result to indicate the full view. The
2419 -- primitives will be added to the full type's primitive operations
2420 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2421 -- is called from Process_Incomplete_Dependents).
2423 ------------------------------------
2424 -- Check_Ops_From_Incomplete_Type --
2425 ------------------------------------
2427 procedure Check_Ops_From_Incomplete_Type is
2428 Elmt : Elmt_Id;
2429 Formal : Entity_Id;
2430 Op : Entity_Id;
2432 begin
2433 if Prev /= T
2434 and then Ekind (Prev) = E_Incomplete_Type
2435 and then Is_Tagged_Type (Prev)
2436 and then Is_Tagged_Type (T)
2437 then
2438 Elmt := First_Elmt (Primitive_Operations (Prev));
2439 while Present (Elmt) loop
2440 Op := Node (Elmt);
2442 Formal := First_Formal (Op);
2443 while Present (Formal) loop
2444 if Etype (Formal) = Prev then
2445 Set_Etype (Formal, T);
2446 end if;
2448 Next_Formal (Formal);
2449 end loop;
2451 if Etype (Op) = Prev then
2452 Set_Etype (Op, T);
2453 end if;
2455 Next_Elmt (Elmt);
2456 end loop;
2457 end if;
2458 end Check_Ops_From_Incomplete_Type;
2460 -- Start of processing for Analyze_Full_Type_Declaration
2462 begin
2463 Prev := Find_Type_Name (N);
2465 -- The full view, if present, now points to the current type
2467 -- Ada 2005 (AI-50217): If the type was previously decorated when
2468 -- imported through a LIMITED WITH clause, it appears as incomplete
2469 -- but has no full view.
2471 if Ekind (Prev) = E_Incomplete_Type and then Present (Full_View (Prev))
2472 then
2473 T := Full_View (Prev);
2474 else
2475 T := Prev;
2476 end if;
2478 Set_Is_Pure (T, Is_Pure (Current_Scope));
2480 -- We set the flag Is_First_Subtype here. It is needed to set the
2481 -- corresponding flag for the Implicit class-wide-type created
2482 -- during tagged types processing.
2484 Set_Is_First_Subtype (T, True);
2486 -- Only composite types other than array types are allowed to have
2487 -- discriminants.
2489 case Nkind (Def) is
2491 -- For derived types, the rule will be checked once we've figured
2492 -- out the parent type.
2494 when N_Derived_Type_Definition =>
2495 null;
2497 -- For record types, discriminants are allowed, unless we are in
2498 -- SPARK.
2500 when N_Record_Definition =>
2501 if Present (Discriminant_Specifications (N)) then
2502 Check_SPARK_Restriction
2503 ("discriminant type is not allowed",
2504 Defining_Identifier
2505 (First (Discriminant_Specifications (N))));
2506 end if;
2508 when others =>
2509 if Present (Discriminant_Specifications (N)) then
2510 Error_Msg_N
2511 ("elementary or array type cannot have discriminants",
2512 Defining_Identifier
2513 (First (Discriminant_Specifications (N))));
2514 end if;
2515 end case;
2517 -- Elaborate the type definition according to kind, and generate
2518 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2519 -- already done (this happens during the reanalysis that follows a call
2520 -- to the high level optimizer).
2522 if not Analyzed (T) then
2523 Set_Analyzed (T);
2525 case Nkind (Def) is
2527 when N_Access_To_Subprogram_Definition =>
2528 Access_Subprogram_Declaration (T, Def);
2530 -- If this is a remote access to subprogram, we must create the
2531 -- equivalent fat pointer type, and related subprograms.
2533 if Is_Remote then
2534 Process_Remote_AST_Declaration (N);
2535 end if;
2537 -- Validate categorization rule against access type declaration
2538 -- usually a violation in Pure unit, Shared_Passive unit.
2540 Validate_Access_Type_Declaration (T, N);
2542 when N_Access_To_Object_Definition =>
2543 Access_Type_Declaration (T, Def);
2545 -- Validate categorization rule against access type declaration
2546 -- usually a violation in Pure unit, Shared_Passive unit.
2548 Validate_Access_Type_Declaration (T, N);
2550 -- If we are in a Remote_Call_Interface package and define a
2551 -- RACW, then calling stubs and specific stream attributes
2552 -- must be added.
2554 if Is_Remote
2555 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2556 then
2557 Add_RACW_Features (Def_Id);
2558 end if;
2560 -- Set no strict aliasing flag if config pragma seen
2562 if Opt.No_Strict_Aliasing then
2563 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2564 end if;
2566 when N_Array_Type_Definition =>
2567 Array_Type_Declaration (T, Def);
2569 when N_Derived_Type_Definition =>
2570 Derived_Type_Declaration (T, N, T /= Def_Id);
2572 when N_Enumeration_Type_Definition =>
2573 Enumeration_Type_Declaration (T, Def);
2575 when N_Floating_Point_Definition =>
2576 Floating_Point_Type_Declaration (T, Def);
2578 when N_Decimal_Fixed_Point_Definition =>
2579 Decimal_Fixed_Point_Type_Declaration (T, Def);
2581 when N_Ordinary_Fixed_Point_Definition =>
2582 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2584 when N_Signed_Integer_Type_Definition =>
2585 Signed_Integer_Type_Declaration (T, Def);
2587 when N_Modular_Type_Definition =>
2588 Modular_Type_Declaration (T, Def);
2590 when N_Record_Definition =>
2591 Record_Type_Declaration (T, N, Prev);
2593 -- If declaration has a parse error, nothing to elaborate.
2595 when N_Error =>
2596 null;
2598 when others =>
2599 raise Program_Error;
2601 end case;
2602 end if;
2604 if Etype (T) = Any_Type then
2605 return;
2606 end if;
2608 -- Controlled type is not allowed in SPARK
2610 if Is_Visibly_Controlled (T) then
2611 Check_SPARK_Restriction ("controlled type is not allowed", N);
2612 end if;
2614 -- Some common processing for all types
2616 Set_Depends_On_Private (T, Has_Private_Component (T));
2617 Check_Ops_From_Incomplete_Type;
2619 -- Both the declared entity, and its anonymous base type if one
2620 -- was created, need freeze nodes allocated.
2622 declare
2623 B : constant Entity_Id := Base_Type (T);
2625 begin
2626 -- In the case where the base type differs from the first subtype, we
2627 -- pre-allocate a freeze node, and set the proper link to the first
2628 -- subtype. Freeze_Entity will use this preallocated freeze node when
2629 -- it freezes the entity.
2631 -- This does not apply if the base type is a generic type, whose
2632 -- declaration is independent of the current derived definition.
2634 if B /= T and then not Is_Generic_Type (B) then
2635 Ensure_Freeze_Node (B);
2636 Set_First_Subtype_Link (Freeze_Node (B), T);
2637 end if;
2639 -- A type that is imported through a limited_with clause cannot
2640 -- generate any code, and thus need not be frozen. However, an access
2641 -- type with an imported designated type needs a finalization list,
2642 -- which may be referenced in some other package that has non-limited
2643 -- visibility on the designated type. Thus we must create the
2644 -- finalization list at the point the access type is frozen, to
2645 -- prevent unsatisfied references at link time.
2647 if not From_Limited_With (T) or else Is_Access_Type (T) then
2648 Set_Has_Delayed_Freeze (T);
2649 end if;
2650 end;
2652 -- Case where T is the full declaration of some private type which has
2653 -- been swapped in Defining_Identifier (N).
2655 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2656 Process_Full_View (N, T, Def_Id);
2658 -- Record the reference. The form of this is a little strange, since
2659 -- the full declaration has been swapped in. So the first parameter
2660 -- here represents the entity to which a reference is made which is
2661 -- the "real" entity, i.e. the one swapped in, and the second
2662 -- parameter provides the reference location.
2664 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2665 -- since we don't want a complaint about the full type being an
2666 -- unwanted reference to the private type
2668 declare
2669 B : constant Boolean := Has_Pragma_Unreferenced (T);
2670 begin
2671 Set_Has_Pragma_Unreferenced (T, False);
2672 Generate_Reference (T, T, 'c');
2673 Set_Has_Pragma_Unreferenced (T, B);
2674 end;
2676 Set_Completion_Referenced (Def_Id);
2678 -- For completion of incomplete type, process incomplete dependents
2679 -- and always mark the full type as referenced (it is the incomplete
2680 -- type that we get for any real reference).
2682 elsif Ekind (Prev) = E_Incomplete_Type then
2683 Process_Incomplete_Dependents (N, T, Prev);
2684 Generate_Reference (Prev, Def_Id, 'c');
2685 Set_Completion_Referenced (Def_Id);
2687 -- If not private type or incomplete type completion, this is a real
2688 -- definition of a new entity, so record it.
2690 else
2691 Generate_Definition (Def_Id);
2692 end if;
2694 if Chars (Scope (Def_Id)) = Name_System
2695 and then Chars (Def_Id) = Name_Address
2696 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2697 then
2698 Set_Is_Descendent_Of_Address (Def_Id);
2699 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2700 Set_Is_Descendent_Of_Address (Prev);
2701 end if;
2703 Set_Optimize_Alignment_Flags (Def_Id);
2704 Check_Eliminated (Def_Id);
2706 -- If the declaration is a completion and aspects are present, apply
2707 -- them to the entity for the type which is currently the partial
2708 -- view, but which is the one that will be frozen.
2710 if Has_Aspects (N) then
2711 if Prev /= Def_Id then
2712 Analyze_Aspect_Specifications (N, Prev);
2713 else
2714 Analyze_Aspect_Specifications (N, Def_Id);
2715 end if;
2716 end if;
2717 end Analyze_Full_Type_Declaration;
2719 ----------------------------------
2720 -- Analyze_Incomplete_Type_Decl --
2721 ----------------------------------
2723 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2724 F : constant Boolean := Is_Pure (Current_Scope);
2725 T : Entity_Id;
2727 begin
2728 Check_SPARK_Restriction ("incomplete type is not allowed", N);
2730 Generate_Definition (Defining_Identifier (N));
2732 -- Process an incomplete declaration. The identifier must not have been
2733 -- declared already in the scope. However, an incomplete declaration may
2734 -- appear in the private part of a package, for a private type that has
2735 -- already been declared.
2737 -- In this case, the discriminants (if any) must match
2739 T := Find_Type_Name (N);
2741 Set_Ekind (T, E_Incomplete_Type);
2742 Init_Size_Align (T);
2743 Set_Is_First_Subtype (T, True);
2744 Set_Etype (T, T);
2746 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2747 -- incomplete types.
2749 if Tagged_Present (N) then
2750 Set_Is_Tagged_Type (T);
2751 Make_Class_Wide_Type (T);
2752 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2753 end if;
2755 Push_Scope (T);
2757 Set_Stored_Constraint (T, No_Elist);
2759 if Present (Discriminant_Specifications (N)) then
2760 Process_Discriminants (N);
2761 end if;
2763 End_Scope;
2765 -- If the type has discriminants, non-trivial subtypes may be
2766 -- declared before the full view of the type. The full views of those
2767 -- subtypes will be built after the full view of the type.
2769 Set_Private_Dependents (T, New_Elmt_List);
2770 Set_Is_Pure (T, F);
2771 end Analyze_Incomplete_Type_Decl;
2773 -----------------------------------
2774 -- Analyze_Interface_Declaration --
2775 -----------------------------------
2777 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2778 CW : constant Entity_Id := Class_Wide_Type (T);
2780 begin
2781 Set_Is_Tagged_Type (T);
2783 Set_Is_Limited_Record (T, Limited_Present (Def)
2784 or else Task_Present (Def)
2785 or else Protected_Present (Def)
2786 or else Synchronized_Present (Def));
2788 -- Type is abstract if full declaration carries keyword, or if previous
2789 -- partial view did.
2791 Set_Is_Abstract_Type (T);
2792 Set_Is_Interface (T);
2794 -- Type is a limited interface if it includes the keyword limited, task,
2795 -- protected, or synchronized.
2797 Set_Is_Limited_Interface
2798 (T, Limited_Present (Def)
2799 or else Protected_Present (Def)
2800 or else Synchronized_Present (Def)
2801 or else Task_Present (Def));
2803 Set_Interfaces (T, New_Elmt_List);
2804 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2806 -- Complete the decoration of the class-wide entity if it was already
2807 -- built (i.e. during the creation of the limited view)
2809 if Present (CW) then
2810 Set_Is_Interface (CW);
2811 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2812 end if;
2814 -- Check runtime support for synchronized interfaces
2816 if VM_Target = No_VM
2817 and then (Is_Task_Interface (T)
2818 or else Is_Protected_Interface (T)
2819 or else Is_Synchronized_Interface (T))
2820 and then not RTE_Available (RE_Select_Specific_Data)
2821 then
2822 Error_Msg_CRT ("synchronized interfaces", T);
2823 end if;
2824 end Analyze_Interface_Declaration;
2826 -----------------------------
2827 -- Analyze_Itype_Reference --
2828 -----------------------------
2830 -- Nothing to do. This node is placed in the tree only for the benefit of
2831 -- back end processing, and has no effect on the semantic processing.
2833 procedure Analyze_Itype_Reference (N : Node_Id) is
2834 begin
2835 pragma Assert (Is_Itype (Itype (N)));
2836 null;
2837 end Analyze_Itype_Reference;
2839 --------------------------------
2840 -- Analyze_Number_Declaration --
2841 --------------------------------
2843 procedure Analyze_Number_Declaration (N : Node_Id) is
2844 Id : constant Entity_Id := Defining_Identifier (N);
2845 E : constant Node_Id := Expression (N);
2846 T : Entity_Id;
2847 Index : Interp_Index;
2848 It : Interp;
2850 begin
2851 Generate_Definition (Id);
2852 Enter_Name (Id);
2854 -- This is an optimization of a common case of an integer literal
2856 if Nkind (E) = N_Integer_Literal then
2857 Set_Is_Static_Expression (E, True);
2858 Set_Etype (E, Universal_Integer);
2860 Set_Etype (Id, Universal_Integer);
2861 Set_Ekind (Id, E_Named_Integer);
2862 Set_Is_Frozen (Id, True);
2863 return;
2864 end if;
2866 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2868 -- Process expression, replacing error by integer zero, to avoid
2869 -- cascaded errors or aborts further along in the processing
2871 -- Replace Error by integer zero, which seems least likely to cause
2872 -- cascaded errors.
2874 if E = Error then
2875 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2876 Set_Error_Posted (E);
2877 end if;
2879 Analyze (E);
2881 -- Verify that the expression is static and numeric. If
2882 -- the expression is overloaded, we apply the preference
2883 -- rule that favors root numeric types.
2885 if not Is_Overloaded (E) then
2886 T := Etype (E);
2888 else
2889 T := Any_Type;
2891 Get_First_Interp (E, Index, It);
2892 while Present (It.Typ) loop
2893 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
2894 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2895 then
2896 if T = Any_Type then
2897 T := It.Typ;
2899 elsif It.Typ = Universal_Real
2900 or else It.Typ = Universal_Integer
2901 then
2902 -- Choose universal interpretation over any other
2904 T := It.Typ;
2905 exit;
2906 end if;
2907 end if;
2909 Get_Next_Interp (Index, It);
2910 end loop;
2911 end if;
2913 if Is_Integer_Type (T) then
2914 Resolve (E, T);
2915 Set_Etype (Id, Universal_Integer);
2916 Set_Ekind (Id, E_Named_Integer);
2918 elsif Is_Real_Type (T) then
2920 -- Because the real value is converted to universal_real, this is a
2921 -- legal context for a universal fixed expression.
2923 if T = Universal_Fixed then
2924 declare
2925 Loc : constant Source_Ptr := Sloc (N);
2926 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2927 Subtype_Mark =>
2928 New_Occurrence_Of (Universal_Real, Loc),
2929 Expression => Relocate_Node (E));
2931 begin
2932 Rewrite (E, Conv);
2933 Analyze (E);
2934 end;
2936 elsif T = Any_Fixed then
2937 Error_Msg_N ("illegal context for mixed mode operation", E);
2939 -- Expression is of the form : universal_fixed * integer. Try to
2940 -- resolve as universal_real.
2942 T := Universal_Real;
2943 Set_Etype (E, T);
2944 end if;
2946 Resolve (E, T);
2947 Set_Etype (Id, Universal_Real);
2948 Set_Ekind (Id, E_Named_Real);
2950 else
2951 Wrong_Type (E, Any_Numeric);
2952 Resolve (E, T);
2954 Set_Etype (Id, T);
2955 Set_Ekind (Id, E_Constant);
2956 Set_Never_Set_In_Source (Id, True);
2957 Set_Is_True_Constant (Id, True);
2958 return;
2959 end if;
2961 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
2962 Set_Etype (E, Etype (Id));
2963 end if;
2965 if not Is_OK_Static_Expression (E) then
2966 Flag_Non_Static_Expr
2967 ("non-static expression used in number declaration!", E);
2968 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
2969 Set_Etype (E, Any_Type);
2970 end if;
2971 end Analyze_Number_Declaration;
2973 -----------------------------
2974 -- Analyze_Object_Contract --
2975 -----------------------------
2977 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
2978 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
2979 AR_Val : Boolean := False;
2980 AW_Val : Boolean := False;
2981 ER_Val : Boolean := False;
2982 EW_Val : Boolean := False;
2983 Prag : Node_Id;
2984 Seen : Boolean := False;
2986 begin
2987 if Ekind (Obj_Id) = E_Constant then
2989 -- A constant cannot be volatile. This check is only relevant when
2990 -- SPARK_Mode is on as it is not standard Ada legality rule. Do not
2991 -- flag internally-generated constants that map generic formals to
2992 -- actuals in instantiations (SPARK RM 7.1.3(6)).
2994 if SPARK_Mode = On
2995 and then Is_SPARK_Volatile (Obj_Id)
2996 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
2997 then
2998 Error_Msg_N ("constant cannot be volatile", Obj_Id);
2999 end if;
3001 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3003 -- The following checks are only relevant when SPARK_Mode is on as
3004 -- they are not standard Ada legality rules.
3006 if SPARK_Mode = On then
3007 if Is_SPARK_Volatile (Obj_Id) then
3009 -- The declaration of a volatile object must appear at the
3010 -- library level (SPARK RM 7.1.3(7), C.6(6)).
3012 if not Is_Library_Level_Entity (Obj_Id) then
3013 Error_Msg_N
3014 ("volatile variable & must be declared at library level",
3015 Obj_Id);
3017 -- An object of a discriminated type cannot be volatile
3018 -- (SPARK RM C.6(4)).
3020 elsif Has_Discriminants (Obj_Typ) then
3021 Error_Msg_N
3022 ("discriminated object & cannot be volatile", Obj_Id);
3024 -- An object of a tagged type cannot be volatile
3025 -- (SPARK RM C.6(5)).
3027 elsif Is_Tagged_Type (Obj_Typ) then
3028 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3029 end if;
3031 -- The object is not volatile
3033 else
3034 -- A non-volatile object cannot have volatile components
3035 -- (SPARK RM 7.1.3(7)).
3037 if not Is_SPARK_Volatile (Obj_Id)
3038 and then Has_Volatile_Component (Obj_Typ)
3039 then
3040 Error_Msg_N
3041 ("non-volatile object & cannot have volatile components",
3042 Obj_Id);
3043 end if;
3044 end if;
3045 end if;
3047 -- Analyze all external properties
3049 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3051 if Present (Prag) then
3052 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3053 Seen := True;
3054 end if;
3056 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3058 if Present (Prag) then
3059 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3060 Seen := True;
3061 end if;
3063 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3065 if Present (Prag) then
3066 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3067 Seen := True;
3068 end if;
3070 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3072 if Present (Prag) then
3073 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3074 Seen := True;
3075 end if;
3077 -- Verify the mutual interaction of the various external properties
3079 if Seen then
3080 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3081 end if;
3083 -- Check whether the lack of indicator Part_Of agrees with the
3084 -- placement of the variable with respect to the state space.
3086 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3088 if No (Prag) then
3089 Check_Missing_Part_Of (Obj_Id);
3090 end if;
3091 end if;
3092 end Analyze_Object_Contract;
3094 --------------------------------
3095 -- Analyze_Object_Declaration --
3096 --------------------------------
3098 procedure Analyze_Object_Declaration (N : Node_Id) is
3099 Loc : constant Source_Ptr := Sloc (N);
3100 Id : constant Entity_Id := Defining_Identifier (N);
3101 T : Entity_Id;
3102 Act_T : Entity_Id;
3104 E : Node_Id := Expression (N);
3105 -- E is set to Expression (N) throughout this routine. When
3106 -- Expression (N) is modified, E is changed accordingly.
3108 Prev_Entity : Entity_Id := Empty;
3110 function Count_Tasks (T : Entity_Id) return Uint;
3111 -- This function is called when a non-generic library level object of a
3112 -- task type is declared. Its function is to count the static number of
3113 -- tasks declared within the type (it is only called if Has_Tasks is set
3114 -- for T). As a side effect, if an array of tasks with non-static bounds
3115 -- or a variant record type is encountered, Check_Restrictions is called
3116 -- indicating the count is unknown.
3118 -----------------
3119 -- Count_Tasks --
3120 -----------------
3122 function Count_Tasks (T : Entity_Id) return Uint is
3123 C : Entity_Id;
3124 X : Node_Id;
3125 V : Uint;
3127 begin
3128 if Is_Task_Type (T) then
3129 return Uint_1;
3131 elsif Is_Record_Type (T) then
3132 if Has_Discriminants (T) then
3133 Check_Restriction (Max_Tasks, N);
3134 return Uint_0;
3136 else
3137 V := Uint_0;
3138 C := First_Component (T);
3139 while Present (C) loop
3140 V := V + Count_Tasks (Etype (C));
3141 Next_Component (C);
3142 end loop;
3144 return V;
3145 end if;
3147 elsif Is_Array_Type (T) then
3148 X := First_Index (T);
3149 V := Count_Tasks (Component_Type (T));
3150 while Present (X) loop
3151 C := Etype (X);
3153 if not Is_Static_Subtype (C) then
3154 Check_Restriction (Max_Tasks, N);
3155 return Uint_0;
3156 else
3157 V := V * (UI_Max (Uint_0,
3158 Expr_Value (Type_High_Bound (C)) -
3159 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3160 end if;
3162 Next_Index (X);
3163 end loop;
3165 return V;
3167 else
3168 return Uint_0;
3169 end if;
3170 end Count_Tasks;
3172 -- Start of processing for Analyze_Object_Declaration
3174 begin
3175 -- There are three kinds of implicit types generated by an
3176 -- object declaration:
3178 -- 1. Those generated by the original Object Definition
3180 -- 2. Those generated by the Expression
3182 -- 3. Those used to constrain the Object Definition with the
3183 -- expression constraints when the definition is unconstrained.
3185 -- They must be generated in this order to avoid order of elaboration
3186 -- issues. Thus the first step (after entering the name) is to analyze
3187 -- the object definition.
3189 if Constant_Present (N) then
3190 Prev_Entity := Current_Entity_In_Scope (Id);
3192 if Present (Prev_Entity)
3193 and then
3194 -- If the homograph is an implicit subprogram, it is overridden
3195 -- by the current declaration.
3197 ((Is_Overloadable (Prev_Entity)
3198 and then Is_Inherited_Operation (Prev_Entity))
3200 -- The current object is a discriminal generated for an entry
3201 -- family index. Even though the index is a constant, in this
3202 -- particular context there is no true constant redeclaration.
3203 -- Enter_Name will handle the visibility.
3205 or else
3206 (Is_Discriminal (Id)
3207 and then Ekind (Discriminal_Link (Id)) =
3208 E_Entry_Index_Parameter)
3210 -- The current object is the renaming for a generic declared
3211 -- within the instance.
3213 or else
3214 (Ekind (Prev_Entity) = E_Package
3215 and then Nkind (Parent (Prev_Entity)) =
3216 N_Package_Renaming_Declaration
3217 and then not Comes_From_Source (Prev_Entity)
3218 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3219 then
3220 Prev_Entity := Empty;
3221 end if;
3222 end if;
3224 if Present (Prev_Entity) then
3225 Constant_Redeclaration (Id, N, T);
3227 Generate_Reference (Prev_Entity, Id, 'c');
3228 Set_Completion_Referenced (Id);
3230 if Error_Posted (N) then
3232 -- Type mismatch or illegal redeclaration, Do not analyze
3233 -- expression to avoid cascaded errors.
3235 T := Find_Type_Of_Object (Object_Definition (N), N);
3236 Set_Etype (Id, T);
3237 Set_Ekind (Id, E_Variable);
3238 goto Leave;
3239 end if;
3241 -- In the normal case, enter identifier at the start to catch premature
3242 -- usage in the initialization expression.
3244 else
3245 Generate_Definition (Id);
3246 Enter_Name (Id);
3248 Mark_Coextensions (N, Object_Definition (N));
3250 T := Find_Type_Of_Object (Object_Definition (N), N);
3252 if Nkind (Object_Definition (N)) = N_Access_Definition
3253 and then Present
3254 (Access_To_Subprogram_Definition (Object_Definition (N)))
3255 and then Protected_Present
3256 (Access_To_Subprogram_Definition (Object_Definition (N)))
3257 then
3258 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3259 end if;
3261 if Error_Posted (Id) then
3262 Set_Etype (Id, T);
3263 Set_Ekind (Id, E_Variable);
3264 goto Leave;
3265 end if;
3266 end if;
3268 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3269 -- out some static checks
3271 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3273 -- In case of aggregates we must also take care of the correct
3274 -- initialization of nested aggregates bug this is done at the
3275 -- point of the analysis of the aggregate (see sem_aggr.adb).
3277 if Present (Expression (N))
3278 and then Nkind (Expression (N)) = N_Aggregate
3279 then
3280 null;
3282 else
3283 declare
3284 Save_Typ : constant Entity_Id := Etype (Id);
3285 begin
3286 Set_Etype (Id, T); -- Temp. decoration for static checks
3287 Null_Exclusion_Static_Checks (N);
3288 Set_Etype (Id, Save_Typ);
3289 end;
3290 end if;
3291 end if;
3293 -- Object is marked pure if it is in a pure scope
3295 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3297 -- If deferred constant, make sure context is appropriate. We detect
3298 -- a deferred constant as a constant declaration with no expression.
3299 -- A deferred constant can appear in a package body if its completion
3300 -- is by means of an interface pragma.
3302 if Constant_Present (N) and then No (E) then
3304 -- A deferred constant may appear in the declarative part of the
3305 -- following constructs:
3307 -- blocks
3308 -- entry bodies
3309 -- extended return statements
3310 -- package specs
3311 -- package bodies
3312 -- subprogram bodies
3313 -- task bodies
3315 -- When declared inside a package spec, a deferred constant must be
3316 -- completed by a full constant declaration or pragma Import. In all
3317 -- other cases, the only proper completion is pragma Import. Extended
3318 -- return statements are flagged as invalid contexts because they do
3319 -- not have a declarative part and so cannot accommodate the pragma.
3321 if Ekind (Current_Scope) = E_Return_Statement then
3322 Error_Msg_N
3323 ("invalid context for deferred constant declaration (RM 7.4)",
3325 Error_Msg_N
3326 ("\declaration requires an initialization expression",
3328 Set_Constant_Present (N, False);
3330 -- In Ada 83, deferred constant must be of private type
3332 elsif not Is_Private_Type (T) then
3333 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3334 Error_Msg_N
3335 ("(Ada 83) deferred constant must be private type", N);
3336 end if;
3337 end if;
3339 -- If not a deferred constant, then object declaration freezes its type
3341 else
3342 Check_Fully_Declared (T, N);
3343 Freeze_Before (N, T);
3344 end if;
3346 -- If the object was created by a constrained array definition, then
3347 -- set the link in both the anonymous base type and anonymous subtype
3348 -- that are built to represent the array type to point to the object.
3350 if Nkind (Object_Definition (Declaration_Node (Id))) =
3351 N_Constrained_Array_Definition
3352 then
3353 Set_Related_Array_Object (T, Id);
3354 Set_Related_Array_Object (Base_Type (T), Id);
3355 end if;
3357 -- Special checks for protected objects not at library level
3359 if Is_Protected_Type (T)
3360 and then not Is_Library_Level_Entity (Id)
3361 then
3362 Check_Restriction (No_Local_Protected_Objects, Id);
3364 -- Protected objects with interrupt handlers must be at library level
3366 -- Ada 2005: This test is not needed (and the corresponding clause
3367 -- in the RM is removed) because accessibility checks are sufficient
3368 -- to make handlers not at the library level illegal.
3370 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3371 -- applies to the '95 version of the language as well.
3373 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3374 Error_Msg_N
3375 ("interrupt object can only be declared at library level", Id);
3376 end if;
3377 end if;
3379 -- The actual subtype of the object is the nominal subtype, unless
3380 -- the nominal one is unconstrained and obtained from the expression.
3382 Act_T := T;
3384 -- These checks should be performed before the initialization expression
3385 -- is considered, so that the Object_Definition node is still the same
3386 -- as in source code.
3388 -- In SPARK, the nominal subtype shall be given by a subtype mark and
3389 -- shall not be unconstrained. (The only exception to this is the
3390 -- admission of declarations of constants of type String.)
3392 if not
3393 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3394 then
3395 Check_SPARK_Restriction
3396 ("subtype mark required", Object_Definition (N));
3398 elsif Is_Array_Type (T)
3399 and then not Is_Constrained (T)
3400 and then T /= Standard_String
3401 then
3402 Check_SPARK_Restriction
3403 ("subtype mark of constrained type expected",
3404 Object_Definition (N));
3405 end if;
3407 -- There are no aliased objects in SPARK
3409 if Aliased_Present (N) then
3410 Check_SPARK_Restriction ("aliased object is not allowed", N);
3411 end if;
3413 -- Process initialization expression if present and not in error
3415 if Present (E) and then E /= Error then
3417 -- Generate an error in case of CPP class-wide object initialization.
3418 -- Required because otherwise the expansion of the class-wide
3419 -- assignment would try to use 'size to initialize the object
3420 -- (primitive that is not available in CPP tagged types).
3422 if Is_Class_Wide_Type (Act_T)
3423 and then
3424 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3425 or else
3426 (Present (Full_View (Root_Type (Etype (Act_T))))
3427 and then
3428 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3429 then
3430 Error_Msg_N
3431 ("predefined assignment not available for 'C'P'P tagged types",
3433 end if;
3435 Mark_Coextensions (N, E);
3436 Analyze (E);
3438 -- In case of errors detected in the analysis of the expression,
3439 -- decorate it with the expected type to avoid cascaded errors
3441 if No (Etype (E)) then
3442 Set_Etype (E, T);
3443 end if;
3445 -- If an initialization expression is present, then we set the
3446 -- Is_True_Constant flag. It will be reset if this is a variable
3447 -- and it is indeed modified.
3449 Set_Is_True_Constant (Id, True);
3451 -- If we are analyzing a constant declaration, set its completion
3452 -- flag after analyzing and resolving the expression.
3454 if Constant_Present (N) then
3455 Set_Has_Completion (Id);
3456 end if;
3458 -- Set type and resolve (type may be overridden later on). Note:
3459 -- Ekind (Id) must still be E_Void at this point so that incorrect
3460 -- early usage within E is properly diagnosed.
3462 Set_Etype (Id, T);
3463 Resolve (E, T);
3465 -- No further action needed if E is a call to an inlined function
3466 -- which returns an unconstrained type and it has been expanded into
3467 -- a procedure call. In that case N has been replaced by an object
3468 -- declaration without initializing expression and it has been
3469 -- analyzed (see Expand_Inlined_Call).
3471 if Debug_Flag_Dot_K
3472 and then Expander_Active
3473 and then Nkind (E) = N_Function_Call
3474 and then Nkind (Name (E)) in N_Has_Entity
3475 and then Is_Inlined (Entity (Name (E)))
3476 and then not Is_Constrained (Etype (E))
3477 and then Analyzed (N)
3478 and then No (Expression (N))
3479 then
3480 return;
3481 end if;
3483 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3484 -- node (which was marked already-analyzed), we need to set the type
3485 -- to something other than Any_Access in order to keep gigi happy.
3487 if Etype (E) = Any_Access then
3488 Set_Etype (E, T);
3489 end if;
3491 -- If the object is an access to variable, the initialization
3492 -- expression cannot be an access to constant.
3494 if Is_Access_Type (T)
3495 and then not Is_Access_Constant (T)
3496 and then Is_Access_Type (Etype (E))
3497 and then Is_Access_Constant (Etype (E))
3498 then
3499 Error_Msg_N
3500 ("access to variable cannot be initialized "
3501 & "with an access-to-constant expression", E);
3502 end if;
3504 if not Assignment_OK (N) then
3505 Check_Initialization (T, E);
3506 end if;
3508 Check_Unset_Reference (E);
3510 -- If this is a variable, then set current value. If this is a
3511 -- declared constant of a scalar type with a static expression,
3512 -- indicate that it is always valid.
3514 if not Constant_Present (N) then
3515 if Compile_Time_Known_Value (E) then
3516 Set_Current_Value (Id, E);
3517 end if;
3519 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3520 Set_Is_Known_Valid (Id);
3521 end if;
3523 -- Deal with setting of null flags
3525 if Is_Access_Type (T) then
3526 if Known_Non_Null (E) then
3527 Set_Is_Known_Non_Null (Id, True);
3528 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3529 Set_Is_Known_Null (Id, True);
3530 end if;
3531 end if;
3533 -- Check incorrect use of dynamically tagged expressions
3535 if Is_Tagged_Type (T) then
3536 Check_Dynamically_Tagged_Expression
3537 (Expr => E,
3538 Typ => T,
3539 Related_Nod => N);
3540 end if;
3542 Apply_Scalar_Range_Check (E, T);
3543 Apply_Static_Length_Check (E, T);
3545 if Nkind (Original_Node (N)) = N_Object_Declaration
3546 and then Comes_From_Source (Original_Node (N))
3548 -- Only call test if needed
3550 and then Restriction_Check_Required (SPARK_05)
3551 and then not Is_SPARK_Initialization_Expr (Original_Node (E))
3552 then
3553 Check_SPARK_Restriction
3554 ("initialization expression is not appropriate", E);
3555 end if;
3556 end if;
3558 -- If the No_Streams restriction is set, check that the type of the
3559 -- object is not, and does not contain, any subtype derived from
3560 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3561 -- Has_Stream just for efficiency reasons. There is no point in
3562 -- spending time on a Has_Stream check if the restriction is not set.
3564 if Restriction_Check_Required (No_Streams) then
3565 if Has_Stream (T) then
3566 Check_Restriction (No_Streams, N);
3567 end if;
3568 end if;
3570 -- Deal with predicate check before we start to do major rewriting. It
3571 -- is OK to initialize and then check the initialized value, since the
3572 -- object goes out of scope if we get a predicate failure. Note that we
3573 -- do this in the analyzer and not the expander because the analyzer
3574 -- does some substantial rewriting in some cases.
3576 -- We need a predicate check if the type has predicates, and if either
3577 -- there is an initializing expression, or for default initialization
3578 -- when we have at least one case of an explicit default initial value
3579 -- and then this is not an internal declaration whose initialization
3580 -- comes later (as for an aggregate expansion).
3582 if not Suppress_Assignment_Checks (N)
3583 and then Present (Predicate_Function (T))
3584 and then not No_Initialization (N)
3585 and then
3586 (Present (E)
3587 or else
3588 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3589 then
3590 -- If the type has a static predicate and the expression is known at
3591 -- compile time, see if the expression satisfies the predicate.
3593 if Present (E) then
3594 Check_Expression_Against_Static_Predicate (E, T);
3595 end if;
3597 Insert_After (N,
3598 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3599 end if;
3601 -- Case of unconstrained type
3603 if Is_Indefinite_Subtype (T) then
3605 -- In SPARK, a declaration of unconstrained type is allowed
3606 -- only for constants of type string.
3608 if Is_String_Type (T) and then not Constant_Present (N) then
3609 Check_SPARK_Restriction
3610 ("declaration of object of unconstrained type not allowed", N);
3611 end if;
3613 -- Nothing to do in deferred constant case
3615 if Constant_Present (N) and then No (E) then
3616 null;
3618 -- Case of no initialization present
3620 elsif No (E) then
3621 if No_Initialization (N) then
3622 null;
3624 elsif Is_Class_Wide_Type (T) then
3625 Error_Msg_N
3626 ("initialization required in class-wide declaration ", N);
3628 else
3629 Error_Msg_N
3630 ("unconstrained subtype not allowed (need initialization)",
3631 Object_Definition (N));
3633 if Is_Record_Type (T) and then Has_Discriminants (T) then
3634 Error_Msg_N
3635 ("\provide initial value or explicit discriminant values",
3636 Object_Definition (N));
3638 Error_Msg_NE
3639 ("\or give default discriminant values for type&",
3640 Object_Definition (N), T);
3642 elsif Is_Array_Type (T) then
3643 Error_Msg_N
3644 ("\provide initial value or explicit array bounds",
3645 Object_Definition (N));
3646 end if;
3647 end if;
3649 -- Case of initialization present but in error. Set initial
3650 -- expression as absent (but do not make above complaints)
3652 elsif E = Error then
3653 Set_Expression (N, Empty);
3654 E := Empty;
3656 -- Case of initialization present
3658 else
3659 -- Check restrictions in Ada 83
3661 if not Constant_Present (N) then
3663 -- Unconstrained variables not allowed in Ada 83 mode
3665 if Ada_Version = Ada_83
3666 and then Comes_From_Source (Object_Definition (N))
3667 then
3668 Error_Msg_N
3669 ("(Ada 83) unconstrained variable not allowed",
3670 Object_Definition (N));
3671 end if;
3672 end if;
3674 -- Now we constrain the variable from the initializing expression
3676 -- If the expression is an aggregate, it has been expanded into
3677 -- individual assignments. Retrieve the actual type from the
3678 -- expanded construct.
3680 if Is_Array_Type (T)
3681 and then No_Initialization (N)
3682 and then Nkind (Original_Node (E)) = N_Aggregate
3683 then
3684 Act_T := Etype (E);
3686 -- In case of class-wide interface object declarations we delay
3687 -- the generation of the equivalent record type declarations until
3688 -- its expansion because there are cases in they are not required.
3690 elsif Is_Interface (T) then
3691 null;
3693 else
3694 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3695 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3696 end if;
3698 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3700 if Aliased_Present (N) then
3701 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3702 end if;
3704 Freeze_Before (N, Act_T);
3705 Freeze_Before (N, T);
3706 end if;
3708 elsif Is_Array_Type (T)
3709 and then No_Initialization (N)
3710 and then Nkind (Original_Node (E)) = N_Aggregate
3711 then
3712 if not Is_Entity_Name (Object_Definition (N)) then
3713 Act_T := Etype (E);
3714 Check_Compile_Time_Size (Act_T);
3716 if Aliased_Present (N) then
3717 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3718 end if;
3719 end if;
3721 -- When the given object definition and the aggregate are specified
3722 -- independently, and their lengths might differ do a length check.
3723 -- This cannot happen if the aggregate is of the form (others =>...)
3725 if not Is_Constrained (T) then
3726 null;
3728 elsif Nkind (E) = N_Raise_Constraint_Error then
3730 -- Aggregate is statically illegal. Place back in declaration
3732 Set_Expression (N, E);
3733 Set_No_Initialization (N, False);
3735 elsif T = Etype (E) then
3736 null;
3738 elsif Nkind (E) = N_Aggregate
3739 and then Present (Component_Associations (E))
3740 and then Present (Choices (First (Component_Associations (E))))
3741 and then Nkind (First
3742 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3743 then
3744 null;
3746 else
3747 Apply_Length_Check (E, T);
3748 end if;
3750 -- If the type is limited unconstrained with defaulted discriminants and
3751 -- there is no expression, then the object is constrained by the
3752 -- defaults, so it is worthwhile building the corresponding subtype.
3754 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3755 and then not Is_Constrained (T)
3756 and then Has_Discriminants (T)
3757 then
3758 if No (E) then
3759 Act_T := Build_Default_Subtype (T, N);
3760 else
3761 -- Ada 2005: A limited object may be initialized by means of an
3762 -- aggregate. If the type has default discriminants it has an
3763 -- unconstrained nominal type, Its actual subtype will be obtained
3764 -- from the aggregate, and not from the default discriminants.
3766 Act_T := Etype (E);
3767 end if;
3769 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3771 elsif Nkind (E) = N_Function_Call
3772 and then Constant_Present (N)
3773 and then Has_Unconstrained_Elements (Etype (E))
3774 then
3775 -- The back-end has problems with constants of a discriminated type
3776 -- with defaults, if the initial value is a function call. We
3777 -- generate an intermediate temporary that will receive a reference
3778 -- to the result of the call. The initialization expression then
3779 -- becomes a dereference of that temporary.
3781 Remove_Side_Effects (E);
3783 -- If this is a constant declaration of an unconstrained type and
3784 -- the initialization is an aggregate, we can use the subtype of the
3785 -- aggregate for the declared entity because it is immutable.
3787 elsif not Is_Constrained (T)
3788 and then Has_Discriminants (T)
3789 and then Constant_Present (N)
3790 and then not Has_Unchecked_Union (T)
3791 and then Nkind (E) = N_Aggregate
3792 then
3793 Act_T := Etype (E);
3794 end if;
3796 -- Check No_Wide_Characters restriction
3798 Check_Wide_Character_Restriction (T, Object_Definition (N));
3800 -- Indicate this is not set in source. Certainly true for constants, and
3801 -- true for variables so far (will be reset for a variable if and when
3802 -- we encounter a modification in the source).
3804 Set_Never_Set_In_Source (Id, True);
3806 -- Now establish the proper kind and type of the object
3808 if Constant_Present (N) then
3809 Set_Ekind (Id, E_Constant);
3810 Set_Is_True_Constant (Id);
3812 else
3813 Set_Ekind (Id, E_Variable);
3815 -- A variable is set as shared passive if it appears in a shared
3816 -- passive package, and is at the outer level. This is not done for
3817 -- entities generated during expansion, because those are always
3818 -- manipulated locally.
3820 if Is_Shared_Passive (Current_Scope)
3821 and then Is_Library_Level_Entity (Id)
3822 and then Comes_From_Source (Id)
3823 then
3824 Set_Is_Shared_Passive (Id);
3825 Check_Shared_Var (Id, T, N);
3826 end if;
3828 -- Set Has_Initial_Value if initializing expression present. Note
3829 -- that if there is no initializing expression, we leave the state
3830 -- of this flag unchanged (usually it will be False, but notably in
3831 -- the case of exception choice variables, it will already be true).
3833 if Present (E) then
3834 Set_Has_Initial_Value (Id, True);
3835 end if;
3837 Set_Contract (Id, Make_Contract (Sloc (Id)));
3838 end if;
3840 -- Initialize alignment and size and capture alignment setting
3842 Init_Alignment (Id);
3843 Init_Esize (Id);
3844 Set_Optimize_Alignment_Flags (Id);
3846 -- Deal with aliased case
3848 if Aliased_Present (N) then
3849 Set_Is_Aliased (Id);
3851 -- If the object is aliased and the type is unconstrained with
3852 -- defaulted discriminants and there is no expression, then the
3853 -- object is constrained by the defaults, so it is worthwhile
3854 -- building the corresponding subtype.
3856 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3857 -- unconstrained, then only establish an actual subtype if the
3858 -- nominal subtype is indefinite. In definite cases the object is
3859 -- unconstrained in Ada 2005.
3861 if No (E)
3862 and then Is_Record_Type (T)
3863 and then not Is_Constrained (T)
3864 and then Has_Discriminants (T)
3865 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
3866 then
3867 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3868 end if;
3869 end if;
3871 -- Now we can set the type of the object
3873 Set_Etype (Id, Act_T);
3875 -- Object is marked to be treated as volatile if type is volatile and
3876 -- we clear the Current_Value setting that may have been set above.
3878 if Treat_As_Volatile (Etype (Id)) then
3879 Set_Treat_As_Volatile (Id);
3880 Set_Current_Value (Id, Empty);
3881 end if;
3883 -- Deal with controlled types
3885 if Has_Controlled_Component (Etype (Id))
3886 or else Is_Controlled (Etype (Id))
3887 then
3888 if not Is_Library_Level_Entity (Id) then
3889 Check_Restriction (No_Nested_Finalization, N);
3890 else
3891 Validate_Controlled_Object (Id);
3892 end if;
3893 end if;
3895 if Has_Task (Etype (Id)) then
3896 Check_Restriction (No_Tasking, N);
3898 -- Deal with counting max tasks
3900 -- Nothing to do if inside a generic
3902 if Inside_A_Generic then
3903 null;
3905 -- If library level entity, then count tasks
3907 elsif Is_Library_Level_Entity (Id) then
3908 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3910 -- If not library level entity, then indicate we don't know max
3911 -- tasks and also check task hierarchy restriction and blocking
3912 -- operation (since starting a task is definitely blocking).
3914 else
3915 Check_Restriction (Max_Tasks, N);
3916 Check_Restriction (No_Task_Hierarchy, N);
3917 Check_Potentially_Blocking_Operation (N);
3918 end if;
3920 -- A rather specialized test. If we see two tasks being declared
3921 -- of the same type in the same object declaration, and the task
3922 -- has an entry with an address clause, we know that program error
3923 -- will be raised at run time since we can't have two tasks with
3924 -- entries at the same address.
3926 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
3927 declare
3928 E : Entity_Id;
3930 begin
3931 E := First_Entity (Etype (Id));
3932 while Present (E) loop
3933 if Ekind (E) = E_Entry
3934 and then Present (Get_Attribute_Definition_Clause
3935 (E, Attribute_Address))
3936 then
3937 Error_Msg_Warn := SPARK_Mode /= On;
3938 Error_Msg_N
3939 ("more than one task with same entry address<<", N);
3940 Error_Msg_N ("\Program_Error [<<", N);
3941 Insert_Action (N,
3942 Make_Raise_Program_Error (Loc,
3943 Reason => PE_Duplicated_Entry_Address));
3944 exit;
3945 end if;
3947 Next_Entity (E);
3948 end loop;
3949 end;
3950 end if;
3951 end if;
3953 -- Some simple constant-propagation: if the expression is a constant
3954 -- string initialized with a literal, share the literal. This avoids
3955 -- a run-time copy.
3957 if Present (E)
3958 and then Is_Entity_Name (E)
3959 and then Ekind (Entity (E)) = E_Constant
3960 and then Base_Type (Etype (E)) = Standard_String
3961 then
3962 declare
3963 Val : constant Node_Id := Constant_Value (Entity (E));
3964 begin
3965 if Present (Val) and then Nkind (Val) = N_String_Literal then
3966 Rewrite (E, New_Copy (Val));
3967 end if;
3968 end;
3969 end if;
3971 -- Another optimization: if the nominal subtype is unconstrained and
3972 -- the expression is a function call that returns an unconstrained
3973 -- type, rewrite the declaration as a renaming of the result of the
3974 -- call. The exceptions below are cases where the copy is expected,
3975 -- either by the back end (Aliased case) or by the semantics, as for
3976 -- initializing controlled types or copying tags for classwide types.
3978 if Present (E)
3979 and then Nkind (E) = N_Explicit_Dereference
3980 and then Nkind (Original_Node (E)) = N_Function_Call
3981 and then not Is_Library_Level_Entity (Id)
3982 and then not Is_Constrained (Underlying_Type (T))
3983 and then not Is_Aliased (Id)
3984 and then not Is_Class_Wide_Type (T)
3985 and then not Is_Controlled (T)
3986 and then not Has_Controlled_Component (Base_Type (T))
3987 and then Expander_Active
3988 then
3989 Rewrite (N,
3990 Make_Object_Renaming_Declaration (Loc,
3991 Defining_Identifier => Id,
3992 Access_Definition => Empty,
3993 Subtype_Mark => New_Occurrence_Of
3994 (Base_Type (Etype (Id)), Loc),
3995 Name => E));
3997 Set_Renamed_Object (Id, E);
3999 -- Force generation of debugging information for the constant and for
4000 -- the renamed function call.
4002 Set_Debug_Info_Needed (Id);
4003 Set_Debug_Info_Needed (Entity (Prefix (E)));
4004 end if;
4006 if Present (Prev_Entity)
4007 and then Is_Frozen (Prev_Entity)
4008 and then not Error_Posted (Id)
4009 then
4010 Error_Msg_N ("full constant declaration appears too late", N);
4011 end if;
4013 Check_Eliminated (Id);
4015 -- Deal with setting In_Private_Part flag if in private part
4017 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4018 then
4019 Set_In_Private_Part (Id);
4020 end if;
4022 -- Check for violation of No_Local_Timing_Events
4024 if Restriction_Check_Required (No_Local_Timing_Events)
4025 and then not Is_Library_Level_Entity (Id)
4026 and then Is_RTE (Etype (Id), RE_Timing_Event)
4027 then
4028 Check_Restriction (No_Local_Timing_Events, N);
4029 end if;
4031 <<Leave>>
4032 -- Initialize the refined state of a variable here because this is a
4033 -- common destination for legal and illegal object declarations.
4035 if Ekind (Id) = E_Variable then
4036 Set_Encapsulating_State (Id, Empty);
4037 end if;
4039 if Has_Aspects (N) then
4040 Analyze_Aspect_Specifications (N, Id);
4041 end if;
4043 Analyze_Dimension (N);
4045 -- Verify whether the object declaration introduces an illegal hidden
4046 -- state within a package subject to a null abstract state.
4048 if Ekind (Id) = E_Variable then
4049 Check_No_Hidden_State (Id);
4050 end if;
4051 end Analyze_Object_Declaration;
4053 ---------------------------
4054 -- Analyze_Others_Choice --
4055 ---------------------------
4057 -- Nothing to do for the others choice node itself, the semantic analysis
4058 -- of the others choice will occur as part of the processing of the parent
4060 procedure Analyze_Others_Choice (N : Node_Id) is
4061 pragma Warnings (Off, N);
4062 begin
4063 null;
4064 end Analyze_Others_Choice;
4066 -------------------------------------------
4067 -- Analyze_Private_Extension_Declaration --
4068 -------------------------------------------
4070 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4071 T : constant Entity_Id := Defining_Identifier (N);
4072 Indic : constant Node_Id := Subtype_Indication (N);
4073 Parent_Type : Entity_Id;
4074 Parent_Base : Entity_Id;
4076 begin
4077 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4079 if Is_Non_Empty_List (Interface_List (N)) then
4080 declare
4081 Intf : Node_Id;
4082 T : Entity_Id;
4084 begin
4085 Intf := First (Interface_List (N));
4086 while Present (Intf) loop
4087 T := Find_Type_Of_Subtype_Indic (Intf);
4089 Diagnose_Interface (Intf, T);
4090 Next (Intf);
4091 end loop;
4092 end;
4093 end if;
4095 Generate_Definition (T);
4097 -- For other than Ada 2012, just enter the name in the current scope
4099 if Ada_Version < Ada_2012 then
4100 Enter_Name (T);
4102 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4103 -- case of private type that completes an incomplete type.
4105 else
4106 declare
4107 Prev : Entity_Id;
4109 begin
4110 Prev := Find_Type_Name (N);
4112 pragma Assert (Prev = T
4113 or else (Ekind (Prev) = E_Incomplete_Type
4114 and then Present (Full_View (Prev))
4115 and then Full_View (Prev) = T));
4116 end;
4117 end if;
4119 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4120 Parent_Base := Base_Type (Parent_Type);
4122 if Parent_Type = Any_Type
4123 or else Etype (Parent_Type) = Any_Type
4124 then
4125 Set_Ekind (T, Ekind (Parent_Type));
4126 Set_Etype (T, Any_Type);
4127 goto Leave;
4129 elsif not Is_Tagged_Type (Parent_Type) then
4130 Error_Msg_N
4131 ("parent of type extension must be a tagged type ", Indic);
4132 goto Leave;
4134 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4135 Error_Msg_N ("premature derivation of incomplete type", Indic);
4136 goto Leave;
4138 elsif Is_Concurrent_Type (Parent_Type) then
4139 Error_Msg_N
4140 ("parent type of a private extension cannot be "
4141 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4143 Set_Etype (T, Any_Type);
4144 Set_Ekind (T, E_Limited_Private_Type);
4145 Set_Private_Dependents (T, New_Elmt_List);
4146 Set_Error_Posted (T);
4147 goto Leave;
4148 end if;
4150 -- Perhaps the parent type should be changed to the class-wide type's
4151 -- specific type in this case to prevent cascading errors ???
4153 if Is_Class_Wide_Type (Parent_Type) then
4154 Error_Msg_N
4155 ("parent of type extension must not be a class-wide type", Indic);
4156 goto Leave;
4157 end if;
4159 if (not Is_Package_Or_Generic_Package (Current_Scope)
4160 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4161 or else In_Private_Part (Current_Scope)
4163 then
4164 Error_Msg_N ("invalid context for private extension", N);
4165 end if;
4167 -- Set common attributes
4169 Set_Is_Pure (T, Is_Pure (Current_Scope));
4170 Set_Scope (T, Current_Scope);
4171 Set_Ekind (T, E_Record_Type_With_Private);
4172 Init_Size_Align (T);
4174 Set_Etype (T, Parent_Base);
4175 Set_Has_Task (T, Has_Task (Parent_Base));
4177 Set_Convention (T, Convention (Parent_Type));
4178 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4179 Set_Is_First_Subtype (T);
4180 Make_Class_Wide_Type (T);
4182 if Unknown_Discriminants_Present (N) then
4183 Set_Discriminant_Constraint (T, No_Elist);
4184 end if;
4186 Build_Derived_Record_Type (N, Parent_Type, T);
4188 -- Propagate inherited invariant information. The new type has
4189 -- invariants, if the parent type has inheritable invariants,
4190 -- and these invariants can in turn be inherited.
4192 if Has_Inheritable_Invariants (Parent_Type) then
4193 Set_Has_Inheritable_Invariants (T);
4194 Set_Has_Invariants (T);
4195 end if;
4197 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4198 -- synchronized formal derived type.
4200 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4201 Set_Is_Limited_Record (T);
4203 -- Formal derived type case
4205 if Is_Generic_Type (T) then
4207 -- The parent must be a tagged limited type or a synchronized
4208 -- interface.
4210 if (not Is_Tagged_Type (Parent_Type)
4211 or else not Is_Limited_Type (Parent_Type))
4212 and then
4213 (not Is_Interface (Parent_Type)
4214 or else not Is_Synchronized_Interface (Parent_Type))
4215 then
4216 Error_Msg_NE ("parent type of & must be tagged limited " &
4217 "or synchronized", N, T);
4218 end if;
4220 -- The progenitors (if any) must be limited or synchronized
4221 -- interfaces.
4223 if Present (Interfaces (T)) then
4224 declare
4225 Iface : Entity_Id;
4226 Iface_Elmt : Elmt_Id;
4228 begin
4229 Iface_Elmt := First_Elmt (Interfaces (T));
4230 while Present (Iface_Elmt) loop
4231 Iface := Node (Iface_Elmt);
4233 if not Is_Limited_Interface (Iface)
4234 and then not Is_Synchronized_Interface (Iface)
4235 then
4236 Error_Msg_NE ("progenitor & must be limited " &
4237 "or synchronized", N, Iface);
4238 end if;
4240 Next_Elmt (Iface_Elmt);
4241 end loop;
4242 end;
4243 end if;
4245 -- Regular derived extension, the parent must be a limited or
4246 -- synchronized interface.
4248 else
4249 if not Is_Interface (Parent_Type)
4250 or else (not Is_Limited_Interface (Parent_Type)
4251 and then not Is_Synchronized_Interface (Parent_Type))
4252 then
4253 Error_Msg_NE
4254 ("parent type of & must be limited interface", N, T);
4255 end if;
4256 end if;
4258 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4259 -- extension with a synchronized parent must be explicitly declared
4260 -- synchronized, because the full view will be a synchronized type.
4261 -- This must be checked before the check for limited types below,
4262 -- to ensure that types declared limited are not allowed to extend
4263 -- synchronized interfaces.
4265 elsif Is_Interface (Parent_Type)
4266 and then Is_Synchronized_Interface (Parent_Type)
4267 and then not Synchronized_Present (N)
4268 then
4269 Error_Msg_NE
4270 ("private extension of& must be explicitly synchronized",
4271 N, Parent_Type);
4273 elsif Limited_Present (N) then
4274 Set_Is_Limited_Record (T);
4276 if not Is_Limited_Type (Parent_Type)
4277 and then
4278 (not Is_Interface (Parent_Type)
4279 or else not Is_Limited_Interface (Parent_Type))
4280 then
4281 Error_Msg_NE ("parent type& of limited extension must be limited",
4282 N, Parent_Type);
4283 end if;
4284 end if;
4286 <<Leave>>
4287 if Has_Aspects (N) then
4288 Analyze_Aspect_Specifications (N, T);
4289 end if;
4290 end Analyze_Private_Extension_Declaration;
4292 ---------------------------------
4293 -- Analyze_Subtype_Declaration --
4294 ---------------------------------
4296 procedure Analyze_Subtype_Declaration
4297 (N : Node_Id;
4298 Skip : Boolean := False)
4300 Id : constant Entity_Id := Defining_Identifier (N);
4301 T : Entity_Id;
4302 R_Checks : Check_Result;
4304 begin
4305 Generate_Definition (Id);
4306 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4307 Init_Size_Align (Id);
4309 -- The following guard condition on Enter_Name is to handle cases where
4310 -- the defining identifier has already been entered into the scope but
4311 -- the declaration as a whole needs to be analyzed.
4313 -- This case in particular happens for derived enumeration types. The
4314 -- derived enumeration type is processed as an inserted enumeration type
4315 -- declaration followed by a rewritten subtype declaration. The defining
4316 -- identifier, however, is entered into the name scope very early in the
4317 -- processing of the original type declaration and therefore needs to be
4318 -- avoided here, when the created subtype declaration is analyzed. (See
4319 -- Build_Derived_Types)
4321 -- This also happens when the full view of a private type is derived
4322 -- type with constraints. In this case the entity has been introduced
4323 -- in the private declaration.
4325 -- Finally this happens in some complex cases when validity checks are
4326 -- enabled, where the same subtype declaration may be analyzed twice.
4327 -- This can happen if the subtype is created by the pre-analysis of
4328 -- an attribute tht gives the range of a loop statement, and the loop
4329 -- itself appears within an if_statement that will be rewritten during
4330 -- expansion.
4332 if Skip
4333 or else (Present (Etype (Id))
4334 and then (Is_Private_Type (Etype (Id))
4335 or else Is_Task_Type (Etype (Id))
4336 or else Is_Rewrite_Substitution (N)))
4337 then
4338 null;
4340 elsif Current_Entity (Id) = Id then
4341 null;
4343 else
4344 Enter_Name (Id);
4345 end if;
4347 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4349 -- Class-wide equivalent types of records with unknown discriminants
4350 -- involve the generation of an itype which serves as the private view
4351 -- of a constrained record subtype. In such cases the base type of the
4352 -- current subtype we are processing is the private itype. Use the full
4353 -- of the private itype when decorating various attributes.
4355 if Is_Itype (T)
4356 and then Is_Private_Type (T)
4357 and then Present (Full_View (T))
4358 then
4359 T := Full_View (T);
4360 end if;
4362 -- Inherit common attributes
4364 Set_Is_Volatile (Id, Is_Volatile (T));
4365 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4366 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4367 Set_Convention (Id, Convention (T));
4369 -- If ancestor has predicates then so does the subtype, and in addition
4370 -- we must delay the freeze to properly arrange predicate inheritance.
4372 -- The Ancestor_Type test is a big kludge, there seem to be cases in
4373 -- which T = ID, so the above tests and assignments do nothing???
4375 if Has_Predicates (T)
4376 or else (Present (Ancestor_Subtype (T))
4377 and then Has_Predicates (Ancestor_Subtype (T)))
4378 then
4379 Set_Has_Predicates (Id);
4380 Set_Has_Delayed_Freeze (Id);
4381 end if;
4383 -- Subtype of Boolean cannot have a constraint in SPARK
4385 if Is_Boolean_Type (T)
4386 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4387 then
4388 Check_SPARK_Restriction
4389 ("subtype of Boolean cannot have constraint", N);
4390 end if;
4392 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4393 declare
4394 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4395 One_Cstr : Node_Id;
4396 Low : Node_Id;
4397 High : Node_Id;
4399 begin
4400 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4401 One_Cstr := First (Constraints (Cstr));
4402 while Present (One_Cstr) loop
4404 -- Index or discriminant constraint in SPARK must be a
4405 -- subtype mark.
4407 if not
4408 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4409 then
4410 Check_SPARK_Restriction
4411 ("subtype mark required", One_Cstr);
4413 -- String subtype must have a lower bound of 1 in SPARK.
4414 -- Note that we do not need to test for the non-static case
4415 -- here, since that was already taken care of in
4416 -- Process_Range_Expr_In_Decl.
4418 elsif Base_Type (T) = Standard_String then
4419 Get_Index_Bounds (One_Cstr, Low, High);
4421 if Is_OK_Static_Expression (Low)
4422 and then Expr_Value (Low) /= 1
4423 then
4424 Check_SPARK_Restriction
4425 ("String subtype must have lower bound of 1", N);
4426 end if;
4427 end if;
4429 Next (One_Cstr);
4430 end loop;
4431 end if;
4432 end;
4433 end if;
4435 -- In the case where there is no constraint given in the subtype
4436 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4437 -- semantic attributes must be established here.
4439 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4440 Set_Etype (Id, Base_Type (T));
4442 -- Subtype of unconstrained array without constraint is not allowed
4443 -- in SPARK.
4445 if Is_Array_Type (T) and then not Is_Constrained (T) then
4446 Check_SPARK_Restriction
4447 ("subtype of unconstrained array must have constraint", N);
4448 end if;
4450 case Ekind (T) is
4451 when Array_Kind =>
4452 Set_Ekind (Id, E_Array_Subtype);
4453 Copy_Array_Subtype_Attributes (Id, T);
4455 when Decimal_Fixed_Point_Kind =>
4456 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4457 Set_Digits_Value (Id, Digits_Value (T));
4458 Set_Delta_Value (Id, Delta_Value (T));
4459 Set_Scale_Value (Id, Scale_Value (T));
4460 Set_Small_Value (Id, Small_Value (T));
4461 Set_Scalar_Range (Id, Scalar_Range (T));
4462 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4463 Set_Is_Constrained (Id, Is_Constrained (T));
4464 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4465 Set_RM_Size (Id, RM_Size (T));
4467 when Enumeration_Kind =>
4468 Set_Ekind (Id, E_Enumeration_Subtype);
4469 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4470 Set_Scalar_Range (Id, Scalar_Range (T));
4471 Set_Is_Character_Type (Id, Is_Character_Type (T));
4472 Set_Is_Constrained (Id, Is_Constrained (T));
4473 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4474 Set_RM_Size (Id, RM_Size (T));
4476 when Ordinary_Fixed_Point_Kind =>
4477 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4478 Set_Scalar_Range (Id, Scalar_Range (T));
4479 Set_Small_Value (Id, Small_Value (T));
4480 Set_Delta_Value (Id, Delta_Value (T));
4481 Set_Is_Constrained (Id, Is_Constrained (T));
4482 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4483 Set_RM_Size (Id, RM_Size (T));
4485 when Float_Kind =>
4486 Set_Ekind (Id, E_Floating_Point_Subtype);
4487 Set_Scalar_Range (Id, Scalar_Range (T));
4488 Set_Digits_Value (Id, Digits_Value (T));
4489 Set_Is_Constrained (Id, Is_Constrained (T));
4491 when Signed_Integer_Kind =>
4492 Set_Ekind (Id, E_Signed_Integer_Subtype);
4493 Set_Scalar_Range (Id, Scalar_Range (T));
4494 Set_Is_Constrained (Id, Is_Constrained (T));
4495 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4496 Set_RM_Size (Id, RM_Size (T));
4498 when Modular_Integer_Kind =>
4499 Set_Ekind (Id, E_Modular_Integer_Subtype);
4500 Set_Scalar_Range (Id, Scalar_Range (T));
4501 Set_Is_Constrained (Id, Is_Constrained (T));
4502 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4503 Set_RM_Size (Id, RM_Size (T));
4505 when Class_Wide_Kind =>
4506 Set_Ekind (Id, E_Class_Wide_Subtype);
4507 Set_First_Entity (Id, First_Entity (T));
4508 Set_Last_Entity (Id, Last_Entity (T));
4509 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4510 Set_Cloned_Subtype (Id, T);
4511 Set_Is_Tagged_Type (Id, True);
4512 Set_Has_Unknown_Discriminants
4513 (Id, True);
4515 if Ekind (T) = E_Class_Wide_Subtype then
4516 Set_Equivalent_Type (Id, Equivalent_Type (T));
4517 end if;
4519 when E_Record_Type | E_Record_Subtype =>
4520 Set_Ekind (Id, E_Record_Subtype);
4522 if Ekind (T) = E_Record_Subtype
4523 and then Present (Cloned_Subtype (T))
4524 then
4525 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4526 else
4527 Set_Cloned_Subtype (Id, T);
4528 end if;
4530 Set_First_Entity (Id, First_Entity (T));
4531 Set_Last_Entity (Id, Last_Entity (T));
4532 Set_Has_Discriminants (Id, Has_Discriminants (T));
4533 Set_Is_Constrained (Id, Is_Constrained (T));
4534 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4535 Set_Has_Implicit_Dereference
4536 (Id, Has_Implicit_Dereference (T));
4537 Set_Has_Unknown_Discriminants
4538 (Id, Has_Unknown_Discriminants (T));
4540 if Has_Discriminants (T) then
4541 Set_Discriminant_Constraint
4542 (Id, Discriminant_Constraint (T));
4543 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4545 elsif Has_Unknown_Discriminants (Id) then
4546 Set_Discriminant_Constraint (Id, No_Elist);
4547 end if;
4549 if Is_Tagged_Type (T) then
4550 Set_Is_Tagged_Type (Id);
4551 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4552 Set_Direct_Primitive_Operations
4553 (Id, Direct_Primitive_Operations (T));
4554 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4556 if Is_Interface (T) then
4557 Set_Is_Interface (Id);
4558 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4559 end if;
4560 end if;
4562 when Private_Kind =>
4563 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4564 Set_Has_Discriminants (Id, Has_Discriminants (T));
4565 Set_Is_Constrained (Id, Is_Constrained (T));
4566 Set_First_Entity (Id, First_Entity (T));
4567 Set_Last_Entity (Id, Last_Entity (T));
4568 Set_Private_Dependents (Id, New_Elmt_List);
4569 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4570 Set_Has_Implicit_Dereference
4571 (Id, Has_Implicit_Dereference (T));
4572 Set_Has_Unknown_Discriminants
4573 (Id, Has_Unknown_Discriminants (T));
4574 Set_Known_To_Have_Preelab_Init
4575 (Id, Known_To_Have_Preelab_Init (T));
4577 if Is_Tagged_Type (T) then
4578 Set_Is_Tagged_Type (Id);
4579 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4580 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4581 Set_Direct_Primitive_Operations (Id,
4582 Direct_Primitive_Operations (T));
4583 end if;
4585 -- In general the attributes of the subtype of a private type
4586 -- are the attributes of the partial view of parent. However,
4587 -- the full view may be a discriminated type, and the subtype
4588 -- must share the discriminant constraint to generate correct
4589 -- calls to initialization procedures.
4591 if Has_Discriminants (T) then
4592 Set_Discriminant_Constraint
4593 (Id, Discriminant_Constraint (T));
4594 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4596 elsif Present (Full_View (T))
4597 and then Has_Discriminants (Full_View (T))
4598 then
4599 Set_Discriminant_Constraint
4600 (Id, Discriminant_Constraint (Full_View (T)));
4601 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4603 -- This would seem semantically correct, but apparently
4604 -- generates spurious errors about missing components ???
4606 -- Set_Has_Discriminants (Id);
4607 end if;
4609 Prepare_Private_Subtype_Completion (Id, N);
4611 -- If this is the subtype of a constrained private type with
4612 -- discriminants that has got a full view and we also have
4613 -- built a completion just above, show that the completion
4614 -- is a clone of the full view to the back-end.
4616 if Has_Discriminants (T)
4617 and then not Has_Unknown_Discriminants (T)
4618 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4619 and then Present (Full_View (T))
4620 and then Present (Full_View (Id))
4621 then
4622 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4623 end if;
4625 when Access_Kind =>
4626 Set_Ekind (Id, E_Access_Subtype);
4627 Set_Is_Constrained (Id, Is_Constrained (T));
4628 Set_Is_Access_Constant
4629 (Id, Is_Access_Constant (T));
4630 Set_Directly_Designated_Type
4631 (Id, Designated_Type (T));
4632 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4634 -- A Pure library_item must not contain the declaration of a
4635 -- named access type, except within a subprogram, generic
4636 -- subprogram, task unit, or protected unit, or if it has
4637 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4639 if Comes_From_Source (Id)
4640 and then In_Pure_Unit
4641 and then not In_Subprogram_Task_Protected_Unit
4642 and then not No_Pool_Assigned (Id)
4643 then
4644 Error_Msg_N
4645 ("named access types not allowed in pure unit", N);
4646 end if;
4648 when Concurrent_Kind =>
4649 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4650 Set_Corresponding_Record_Type (Id,
4651 Corresponding_Record_Type (T));
4652 Set_First_Entity (Id, First_Entity (T));
4653 Set_First_Private_Entity (Id, First_Private_Entity (T));
4654 Set_Has_Discriminants (Id, Has_Discriminants (T));
4655 Set_Is_Constrained (Id, Is_Constrained (T));
4656 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4657 Set_Last_Entity (Id, Last_Entity (T));
4659 if Has_Discriminants (T) then
4660 Set_Discriminant_Constraint (Id,
4661 Discriminant_Constraint (T));
4662 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4663 end if;
4665 when E_Incomplete_Type =>
4666 if Ada_Version >= Ada_2005 then
4668 -- In Ada 2005 an incomplete type can be explicitly tagged:
4669 -- propagate indication.
4671 Set_Ekind (Id, E_Incomplete_Subtype);
4672 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4673 Set_Private_Dependents (Id, New_Elmt_List);
4675 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4676 -- incomplete type visible through a limited with clause.
4678 if From_Limited_With (T)
4679 and then Present (Non_Limited_View (T))
4680 then
4681 Set_From_Limited_With (Id);
4682 Set_Non_Limited_View (Id, Non_Limited_View (T));
4684 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4685 -- to the private dependents of the original incomplete
4686 -- type for future transformation.
4688 else
4689 Append_Elmt (Id, Private_Dependents (T));
4690 end if;
4692 -- If the subtype name denotes an incomplete type an error
4693 -- was already reported by Process_Subtype.
4695 else
4696 Set_Etype (Id, Any_Type);
4697 end if;
4699 when others =>
4700 raise Program_Error;
4701 end case;
4702 end if;
4704 if Etype (Id) = Any_Type then
4705 goto Leave;
4706 end if;
4708 -- Some common processing on all types
4710 Set_Size_Info (Id, T);
4711 Set_First_Rep_Item (Id, First_Rep_Item (T));
4713 -- If the parent type is a generic actual, so is the subtype. This may
4714 -- happen in a nested instance. Why Comes_From_Source test???
4716 if not Comes_From_Source (N) then
4717 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4718 end if;
4720 T := Etype (Id);
4722 Set_Is_Immediately_Visible (Id, True);
4723 Set_Depends_On_Private (Id, Has_Private_Component (T));
4724 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4726 if Is_Interface (T) then
4727 Set_Is_Interface (Id);
4728 end if;
4730 if Present (Generic_Parent_Type (N))
4731 and then
4732 (Nkind (Parent (Generic_Parent_Type (N))) /=
4733 N_Formal_Type_Declaration
4734 or else Nkind
4735 (Formal_Type_Definition (Parent (Generic_Parent_Type (N)))) /=
4736 N_Formal_Private_Type_Definition)
4737 then
4738 if Is_Tagged_Type (Id) then
4740 -- If this is a generic actual subtype for a synchronized type,
4741 -- the primitive operations are those of the corresponding record
4742 -- for which there is a separate subtype declaration.
4744 if Is_Concurrent_Type (Id) then
4745 null;
4746 elsif Is_Class_Wide_Type (Id) then
4747 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4748 else
4749 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4750 end if;
4752 elsif Scope (Etype (Id)) /= Standard_Standard then
4753 Derive_Subprograms (Generic_Parent_Type (N), Id);
4754 end if;
4755 end if;
4757 if Is_Private_Type (T) and then Present (Full_View (T)) then
4758 Conditional_Delay (Id, Full_View (T));
4760 -- The subtypes of components or subcomponents of protected types
4761 -- do not need freeze nodes, which would otherwise appear in the
4762 -- wrong scope (before the freeze node for the protected type). The
4763 -- proper subtypes are those of the subcomponents of the corresponding
4764 -- record.
4766 elsif Ekind (Scope (Id)) /= E_Protected_Type
4767 and then Present (Scope (Scope (Id))) -- error defense
4768 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4769 then
4770 Conditional_Delay (Id, T);
4771 end if;
4773 -- Check that Constraint_Error is raised for a scalar subtype indication
4774 -- when the lower or upper bound of a non-null range lies outside the
4775 -- range of the type mark.
4777 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4778 if Is_Scalar_Type (Etype (Id))
4779 and then Scalar_Range (Id) /=
4780 Scalar_Range (Etype (Subtype_Mark
4781 (Subtype_Indication (N))))
4782 then
4783 Apply_Range_Check
4784 (Scalar_Range (Id),
4785 Etype (Subtype_Mark (Subtype_Indication (N))));
4787 -- In the array case, check compatibility for each index
4789 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
4790 then
4791 -- This really should be a subprogram that finds the indications
4792 -- to check???
4794 declare
4795 Subt_Index : Node_Id := First_Index (Id);
4796 Target_Index : Node_Id :=
4797 First_Index (Etype
4798 (Subtype_Mark (Subtype_Indication (N))));
4799 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4801 begin
4802 while Present (Subt_Index) loop
4803 if ((Nkind (Subt_Index) = N_Identifier
4804 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
4805 or else Nkind (Subt_Index) = N_Subtype_Indication)
4806 and then
4807 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
4808 then
4809 declare
4810 Target_Typ : constant Entity_Id :=
4811 Etype (Target_Index);
4812 begin
4813 R_Checks :=
4814 Get_Range_Checks
4815 (Scalar_Range (Etype (Subt_Index)),
4816 Target_Typ,
4817 Etype (Subt_Index),
4818 Defining_Identifier (N));
4820 -- Reset Has_Dynamic_Range_Check on the subtype to
4821 -- prevent elision of the index check due to a dynamic
4822 -- check generated for a preceding index (needed since
4823 -- Insert_Range_Checks tries to avoid generating
4824 -- redundant checks on a given declaration).
4826 Set_Has_Dynamic_Range_Check (N, False);
4828 Insert_Range_Checks
4829 (R_Checks,
4831 Target_Typ,
4832 Sloc (Defining_Identifier (N)));
4834 -- Record whether this index involved a dynamic check
4836 Has_Dyn_Chk :=
4837 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
4838 end;
4839 end if;
4841 Next_Index (Subt_Index);
4842 Next_Index (Target_Index);
4843 end loop;
4845 -- Finally, mark whether the subtype involves dynamic checks
4847 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
4848 end;
4849 end if;
4850 end if;
4852 -- Make sure that generic actual types are properly frozen. The subtype
4853 -- is marked as a generic actual type when the enclosing instance is
4854 -- analyzed, so here we identify the subtype from the tree structure.
4856 if Expander_Active
4857 and then Is_Generic_Actual_Type (Id)
4858 and then In_Instance
4859 and then not Comes_From_Source (N)
4860 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
4861 and then Is_Frozen (T)
4862 then
4863 Freeze_Before (N, Id);
4864 end if;
4866 Set_Optimize_Alignment_Flags (Id);
4867 Check_Eliminated (Id);
4869 <<Leave>>
4870 if Has_Aspects (N) then
4871 Analyze_Aspect_Specifications (N, Id);
4872 end if;
4874 Analyze_Dimension (N);
4875 end Analyze_Subtype_Declaration;
4877 --------------------------------
4878 -- Analyze_Subtype_Indication --
4879 --------------------------------
4881 procedure Analyze_Subtype_Indication (N : Node_Id) is
4882 T : constant Entity_Id := Subtype_Mark (N);
4883 R : constant Node_Id := Range_Expression (Constraint (N));
4885 begin
4886 Analyze (T);
4888 if R /= Error then
4889 Analyze (R);
4890 Set_Etype (N, Etype (R));
4891 Resolve (R, Entity (T));
4892 else
4893 Set_Error_Posted (R);
4894 Set_Error_Posted (T);
4895 end if;
4896 end Analyze_Subtype_Indication;
4898 --------------------------
4899 -- Analyze_Variant_Part --
4900 --------------------------
4902 procedure Analyze_Variant_Part (N : Node_Id) is
4903 Discr_Name : Node_Id;
4904 Discr_Type : Entity_Id;
4906 procedure Process_Variant (A : Node_Id);
4907 -- Analyze declarations for a single variant
4909 package Analyze_Variant_Choices is
4910 new Generic_Analyze_Choices (Process_Variant);
4911 use Analyze_Variant_Choices;
4913 ---------------------
4914 -- Process_Variant --
4915 ---------------------
4917 procedure Process_Variant (A : Node_Id) is
4918 CL : constant Node_Id := Component_List (A);
4919 begin
4920 if not Null_Present (CL) then
4921 Analyze_Declarations (Component_Items (CL));
4923 if Present (Variant_Part (CL)) then
4924 Analyze (Variant_Part (CL));
4925 end if;
4926 end if;
4927 end Process_Variant;
4929 -- Start of processing for Analyze_Variant_Part
4931 begin
4932 Discr_Name := Name (N);
4933 Analyze (Discr_Name);
4935 -- If Discr_Name bad, get out (prevent cascaded errors)
4937 if Etype (Discr_Name) = Any_Type then
4938 return;
4939 end if;
4941 -- Check invalid discriminant in variant part
4943 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
4944 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
4945 end if;
4947 Discr_Type := Etype (Entity (Discr_Name));
4949 if not Is_Discrete_Type (Discr_Type) then
4950 Error_Msg_N
4951 ("discriminant in a variant part must be of a discrete type",
4952 Name (N));
4953 return;
4954 end if;
4956 -- Now analyze the choices, which also analyzes the declarations that
4957 -- are associated with each choice.
4959 Analyze_Choices (Variants (N), Discr_Type);
4961 -- Note: we used to instantiate and call Check_Choices here to check
4962 -- that the choices covered the discriminant, but it's too early to do
4963 -- that because of statically predicated subtypes, whose analysis may
4964 -- be deferred to their freeze point which may be as late as the freeze
4965 -- point of the containing record. So this call is now to be found in
4966 -- Freeze_Record_Declaration.
4968 end Analyze_Variant_Part;
4970 ----------------------------
4971 -- Array_Type_Declaration --
4972 ----------------------------
4974 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
4975 Component_Def : constant Node_Id := Component_Definition (Def);
4976 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
4977 Element_Type : Entity_Id;
4978 Implicit_Base : Entity_Id;
4979 Index : Node_Id;
4980 Related_Id : Entity_Id := Empty;
4981 Nb_Index : Nat;
4982 P : constant Node_Id := Parent (Def);
4983 Priv : Entity_Id;
4985 begin
4986 if Nkind (Def) = N_Constrained_Array_Definition then
4987 Index := First (Discrete_Subtype_Definitions (Def));
4988 else
4989 Index := First (Subtype_Marks (Def));
4990 end if;
4992 -- Find proper names for the implicit types which may be public. In case
4993 -- of anonymous arrays we use the name of the first object of that type
4994 -- as prefix.
4996 if No (T) then
4997 Related_Id := Defining_Identifier (P);
4998 else
4999 Related_Id := T;
5000 end if;
5002 Nb_Index := 1;
5003 while Present (Index) loop
5004 Analyze (Index);
5006 -- Test for odd case of trying to index a type by the type itself
5008 if Is_Entity_Name (Index) and then Entity (Index) = T then
5009 Error_Msg_N ("type& cannot be indexed by itself", Index);
5010 Set_Entity (Index, Standard_Boolean);
5011 Set_Etype (Index, Standard_Boolean);
5012 end if;
5014 -- Check SPARK restriction requiring a subtype mark
5016 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5017 Check_SPARK_Restriction ("subtype mark required", Index);
5018 end if;
5020 -- Add a subtype declaration for each index of private array type
5021 -- declaration whose etype is also private. For example:
5023 -- package Pkg is
5024 -- type Index is private;
5025 -- private
5026 -- type Table is array (Index) of ...
5027 -- end;
5029 -- This is currently required by the expander for the internally
5030 -- generated equality subprogram of records with variant parts in
5031 -- which the etype of some component is such private type.
5033 if Ekind (Current_Scope) = E_Package
5034 and then In_Private_Part (Current_Scope)
5035 and then Has_Private_Declaration (Etype (Index))
5036 then
5037 declare
5038 Loc : constant Source_Ptr := Sloc (Def);
5039 New_E : Entity_Id;
5040 Decl : Entity_Id;
5042 begin
5043 New_E := Make_Temporary (Loc, 'T');
5044 Set_Is_Internal (New_E);
5046 Decl :=
5047 Make_Subtype_Declaration (Loc,
5048 Defining_Identifier => New_E,
5049 Subtype_Indication =>
5050 New_Occurrence_Of (Etype (Index), Loc));
5052 Insert_Before (Parent (Def), Decl);
5053 Analyze (Decl);
5054 Set_Etype (Index, New_E);
5056 -- If the index is a range the Entity attribute is not
5057 -- available. Example:
5059 -- package Pkg is
5060 -- type T is private;
5061 -- private
5062 -- type T is new Natural;
5063 -- Table : array (T(1) .. T(10)) of Boolean;
5064 -- end Pkg;
5066 if Nkind (Index) /= N_Range then
5067 Set_Entity (Index, New_E);
5068 end if;
5069 end;
5070 end if;
5072 Make_Index (Index, P, Related_Id, Nb_Index);
5074 -- Check error of subtype with predicate for index type
5076 Bad_Predicated_Subtype_Use
5077 ("subtype& has predicate, not allowed as index subtype",
5078 Index, Etype (Index));
5080 -- Move to next index
5082 Next_Index (Index);
5083 Nb_Index := Nb_Index + 1;
5084 end loop;
5086 -- Process subtype indication if one is present
5088 if Present (Component_Typ) then
5089 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5091 Set_Etype (Component_Typ, Element_Type);
5093 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5094 Check_SPARK_Restriction ("subtype mark required", Component_Typ);
5095 end if;
5097 -- Ada 2005 (AI-230): Access Definition case
5099 else pragma Assert (Present (Access_Definition (Component_Def)));
5101 -- Indicate that the anonymous access type is created by the
5102 -- array type declaration.
5104 Element_Type := Access_Definition
5105 (Related_Nod => P,
5106 N => Access_Definition (Component_Def));
5107 Set_Is_Local_Anonymous_Access (Element_Type);
5109 -- Propagate the parent. This field is needed if we have to generate
5110 -- the master_id associated with an anonymous access to task type
5111 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5113 Set_Parent (Element_Type, Parent (T));
5115 -- Ada 2005 (AI-230): In case of components that are anonymous access
5116 -- types the level of accessibility depends on the enclosing type
5117 -- declaration
5119 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5121 -- Ada 2005 (AI-254)
5123 declare
5124 CD : constant Node_Id :=
5125 Access_To_Subprogram_Definition
5126 (Access_Definition (Component_Def));
5127 begin
5128 if Present (CD) and then Protected_Present (CD) then
5129 Element_Type :=
5130 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5131 end if;
5132 end;
5133 end if;
5135 -- Constrained array case
5137 if No (T) then
5138 T := Create_Itype (E_Void, P, Related_Id, 'T');
5139 end if;
5141 if Nkind (Def) = N_Constrained_Array_Definition then
5143 -- Establish Implicit_Base as unconstrained base type
5145 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5147 Set_Etype (Implicit_Base, Implicit_Base);
5148 Set_Scope (Implicit_Base, Current_Scope);
5149 Set_Has_Delayed_Freeze (Implicit_Base);
5151 -- The constrained array type is a subtype of the unconstrained one
5153 Set_Ekind (T, E_Array_Subtype);
5154 Init_Size_Align (T);
5155 Set_Etype (T, Implicit_Base);
5156 Set_Scope (T, Current_Scope);
5157 Set_Is_Constrained (T, True);
5158 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5159 Set_Has_Delayed_Freeze (T);
5161 -- Complete setup of implicit base type
5163 Set_First_Index (Implicit_Base, First_Index (T));
5164 Set_Component_Type (Implicit_Base, Element_Type);
5165 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5166 Set_Component_Size (Implicit_Base, Uint_0);
5167 Set_Packed_Array_Type (Implicit_Base, Empty);
5168 Set_Has_Controlled_Component
5169 (Implicit_Base, Has_Controlled_Component
5170 (Element_Type)
5171 or else Is_Controlled
5172 (Element_Type));
5173 Set_Finalize_Storage_Only
5174 (Implicit_Base, Finalize_Storage_Only
5175 (Element_Type));
5177 -- Unconstrained array case
5179 else
5180 Set_Ekind (T, E_Array_Type);
5181 Init_Size_Align (T);
5182 Set_Etype (T, T);
5183 Set_Scope (T, Current_Scope);
5184 Set_Component_Size (T, Uint_0);
5185 Set_Is_Constrained (T, False);
5186 Set_First_Index (T, First (Subtype_Marks (Def)));
5187 Set_Has_Delayed_Freeze (T, True);
5188 Set_Has_Task (T, Has_Task (Element_Type));
5189 Set_Has_Controlled_Component (T, Has_Controlled_Component
5190 (Element_Type)
5191 or else
5192 Is_Controlled (Element_Type));
5193 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5194 (Element_Type));
5195 end if;
5197 -- Common attributes for both cases
5199 Set_Component_Type (Base_Type (T), Element_Type);
5200 Set_Packed_Array_Type (T, Empty);
5202 if Aliased_Present (Component_Definition (Def)) then
5203 Check_SPARK_Restriction
5204 ("aliased is not allowed", Component_Definition (Def));
5205 Set_Has_Aliased_Components (Etype (T));
5206 end if;
5208 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5209 -- array type to ensure that objects of this type are initialized.
5211 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5212 Set_Can_Never_Be_Null (T);
5214 if Null_Exclusion_Present (Component_Definition (Def))
5216 -- No need to check itypes because in their case this check was
5217 -- done at their point of creation
5219 and then not Is_Itype (Element_Type)
5220 then
5221 Error_Msg_N
5222 ("`NOT NULL` not allowed (null already excluded)",
5223 Subtype_Indication (Component_Definition (Def)));
5224 end if;
5225 end if;
5227 Priv := Private_Component (Element_Type);
5229 if Present (Priv) then
5231 -- Check for circular definitions
5233 if Priv = Any_Type then
5234 Set_Component_Type (Etype (T), Any_Type);
5236 -- There is a gap in the visibility of operations on the composite
5237 -- type only if the component type is defined in a different scope.
5239 elsif Scope (Priv) = Current_Scope then
5240 null;
5242 elsif Is_Limited_Type (Priv) then
5243 Set_Is_Limited_Composite (Etype (T));
5244 Set_Is_Limited_Composite (T);
5245 else
5246 Set_Is_Private_Composite (Etype (T));
5247 Set_Is_Private_Composite (T);
5248 end if;
5249 end if;
5251 -- A syntax error in the declaration itself may lead to an empty index
5252 -- list, in which case do a minimal patch.
5254 if No (First_Index (T)) then
5255 Error_Msg_N ("missing index definition in array type declaration", T);
5257 declare
5258 Indexes : constant List_Id :=
5259 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5260 begin
5261 Set_Discrete_Subtype_Definitions (Def, Indexes);
5262 Set_First_Index (T, First (Indexes));
5263 return;
5264 end;
5265 end if;
5267 -- Create a concatenation operator for the new type. Internal array
5268 -- types created for packed entities do not need such, they are
5269 -- compatible with the user-defined type.
5271 if Number_Dimensions (T) = 1 and then not Is_Packed_Array_Type (T) then
5272 New_Concatenation_Op (T);
5273 end if;
5275 -- In the case of an unconstrained array the parser has already verified
5276 -- that all the indexes are unconstrained but we still need to make sure
5277 -- that the element type is constrained.
5279 if Is_Indefinite_Subtype (Element_Type) then
5280 Error_Msg_N
5281 ("unconstrained element type in array declaration",
5282 Subtype_Indication (Component_Def));
5284 elsif Is_Abstract_Type (Element_Type) then
5285 Error_Msg_N
5286 ("the type of a component cannot be abstract",
5287 Subtype_Indication (Component_Def));
5288 end if;
5290 -- There may be an invariant declared for the component type, but
5291 -- the construction of the component invariant checking procedure
5292 -- takes place during expansion.
5293 end Array_Type_Declaration;
5295 ------------------------------------------------------
5296 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5297 ------------------------------------------------------
5299 function Replace_Anonymous_Access_To_Protected_Subprogram
5300 (N : Node_Id) return Entity_Id
5302 Loc : constant Source_Ptr := Sloc (N);
5304 Curr_Scope : constant Scope_Stack_Entry :=
5305 Scope_Stack.Table (Scope_Stack.Last);
5307 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5309 Acc : Node_Id;
5310 -- Access definition in declaration
5312 Comp : Node_Id;
5313 -- Object definition or formal definition with an access definition
5315 Decl : Node_Id;
5316 -- Declaration of anonymous access to subprogram type
5318 Spec : Node_Id;
5319 -- Original specification in access to subprogram
5321 P : Node_Id;
5323 begin
5324 Set_Is_Internal (Anon);
5326 case Nkind (N) is
5327 when N_Component_Declaration |
5328 N_Unconstrained_Array_Definition |
5329 N_Constrained_Array_Definition =>
5330 Comp := Component_Definition (N);
5331 Acc := Access_Definition (Comp);
5333 when N_Discriminant_Specification =>
5334 Comp := Discriminant_Type (N);
5335 Acc := Comp;
5337 when N_Parameter_Specification =>
5338 Comp := Parameter_Type (N);
5339 Acc := Comp;
5341 when N_Access_Function_Definition =>
5342 Comp := Result_Definition (N);
5343 Acc := Comp;
5345 when N_Object_Declaration =>
5346 Comp := Object_Definition (N);
5347 Acc := Comp;
5349 when N_Function_Specification =>
5350 Comp := Result_Definition (N);
5351 Acc := Comp;
5353 when others =>
5354 raise Program_Error;
5355 end case;
5357 Spec := Access_To_Subprogram_Definition (Acc);
5359 Decl :=
5360 Make_Full_Type_Declaration (Loc,
5361 Defining_Identifier => Anon,
5362 Type_Definition => Copy_Separate_Tree (Spec));
5364 Mark_Rewrite_Insertion (Decl);
5366 -- In ASIS mode, analyze the profile on the original node, because
5367 -- the separate copy does not provide enough links to recover the
5368 -- original tree. Analysis is limited to type annotations, within
5369 -- a temporary scope that serves as an anonymous subprogram to collect
5370 -- otherwise useless temporaries and itypes.
5372 if ASIS_Mode then
5373 declare
5374 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5376 begin
5377 if Nkind (Spec) = N_Access_Function_Definition then
5378 Set_Ekind (Typ, E_Function);
5379 else
5380 Set_Ekind (Typ, E_Procedure);
5381 end if;
5383 Set_Parent (Typ, N);
5384 Set_Scope (Typ, Current_Scope);
5385 Push_Scope (Typ);
5387 Process_Formals (Parameter_Specifications (Spec), Spec);
5389 if Nkind (Spec) = N_Access_Function_Definition then
5390 declare
5391 Def : constant Node_Id := Result_Definition (Spec);
5393 begin
5394 -- The result might itself be an anonymous access type, so
5395 -- have to recurse.
5397 if Nkind (Def) = N_Access_Definition then
5398 if Present (Access_To_Subprogram_Definition (Def)) then
5399 Set_Etype
5400 (Def,
5401 Replace_Anonymous_Access_To_Protected_Subprogram
5402 (Spec));
5403 else
5404 Find_Type (Subtype_Mark (Def));
5405 end if;
5407 else
5408 Find_Type (Def);
5409 end if;
5410 end;
5411 end if;
5413 End_Scope;
5414 end;
5415 end if;
5417 -- Insert the new declaration in the nearest enclosing scope. If the
5418 -- node is a body and N is its return type, the declaration belongs in
5419 -- the enclosing scope.
5421 P := Parent (N);
5423 if Nkind (P) = N_Subprogram_Body
5424 and then Nkind (N) = N_Function_Specification
5425 then
5426 P := Parent (P);
5427 end if;
5429 while Present (P) and then not Has_Declarations (P) loop
5430 P := Parent (P);
5431 end loop;
5433 pragma Assert (Present (P));
5435 if Nkind (P) = N_Package_Specification then
5436 Prepend (Decl, Visible_Declarations (P));
5437 else
5438 Prepend (Decl, Declarations (P));
5439 end if;
5441 -- Replace the anonymous type with an occurrence of the new declaration.
5442 -- In all cases the rewritten node does not have the null-exclusion
5443 -- attribute because (if present) it was already inherited by the
5444 -- anonymous entity (Anon). Thus, in case of components we do not
5445 -- inherit this attribute.
5447 if Nkind (N) = N_Parameter_Specification then
5448 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5449 Set_Etype (Defining_Identifier (N), Anon);
5450 Set_Null_Exclusion_Present (N, False);
5452 elsif Nkind (N) = N_Object_Declaration then
5453 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5454 Set_Etype (Defining_Identifier (N), Anon);
5456 elsif Nkind (N) = N_Access_Function_Definition then
5457 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5459 elsif Nkind (N) = N_Function_Specification then
5460 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5461 Set_Etype (Defining_Unit_Name (N), Anon);
5463 else
5464 Rewrite (Comp,
5465 Make_Component_Definition (Loc,
5466 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5467 end if;
5469 Mark_Rewrite_Insertion (Comp);
5471 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5472 Analyze (Decl);
5474 else
5475 -- Temporarily remove the current scope (record or subprogram) from
5476 -- the stack to add the new declarations to the enclosing scope.
5478 Scope_Stack.Decrement_Last;
5479 Analyze (Decl);
5480 Set_Is_Itype (Anon);
5481 Scope_Stack.Append (Curr_Scope);
5482 end if;
5484 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5485 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5486 return Anon;
5487 end Replace_Anonymous_Access_To_Protected_Subprogram;
5489 -------------------------------
5490 -- Build_Derived_Access_Type --
5491 -------------------------------
5493 procedure Build_Derived_Access_Type
5494 (N : Node_Id;
5495 Parent_Type : Entity_Id;
5496 Derived_Type : Entity_Id)
5498 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5500 Desig_Type : Entity_Id;
5501 Discr : Entity_Id;
5502 Discr_Con_Elist : Elist_Id;
5503 Discr_Con_El : Elmt_Id;
5504 Subt : Entity_Id;
5506 begin
5507 -- Set the designated type so it is available in case this is an access
5508 -- to a self-referential type, e.g. a standard list type with a next
5509 -- pointer. Will be reset after subtype is built.
5511 Set_Directly_Designated_Type
5512 (Derived_Type, Designated_Type (Parent_Type));
5514 Subt := Process_Subtype (S, N);
5516 if Nkind (S) /= N_Subtype_Indication
5517 and then Subt /= Base_Type (Subt)
5518 then
5519 Set_Ekind (Derived_Type, E_Access_Subtype);
5520 end if;
5522 if Ekind (Derived_Type) = E_Access_Subtype then
5523 declare
5524 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5525 Ibase : constant Entity_Id :=
5526 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5527 Svg_Chars : constant Name_Id := Chars (Ibase);
5528 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5530 begin
5531 Copy_Node (Pbase, Ibase);
5533 Set_Chars (Ibase, Svg_Chars);
5534 Set_Next_Entity (Ibase, Svg_Next_E);
5535 Set_Sloc (Ibase, Sloc (Derived_Type));
5536 Set_Scope (Ibase, Scope (Derived_Type));
5537 Set_Freeze_Node (Ibase, Empty);
5538 Set_Is_Frozen (Ibase, False);
5539 Set_Comes_From_Source (Ibase, False);
5540 Set_Is_First_Subtype (Ibase, False);
5542 Set_Etype (Ibase, Pbase);
5543 Set_Etype (Derived_Type, Ibase);
5544 end;
5545 end if;
5547 Set_Directly_Designated_Type
5548 (Derived_Type, Designated_Type (Subt));
5550 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5551 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5552 Set_Size_Info (Derived_Type, Parent_Type);
5553 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5554 Set_Depends_On_Private (Derived_Type,
5555 Has_Private_Component (Derived_Type));
5556 Conditional_Delay (Derived_Type, Subt);
5558 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5559 -- that it is not redundant.
5561 if Null_Exclusion_Present (Type_Definition (N)) then
5562 Set_Can_Never_Be_Null (Derived_Type);
5564 -- What is with the "AND THEN FALSE" here ???
5566 if Can_Never_Be_Null (Parent_Type)
5567 and then False
5568 then
5569 Error_Msg_NE
5570 ("`NOT NULL` not allowed (& already excludes null)",
5571 N, Parent_Type);
5572 end if;
5574 elsif Can_Never_Be_Null (Parent_Type) then
5575 Set_Can_Never_Be_Null (Derived_Type);
5576 end if;
5578 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5579 -- the root type for this information.
5581 -- Apply range checks to discriminants for derived record case
5582 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5584 Desig_Type := Designated_Type (Derived_Type);
5585 if Is_Composite_Type (Desig_Type)
5586 and then (not Is_Array_Type (Desig_Type))
5587 and then Has_Discriminants (Desig_Type)
5588 and then Base_Type (Desig_Type) /= Desig_Type
5589 then
5590 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5591 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5593 Discr := First_Discriminant (Base_Type (Desig_Type));
5594 while Present (Discr_Con_El) loop
5595 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5596 Next_Elmt (Discr_Con_El);
5597 Next_Discriminant (Discr);
5598 end loop;
5599 end if;
5600 end Build_Derived_Access_Type;
5602 ------------------------------
5603 -- Build_Derived_Array_Type --
5604 ------------------------------
5606 procedure Build_Derived_Array_Type
5607 (N : Node_Id;
5608 Parent_Type : Entity_Id;
5609 Derived_Type : Entity_Id)
5611 Loc : constant Source_Ptr := Sloc (N);
5612 Tdef : constant Node_Id := Type_Definition (N);
5613 Indic : constant Node_Id := Subtype_Indication (Tdef);
5614 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5615 Implicit_Base : Entity_Id;
5616 New_Indic : Node_Id;
5618 procedure Make_Implicit_Base;
5619 -- If the parent subtype is constrained, the derived type is a subtype
5620 -- of an implicit base type derived from the parent base.
5622 ------------------------
5623 -- Make_Implicit_Base --
5624 ------------------------
5626 procedure Make_Implicit_Base is
5627 begin
5628 Implicit_Base :=
5629 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5631 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5632 Set_Etype (Implicit_Base, Parent_Base);
5634 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5635 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5637 Set_Has_Delayed_Freeze (Implicit_Base, True);
5638 end Make_Implicit_Base;
5640 -- Start of processing for Build_Derived_Array_Type
5642 begin
5643 if not Is_Constrained (Parent_Type) then
5644 if Nkind (Indic) /= N_Subtype_Indication then
5645 Set_Ekind (Derived_Type, E_Array_Type);
5647 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5648 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5650 Set_Has_Delayed_Freeze (Derived_Type, True);
5652 else
5653 Make_Implicit_Base;
5654 Set_Etype (Derived_Type, Implicit_Base);
5656 New_Indic :=
5657 Make_Subtype_Declaration (Loc,
5658 Defining_Identifier => Derived_Type,
5659 Subtype_Indication =>
5660 Make_Subtype_Indication (Loc,
5661 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5662 Constraint => Constraint (Indic)));
5664 Rewrite (N, New_Indic);
5665 Analyze (N);
5666 end if;
5668 else
5669 if Nkind (Indic) /= N_Subtype_Indication then
5670 Make_Implicit_Base;
5672 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5673 Set_Etype (Derived_Type, Implicit_Base);
5674 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5676 else
5677 Error_Msg_N ("illegal constraint on constrained type", Indic);
5678 end if;
5679 end if;
5681 -- If parent type is not a derived type itself, and is declared in
5682 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5683 -- the new type's concatenation operator since Derive_Subprograms
5684 -- will not inherit the parent's operator. If the parent type is
5685 -- unconstrained, the operator is of the unconstrained base type.
5687 if Number_Dimensions (Parent_Type) = 1
5688 and then not Is_Limited_Type (Parent_Type)
5689 and then not Is_Derived_Type (Parent_Type)
5690 and then not Is_Package_Or_Generic_Package
5691 (Scope (Base_Type (Parent_Type)))
5692 then
5693 if not Is_Constrained (Parent_Type)
5694 and then Is_Constrained (Derived_Type)
5695 then
5696 New_Concatenation_Op (Implicit_Base);
5697 else
5698 New_Concatenation_Op (Derived_Type);
5699 end if;
5700 end if;
5701 end Build_Derived_Array_Type;
5703 -----------------------------------
5704 -- Build_Derived_Concurrent_Type --
5705 -----------------------------------
5707 procedure Build_Derived_Concurrent_Type
5708 (N : Node_Id;
5709 Parent_Type : Entity_Id;
5710 Derived_Type : Entity_Id)
5712 Loc : constant Source_Ptr := Sloc (N);
5714 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5715 Corr_Decl : Node_Id;
5716 Corr_Decl_Needed : Boolean;
5717 -- If the derived type has fewer discriminants than its parent, the
5718 -- corresponding record is also a derived type, in order to account for
5719 -- the bound discriminants. We create a full type declaration for it in
5720 -- this case.
5722 Constraint_Present : constant Boolean :=
5723 Nkind (Subtype_Indication (Type_Definition (N))) =
5724 N_Subtype_Indication;
5726 D_Constraint : Node_Id;
5727 New_Constraint : Elist_Id;
5728 Old_Disc : Entity_Id;
5729 New_Disc : Entity_Id;
5730 New_N : Node_Id;
5732 begin
5733 Set_Stored_Constraint (Derived_Type, No_Elist);
5734 Corr_Decl_Needed := False;
5735 Old_Disc := Empty;
5737 if Present (Discriminant_Specifications (N))
5738 and then Constraint_Present
5739 then
5740 Old_Disc := First_Discriminant (Parent_Type);
5741 New_Disc := First (Discriminant_Specifications (N));
5742 while Present (New_Disc) and then Present (Old_Disc) loop
5743 Next_Discriminant (Old_Disc);
5744 Next (New_Disc);
5745 end loop;
5746 end if;
5748 if Present (Old_Disc) and then Expander_Active then
5750 -- The new type has fewer discriminants, so we need to create a new
5751 -- corresponding record, which is derived from the corresponding
5752 -- record of the parent, and has a stored constraint that captures
5753 -- the values of the discriminant constraints. The corresponding
5754 -- record is needed only if expander is active and code generation is
5755 -- enabled.
5757 -- The type declaration for the derived corresponding record has the
5758 -- same discriminant part and constraints as the current declaration.
5759 -- Copy the unanalyzed tree to build declaration.
5761 Corr_Decl_Needed := True;
5762 New_N := Copy_Separate_Tree (N);
5764 Corr_Decl :=
5765 Make_Full_Type_Declaration (Loc,
5766 Defining_Identifier => Corr_Record,
5767 Discriminant_Specifications =>
5768 Discriminant_Specifications (New_N),
5769 Type_Definition =>
5770 Make_Derived_Type_Definition (Loc,
5771 Subtype_Indication =>
5772 Make_Subtype_Indication (Loc,
5773 Subtype_Mark =>
5774 New_Occurrence_Of
5775 (Corresponding_Record_Type (Parent_Type), Loc),
5776 Constraint =>
5777 Constraint
5778 (Subtype_Indication (Type_Definition (New_N))))));
5779 end if;
5781 -- Copy Storage_Size and Relative_Deadline variables if task case
5783 if Is_Task_Type (Parent_Type) then
5784 Set_Storage_Size_Variable (Derived_Type,
5785 Storage_Size_Variable (Parent_Type));
5786 Set_Relative_Deadline_Variable (Derived_Type,
5787 Relative_Deadline_Variable (Parent_Type));
5788 end if;
5790 if Present (Discriminant_Specifications (N)) then
5791 Push_Scope (Derived_Type);
5792 Check_Or_Process_Discriminants (N, Derived_Type);
5794 if Constraint_Present then
5795 New_Constraint :=
5796 Expand_To_Stored_Constraint
5797 (Parent_Type,
5798 Build_Discriminant_Constraints
5799 (Parent_Type,
5800 Subtype_Indication (Type_Definition (N)), True));
5801 end if;
5803 End_Scope;
5805 elsif Constraint_Present then
5807 -- Build constrained subtype, copying the constraint, and derive
5808 -- from it to create a derived constrained type.
5810 declare
5811 Loc : constant Source_Ptr := Sloc (N);
5812 Anon : constant Entity_Id :=
5813 Make_Defining_Identifier (Loc,
5814 Chars => New_External_Name (Chars (Derived_Type), 'T'));
5815 Decl : Node_Id;
5817 begin
5818 Decl :=
5819 Make_Subtype_Declaration (Loc,
5820 Defining_Identifier => Anon,
5821 Subtype_Indication =>
5822 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
5823 Insert_Before (N, Decl);
5824 Analyze (Decl);
5826 Rewrite (Subtype_Indication (Type_Definition (N)),
5827 New_Occurrence_Of (Anon, Loc));
5828 Set_Analyzed (Derived_Type, False);
5829 Analyze (N);
5830 return;
5831 end;
5832 end if;
5834 -- By default, operations and private data are inherited from parent.
5835 -- However, in the presence of bound discriminants, a new corresponding
5836 -- record will be created, see below.
5838 Set_Has_Discriminants
5839 (Derived_Type, Has_Discriminants (Parent_Type));
5840 Set_Corresponding_Record_Type
5841 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5843 -- Is_Constrained is set according the parent subtype, but is set to
5844 -- False if the derived type is declared with new discriminants.
5846 Set_Is_Constrained
5847 (Derived_Type,
5848 (Is_Constrained (Parent_Type) or else Constraint_Present)
5849 and then not Present (Discriminant_Specifications (N)));
5851 if Constraint_Present then
5852 if not Has_Discriminants (Parent_Type) then
5853 Error_Msg_N ("untagged parent must have discriminants", N);
5855 elsif Present (Discriminant_Specifications (N)) then
5857 -- Verify that new discriminants are used to constrain old ones
5859 D_Constraint :=
5860 First
5861 (Constraints
5862 (Constraint (Subtype_Indication (Type_Definition (N)))));
5864 Old_Disc := First_Discriminant (Parent_Type);
5866 while Present (D_Constraint) loop
5867 if Nkind (D_Constraint) /= N_Discriminant_Association then
5869 -- Positional constraint. If it is a reference to a new
5870 -- discriminant, it constrains the corresponding old one.
5872 if Nkind (D_Constraint) = N_Identifier then
5873 New_Disc := First_Discriminant (Derived_Type);
5874 while Present (New_Disc) loop
5875 exit when Chars (New_Disc) = Chars (D_Constraint);
5876 Next_Discriminant (New_Disc);
5877 end loop;
5879 if Present (New_Disc) then
5880 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5881 end if;
5882 end if;
5884 Next_Discriminant (Old_Disc);
5886 -- if this is a named constraint, search by name for the old
5887 -- discriminants constrained by the new one.
5889 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5891 -- Find new discriminant with that name
5893 New_Disc := First_Discriminant (Derived_Type);
5894 while Present (New_Disc) loop
5895 exit when
5896 Chars (New_Disc) = Chars (Expression (D_Constraint));
5897 Next_Discriminant (New_Disc);
5898 end loop;
5900 if Present (New_Disc) then
5902 -- Verify that new discriminant renames some discriminant
5903 -- of the parent type, and associate the new discriminant
5904 -- with one or more old ones that it renames.
5906 declare
5907 Selector : Node_Id;
5909 begin
5910 Selector := First (Selector_Names (D_Constraint));
5911 while Present (Selector) loop
5912 Old_Disc := First_Discriminant (Parent_Type);
5913 while Present (Old_Disc) loop
5914 exit when Chars (Old_Disc) = Chars (Selector);
5915 Next_Discriminant (Old_Disc);
5916 end loop;
5918 if Present (Old_Disc) then
5919 Set_Corresponding_Discriminant
5920 (New_Disc, Old_Disc);
5921 end if;
5923 Next (Selector);
5924 end loop;
5925 end;
5926 end if;
5927 end if;
5929 Next (D_Constraint);
5930 end loop;
5932 New_Disc := First_Discriminant (Derived_Type);
5933 while Present (New_Disc) loop
5934 if No (Corresponding_Discriminant (New_Disc)) then
5935 Error_Msg_NE
5936 ("new discriminant& must constrain old one", N, New_Disc);
5938 elsif not
5939 Subtypes_Statically_Compatible
5940 (Etype (New_Disc),
5941 Etype (Corresponding_Discriminant (New_Disc)))
5942 then
5943 Error_Msg_NE
5944 ("& not statically compatible with parent discriminant",
5945 N, New_Disc);
5946 end if;
5948 Next_Discriminant (New_Disc);
5949 end loop;
5950 end if;
5952 elsif Present (Discriminant_Specifications (N)) then
5953 Error_Msg_N
5954 ("missing discriminant constraint in untagged derivation", N);
5955 end if;
5957 -- The entity chain of the derived type includes the new discriminants
5958 -- but shares operations with the parent.
5960 if Present (Discriminant_Specifications (N)) then
5961 Old_Disc := First_Discriminant (Parent_Type);
5962 while Present (Old_Disc) loop
5963 if No (Next_Entity (Old_Disc))
5964 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
5965 then
5966 Set_Next_Entity
5967 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
5968 exit;
5969 end if;
5971 Next_Discriminant (Old_Disc);
5972 end loop;
5974 else
5975 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
5976 if Has_Discriminants (Parent_Type) then
5977 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
5978 Set_Discriminant_Constraint (
5979 Derived_Type, Discriminant_Constraint (Parent_Type));
5980 end if;
5981 end if;
5983 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
5985 Set_Has_Completion (Derived_Type);
5987 if Corr_Decl_Needed then
5988 Set_Stored_Constraint (Derived_Type, New_Constraint);
5989 Insert_After (N, Corr_Decl);
5990 Analyze (Corr_Decl);
5991 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
5992 end if;
5993 end Build_Derived_Concurrent_Type;
5995 ------------------------------------
5996 -- Build_Derived_Enumeration_Type --
5997 ------------------------------------
5999 procedure Build_Derived_Enumeration_Type
6000 (N : Node_Id;
6001 Parent_Type : Entity_Id;
6002 Derived_Type : Entity_Id)
6004 Loc : constant Source_Ptr := Sloc (N);
6005 Def : constant Node_Id := Type_Definition (N);
6006 Indic : constant Node_Id := Subtype_Indication (Def);
6007 Implicit_Base : Entity_Id;
6008 Literal : Entity_Id;
6009 New_Lit : Entity_Id;
6010 Literals_List : List_Id;
6011 Type_Decl : Node_Id;
6012 Hi, Lo : Node_Id;
6013 Rang_Expr : Node_Id;
6015 begin
6016 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6017 -- not have explicit literals lists we need to process types derived
6018 -- from them specially. This is handled by Derived_Standard_Character.
6019 -- If the parent type is a generic type, there are no literals either,
6020 -- and we construct the same skeletal representation as for the generic
6021 -- parent type.
6023 if Is_Standard_Character_Type (Parent_Type) then
6024 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6026 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6027 declare
6028 Lo : Node_Id;
6029 Hi : Node_Id;
6031 begin
6032 if Nkind (Indic) /= N_Subtype_Indication then
6033 Lo :=
6034 Make_Attribute_Reference (Loc,
6035 Attribute_Name => Name_First,
6036 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6037 Set_Etype (Lo, Derived_Type);
6039 Hi :=
6040 Make_Attribute_Reference (Loc,
6041 Attribute_Name => Name_Last,
6042 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6043 Set_Etype (Hi, Derived_Type);
6045 Set_Scalar_Range (Derived_Type,
6046 Make_Range (Loc,
6047 Low_Bound => Lo,
6048 High_Bound => Hi));
6049 else
6051 -- Analyze subtype indication and verify compatibility
6052 -- with parent type.
6054 if Base_Type (Process_Subtype (Indic, N)) /=
6055 Base_Type (Parent_Type)
6056 then
6057 Error_Msg_N
6058 ("illegal constraint for formal discrete type", N);
6059 end if;
6060 end if;
6061 end;
6063 else
6064 -- If a constraint is present, analyze the bounds to catch
6065 -- premature usage of the derived literals.
6067 if Nkind (Indic) = N_Subtype_Indication
6068 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6069 then
6070 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6071 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6072 end if;
6074 -- Introduce an implicit base type for the derived type even if there
6075 -- is no constraint attached to it, since this seems closer to the
6076 -- Ada semantics. Build a full type declaration tree for the derived
6077 -- type using the implicit base type as the defining identifier. The
6078 -- build a subtype declaration tree which applies the constraint (if
6079 -- any) have it replace the derived type declaration.
6081 Literal := First_Literal (Parent_Type);
6082 Literals_List := New_List;
6083 while Present (Literal)
6084 and then Ekind (Literal) = E_Enumeration_Literal
6085 loop
6086 -- Literals of the derived type have the same representation as
6087 -- those of the parent type, but this representation can be
6088 -- overridden by an explicit representation clause. Indicate
6089 -- that there is no explicit representation given yet. These
6090 -- derived literals are implicit operations of the new type,
6091 -- and can be overridden by explicit ones.
6093 if Nkind (Literal) = N_Defining_Character_Literal then
6094 New_Lit :=
6095 Make_Defining_Character_Literal (Loc, Chars (Literal));
6096 else
6097 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6098 end if;
6100 Set_Ekind (New_Lit, E_Enumeration_Literal);
6101 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6102 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6103 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6104 Set_Alias (New_Lit, Literal);
6105 Set_Is_Known_Valid (New_Lit, True);
6107 Append (New_Lit, Literals_List);
6108 Next_Literal (Literal);
6109 end loop;
6111 Implicit_Base :=
6112 Make_Defining_Identifier (Sloc (Derived_Type),
6113 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6115 -- Indicate the proper nature of the derived type. This must be done
6116 -- before analysis of the literals, to recognize cases when a literal
6117 -- may be hidden by a previous explicit function definition (cf.
6118 -- c83031a).
6120 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6121 Set_Etype (Derived_Type, Implicit_Base);
6123 Type_Decl :=
6124 Make_Full_Type_Declaration (Loc,
6125 Defining_Identifier => Implicit_Base,
6126 Discriminant_Specifications => No_List,
6127 Type_Definition =>
6128 Make_Enumeration_Type_Definition (Loc, Literals_List));
6130 Mark_Rewrite_Insertion (Type_Decl);
6131 Insert_Before (N, Type_Decl);
6132 Analyze (Type_Decl);
6134 -- After the implicit base is analyzed its Etype needs to be changed
6135 -- to reflect the fact that it is derived from the parent type which
6136 -- was ignored during analysis. We also set the size at this point.
6138 Set_Etype (Implicit_Base, Parent_Type);
6140 Set_Size_Info (Implicit_Base, Parent_Type);
6141 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6142 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6144 -- Copy other flags from parent type
6146 Set_Has_Non_Standard_Rep
6147 (Implicit_Base, Has_Non_Standard_Rep
6148 (Parent_Type));
6149 Set_Has_Pragma_Ordered
6150 (Implicit_Base, Has_Pragma_Ordered
6151 (Parent_Type));
6152 Set_Has_Delayed_Freeze (Implicit_Base);
6154 -- Process the subtype indication including a validation check on the
6155 -- constraint, if any. If a constraint is given, its bounds must be
6156 -- implicitly converted to the new type.
6158 if Nkind (Indic) = N_Subtype_Indication then
6159 declare
6160 R : constant Node_Id :=
6161 Range_Expression (Constraint (Indic));
6163 begin
6164 if Nkind (R) = N_Range then
6165 Hi := Build_Scalar_Bound
6166 (High_Bound (R), Parent_Type, Implicit_Base);
6167 Lo := Build_Scalar_Bound
6168 (Low_Bound (R), Parent_Type, Implicit_Base);
6170 else
6171 -- Constraint is a Range attribute. Replace with explicit
6172 -- mention of the bounds of the prefix, which must be a
6173 -- subtype.
6175 Analyze (Prefix (R));
6176 Hi :=
6177 Convert_To (Implicit_Base,
6178 Make_Attribute_Reference (Loc,
6179 Attribute_Name => Name_Last,
6180 Prefix =>
6181 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6183 Lo :=
6184 Convert_To (Implicit_Base,
6185 Make_Attribute_Reference (Loc,
6186 Attribute_Name => Name_First,
6187 Prefix =>
6188 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6189 end if;
6190 end;
6192 else
6193 Hi :=
6194 Build_Scalar_Bound
6195 (Type_High_Bound (Parent_Type),
6196 Parent_Type, Implicit_Base);
6197 Lo :=
6198 Build_Scalar_Bound
6199 (Type_Low_Bound (Parent_Type),
6200 Parent_Type, Implicit_Base);
6201 end if;
6203 Rang_Expr :=
6204 Make_Range (Loc,
6205 Low_Bound => Lo,
6206 High_Bound => Hi);
6208 -- If we constructed a default range for the case where no range
6209 -- was given, then the expressions in the range must not freeze
6210 -- since they do not correspond to expressions in the source.
6212 if Nkind (Indic) /= N_Subtype_Indication then
6213 Set_Must_Not_Freeze (Lo);
6214 Set_Must_Not_Freeze (Hi);
6215 Set_Must_Not_Freeze (Rang_Expr);
6216 end if;
6218 Rewrite (N,
6219 Make_Subtype_Declaration (Loc,
6220 Defining_Identifier => Derived_Type,
6221 Subtype_Indication =>
6222 Make_Subtype_Indication (Loc,
6223 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6224 Constraint =>
6225 Make_Range_Constraint (Loc,
6226 Range_Expression => Rang_Expr))));
6228 Analyze (N);
6230 -- Apply a range check. Since this range expression doesn't have an
6231 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6232 -- this right???
6234 if Nkind (Indic) = N_Subtype_Indication then
6235 Apply_Range_Check (Range_Expression (Constraint (Indic)),
6236 Parent_Type,
6237 Source_Typ => Entity (Subtype_Mark (Indic)));
6238 end if;
6239 end if;
6240 end Build_Derived_Enumeration_Type;
6242 --------------------------------
6243 -- Build_Derived_Numeric_Type --
6244 --------------------------------
6246 procedure Build_Derived_Numeric_Type
6247 (N : Node_Id;
6248 Parent_Type : Entity_Id;
6249 Derived_Type : Entity_Id)
6251 Loc : constant Source_Ptr := Sloc (N);
6252 Tdef : constant Node_Id := Type_Definition (N);
6253 Indic : constant Node_Id := Subtype_Indication (Tdef);
6254 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6255 No_Constraint : constant Boolean := Nkind (Indic) /=
6256 N_Subtype_Indication;
6257 Implicit_Base : Entity_Id;
6259 Lo : Node_Id;
6260 Hi : Node_Id;
6262 begin
6263 -- Process the subtype indication including a validation check on
6264 -- the constraint if any.
6266 Discard_Node (Process_Subtype (Indic, N));
6268 -- Introduce an implicit base type for the derived type even if there
6269 -- is no constraint attached to it, since this seems closer to the Ada
6270 -- semantics.
6272 Implicit_Base :=
6273 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6275 Set_Etype (Implicit_Base, Parent_Base);
6276 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6277 Set_Size_Info (Implicit_Base, Parent_Base);
6278 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6279 Set_Parent (Implicit_Base, Parent (Derived_Type));
6280 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6282 -- Set RM Size for discrete type or decimal fixed-point type
6283 -- Ordinary fixed-point is excluded, why???
6285 if Is_Discrete_Type (Parent_Base)
6286 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6287 then
6288 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6289 end if;
6291 Set_Has_Delayed_Freeze (Implicit_Base);
6293 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6294 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6296 Set_Scalar_Range (Implicit_Base,
6297 Make_Range (Loc,
6298 Low_Bound => Lo,
6299 High_Bound => Hi));
6301 if Has_Infinities (Parent_Base) then
6302 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6303 end if;
6305 -- The Derived_Type, which is the entity of the declaration, is a
6306 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6307 -- absence of an explicit constraint.
6309 Set_Etype (Derived_Type, Implicit_Base);
6311 -- If we did not have a constraint, then the Ekind is set from the
6312 -- parent type (otherwise Process_Subtype has set the bounds)
6314 if No_Constraint then
6315 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6316 end if;
6318 -- If we did not have a range constraint, then set the range from the
6319 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6321 if No_Constraint
6322 or else not Has_Range_Constraint (Indic)
6323 then
6324 Set_Scalar_Range (Derived_Type,
6325 Make_Range (Loc,
6326 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6327 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6328 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6330 if Has_Infinities (Parent_Type) then
6331 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6332 end if;
6334 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6335 end if;
6337 Set_Is_Descendent_Of_Address (Derived_Type,
6338 Is_Descendent_Of_Address (Parent_Type));
6339 Set_Is_Descendent_Of_Address (Implicit_Base,
6340 Is_Descendent_Of_Address (Parent_Type));
6342 -- Set remaining type-specific fields, depending on numeric type
6344 if Is_Modular_Integer_Type (Parent_Type) then
6345 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6347 Set_Non_Binary_Modulus
6348 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6350 Set_Is_Known_Valid
6351 (Implicit_Base, Is_Known_Valid (Parent_Base));
6353 elsif Is_Floating_Point_Type (Parent_Type) then
6355 -- Digits of base type is always copied from the digits value of
6356 -- the parent base type, but the digits of the derived type will
6357 -- already have been set if there was a constraint present.
6359 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6360 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6362 if No_Constraint then
6363 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6364 end if;
6366 elsif Is_Fixed_Point_Type (Parent_Type) then
6368 -- Small of base type and derived type are always copied from the
6369 -- parent base type, since smalls never change. The delta of the
6370 -- base type is also copied from the parent base type. However the
6371 -- delta of the derived type will have been set already if a
6372 -- constraint was present.
6374 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6375 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6376 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6378 if No_Constraint then
6379 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6380 end if;
6382 -- The scale and machine radix in the decimal case are always
6383 -- copied from the parent base type.
6385 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6386 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6387 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6389 Set_Machine_Radix_10
6390 (Derived_Type, Machine_Radix_10 (Parent_Base));
6391 Set_Machine_Radix_10
6392 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6394 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6396 if No_Constraint then
6397 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6399 else
6400 -- the analysis of the subtype_indication sets the
6401 -- digits value of the derived type.
6403 null;
6404 end if;
6405 end if;
6406 end if;
6408 if Is_Integer_Type (Parent_Type) then
6409 Set_Has_Shift_Operator
6410 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6411 end if;
6413 -- The type of the bounds is that of the parent type, and they
6414 -- must be converted to the derived type.
6416 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6418 -- The implicit_base should be frozen when the derived type is frozen,
6419 -- but note that it is used in the conversions of the bounds. For fixed
6420 -- types we delay the determination of the bounds until the proper
6421 -- freezing point. For other numeric types this is rejected by GCC, for
6422 -- reasons that are currently unclear (???), so we choose to freeze the
6423 -- implicit base now. In the case of integers and floating point types
6424 -- this is harmless because subsequent representation clauses cannot
6425 -- affect anything, but it is still baffling that we cannot use the
6426 -- same mechanism for all derived numeric types.
6428 -- There is a further complication: actually some representation
6429 -- clauses can affect the implicit base type. For example, attribute
6430 -- definition clauses for stream-oriented attributes need to set the
6431 -- corresponding TSS entries on the base type, and this normally
6432 -- cannot be done after the base type is frozen, so the circuitry in
6433 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6434 -- and not use Set_TSS in this case.
6436 -- There are also consequences for the case of delayed representation
6437 -- aspects for some cases. For example, a Size aspect is delayed and
6438 -- should not be evaluated to the freeze point. This early freezing
6439 -- means that the size attribute evaluation happens too early???
6441 if Is_Fixed_Point_Type (Parent_Type) then
6442 Conditional_Delay (Implicit_Base, Parent_Type);
6443 else
6444 Freeze_Before (N, Implicit_Base);
6445 end if;
6446 end Build_Derived_Numeric_Type;
6448 --------------------------------
6449 -- Build_Derived_Private_Type --
6450 --------------------------------
6452 procedure Build_Derived_Private_Type
6453 (N : Node_Id;
6454 Parent_Type : Entity_Id;
6455 Derived_Type : Entity_Id;
6456 Is_Completion : Boolean;
6457 Derive_Subps : Boolean := True)
6459 Loc : constant Source_Ptr := Sloc (N);
6460 Der_Base : Entity_Id;
6461 Discr : Entity_Id;
6462 Full_Decl : Node_Id := Empty;
6463 Full_Der : Entity_Id;
6464 Full_P : Entity_Id;
6465 Last_Discr : Entity_Id;
6466 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
6467 Swapped : Boolean := False;
6469 procedure Copy_And_Build;
6470 -- Copy derived type declaration, replace parent with its full view,
6471 -- and analyze new declaration.
6473 --------------------
6474 -- Copy_And_Build --
6475 --------------------
6477 procedure Copy_And_Build is
6478 Full_N : Node_Id;
6480 begin
6481 if Ekind (Parent_Type) in Record_Kind
6482 or else
6483 (Ekind (Parent_Type) in Enumeration_Kind
6484 and then not Is_Standard_Character_Type (Parent_Type)
6485 and then not Is_Generic_Type (Root_Type (Parent_Type)))
6486 then
6487 Full_N := New_Copy_Tree (N);
6488 Insert_After (N, Full_N);
6489 Build_Derived_Type (
6490 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
6492 else
6493 Build_Derived_Type (
6494 N, Parent_Type, Full_Der, True, Derive_Subps => False);
6495 end if;
6496 end Copy_And_Build;
6498 -- Start of processing for Build_Derived_Private_Type
6500 begin
6501 if Is_Tagged_Type (Parent_Type) then
6502 Full_P := Full_View (Parent_Type);
6504 -- A type extension of a type with unknown discriminants is an
6505 -- indefinite type that the back-end cannot handle directly.
6506 -- We treat it as a private type, and build a completion that is
6507 -- derived from the full view of the parent, and hopefully has
6508 -- known discriminants.
6510 -- If the full view of the parent type has an underlying record view,
6511 -- use it to generate the underlying record view of this derived type
6512 -- (required for chains of derivations with unknown discriminants).
6514 -- Minor optimization: we avoid the generation of useless underlying
6515 -- record view entities if the private type declaration has unknown
6516 -- discriminants but its corresponding full view has no
6517 -- discriminants.
6519 if Has_Unknown_Discriminants (Parent_Type)
6520 and then Present (Full_P)
6521 and then (Has_Discriminants (Full_P)
6522 or else Present (Underlying_Record_View (Full_P)))
6523 and then not In_Open_Scopes (Par_Scope)
6524 and then Expander_Active
6525 then
6526 declare
6527 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6528 New_Ext : constant Node_Id :=
6529 Copy_Separate_Tree
6530 (Record_Extension_Part (Type_Definition (N)));
6531 Decl : Node_Id;
6533 begin
6534 Build_Derived_Record_Type
6535 (N, Parent_Type, Derived_Type, Derive_Subps);
6537 -- Build anonymous completion, as a derivation from the full
6538 -- view of the parent. This is not a completion in the usual
6539 -- sense, because the current type is not private.
6541 Decl :=
6542 Make_Full_Type_Declaration (Loc,
6543 Defining_Identifier => Full_Der,
6544 Type_Definition =>
6545 Make_Derived_Type_Definition (Loc,
6546 Subtype_Indication =>
6547 New_Copy_Tree
6548 (Subtype_Indication (Type_Definition (N))),
6549 Record_Extension_Part => New_Ext));
6551 -- If the parent type has an underlying record view, use it
6552 -- here to build the new underlying record view.
6554 if Present (Underlying_Record_View (Full_P)) then
6555 pragma Assert
6556 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6557 = N_Identifier);
6558 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6559 Underlying_Record_View (Full_P));
6560 end if;
6562 Install_Private_Declarations (Par_Scope);
6563 Install_Visible_Declarations (Par_Scope);
6564 Insert_Before (N, Decl);
6566 -- Mark entity as an underlying record view before analysis,
6567 -- to avoid generating the list of its primitive operations
6568 -- (which is not really required for this entity) and thus
6569 -- prevent spurious errors associated with missing overriding
6570 -- of abstract primitives (overridden only for Derived_Type).
6572 Set_Ekind (Full_Der, E_Record_Type);
6573 Set_Is_Underlying_Record_View (Full_Der);
6575 Analyze (Decl);
6577 pragma Assert (Has_Discriminants (Full_Der)
6578 and then not Has_Unknown_Discriminants (Full_Der));
6580 Uninstall_Declarations (Par_Scope);
6582 -- Freeze the underlying record view, to prevent generation of
6583 -- useless dispatching information, which is simply shared with
6584 -- the real derived type.
6586 Set_Is_Frozen (Full_Der);
6588 -- Set up links between real entity and underlying record view
6590 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6591 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6592 end;
6594 -- If discriminants are known, build derived record
6596 else
6597 Build_Derived_Record_Type
6598 (N, Parent_Type, Derived_Type, Derive_Subps);
6599 end if;
6601 return;
6603 elsif Has_Discriminants (Parent_Type) then
6604 if Present (Full_View (Parent_Type)) then
6605 if not Is_Completion then
6607 -- Copy declaration for subsequent analysis, to provide a
6608 -- completion for what is a private declaration. Indicate that
6609 -- the full type is internally generated.
6611 Full_Decl := New_Copy_Tree (N);
6612 Full_Der := New_Copy (Derived_Type);
6613 Set_Comes_From_Source (Full_Decl, False);
6614 Set_Comes_From_Source (Full_Der, False);
6615 Set_Parent (Full_Der, Full_Decl);
6617 Insert_After (N, Full_Decl);
6619 else
6620 -- If this is a completion, the full view being built is itself
6621 -- private. We build a subtype of the parent with the same
6622 -- constraints as this full view, to convey to the back end the
6623 -- constrained components and the size of this subtype. If the
6624 -- parent is constrained, its full view can serve as the
6625 -- underlying full view of the derived type.
6627 if No (Discriminant_Specifications (N)) then
6628 if Nkind (Subtype_Indication (Type_Definition (N))) =
6629 N_Subtype_Indication
6630 then
6631 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
6633 elsif Is_Constrained (Full_View (Parent_Type)) then
6634 Set_Underlying_Full_View
6635 (Derived_Type, Full_View (Parent_Type));
6636 end if;
6638 else
6639 -- If there are new discriminants, the parent subtype is
6640 -- constrained by them, but it is not clear how to build
6641 -- the Underlying_Full_View in this case???
6643 null;
6644 end if;
6645 end if;
6646 end if;
6648 -- Build partial view of derived type from partial view of parent
6650 Build_Derived_Record_Type
6651 (N, Parent_Type, Derived_Type, Derive_Subps);
6653 if Present (Full_View (Parent_Type)) and then not Is_Completion then
6654 if not In_Open_Scopes (Par_Scope)
6655 or else not In_Same_Source_Unit (N, Parent_Type)
6656 then
6657 -- Swap partial and full views temporarily
6659 Install_Private_Declarations (Par_Scope);
6660 Install_Visible_Declarations (Par_Scope);
6661 Swapped := True;
6662 end if;
6664 -- Build full view of derived type from full view of parent which
6665 -- is now installed. Subprograms have been derived on the partial
6666 -- view, the completion does not derive them anew.
6668 if not Is_Tagged_Type (Parent_Type) then
6670 -- If the parent is itself derived from another private type,
6671 -- installing the private declarations has not affected its
6672 -- privacy status, so use its own full view explicitly.
6674 if Is_Private_Type (Parent_Type) then
6675 Build_Derived_Record_Type
6676 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
6677 else
6678 Build_Derived_Record_Type
6679 (Full_Decl, Parent_Type, Full_Der, False);
6680 end if;
6682 else
6683 -- If full view of parent is tagged, the completion inherits
6684 -- the proper primitive operations.
6686 Set_Defining_Identifier (Full_Decl, Full_Der);
6687 Build_Derived_Record_Type
6688 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
6689 end if;
6691 -- The full declaration has been introduced into the tree and
6692 -- processed in the step above. It should not be analyzed again
6693 -- (when encountered later in the current list of declarations)
6694 -- to prevent spurious name conflicts. The full entity remains
6695 -- invisible.
6697 Set_Analyzed (Full_Decl);
6699 if Swapped then
6700 Uninstall_Declarations (Par_Scope);
6702 if In_Open_Scopes (Par_Scope) then
6703 Install_Visible_Declarations (Par_Scope);
6704 end if;
6705 end if;
6707 Der_Base := Base_Type (Derived_Type);
6708 Set_Full_View (Derived_Type, Full_Der);
6709 Set_Full_View (Der_Base, Base_Type (Full_Der));
6711 -- Copy the discriminant list from full view to the partial views
6712 -- (base type and its subtype). Gigi requires that the partial and
6713 -- full views have the same discriminants.
6715 -- Note that since the partial view is pointing to discriminants
6716 -- in the full view, their scope will be that of the full view.
6717 -- This might cause some front end problems and need adjustment???
6719 Discr := First_Discriminant (Base_Type (Full_Der));
6720 Set_First_Entity (Der_Base, Discr);
6722 loop
6723 Last_Discr := Discr;
6724 Next_Discriminant (Discr);
6725 exit when No (Discr);
6726 end loop;
6728 Set_Last_Entity (Der_Base, Last_Discr);
6730 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
6731 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
6732 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
6734 else
6735 -- If this is a completion, the derived type stays private and
6736 -- there is no need to create a further full view, except in the
6737 -- unusual case when the derivation is nested within a child unit,
6738 -- see below.
6740 null;
6741 end if;
6743 elsif Present (Full_View (Parent_Type))
6744 and then Has_Discriminants (Full_View (Parent_Type))
6745 then
6746 if Has_Unknown_Discriminants (Parent_Type)
6747 and then Nkind (Subtype_Indication (Type_Definition (N))) =
6748 N_Subtype_Indication
6749 then
6750 Error_Msg_N
6751 ("cannot constrain type with unknown discriminants",
6752 Subtype_Indication (Type_Definition (N)));
6753 return;
6754 end if;
6756 -- If full view of parent is a record type, build full view as a
6757 -- derivation from the parent's full view. Partial view remains
6758 -- private. For code generation and linking, the full view must have
6759 -- the same public status as the partial one. This full view is only
6760 -- needed if the parent type is in an enclosing scope, so that the
6761 -- full view may actually become visible, e.g. in a child unit. This
6762 -- is both more efficient, and avoids order of freezing problems with
6763 -- the added entities.
6765 if not Is_Private_Type (Full_View (Parent_Type))
6766 and then (In_Open_Scopes (Scope (Parent_Type)))
6767 then
6768 Full_Der :=
6769 Make_Defining_Identifier (Sloc (Derived_Type),
6770 Chars => Chars (Derived_Type));
6772 Set_Is_Itype (Full_Der);
6773 Set_Has_Private_Declaration (Full_Der);
6774 Set_Has_Private_Declaration (Derived_Type);
6775 Set_Associated_Node_For_Itype (Full_Der, N);
6776 Set_Parent (Full_Der, Parent (Derived_Type));
6777 Set_Full_View (Derived_Type, Full_Der);
6778 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6779 Full_P := Full_View (Parent_Type);
6780 Exchange_Declarations (Parent_Type);
6781 Copy_And_Build;
6782 Exchange_Declarations (Full_P);
6784 else
6785 Build_Derived_Record_Type
6786 (N, Full_View (Parent_Type), Derived_Type,
6787 Derive_Subps => False);
6789 -- Except in the context of the full view of the parent, there
6790 -- are no non-extension aggregates for the derived type.
6792 Set_Has_Private_Ancestor (Derived_Type);
6793 end if;
6795 -- In any case, the primitive operations are inherited from the
6796 -- parent type, not from the internal full view.
6798 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6800 if Derive_Subps then
6801 Derive_Subprograms (Parent_Type, Derived_Type);
6802 end if;
6804 else
6805 -- Untagged type, No discriminants on either view
6807 if Nkind (Subtype_Indication (Type_Definition (N))) =
6808 N_Subtype_Indication
6809 then
6810 Error_Msg_N
6811 ("illegal constraint on type without discriminants", N);
6812 end if;
6814 if Present (Discriminant_Specifications (N))
6815 and then Present (Full_View (Parent_Type))
6816 and then not Is_Tagged_Type (Full_View (Parent_Type))
6817 then
6818 Error_Msg_N ("cannot add discriminants to untagged type", N);
6819 end if;
6821 Set_Stored_Constraint (Derived_Type, No_Elist);
6822 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6823 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6824 Set_Has_Controlled_Component
6825 (Derived_Type, Has_Controlled_Component
6826 (Parent_Type));
6828 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6830 if not Is_Controlled (Parent_Type) then
6831 Set_Finalize_Storage_Only
6832 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6833 end if;
6835 -- Construct the implicit full view by deriving from full view of the
6836 -- parent type. In order to get proper visibility, we install the
6837 -- parent scope and its declarations.
6839 -- ??? If the parent is untagged private and its completion is
6840 -- tagged, this mechanism will not work because we cannot derive from
6841 -- the tagged full view unless we have an extension.
6843 if Present (Full_View (Parent_Type))
6844 and then not Is_Tagged_Type (Full_View (Parent_Type))
6845 and then not Is_Completion
6846 then
6847 Full_Der :=
6848 Make_Defining_Identifier
6849 (Sloc (Derived_Type), Chars (Derived_Type));
6850 Set_Is_Itype (Full_Der);
6851 Set_Has_Private_Declaration (Full_Der);
6852 Set_Has_Private_Declaration (Derived_Type);
6853 Set_Associated_Node_For_Itype (Full_Der, N);
6854 Set_Parent (Full_Der, Parent (Derived_Type));
6855 Set_Full_View (Derived_Type, Full_Der);
6857 if not In_Open_Scopes (Par_Scope) then
6858 Install_Private_Declarations (Par_Scope);
6859 Install_Visible_Declarations (Par_Scope);
6860 Copy_And_Build;
6861 Uninstall_Declarations (Par_Scope);
6863 -- If parent scope is open and in another unit, and parent has a
6864 -- completion, then the derivation is taking place in the visible
6865 -- part of a child unit. In that case retrieve the full view of
6866 -- the parent momentarily.
6868 elsif not In_Same_Source_Unit (N, Parent_Type) then
6869 Full_P := Full_View (Parent_Type);
6870 Exchange_Declarations (Parent_Type);
6871 Copy_And_Build;
6872 Exchange_Declarations (Full_P);
6874 -- Otherwise it is a local derivation
6876 else
6877 Copy_And_Build;
6878 end if;
6880 Set_Scope (Full_Der, Current_Scope);
6881 Set_Is_First_Subtype (Full_Der,
6882 Is_First_Subtype (Derived_Type));
6883 Set_Has_Size_Clause (Full_Der, False);
6884 Set_Has_Alignment_Clause (Full_Der, False);
6885 Set_Next_Entity (Full_Der, Empty);
6886 Set_Has_Delayed_Freeze (Full_Der);
6887 Set_Is_Frozen (Full_Der, False);
6888 Set_Freeze_Node (Full_Der, Empty);
6889 Set_Depends_On_Private (Full_Der,
6890 Has_Private_Component (Full_Der));
6891 Set_Public_Status (Full_Der);
6892 end if;
6893 end if;
6895 Set_Has_Unknown_Discriminants (Derived_Type,
6896 Has_Unknown_Discriminants (Parent_Type));
6898 if Is_Private_Type (Derived_Type) then
6899 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6900 end if;
6902 if Is_Private_Type (Parent_Type)
6903 and then Base_Type (Parent_Type) = Parent_Type
6904 and then In_Open_Scopes (Scope (Parent_Type))
6905 then
6906 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6908 -- Check for unusual case where a type completed by a private
6909 -- derivation occurs within a package nested in a child unit, and
6910 -- the parent is declared in an ancestor.
6912 if Is_Child_Unit (Scope (Current_Scope))
6913 and then Is_Completion
6914 and then In_Private_Part (Current_Scope)
6915 and then Scope (Parent_Type) /= Current_Scope
6917 -- Note that if the parent has a completion in the private part,
6918 -- (which is itself a derivation from some other private type)
6919 -- it is that completion that is visible, there is no full view
6920 -- available, and no special processing is needed.
6922 and then Present (Full_View (Parent_Type))
6923 then
6924 -- In this case, the full view of the parent type will become
6925 -- visible in the body of the enclosing child, and only then will
6926 -- the current type be possibly non-private. We build an
6927 -- underlying full view that will be installed when the enclosing
6928 -- child body is compiled.
6930 Full_Der :=
6931 Make_Defining_Identifier
6932 (Sloc (Derived_Type), Chars (Derived_Type));
6933 Set_Is_Itype (Full_Der);
6934 Build_Itype_Reference (Full_Der, N);
6936 -- The full view will be used to swap entities on entry/exit to
6937 -- the body, and must appear in the entity list for the package.
6939 Append_Entity (Full_Der, Scope (Derived_Type));
6940 Set_Has_Private_Declaration (Full_Der);
6941 Set_Has_Private_Declaration (Derived_Type);
6942 Set_Associated_Node_For_Itype (Full_Der, N);
6943 Set_Parent (Full_Der, Parent (Derived_Type));
6944 Full_P := Full_View (Parent_Type);
6945 Exchange_Declarations (Parent_Type);
6946 Copy_And_Build;
6947 Exchange_Declarations (Full_P);
6948 Set_Underlying_Full_View (Derived_Type, Full_Der);
6949 end if;
6950 end if;
6951 end Build_Derived_Private_Type;
6953 -------------------------------
6954 -- Build_Derived_Record_Type --
6955 -------------------------------
6957 -- 1. INTRODUCTION
6959 -- Ideally we would like to use the same model of type derivation for
6960 -- tagged and untagged record types. Unfortunately this is not quite
6961 -- possible because the semantics of representation clauses is different
6962 -- for tagged and untagged records under inheritance. Consider the
6963 -- following:
6965 -- type R (...) is [tagged] record ... end record;
6966 -- type T (...) is new R (...) [with ...];
6968 -- The representation clauses for T can specify a completely different
6969 -- record layout from R's. Hence the same component can be placed in two
6970 -- very different positions in objects of type T and R. If R and T are
6971 -- tagged types, representation clauses for T can only specify the layout
6972 -- of non inherited components, thus components that are common in R and T
6973 -- have the same position in objects of type R and T.
6975 -- This has two implications. The first is that the entire tree for R's
6976 -- declaration needs to be copied for T in the untagged case, so that T
6977 -- can be viewed as a record type of its own with its own representation
6978 -- clauses. The second implication is the way we handle discriminants.
6979 -- Specifically, in the untagged case we need a way to communicate to Gigi
6980 -- what are the real discriminants in the record, while for the semantics
6981 -- we need to consider those introduced by the user to rename the
6982 -- discriminants in the parent type. This is handled by introducing the
6983 -- notion of stored discriminants. See below for more.
6985 -- Fortunately the way regular components are inherited can be handled in
6986 -- the same way in tagged and untagged types.
6988 -- To complicate things a bit more the private view of a private extension
6989 -- cannot be handled in the same way as the full view (for one thing the
6990 -- semantic rules are somewhat different). We will explain what differs
6991 -- below.
6993 -- 2. DISCRIMINANTS UNDER INHERITANCE
6995 -- The semantic rules governing the discriminants of derived types are
6996 -- quite subtle.
6998 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
6999 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7001 -- If parent type has discriminants, then the discriminants that are
7002 -- declared in the derived type are [3.4 (11)]:
7004 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7005 -- there is one;
7007 -- o Otherwise, each discriminant of the parent type (implicitly declared
7008 -- in the same order with the same specifications). In this case, the
7009 -- discriminants are said to be "inherited", or if unknown in the parent
7010 -- are also unknown in the derived type.
7012 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7014 -- o The parent subtype shall be constrained;
7016 -- o If the parent type is not a tagged type, then each discriminant of
7017 -- the derived type shall be used in the constraint defining a parent
7018 -- subtype. [Implementation note: This ensures that the new discriminant
7019 -- can share storage with an existing discriminant.]
7021 -- For the derived type each discriminant of the parent type is either
7022 -- inherited, constrained to equal some new discriminant of the derived
7023 -- type, or constrained to the value of an expression.
7025 -- When inherited or constrained to equal some new discriminant, the
7026 -- parent discriminant and the discriminant of the derived type are said
7027 -- to "correspond".
7029 -- If a discriminant of the parent type is constrained to a specific value
7030 -- in the derived type definition, then the discriminant is said to be
7031 -- "specified" by that derived type definition.
7033 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7035 -- We have spoken about stored discriminants in point 1 (introduction)
7036 -- above. There are two sort of stored discriminants: implicit and
7037 -- explicit. As long as the derived type inherits the same discriminants as
7038 -- the root record type, stored discriminants are the same as regular
7039 -- discriminants, and are said to be implicit. However, if any discriminant
7040 -- in the root type was renamed in the derived type, then the derived
7041 -- type will contain explicit stored discriminants. Explicit stored
7042 -- discriminants are discriminants in addition to the semantically visible
7043 -- discriminants defined for the derived type. Stored discriminants are
7044 -- used by Gigi to figure out what are the physical discriminants in
7045 -- objects of the derived type (see precise definition in einfo.ads).
7046 -- As an example, consider the following:
7048 -- type R (D1, D2, D3 : Int) is record ... end record;
7049 -- type T1 is new R;
7050 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7051 -- type T3 is new T2;
7052 -- type T4 (Y : Int) is new T3 (Y, 99);
7054 -- The following table summarizes the discriminants and stored
7055 -- discriminants in R and T1 through T4.
7057 -- Type Discrim Stored Discrim Comment
7058 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7059 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7060 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7061 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7062 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7064 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7065 -- find the corresponding discriminant in the parent type, while
7066 -- Original_Record_Component (abbreviated ORC below), the actual physical
7067 -- component that is renamed. Finally the field Is_Completely_Hidden
7068 -- (abbreviated ICH below) is set for all explicit stored discriminants
7069 -- (see einfo.ads for more info). For the above example this gives:
7071 -- Discrim CD ORC ICH
7072 -- ^^^^^^^ ^^ ^^^ ^^^
7073 -- D1 in R empty itself no
7074 -- D2 in R empty itself no
7075 -- D3 in R empty itself no
7077 -- D1 in T1 D1 in R itself no
7078 -- D2 in T1 D2 in R itself no
7079 -- D3 in T1 D3 in R itself no
7081 -- X1 in T2 D3 in T1 D3 in T2 no
7082 -- X2 in T2 D1 in T1 D1 in T2 no
7083 -- D1 in T2 empty itself yes
7084 -- D2 in T2 empty itself yes
7085 -- D3 in T2 empty itself yes
7087 -- X1 in T3 X1 in T2 D3 in T3 no
7088 -- X2 in T3 X2 in T2 D1 in T3 no
7089 -- D1 in T3 empty itself yes
7090 -- D2 in T3 empty itself yes
7091 -- D3 in T3 empty itself yes
7093 -- Y in T4 X1 in T3 D3 in T3 no
7094 -- D1 in T3 empty itself yes
7095 -- D2 in T3 empty itself yes
7096 -- D3 in T3 empty itself yes
7098 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7100 -- Type derivation for tagged types is fairly straightforward. If no
7101 -- discriminants are specified by the derived type, these are inherited
7102 -- from the parent. No explicit stored discriminants are ever necessary.
7103 -- The only manipulation that is done to the tree is that of adding a
7104 -- _parent field with parent type and constrained to the same constraint
7105 -- specified for the parent in the derived type definition. For instance:
7107 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7108 -- type T1 is new R with null record;
7109 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7111 -- are changed into:
7113 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7114 -- _parent : R (D1, D2, D3);
7115 -- end record;
7117 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7118 -- _parent : T1 (X2, 88, X1);
7119 -- end record;
7121 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7122 -- ORC and ICH fields are:
7124 -- Discrim CD ORC ICH
7125 -- ^^^^^^^ ^^ ^^^ ^^^
7126 -- D1 in R empty itself no
7127 -- D2 in R empty itself no
7128 -- D3 in R empty itself no
7130 -- D1 in T1 D1 in R D1 in R no
7131 -- D2 in T1 D2 in R D2 in R no
7132 -- D3 in T1 D3 in R D3 in R no
7134 -- X1 in T2 D3 in T1 D3 in R no
7135 -- X2 in T2 D1 in T1 D1 in R no
7137 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7139 -- Regardless of whether we dealing with a tagged or untagged type
7140 -- we will transform all derived type declarations of the form
7142 -- type T is new R (...) [with ...];
7143 -- or
7144 -- subtype S is R (...);
7145 -- type T is new S [with ...];
7146 -- into
7147 -- type BT is new R [with ...];
7148 -- subtype T is BT (...);
7150 -- That is, the base derived type is constrained only if it has no
7151 -- discriminants. The reason for doing this is that GNAT's semantic model
7152 -- assumes that a base type with discriminants is unconstrained.
7154 -- Note that, strictly speaking, the above transformation is not always
7155 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7157 -- procedure B34011A is
7158 -- type REC (D : integer := 0) is record
7159 -- I : Integer;
7160 -- end record;
7162 -- package P is
7163 -- type T6 is new Rec;
7164 -- function F return T6;
7165 -- end P;
7167 -- use P;
7168 -- package Q6 is
7169 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7170 -- end Q6;
7172 -- The definition of Q6.U is illegal. However transforming Q6.U into
7174 -- type BaseU is new T6;
7175 -- subtype U is BaseU (Q6.F.I)
7177 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7178 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7179 -- the transformation described above.
7181 -- There is another instance where the above transformation is incorrect.
7182 -- Consider:
7184 -- package Pack is
7185 -- type Base (D : Integer) is tagged null record;
7186 -- procedure P (X : Base);
7188 -- type Der is new Base (2) with null record;
7189 -- procedure P (X : Der);
7190 -- end Pack;
7192 -- Then the above transformation turns this into
7194 -- type Der_Base is new Base with null record;
7195 -- -- procedure P (X : Base) is implicitly inherited here
7196 -- -- as procedure P (X : Der_Base).
7198 -- subtype Der is Der_Base (2);
7199 -- procedure P (X : Der);
7200 -- -- The overriding of P (X : Der_Base) is illegal since we
7201 -- -- have a parameter conformance problem.
7203 -- To get around this problem, after having semantically processed Der_Base
7204 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7205 -- Discriminant_Constraint from Der so that when parameter conformance is
7206 -- checked when P is overridden, no semantic errors are flagged.
7208 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7210 -- Regardless of whether we are dealing with a tagged or untagged type
7211 -- we will transform all derived type declarations of the form
7213 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7214 -- type T is new R [with ...];
7215 -- into
7216 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7218 -- The reason for such transformation is that it allows us to implement a
7219 -- very clean form of component inheritance as explained below.
7221 -- Note that this transformation is not achieved by direct tree rewriting
7222 -- and manipulation, but rather by redoing the semantic actions that the
7223 -- above transformation will entail. This is done directly in routine
7224 -- Inherit_Components.
7226 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7228 -- In both tagged and untagged derived types, regular non discriminant
7229 -- components are inherited in the derived type from the parent type. In
7230 -- the absence of discriminants component, inheritance is straightforward
7231 -- as components can simply be copied from the parent.
7233 -- If the parent has discriminants, inheriting components constrained with
7234 -- these discriminants requires caution. Consider the following example:
7236 -- type R (D1, D2 : Positive) is [tagged] record
7237 -- S : String (D1 .. D2);
7238 -- end record;
7240 -- type T1 is new R [with null record];
7241 -- type T2 (X : positive) is new R (1, X) [with null record];
7243 -- As explained in 6. above, T1 is rewritten as
7244 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7245 -- which makes the treatment for T1 and T2 identical.
7247 -- What we want when inheriting S, is that references to D1 and D2 in R are
7248 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7249 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7250 -- with either discriminant references in the derived type or expressions.
7251 -- This replacement is achieved as follows: before inheriting R's
7252 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7253 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7254 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7255 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7256 -- by String (1 .. X).
7258 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7260 -- We explain here the rules governing private type extensions relevant to
7261 -- type derivation. These rules are explained on the following example:
7263 -- type D [(...)] is new A [(...)] with private; <-- partial view
7264 -- type D [(...)] is new P [(...)] with null record; <-- full view
7266 -- Type A is called the ancestor subtype of the private extension.
7267 -- Type P is the parent type of the full view of the private extension. It
7268 -- must be A or a type derived from A.
7270 -- The rules concerning the discriminants of private type extensions are
7271 -- [7.3(10-13)]:
7273 -- o If a private extension inherits known discriminants from the ancestor
7274 -- subtype, then the full view shall also inherit its discriminants from
7275 -- the ancestor subtype and the parent subtype of the full view shall be
7276 -- constrained if and only if the ancestor subtype is constrained.
7278 -- o If a partial view has unknown discriminants, then the full view may
7279 -- define a definite or an indefinite subtype, with or without
7280 -- discriminants.
7282 -- o If a partial view has neither known nor unknown discriminants, then
7283 -- the full view shall define a definite subtype.
7285 -- o If the ancestor subtype of a private extension has constrained
7286 -- discriminants, then the parent subtype of the full view shall impose a
7287 -- statically matching constraint on those discriminants.
7289 -- This means that only the following forms of private extensions are
7290 -- allowed:
7292 -- type D is new A with private; <-- partial view
7293 -- type D is new P with null record; <-- full view
7295 -- If A has no discriminants than P has no discriminants, otherwise P must
7296 -- inherit A's discriminants.
7298 -- type D is new A (...) with private; <-- partial view
7299 -- type D is new P (:::) with null record; <-- full view
7301 -- P must inherit A's discriminants and (...) and (:::) must statically
7302 -- match.
7304 -- subtype A is R (...);
7305 -- type D is new A with private; <-- partial view
7306 -- type D is new P with null record; <-- full view
7308 -- P must have inherited R's discriminants and must be derived from A or
7309 -- any of its subtypes.
7311 -- type D (..) is new A with private; <-- partial view
7312 -- type D (..) is new P [(:::)] with null record; <-- full view
7314 -- No specific constraints on P's discriminants or constraint (:::).
7315 -- Note that A can be unconstrained, but the parent subtype P must either
7316 -- be constrained or (:::) must be present.
7318 -- type D (..) is new A [(...)] with private; <-- partial view
7319 -- type D (..) is new P [(:::)] with null record; <-- full view
7321 -- P's constraints on A's discriminants must statically match those
7322 -- imposed by (...).
7324 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7326 -- The full view of a private extension is handled exactly as described
7327 -- above. The model chose for the private view of a private extension is
7328 -- the same for what concerns discriminants (i.e. they receive the same
7329 -- treatment as in the tagged case). However, the private view of the
7330 -- private extension always inherits the components of the parent base,
7331 -- without replacing any discriminant reference. Strictly speaking this is
7332 -- incorrect. However, Gigi never uses this view to generate code so this
7333 -- is a purely semantic issue. In theory, a set of transformations similar
7334 -- to those given in 5. and 6. above could be applied to private views of
7335 -- private extensions to have the same model of component inheritance as
7336 -- for non private extensions. However, this is not done because it would
7337 -- further complicate private type processing. Semantically speaking, this
7338 -- leaves us in an uncomfortable situation. As an example consider:
7340 -- package Pack is
7341 -- type R (D : integer) is tagged record
7342 -- S : String (1 .. D);
7343 -- end record;
7344 -- procedure P (X : R);
7345 -- type T is new R (1) with private;
7346 -- private
7347 -- type T is new R (1) with null record;
7348 -- end;
7350 -- This is transformed into:
7352 -- package Pack is
7353 -- type R (D : integer) is tagged record
7354 -- S : String (1 .. D);
7355 -- end record;
7356 -- procedure P (X : R);
7357 -- type T is new R (1) with private;
7358 -- private
7359 -- type BaseT is new R with null record;
7360 -- subtype T is BaseT (1);
7361 -- end;
7363 -- (strictly speaking the above is incorrect Ada)
7365 -- From the semantic standpoint the private view of private extension T
7366 -- should be flagged as constrained since one can clearly have
7368 -- Obj : T;
7370 -- in a unit withing Pack. However, when deriving subprograms for the
7371 -- private view of private extension T, T must be seen as unconstrained
7372 -- since T has discriminants (this is a constraint of the current
7373 -- subprogram derivation model). Thus, when processing the private view of
7374 -- a private extension such as T, we first mark T as unconstrained, we
7375 -- process it, we perform program derivation and just before returning from
7376 -- Build_Derived_Record_Type we mark T as constrained.
7378 -- ??? Are there are other uncomfortable cases that we will have to
7379 -- deal with.
7381 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7383 -- Types that are derived from a visible record type and have a private
7384 -- extension present other peculiarities. They behave mostly like private
7385 -- types, but if they have primitive operations defined, these will not
7386 -- have the proper signatures for further inheritance, because other
7387 -- primitive operations will use the implicit base that we define for
7388 -- private derivations below. This affect subprogram inheritance (see
7389 -- Derive_Subprograms for details). We also derive the implicit base from
7390 -- the base type of the full view, so that the implicit base is a record
7391 -- type and not another private type, This avoids infinite loops.
7393 procedure Build_Derived_Record_Type
7394 (N : Node_Id;
7395 Parent_Type : Entity_Id;
7396 Derived_Type : Entity_Id;
7397 Derive_Subps : Boolean := True)
7399 Discriminant_Specs : constant Boolean :=
7400 Present (Discriminant_Specifications (N));
7401 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7402 Loc : constant Source_Ptr := Sloc (N);
7403 Private_Extension : constant Boolean :=
7404 Nkind (N) = N_Private_Extension_Declaration;
7405 Assoc_List : Elist_Id;
7406 Constraint_Present : Boolean;
7407 Constrs : Elist_Id;
7408 Discrim : Entity_Id;
7409 Indic : Node_Id;
7410 Inherit_Discrims : Boolean := False;
7411 Last_Discrim : Entity_Id;
7412 New_Base : Entity_Id;
7413 New_Decl : Node_Id;
7414 New_Discrs : Elist_Id;
7415 New_Indic : Node_Id;
7416 Parent_Base : Entity_Id;
7417 Save_Etype : Entity_Id;
7418 Save_Discr_Constr : Elist_Id;
7419 Save_Next_Entity : Entity_Id;
7420 Type_Def : Node_Id;
7422 Discs : Elist_Id := New_Elmt_List;
7423 -- An empty Discs list means that there were no constraints in the
7424 -- subtype indication or that there was an error processing it.
7426 begin
7427 if Ekind (Parent_Type) = E_Record_Type_With_Private
7428 and then Present (Full_View (Parent_Type))
7429 and then Has_Discriminants (Parent_Type)
7430 then
7431 Parent_Base := Base_Type (Full_View (Parent_Type));
7432 else
7433 Parent_Base := Base_Type (Parent_Type);
7434 end if;
7436 -- AI05-0115 : if this is a derivation from a private type in some
7437 -- other scope that may lead to invisible components for the derived
7438 -- type, mark it accordingly.
7440 if Is_Private_Type (Parent_Type) then
7441 if Scope (Parent_Type) = Scope (Derived_Type) then
7442 null;
7444 elsif In_Open_Scopes (Scope (Parent_Type))
7445 and then In_Private_Part (Scope (Parent_Type))
7446 then
7447 null;
7449 else
7450 Set_Has_Private_Ancestor (Derived_Type);
7451 end if;
7453 else
7454 Set_Has_Private_Ancestor
7455 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7456 end if;
7458 -- Before we start the previously documented transformations, here is
7459 -- little fix for size and alignment of tagged types. Normally when we
7460 -- derive type D from type P, we copy the size and alignment of P as the
7461 -- default for D, and in the absence of explicit representation clauses
7462 -- for D, the size and alignment are indeed the same as the parent.
7464 -- But this is wrong for tagged types, since fields may be added, and
7465 -- the default size may need to be larger, and the default alignment may
7466 -- need to be larger.
7468 -- We therefore reset the size and alignment fields in the tagged case.
7469 -- Note that the size and alignment will in any case be at least as
7470 -- large as the parent type (since the derived type has a copy of the
7471 -- parent type in the _parent field)
7473 -- The type is also marked as being tagged here, which is needed when
7474 -- processing components with a self-referential anonymous access type
7475 -- in the call to Check_Anonymous_Access_Components below. Note that
7476 -- this flag is also set later on for completeness.
7478 if Is_Tagged then
7479 Set_Is_Tagged_Type (Derived_Type);
7480 Init_Size_Align (Derived_Type);
7481 end if;
7483 -- STEP 0a: figure out what kind of derived type declaration we have
7485 if Private_Extension then
7486 Type_Def := N;
7487 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7489 else
7490 Type_Def := Type_Definition (N);
7492 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7493 -- Parent_Base can be a private type or private extension. However,
7494 -- for tagged types with an extension the newly added fields are
7495 -- visible and hence the Derived_Type is always an E_Record_Type.
7496 -- (except that the parent may have its own private fields).
7497 -- For untagged types we preserve the Ekind of the Parent_Base.
7499 if Present (Record_Extension_Part (Type_Def)) then
7500 Set_Ekind (Derived_Type, E_Record_Type);
7502 -- Create internal access types for components with anonymous
7503 -- access types.
7505 if Ada_Version >= Ada_2005 then
7506 Check_Anonymous_Access_Components
7507 (N, Derived_Type, Derived_Type,
7508 Component_List (Record_Extension_Part (Type_Def)));
7509 end if;
7511 else
7512 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7513 end if;
7514 end if;
7516 -- Indic can either be an N_Identifier if the subtype indication
7517 -- contains no constraint or an N_Subtype_Indication if the subtype
7518 -- indication has a constraint.
7520 Indic := Subtype_Indication (Type_Def);
7521 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7523 -- Check that the type has visible discriminants. The type may be
7524 -- a private type with unknown discriminants whose full view has
7525 -- discriminants which are invisible.
7527 if Constraint_Present then
7528 if not Has_Discriminants (Parent_Base)
7529 or else
7530 (Has_Unknown_Discriminants (Parent_Base)
7531 and then Is_Private_Type (Parent_Base))
7532 then
7533 Error_Msg_N
7534 ("invalid constraint: type has no discriminant",
7535 Constraint (Indic));
7537 Constraint_Present := False;
7538 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7540 elsif Is_Constrained (Parent_Type) then
7541 Error_Msg_N
7542 ("invalid constraint: parent type is already constrained",
7543 Constraint (Indic));
7545 Constraint_Present := False;
7546 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7547 end if;
7548 end if;
7550 -- STEP 0b: If needed, apply transformation given in point 5. above
7552 if not Private_Extension
7553 and then Has_Discriminants (Parent_Type)
7554 and then not Discriminant_Specs
7555 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7556 then
7557 -- First, we must analyze the constraint (see comment in point 5.)
7558 -- The constraint may come from the subtype indication of the full
7559 -- declaration.
7561 if Constraint_Present then
7562 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7564 -- If there is no explicit constraint, there might be one that is
7565 -- inherited from a constrained parent type. In that case verify that
7566 -- it conforms to the constraint in the partial view. In perverse
7567 -- cases the parent subtypes of the partial and full view can have
7568 -- different constraints.
7570 elsif Present (Stored_Constraint (Parent_Type)) then
7571 New_Discrs := Stored_Constraint (Parent_Type);
7573 else
7574 New_Discrs := No_Elist;
7575 end if;
7577 if Has_Discriminants (Derived_Type)
7578 and then Has_Private_Declaration (Derived_Type)
7579 and then Present (Discriminant_Constraint (Derived_Type))
7580 and then Present (New_Discrs)
7581 then
7582 -- Verify that constraints of the full view statically match
7583 -- those given in the partial view.
7585 declare
7586 C1, C2 : Elmt_Id;
7588 begin
7589 C1 := First_Elmt (New_Discrs);
7590 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7591 while Present (C1) and then Present (C2) loop
7592 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7593 or else
7594 (Is_OK_Static_Expression (Node (C1))
7595 and then Is_OK_Static_Expression (Node (C2))
7596 and then
7597 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7598 then
7599 null;
7601 else
7602 if Constraint_Present then
7603 Error_Msg_N
7604 ("constraint not conformant to previous declaration",
7605 Node (C1));
7606 else
7607 Error_Msg_N
7608 ("constraint of full view is incompatible "
7609 & "with partial view", N);
7610 end if;
7611 end if;
7613 Next_Elmt (C1);
7614 Next_Elmt (C2);
7615 end loop;
7616 end;
7617 end if;
7619 -- Insert and analyze the declaration for the unconstrained base type
7621 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7623 New_Decl :=
7624 Make_Full_Type_Declaration (Loc,
7625 Defining_Identifier => New_Base,
7626 Type_Definition =>
7627 Make_Derived_Type_Definition (Loc,
7628 Abstract_Present => Abstract_Present (Type_Def),
7629 Limited_Present => Limited_Present (Type_Def),
7630 Subtype_Indication =>
7631 New_Occurrence_Of (Parent_Base, Loc),
7632 Record_Extension_Part =>
7633 Relocate_Node (Record_Extension_Part (Type_Def)),
7634 Interface_List => Interface_List (Type_Def)));
7636 Set_Parent (New_Decl, Parent (N));
7637 Mark_Rewrite_Insertion (New_Decl);
7638 Insert_Before (N, New_Decl);
7640 -- In the extension case, make sure ancestor is frozen appropriately
7641 -- (see also non-discriminated case below).
7643 if Present (Record_Extension_Part (Type_Def))
7644 or else Is_Interface (Parent_Base)
7645 then
7646 Freeze_Before (New_Decl, Parent_Type);
7647 end if;
7649 -- Note that this call passes False for the Derive_Subps parameter
7650 -- because subprogram derivation is deferred until after creating
7651 -- the subtype (see below).
7653 Build_Derived_Type
7654 (New_Decl, Parent_Base, New_Base,
7655 Is_Completion => True, Derive_Subps => False);
7657 -- ??? This needs re-examination to determine whether the
7658 -- above call can simply be replaced by a call to Analyze.
7660 Set_Analyzed (New_Decl);
7662 -- Insert and analyze the declaration for the constrained subtype
7664 if Constraint_Present then
7665 New_Indic :=
7666 Make_Subtype_Indication (Loc,
7667 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7668 Constraint => Relocate_Node (Constraint (Indic)));
7670 else
7671 declare
7672 Constr_List : constant List_Id := New_List;
7673 C : Elmt_Id;
7674 Expr : Node_Id;
7676 begin
7677 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7678 while Present (C) loop
7679 Expr := Node (C);
7681 -- It is safe here to call New_Copy_Tree since
7682 -- Force_Evaluation was called on each constraint in
7683 -- Build_Discriminant_Constraints.
7685 Append (New_Copy_Tree (Expr), To => Constr_List);
7687 Next_Elmt (C);
7688 end loop;
7690 New_Indic :=
7691 Make_Subtype_Indication (Loc,
7692 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7693 Constraint =>
7694 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7695 end;
7696 end if;
7698 Rewrite (N,
7699 Make_Subtype_Declaration (Loc,
7700 Defining_Identifier => Derived_Type,
7701 Subtype_Indication => New_Indic));
7703 Analyze (N);
7705 -- Derivation of subprograms must be delayed until the full subtype
7706 -- has been established, to ensure proper overriding of subprograms
7707 -- inherited by full types. If the derivations occurred as part of
7708 -- the call to Build_Derived_Type above, then the check for type
7709 -- conformance would fail because earlier primitive subprograms
7710 -- could still refer to the full type prior the change to the new
7711 -- subtype and hence would not match the new base type created here.
7712 -- Subprograms are not derived, however, when Derive_Subps is False
7713 -- (since otherwise there could be redundant derivations).
7715 if Derive_Subps then
7716 Derive_Subprograms (Parent_Type, Derived_Type);
7717 end if;
7719 -- For tagged types the Discriminant_Constraint of the new base itype
7720 -- is inherited from the first subtype so that no subtype conformance
7721 -- problem arise when the first subtype overrides primitive
7722 -- operations inherited by the implicit base type.
7724 if Is_Tagged then
7725 Set_Discriminant_Constraint
7726 (New_Base, Discriminant_Constraint (Derived_Type));
7727 end if;
7729 return;
7730 end if;
7732 -- If we get here Derived_Type will have no discriminants or it will be
7733 -- a discriminated unconstrained base type.
7735 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7737 if Is_Tagged then
7739 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7740 -- The declaration of a specific descendant of an interface type
7741 -- freezes the interface type (RM 13.14).
7743 if not Private_Extension or else Is_Interface (Parent_Base) then
7744 Freeze_Before (N, Parent_Type);
7745 end if;
7747 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7748 -- cannot be declared at a deeper level than its parent type is
7749 -- removed. The check on derivation within a generic body is also
7750 -- relaxed, but there's a restriction that a derived tagged type
7751 -- cannot be declared in a generic body if it's derived directly
7752 -- or indirectly from a formal type of that generic.
7754 if Ada_Version >= Ada_2005 then
7755 if Present (Enclosing_Generic_Body (Derived_Type)) then
7756 declare
7757 Ancestor_Type : Entity_Id;
7759 begin
7760 -- Check to see if any ancestor of the derived type is a
7761 -- formal type.
7763 Ancestor_Type := Parent_Type;
7764 while not Is_Generic_Type (Ancestor_Type)
7765 and then Etype (Ancestor_Type) /= Ancestor_Type
7766 loop
7767 Ancestor_Type := Etype (Ancestor_Type);
7768 end loop;
7770 -- If the derived type does have a formal type as an
7771 -- ancestor, then it's an error if the derived type is
7772 -- declared within the body of the generic unit that
7773 -- declares the formal type in its generic formal part. It's
7774 -- sufficient to check whether the ancestor type is declared
7775 -- inside the same generic body as the derived type (such as
7776 -- within a nested generic spec), in which case the
7777 -- derivation is legal. If the formal type is declared
7778 -- outside of that generic body, then it's guaranteed that
7779 -- the derived type is declared within the generic body of
7780 -- the generic unit declaring the formal type.
7782 if Is_Generic_Type (Ancestor_Type)
7783 and then Enclosing_Generic_Body (Ancestor_Type) /=
7784 Enclosing_Generic_Body (Derived_Type)
7785 then
7786 Error_Msg_NE
7787 ("parent type of& must not be descendant of formal type"
7788 & " of an enclosing generic body",
7789 Indic, Derived_Type);
7790 end if;
7791 end;
7792 end if;
7794 elsif Type_Access_Level (Derived_Type) /=
7795 Type_Access_Level (Parent_Type)
7796 and then not Is_Generic_Type (Derived_Type)
7797 then
7798 if Is_Controlled (Parent_Type) then
7799 Error_Msg_N
7800 ("controlled type must be declared at the library level",
7801 Indic);
7802 else
7803 Error_Msg_N
7804 ("type extension at deeper accessibility level than parent",
7805 Indic);
7806 end if;
7808 else
7809 declare
7810 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
7812 begin
7813 if Present (GB)
7814 and then GB /= Enclosing_Generic_Body (Parent_Base)
7815 then
7816 Error_Msg_NE
7817 ("parent type of& must not be outside generic body"
7818 & " (RM 3.9.1(4))",
7819 Indic, Derived_Type);
7820 end if;
7821 end;
7822 end if;
7823 end if;
7825 -- Ada 2005 (AI-251)
7827 if Ada_Version >= Ada_2005 and then Is_Tagged then
7829 -- "The declaration of a specific descendant of an interface type
7830 -- freezes the interface type" (RM 13.14).
7832 declare
7833 Iface : Node_Id;
7834 begin
7835 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7836 Iface := First (Interface_List (Type_Def));
7837 while Present (Iface) loop
7838 Freeze_Before (N, Etype (Iface));
7839 Next (Iface);
7840 end loop;
7841 end if;
7842 end;
7843 end if;
7845 -- STEP 1b : preliminary cleanup of the full view of private types
7847 -- If the type is already marked as having discriminants, then it's the
7848 -- completion of a private type or private extension and we need to
7849 -- retain the discriminants from the partial view if the current
7850 -- declaration has Discriminant_Specifications so that we can verify
7851 -- conformance. However, we must remove any existing components that
7852 -- were inherited from the parent (and attached in Copy_And_Swap)
7853 -- because the full type inherits all appropriate components anyway, and
7854 -- we do not want the partial view's components interfering.
7856 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7857 Discrim := First_Discriminant (Derived_Type);
7858 loop
7859 Last_Discrim := Discrim;
7860 Next_Discriminant (Discrim);
7861 exit when No (Discrim);
7862 end loop;
7864 Set_Last_Entity (Derived_Type, Last_Discrim);
7866 -- In all other cases wipe out the list of inherited components (even
7867 -- inherited discriminants), it will be properly rebuilt here.
7869 else
7870 Set_First_Entity (Derived_Type, Empty);
7871 Set_Last_Entity (Derived_Type, Empty);
7872 end if;
7874 -- STEP 1c: Initialize some flags for the Derived_Type
7876 -- The following flags must be initialized here so that
7877 -- Process_Discriminants can check that discriminants of tagged types do
7878 -- not have a default initial value and that access discriminants are
7879 -- only specified for limited records. For completeness, these flags are
7880 -- also initialized along with all the other flags below.
7882 -- AI-419: Limitedness is not inherited from an interface parent, so to
7883 -- be limited in that case the type must be explicitly declared as
7884 -- limited. However, task and protected interfaces are always limited.
7886 if Limited_Present (Type_Def) then
7887 Set_Is_Limited_Record (Derived_Type);
7889 elsif Is_Limited_Record (Parent_Type)
7890 or else (Present (Full_View (Parent_Type))
7891 and then Is_Limited_Record (Full_View (Parent_Type)))
7892 then
7893 if not Is_Interface (Parent_Type)
7894 or else Is_Synchronized_Interface (Parent_Type)
7895 or else Is_Protected_Interface (Parent_Type)
7896 or else Is_Task_Interface (Parent_Type)
7897 then
7898 Set_Is_Limited_Record (Derived_Type);
7899 end if;
7900 end if;
7902 -- STEP 2a: process discriminants of derived type if any
7904 Push_Scope (Derived_Type);
7906 if Discriminant_Specs then
7907 Set_Has_Unknown_Discriminants (Derived_Type, False);
7909 -- The following call initializes fields Has_Discriminants and
7910 -- Discriminant_Constraint, unless we are processing the completion
7911 -- of a private type declaration.
7913 Check_Or_Process_Discriminants (N, Derived_Type);
7915 -- For untagged types, the constraint on the Parent_Type must be
7916 -- present and is used to rename the discriminants.
7918 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
7919 Error_Msg_N ("untagged parent must have discriminants", Indic);
7921 elsif not Is_Tagged and then not Constraint_Present then
7922 Error_Msg_N
7923 ("discriminant constraint needed for derived untagged records",
7924 Indic);
7926 -- Otherwise the parent subtype must be constrained unless we have a
7927 -- private extension.
7929 elsif not Constraint_Present
7930 and then not Private_Extension
7931 and then not Is_Constrained (Parent_Type)
7932 then
7933 Error_Msg_N
7934 ("unconstrained type not allowed in this context", Indic);
7936 elsif Constraint_Present then
7937 -- The following call sets the field Corresponding_Discriminant
7938 -- for the discriminants in the Derived_Type.
7940 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
7942 -- For untagged types all new discriminants must rename
7943 -- discriminants in the parent. For private extensions new
7944 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7946 Discrim := First_Discriminant (Derived_Type);
7947 while Present (Discrim) loop
7948 if not Is_Tagged
7949 and then No (Corresponding_Discriminant (Discrim))
7950 then
7951 Error_Msg_N
7952 ("new discriminants must constrain old ones", Discrim);
7954 elsif Private_Extension
7955 and then Present (Corresponding_Discriminant (Discrim))
7956 then
7957 Error_Msg_N
7958 ("only static constraints allowed for parent"
7959 & " discriminants in the partial view", Indic);
7960 exit;
7961 end if;
7963 -- If a new discriminant is used in the constraint, then its
7964 -- subtype must be statically compatible with the parent
7965 -- discriminant's subtype (3.7(15)).
7967 -- However, if the record contains an array constrained by
7968 -- the discriminant but with some different bound, the compiler
7969 -- attemps to create a smaller range for the discriminant type.
7970 -- (See exp_ch3.Adjust_Discriminants). In this case, where
7971 -- the discriminant type is a scalar type, the check must use
7972 -- the original discriminant type in the parent declaration.
7974 declare
7975 Corr_Disc : constant Entity_Id :=
7976 Corresponding_Discriminant (Discrim);
7977 Disc_Type : constant Entity_Id := Etype (Discrim);
7978 Corr_Type : Entity_Id;
7980 begin
7981 if Present (Corr_Disc) then
7982 if Is_Scalar_Type (Disc_Type) then
7983 Corr_Type :=
7984 Entity (Discriminant_Type (Parent (Corr_Disc)));
7985 else
7986 Corr_Type := Etype (Corr_Disc);
7987 end if;
7989 if not
7990 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
7991 then
7992 Error_Msg_N
7993 ("subtype must be compatible "
7994 & "with parent discriminant",
7995 Discrim);
7996 end if;
7997 end if;
7998 end;
8000 Next_Discriminant (Discrim);
8001 end loop;
8003 -- Check whether the constraints of the full view statically
8004 -- match those imposed by the parent subtype [7.3(13)].
8006 if Present (Stored_Constraint (Derived_Type)) then
8007 declare
8008 C1, C2 : Elmt_Id;
8010 begin
8011 C1 := First_Elmt (Discs);
8012 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8013 while Present (C1) and then Present (C2) loop
8014 if not
8015 Fully_Conformant_Expressions (Node (C1), Node (C2))
8016 then
8017 Error_Msg_N
8018 ("not conformant with previous declaration",
8019 Node (C1));
8020 end if;
8022 Next_Elmt (C1);
8023 Next_Elmt (C2);
8024 end loop;
8025 end;
8026 end if;
8027 end if;
8029 -- STEP 2b: No new discriminants, inherit discriminants if any
8031 else
8032 if Private_Extension then
8033 Set_Has_Unknown_Discriminants
8034 (Derived_Type,
8035 Has_Unknown_Discriminants (Parent_Type)
8036 or else Unknown_Discriminants_Present (N));
8038 -- The partial view of the parent may have unknown discriminants,
8039 -- but if the full view has discriminants and the parent type is
8040 -- in scope they must be inherited.
8042 elsif Has_Unknown_Discriminants (Parent_Type)
8043 and then
8044 (not Has_Discriminants (Parent_Type)
8045 or else not In_Open_Scopes (Scope (Parent_Type)))
8046 then
8047 Set_Has_Unknown_Discriminants (Derived_Type);
8048 end if;
8050 if not Has_Unknown_Discriminants (Derived_Type)
8051 and then not Has_Unknown_Discriminants (Parent_Base)
8052 and then Has_Discriminants (Parent_Type)
8053 then
8054 Inherit_Discrims := True;
8055 Set_Has_Discriminants
8056 (Derived_Type, True);
8057 Set_Discriminant_Constraint
8058 (Derived_Type, Discriminant_Constraint (Parent_Base));
8059 end if;
8061 -- The following test is true for private types (remember
8062 -- transformation 5. is not applied to those) and in an error
8063 -- situation.
8065 if Constraint_Present then
8066 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8067 end if;
8069 -- For now mark a new derived type as constrained only if it has no
8070 -- discriminants. At the end of Build_Derived_Record_Type we properly
8071 -- set this flag in the case of private extensions. See comments in
8072 -- point 9. just before body of Build_Derived_Record_Type.
8074 Set_Is_Constrained
8075 (Derived_Type,
8076 not (Inherit_Discrims
8077 or else Has_Unknown_Discriminants (Derived_Type)));
8078 end if;
8080 -- STEP 3: initialize fields of derived type
8082 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8083 Set_Stored_Constraint (Derived_Type, No_Elist);
8085 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8086 -- but cannot be interfaces
8088 if not Private_Extension
8089 and then Ekind (Derived_Type) /= E_Private_Type
8090 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8091 then
8092 if Interface_Present (Type_Def) then
8093 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8094 end if;
8096 Set_Interfaces (Derived_Type, No_Elist);
8097 end if;
8099 -- Fields inherited from the Parent_Type
8101 Set_Has_Specified_Layout
8102 (Derived_Type, Has_Specified_Layout (Parent_Type));
8103 Set_Is_Limited_Composite
8104 (Derived_Type, Is_Limited_Composite (Parent_Type));
8105 Set_Is_Private_Composite
8106 (Derived_Type, Is_Private_Composite (Parent_Type));
8108 -- Fields inherited from the Parent_Base
8110 Set_Has_Controlled_Component
8111 (Derived_Type, Has_Controlled_Component (Parent_Base));
8112 Set_Has_Non_Standard_Rep
8113 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8114 Set_Has_Primitive_Operations
8115 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8117 -- Fields inherited from the Parent_Base in the non-private case
8119 if Ekind (Derived_Type) = E_Record_Type then
8120 Set_Has_Complex_Representation
8121 (Derived_Type, Has_Complex_Representation (Parent_Base));
8122 end if;
8124 -- Fields inherited from the Parent_Base for record types
8126 if Is_Record_Type (Derived_Type) then
8128 declare
8129 Parent_Full : Entity_Id;
8131 begin
8132 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8133 -- Parent_Base can be a private type or private extension. Go
8134 -- to the full view here to get the E_Record_Type specific flags.
8136 if Present (Full_View (Parent_Base)) then
8137 Parent_Full := Full_View (Parent_Base);
8138 else
8139 Parent_Full := Parent_Base;
8140 end if;
8142 Set_OK_To_Reorder_Components
8143 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8144 end;
8145 end if;
8147 -- Set fields for private derived types
8149 if Is_Private_Type (Derived_Type) then
8150 Set_Depends_On_Private (Derived_Type, True);
8151 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8153 -- Inherit fields from non private record types. If this is the
8154 -- completion of a derivation from a private type, the parent itself
8155 -- is private, and the attributes come from its full view, which must
8156 -- be present.
8158 else
8159 if Is_Private_Type (Parent_Base)
8160 and then not Is_Record_Type (Parent_Base)
8161 then
8162 Set_Component_Alignment
8163 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8164 Set_C_Pass_By_Copy
8165 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8166 else
8167 Set_Component_Alignment
8168 (Derived_Type, Component_Alignment (Parent_Base));
8169 Set_C_Pass_By_Copy
8170 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8171 end if;
8172 end if;
8174 -- Set fields for tagged types
8176 if Is_Tagged then
8177 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8179 -- All tagged types defined in Ada.Finalization are controlled
8181 if Chars (Scope (Derived_Type)) = Name_Finalization
8182 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8183 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8184 then
8185 Set_Is_Controlled (Derived_Type);
8186 else
8187 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8188 end if;
8190 -- Minor optimization: there is no need to generate the class-wide
8191 -- entity associated with an underlying record view.
8193 if not Is_Underlying_Record_View (Derived_Type) then
8194 Make_Class_Wide_Type (Derived_Type);
8195 end if;
8197 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8199 if Has_Discriminants (Derived_Type)
8200 and then Constraint_Present
8201 then
8202 Set_Stored_Constraint
8203 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8204 end if;
8206 if Ada_Version >= Ada_2005 then
8207 declare
8208 Ifaces_List : Elist_Id;
8210 begin
8211 -- Checks rules 3.9.4 (13/2 and 14/2)
8213 if Comes_From_Source (Derived_Type)
8214 and then not Is_Private_Type (Derived_Type)
8215 and then Is_Interface (Parent_Type)
8216 and then not Is_Interface (Derived_Type)
8217 then
8218 if Is_Task_Interface (Parent_Type) then
8219 Error_Msg_N
8220 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8221 Derived_Type);
8223 elsif Is_Protected_Interface (Parent_Type) then
8224 Error_Msg_N
8225 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8226 Derived_Type);
8227 end if;
8228 end if;
8230 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8232 Check_Interfaces (N, Type_Def);
8234 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8235 -- not already in the parents.
8237 Collect_Interfaces
8238 (T => Derived_Type,
8239 Ifaces_List => Ifaces_List,
8240 Exclude_Parents => True);
8242 Set_Interfaces (Derived_Type, Ifaces_List);
8244 -- If the derived type is the anonymous type created for
8245 -- a declaration whose parent has a constraint, propagate
8246 -- the interface list to the source type. This must be done
8247 -- prior to the completion of the analysis of the source type
8248 -- because the components in the extension may contain current
8249 -- instances whose legality depends on some ancestor.
8251 if Is_Itype (Derived_Type) then
8252 declare
8253 Def : constant Node_Id :=
8254 Associated_Node_For_Itype (Derived_Type);
8255 begin
8256 if Present (Def)
8257 and then Nkind (Def) = N_Full_Type_Declaration
8258 then
8259 Set_Interfaces
8260 (Defining_Identifier (Def), Ifaces_List);
8261 end if;
8262 end;
8263 end if;
8264 end;
8265 end if;
8267 else
8268 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8269 Set_Has_Non_Standard_Rep
8270 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8271 end if;
8273 -- STEP 4: Inherit components from the parent base and constrain them.
8274 -- Apply the second transformation described in point 6. above.
8276 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8277 or else not Has_Discriminants (Parent_Type)
8278 or else not Is_Constrained (Parent_Type)
8279 then
8280 Constrs := Discs;
8281 else
8282 Constrs := Discriminant_Constraint (Parent_Type);
8283 end if;
8285 Assoc_List :=
8286 Inherit_Components
8287 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8289 -- STEP 5a: Copy the parent record declaration for untagged types
8291 if not Is_Tagged then
8293 -- Discriminant_Constraint (Derived_Type) has been properly
8294 -- constructed. Save it and temporarily set it to Empty because we
8295 -- do not want the call to New_Copy_Tree below to mess this list.
8297 if Has_Discriminants (Derived_Type) then
8298 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8299 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8300 else
8301 Save_Discr_Constr := No_Elist;
8302 end if;
8304 -- Save the Etype field of Derived_Type. It is correctly set now,
8305 -- but the call to New_Copy tree may remap it to point to itself,
8306 -- which is not what we want. Ditto for the Next_Entity field.
8308 Save_Etype := Etype (Derived_Type);
8309 Save_Next_Entity := Next_Entity (Derived_Type);
8311 -- Assoc_List maps all stored discriminants in the Parent_Base to
8312 -- stored discriminants in the Derived_Type. It is fundamental that
8313 -- no types or itypes with discriminants other than the stored
8314 -- discriminants appear in the entities declared inside
8315 -- Derived_Type, since the back end cannot deal with it.
8317 New_Decl :=
8318 New_Copy_Tree
8319 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8321 -- Restore the fields saved prior to the New_Copy_Tree call
8322 -- and compute the stored constraint.
8324 Set_Etype (Derived_Type, Save_Etype);
8325 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8327 if Has_Discriminants (Derived_Type) then
8328 Set_Discriminant_Constraint
8329 (Derived_Type, Save_Discr_Constr);
8330 Set_Stored_Constraint
8331 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8332 Replace_Components (Derived_Type, New_Decl);
8333 Set_Has_Implicit_Dereference
8334 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8335 end if;
8337 -- Insert the new derived type declaration
8339 Rewrite (N, New_Decl);
8341 -- STEP 5b: Complete the processing for record extensions in generics
8343 -- There is no completion for record extensions declared in the
8344 -- parameter part of a generic, so we need to complete processing for
8345 -- these generic record extensions here. The Record_Type_Definition call
8346 -- will change the Ekind of the components from E_Void to E_Component.
8348 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8349 Record_Type_Definition (Empty, Derived_Type);
8351 -- STEP 5c: Process the record extension for non private tagged types
8353 elsif not Private_Extension then
8355 -- Add the _parent field in the derived type
8357 Expand_Record_Extension (Derived_Type, Type_Def);
8359 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8360 -- implemented interfaces if we are in expansion mode
8362 if Expander_Active
8363 and then Has_Interfaces (Derived_Type)
8364 then
8365 Add_Interface_Tag_Components (N, Derived_Type);
8366 end if;
8368 -- Analyze the record extension
8370 Record_Type_Definition
8371 (Record_Extension_Part (Type_Def), Derived_Type);
8372 end if;
8374 End_Scope;
8376 -- Nothing else to do if there is an error in the derivation.
8377 -- An unusual case: the full view may be derived from a type in an
8378 -- instance, when the partial view was used illegally as an actual
8379 -- in that instance, leading to a circular definition.
8381 if Etype (Derived_Type) = Any_Type
8382 or else Etype (Parent_Type) = Derived_Type
8383 then
8384 return;
8385 end if;
8387 -- Set delayed freeze and then derive subprograms, we need to do
8388 -- this in this order so that derived subprograms inherit the
8389 -- derived freeze if necessary.
8391 Set_Has_Delayed_Freeze (Derived_Type);
8393 if Derive_Subps then
8394 Derive_Subprograms (Parent_Type, Derived_Type);
8395 end if;
8397 -- If we have a private extension which defines a constrained derived
8398 -- type mark as constrained here after we have derived subprograms. See
8399 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8401 if Private_Extension and then Inherit_Discrims then
8402 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8403 Set_Is_Constrained (Derived_Type, True);
8404 Set_Discriminant_Constraint (Derived_Type, Discs);
8406 elsif Is_Constrained (Parent_Type) then
8407 Set_Is_Constrained
8408 (Derived_Type, True);
8409 Set_Discriminant_Constraint
8410 (Derived_Type, Discriminant_Constraint (Parent_Type));
8411 end if;
8412 end if;
8414 -- Update the class-wide type, which shares the now-completed entity
8415 -- list with its specific type. In case of underlying record views,
8416 -- we do not generate the corresponding class wide entity.
8418 if Is_Tagged
8419 and then not Is_Underlying_Record_View (Derived_Type)
8420 then
8421 Set_First_Entity
8422 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8423 Set_Last_Entity
8424 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8425 end if;
8427 Check_Function_Writable_Actuals (N);
8428 end Build_Derived_Record_Type;
8430 ------------------------
8431 -- Build_Derived_Type --
8432 ------------------------
8434 procedure Build_Derived_Type
8435 (N : Node_Id;
8436 Parent_Type : Entity_Id;
8437 Derived_Type : Entity_Id;
8438 Is_Completion : Boolean;
8439 Derive_Subps : Boolean := True)
8441 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8443 begin
8444 -- Set common attributes
8446 Set_Scope (Derived_Type, Current_Scope);
8448 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8449 Set_Etype (Derived_Type, Parent_Base);
8450 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8452 Set_Size_Info (Derived_Type, Parent_Type);
8453 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8454 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8455 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8457 -- If the parent type is a private subtype, the convention on the base
8458 -- type may be set in the private part, and not propagated to the
8459 -- subtype until later, so we obtain the convention from the base type.
8461 Set_Convention (Derived_Type, Convention (Parent_Base));
8463 -- Propagate invariant information. The new type has invariants if
8464 -- they are inherited from the parent type, and these invariants can
8465 -- be further inherited, so both flags are set.
8467 -- We similarly inherit predicates
8469 if Has_Predicates (Parent_Type) then
8470 Set_Has_Predicates (Derived_Type);
8471 end if;
8473 -- The derived type inherits the representation clauses of the parent.
8474 -- However, for a private type that is completed by a derivation, there
8475 -- may be operation attributes that have been specified already (stream
8476 -- attributes and External_Tag) and those must be provided. Finally,
8477 -- if the partial view is a private extension, the representation items
8478 -- of the parent have been inherited already, and should not be chained
8479 -- twice to the derived type.
8481 if Is_Tagged_Type (Parent_Type)
8482 and then Present (First_Rep_Item (Derived_Type))
8483 then
8484 -- The existing items are either operational items or items inherited
8485 -- from a private extension declaration.
8487 declare
8488 Rep : Node_Id;
8489 -- Used to iterate over representation items of the derived type
8491 Last_Rep : Node_Id;
8492 -- Last representation item of the (non-empty) representation
8493 -- item list of the derived type.
8495 Found : Boolean := False;
8497 begin
8498 Rep := First_Rep_Item (Derived_Type);
8499 Last_Rep := Rep;
8500 while Present (Rep) loop
8501 if Rep = First_Rep_Item (Parent_Type) then
8502 Found := True;
8503 exit;
8505 else
8506 Rep := Next_Rep_Item (Rep);
8508 if Present (Rep) then
8509 Last_Rep := Rep;
8510 end if;
8511 end if;
8512 end loop;
8514 -- Here if we either encountered the parent type's first rep
8515 -- item on the derived type's rep item list (in which case
8516 -- Found is True, and we have nothing else to do), or if we
8517 -- reached the last rep item of the derived type, which is
8518 -- Last_Rep, in which case we further chain the parent type's
8519 -- rep items to those of the derived type.
8521 if not Found then
8522 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
8523 end if;
8524 end;
8526 else
8527 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8528 end if;
8530 -- If the parent type has delayed rep aspects, then mark the derived
8531 -- type as possibly inheriting a delayed rep aspect.
8533 if Has_Delayed_Rep_Aspects (Parent_Type) then
8534 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8535 end if;
8537 -- Type dependent processing
8539 case Ekind (Parent_Type) is
8540 when Numeric_Kind =>
8541 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8543 when Array_Kind =>
8544 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8546 when E_Record_Type
8547 | E_Record_Subtype
8548 | Class_Wide_Kind =>
8549 Build_Derived_Record_Type
8550 (N, Parent_Type, Derived_Type, Derive_Subps);
8551 return;
8553 when Enumeration_Kind =>
8554 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8556 when Access_Kind =>
8557 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8559 when Incomplete_Or_Private_Kind =>
8560 Build_Derived_Private_Type
8561 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8563 -- For discriminated types, the derivation includes deriving
8564 -- primitive operations. For others it is done below.
8566 if Is_Tagged_Type (Parent_Type)
8567 or else Has_Discriminants (Parent_Type)
8568 or else (Present (Full_View (Parent_Type))
8569 and then Has_Discriminants (Full_View (Parent_Type)))
8570 then
8571 return;
8572 end if;
8574 when Concurrent_Kind =>
8575 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8577 when others =>
8578 raise Program_Error;
8579 end case;
8581 -- Nothing more to do if some error occurred
8583 if Etype (Derived_Type) = Any_Type then
8584 return;
8585 end if;
8587 -- Set delayed freeze and then derive subprograms, we need to do this
8588 -- in this order so that derived subprograms inherit the derived freeze
8589 -- if necessary.
8591 Set_Has_Delayed_Freeze (Derived_Type);
8593 if Derive_Subps then
8594 Derive_Subprograms (Parent_Type, Derived_Type);
8595 end if;
8597 Set_Has_Primitive_Operations
8598 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8599 end Build_Derived_Type;
8601 -----------------------
8602 -- Build_Discriminal --
8603 -----------------------
8605 procedure Build_Discriminal (Discrim : Entity_Id) is
8606 D_Minal : Entity_Id;
8607 CR_Disc : Entity_Id;
8609 begin
8610 -- A discriminal has the same name as the discriminant
8612 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8614 Set_Ekind (D_Minal, E_In_Parameter);
8615 Set_Mechanism (D_Minal, Default_Mechanism);
8616 Set_Etype (D_Minal, Etype (Discrim));
8617 Set_Scope (D_Minal, Current_Scope);
8619 Set_Discriminal (Discrim, D_Minal);
8620 Set_Discriminal_Link (D_Minal, Discrim);
8622 -- For task types, build at once the discriminants of the corresponding
8623 -- record, which are needed if discriminants are used in entry defaults
8624 -- and in family bounds.
8626 if Is_Concurrent_Type (Current_Scope)
8627 or else Is_Limited_Type (Current_Scope)
8628 then
8629 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8631 Set_Ekind (CR_Disc, E_In_Parameter);
8632 Set_Mechanism (CR_Disc, Default_Mechanism);
8633 Set_Etype (CR_Disc, Etype (Discrim));
8634 Set_Scope (CR_Disc, Current_Scope);
8635 Set_Discriminal_Link (CR_Disc, Discrim);
8636 Set_CR_Discriminant (Discrim, CR_Disc);
8637 end if;
8638 end Build_Discriminal;
8640 ------------------------------------
8641 -- Build_Discriminant_Constraints --
8642 ------------------------------------
8644 function Build_Discriminant_Constraints
8645 (T : Entity_Id;
8646 Def : Node_Id;
8647 Derived_Def : Boolean := False) return Elist_Id
8649 C : constant Node_Id := Constraint (Def);
8650 Nb_Discr : constant Nat := Number_Discriminants (T);
8652 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8653 -- Saves the expression corresponding to a given discriminant in T
8655 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8656 -- Return the Position number within array Discr_Expr of a discriminant
8657 -- D within the discriminant list of the discriminated type T.
8659 procedure Process_Discriminant_Expression
8660 (Expr : Node_Id;
8661 D : Entity_Id);
8662 -- If this is a discriminant constraint on a partial view, do not
8663 -- generate an overflow check on the discriminant expression. The check
8664 -- will be generated when constraining the full view. Otherwise the
8665 -- backend creates duplicate symbols for the temporaries corresponding
8666 -- to the expressions to be checked, causing spurious assembler errors.
8668 ------------------
8669 -- Pos_Of_Discr --
8670 ------------------
8672 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8673 Disc : Entity_Id;
8675 begin
8676 Disc := First_Discriminant (T);
8677 for J in Discr_Expr'Range loop
8678 if Disc = D then
8679 return J;
8680 end if;
8682 Next_Discriminant (Disc);
8683 end loop;
8685 -- Note: Since this function is called on discriminants that are
8686 -- known to belong to the discriminated type, falling through the
8687 -- loop with no match signals an internal compiler error.
8689 raise Program_Error;
8690 end Pos_Of_Discr;
8692 -------------------------------------
8693 -- Process_Discriminant_Expression --
8694 -------------------------------------
8696 procedure Process_Discriminant_Expression
8697 (Expr : Node_Id;
8698 D : Entity_Id)
8700 BDT : constant Entity_Id := Base_Type (Etype (D));
8702 begin
8703 -- If this is a discriminant constraint on a partial view, do
8704 -- not generate an overflow on the discriminant expression. The
8705 -- check will be generated when constraining the full view.
8707 if Is_Private_Type (T)
8708 and then Present (Full_View (T))
8709 then
8710 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8711 else
8712 Analyze_And_Resolve (Expr, BDT);
8713 end if;
8714 end Process_Discriminant_Expression;
8716 -- Declarations local to Build_Discriminant_Constraints
8718 Discr : Entity_Id;
8719 E : Entity_Id;
8720 Elist : constant Elist_Id := New_Elmt_List;
8722 Constr : Node_Id;
8723 Expr : Node_Id;
8724 Id : Node_Id;
8725 Position : Nat;
8726 Found : Boolean;
8728 Discrim_Present : Boolean := False;
8730 -- Start of processing for Build_Discriminant_Constraints
8732 begin
8733 -- The following loop will process positional associations only.
8734 -- For a positional association, the (single) discriminant is
8735 -- implicitly specified by position, in textual order (RM 3.7.2).
8737 Discr := First_Discriminant (T);
8738 Constr := First (Constraints (C));
8739 for D in Discr_Expr'Range loop
8740 exit when Nkind (Constr) = N_Discriminant_Association;
8742 if No (Constr) then
8743 Error_Msg_N ("too few discriminants given in constraint", C);
8744 return New_Elmt_List;
8746 elsif Nkind (Constr) = N_Range
8747 or else (Nkind (Constr) = N_Attribute_Reference
8748 and then
8749 Attribute_Name (Constr) = Name_Range)
8750 then
8751 Error_Msg_N
8752 ("a range is not a valid discriminant constraint", Constr);
8753 Discr_Expr (D) := Error;
8755 else
8756 Process_Discriminant_Expression (Constr, Discr);
8757 Discr_Expr (D) := Constr;
8758 end if;
8760 Next_Discriminant (Discr);
8761 Next (Constr);
8762 end loop;
8764 if No (Discr) and then Present (Constr) then
8765 Error_Msg_N ("too many discriminants given in constraint", Constr);
8766 return New_Elmt_List;
8767 end if;
8769 -- Named associations can be given in any order, but if both positional
8770 -- and named associations are used in the same discriminant constraint,
8771 -- then positional associations must occur first, at their normal
8772 -- position. Hence once a named association is used, the rest of the
8773 -- discriminant constraint must use only named associations.
8775 while Present (Constr) loop
8777 -- Positional association forbidden after a named association
8779 if Nkind (Constr) /= N_Discriminant_Association then
8780 Error_Msg_N ("positional association follows named one", Constr);
8781 return New_Elmt_List;
8783 -- Otherwise it is a named association
8785 else
8786 -- E records the type of the discriminants in the named
8787 -- association. All the discriminants specified in the same name
8788 -- association must have the same type.
8790 E := Empty;
8792 -- Search the list of discriminants in T to see if the simple name
8793 -- given in the constraint matches any of them.
8795 Id := First (Selector_Names (Constr));
8796 while Present (Id) loop
8797 Found := False;
8799 -- If Original_Discriminant is present, we are processing a
8800 -- generic instantiation and this is an instance node. We need
8801 -- to find the name of the corresponding discriminant in the
8802 -- actual record type T and not the name of the discriminant in
8803 -- the generic formal. Example:
8805 -- generic
8806 -- type G (D : int) is private;
8807 -- package P is
8808 -- subtype W is G (D => 1);
8809 -- end package;
8810 -- type Rec (X : int) is record ... end record;
8811 -- package Q is new P (G => Rec);
8813 -- At the point of the instantiation, formal type G is Rec
8814 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8815 -- which really looks like "subtype W is Rec (D => 1);" at
8816 -- the point of instantiation, we want to find the discriminant
8817 -- that corresponds to D in Rec, i.e. X.
8819 if Present (Original_Discriminant (Id))
8820 and then In_Instance
8821 then
8822 Discr := Find_Corresponding_Discriminant (Id, T);
8823 Found := True;
8825 else
8826 Discr := First_Discriminant (T);
8827 while Present (Discr) loop
8828 if Chars (Discr) = Chars (Id) then
8829 Found := True;
8830 exit;
8831 end if;
8833 Next_Discriminant (Discr);
8834 end loop;
8836 if not Found then
8837 Error_Msg_N ("& does not match any discriminant", Id);
8838 return New_Elmt_List;
8840 -- If the parent type is a generic formal, preserve the
8841 -- name of the discriminant for subsequent instances.
8842 -- see comment at the beginning of this if statement.
8844 elsif Is_Generic_Type (Root_Type (T)) then
8845 Set_Original_Discriminant (Id, Discr);
8846 end if;
8847 end if;
8849 Position := Pos_Of_Discr (T, Discr);
8851 if Present (Discr_Expr (Position)) then
8852 Error_Msg_N ("duplicate constraint for discriminant&", Id);
8854 else
8855 -- Each discriminant specified in the same named association
8856 -- must be associated with a separate copy of the
8857 -- corresponding expression.
8859 if Present (Next (Id)) then
8860 Expr := New_Copy_Tree (Expression (Constr));
8861 Set_Parent (Expr, Parent (Expression (Constr)));
8862 else
8863 Expr := Expression (Constr);
8864 end if;
8866 Discr_Expr (Position) := Expr;
8867 Process_Discriminant_Expression (Expr, Discr);
8868 end if;
8870 -- A discriminant association with more than one discriminant
8871 -- name is only allowed if the named discriminants are all of
8872 -- the same type (RM 3.7.1(8)).
8874 if E = Empty then
8875 E := Base_Type (Etype (Discr));
8877 elsif Base_Type (Etype (Discr)) /= E then
8878 Error_Msg_N
8879 ("all discriminants in an association " &
8880 "must have the same type", Id);
8881 end if;
8883 Next (Id);
8884 end loop;
8885 end if;
8887 Next (Constr);
8888 end loop;
8890 -- A discriminant constraint must provide exactly one value for each
8891 -- discriminant of the type (RM 3.7.1(8)).
8893 for J in Discr_Expr'Range loop
8894 if No (Discr_Expr (J)) then
8895 Error_Msg_N ("too few discriminants given in constraint", C);
8896 return New_Elmt_List;
8897 end if;
8898 end loop;
8900 -- Determine if there are discriminant expressions in the constraint
8902 for J in Discr_Expr'Range loop
8903 if Denotes_Discriminant
8904 (Discr_Expr (J), Check_Concurrent => True)
8905 then
8906 Discrim_Present := True;
8907 end if;
8908 end loop;
8910 -- Build an element list consisting of the expressions given in the
8911 -- discriminant constraint and apply the appropriate checks. The list
8912 -- is constructed after resolving any named discriminant associations
8913 -- and therefore the expressions appear in the textual order of the
8914 -- discriminants.
8916 Discr := First_Discriminant (T);
8917 for J in Discr_Expr'Range loop
8918 if Discr_Expr (J) /= Error then
8919 Append_Elmt (Discr_Expr (J), Elist);
8921 -- If any of the discriminant constraints is given by a
8922 -- discriminant and we are in a derived type declaration we
8923 -- have a discriminant renaming. Establish link between new
8924 -- and old discriminant.
8926 if Denotes_Discriminant (Discr_Expr (J)) then
8927 if Derived_Def then
8928 Set_Corresponding_Discriminant
8929 (Entity (Discr_Expr (J)), Discr);
8930 end if;
8932 -- Force the evaluation of non-discriminant expressions.
8933 -- If we have found a discriminant in the constraint 3.4(26)
8934 -- and 3.8(18) demand that no range checks are performed are
8935 -- after evaluation. If the constraint is for a component
8936 -- definition that has a per-object constraint, expressions are
8937 -- evaluated but not checked either. In all other cases perform
8938 -- a range check.
8940 else
8941 if Discrim_Present then
8942 null;
8944 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
8945 and then
8946 Has_Per_Object_Constraint
8947 (Defining_Identifier (Parent (Parent (Def))))
8948 then
8949 null;
8951 elsif Is_Access_Type (Etype (Discr)) then
8952 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
8954 else
8955 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
8956 end if;
8958 Force_Evaluation (Discr_Expr (J));
8959 end if;
8961 -- Check that the designated type of an access discriminant's
8962 -- expression is not a class-wide type unless the discriminant's
8963 -- designated type is also class-wide.
8965 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
8966 and then not Is_Class_Wide_Type
8967 (Designated_Type (Etype (Discr)))
8968 and then Etype (Discr_Expr (J)) /= Any_Type
8969 and then Is_Class_Wide_Type
8970 (Designated_Type (Etype (Discr_Expr (J))))
8971 then
8972 Wrong_Type (Discr_Expr (J), Etype (Discr));
8974 elsif Is_Access_Type (Etype (Discr))
8975 and then not Is_Access_Constant (Etype (Discr))
8976 and then Is_Access_Type (Etype (Discr_Expr (J)))
8977 and then Is_Access_Constant (Etype (Discr_Expr (J)))
8978 then
8979 Error_Msg_NE
8980 ("constraint for discriminant& must be access to variable",
8981 Def, Discr);
8982 end if;
8983 end if;
8985 Next_Discriminant (Discr);
8986 end loop;
8988 return Elist;
8989 end Build_Discriminant_Constraints;
8991 ---------------------------------
8992 -- Build_Discriminated_Subtype --
8993 ---------------------------------
8995 procedure Build_Discriminated_Subtype
8996 (T : Entity_Id;
8997 Def_Id : Entity_Id;
8998 Elist : Elist_Id;
8999 Related_Nod : Node_Id;
9000 For_Access : Boolean := False)
9002 Has_Discrs : constant Boolean := Has_Discriminants (T);
9003 Constrained : constant Boolean :=
9004 (Has_Discrs
9005 and then not Is_Empty_Elmt_List (Elist)
9006 and then not Is_Class_Wide_Type (T))
9007 or else Is_Constrained (T);
9009 begin
9010 if Ekind (T) = E_Record_Type then
9011 if For_Access then
9012 Set_Ekind (Def_Id, E_Private_Subtype);
9013 Set_Is_For_Access_Subtype (Def_Id, True);
9014 else
9015 Set_Ekind (Def_Id, E_Record_Subtype);
9016 end if;
9018 -- Inherit preelaboration flag from base, for types for which it
9019 -- may have been set: records, private types, protected types.
9021 Set_Known_To_Have_Preelab_Init
9022 (Def_Id, Known_To_Have_Preelab_Init (T));
9024 elsif Ekind (T) = E_Task_Type then
9025 Set_Ekind (Def_Id, E_Task_Subtype);
9027 elsif Ekind (T) = E_Protected_Type then
9028 Set_Ekind (Def_Id, E_Protected_Subtype);
9029 Set_Known_To_Have_Preelab_Init
9030 (Def_Id, Known_To_Have_Preelab_Init (T));
9032 elsif Is_Private_Type (T) then
9033 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9034 Set_Known_To_Have_Preelab_Init
9035 (Def_Id, Known_To_Have_Preelab_Init (T));
9037 -- Private subtypes may have private dependents
9039 Set_Private_Dependents (Def_Id, New_Elmt_List);
9041 elsif Is_Class_Wide_Type (T) then
9042 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9044 else
9045 -- Incomplete type. Attach subtype to list of dependents, to be
9046 -- completed with full view of parent type, unless is it the
9047 -- designated subtype of a record component within an init_proc.
9048 -- This last case arises for a component of an access type whose
9049 -- designated type is incomplete (e.g. a Taft Amendment type).
9050 -- The designated subtype is within an inner scope, and needs no
9051 -- elaboration, because only the access type is needed in the
9052 -- initialization procedure.
9054 Set_Ekind (Def_Id, Ekind (T));
9056 if For_Access and then Within_Init_Proc then
9057 null;
9058 else
9059 Append_Elmt (Def_Id, Private_Dependents (T));
9060 end if;
9061 end if;
9063 Set_Etype (Def_Id, T);
9064 Init_Size_Align (Def_Id);
9065 Set_Has_Discriminants (Def_Id, Has_Discrs);
9066 Set_Is_Constrained (Def_Id, Constrained);
9068 Set_First_Entity (Def_Id, First_Entity (T));
9069 Set_Last_Entity (Def_Id, Last_Entity (T));
9070 Set_Has_Implicit_Dereference
9071 (Def_Id, Has_Implicit_Dereference (T));
9073 -- If the subtype is the completion of a private declaration, there may
9074 -- have been representation clauses for the partial view, and they must
9075 -- be preserved. Build_Derived_Type chains the inherited clauses with
9076 -- the ones appearing on the extension. If this comes from a subtype
9077 -- declaration, all clauses are inherited.
9079 if No (First_Rep_Item (Def_Id)) then
9080 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9081 end if;
9083 if Is_Tagged_Type (T) then
9084 Set_Is_Tagged_Type (Def_Id);
9085 Make_Class_Wide_Type (Def_Id);
9086 end if;
9088 Set_Stored_Constraint (Def_Id, No_Elist);
9090 if Has_Discrs then
9091 Set_Discriminant_Constraint (Def_Id, Elist);
9092 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9093 end if;
9095 if Is_Tagged_Type (T) then
9097 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9098 -- concurrent record type (which has the list of primitive
9099 -- operations).
9101 if Ada_Version >= Ada_2005
9102 and then Is_Concurrent_Type (T)
9103 then
9104 Set_Corresponding_Record_Type (Def_Id,
9105 Corresponding_Record_Type (T));
9106 else
9107 Set_Direct_Primitive_Operations (Def_Id,
9108 Direct_Primitive_Operations (T));
9109 end if;
9111 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9112 end if;
9114 -- Subtypes introduced by component declarations do not need to be
9115 -- marked as delayed, and do not get freeze nodes, because the semantics
9116 -- verifies that the parents of the subtypes are frozen before the
9117 -- enclosing record is frozen.
9119 if not Is_Type (Scope (Def_Id)) then
9120 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9122 if Is_Private_Type (T)
9123 and then Present (Full_View (T))
9124 then
9125 Conditional_Delay (Def_Id, Full_View (T));
9126 else
9127 Conditional_Delay (Def_Id, T);
9128 end if;
9129 end if;
9131 if Is_Record_Type (T) then
9132 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9134 if Has_Discrs
9135 and then not Is_Empty_Elmt_List (Elist)
9136 and then not For_Access
9137 then
9138 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9139 elsif not For_Access then
9140 Set_Cloned_Subtype (Def_Id, T);
9141 end if;
9142 end if;
9143 end Build_Discriminated_Subtype;
9145 ---------------------------
9146 -- Build_Itype_Reference --
9147 ---------------------------
9149 procedure Build_Itype_Reference
9150 (Ityp : Entity_Id;
9151 Nod : Node_Id)
9153 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9154 begin
9156 -- Itype references are only created for use by the back-end
9158 if Inside_A_Generic then
9159 return;
9160 else
9161 Set_Itype (IR, Ityp);
9162 Insert_After (Nod, IR);
9163 end if;
9164 end Build_Itype_Reference;
9166 ------------------------
9167 -- Build_Scalar_Bound --
9168 ------------------------
9170 function Build_Scalar_Bound
9171 (Bound : Node_Id;
9172 Par_T : Entity_Id;
9173 Der_T : Entity_Id) return Node_Id
9175 New_Bound : Entity_Id;
9177 begin
9178 -- Note: not clear why this is needed, how can the original bound
9179 -- be unanalyzed at this point? and if it is, what business do we
9180 -- have messing around with it? and why is the base type of the
9181 -- parent type the right type for the resolution. It probably is
9182 -- not. It is OK for the new bound we are creating, but not for
9183 -- the old one??? Still if it never happens, no problem.
9185 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9187 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9188 New_Bound := New_Copy (Bound);
9189 Set_Etype (New_Bound, Der_T);
9190 Set_Analyzed (New_Bound);
9192 elsif Is_Entity_Name (Bound) then
9193 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9195 -- The following is almost certainly wrong. What business do we have
9196 -- relocating a node (Bound) that is presumably still attached to
9197 -- the tree elsewhere???
9199 else
9200 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9201 end if;
9203 Set_Etype (New_Bound, Der_T);
9204 return New_Bound;
9205 end Build_Scalar_Bound;
9207 --------------------------------
9208 -- Build_Underlying_Full_View --
9209 --------------------------------
9211 procedure Build_Underlying_Full_View
9212 (N : Node_Id;
9213 Typ : Entity_Id;
9214 Par : Entity_Id)
9216 Loc : constant Source_Ptr := Sloc (N);
9217 Subt : constant Entity_Id :=
9218 Make_Defining_Identifier
9219 (Loc, New_External_Name (Chars (Typ), 'S'));
9221 Constr : Node_Id;
9222 Indic : Node_Id;
9223 C : Node_Id;
9224 Id : Node_Id;
9226 procedure Set_Discriminant_Name (Id : Node_Id);
9227 -- If the derived type has discriminants, they may rename discriminants
9228 -- of the parent. When building the full view of the parent, we need to
9229 -- recover the names of the original discriminants if the constraint is
9230 -- given by named associations.
9232 ---------------------------
9233 -- Set_Discriminant_Name --
9234 ---------------------------
9236 procedure Set_Discriminant_Name (Id : Node_Id) is
9237 Disc : Entity_Id;
9239 begin
9240 Set_Original_Discriminant (Id, Empty);
9242 if Has_Discriminants (Typ) then
9243 Disc := First_Discriminant (Typ);
9244 while Present (Disc) loop
9245 if Chars (Disc) = Chars (Id)
9246 and then Present (Corresponding_Discriminant (Disc))
9247 then
9248 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9249 end if;
9250 Next_Discriminant (Disc);
9251 end loop;
9252 end if;
9253 end Set_Discriminant_Name;
9255 -- Start of processing for Build_Underlying_Full_View
9257 begin
9258 if Nkind (N) = N_Full_Type_Declaration then
9259 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9261 elsif Nkind (N) = N_Subtype_Declaration then
9262 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9264 elsif Nkind (N) = N_Component_Declaration then
9265 Constr :=
9266 New_Copy_Tree
9267 (Constraint (Subtype_Indication (Component_Definition (N))));
9269 else
9270 raise Program_Error;
9271 end if;
9273 C := First (Constraints (Constr));
9274 while Present (C) loop
9275 if Nkind (C) = N_Discriminant_Association then
9276 Id := First (Selector_Names (C));
9277 while Present (Id) loop
9278 Set_Discriminant_Name (Id);
9279 Next (Id);
9280 end loop;
9281 end if;
9283 Next (C);
9284 end loop;
9286 Indic :=
9287 Make_Subtype_Declaration (Loc,
9288 Defining_Identifier => Subt,
9289 Subtype_Indication =>
9290 Make_Subtype_Indication (Loc,
9291 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9292 Constraint => New_Copy_Tree (Constr)));
9294 -- If this is a component subtype for an outer itype, it is not
9295 -- a list member, so simply set the parent link for analysis: if
9296 -- the enclosing type does not need to be in a declarative list,
9297 -- neither do the components.
9299 if Is_List_Member (N)
9300 and then Nkind (N) /= N_Component_Declaration
9301 then
9302 Insert_Before (N, Indic);
9303 else
9304 Set_Parent (Indic, Parent (N));
9305 end if;
9307 Analyze (Indic);
9308 Set_Underlying_Full_View (Typ, Full_View (Subt));
9309 end Build_Underlying_Full_View;
9311 -------------------------------
9312 -- Check_Abstract_Overriding --
9313 -------------------------------
9315 procedure Check_Abstract_Overriding (T : Entity_Id) is
9316 Alias_Subp : Entity_Id;
9317 Elmt : Elmt_Id;
9318 Op_List : Elist_Id;
9319 Subp : Entity_Id;
9320 Type_Def : Node_Id;
9322 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9323 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9324 -- which has pragma Implemented already set. Check whether Subp's entity
9325 -- kind conforms to the implementation kind of the overridden routine.
9327 procedure Check_Pragma_Implemented
9328 (Subp : Entity_Id;
9329 Iface_Subp : Entity_Id);
9330 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9331 -- Iface_Subp and both entities have pragma Implemented already set on
9332 -- them. Check whether the two implementation kinds are conforming.
9334 procedure Inherit_Pragma_Implemented
9335 (Subp : Entity_Id;
9336 Iface_Subp : Entity_Id);
9337 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9338 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9339 -- Propagate the implementation kind of Iface_Subp to Subp.
9341 ------------------------------
9342 -- Check_Pragma_Implemented --
9343 ------------------------------
9345 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9346 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9347 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9348 Subp_Alias : constant Entity_Id := Alias (Subp);
9349 Contr_Typ : Entity_Id;
9350 Impl_Subp : Entity_Id;
9352 begin
9353 -- Subp must have an alias since it is a hidden entity used to link
9354 -- an interface subprogram to its overriding counterpart.
9356 pragma Assert (Present (Subp_Alias));
9358 -- Handle aliases to synchronized wrappers
9360 Impl_Subp := Subp_Alias;
9362 if Is_Primitive_Wrapper (Impl_Subp) then
9363 Impl_Subp := Wrapped_Entity (Impl_Subp);
9364 end if;
9366 -- Extract the type of the controlling formal
9368 Contr_Typ := Etype (First_Formal (Subp_Alias));
9370 if Is_Concurrent_Record_Type (Contr_Typ) then
9371 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9372 end if;
9374 -- An interface subprogram whose implementation kind is By_Entry must
9375 -- be implemented by an entry.
9377 if Impl_Kind = Name_By_Entry
9378 and then Ekind (Impl_Subp) /= E_Entry
9379 then
9380 Error_Msg_Node_2 := Iface_Alias;
9381 Error_Msg_NE
9382 ("type & must implement abstract subprogram & with an entry",
9383 Subp_Alias, Contr_Typ);
9385 elsif Impl_Kind = Name_By_Protected_Procedure then
9387 -- An interface subprogram whose implementation kind is By_
9388 -- Protected_Procedure cannot be implemented by a primitive
9389 -- procedure of a task type.
9391 if Ekind (Contr_Typ) /= E_Protected_Type then
9392 Error_Msg_Node_2 := Contr_Typ;
9393 Error_Msg_NE
9394 ("interface subprogram & cannot be implemented by a " &
9395 "primitive procedure of task type &", Subp_Alias,
9396 Iface_Alias);
9398 -- An interface subprogram whose implementation kind is By_
9399 -- Protected_Procedure must be implemented by a procedure.
9401 elsif Ekind (Impl_Subp) /= E_Procedure then
9402 Error_Msg_Node_2 := Iface_Alias;
9403 Error_Msg_NE
9404 ("type & must implement abstract subprogram & with a " &
9405 "procedure", Subp_Alias, Contr_Typ);
9407 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9408 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9409 then
9410 Error_Msg_Name_1 := Impl_Kind;
9411 Error_Msg_N
9412 ("overriding operation& must have synchronization%",
9413 Subp_Alias);
9414 end if;
9416 -- If primitive has Optional synchronization, overriding operation
9417 -- must match if it has an explicit synchronization..
9419 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9420 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9421 then
9422 Error_Msg_Name_1 := Impl_Kind;
9423 Error_Msg_N
9424 ("overriding operation& must have syncrhonization%",
9425 Subp_Alias);
9426 end if;
9427 end Check_Pragma_Implemented;
9429 ------------------------------
9430 -- Check_Pragma_Implemented --
9431 ------------------------------
9433 procedure Check_Pragma_Implemented
9434 (Subp : Entity_Id;
9435 Iface_Subp : Entity_Id)
9437 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9438 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9440 begin
9441 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9442 -- and overriding subprogram are different. In general this is an
9443 -- error except when the implementation kind of the overridden
9444 -- subprograms is By_Any or Optional.
9446 if Iface_Kind /= Subp_Kind
9447 and then Iface_Kind /= Name_By_Any
9448 and then Iface_Kind /= Name_Optional
9449 then
9450 if Iface_Kind = Name_By_Entry then
9451 Error_Msg_N
9452 ("incompatible implementation kind, overridden subprogram " &
9453 "is marked By_Entry", Subp);
9454 else
9455 Error_Msg_N
9456 ("incompatible implementation kind, overridden subprogram " &
9457 "is marked By_Protected_Procedure", Subp);
9458 end if;
9459 end if;
9460 end Check_Pragma_Implemented;
9462 --------------------------------
9463 -- Inherit_Pragma_Implemented --
9464 --------------------------------
9466 procedure Inherit_Pragma_Implemented
9467 (Subp : Entity_Id;
9468 Iface_Subp : Entity_Id)
9470 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9471 Loc : constant Source_Ptr := Sloc (Subp);
9472 Impl_Prag : Node_Id;
9474 begin
9475 -- Since the implementation kind is stored as a representation item
9476 -- rather than a flag, create a pragma node.
9478 Impl_Prag :=
9479 Make_Pragma (Loc,
9480 Chars => Name_Implemented,
9481 Pragma_Argument_Associations => New_List (
9482 Make_Pragma_Argument_Association (Loc,
9483 Expression => New_Occurrence_Of (Subp, Loc)),
9485 Make_Pragma_Argument_Association (Loc,
9486 Expression => Make_Identifier (Loc, Iface_Kind))));
9488 -- The pragma doesn't need to be analyzed because it is internally
9489 -- built. It is safe to directly register it as a rep item since we
9490 -- are only interested in the characters of the implementation kind.
9492 Record_Rep_Item (Subp, Impl_Prag);
9493 end Inherit_Pragma_Implemented;
9495 -- Start of processing for Check_Abstract_Overriding
9497 begin
9498 Op_List := Primitive_Operations (T);
9500 -- Loop to check primitive operations
9502 Elmt := First_Elmt (Op_List);
9503 while Present (Elmt) loop
9504 Subp := Node (Elmt);
9505 Alias_Subp := Alias (Subp);
9507 -- Inherited subprograms are identified by the fact that they do not
9508 -- come from source, and the associated source location is the
9509 -- location of the first subtype of the derived type.
9511 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9512 -- subprograms that "require overriding".
9514 -- Special exception, do not complain about failure to override the
9515 -- stream routines _Input and _Output, as well as the primitive
9516 -- operations used in dispatching selects since we always provide
9517 -- automatic overridings for these subprograms.
9519 -- Also ignore this rule for convention CIL since .NET libraries
9520 -- do bizarre things with interfaces???
9522 -- The partial view of T may have been a private extension, for
9523 -- which inherited functions dispatching on result are abstract.
9524 -- If the full view is a null extension, there is no need for
9525 -- overriding in Ada 2005, but wrappers need to be built for them
9526 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9528 if Is_Null_Extension (T)
9529 and then Has_Controlling_Result (Subp)
9530 and then Ada_Version >= Ada_2005
9531 and then Present (Alias_Subp)
9532 and then not Comes_From_Source (Subp)
9533 and then not Is_Abstract_Subprogram (Alias_Subp)
9534 and then not Is_Access_Type (Etype (Subp))
9535 then
9536 null;
9538 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9539 -- processing because this check is done with the aliased
9540 -- entity
9542 elsif Present (Interface_Alias (Subp)) then
9543 null;
9545 elsif (Is_Abstract_Subprogram (Subp)
9546 or else Requires_Overriding (Subp)
9547 or else
9548 (Has_Controlling_Result (Subp)
9549 and then Present (Alias_Subp)
9550 and then not Comes_From_Source (Subp)
9551 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9552 and then not Is_TSS (Subp, TSS_Stream_Input)
9553 and then not Is_TSS (Subp, TSS_Stream_Output)
9554 and then not Is_Abstract_Type (T)
9555 and then Convention (T) /= Convention_CIL
9556 and then not Is_Predefined_Interface_Primitive (Subp)
9558 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9559 -- with abstract interface types because the check will be done
9560 -- with the aliased entity (otherwise we generate a duplicated
9561 -- error message).
9563 and then not Present (Interface_Alias (Subp))
9564 then
9565 if Present (Alias_Subp) then
9567 -- Only perform the check for a derived subprogram when the
9568 -- type has an explicit record extension. This avoids incorrect
9569 -- flagging of abstract subprograms for the case of a type
9570 -- without an extension that is derived from a formal type
9571 -- with a tagged actual (can occur within a private part).
9573 -- Ada 2005 (AI-391): In the case of an inherited function with
9574 -- a controlling result of the type, the rule does not apply if
9575 -- the type is a null extension (unless the parent function
9576 -- itself is abstract, in which case the function must still be
9577 -- be overridden). The expander will generate an overriding
9578 -- wrapper function calling the parent subprogram (see
9579 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9581 Type_Def := Type_Definition (Parent (T));
9583 if Nkind (Type_Def) = N_Derived_Type_Definition
9584 and then Present (Record_Extension_Part (Type_Def))
9585 and then
9586 (Ada_Version < Ada_2005
9587 or else not Is_Null_Extension (T)
9588 or else Ekind (Subp) = E_Procedure
9589 or else not Has_Controlling_Result (Subp)
9590 or else Is_Abstract_Subprogram (Alias_Subp)
9591 or else Requires_Overriding (Subp)
9592 or else Is_Access_Type (Etype (Subp)))
9593 then
9594 -- Avoid reporting error in case of abstract predefined
9595 -- primitive inherited from interface type because the
9596 -- body of internally generated predefined primitives
9597 -- of tagged types are generated later by Freeze_Type
9599 if Is_Interface (Root_Type (T))
9600 and then Is_Abstract_Subprogram (Subp)
9601 and then Is_Predefined_Dispatching_Operation (Subp)
9602 and then not Comes_From_Source (Ultimate_Alias (Subp))
9603 then
9604 null;
9606 else
9607 Error_Msg_NE
9608 ("type must be declared abstract or & overridden",
9609 T, Subp);
9611 -- Traverse the whole chain of aliased subprograms to
9612 -- complete the error notification. This is especially
9613 -- useful for traceability of the chain of entities when
9614 -- the subprogram corresponds with an interface
9615 -- subprogram (which may be defined in another package).
9617 if Present (Alias_Subp) then
9618 declare
9619 E : Entity_Id;
9621 begin
9622 E := Subp;
9623 while Present (Alias (E)) loop
9625 -- Avoid reporting redundant errors on entities
9626 -- inherited from interfaces
9628 if Sloc (E) /= Sloc (T) then
9629 Error_Msg_Sloc := Sloc (E);
9630 Error_Msg_NE
9631 ("\& has been inherited #", T, Subp);
9632 end if;
9634 E := Alias (E);
9635 end loop;
9637 Error_Msg_Sloc := Sloc (E);
9639 -- AI05-0068: report if there is an overriding
9640 -- non-abstract subprogram that is invisible.
9642 if Is_Hidden (E)
9643 and then not Is_Abstract_Subprogram (E)
9644 then
9645 Error_Msg_NE
9646 ("\& subprogram# is not visible",
9647 T, Subp);
9649 else
9650 Error_Msg_NE
9651 ("\& has been inherited from subprogram #",
9652 T, Subp);
9653 end if;
9654 end;
9655 end if;
9656 end if;
9658 -- Ada 2005 (AI-345): Protected or task type implementing
9659 -- abstract interfaces.
9661 elsif Is_Concurrent_Record_Type (T)
9662 and then Present (Interfaces (T))
9663 then
9664 -- If an inherited subprogram is implemented by a protected
9665 -- procedure or an entry, then the first parameter of the
9666 -- inherited subprogram shall be of mode OUT or IN OUT, or
9667 -- an access-to-variable parameter (RM 9.4(11.9/3))
9669 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9670 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9671 and then Ekind (Subp) /= E_Function
9672 and then not Is_Predefined_Dispatching_Operation (Subp)
9673 then
9674 Error_Msg_PT (T, Subp);
9676 -- Some other kind of overriding failure
9678 else
9679 Error_Msg_NE
9680 ("interface subprogram & must be overridden",
9681 T, Subp);
9683 -- Examine primitive operations of synchronized type,
9684 -- to find homonyms that have the wrong profile.
9686 declare
9687 Prim : Entity_Id;
9689 begin
9690 Prim :=
9691 First_Entity (Corresponding_Concurrent_Type (T));
9692 while Present (Prim) loop
9693 if Chars (Prim) = Chars (Subp) then
9694 Error_Msg_NE
9695 ("profile is not type conformant with "
9696 & "prefixed view profile of "
9697 & "inherited operation&", Prim, Subp);
9698 end if;
9700 Next_Entity (Prim);
9701 end loop;
9702 end;
9703 end if;
9704 end if;
9706 else
9707 Error_Msg_Node_2 := T;
9708 Error_Msg_N
9709 ("abstract subprogram& not allowed for type&", Subp);
9711 -- Also post unconditional warning on the type (unconditional
9712 -- so that if there are more than one of these cases, we get
9713 -- them all, and not just the first one).
9715 Error_Msg_Node_2 := Subp;
9716 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9717 end if;
9718 end if;
9720 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9722 -- Subp is an expander-generated procedure which maps an interface
9723 -- alias to a protected wrapper. The interface alias is flagged by
9724 -- pragma Implemented. Ensure that Subp is a procedure when the
9725 -- implementation kind is By_Protected_Procedure or an entry when
9726 -- By_Entry.
9728 if Ada_Version >= Ada_2012
9729 and then Is_Hidden (Subp)
9730 and then Present (Interface_Alias (Subp))
9731 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9732 then
9733 Check_Pragma_Implemented (Subp);
9734 end if;
9736 -- Subp is an interface primitive which overrides another interface
9737 -- primitive marked with pragma Implemented.
9739 if Ada_Version >= Ada_2012
9740 and then Present (Overridden_Operation (Subp))
9741 and then Has_Rep_Pragma
9742 (Overridden_Operation (Subp), Name_Implemented)
9743 then
9744 -- If the overriding routine is also marked by Implemented, check
9745 -- that the two implementation kinds are conforming.
9747 if Has_Rep_Pragma (Subp, Name_Implemented) then
9748 Check_Pragma_Implemented
9749 (Subp => Subp,
9750 Iface_Subp => Overridden_Operation (Subp));
9752 -- Otherwise the overriding routine inherits the implementation
9753 -- kind from the overridden subprogram.
9755 else
9756 Inherit_Pragma_Implemented
9757 (Subp => Subp,
9758 Iface_Subp => Overridden_Operation (Subp));
9759 end if;
9760 end if;
9762 -- If the operation is a wrapper for a synchronized primitive, it
9763 -- may be called indirectly through a dispatching select. We assume
9764 -- that it will be referenced elsewhere indirectly, and suppress
9765 -- warnings about an unused entity.
9767 if Is_Primitive_Wrapper (Subp)
9768 and then Present (Wrapped_Entity (Subp))
9769 then
9770 Set_Referenced (Wrapped_Entity (Subp));
9771 end if;
9773 Next_Elmt (Elmt);
9774 end loop;
9775 end Check_Abstract_Overriding;
9777 ------------------------------------------------
9778 -- Check_Access_Discriminant_Requires_Limited --
9779 ------------------------------------------------
9781 procedure Check_Access_Discriminant_Requires_Limited
9782 (D : Node_Id;
9783 Loc : Node_Id)
9785 begin
9786 -- A discriminant_specification for an access discriminant shall appear
9787 -- only in the declaration for a task or protected type, or for a type
9788 -- with the reserved word 'limited' in its definition or in one of its
9789 -- ancestors (RM 3.7(10)).
9791 -- AI-0063: The proper condition is that type must be immutably limited,
9792 -- or else be a partial view.
9794 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
9795 if Is_Limited_View (Current_Scope)
9796 or else
9797 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
9798 and then Limited_Present (Parent (Current_Scope)))
9799 then
9800 null;
9802 else
9803 Error_Msg_N
9804 ("access discriminants allowed only for limited types", Loc);
9805 end if;
9806 end if;
9807 end Check_Access_Discriminant_Requires_Limited;
9809 -----------------------------------
9810 -- Check_Aliased_Component_Types --
9811 -----------------------------------
9813 procedure Check_Aliased_Component_Types (T : Entity_Id) is
9814 C : Entity_Id;
9816 begin
9817 -- ??? Also need to check components of record extensions, but not
9818 -- components of protected types (which are always limited).
9820 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9821 -- types to be unconstrained. This is safe because it is illegal to
9822 -- create access subtypes to such types with explicit discriminant
9823 -- constraints.
9825 if not Is_Limited_Type (T) then
9826 if Ekind (T) = E_Record_Type then
9827 C := First_Component (T);
9828 while Present (C) loop
9829 if Is_Aliased (C)
9830 and then Has_Discriminants (Etype (C))
9831 and then not Is_Constrained (Etype (C))
9832 and then not In_Instance_Body
9833 and then Ada_Version < Ada_2005
9834 then
9835 Error_Msg_N
9836 ("aliased component must be constrained (RM 3.6(11))",
9838 end if;
9840 Next_Component (C);
9841 end loop;
9843 elsif Ekind (T) = E_Array_Type then
9844 if Has_Aliased_Components (T)
9845 and then Has_Discriminants (Component_Type (T))
9846 and then not Is_Constrained (Component_Type (T))
9847 and then not In_Instance_Body
9848 and then Ada_Version < Ada_2005
9849 then
9850 Error_Msg_N
9851 ("aliased component type must be constrained (RM 3.6(11))",
9853 end if;
9854 end if;
9855 end if;
9856 end Check_Aliased_Component_Types;
9858 ----------------------
9859 -- Check_Completion --
9860 ----------------------
9862 procedure Check_Completion (Body_Id : Node_Id := Empty) is
9863 E : Entity_Id;
9865 procedure Post_Error;
9866 -- Post error message for lack of completion for entity E
9868 ----------------
9869 -- Post_Error --
9870 ----------------
9872 procedure Post_Error is
9874 procedure Missing_Body;
9875 -- Output missing body message
9877 ------------------
9878 -- Missing_Body --
9879 ------------------
9881 procedure Missing_Body is
9882 begin
9883 -- Spec is in same unit, so we can post on spec
9885 if In_Same_Source_Unit (Body_Id, E) then
9886 Error_Msg_N ("missing body for &", E);
9888 -- Spec is in a separate unit, so we have to post on the body
9890 else
9891 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
9892 end if;
9893 end Missing_Body;
9895 -- Start of processing for Post_Error
9897 begin
9898 if not Comes_From_Source (E) then
9900 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
9901 -- It may be an anonymous protected type created for a
9902 -- single variable. Post error on variable, if present.
9904 declare
9905 Var : Entity_Id;
9907 begin
9908 Var := First_Entity (Current_Scope);
9909 while Present (Var) loop
9910 exit when Etype (Var) = E
9911 and then Comes_From_Source (Var);
9913 Next_Entity (Var);
9914 end loop;
9916 if Present (Var) then
9917 E := Var;
9918 end if;
9919 end;
9920 end if;
9921 end if;
9923 -- If a generated entity has no completion, then either previous
9924 -- semantic errors have disabled the expansion phase, or else we had
9925 -- missing subunits, or else we are compiling without expansion,
9926 -- or else something is very wrong.
9928 if not Comes_From_Source (E) then
9929 pragma Assert
9930 (Serious_Errors_Detected > 0
9931 or else Configurable_Run_Time_Violations > 0
9932 or else Subunits_Missing
9933 or else not Expander_Active);
9934 return;
9936 -- Here for source entity
9938 else
9939 -- Here if no body to post the error message, so we post the error
9940 -- on the declaration that has no completion. This is not really
9941 -- the right place to post it, think about this later ???
9943 if No (Body_Id) then
9944 if Is_Type (E) then
9945 Error_Msg_NE
9946 ("missing full declaration for }", Parent (E), E);
9947 else
9948 Error_Msg_NE ("missing body for &", Parent (E), E);
9949 end if;
9951 -- Package body has no completion for a declaration that appears
9952 -- in the corresponding spec. Post error on the body, with a
9953 -- reference to the non-completed declaration.
9955 else
9956 Error_Msg_Sloc := Sloc (E);
9958 if Is_Type (E) then
9959 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
9961 elsif Is_Overloadable (E)
9962 and then Current_Entity_In_Scope (E) /= E
9963 then
9964 -- It may be that the completion is mistyped and appears as
9965 -- a distinct overloading of the entity.
9967 declare
9968 Candidate : constant Entity_Id :=
9969 Current_Entity_In_Scope (E);
9970 Decl : constant Node_Id :=
9971 Unit_Declaration_Node (Candidate);
9973 begin
9974 if Is_Overloadable (Candidate)
9975 and then Ekind (Candidate) = Ekind (E)
9976 and then Nkind (Decl) = N_Subprogram_Body
9977 and then Acts_As_Spec (Decl)
9978 then
9979 Check_Type_Conformant (Candidate, E);
9981 else
9982 Missing_Body;
9983 end if;
9984 end;
9986 else
9987 Missing_Body;
9988 end if;
9989 end if;
9990 end if;
9991 end Post_Error;
9993 -- Start of processing for Check_Completion
9995 begin
9996 E := First_Entity (Current_Scope);
9997 while Present (E) loop
9998 if Is_Intrinsic_Subprogram (E) then
9999 null;
10001 -- The following situation requires special handling: a child unit
10002 -- that appears in the context clause of the body of its parent:
10004 -- procedure Parent.Child (...);
10006 -- with Parent.Child;
10007 -- package body Parent is
10009 -- Here Parent.Child appears as a local entity, but should not be
10010 -- flagged as requiring completion, because it is a compilation
10011 -- unit.
10013 -- Ignore missing completion for a subprogram that does not come from
10014 -- source (including the _Call primitive operation of RAS types,
10015 -- which has to have the flag Comes_From_Source for other purposes):
10016 -- we assume that the expander will provide the missing completion.
10017 -- In case of previous errors, other expansion actions that provide
10018 -- bodies for null procedures with not be invoked, so inhibit message
10019 -- in those cases.
10021 -- Note that E_Operator is not in the list that follows, because
10022 -- this kind is reserved for predefined operators, that are
10023 -- intrinsic and do not need completion.
10025 elsif Ekind (E) = E_Function
10026 or else Ekind (E) = E_Procedure
10027 or else Ekind (E) = E_Generic_Function
10028 or else Ekind (E) = E_Generic_Procedure
10029 then
10030 if Has_Completion (E) then
10031 null;
10033 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10034 null;
10036 elsif Is_Subprogram (E)
10037 and then (not Comes_From_Source (E)
10038 or else Chars (E) = Name_uCall)
10039 then
10040 null;
10042 elsif
10043 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10044 then
10045 null;
10047 elsif Nkind (Parent (E)) = N_Procedure_Specification
10048 and then Null_Present (Parent (E))
10049 and then Serious_Errors_Detected > 0
10050 then
10051 null;
10053 else
10054 Post_Error;
10055 end if;
10057 elsif Is_Entry (E) then
10058 if not Has_Completion (E) and then
10059 (Ekind (Scope (E)) = E_Protected_Object
10060 or else Ekind (Scope (E)) = E_Protected_Type)
10061 then
10062 Post_Error;
10063 end if;
10065 elsif Is_Package_Or_Generic_Package (E) then
10066 if Unit_Requires_Body (E) then
10067 if not Has_Completion (E)
10068 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10069 N_Compilation_Unit
10070 then
10071 Post_Error;
10072 end if;
10074 elsif not Is_Child_Unit (E) then
10075 May_Need_Implicit_Body (E);
10076 end if;
10078 -- A formal incomplete type (Ada 2012) does not require a completion;
10079 -- other incomplete type declarations do.
10081 elsif Ekind (E) = E_Incomplete_Type
10082 and then No (Underlying_Type (E))
10083 and then not Is_Generic_Type (E)
10084 then
10085 Post_Error;
10087 elsif (Ekind (E) = E_Task_Type or else
10088 Ekind (E) = E_Protected_Type)
10089 and then not Has_Completion (E)
10090 then
10091 Post_Error;
10093 -- A single task declared in the current scope is a constant, verify
10094 -- that the body of its anonymous type is in the same scope. If the
10095 -- task is defined elsewhere, this may be a renaming declaration for
10096 -- which no completion is needed.
10098 elsif Ekind (E) = E_Constant
10099 and then Ekind (Etype (E)) = E_Task_Type
10100 and then not Has_Completion (Etype (E))
10101 and then Scope (Etype (E)) = Current_Scope
10102 then
10103 Post_Error;
10105 elsif Ekind (E) = E_Protected_Object
10106 and then not Has_Completion (Etype (E))
10107 then
10108 Post_Error;
10110 elsif Ekind (E) = E_Record_Type then
10111 if Is_Tagged_Type (E) then
10112 Check_Abstract_Overriding (E);
10113 Check_Conventions (E);
10114 end if;
10116 Check_Aliased_Component_Types (E);
10118 elsif Ekind (E) = E_Array_Type then
10119 Check_Aliased_Component_Types (E);
10121 end if;
10123 Next_Entity (E);
10124 end loop;
10125 end Check_Completion;
10127 ------------------------------------
10128 -- Check_CPP_Type_Has_No_Defaults --
10129 ------------------------------------
10131 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10132 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10133 Clist : Node_Id;
10134 Comp : Node_Id;
10136 begin
10137 -- Obtain the component list
10139 if Nkind (Tdef) = N_Record_Definition then
10140 Clist := Component_List (Tdef);
10141 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10142 Clist := Component_List (Record_Extension_Part (Tdef));
10143 end if;
10145 -- Check all components to ensure no default expressions
10147 if Present (Clist) then
10148 Comp := First (Component_Items (Clist));
10149 while Present (Comp) loop
10150 if Present (Expression (Comp)) then
10151 Error_Msg_N
10152 ("component of imported 'C'P'P type cannot have "
10153 & "default expression", Expression (Comp));
10154 end if;
10156 Next (Comp);
10157 end loop;
10158 end if;
10159 end Check_CPP_Type_Has_No_Defaults;
10161 ----------------------------
10162 -- Check_Delta_Expression --
10163 ----------------------------
10165 procedure Check_Delta_Expression (E : Node_Id) is
10166 begin
10167 if not (Is_Real_Type (Etype (E))) then
10168 Wrong_Type (E, Any_Real);
10170 elsif not Is_OK_Static_Expression (E) then
10171 Flag_Non_Static_Expr
10172 ("non-static expression used for delta value!", E);
10174 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10175 Error_Msg_N ("delta expression must be positive", E);
10177 else
10178 return;
10179 end if;
10181 -- If any of above errors occurred, then replace the incorrect
10182 -- expression by the real 0.1, which should prevent further errors.
10184 Rewrite (E,
10185 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10186 Analyze_And_Resolve (E, Standard_Float);
10187 end Check_Delta_Expression;
10189 -----------------------------
10190 -- Check_Digits_Expression --
10191 -----------------------------
10193 procedure Check_Digits_Expression (E : Node_Id) is
10194 begin
10195 if not (Is_Integer_Type (Etype (E))) then
10196 Wrong_Type (E, Any_Integer);
10198 elsif not Is_OK_Static_Expression (E) then
10199 Flag_Non_Static_Expr
10200 ("non-static expression used for digits value!", E);
10202 elsif Expr_Value (E) <= 0 then
10203 Error_Msg_N ("digits value must be greater than zero", E);
10205 else
10206 return;
10207 end if;
10209 -- If any of above errors occurred, then replace the incorrect
10210 -- expression by the integer 1, which should prevent further errors.
10212 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10213 Analyze_And_Resolve (E, Standard_Integer);
10215 end Check_Digits_Expression;
10217 --------------------------
10218 -- Check_Initialization --
10219 --------------------------
10221 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10222 begin
10223 if Is_Limited_Type (T)
10224 and then not In_Instance
10225 and then not In_Inlined_Body
10226 then
10227 if not OK_For_Limited_Init (T, Exp) then
10229 -- In GNAT mode, this is just a warning, to allow it to be evilly
10230 -- turned off. Otherwise it is a real error.
10232 if GNAT_Mode then
10233 Error_Msg_N
10234 ("??cannot initialize entities of limited type!", Exp);
10236 elsif Ada_Version < Ada_2005 then
10238 -- The side effect removal machinery may generate illegal Ada
10239 -- code to avoid the usage of access types and 'reference in
10240 -- SPARK mode. Since this is legal code with respect to theorem
10241 -- proving, do not emit the error.
10243 if GNATprove_Mode
10244 and then Nkind (Exp) = N_Function_Call
10245 and then Nkind (Parent (Exp)) = N_Object_Declaration
10246 and then not Comes_From_Source
10247 (Defining_Identifier (Parent (Exp)))
10248 then
10249 null;
10251 else
10252 Error_Msg_N
10253 ("cannot initialize entities of limited type", Exp);
10254 Explain_Limited_Type (T, Exp);
10255 end if;
10257 else
10258 -- Specialize error message according to kind of illegal
10259 -- initial expression.
10261 if Nkind (Exp) = N_Type_Conversion
10262 and then Nkind (Expression (Exp)) = N_Function_Call
10263 then
10264 Error_Msg_N
10265 ("illegal context for call"
10266 & " to function with limited result", Exp);
10268 else
10269 Error_Msg_N
10270 ("initialization of limited object requires aggregate "
10271 & "or function call", Exp);
10272 end if;
10273 end if;
10274 end if;
10275 end if;
10276 end Check_Initialization;
10278 ----------------------
10279 -- Check_Interfaces --
10280 ----------------------
10282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10283 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10285 Iface : Node_Id;
10286 Iface_Def : Node_Id;
10287 Iface_Typ : Entity_Id;
10288 Parent_Node : Node_Id;
10290 Is_Task : Boolean := False;
10291 -- Set True if parent type or any progenitor is a task interface
10293 Is_Protected : Boolean := False;
10294 -- Set True if parent type or any progenitor is a protected interface
10296 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10297 -- Check that a progenitor is compatible with declaration.
10298 -- Error is posted on Error_Node.
10300 ------------------
10301 -- Check_Ifaces --
10302 ------------------
10304 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10305 Iface_Id : constant Entity_Id :=
10306 Defining_Identifier (Parent (Iface_Def));
10307 Type_Def : Node_Id;
10309 begin
10310 if Nkind (N) = N_Private_Extension_Declaration then
10311 Type_Def := N;
10312 else
10313 Type_Def := Type_Definition (N);
10314 end if;
10316 if Is_Task_Interface (Iface_Id) then
10317 Is_Task := True;
10319 elsif Is_Protected_Interface (Iface_Id) then
10320 Is_Protected := True;
10321 end if;
10323 if Is_Synchronized_Interface (Iface_Id) then
10325 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10326 -- extension derived from a synchronized interface must explicitly
10327 -- be declared synchronized, because the full view will be a
10328 -- synchronized type.
10330 if Nkind (N) = N_Private_Extension_Declaration then
10331 if not Synchronized_Present (N) then
10332 Error_Msg_NE
10333 ("private extension of& must be explicitly synchronized",
10334 N, Iface_Id);
10335 end if;
10337 -- However, by 3.9.4(16/2), a full type that is a record extension
10338 -- is never allowed to derive from a synchronized interface (note
10339 -- that interfaces must be excluded from this check, because those
10340 -- are represented by derived type definitions in some cases).
10342 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10343 and then not Interface_Present (Type_Definition (N))
10344 then
10345 Error_Msg_N ("record extension cannot derive from synchronized"
10346 & " interface", Error_Node);
10347 end if;
10348 end if;
10350 -- Check that the characteristics of the progenitor are compatible
10351 -- with the explicit qualifier in the declaration.
10352 -- The check only applies to qualifiers that come from source.
10353 -- Limited_Present also appears in the declaration of corresponding
10354 -- records, and the check does not apply to them.
10356 if Limited_Present (Type_Def)
10357 and then not
10358 Is_Concurrent_Record_Type (Defining_Identifier (N))
10359 then
10360 if Is_Limited_Interface (Parent_Type)
10361 and then not Is_Limited_Interface (Iface_Id)
10362 then
10363 Error_Msg_NE
10364 ("progenitor& must be limited interface",
10365 Error_Node, Iface_Id);
10367 elsif
10368 (Task_Present (Iface_Def)
10369 or else Protected_Present (Iface_Def)
10370 or else Synchronized_Present (Iface_Def))
10371 and then Nkind (N) /= N_Private_Extension_Declaration
10372 and then not Error_Posted (N)
10373 then
10374 Error_Msg_NE
10375 ("progenitor& must be limited interface",
10376 Error_Node, Iface_Id);
10377 end if;
10379 -- Protected interfaces can only inherit from limited, synchronized
10380 -- or protected interfaces.
10382 elsif Nkind (N) = N_Full_Type_Declaration
10383 and then Protected_Present (Type_Def)
10384 then
10385 if Limited_Present (Iface_Def)
10386 or else Synchronized_Present (Iface_Def)
10387 or else Protected_Present (Iface_Def)
10388 then
10389 null;
10391 elsif Task_Present (Iface_Def) then
10392 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10393 & " from task interface", Error_Node);
10395 else
10396 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10397 & " from non-limited interface", Error_Node);
10398 end if;
10400 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
10401 -- limited and synchronized.
10403 elsif Synchronized_Present (Type_Def) then
10404 if Limited_Present (Iface_Def)
10405 or else Synchronized_Present (Iface_Def)
10406 then
10407 null;
10409 elsif Protected_Present (Iface_Def)
10410 and then Nkind (N) /= N_Private_Extension_Declaration
10411 then
10412 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10413 & " from protected interface", Error_Node);
10415 elsif Task_Present (Iface_Def)
10416 and then Nkind (N) /= N_Private_Extension_Declaration
10417 then
10418 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10419 & " from task interface", Error_Node);
10421 elsif not Is_Limited_Interface (Iface_Id) then
10422 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10423 & " from non-limited interface", Error_Node);
10424 end if;
10426 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
10427 -- synchronized or task interfaces.
10429 elsif Nkind (N) = N_Full_Type_Declaration
10430 and then Task_Present (Type_Def)
10431 then
10432 if Limited_Present (Iface_Def)
10433 or else Synchronized_Present (Iface_Def)
10434 or else Task_Present (Iface_Def)
10435 then
10436 null;
10438 elsif Protected_Present (Iface_Def) then
10439 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10440 & " protected interface", Error_Node);
10442 else
10443 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10444 & " non-limited interface", Error_Node);
10445 end if;
10446 end if;
10447 end Check_Ifaces;
10449 -- Start of processing for Check_Interfaces
10451 begin
10452 if Is_Interface (Parent_Type) then
10453 if Is_Task_Interface (Parent_Type) then
10454 Is_Task := True;
10456 elsif Is_Protected_Interface (Parent_Type) then
10457 Is_Protected := True;
10458 end if;
10459 end if;
10461 if Nkind (N) = N_Private_Extension_Declaration then
10463 -- Check that progenitors are compatible with declaration
10465 Iface := First (Interface_List (Def));
10466 while Present (Iface) loop
10467 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10469 Parent_Node := Parent (Base_Type (Iface_Typ));
10470 Iface_Def := Type_Definition (Parent_Node);
10472 if not Is_Interface (Iface_Typ) then
10473 Diagnose_Interface (Iface, Iface_Typ);
10475 else
10476 Check_Ifaces (Iface_Def, Iface);
10477 end if;
10479 Next (Iface);
10480 end loop;
10482 if Is_Task and Is_Protected then
10483 Error_Msg_N
10484 ("type cannot derive from task and protected interface", N);
10485 end if;
10487 return;
10488 end if;
10490 -- Full type declaration of derived type.
10491 -- Check compatibility with parent if it is interface type
10493 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10494 and then Is_Interface (Parent_Type)
10495 then
10496 Parent_Node := Parent (Parent_Type);
10498 -- More detailed checks for interface varieties
10500 Check_Ifaces
10501 (Iface_Def => Type_Definition (Parent_Node),
10502 Error_Node => Subtype_Indication (Type_Definition (N)));
10503 end if;
10505 Iface := First (Interface_List (Def));
10506 while Present (Iface) loop
10507 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10509 Parent_Node := Parent (Base_Type (Iface_Typ));
10510 Iface_Def := Type_Definition (Parent_Node);
10512 if not Is_Interface (Iface_Typ) then
10513 Diagnose_Interface (Iface, Iface_Typ);
10515 else
10516 -- "The declaration of a specific descendant of an interface
10517 -- type freezes the interface type" RM 13.14
10519 Freeze_Before (N, Iface_Typ);
10520 Check_Ifaces (Iface_Def, Error_Node => Iface);
10521 end if;
10523 Next (Iface);
10524 end loop;
10526 if Is_Task and Is_Protected then
10527 Error_Msg_N
10528 ("type cannot derive from task and protected interface", N);
10529 end if;
10530 end Check_Interfaces;
10532 ------------------------------------
10533 -- Check_Or_Process_Discriminants --
10534 ------------------------------------
10536 -- If an incomplete or private type declaration was already given for the
10537 -- type, the discriminants may have already been processed if they were
10538 -- present on the incomplete declaration. In this case a full conformance
10539 -- check has been performed in Find_Type_Name, and we then recheck here
10540 -- some properties that can't be checked on the partial view alone.
10541 -- Otherwise we call Process_Discriminants.
10543 procedure Check_Or_Process_Discriminants
10544 (N : Node_Id;
10545 T : Entity_Id;
10546 Prev : Entity_Id := Empty)
10548 begin
10549 if Has_Discriminants (T) then
10551 -- Discriminants are already set on T if they were already present
10552 -- on the partial view. Make them visible to component declarations.
10554 declare
10555 D : Entity_Id;
10556 -- Discriminant on T (full view) referencing expr on partial view
10558 Prev_D : Entity_Id;
10559 -- Entity of corresponding discriminant on partial view
10561 New_D : Node_Id;
10562 -- Discriminant specification for full view, expression is the
10563 -- syntactic copy on full view (which has been checked for
10564 -- conformance with partial view), only used here to post error
10565 -- message.
10567 begin
10568 D := First_Discriminant (T);
10569 New_D := First (Discriminant_Specifications (N));
10570 while Present (D) loop
10571 Prev_D := Current_Entity (D);
10572 Set_Current_Entity (D);
10573 Set_Is_Immediately_Visible (D);
10574 Set_Homonym (D, Prev_D);
10576 -- Handle the case where there is an untagged partial view and
10577 -- the full view is tagged: must disallow discriminants with
10578 -- defaults, unless compiling for Ada 2012, which allows a
10579 -- limited tagged type to have defaulted discriminants (see
10580 -- AI05-0214). However, suppress error here if it was already
10581 -- reported on the default expression of the partial view.
10583 if Is_Tagged_Type (T)
10584 and then Present (Expression (Parent (D)))
10585 and then (not Is_Limited_Type (Current_Scope)
10586 or else Ada_Version < Ada_2012)
10587 and then not Error_Posted (Expression (Parent (D)))
10588 then
10589 if Ada_Version >= Ada_2012 then
10590 Error_Msg_N
10591 ("discriminants of nonlimited tagged type cannot have"
10592 & " defaults",
10593 Expression (New_D));
10594 else
10595 Error_Msg_N
10596 ("discriminants of tagged type cannot have defaults",
10597 Expression (New_D));
10598 end if;
10599 end if;
10601 -- Ada 2005 (AI-230): Access discriminant allowed in
10602 -- non-limited record types.
10604 if Ada_Version < Ada_2005 then
10606 -- This restriction gets applied to the full type here. It
10607 -- has already been applied earlier to the partial view.
10609 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
10610 end if;
10612 Next_Discriminant (D);
10613 Next (New_D);
10614 end loop;
10615 end;
10617 elsif Present (Discriminant_Specifications (N)) then
10618 Process_Discriminants (N, Prev);
10619 end if;
10620 end Check_Or_Process_Discriminants;
10622 ----------------------
10623 -- Check_Real_Bound --
10624 ----------------------
10626 procedure Check_Real_Bound (Bound : Node_Id) is
10627 begin
10628 if not Is_Real_Type (Etype (Bound)) then
10629 Error_Msg_N
10630 ("bound in real type definition must be of real type", Bound);
10632 elsif not Is_OK_Static_Expression (Bound) then
10633 Flag_Non_Static_Expr
10634 ("non-static expression used for real type bound!", Bound);
10636 else
10637 return;
10638 end if;
10640 Rewrite
10641 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
10642 Analyze (Bound);
10643 Resolve (Bound, Standard_Float);
10644 end Check_Real_Bound;
10646 ------------------------------
10647 -- Complete_Private_Subtype --
10648 ------------------------------
10650 procedure Complete_Private_Subtype
10651 (Priv : Entity_Id;
10652 Full : Entity_Id;
10653 Full_Base : Entity_Id;
10654 Related_Nod : Node_Id)
10656 Save_Next_Entity : Entity_Id;
10657 Save_Homonym : Entity_Id;
10659 begin
10660 -- Set semantic attributes for (implicit) private subtype completion.
10661 -- If the full type has no discriminants, then it is a copy of the full
10662 -- view of the base. Otherwise, it is a subtype of the base with a
10663 -- possible discriminant constraint. Save and restore the original
10664 -- Next_Entity field of full to ensure that the calls to Copy_Node
10665 -- do not corrupt the entity chain.
10667 -- Note that the type of the full view is the same entity as the type of
10668 -- the partial view. In this fashion, the subtype has access to the
10669 -- correct view of the parent.
10671 Save_Next_Entity := Next_Entity (Full);
10672 Save_Homonym := Homonym (Priv);
10674 case Ekind (Full_Base) is
10675 when E_Record_Type |
10676 E_Record_Subtype |
10677 Class_Wide_Kind |
10678 Private_Kind |
10679 Task_Kind |
10680 Protected_Kind =>
10681 Copy_Node (Priv, Full);
10683 Set_Has_Discriminants
10684 (Full, Has_Discriminants (Full_Base));
10685 Set_Has_Unknown_Discriminants
10686 (Full, Has_Unknown_Discriminants (Full_Base));
10687 Set_First_Entity (Full, First_Entity (Full_Base));
10688 Set_Last_Entity (Full, Last_Entity (Full_Base));
10690 -- If the underlying base type is constrained, we know that the
10691 -- full view of the subtype is constrained as well (the converse
10692 -- is not necessarily true).
10694 if Is_Constrained (Full_Base) then
10695 Set_Is_Constrained (Full);
10696 end if;
10698 when others =>
10699 Copy_Node (Full_Base, Full);
10701 Set_Chars (Full, Chars (Priv));
10702 Conditional_Delay (Full, Priv);
10703 Set_Sloc (Full, Sloc (Priv));
10704 end case;
10706 Set_Next_Entity (Full, Save_Next_Entity);
10707 Set_Homonym (Full, Save_Homonym);
10708 Set_Associated_Node_For_Itype (Full, Related_Nod);
10710 -- Set common attributes for all subtypes: kind, convention, etc.
10712 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
10713 Set_Convention (Full, Convention (Full_Base));
10715 -- The Etype of the full view is inconsistent. Gigi needs to see the
10716 -- structural full view, which is what the current scheme gives:
10717 -- the Etype of the full view is the etype of the full base. However,
10718 -- if the full base is a derived type, the full view then looks like
10719 -- a subtype of the parent, not a subtype of the full base. If instead
10720 -- we write:
10722 -- Set_Etype (Full, Full_Base);
10724 -- then we get inconsistencies in the front-end (confusion between
10725 -- views). Several outstanding bugs are related to this ???
10727 Set_Is_First_Subtype (Full, False);
10728 Set_Scope (Full, Scope (Priv));
10729 Set_Size_Info (Full, Full_Base);
10730 Set_RM_Size (Full, RM_Size (Full_Base));
10731 Set_Is_Itype (Full);
10733 -- A subtype of a private-type-without-discriminants, whose full-view
10734 -- has discriminants with default expressions, is not constrained.
10736 if not Has_Discriminants (Priv) then
10737 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
10739 if Has_Discriminants (Full_Base) then
10740 Set_Discriminant_Constraint
10741 (Full, Discriminant_Constraint (Full_Base));
10743 -- The partial view may have been indefinite, the full view
10744 -- might not be.
10746 Set_Has_Unknown_Discriminants
10747 (Full, Has_Unknown_Discriminants (Full_Base));
10748 end if;
10749 end if;
10751 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
10752 Set_Depends_On_Private (Full, Has_Private_Component (Full));
10754 -- Freeze the private subtype entity if its parent is delayed, and not
10755 -- already frozen. We skip this processing if the type is an anonymous
10756 -- subtype of a record component, or is the corresponding record of a
10757 -- protected type, since ???
10759 if not Is_Type (Scope (Full)) then
10760 Set_Has_Delayed_Freeze (Full,
10761 Has_Delayed_Freeze (Full_Base)
10762 and then (not Is_Frozen (Full_Base)));
10763 end if;
10765 Set_Freeze_Node (Full, Empty);
10766 Set_Is_Frozen (Full, False);
10767 Set_Full_View (Priv, Full);
10769 if Has_Discriminants (Full) then
10770 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
10771 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
10773 if Has_Unknown_Discriminants (Full) then
10774 Set_Discriminant_Constraint (Full, No_Elist);
10775 end if;
10776 end if;
10778 if Ekind (Full_Base) = E_Record_Type
10779 and then Has_Discriminants (Full_Base)
10780 and then Has_Discriminants (Priv) -- might not, if errors
10781 and then not Has_Unknown_Discriminants (Priv)
10782 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
10783 then
10784 Create_Constrained_Components
10785 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
10787 -- If the full base is itself derived from private, build a congruent
10788 -- subtype of its underlying type, for use by the back end. For a
10789 -- constrained record component, the declaration cannot be placed on
10790 -- the component list, but it must nevertheless be built an analyzed, to
10791 -- supply enough information for Gigi to compute the size of component.
10793 elsif Ekind (Full_Base) in Private_Kind
10794 and then Is_Derived_Type (Full_Base)
10795 and then Has_Discriminants (Full_Base)
10796 and then (Ekind (Current_Scope) /= E_Record_Subtype)
10797 then
10798 if not Is_Itype (Priv)
10799 and then
10800 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
10801 then
10802 Build_Underlying_Full_View
10803 (Parent (Priv), Full, Etype (Full_Base));
10805 elsif Nkind (Related_Nod) = N_Component_Declaration then
10806 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
10807 end if;
10809 elsif Is_Record_Type (Full_Base) then
10811 -- Show Full is simply a renaming of Full_Base
10813 Set_Cloned_Subtype (Full, Full_Base);
10814 end if;
10816 -- It is unsafe to share the bounds of a scalar type, because the Itype
10817 -- is elaborated on demand, and if a bound is non-static then different
10818 -- orders of elaboration in different units will lead to different
10819 -- external symbols.
10821 if Is_Scalar_Type (Full_Base) then
10822 Set_Scalar_Range (Full,
10823 Make_Range (Sloc (Related_Nod),
10824 Low_Bound =>
10825 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
10826 High_Bound =>
10827 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
10829 -- This completion inherits the bounds of the full parent, but if
10830 -- the parent is an unconstrained floating point type, so is the
10831 -- completion.
10833 if Is_Floating_Point_Type (Full_Base) then
10834 Set_Includes_Infinities
10835 (Scalar_Range (Full), Has_Infinities (Full_Base));
10836 end if;
10837 end if;
10839 -- ??? It seems that a lot of fields are missing that should be copied
10840 -- from Full_Base to Full. Here are some that are introduced in a
10841 -- non-disruptive way but a cleanup is necessary.
10843 if Is_Tagged_Type (Full_Base) then
10844 Set_Is_Tagged_Type (Full);
10845 Set_Direct_Primitive_Operations (Full,
10846 Direct_Primitive_Operations (Full_Base));
10848 -- Inherit class_wide type of full_base in case the partial view was
10849 -- not tagged. Otherwise it has already been created when the private
10850 -- subtype was analyzed.
10852 if No (Class_Wide_Type (Full)) then
10853 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
10854 end if;
10856 -- If this is a subtype of a protected or task type, constrain its
10857 -- corresponding record, unless this is a subtype without constraints,
10858 -- i.e. a simple renaming as with an actual subtype in an instance.
10860 elsif Is_Concurrent_Type (Full_Base) then
10861 if Has_Discriminants (Full)
10862 and then Present (Corresponding_Record_Type (Full_Base))
10863 and then
10864 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
10865 then
10866 Set_Corresponding_Record_Type (Full,
10867 Constrain_Corresponding_Record
10868 (Full, Corresponding_Record_Type (Full_Base),
10869 Related_Nod, Full_Base));
10871 else
10872 Set_Corresponding_Record_Type (Full,
10873 Corresponding_Record_Type (Full_Base));
10874 end if;
10875 end if;
10877 -- Link rep item chain, and also setting of Has_Predicates from private
10878 -- subtype to full subtype, since we will need these on the full subtype
10879 -- to create the predicate function. Note that the full subtype may
10880 -- already have rep items, inherited from the full view of the base
10881 -- type, so we must be sure not to overwrite these entries.
10883 declare
10884 Append : Boolean;
10885 Item : Node_Id;
10886 Next_Item : Node_Id;
10888 begin
10889 Item := First_Rep_Item (Full);
10891 -- If no existing rep items on full type, we can just link directly
10892 -- to the list of items on the private type.
10894 if No (Item) then
10895 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
10897 -- Otherwise, search to the end of items currently linked to the full
10898 -- subtype and append the private items to the end. However, if Priv
10899 -- and Full already have the same list of rep items, then the append
10900 -- is not done, as that would create a circularity.
10902 elsif Item /= First_Rep_Item (Priv) then
10903 Append := True;
10905 loop
10906 Next_Item := Next_Rep_Item (Item);
10907 exit when No (Next_Item);
10908 Item := Next_Item;
10910 -- If the private view has aspect specifications, the full view
10911 -- inherits them. Since these aspects may already have been
10912 -- attached to the full view during derivation, do not append
10913 -- them if already present.
10915 if Item = First_Rep_Item (Priv) then
10916 Append := False;
10917 exit;
10918 end if;
10919 end loop;
10921 -- And link the private type items at the end of the chain
10923 if Append then
10924 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
10925 end if;
10926 end if;
10927 end;
10929 -- Make sure Has_Predicates is set on full type if it is set on the
10930 -- private type. Note that it may already be set on the full type and
10931 -- if so, we don't want to unset it.
10933 if Has_Predicates (Priv) then
10934 Set_Has_Predicates (Full);
10935 end if;
10936 end Complete_Private_Subtype;
10938 ----------------------------
10939 -- Constant_Redeclaration --
10940 ----------------------------
10942 procedure Constant_Redeclaration
10943 (Id : Entity_Id;
10944 N : Node_Id;
10945 T : out Entity_Id)
10947 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
10948 Obj_Def : constant Node_Id := Object_Definition (N);
10949 New_T : Entity_Id;
10951 procedure Check_Possible_Deferred_Completion
10952 (Prev_Id : Entity_Id;
10953 Prev_Obj_Def : Node_Id;
10954 Curr_Obj_Def : Node_Id);
10955 -- Determine whether the two object definitions describe the partial
10956 -- and the full view of a constrained deferred constant. Generate
10957 -- a subtype for the full view and verify that it statically matches
10958 -- the subtype of the partial view.
10960 procedure Check_Recursive_Declaration (Typ : Entity_Id);
10961 -- If deferred constant is an access type initialized with an allocator,
10962 -- check whether there is an illegal recursion in the definition,
10963 -- through a default value of some record subcomponent. This is normally
10964 -- detected when generating init procs, but requires this additional
10965 -- mechanism when expansion is disabled.
10967 ----------------------------------------
10968 -- Check_Possible_Deferred_Completion --
10969 ----------------------------------------
10971 procedure Check_Possible_Deferred_Completion
10972 (Prev_Id : Entity_Id;
10973 Prev_Obj_Def : Node_Id;
10974 Curr_Obj_Def : Node_Id)
10976 begin
10977 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
10978 and then Present (Constraint (Prev_Obj_Def))
10979 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
10980 and then Present (Constraint (Curr_Obj_Def))
10981 then
10982 declare
10983 Loc : constant Source_Ptr := Sloc (N);
10984 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
10985 Decl : constant Node_Id :=
10986 Make_Subtype_Declaration (Loc,
10987 Defining_Identifier => Def_Id,
10988 Subtype_Indication =>
10989 Relocate_Node (Curr_Obj_Def));
10991 begin
10992 Insert_Before_And_Analyze (N, Decl);
10993 Set_Etype (Id, Def_Id);
10995 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
10996 Error_Msg_Sloc := Sloc (Prev_Id);
10997 Error_Msg_N ("subtype does not statically match deferred " &
10998 "declaration#", N);
10999 end if;
11000 end;
11001 end if;
11002 end Check_Possible_Deferred_Completion;
11004 ---------------------------------
11005 -- Check_Recursive_Declaration --
11006 ---------------------------------
11008 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11009 Comp : Entity_Id;
11011 begin
11012 if Is_Record_Type (Typ) then
11013 Comp := First_Component (Typ);
11014 while Present (Comp) loop
11015 if Comes_From_Source (Comp) then
11016 if Present (Expression (Parent (Comp)))
11017 and then Is_Entity_Name (Expression (Parent (Comp)))
11018 and then Entity (Expression (Parent (Comp))) = Prev
11019 then
11020 Error_Msg_Sloc := Sloc (Parent (Comp));
11021 Error_Msg_NE
11022 ("illegal circularity with declaration for&#",
11023 N, Comp);
11024 return;
11026 elsif Is_Record_Type (Etype (Comp)) then
11027 Check_Recursive_Declaration (Etype (Comp));
11028 end if;
11029 end if;
11031 Next_Component (Comp);
11032 end loop;
11033 end if;
11034 end Check_Recursive_Declaration;
11036 -- Start of processing for Constant_Redeclaration
11038 begin
11039 if Nkind (Parent (Prev)) = N_Object_Declaration then
11040 if Nkind (Object_Definition
11041 (Parent (Prev))) = N_Subtype_Indication
11042 then
11043 -- Find type of new declaration. The constraints of the two
11044 -- views must match statically, but there is no point in
11045 -- creating an itype for the full view.
11047 if Nkind (Obj_Def) = N_Subtype_Indication then
11048 Find_Type (Subtype_Mark (Obj_Def));
11049 New_T := Entity (Subtype_Mark (Obj_Def));
11051 else
11052 Find_Type (Obj_Def);
11053 New_T := Entity (Obj_Def);
11054 end if;
11056 T := Etype (Prev);
11058 else
11059 -- The full view may impose a constraint, even if the partial
11060 -- view does not, so construct the subtype.
11062 New_T := Find_Type_Of_Object (Obj_Def, N);
11063 T := New_T;
11064 end if;
11066 else
11067 -- Current declaration is illegal, diagnosed below in Enter_Name
11069 T := Empty;
11070 New_T := Any_Type;
11071 end if;
11073 -- If previous full declaration or a renaming declaration exists, or if
11074 -- a homograph is present, let Enter_Name handle it, either with an
11075 -- error or with the removal of an overridden implicit subprogram.
11076 -- The previous one is a full declaration if it has an expression
11077 -- (which in the case of an aggregate is indicated by the Init flag).
11079 if Ekind (Prev) /= E_Constant
11080 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11081 or else Present (Expression (Parent (Prev)))
11082 or else Has_Init_Expression (Parent (Prev))
11083 or else Present (Full_View (Prev))
11084 then
11085 Enter_Name (Id);
11087 -- Verify that types of both declarations match, or else that both types
11088 -- are anonymous access types whose designated subtypes statically match
11089 -- (as allowed in Ada 2005 by AI-385).
11091 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11092 and then
11093 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11094 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11095 or else Is_Access_Constant (Etype (New_T)) /=
11096 Is_Access_Constant (Etype (Prev))
11097 or else Can_Never_Be_Null (Etype (New_T)) /=
11098 Can_Never_Be_Null (Etype (Prev))
11099 or else Null_Exclusion_Present (Parent (Prev)) /=
11100 Null_Exclusion_Present (Parent (Id))
11101 or else not Subtypes_Statically_Match
11102 (Designated_Type (Etype (Prev)),
11103 Designated_Type (Etype (New_T))))
11104 then
11105 Error_Msg_Sloc := Sloc (Prev);
11106 Error_Msg_N ("type does not match declaration#", N);
11107 Set_Full_View (Prev, Id);
11108 Set_Etype (Id, Any_Type);
11110 elsif
11111 Null_Exclusion_Present (Parent (Prev))
11112 and then not Null_Exclusion_Present (N)
11113 then
11114 Error_Msg_Sloc := Sloc (Prev);
11115 Error_Msg_N ("null-exclusion does not match declaration#", N);
11116 Set_Full_View (Prev, Id);
11117 Set_Etype (Id, Any_Type);
11119 -- If so, process the full constant declaration
11121 else
11122 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11123 -- the deferred declaration is constrained, then the subtype defined
11124 -- by the subtype_indication in the full declaration shall match it
11125 -- statically.
11127 Check_Possible_Deferred_Completion
11128 (Prev_Id => Prev,
11129 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11130 Curr_Obj_Def => Obj_Def);
11132 Set_Full_View (Prev, Id);
11133 Set_Is_Public (Id, Is_Public (Prev));
11134 Set_Is_Internal (Id);
11135 Append_Entity (Id, Current_Scope);
11137 -- Check ALIASED present if present before (RM 7.4(7))
11139 if Is_Aliased (Prev)
11140 and then not Aliased_Present (N)
11141 then
11142 Error_Msg_Sloc := Sloc (Prev);
11143 Error_Msg_N ("ALIASED required (see declaration#)", N);
11144 end if;
11146 -- Check that placement is in private part and that the incomplete
11147 -- declaration appeared in the visible part.
11149 if Ekind (Current_Scope) = E_Package
11150 and then not In_Private_Part (Current_Scope)
11151 then
11152 Error_Msg_Sloc := Sloc (Prev);
11153 Error_Msg_N
11154 ("full constant for declaration#"
11155 & " must be in private part", N);
11157 elsif Ekind (Current_Scope) = E_Package
11158 and then
11159 List_Containing (Parent (Prev)) /=
11160 Visible_Declarations (Package_Specification (Current_Scope))
11161 then
11162 Error_Msg_N
11163 ("deferred constant must be declared in visible part",
11164 Parent (Prev));
11165 end if;
11167 if Is_Access_Type (T)
11168 and then Nkind (Expression (N)) = N_Allocator
11169 then
11170 Check_Recursive_Declaration (Designated_Type (T));
11171 end if;
11173 -- A deferred constant is a visible entity. If type has invariants,
11174 -- verify that the initial value satisfies them.
11176 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11177 Insert_After (N,
11178 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11179 end if;
11180 end if;
11181 end Constant_Redeclaration;
11183 ----------------------
11184 -- Constrain_Access --
11185 ----------------------
11187 procedure Constrain_Access
11188 (Def_Id : in out Entity_Id;
11189 S : Node_Id;
11190 Related_Nod : Node_Id)
11192 T : constant Entity_Id := Entity (Subtype_Mark (S));
11193 Desig_Type : constant Entity_Id := Designated_Type (T);
11194 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11195 Constraint_OK : Boolean := True;
11197 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
11198 -- Simple predicate to test for defaulted discriminants
11199 -- Shouldn't this be in sem_util???
11201 ---------------------------------
11202 -- Has_Defaulted_Discriminants --
11203 ---------------------------------
11205 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
11206 begin
11207 return Has_Discriminants (Typ)
11208 and then Present (First_Discriminant (Typ))
11209 and then Present
11210 (Discriminant_Default_Value (First_Discriminant (Typ)));
11211 end Has_Defaulted_Discriminants;
11213 -- Start of processing for Constrain_Access
11215 begin
11216 if Is_Array_Type (Desig_Type) then
11217 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11219 elsif (Is_Record_Type (Desig_Type)
11220 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11221 and then not Is_Constrained (Desig_Type)
11222 then
11223 -- ??? The following code is a temporary kludge to ignore a
11224 -- discriminant constraint on access type if it is constraining
11225 -- the current record. Avoid creating the implicit subtype of the
11226 -- record we are currently compiling since right now, we cannot
11227 -- handle these. For now, just return the access type itself.
11229 if Desig_Type = Current_Scope
11230 and then No (Def_Id)
11231 then
11232 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11233 Def_Id := Entity (Subtype_Mark (S));
11235 -- This call added to ensure that the constraint is analyzed
11236 -- (needed for a B test). Note that we still return early from
11237 -- this procedure to avoid recursive processing. ???
11239 Constrain_Discriminated_Type
11240 (Desig_Subtype, S, Related_Nod, For_Access => True);
11241 return;
11242 end if;
11244 -- Enforce rule that the constraint is illegal if there is an
11245 -- unconstrained view of the designated type. This means that the
11246 -- partial view (either a private type declaration or a derivation
11247 -- from a private type) has no discriminants. (Defect Report
11248 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11250 -- Rule updated for Ada 2005: The private type is said to have
11251 -- a constrained partial view, given that objects of the type
11252 -- can be declared. Furthermore, the rule applies to all access
11253 -- types, unlike the rule concerning default discriminants (see
11254 -- RM 3.7.1(7/3))
11256 if (Ekind (T) = E_General_Access_Type
11257 or else Ada_Version >= Ada_2005)
11258 and then Has_Private_Declaration (Desig_Type)
11259 and then In_Open_Scopes (Scope (Desig_Type))
11260 and then Has_Discriminants (Desig_Type)
11261 then
11262 declare
11263 Pack : constant Node_Id :=
11264 Unit_Declaration_Node (Scope (Desig_Type));
11265 Decls : List_Id;
11266 Decl : Node_Id;
11268 begin
11269 if Nkind (Pack) = N_Package_Declaration then
11270 Decls := Visible_Declarations (Specification (Pack));
11271 Decl := First (Decls);
11272 while Present (Decl) loop
11273 if (Nkind (Decl) = N_Private_Type_Declaration
11274 and then
11275 Chars (Defining_Identifier (Decl)) =
11276 Chars (Desig_Type))
11278 or else
11279 (Nkind (Decl) = N_Full_Type_Declaration
11280 and then
11281 Chars (Defining_Identifier (Decl)) =
11282 Chars (Desig_Type)
11283 and then Is_Derived_Type (Desig_Type)
11284 and then
11285 Has_Private_Declaration (Etype (Desig_Type)))
11286 then
11287 if No (Discriminant_Specifications (Decl)) then
11288 Error_Msg_N
11289 ("cannot constrain access type if designated " &
11290 "type has constrained partial view", S);
11291 end if;
11293 exit;
11294 end if;
11296 Next (Decl);
11297 end loop;
11298 end if;
11299 end;
11300 end if;
11302 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11303 For_Access => True);
11305 elsif (Is_Task_Type (Desig_Type)
11306 or else Is_Protected_Type (Desig_Type))
11307 and then not Is_Constrained (Desig_Type)
11308 then
11309 Constrain_Concurrent
11310 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11312 else
11313 Error_Msg_N ("invalid constraint on access type", S);
11314 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
11315 Constraint_OK := False;
11316 end if;
11318 if No (Def_Id) then
11319 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11320 else
11321 Set_Ekind (Def_Id, E_Access_Subtype);
11322 end if;
11324 if Constraint_OK then
11325 Set_Etype (Def_Id, Base_Type (T));
11327 if Is_Private_Type (Desig_Type) then
11328 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11329 end if;
11330 else
11331 Set_Etype (Def_Id, Any_Type);
11332 end if;
11334 Set_Size_Info (Def_Id, T);
11335 Set_Is_Constrained (Def_Id, Constraint_OK);
11336 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11337 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11338 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11340 Conditional_Delay (Def_Id, T);
11342 -- AI-363 : Subtypes of general access types whose designated types have
11343 -- default discriminants are disallowed. In instances, the rule has to
11344 -- be checked against the actual, of which T is the subtype. In a
11345 -- generic body, the rule is checked assuming that the actual type has
11346 -- defaulted discriminants.
11348 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11349 if Ekind (Base_Type (T)) = E_General_Access_Type
11350 and then Has_Defaulted_Discriminants (Desig_Type)
11351 then
11352 if Ada_Version < Ada_2005 then
11353 Error_Msg_N
11354 ("access subtype of general access type would not " &
11355 "be allowed in Ada 2005?y?", S);
11356 else
11357 Error_Msg_N
11358 ("access subtype of general access type not allowed", S);
11359 end if;
11361 Error_Msg_N ("\discriminants have defaults", S);
11363 elsif Is_Access_Type (T)
11364 and then Is_Generic_Type (Desig_Type)
11365 and then Has_Discriminants (Desig_Type)
11366 and then In_Package_Body (Current_Scope)
11367 then
11368 if Ada_Version < Ada_2005 then
11369 Error_Msg_N
11370 ("access subtype would not be allowed in generic body " &
11371 "in Ada 2005?y?", S);
11372 else
11373 Error_Msg_N
11374 ("access subtype not allowed in generic body", S);
11375 end if;
11377 Error_Msg_N
11378 ("\designated type is a discriminated formal", S);
11379 end if;
11380 end if;
11381 end Constrain_Access;
11383 ---------------------
11384 -- Constrain_Array --
11385 ---------------------
11387 procedure Constrain_Array
11388 (Def_Id : in out Entity_Id;
11389 SI : Node_Id;
11390 Related_Nod : Node_Id;
11391 Related_Id : Entity_Id;
11392 Suffix : Character)
11394 C : constant Node_Id := Constraint (SI);
11395 Number_Of_Constraints : Nat := 0;
11396 Index : Node_Id;
11397 S, T : Entity_Id;
11398 Constraint_OK : Boolean := True;
11400 begin
11401 T := Entity (Subtype_Mark (SI));
11403 if Ekind (T) in Access_Kind then
11404 T := Designated_Type (T);
11405 end if;
11407 -- If an index constraint follows a subtype mark in a subtype indication
11408 -- then the type or subtype denoted by the subtype mark must not already
11409 -- impose an index constraint. The subtype mark must denote either an
11410 -- unconstrained array type or an access type whose designated type
11411 -- is such an array type... (RM 3.6.1)
11413 if Is_Constrained (T) then
11414 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
11415 Constraint_OK := False;
11417 else
11418 S := First (Constraints (C));
11419 while Present (S) loop
11420 Number_Of_Constraints := Number_Of_Constraints + 1;
11421 Next (S);
11422 end loop;
11424 -- In either case, the index constraint must provide a discrete
11425 -- range for each index of the array type and the type of each
11426 -- discrete range must be the same as that of the corresponding
11427 -- index. (RM 3.6.1)
11429 if Number_Of_Constraints /= Number_Dimensions (T) then
11430 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
11431 Constraint_OK := False;
11433 else
11434 S := First (Constraints (C));
11435 Index := First_Index (T);
11436 Analyze (Index);
11438 -- Apply constraints to each index type
11440 for J in 1 .. Number_Of_Constraints loop
11441 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
11442 Next (Index);
11443 Next (S);
11444 end loop;
11446 end if;
11447 end if;
11449 if No (Def_Id) then
11450 Def_Id :=
11451 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
11452 Set_Parent (Def_Id, Related_Nod);
11454 else
11455 Set_Ekind (Def_Id, E_Array_Subtype);
11456 end if;
11458 Set_Size_Info (Def_Id, (T));
11459 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11460 Set_Etype (Def_Id, Base_Type (T));
11462 if Constraint_OK then
11463 Set_First_Index (Def_Id, First (Constraints (C)));
11464 else
11465 Set_First_Index (Def_Id, First_Index (T));
11466 end if;
11468 Set_Is_Constrained (Def_Id, True);
11469 Set_Is_Aliased (Def_Id, Is_Aliased (T));
11470 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11472 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
11473 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
11475 -- A subtype does not inherit the packed_array_type of is parent. We
11476 -- need to initialize the attribute because if Def_Id is previously
11477 -- analyzed through a limited_with clause, it will have the attributes
11478 -- of an incomplete type, one of which is an Elist that overlaps the
11479 -- Packed_Array_Type field.
11481 Set_Packed_Array_Type (Def_Id, Empty);
11483 -- Build a freeze node if parent still needs one. Also make sure that
11484 -- the Depends_On_Private status is set because the subtype will need
11485 -- reprocessing at the time the base type does, and also we must set a
11486 -- conditional delay.
11488 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
11489 Conditional_Delay (Def_Id, T);
11490 end Constrain_Array;
11492 ------------------------------
11493 -- Constrain_Component_Type --
11494 ------------------------------
11496 function Constrain_Component_Type
11497 (Comp : Entity_Id;
11498 Constrained_Typ : Entity_Id;
11499 Related_Node : Node_Id;
11500 Typ : Entity_Id;
11501 Constraints : Elist_Id) return Entity_Id
11503 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
11504 Compon_Type : constant Entity_Id := Etype (Comp);
11505 Array_Comp : Node_Id;
11507 function Build_Constrained_Array_Type
11508 (Old_Type : Entity_Id) return Entity_Id;
11509 -- If Old_Type is an array type, one of whose indexes is constrained
11510 -- by a discriminant, build an Itype whose constraint replaces the
11511 -- discriminant with its value in the constraint.
11513 function Build_Constrained_Discriminated_Type
11514 (Old_Type : Entity_Id) return Entity_Id;
11515 -- Ditto for record components
11517 function Build_Constrained_Access_Type
11518 (Old_Type : Entity_Id) return Entity_Id;
11519 -- Ditto for access types. Makes use of previous two functions, to
11520 -- constrain designated type.
11522 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
11523 -- T is an array or discriminated type, C is a list of constraints
11524 -- that apply to T. This routine builds the constrained subtype.
11526 function Is_Discriminant (Expr : Node_Id) return Boolean;
11527 -- Returns True if Expr is a discriminant
11529 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
11530 -- Find the value of discriminant Discrim in Constraint
11532 -----------------------------------
11533 -- Build_Constrained_Access_Type --
11534 -----------------------------------
11536 function Build_Constrained_Access_Type
11537 (Old_Type : Entity_Id) return Entity_Id
11539 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
11540 Itype : Entity_Id;
11541 Desig_Subtype : Entity_Id;
11542 Scop : Entity_Id;
11544 begin
11545 -- if the original access type was not embedded in the enclosing
11546 -- type definition, there is no need to produce a new access
11547 -- subtype. In fact every access type with an explicit constraint
11548 -- generates an itype whose scope is the enclosing record.
11550 if not Is_Type (Scope (Old_Type)) then
11551 return Old_Type;
11553 elsif Is_Array_Type (Desig_Type) then
11554 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
11556 elsif Has_Discriminants (Desig_Type) then
11558 -- This may be an access type to an enclosing record type for
11559 -- which we are constructing the constrained components. Return
11560 -- the enclosing record subtype. This is not always correct,
11561 -- but avoids infinite recursion. ???
11563 Desig_Subtype := Any_Type;
11565 for J in reverse 0 .. Scope_Stack.Last loop
11566 Scop := Scope_Stack.Table (J).Entity;
11568 if Is_Type (Scop)
11569 and then Base_Type (Scop) = Base_Type (Desig_Type)
11570 then
11571 Desig_Subtype := Scop;
11572 end if;
11574 exit when not Is_Type (Scop);
11575 end loop;
11577 if Desig_Subtype = Any_Type then
11578 Desig_Subtype :=
11579 Build_Constrained_Discriminated_Type (Desig_Type);
11580 end if;
11582 else
11583 return Old_Type;
11584 end if;
11586 if Desig_Subtype /= Desig_Type then
11588 -- The Related_Node better be here or else we won't be able
11589 -- to attach new itypes to a node in the tree.
11591 pragma Assert (Present (Related_Node));
11593 Itype := Create_Itype (E_Access_Subtype, Related_Node);
11595 Set_Etype (Itype, Base_Type (Old_Type));
11596 Set_Size_Info (Itype, (Old_Type));
11597 Set_Directly_Designated_Type (Itype, Desig_Subtype);
11598 Set_Depends_On_Private (Itype, Has_Private_Component
11599 (Old_Type));
11600 Set_Is_Access_Constant (Itype, Is_Access_Constant
11601 (Old_Type));
11603 -- The new itype needs freezing when it depends on a not frozen
11604 -- type and the enclosing subtype needs freezing.
11606 if Has_Delayed_Freeze (Constrained_Typ)
11607 and then not Is_Frozen (Constrained_Typ)
11608 then
11609 Conditional_Delay (Itype, Base_Type (Old_Type));
11610 end if;
11612 return Itype;
11614 else
11615 return Old_Type;
11616 end if;
11617 end Build_Constrained_Access_Type;
11619 ----------------------------------
11620 -- Build_Constrained_Array_Type --
11621 ----------------------------------
11623 function Build_Constrained_Array_Type
11624 (Old_Type : Entity_Id) return Entity_Id
11626 Lo_Expr : Node_Id;
11627 Hi_Expr : Node_Id;
11628 Old_Index : Node_Id;
11629 Range_Node : Node_Id;
11630 Constr_List : List_Id;
11632 Need_To_Create_Itype : Boolean := False;
11634 begin
11635 Old_Index := First_Index (Old_Type);
11636 while Present (Old_Index) loop
11637 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11639 if Is_Discriminant (Lo_Expr)
11640 or else Is_Discriminant (Hi_Expr)
11641 then
11642 Need_To_Create_Itype := True;
11643 end if;
11645 Next_Index (Old_Index);
11646 end loop;
11648 if Need_To_Create_Itype then
11649 Constr_List := New_List;
11651 Old_Index := First_Index (Old_Type);
11652 while Present (Old_Index) loop
11653 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11655 if Is_Discriminant (Lo_Expr) then
11656 Lo_Expr := Get_Discr_Value (Lo_Expr);
11657 end if;
11659 if Is_Discriminant (Hi_Expr) then
11660 Hi_Expr := Get_Discr_Value (Hi_Expr);
11661 end if;
11663 Range_Node :=
11664 Make_Range
11665 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
11667 Append (Range_Node, To => Constr_List);
11669 Next_Index (Old_Index);
11670 end loop;
11672 return Build_Subtype (Old_Type, Constr_List);
11674 else
11675 return Old_Type;
11676 end if;
11677 end Build_Constrained_Array_Type;
11679 ------------------------------------------
11680 -- Build_Constrained_Discriminated_Type --
11681 ------------------------------------------
11683 function Build_Constrained_Discriminated_Type
11684 (Old_Type : Entity_Id) return Entity_Id
11686 Expr : Node_Id;
11687 Constr_List : List_Id;
11688 Old_Constraint : Elmt_Id;
11690 Need_To_Create_Itype : Boolean := False;
11692 begin
11693 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11694 while Present (Old_Constraint) loop
11695 Expr := Node (Old_Constraint);
11697 if Is_Discriminant (Expr) then
11698 Need_To_Create_Itype := True;
11699 end if;
11701 Next_Elmt (Old_Constraint);
11702 end loop;
11704 if Need_To_Create_Itype then
11705 Constr_List := New_List;
11707 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11708 while Present (Old_Constraint) loop
11709 Expr := Node (Old_Constraint);
11711 if Is_Discriminant (Expr) then
11712 Expr := Get_Discr_Value (Expr);
11713 end if;
11715 Append (New_Copy_Tree (Expr), To => Constr_List);
11717 Next_Elmt (Old_Constraint);
11718 end loop;
11720 return Build_Subtype (Old_Type, Constr_List);
11722 else
11723 return Old_Type;
11724 end if;
11725 end Build_Constrained_Discriminated_Type;
11727 -------------------
11728 -- Build_Subtype --
11729 -------------------
11731 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
11732 Indic : Node_Id;
11733 Subtyp_Decl : Node_Id;
11734 Def_Id : Entity_Id;
11735 Btyp : Entity_Id := Base_Type (T);
11737 begin
11738 -- The Related_Node better be here or else we won't be able to
11739 -- attach new itypes to a node in the tree.
11741 pragma Assert (Present (Related_Node));
11743 -- If the view of the component's type is incomplete or private
11744 -- with unknown discriminants, then the constraint must be applied
11745 -- to the full type.
11747 if Has_Unknown_Discriminants (Btyp)
11748 and then Present (Underlying_Type (Btyp))
11749 then
11750 Btyp := Underlying_Type (Btyp);
11751 end if;
11753 Indic :=
11754 Make_Subtype_Indication (Loc,
11755 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
11756 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
11758 Def_Id := Create_Itype (Ekind (T), Related_Node);
11760 Subtyp_Decl :=
11761 Make_Subtype_Declaration (Loc,
11762 Defining_Identifier => Def_Id,
11763 Subtype_Indication => Indic);
11765 Set_Parent (Subtyp_Decl, Parent (Related_Node));
11767 -- Itypes must be analyzed with checks off (see package Itypes)
11769 Analyze (Subtyp_Decl, Suppress => All_Checks);
11771 return Def_Id;
11772 end Build_Subtype;
11774 ---------------------
11775 -- Get_Discr_Value --
11776 ---------------------
11778 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
11779 D : Entity_Id;
11780 E : Elmt_Id;
11782 begin
11783 -- The discriminant may be declared for the type, in which case we
11784 -- find it by iterating over the list of discriminants. If the
11785 -- discriminant is inherited from a parent type, it appears as the
11786 -- corresponding discriminant of the current type. This will be the
11787 -- case when constraining an inherited component whose constraint is
11788 -- given by a discriminant of the parent.
11790 D := First_Discriminant (Typ);
11791 E := First_Elmt (Constraints);
11793 while Present (D) loop
11794 if D = Entity (Discrim)
11795 or else D = CR_Discriminant (Entity (Discrim))
11796 or else Corresponding_Discriminant (D) = Entity (Discrim)
11797 then
11798 return Node (E);
11799 end if;
11801 Next_Discriminant (D);
11802 Next_Elmt (E);
11803 end loop;
11805 -- The Corresponding_Discriminant mechanism is incomplete, because
11806 -- the correspondence between new and old discriminants is not one
11807 -- to one: one new discriminant can constrain several old ones. In
11808 -- that case, scan sequentially the stored_constraint, the list of
11809 -- discriminants of the parents, and the constraints.
11811 -- Previous code checked for the present of the Stored_Constraint
11812 -- list for the derived type, but did not use it at all. Should it
11813 -- be present when the component is a discriminated task type?
11815 if Is_Derived_Type (Typ)
11816 and then Scope (Entity (Discrim)) = Etype (Typ)
11817 then
11818 D := First_Discriminant (Etype (Typ));
11819 E := First_Elmt (Constraints);
11820 while Present (D) loop
11821 if D = Entity (Discrim) then
11822 return Node (E);
11823 end if;
11825 Next_Discriminant (D);
11826 Next_Elmt (E);
11827 end loop;
11828 end if;
11830 -- Something is wrong if we did not find the value
11832 raise Program_Error;
11833 end Get_Discr_Value;
11835 ---------------------
11836 -- Is_Discriminant --
11837 ---------------------
11839 function Is_Discriminant (Expr : Node_Id) return Boolean is
11840 Discrim_Scope : Entity_Id;
11842 begin
11843 if Denotes_Discriminant (Expr) then
11844 Discrim_Scope := Scope (Entity (Expr));
11846 -- Either we have a reference to one of Typ's discriminants,
11848 pragma Assert (Discrim_Scope = Typ
11850 -- or to the discriminants of the parent type, in the case
11851 -- of a derivation of a tagged type with variants.
11853 or else Discrim_Scope = Etype (Typ)
11854 or else Full_View (Discrim_Scope) = Etype (Typ)
11856 -- or same as above for the case where the discriminants
11857 -- were declared in Typ's private view.
11859 or else (Is_Private_Type (Discrim_Scope)
11860 and then Chars (Discrim_Scope) = Chars (Typ))
11862 -- or else we are deriving from the full view and the
11863 -- discriminant is declared in the private entity.
11865 or else (Is_Private_Type (Typ)
11866 and then Chars (Discrim_Scope) = Chars (Typ))
11868 -- Or we are constrained the corresponding record of a
11869 -- synchronized type that completes a private declaration.
11871 or else (Is_Concurrent_Record_Type (Typ)
11872 and then
11873 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
11875 -- or we have a class-wide type, in which case make sure the
11876 -- discriminant found belongs to the root type.
11878 or else (Is_Class_Wide_Type (Typ)
11879 and then Etype (Typ) = Discrim_Scope));
11881 return True;
11882 end if;
11884 -- In all other cases we have something wrong
11886 return False;
11887 end Is_Discriminant;
11889 -- Start of processing for Constrain_Component_Type
11891 begin
11892 if Nkind (Parent (Comp)) = N_Component_Declaration
11893 and then Comes_From_Source (Parent (Comp))
11894 and then Comes_From_Source
11895 (Subtype_Indication (Component_Definition (Parent (Comp))))
11896 and then
11897 Is_Entity_Name
11898 (Subtype_Indication (Component_Definition (Parent (Comp))))
11899 then
11900 return Compon_Type;
11902 elsif Is_Array_Type (Compon_Type) then
11903 Array_Comp := Build_Constrained_Array_Type (Compon_Type);
11905 -- If the component of the parent is packed, and the record type is
11906 -- already frozen, as is the case for an itype, the component type
11907 -- itself will not be frozen, and the packed array type for it must
11908 -- be constructed explicitly. Since the creation of packed types is
11909 -- an expansion activity, we only do this if expansion is active.
11911 if Expander_Active
11912 and then Is_Packed (Compon_Type)
11913 and then Is_Frozen (Current_Scope)
11914 then
11915 Create_Packed_Array_Type (Array_Comp);
11916 end if;
11918 return Array_Comp;
11920 elsif Has_Discriminants (Compon_Type) then
11921 return Build_Constrained_Discriminated_Type (Compon_Type);
11923 elsif Is_Access_Type (Compon_Type) then
11924 return Build_Constrained_Access_Type (Compon_Type);
11926 else
11927 return Compon_Type;
11928 end if;
11929 end Constrain_Component_Type;
11931 --------------------------
11932 -- Constrain_Concurrent --
11933 --------------------------
11935 -- For concurrent types, the associated record value type carries the same
11936 -- discriminants, so when we constrain a concurrent type, we must constrain
11937 -- the corresponding record type as well.
11939 procedure Constrain_Concurrent
11940 (Def_Id : in out Entity_Id;
11941 SI : Node_Id;
11942 Related_Nod : Node_Id;
11943 Related_Id : Entity_Id;
11944 Suffix : Character)
11946 -- Retrieve Base_Type to ensure getting to the concurrent type in the
11947 -- case of a private subtype (needed when only doing semantic analysis).
11949 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
11950 T_Val : Entity_Id;
11952 begin
11953 if Ekind (T_Ent) in Access_Kind then
11954 T_Ent := Designated_Type (T_Ent);
11955 end if;
11957 T_Val := Corresponding_Record_Type (T_Ent);
11959 if Present (T_Val) then
11961 if No (Def_Id) then
11962 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11963 end if;
11965 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
11967 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11968 Set_Corresponding_Record_Type (Def_Id,
11969 Constrain_Corresponding_Record
11970 (Def_Id, T_Val, Related_Nod, Related_Id));
11972 else
11973 -- If there is no associated record, expansion is disabled and this
11974 -- is a generic context. Create a subtype in any case, so that
11975 -- semantic analysis can proceed.
11977 if No (Def_Id) then
11978 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11979 end if;
11981 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
11982 end if;
11983 end Constrain_Concurrent;
11985 ------------------------------------
11986 -- Constrain_Corresponding_Record --
11987 ------------------------------------
11989 function Constrain_Corresponding_Record
11990 (Prot_Subt : Entity_Id;
11991 Corr_Rec : Entity_Id;
11992 Related_Nod : Node_Id;
11993 Related_Id : Entity_Id) return Entity_Id
11995 T_Sub : constant Entity_Id :=
11996 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
11998 begin
11999 Set_Etype (T_Sub, Corr_Rec);
12000 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12001 Set_Is_Constrained (T_Sub, True);
12002 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12003 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12005 -- As elsewhere, we do not want to create a freeze node for this itype
12006 -- if it is created for a constrained component of an enclosing record
12007 -- because references to outer discriminants will appear out of scope.
12009 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12010 Conditional_Delay (T_Sub, Corr_Rec);
12011 else
12012 Set_Is_Frozen (T_Sub);
12013 end if;
12015 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12016 Set_Discriminant_Constraint
12017 (T_Sub, Discriminant_Constraint (Prot_Subt));
12018 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12019 Create_Constrained_Components
12020 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12021 end if;
12023 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12025 return T_Sub;
12026 end Constrain_Corresponding_Record;
12028 -----------------------
12029 -- Constrain_Decimal --
12030 -----------------------
12032 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12033 T : constant Entity_Id := Entity (Subtype_Mark (S));
12034 C : constant Node_Id := Constraint (S);
12035 Loc : constant Source_Ptr := Sloc (C);
12036 Range_Expr : Node_Id;
12037 Digits_Expr : Node_Id;
12038 Digits_Val : Uint;
12039 Bound_Val : Ureal;
12041 begin
12042 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12044 if Nkind (C) = N_Range_Constraint then
12045 Range_Expr := Range_Expression (C);
12046 Digits_Val := Digits_Value (T);
12048 else
12049 pragma Assert (Nkind (C) = N_Digits_Constraint);
12051 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12053 Digits_Expr := Digits_Expression (C);
12054 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12056 Check_Digits_Expression (Digits_Expr);
12057 Digits_Val := Expr_Value (Digits_Expr);
12059 if Digits_Val > Digits_Value (T) then
12060 Error_Msg_N
12061 ("digits expression is incompatible with subtype", C);
12062 Digits_Val := Digits_Value (T);
12063 end if;
12065 if Present (Range_Constraint (C)) then
12066 Range_Expr := Range_Expression (Range_Constraint (C));
12067 else
12068 Range_Expr := Empty;
12069 end if;
12070 end if;
12072 Set_Etype (Def_Id, Base_Type (T));
12073 Set_Size_Info (Def_Id, (T));
12074 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12075 Set_Delta_Value (Def_Id, Delta_Value (T));
12076 Set_Scale_Value (Def_Id, Scale_Value (T));
12077 Set_Small_Value (Def_Id, Small_Value (T));
12078 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12079 Set_Digits_Value (Def_Id, Digits_Val);
12081 -- Manufacture range from given digits value if no range present
12083 if No (Range_Expr) then
12084 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12085 Range_Expr :=
12086 Make_Range (Loc,
12087 Low_Bound =>
12088 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12089 High_Bound =>
12090 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12091 end if;
12093 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12094 Set_Discrete_RM_Size (Def_Id);
12096 -- Unconditionally delay the freeze, since we cannot set size
12097 -- information in all cases correctly until the freeze point.
12099 Set_Has_Delayed_Freeze (Def_Id);
12100 end Constrain_Decimal;
12102 ----------------------------------
12103 -- Constrain_Discriminated_Type --
12104 ----------------------------------
12106 procedure Constrain_Discriminated_Type
12107 (Def_Id : Entity_Id;
12108 S : Node_Id;
12109 Related_Nod : Node_Id;
12110 For_Access : Boolean := False)
12112 E : constant Entity_Id := Entity (Subtype_Mark (S));
12113 T : Entity_Id;
12114 C : Node_Id;
12115 Elist : Elist_Id := New_Elmt_List;
12117 procedure Fixup_Bad_Constraint;
12118 -- This is called after finding a bad constraint, and after having
12119 -- posted an appropriate error message. The mission is to leave the
12120 -- entity T in as reasonable state as possible.
12122 --------------------------
12123 -- Fixup_Bad_Constraint --
12124 --------------------------
12126 procedure Fixup_Bad_Constraint is
12127 begin
12128 -- Set a reasonable Ekind for the entity. For an incomplete type,
12129 -- we can't do much, but for other types, we can set the proper
12130 -- corresponding subtype kind.
12132 if Ekind (T) = E_Incomplete_Type then
12133 Set_Ekind (Def_Id, Ekind (T));
12134 else
12135 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12136 end if;
12138 -- Set Etype to the known type, to reduce chances of cascaded errors
12140 Set_Etype (Def_Id, E);
12141 Set_Error_Posted (Def_Id);
12142 end Fixup_Bad_Constraint;
12144 -- Start of processing for Constrain_Discriminated_Type
12146 begin
12147 C := Constraint (S);
12149 -- A discriminant constraint is only allowed in a subtype indication,
12150 -- after a subtype mark. This subtype mark must denote either a type
12151 -- with discriminants, or an access type whose designated type is a
12152 -- type with discriminants. A discriminant constraint specifies the
12153 -- values of these discriminants (RM 3.7.2(5)).
12155 T := Base_Type (Entity (Subtype_Mark (S)));
12157 if Ekind (T) in Access_Kind then
12158 T := Designated_Type (T);
12159 end if;
12161 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12162 -- Avoid generating an error for access-to-incomplete subtypes.
12164 if Ada_Version >= Ada_2005
12165 and then Ekind (T) = E_Incomplete_Type
12166 and then Nkind (Parent (S)) = N_Subtype_Declaration
12167 and then not Is_Itype (Def_Id)
12168 then
12169 -- A little sanity check, emit an error message if the type
12170 -- has discriminants to begin with. Type T may be a regular
12171 -- incomplete type or imported via a limited with clause.
12173 if Has_Discriminants (T)
12174 or else (From_Limited_With (T)
12175 and then Present (Non_Limited_View (T))
12176 and then Nkind (Parent (Non_Limited_View (T))) =
12177 N_Full_Type_Declaration
12178 and then Present (Discriminant_Specifications
12179 (Parent (Non_Limited_View (T)))))
12180 then
12181 Error_Msg_N
12182 ("(Ada 2005) incomplete subtype may not be constrained", C);
12183 else
12184 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12185 end if;
12187 Fixup_Bad_Constraint;
12188 return;
12190 -- Check that the type has visible discriminants. The type may be
12191 -- a private type with unknown discriminants whose full view has
12192 -- discriminants which are invisible.
12194 elsif not Has_Discriminants (T)
12195 or else
12196 (Has_Unknown_Discriminants (T)
12197 and then Is_Private_Type (T))
12198 then
12199 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12200 Fixup_Bad_Constraint;
12201 return;
12203 elsif Is_Constrained (E)
12204 or else (Ekind (E) = E_Class_Wide_Subtype
12205 and then Present (Discriminant_Constraint (E)))
12206 then
12207 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12208 Fixup_Bad_Constraint;
12209 return;
12210 end if;
12212 -- T may be an unconstrained subtype (e.g. a generic actual).
12213 -- Constraint applies to the base type.
12215 T := Base_Type (T);
12217 Elist := Build_Discriminant_Constraints (T, S);
12219 -- If the list returned was empty we had an error in building the
12220 -- discriminant constraint. We have also already signalled an error
12221 -- in the incomplete type case
12223 if Is_Empty_Elmt_List (Elist) then
12224 Fixup_Bad_Constraint;
12225 return;
12226 end if;
12228 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12229 end Constrain_Discriminated_Type;
12231 ---------------------------
12232 -- Constrain_Enumeration --
12233 ---------------------------
12235 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12236 T : constant Entity_Id := Entity (Subtype_Mark (S));
12237 C : constant Node_Id := Constraint (S);
12239 begin
12240 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12242 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12244 Set_Etype (Def_Id, Base_Type (T));
12245 Set_Size_Info (Def_Id, (T));
12246 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12247 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12249 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12251 Set_Discrete_RM_Size (Def_Id);
12252 end Constrain_Enumeration;
12254 ----------------------
12255 -- Constrain_Float --
12256 ----------------------
12258 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12259 T : constant Entity_Id := Entity (Subtype_Mark (S));
12260 C : Node_Id;
12261 D : Node_Id;
12262 Rais : Node_Id;
12264 begin
12265 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12267 Set_Etype (Def_Id, Base_Type (T));
12268 Set_Size_Info (Def_Id, (T));
12269 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12271 -- Process the constraint
12273 C := Constraint (S);
12275 -- Digits constraint present
12277 if Nkind (C) = N_Digits_Constraint then
12279 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12280 Check_Restriction (No_Obsolescent_Features, C);
12282 if Warn_On_Obsolescent_Feature then
12283 Error_Msg_N
12284 ("subtype digits constraint is an " &
12285 "obsolescent feature (RM J.3(8))?j?", C);
12286 end if;
12288 D := Digits_Expression (C);
12289 Analyze_And_Resolve (D, Any_Integer);
12290 Check_Digits_Expression (D);
12291 Set_Digits_Value (Def_Id, Expr_Value (D));
12293 -- Check that digits value is in range. Obviously we can do this
12294 -- at compile time, but it is strictly a runtime check, and of
12295 -- course there is an ACVC test that checks this.
12297 if Digits_Value (Def_Id) > Digits_Value (T) then
12298 Error_Msg_Uint_1 := Digits_Value (T);
12299 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12300 Rais :=
12301 Make_Raise_Constraint_Error (Sloc (D),
12302 Reason => CE_Range_Check_Failed);
12303 Insert_Action (Declaration_Node (Def_Id), Rais);
12304 end if;
12306 C := Range_Constraint (C);
12308 -- No digits constraint present
12310 else
12311 Set_Digits_Value (Def_Id, Digits_Value (T));
12312 end if;
12314 -- Range constraint present
12316 if Nkind (C) = N_Range_Constraint then
12317 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12319 -- No range constraint present
12321 else
12322 pragma Assert (No (C));
12323 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12324 end if;
12326 Set_Is_Constrained (Def_Id);
12327 end Constrain_Float;
12329 ---------------------
12330 -- Constrain_Index --
12331 ---------------------
12333 procedure Constrain_Index
12334 (Index : Node_Id;
12335 S : Node_Id;
12336 Related_Nod : Node_Id;
12337 Related_Id : Entity_Id;
12338 Suffix : Character;
12339 Suffix_Index : Nat)
12341 Def_Id : Entity_Id;
12342 R : Node_Id := Empty;
12343 T : constant Entity_Id := Etype (Index);
12345 begin
12346 if Nkind (S) = N_Range
12347 or else
12348 (Nkind (S) = N_Attribute_Reference
12349 and then Attribute_Name (S) = Name_Range)
12350 then
12351 -- A Range attribute will be transformed into N_Range by Resolve
12353 Analyze (S);
12354 Set_Etype (S, T);
12355 R := S;
12357 Process_Range_Expr_In_Decl (R, T, Empty_List);
12359 if not Error_Posted (S)
12360 and then
12361 (Nkind (S) /= N_Range
12362 or else not Covers (T, (Etype (Low_Bound (S))))
12363 or else not Covers (T, (Etype (High_Bound (S)))))
12364 then
12365 if Base_Type (T) /= Any_Type
12366 and then Etype (Low_Bound (S)) /= Any_Type
12367 and then Etype (High_Bound (S)) /= Any_Type
12368 then
12369 Error_Msg_N ("range expected", S);
12370 end if;
12371 end if;
12373 elsif Nkind (S) = N_Subtype_Indication then
12375 -- The parser has verified that this is a discrete indication
12377 Resolve_Discrete_Subtype_Indication (S, T);
12378 R := Range_Expression (Constraint (S));
12380 -- Capture values of bounds and generate temporaries for them if
12381 -- needed, since checks may cause duplication of the expressions
12382 -- which must not be reevaluated.
12384 -- The forced evaluation removes side effects from expressions, which
12385 -- should occur also in GNATprove mode. Otherwise, we end up with
12386 -- unexpected insertions of actions at places where this is not
12387 -- supposed to occur, e.g. on default parameters of a call.
12389 if Expander_Active or GNATprove_Mode then
12390 Force_Evaluation (Low_Bound (R));
12391 Force_Evaluation (High_Bound (R));
12392 end if;
12394 elsif Nkind (S) = N_Discriminant_Association then
12396 -- Syntactically valid in subtype indication
12398 Error_Msg_N ("invalid index constraint", S);
12399 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12400 return;
12402 -- Subtype_Mark case, no anonymous subtypes to construct
12404 else
12405 Analyze (S);
12407 if Is_Entity_Name (S) then
12408 if not Is_Type (Entity (S)) then
12409 Error_Msg_N ("expect subtype mark for index constraint", S);
12411 elsif Base_Type (Entity (S)) /= Base_Type (T) then
12412 Wrong_Type (S, Base_Type (T));
12414 -- Check error of subtype with predicate in index constraint
12416 else
12417 Bad_Predicated_Subtype_Use
12418 ("subtype& has predicate, not allowed in index constraint",
12419 S, Entity (S));
12420 end if;
12422 return;
12424 else
12425 Error_Msg_N ("invalid index constraint", S);
12426 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12427 return;
12428 end if;
12429 end if;
12431 Def_Id :=
12432 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
12434 Set_Etype (Def_Id, Base_Type (T));
12436 if Is_Modular_Integer_Type (T) then
12437 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12439 elsif Is_Integer_Type (T) then
12440 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12442 else
12443 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12444 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12445 Set_First_Literal (Def_Id, First_Literal (T));
12446 end if;
12448 Set_Size_Info (Def_Id, (T));
12449 Set_RM_Size (Def_Id, RM_Size (T));
12450 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12452 Set_Scalar_Range (Def_Id, R);
12454 Set_Etype (S, Def_Id);
12455 Set_Discrete_RM_Size (Def_Id);
12456 end Constrain_Index;
12458 -----------------------
12459 -- Constrain_Integer --
12460 -----------------------
12462 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
12463 T : constant Entity_Id := Entity (Subtype_Mark (S));
12464 C : constant Node_Id := Constraint (S);
12466 begin
12467 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12469 if Is_Modular_Integer_Type (T) then
12470 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12471 else
12472 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12473 end if;
12475 Set_Etype (Def_Id, Base_Type (T));
12476 Set_Size_Info (Def_Id, (T));
12477 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12478 Set_Discrete_RM_Size (Def_Id);
12479 end Constrain_Integer;
12481 ------------------------------
12482 -- Constrain_Ordinary_Fixed --
12483 ------------------------------
12485 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
12486 T : constant Entity_Id := Entity (Subtype_Mark (S));
12487 C : Node_Id;
12488 D : Node_Id;
12489 Rais : Node_Id;
12491 begin
12492 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
12493 Set_Etype (Def_Id, Base_Type (T));
12494 Set_Size_Info (Def_Id, (T));
12495 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12496 Set_Small_Value (Def_Id, Small_Value (T));
12498 -- Process the constraint
12500 C := Constraint (S);
12502 -- Delta constraint present
12504 if Nkind (C) = N_Delta_Constraint then
12506 Check_SPARK_Restriction ("delta constraint is not allowed", S);
12507 Check_Restriction (No_Obsolescent_Features, C);
12509 if Warn_On_Obsolescent_Feature then
12510 Error_Msg_S
12511 ("subtype delta constraint is an " &
12512 "obsolescent feature (RM J.3(7))?j?");
12513 end if;
12515 D := Delta_Expression (C);
12516 Analyze_And_Resolve (D, Any_Real);
12517 Check_Delta_Expression (D);
12518 Set_Delta_Value (Def_Id, Expr_Value_R (D));
12520 -- Check that delta value is in range. Obviously we can do this
12521 -- at compile time, but it is strictly a runtime check, and of
12522 -- course there is an ACVC test that checks this.
12524 if Delta_Value (Def_Id) < Delta_Value (T) then
12525 Error_Msg_N ("??delta value is too small", D);
12526 Rais :=
12527 Make_Raise_Constraint_Error (Sloc (D),
12528 Reason => CE_Range_Check_Failed);
12529 Insert_Action (Declaration_Node (Def_Id), Rais);
12530 end if;
12532 C := Range_Constraint (C);
12534 -- No delta constraint present
12536 else
12537 Set_Delta_Value (Def_Id, Delta_Value (T));
12538 end if;
12540 -- Range constraint present
12542 if Nkind (C) = N_Range_Constraint then
12543 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12545 -- No range constraint present
12547 else
12548 pragma Assert (No (C));
12549 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12551 end if;
12553 Set_Discrete_RM_Size (Def_Id);
12555 -- Unconditionally delay the freeze, since we cannot set size
12556 -- information in all cases correctly until the freeze point.
12558 Set_Has_Delayed_Freeze (Def_Id);
12559 end Constrain_Ordinary_Fixed;
12561 -----------------------
12562 -- Contain_Interface --
12563 -----------------------
12565 function Contain_Interface
12566 (Iface : Entity_Id;
12567 Ifaces : Elist_Id) return Boolean
12569 Iface_Elmt : Elmt_Id;
12571 begin
12572 if Present (Ifaces) then
12573 Iface_Elmt := First_Elmt (Ifaces);
12574 while Present (Iface_Elmt) loop
12575 if Node (Iface_Elmt) = Iface then
12576 return True;
12577 end if;
12579 Next_Elmt (Iface_Elmt);
12580 end loop;
12581 end if;
12583 return False;
12584 end Contain_Interface;
12586 ---------------------------
12587 -- Convert_Scalar_Bounds --
12588 ---------------------------
12590 procedure Convert_Scalar_Bounds
12591 (N : Node_Id;
12592 Parent_Type : Entity_Id;
12593 Derived_Type : Entity_Id;
12594 Loc : Source_Ptr)
12596 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
12598 Lo : Node_Id;
12599 Hi : Node_Id;
12600 Rng : Node_Id;
12602 begin
12603 -- Defend against previous errors
12605 if No (Scalar_Range (Derived_Type)) then
12606 Check_Error_Detected;
12607 return;
12608 end if;
12610 Lo := Build_Scalar_Bound
12611 (Type_Low_Bound (Derived_Type),
12612 Parent_Type, Implicit_Base);
12614 Hi := Build_Scalar_Bound
12615 (Type_High_Bound (Derived_Type),
12616 Parent_Type, Implicit_Base);
12618 Rng :=
12619 Make_Range (Loc,
12620 Low_Bound => Lo,
12621 High_Bound => Hi);
12623 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
12625 Set_Parent (Rng, N);
12626 Set_Scalar_Range (Derived_Type, Rng);
12628 -- Analyze the bounds
12630 Analyze_And_Resolve (Lo, Implicit_Base);
12631 Analyze_And_Resolve (Hi, Implicit_Base);
12633 -- Analyze the range itself, except that we do not analyze it if
12634 -- the bounds are real literals, and we have a fixed-point type.
12635 -- The reason for this is that we delay setting the bounds in this
12636 -- case till we know the final Small and Size values (see circuit
12637 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12639 if Is_Fixed_Point_Type (Parent_Type)
12640 and then Nkind (Lo) = N_Real_Literal
12641 and then Nkind (Hi) = N_Real_Literal
12642 then
12643 return;
12645 -- Here we do the analysis of the range
12647 -- Note: we do this manually, since if we do a normal Analyze and
12648 -- Resolve call, there are problems with the conversions used for
12649 -- the derived type range.
12651 else
12652 Set_Etype (Rng, Implicit_Base);
12653 Set_Analyzed (Rng, True);
12654 end if;
12655 end Convert_Scalar_Bounds;
12657 -------------------
12658 -- Copy_And_Swap --
12659 -------------------
12661 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
12662 begin
12663 -- Initialize new full declaration entity by copying the pertinent
12664 -- fields of the corresponding private declaration entity.
12666 -- We temporarily set Ekind to a value appropriate for a type to
12667 -- avoid assert failures in Einfo from checking for setting type
12668 -- attributes on something that is not a type. Ekind (Priv) is an
12669 -- appropriate choice, since it allowed the attributes to be set
12670 -- in the first place. This Ekind value will be modified later.
12672 Set_Ekind (Full, Ekind (Priv));
12674 -- Also set Etype temporarily to Any_Type, again, in the absence
12675 -- of errors, it will be properly reset, and if there are errors,
12676 -- then we want a value of Any_Type to remain.
12678 Set_Etype (Full, Any_Type);
12680 -- Now start copying attributes
12682 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
12684 if Has_Discriminants (Full) then
12685 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
12686 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
12687 end if;
12689 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
12690 Set_Homonym (Full, Homonym (Priv));
12691 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
12692 Set_Is_Public (Full, Is_Public (Priv));
12693 Set_Is_Pure (Full, Is_Pure (Priv));
12694 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
12695 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
12696 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
12697 Set_Has_Pragma_Unreferenced_Objects
12698 (Full, Has_Pragma_Unreferenced_Objects
12699 (Priv));
12701 Conditional_Delay (Full, Priv);
12703 if Is_Tagged_Type (Full) then
12704 Set_Direct_Primitive_Operations (Full,
12705 Direct_Primitive_Operations (Priv));
12707 if Is_Base_Type (Priv) then
12708 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
12709 end if;
12710 end if;
12712 Set_Is_Volatile (Full, Is_Volatile (Priv));
12713 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
12714 Set_Scope (Full, Scope (Priv));
12715 Set_Next_Entity (Full, Next_Entity (Priv));
12716 Set_First_Entity (Full, First_Entity (Priv));
12717 Set_Last_Entity (Full, Last_Entity (Priv));
12719 -- If access types have been recorded for later handling, keep them in
12720 -- the full view so that they get handled when the full view freeze
12721 -- node is expanded.
12723 if Present (Freeze_Node (Priv))
12724 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
12725 then
12726 Ensure_Freeze_Node (Full);
12727 Set_Access_Types_To_Process
12728 (Freeze_Node (Full),
12729 Access_Types_To_Process (Freeze_Node (Priv)));
12730 end if;
12732 -- Swap the two entities. Now Private is the full type entity and Full
12733 -- is the private one. They will be swapped back at the end of the
12734 -- private part. This swapping ensures that the entity that is visible
12735 -- in the private part is the full declaration.
12737 Exchange_Entities (Priv, Full);
12738 Append_Entity (Full, Scope (Full));
12739 end Copy_And_Swap;
12741 -------------------------------------
12742 -- Copy_Array_Base_Type_Attributes --
12743 -------------------------------------
12745 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
12746 begin
12747 Set_Component_Alignment (T1, Component_Alignment (T2));
12748 Set_Component_Type (T1, Component_Type (T2));
12749 Set_Component_Size (T1, Component_Size (T2));
12750 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
12751 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
12752 Set_Has_Task (T1, Has_Task (T2));
12753 Set_Is_Packed (T1, Is_Packed (T2));
12754 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
12755 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
12756 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
12757 end Copy_Array_Base_Type_Attributes;
12759 -----------------------------------
12760 -- Copy_Array_Subtype_Attributes --
12761 -----------------------------------
12763 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
12764 begin
12765 Set_Size_Info (T1, T2);
12767 Set_First_Index (T1, First_Index (T2));
12768 Set_Is_Aliased (T1, Is_Aliased (T2));
12769 Set_Is_Volatile (T1, Is_Volatile (T2));
12770 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
12771 Set_Is_Constrained (T1, Is_Constrained (T2));
12772 Set_Depends_On_Private (T1, Has_Private_Component (T2));
12773 Set_First_Rep_Item (T1, First_Rep_Item (T2));
12774 Set_Convention (T1, Convention (T2));
12775 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
12776 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
12777 Set_Packed_Array_Type (T1, Packed_Array_Type (T2));
12778 end Copy_Array_Subtype_Attributes;
12780 -----------------------------------
12781 -- Create_Constrained_Components --
12782 -----------------------------------
12784 procedure Create_Constrained_Components
12785 (Subt : Entity_Id;
12786 Decl_Node : Node_Id;
12787 Typ : Entity_Id;
12788 Constraints : Elist_Id)
12790 Loc : constant Source_Ptr := Sloc (Subt);
12791 Comp_List : constant Elist_Id := New_Elmt_List;
12792 Parent_Type : constant Entity_Id := Etype (Typ);
12793 Assoc_List : constant List_Id := New_List;
12794 Discr_Val : Elmt_Id;
12795 Errors : Boolean;
12796 New_C : Entity_Id;
12797 Old_C : Entity_Id;
12798 Is_Static : Boolean := True;
12800 procedure Collect_Fixed_Components (Typ : Entity_Id);
12801 -- Collect parent type components that do not appear in a variant part
12803 procedure Create_All_Components;
12804 -- Iterate over Comp_List to create the components of the subtype
12806 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
12807 -- Creates a new component from Old_Compon, copying all the fields from
12808 -- it, including its Etype, inserts the new component in the Subt entity
12809 -- chain and returns the new component.
12811 function Is_Variant_Record (T : Entity_Id) return Boolean;
12812 -- If true, and discriminants are static, collect only components from
12813 -- variants selected by discriminant values.
12815 ------------------------------
12816 -- Collect_Fixed_Components --
12817 ------------------------------
12819 procedure Collect_Fixed_Components (Typ : Entity_Id) is
12820 begin
12821 -- Build association list for discriminants, and find components of the
12822 -- variant part selected by the values of the discriminants.
12824 Old_C := First_Discriminant (Typ);
12825 Discr_Val := First_Elmt (Constraints);
12826 while Present (Old_C) loop
12827 Append_To (Assoc_List,
12828 Make_Component_Association (Loc,
12829 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
12830 Expression => New_Copy (Node (Discr_Val))));
12832 Next_Elmt (Discr_Val);
12833 Next_Discriminant (Old_C);
12834 end loop;
12836 -- The tag and the possible parent component are unconditionally in
12837 -- the subtype.
12839 if Is_Tagged_Type (Typ)
12840 or else Has_Controlled_Component (Typ)
12841 then
12842 Old_C := First_Component (Typ);
12843 while Present (Old_C) loop
12844 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
12845 Append_Elmt (Old_C, Comp_List);
12846 end if;
12848 Next_Component (Old_C);
12849 end loop;
12850 end if;
12851 end Collect_Fixed_Components;
12853 ---------------------------
12854 -- Create_All_Components --
12855 ---------------------------
12857 procedure Create_All_Components is
12858 Comp : Elmt_Id;
12860 begin
12861 Comp := First_Elmt (Comp_List);
12862 while Present (Comp) loop
12863 Old_C := Node (Comp);
12864 New_C := Create_Component (Old_C);
12866 Set_Etype
12867 (New_C,
12868 Constrain_Component_Type
12869 (Old_C, Subt, Decl_Node, Typ, Constraints));
12870 Set_Is_Public (New_C, Is_Public (Subt));
12872 Next_Elmt (Comp);
12873 end loop;
12874 end Create_All_Components;
12876 ----------------------
12877 -- Create_Component --
12878 ----------------------
12880 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
12881 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
12883 begin
12884 if Ekind (Old_Compon) = E_Discriminant
12885 and then Is_Completely_Hidden (Old_Compon)
12886 then
12887 -- This is a shadow discriminant created for a discriminant of
12888 -- the parent type, which needs to be present in the subtype.
12889 -- Give the shadow discriminant an internal name that cannot
12890 -- conflict with that of visible components.
12892 Set_Chars (New_Compon, New_Internal_Name ('C'));
12893 end if;
12895 -- Set the parent so we have a proper link for freezing etc. This is
12896 -- not a real parent pointer, since of course our parent does not own
12897 -- up to us and reference us, we are an illegitimate child of the
12898 -- original parent.
12900 Set_Parent (New_Compon, Parent (Old_Compon));
12902 -- If the old component's Esize was already determined and is a
12903 -- static value, then the new component simply inherits it. Otherwise
12904 -- the old component's size may require run-time determination, but
12905 -- the new component's size still might be statically determinable
12906 -- (if, for example it has a static constraint). In that case we want
12907 -- Layout_Type to recompute the component's size, so we reset its
12908 -- size and positional fields.
12910 if Frontend_Layout_On_Target
12911 and then not Known_Static_Esize (Old_Compon)
12912 then
12913 Set_Esize (New_Compon, Uint_0);
12914 Init_Normalized_First_Bit (New_Compon);
12915 Init_Normalized_Position (New_Compon);
12916 Init_Normalized_Position_Max (New_Compon);
12917 end if;
12919 -- We do not want this node marked as Comes_From_Source, since
12920 -- otherwise it would get first class status and a separate cross-
12921 -- reference line would be generated. Illegitimate children do not
12922 -- rate such recognition.
12924 Set_Comes_From_Source (New_Compon, False);
12926 -- But it is a real entity, and a birth certificate must be properly
12927 -- registered by entering it into the entity list.
12929 Enter_Name (New_Compon);
12931 return New_Compon;
12932 end Create_Component;
12934 -----------------------
12935 -- Is_Variant_Record --
12936 -----------------------
12938 function Is_Variant_Record (T : Entity_Id) return Boolean is
12939 begin
12940 return Nkind (Parent (T)) = N_Full_Type_Declaration
12941 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
12942 and then Present (Component_List (Type_Definition (Parent (T))))
12943 and then
12944 Present
12945 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
12946 end Is_Variant_Record;
12948 -- Start of processing for Create_Constrained_Components
12950 begin
12951 pragma Assert (Subt /= Base_Type (Subt));
12952 pragma Assert (Typ = Base_Type (Typ));
12954 Set_First_Entity (Subt, Empty);
12955 Set_Last_Entity (Subt, Empty);
12957 -- Check whether constraint is fully static, in which case we can
12958 -- optimize the list of components.
12960 Discr_Val := First_Elmt (Constraints);
12961 while Present (Discr_Val) loop
12962 if not Is_OK_Static_Expression (Node (Discr_Val)) then
12963 Is_Static := False;
12964 exit;
12965 end if;
12967 Next_Elmt (Discr_Val);
12968 end loop;
12970 Set_Has_Static_Discriminants (Subt, Is_Static);
12972 Push_Scope (Subt);
12974 -- Inherit the discriminants of the parent type
12976 Add_Discriminants : declare
12977 Num_Disc : Int;
12978 Num_Gird : Int;
12980 begin
12981 Num_Disc := 0;
12982 Old_C := First_Discriminant (Typ);
12984 while Present (Old_C) loop
12985 Num_Disc := Num_Disc + 1;
12986 New_C := Create_Component (Old_C);
12987 Set_Is_Public (New_C, Is_Public (Subt));
12988 Next_Discriminant (Old_C);
12989 end loop;
12991 -- For an untagged derived subtype, the number of discriminants may
12992 -- be smaller than the number of inherited discriminants, because
12993 -- several of them may be renamed by a single new discriminant or
12994 -- constrained. In this case, add the hidden discriminants back into
12995 -- the subtype, because they need to be present if the optimizer of
12996 -- the GCC 4.x back-end decides to break apart assignments between
12997 -- objects using the parent view into member-wise assignments.
12999 Num_Gird := 0;
13001 if Is_Derived_Type (Typ)
13002 and then not Is_Tagged_Type (Typ)
13003 then
13004 Old_C := First_Stored_Discriminant (Typ);
13006 while Present (Old_C) loop
13007 Num_Gird := Num_Gird + 1;
13008 Next_Stored_Discriminant (Old_C);
13009 end loop;
13010 end if;
13012 if Num_Gird > Num_Disc then
13014 -- Find out multiple uses of new discriminants, and add hidden
13015 -- components for the extra renamed discriminants. We recognize
13016 -- multiple uses through the Corresponding_Discriminant of a
13017 -- new discriminant: if it constrains several old discriminants,
13018 -- this field points to the last one in the parent type. The
13019 -- stored discriminants of the derived type have the same name
13020 -- as those of the parent.
13022 declare
13023 Constr : Elmt_Id;
13024 New_Discr : Entity_Id;
13025 Old_Discr : Entity_Id;
13027 begin
13028 Constr := First_Elmt (Stored_Constraint (Typ));
13029 Old_Discr := First_Stored_Discriminant (Typ);
13030 while Present (Constr) loop
13031 if Is_Entity_Name (Node (Constr))
13032 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13033 then
13034 New_Discr := Entity (Node (Constr));
13036 if Chars (Corresponding_Discriminant (New_Discr)) /=
13037 Chars (Old_Discr)
13038 then
13039 -- The new discriminant has been used to rename a
13040 -- subsequent old discriminant. Introduce a shadow
13041 -- component for the current old discriminant.
13043 New_C := Create_Component (Old_Discr);
13044 Set_Original_Record_Component (New_C, Old_Discr);
13045 end if;
13047 else
13048 -- The constraint has eliminated the old discriminant.
13049 -- Introduce a shadow component.
13051 New_C := Create_Component (Old_Discr);
13052 Set_Original_Record_Component (New_C, Old_Discr);
13053 end if;
13055 Next_Elmt (Constr);
13056 Next_Stored_Discriminant (Old_Discr);
13057 end loop;
13058 end;
13059 end if;
13060 end Add_Discriminants;
13062 if Is_Static
13063 and then Is_Variant_Record (Typ)
13064 then
13065 Collect_Fixed_Components (Typ);
13067 Gather_Components (
13068 Typ,
13069 Component_List (Type_Definition (Parent (Typ))),
13070 Governed_By => Assoc_List,
13071 Into => Comp_List,
13072 Report_Errors => Errors);
13073 pragma Assert (not Errors);
13075 Create_All_Components;
13077 -- If the subtype declaration is created for a tagged type derivation
13078 -- with constraints, we retrieve the record definition of the parent
13079 -- type to select the components of the proper variant.
13081 elsif Is_Static
13082 and then Is_Tagged_Type (Typ)
13083 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13084 and then
13085 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13086 and then Is_Variant_Record (Parent_Type)
13087 then
13088 Collect_Fixed_Components (Typ);
13090 Gather_Components (
13091 Typ,
13092 Component_List (Type_Definition (Parent (Parent_Type))),
13093 Governed_By => Assoc_List,
13094 Into => Comp_List,
13095 Report_Errors => Errors);
13096 pragma Assert (not Errors);
13098 -- If the tagged derivation has a type extension, collect all the
13099 -- new components therein.
13101 if Present
13102 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13103 then
13104 Old_C := First_Component (Typ);
13105 while Present (Old_C) loop
13106 if Original_Record_Component (Old_C) = Old_C
13107 and then Chars (Old_C) /= Name_uTag
13108 and then Chars (Old_C) /= Name_uParent
13109 then
13110 Append_Elmt (Old_C, Comp_List);
13111 end if;
13113 Next_Component (Old_C);
13114 end loop;
13115 end if;
13117 Create_All_Components;
13119 else
13120 -- If discriminants are not static, or if this is a multi-level type
13121 -- extension, we have to include all components of the parent type.
13123 Old_C := First_Component (Typ);
13124 while Present (Old_C) loop
13125 New_C := Create_Component (Old_C);
13127 Set_Etype
13128 (New_C,
13129 Constrain_Component_Type
13130 (Old_C, Subt, Decl_Node, Typ, Constraints));
13131 Set_Is_Public (New_C, Is_Public (Subt));
13133 Next_Component (Old_C);
13134 end loop;
13135 end if;
13137 End_Scope;
13138 end Create_Constrained_Components;
13140 ------------------------------------------
13141 -- Decimal_Fixed_Point_Type_Declaration --
13142 ------------------------------------------
13144 procedure Decimal_Fixed_Point_Type_Declaration
13145 (T : Entity_Id;
13146 Def : Node_Id)
13148 Loc : constant Source_Ptr := Sloc (Def);
13149 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13150 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13151 Implicit_Base : Entity_Id;
13152 Digs_Val : Uint;
13153 Delta_Val : Ureal;
13154 Scale_Val : Uint;
13155 Bound_Val : Ureal;
13157 begin
13158 Check_SPARK_Restriction
13159 ("decimal fixed point type is not allowed", Def);
13160 Check_Restriction (No_Fixed_Point, Def);
13162 -- Create implicit base type
13164 Implicit_Base :=
13165 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13166 Set_Etype (Implicit_Base, Implicit_Base);
13168 -- Analyze and process delta expression
13170 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13172 Check_Delta_Expression (Delta_Expr);
13173 Delta_Val := Expr_Value_R (Delta_Expr);
13175 -- Check delta is power of 10, and determine scale value from it
13177 declare
13178 Val : Ureal;
13180 begin
13181 Scale_Val := Uint_0;
13182 Val := Delta_Val;
13184 if Val < Ureal_1 then
13185 while Val < Ureal_1 loop
13186 Val := Val * Ureal_10;
13187 Scale_Val := Scale_Val + 1;
13188 end loop;
13190 if Scale_Val > 18 then
13191 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13192 Scale_Val := UI_From_Int (+18);
13193 end if;
13195 else
13196 while Val > Ureal_1 loop
13197 Val := Val / Ureal_10;
13198 Scale_Val := Scale_Val - 1;
13199 end loop;
13201 if Scale_Val < -18 then
13202 Error_Msg_N ("scale is less than minimum value of -18", Def);
13203 Scale_Val := UI_From_Int (-18);
13204 end if;
13205 end if;
13207 if Val /= Ureal_1 then
13208 Error_Msg_N ("delta expression must be a power of 10", Def);
13209 Delta_Val := Ureal_10 ** (-Scale_Val);
13210 end if;
13211 end;
13213 -- Set delta, scale and small (small = delta for decimal type)
13215 Set_Delta_Value (Implicit_Base, Delta_Val);
13216 Set_Scale_Value (Implicit_Base, Scale_Val);
13217 Set_Small_Value (Implicit_Base, Delta_Val);
13219 -- Analyze and process digits expression
13221 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13222 Check_Digits_Expression (Digs_Expr);
13223 Digs_Val := Expr_Value (Digs_Expr);
13225 if Digs_Val > 18 then
13226 Digs_Val := UI_From_Int (+18);
13227 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13228 end if;
13230 Set_Digits_Value (Implicit_Base, Digs_Val);
13231 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13233 -- Set range of base type from digits value for now. This will be
13234 -- expanded to represent the true underlying base range by Freeze.
13236 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13238 -- Note: We leave size as zero for now, size will be set at freeze
13239 -- time. We have to do this for ordinary fixed-point, because the size
13240 -- depends on the specified small, and we might as well do the same for
13241 -- decimal fixed-point.
13243 pragma Assert (Esize (Implicit_Base) = Uint_0);
13245 -- If there are bounds given in the declaration use them as the
13246 -- bounds of the first named subtype.
13248 if Present (Real_Range_Specification (Def)) then
13249 declare
13250 RRS : constant Node_Id := Real_Range_Specification (Def);
13251 Low : constant Node_Id := Low_Bound (RRS);
13252 High : constant Node_Id := High_Bound (RRS);
13253 Low_Val : Ureal;
13254 High_Val : Ureal;
13256 begin
13257 Analyze_And_Resolve (Low, Any_Real);
13258 Analyze_And_Resolve (High, Any_Real);
13259 Check_Real_Bound (Low);
13260 Check_Real_Bound (High);
13261 Low_Val := Expr_Value_R (Low);
13262 High_Val := Expr_Value_R (High);
13264 if Low_Val < (-Bound_Val) then
13265 Error_Msg_N
13266 ("range low bound too small for digits value", Low);
13267 Low_Val := -Bound_Val;
13268 end if;
13270 if High_Val > Bound_Val then
13271 Error_Msg_N
13272 ("range high bound too large for digits value", High);
13273 High_Val := Bound_Val;
13274 end if;
13276 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13277 end;
13279 -- If no explicit range, use range that corresponds to given
13280 -- digits value. This will end up as the final range for the
13281 -- first subtype.
13283 else
13284 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13285 end if;
13287 -- Complete entity for first subtype
13289 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13290 Set_Etype (T, Implicit_Base);
13291 Set_Size_Info (T, Implicit_Base);
13292 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13293 Set_Digits_Value (T, Digs_Val);
13294 Set_Delta_Value (T, Delta_Val);
13295 Set_Small_Value (T, Delta_Val);
13296 Set_Scale_Value (T, Scale_Val);
13297 Set_Is_Constrained (T);
13298 end Decimal_Fixed_Point_Type_Declaration;
13300 -----------------------------------
13301 -- Derive_Progenitor_Subprograms --
13302 -----------------------------------
13304 procedure Derive_Progenitor_Subprograms
13305 (Parent_Type : Entity_Id;
13306 Tagged_Type : Entity_Id)
13308 E : Entity_Id;
13309 Elmt : Elmt_Id;
13310 Iface : Entity_Id;
13311 Iface_Elmt : Elmt_Id;
13312 Iface_Subp : Entity_Id;
13313 New_Subp : Entity_Id := Empty;
13314 Prim_Elmt : Elmt_Id;
13315 Subp : Entity_Id;
13316 Typ : Entity_Id;
13318 begin
13319 pragma Assert (Ada_Version >= Ada_2005
13320 and then Is_Record_Type (Tagged_Type)
13321 and then Is_Tagged_Type (Tagged_Type)
13322 and then Has_Interfaces (Tagged_Type));
13324 -- Step 1: Transfer to the full-view primitives associated with the
13325 -- partial-view that cover interface primitives. Conceptually this
13326 -- work should be done later by Process_Full_View; done here to
13327 -- simplify its implementation at later stages. It can be safely
13328 -- done here because interfaces must be visible in the partial and
13329 -- private view (RM 7.3(7.3/2)).
13331 -- Small optimization: This work is only required if the parent may
13332 -- have entities whose Alias attribute reference an interface primitive.
13333 -- Such a situation may occur if the parent is an abstract type and the
13334 -- primitive has not been yet overridden or if the parent is a generic
13335 -- formal type covering interfaces.
13337 -- If the tagged type is not abstract, it cannot have abstract
13338 -- primitives (the only entities in the list of primitives of
13339 -- non-abstract tagged types that can reference abstract primitives
13340 -- through its Alias attribute are the internal entities that have
13341 -- attribute Interface_Alias, and these entities are generated later
13342 -- by Add_Internal_Interface_Entities).
13344 if In_Private_Part (Current_Scope)
13345 and then (Is_Abstract_Type (Parent_Type)
13346 or else
13347 Is_Generic_Type (Parent_Type))
13348 then
13349 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13350 while Present (Elmt) loop
13351 Subp := Node (Elmt);
13353 -- At this stage it is not possible to have entities in the list
13354 -- of primitives that have attribute Interface_Alias.
13356 pragma Assert (No (Interface_Alias (Subp)));
13358 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13360 if Is_Interface (Typ) then
13361 E := Find_Primitive_Covering_Interface
13362 (Tagged_Type => Tagged_Type,
13363 Iface_Prim => Subp);
13365 if Present (E)
13366 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13367 then
13368 Replace_Elmt (Elmt, E);
13369 Remove_Homonym (Subp);
13370 end if;
13371 end if;
13373 Next_Elmt (Elmt);
13374 end loop;
13375 end if;
13377 -- Step 2: Add primitives of progenitors that are not implemented by
13378 -- parents of Tagged_Type.
13380 if Present (Interfaces (Base_Type (Tagged_Type))) then
13381 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
13382 while Present (Iface_Elmt) loop
13383 Iface := Node (Iface_Elmt);
13385 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
13386 while Present (Prim_Elmt) loop
13387 Iface_Subp := Node (Prim_Elmt);
13389 -- Exclude derivation of predefined primitives except those
13390 -- that come from source, or are inherited from one that comes
13391 -- from source. Required to catch declarations of equality
13392 -- operators of interfaces. For example:
13394 -- type Iface is interface;
13395 -- function "=" (Left, Right : Iface) return Boolean;
13397 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
13398 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
13399 then
13400 E := Find_Primitive_Covering_Interface
13401 (Tagged_Type => Tagged_Type,
13402 Iface_Prim => Iface_Subp);
13404 -- If not found we derive a new primitive leaving its alias
13405 -- attribute referencing the interface primitive.
13407 if No (E) then
13408 Derive_Subprogram
13409 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13411 -- Ada 2012 (AI05-0197): If the covering primitive's name
13412 -- differs from the name of the interface primitive then it
13413 -- is a private primitive inherited from a parent type. In
13414 -- such case, given that Tagged_Type covers the interface,
13415 -- the inherited private primitive becomes visible. For such
13416 -- purpose we add a new entity that renames the inherited
13417 -- private primitive.
13419 elsif Chars (E) /= Chars (Iface_Subp) then
13420 pragma Assert (Has_Suffix (E, 'P'));
13421 Derive_Subprogram
13422 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13423 Set_Alias (New_Subp, E);
13424 Set_Is_Abstract_Subprogram (New_Subp,
13425 Is_Abstract_Subprogram (E));
13427 -- Propagate to the full view interface entities associated
13428 -- with the partial view.
13430 elsif In_Private_Part (Current_Scope)
13431 and then Present (Alias (E))
13432 and then Alias (E) = Iface_Subp
13433 and then
13434 List_Containing (Parent (E)) /=
13435 Private_Declarations
13436 (Specification
13437 (Unit_Declaration_Node (Current_Scope)))
13438 then
13439 Append_Elmt (E, Primitive_Operations (Tagged_Type));
13440 end if;
13441 end if;
13443 Next_Elmt (Prim_Elmt);
13444 end loop;
13446 Next_Elmt (Iface_Elmt);
13447 end loop;
13448 end if;
13449 end Derive_Progenitor_Subprograms;
13451 -----------------------
13452 -- Derive_Subprogram --
13453 -----------------------
13455 procedure Derive_Subprogram
13456 (New_Subp : in out Entity_Id;
13457 Parent_Subp : Entity_Id;
13458 Derived_Type : Entity_Id;
13459 Parent_Type : Entity_Id;
13460 Actual_Subp : Entity_Id := Empty)
13462 Formal : Entity_Id;
13463 -- Formal parameter of parent primitive operation
13465 Formal_Of_Actual : Entity_Id;
13466 -- Formal parameter of actual operation, when the derivation is to
13467 -- create a renaming for a primitive operation of an actual in an
13468 -- instantiation.
13470 New_Formal : Entity_Id;
13471 -- Formal of inherited operation
13473 Visible_Subp : Entity_Id := Parent_Subp;
13475 function Is_Private_Overriding return Boolean;
13476 -- If Subp is a private overriding of a visible operation, the inherited
13477 -- operation derives from the overridden op (even though its body is the
13478 -- overriding one) and the inherited operation is visible now. See
13479 -- sem_disp to see the full details of the handling of the overridden
13480 -- subprogram, which is removed from the list of primitive operations of
13481 -- the type. The overridden subprogram is saved locally in Visible_Subp,
13482 -- and used to diagnose abstract operations that need overriding in the
13483 -- derived type.
13485 procedure Replace_Type (Id, New_Id : Entity_Id);
13486 -- When the type is an anonymous access type, create a new access type
13487 -- designating the derived type.
13489 procedure Set_Derived_Name;
13490 -- This procedure sets the appropriate Chars name for New_Subp. This
13491 -- is normally just a copy of the parent name. An exception arises for
13492 -- type support subprograms, where the name is changed to reflect the
13493 -- name of the derived type, e.g. if type foo is derived from type bar,
13494 -- then a procedure barDA is derived with a name fooDA.
13496 ---------------------------
13497 -- Is_Private_Overriding --
13498 ---------------------------
13500 function Is_Private_Overriding return Boolean is
13501 Prev : Entity_Id;
13503 begin
13504 -- If the parent is not a dispatching operation there is no
13505 -- need to investigate overridings
13507 if not Is_Dispatching_Operation (Parent_Subp) then
13508 return False;
13509 end if;
13511 -- The visible operation that is overridden is a homonym of the
13512 -- parent subprogram. We scan the homonym chain to find the one
13513 -- whose alias is the subprogram we are deriving.
13515 Prev := Current_Entity (Parent_Subp);
13516 while Present (Prev) loop
13517 if Ekind (Prev) = Ekind (Parent_Subp)
13518 and then Alias (Prev) = Parent_Subp
13519 and then Scope (Parent_Subp) = Scope (Prev)
13520 and then not Is_Hidden (Prev)
13521 then
13522 Visible_Subp := Prev;
13523 return True;
13524 end if;
13526 Prev := Homonym (Prev);
13527 end loop;
13529 return False;
13530 end Is_Private_Overriding;
13532 ------------------
13533 -- Replace_Type --
13534 ------------------
13536 procedure Replace_Type (Id, New_Id : Entity_Id) is
13537 Acc_Type : Entity_Id;
13538 Par : constant Node_Id := Parent (Derived_Type);
13540 begin
13541 -- When the type is an anonymous access type, create a new access
13542 -- type designating the derived type. This itype must be elaborated
13543 -- at the point of the derivation, not on subsequent calls that may
13544 -- be out of the proper scope for Gigi, so we insert a reference to
13545 -- it after the derivation.
13547 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
13548 declare
13549 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
13551 begin
13552 if Ekind (Desig_Typ) = E_Record_Type_With_Private
13553 and then Present (Full_View (Desig_Typ))
13554 and then not Is_Private_Type (Parent_Type)
13555 then
13556 Desig_Typ := Full_View (Desig_Typ);
13557 end if;
13559 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
13561 -- Ada 2005 (AI-251): Handle also derivations of abstract
13562 -- interface primitives.
13564 or else (Is_Interface (Desig_Typ)
13565 and then not Is_Class_Wide_Type (Desig_Typ))
13566 then
13567 Acc_Type := New_Copy (Etype (Id));
13568 Set_Etype (Acc_Type, Acc_Type);
13569 Set_Scope (Acc_Type, New_Subp);
13571 -- Set size of anonymous access type. If we have an access
13572 -- to an unconstrained array, this is a fat pointer, so it
13573 -- is sizes at twice addtress size.
13575 if Is_Array_Type (Desig_Typ)
13576 and then not Is_Constrained (Desig_Typ)
13577 then
13578 Init_Size (Acc_Type, 2 * System_Address_Size);
13580 -- Other cases use a thin pointer
13582 else
13583 Init_Size (Acc_Type, System_Address_Size);
13584 end if;
13586 -- Set remaining characterstics of anonymous access type
13588 Init_Alignment (Acc_Type);
13589 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
13591 Set_Etype (New_Id, Acc_Type);
13592 Set_Scope (New_Id, New_Subp);
13594 -- Create a reference to it
13596 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
13598 else
13599 Set_Etype (New_Id, Etype (Id));
13600 end if;
13601 end;
13603 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
13604 or else
13605 (Ekind (Etype (Id)) = E_Record_Type_With_Private
13606 and then Present (Full_View (Etype (Id)))
13607 and then
13608 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
13609 then
13610 -- Constraint checks on formals are generated during expansion,
13611 -- based on the signature of the original subprogram. The bounds
13612 -- of the derived type are not relevant, and thus we can use
13613 -- the base type for the formals. However, the return type may be
13614 -- used in a context that requires that the proper static bounds
13615 -- be used (a case statement, for example) and for those cases
13616 -- we must use the derived type (first subtype), not its base.
13618 -- If the derived_type_definition has no constraints, we know that
13619 -- the derived type has the same constraints as the first subtype
13620 -- of the parent, and we can also use it rather than its base,
13621 -- which can lead to more efficient code.
13623 if Etype (Id) = Parent_Type then
13624 if Is_Scalar_Type (Parent_Type)
13625 and then
13626 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
13627 then
13628 Set_Etype (New_Id, Derived_Type);
13630 elsif Nkind (Par) = N_Full_Type_Declaration
13631 and then
13632 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
13633 and then
13634 Is_Entity_Name
13635 (Subtype_Indication (Type_Definition (Par)))
13636 then
13637 Set_Etype (New_Id, Derived_Type);
13639 else
13640 Set_Etype (New_Id, Base_Type (Derived_Type));
13641 end if;
13643 else
13644 Set_Etype (New_Id, Base_Type (Derived_Type));
13645 end if;
13647 else
13648 Set_Etype (New_Id, Etype (Id));
13649 end if;
13650 end Replace_Type;
13652 ----------------------
13653 -- Set_Derived_Name --
13654 ----------------------
13656 procedure Set_Derived_Name is
13657 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
13658 begin
13659 if Nm = TSS_Null then
13660 Set_Chars (New_Subp, Chars (Parent_Subp));
13661 else
13662 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
13663 end if;
13664 end Set_Derived_Name;
13666 -- Start of processing for Derive_Subprogram
13668 begin
13669 New_Subp :=
13670 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
13671 Set_Ekind (New_Subp, Ekind (Parent_Subp));
13672 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
13674 -- Check whether the inherited subprogram is a private operation that
13675 -- should be inherited but not yet made visible. Such subprograms can
13676 -- become visible at a later point (e.g., the private part of a public
13677 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13678 -- following predicate is true, then this is not such a private
13679 -- operation and the subprogram simply inherits the name of the parent
13680 -- subprogram. Note the special check for the names of controlled
13681 -- operations, which are currently exempted from being inherited with
13682 -- a hidden name because they must be findable for generation of
13683 -- implicit run-time calls.
13685 if not Is_Hidden (Parent_Subp)
13686 or else Is_Internal (Parent_Subp)
13687 or else Is_Private_Overriding
13688 or else Is_Internal_Name (Chars (Parent_Subp))
13689 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
13690 Name_Adjust,
13691 Name_Finalize)
13692 then
13693 Set_Derived_Name;
13695 -- An inherited dispatching equality will be overridden by an internally
13696 -- generated one, or by an explicit one, so preserve its name and thus
13697 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13698 -- private operation it may become invisible if the full view has
13699 -- progenitors, and the dispatch table will be malformed.
13700 -- We check that the type is limited to handle the anomalous declaration
13701 -- of Limited_Controlled, which is derived from a non-limited type, and
13702 -- which is handled specially elsewhere as well.
13704 elsif Chars (Parent_Subp) = Name_Op_Eq
13705 and then Is_Dispatching_Operation (Parent_Subp)
13706 and then Etype (Parent_Subp) = Standard_Boolean
13707 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
13708 and then
13709 Etype (First_Formal (Parent_Subp)) =
13710 Etype (Next_Formal (First_Formal (Parent_Subp)))
13711 then
13712 Set_Derived_Name;
13714 -- If parent is hidden, this can be a regular derivation if the
13715 -- parent is immediately visible in a non-instantiating context,
13716 -- or if we are in the private part of an instance. This test
13717 -- should still be refined ???
13719 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13720 -- operation as a non-visible operation in cases where the parent
13721 -- subprogram might not be visible now, but was visible within the
13722 -- original generic, so it would be wrong to make the inherited
13723 -- subprogram non-visible now. (Not clear if this test is fully
13724 -- correct; are there any cases where we should declare the inherited
13725 -- operation as not visible to avoid it being overridden, e.g., when
13726 -- the parent type is a generic actual with private primitives ???)
13728 -- (they should be treated the same as other private inherited
13729 -- subprograms, but it's not clear how to do this cleanly). ???
13731 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
13732 and then Is_Immediately_Visible (Parent_Subp)
13733 and then not In_Instance)
13734 or else In_Instance_Not_Visible
13735 then
13736 Set_Derived_Name;
13738 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13739 -- overrides an interface primitive because interface primitives
13740 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13742 elsif Ada_Version >= Ada_2005
13743 and then Is_Dispatching_Operation (Parent_Subp)
13744 and then Covers_Some_Interface (Parent_Subp)
13745 then
13746 Set_Derived_Name;
13748 -- Otherwise, the type is inheriting a private operation, so enter
13749 -- it with a special name so it can't be overridden.
13751 else
13752 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
13753 end if;
13755 Set_Parent (New_Subp, Parent (Derived_Type));
13757 if Present (Actual_Subp) then
13758 Replace_Type (Actual_Subp, New_Subp);
13759 else
13760 Replace_Type (Parent_Subp, New_Subp);
13761 end if;
13763 Conditional_Delay (New_Subp, Parent_Subp);
13765 -- If we are creating a renaming for a primitive operation of an
13766 -- actual of a generic derived type, we must examine the signature
13767 -- of the actual primitive, not that of the generic formal, which for
13768 -- example may be an interface. However the name and initial value
13769 -- of the inherited operation are those of the formal primitive.
13771 Formal := First_Formal (Parent_Subp);
13773 if Present (Actual_Subp) then
13774 Formal_Of_Actual := First_Formal (Actual_Subp);
13775 else
13776 Formal_Of_Actual := Empty;
13777 end if;
13779 while Present (Formal) loop
13780 New_Formal := New_Copy (Formal);
13782 -- Normally we do not go copying parents, but in the case of
13783 -- formals, we need to link up to the declaration (which is the
13784 -- parameter specification), and it is fine to link up to the
13785 -- original formal's parameter specification in this case.
13787 Set_Parent (New_Formal, Parent (Formal));
13788 Append_Entity (New_Formal, New_Subp);
13790 if Present (Formal_Of_Actual) then
13791 Replace_Type (Formal_Of_Actual, New_Formal);
13792 Next_Formal (Formal_Of_Actual);
13793 else
13794 Replace_Type (Formal, New_Formal);
13795 end if;
13797 Next_Formal (Formal);
13798 end loop;
13800 -- If this derivation corresponds to a tagged generic actual, then
13801 -- primitive operations rename those of the actual. Otherwise the
13802 -- primitive operations rename those of the parent type, If the parent
13803 -- renames an intrinsic operator, so does the new subprogram. We except
13804 -- concatenation, which is always properly typed, and does not get
13805 -- expanded as other intrinsic operations.
13807 if No (Actual_Subp) then
13808 if Is_Intrinsic_Subprogram (Parent_Subp) then
13809 Set_Is_Intrinsic_Subprogram (New_Subp);
13811 if Present (Alias (Parent_Subp))
13812 and then Chars (Parent_Subp) /= Name_Op_Concat
13813 then
13814 Set_Alias (New_Subp, Alias (Parent_Subp));
13815 else
13816 Set_Alias (New_Subp, Parent_Subp);
13817 end if;
13819 else
13820 Set_Alias (New_Subp, Parent_Subp);
13821 end if;
13823 else
13824 Set_Alias (New_Subp, Actual_Subp);
13825 end if;
13827 -- Derived subprograms of a tagged type must inherit the convention
13828 -- of the parent subprogram (a requirement of AI-117). Derived
13829 -- subprograms of untagged types simply get convention Ada by default.
13831 -- If the derived type is a tagged generic formal type with unknown
13832 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
13834 -- However, if the type is derived from a generic formal, the further
13835 -- inherited subprogram has the convention of the non-generic ancestor.
13836 -- Otherwise there would be no way to override the operation.
13837 -- (This is subject to forthcoming ARG discussions).
13839 if Is_Tagged_Type (Derived_Type) then
13840 if Is_Generic_Type (Derived_Type)
13841 and then Has_Unknown_Discriminants (Derived_Type)
13842 then
13843 Set_Convention (New_Subp, Convention_Intrinsic);
13845 else
13846 if Is_Generic_Type (Parent_Type)
13847 and then Has_Unknown_Discriminants (Parent_Type)
13848 then
13849 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
13850 else
13851 Set_Convention (New_Subp, Convention (Parent_Subp));
13852 end if;
13853 end if;
13854 end if;
13856 -- Predefined controlled operations retain their name even if the parent
13857 -- is hidden (see above), but they are not primitive operations if the
13858 -- ancestor is not visible, for example if the parent is a private
13859 -- extension completed with a controlled extension. Note that a full
13860 -- type that is controlled can break privacy: the flag Is_Controlled is
13861 -- set on both views of the type.
13863 if Is_Controlled (Parent_Type)
13864 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
13865 Name_Adjust,
13866 Name_Finalize)
13867 and then Is_Hidden (Parent_Subp)
13868 and then not Is_Visibly_Controlled (Parent_Type)
13869 then
13870 Set_Is_Hidden (New_Subp);
13871 end if;
13873 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
13874 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
13876 if Ekind (Parent_Subp) = E_Procedure then
13877 Set_Is_Valued_Procedure
13878 (New_Subp, Is_Valued_Procedure (Parent_Subp));
13879 else
13880 Set_Has_Controlling_Result
13881 (New_Subp, Has_Controlling_Result (Parent_Subp));
13882 end if;
13884 -- No_Return must be inherited properly. If this is overridden in the
13885 -- case of a dispatching operation, then a check is made in Sem_Disp
13886 -- that the overriding operation is also No_Return (no such check is
13887 -- required for the case of non-dispatching operation.
13889 Set_No_Return (New_Subp, No_Return (Parent_Subp));
13891 -- A derived function with a controlling result is abstract. If the
13892 -- Derived_Type is a nonabstract formal generic derived type, then
13893 -- inherited operations are not abstract: the required check is done at
13894 -- instantiation time. If the derivation is for a generic actual, the
13895 -- function is not abstract unless the actual is.
13897 if Is_Generic_Type (Derived_Type)
13898 and then not Is_Abstract_Type (Derived_Type)
13899 then
13900 null;
13902 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13903 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13905 elsif Ada_Version >= Ada_2005
13906 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13907 or else (Is_Tagged_Type (Derived_Type)
13908 and then Etype (New_Subp) = Derived_Type
13909 and then not Is_Null_Extension (Derived_Type))
13910 or else (Is_Tagged_Type (Derived_Type)
13911 and then Ekind (Etype (New_Subp)) =
13912 E_Anonymous_Access_Type
13913 and then Designated_Type (Etype (New_Subp)) =
13914 Derived_Type
13915 and then not Is_Null_Extension (Derived_Type)))
13916 and then No (Actual_Subp)
13917 then
13918 if not Is_Tagged_Type (Derived_Type)
13919 or else Is_Abstract_Type (Derived_Type)
13920 or else Is_Abstract_Subprogram (Alias (New_Subp))
13921 then
13922 Set_Is_Abstract_Subprogram (New_Subp);
13923 else
13924 Set_Requires_Overriding (New_Subp);
13925 end if;
13927 elsif Ada_Version < Ada_2005
13928 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13929 or else (Is_Tagged_Type (Derived_Type)
13930 and then Etype (New_Subp) = Derived_Type
13931 and then No (Actual_Subp)))
13932 then
13933 Set_Is_Abstract_Subprogram (New_Subp);
13935 -- AI05-0097 : an inherited operation that dispatches on result is
13936 -- abstract if the derived type is abstract, even if the parent type
13937 -- is concrete and the derived type is a null extension.
13939 elsif Has_Controlling_Result (Alias (New_Subp))
13940 and then Is_Abstract_Type (Etype (New_Subp))
13941 then
13942 Set_Is_Abstract_Subprogram (New_Subp);
13944 -- Finally, if the parent type is abstract we must verify that all
13945 -- inherited operations are either non-abstract or overridden, or that
13946 -- the derived type itself is abstract (this check is performed at the
13947 -- end of a package declaration, in Check_Abstract_Overriding). A
13948 -- private overriding in the parent type will not be visible in the
13949 -- derivation if we are not in an inner package or in a child unit of
13950 -- the parent type, in which case the abstractness of the inherited
13951 -- operation is carried to the new subprogram.
13953 elsif Is_Abstract_Type (Parent_Type)
13954 and then not In_Open_Scopes (Scope (Parent_Type))
13955 and then Is_Private_Overriding
13956 and then Is_Abstract_Subprogram (Visible_Subp)
13957 then
13958 if No (Actual_Subp) then
13959 Set_Alias (New_Subp, Visible_Subp);
13960 Set_Is_Abstract_Subprogram (New_Subp, True);
13962 else
13963 -- If this is a derivation for an instance of a formal derived
13964 -- type, abstractness comes from the primitive operation of the
13965 -- actual, not from the operation inherited from the ancestor.
13967 Set_Is_Abstract_Subprogram
13968 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
13969 end if;
13970 end if;
13972 New_Overloaded_Entity (New_Subp, Derived_Type);
13974 -- Check for case of a derived subprogram for the instantiation of a
13975 -- formal derived tagged type, if so mark the subprogram as dispatching
13976 -- and inherit the dispatching attributes of the actual subprogram. The
13977 -- derived subprogram is effectively renaming of the actual subprogram,
13978 -- so it needs to have the same attributes as the actual.
13980 if Present (Actual_Subp)
13981 and then Is_Dispatching_Operation (Actual_Subp)
13982 then
13983 Set_Is_Dispatching_Operation (New_Subp);
13985 if Present (DTC_Entity (Actual_Subp)) then
13986 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
13987 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
13988 end if;
13989 end if;
13991 -- Indicate that a derived subprogram does not require a body and that
13992 -- it does not require processing of default expressions.
13994 Set_Has_Completion (New_Subp);
13995 Set_Default_Expressions_Processed (New_Subp);
13997 if Ekind (New_Subp) = E_Function then
13998 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
13999 end if;
14000 end Derive_Subprogram;
14002 ------------------------
14003 -- Derive_Subprograms --
14004 ------------------------
14006 procedure Derive_Subprograms
14007 (Parent_Type : Entity_Id;
14008 Derived_Type : Entity_Id;
14009 Generic_Actual : Entity_Id := Empty)
14011 Op_List : constant Elist_Id :=
14012 Collect_Primitive_Operations (Parent_Type);
14014 function Check_Derived_Type return Boolean;
14015 -- Check that all the entities derived from Parent_Type are found in
14016 -- the list of primitives of Derived_Type exactly in the same order.
14018 procedure Derive_Interface_Subprogram
14019 (New_Subp : in out Entity_Id;
14020 Subp : Entity_Id;
14021 Actual_Subp : Entity_Id);
14022 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14023 -- (which is an interface primitive). If Generic_Actual is present then
14024 -- Actual_Subp is the actual subprogram corresponding with the generic
14025 -- subprogram Subp.
14027 function Check_Derived_Type return Boolean is
14028 E : Entity_Id;
14029 Elmt : Elmt_Id;
14030 List : Elist_Id;
14031 New_Subp : Entity_Id;
14032 Op_Elmt : Elmt_Id;
14033 Subp : Entity_Id;
14035 begin
14036 -- Traverse list of entities in the current scope searching for
14037 -- an incomplete type whose full-view is derived type
14039 E := First_Entity (Scope (Derived_Type));
14040 while Present (E) and then E /= Derived_Type loop
14041 if Ekind (E) = E_Incomplete_Type
14042 and then Present (Full_View (E))
14043 and then Full_View (E) = Derived_Type
14044 then
14045 -- Disable this test if Derived_Type completes an incomplete
14046 -- type because in such case more primitives can be added
14047 -- later to the list of primitives of Derived_Type by routine
14048 -- Process_Incomplete_Dependents
14050 return True;
14051 end if;
14053 E := Next_Entity (E);
14054 end loop;
14056 List := Collect_Primitive_Operations (Derived_Type);
14057 Elmt := First_Elmt (List);
14059 Op_Elmt := First_Elmt (Op_List);
14060 while Present (Op_Elmt) loop
14061 Subp := Node (Op_Elmt);
14062 New_Subp := Node (Elmt);
14064 -- At this early stage Derived_Type has no entities with attribute
14065 -- Interface_Alias. In addition, such primitives are always
14066 -- located at the end of the list of primitives of Parent_Type.
14067 -- Therefore, if found we can safely stop processing pending
14068 -- entities.
14070 exit when Present (Interface_Alias (Subp));
14072 -- Handle hidden entities
14074 if not Is_Predefined_Dispatching_Operation (Subp)
14075 and then Is_Hidden (Subp)
14076 then
14077 if Present (New_Subp)
14078 and then Primitive_Names_Match (Subp, New_Subp)
14079 then
14080 Next_Elmt (Elmt);
14081 end if;
14083 else
14084 if not Present (New_Subp)
14085 or else Ekind (Subp) /= Ekind (New_Subp)
14086 or else not Primitive_Names_Match (Subp, New_Subp)
14087 then
14088 return False;
14089 end if;
14091 Next_Elmt (Elmt);
14092 end if;
14094 Next_Elmt (Op_Elmt);
14095 end loop;
14097 return True;
14098 end Check_Derived_Type;
14100 ---------------------------------
14101 -- Derive_Interface_Subprogram --
14102 ---------------------------------
14104 procedure Derive_Interface_Subprogram
14105 (New_Subp : in out Entity_Id;
14106 Subp : Entity_Id;
14107 Actual_Subp : Entity_Id)
14109 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14110 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14112 begin
14113 pragma Assert (Is_Interface (Iface_Type));
14115 Derive_Subprogram
14116 (New_Subp => New_Subp,
14117 Parent_Subp => Iface_Subp,
14118 Derived_Type => Derived_Type,
14119 Parent_Type => Iface_Type,
14120 Actual_Subp => Actual_Subp);
14122 -- Given that this new interface entity corresponds with a primitive
14123 -- of the parent that was not overridden we must leave it associated
14124 -- with its parent primitive to ensure that it will share the same
14125 -- dispatch table slot when overridden.
14127 if No (Actual_Subp) then
14128 Set_Alias (New_Subp, Subp);
14130 -- For instantiations this is not needed since the previous call to
14131 -- Derive_Subprogram leaves the entity well decorated.
14133 else
14134 pragma Assert (Alias (New_Subp) = Actual_Subp);
14135 null;
14136 end if;
14137 end Derive_Interface_Subprogram;
14139 -- Local variables
14141 Alias_Subp : Entity_Id;
14142 Act_List : Elist_Id;
14143 Act_Elmt : Elmt_Id;
14144 Act_Subp : Entity_Id := Empty;
14145 Elmt : Elmt_Id;
14146 Need_Search : Boolean := False;
14147 New_Subp : Entity_Id := Empty;
14148 Parent_Base : Entity_Id;
14149 Subp : Entity_Id;
14151 -- Start of processing for Derive_Subprograms
14153 begin
14154 if Ekind (Parent_Type) = E_Record_Type_With_Private
14155 and then Has_Discriminants (Parent_Type)
14156 and then Present (Full_View (Parent_Type))
14157 then
14158 Parent_Base := Full_View (Parent_Type);
14159 else
14160 Parent_Base := Parent_Type;
14161 end if;
14163 if Present (Generic_Actual) then
14164 Act_List := Collect_Primitive_Operations (Generic_Actual);
14165 Act_Elmt := First_Elmt (Act_List);
14166 else
14167 Act_List := No_Elist;
14168 Act_Elmt := No_Elmt;
14169 end if;
14171 -- Derive primitives inherited from the parent. Note that if the generic
14172 -- actual is present, this is not really a type derivation, it is a
14173 -- completion within an instance.
14175 -- Case 1: Derived_Type does not implement interfaces
14177 if not Is_Tagged_Type (Derived_Type)
14178 or else (not Has_Interfaces (Derived_Type)
14179 and then not (Present (Generic_Actual)
14180 and then Has_Interfaces (Generic_Actual)))
14181 then
14182 Elmt := First_Elmt (Op_List);
14183 while Present (Elmt) loop
14184 Subp := Node (Elmt);
14186 -- Literals are derived earlier in the process of building the
14187 -- derived type, and are skipped here.
14189 if Ekind (Subp) = E_Enumeration_Literal then
14190 null;
14192 -- The actual is a direct descendant and the common primitive
14193 -- operations appear in the same order.
14195 -- If the generic parent type is present, the derived type is an
14196 -- instance of a formal derived type, and within the instance its
14197 -- operations are those of the actual. We derive from the formal
14198 -- type but make the inherited operations aliases of the
14199 -- corresponding operations of the actual.
14201 else
14202 pragma Assert (No (Node (Act_Elmt))
14203 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14204 and then
14205 Type_Conformant
14206 (Subp, Node (Act_Elmt),
14207 Skip_Controlling_Formals => True)));
14209 Derive_Subprogram
14210 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14212 if Present (Act_Elmt) then
14213 Next_Elmt (Act_Elmt);
14214 end if;
14215 end if;
14217 Next_Elmt (Elmt);
14218 end loop;
14220 -- Case 2: Derived_Type implements interfaces
14222 else
14223 -- If the parent type has no predefined primitives we remove
14224 -- predefined primitives from the list of primitives of generic
14225 -- actual to simplify the complexity of this algorithm.
14227 if Present (Generic_Actual) then
14228 declare
14229 Has_Predefined_Primitives : Boolean := False;
14231 begin
14232 -- Check if the parent type has predefined primitives
14234 Elmt := First_Elmt (Op_List);
14235 while Present (Elmt) loop
14236 Subp := Node (Elmt);
14238 if Is_Predefined_Dispatching_Operation (Subp)
14239 and then not Comes_From_Source (Ultimate_Alias (Subp))
14240 then
14241 Has_Predefined_Primitives := True;
14242 exit;
14243 end if;
14245 Next_Elmt (Elmt);
14246 end loop;
14248 -- Remove predefined primitives of Generic_Actual. We must use
14249 -- an auxiliary list because in case of tagged types the value
14250 -- returned by Collect_Primitive_Operations is the value stored
14251 -- in its Primitive_Operations attribute (and we don't want to
14252 -- modify its current contents).
14254 if not Has_Predefined_Primitives then
14255 declare
14256 Aux_List : constant Elist_Id := New_Elmt_List;
14258 begin
14259 Elmt := First_Elmt (Act_List);
14260 while Present (Elmt) loop
14261 Subp := Node (Elmt);
14263 if not Is_Predefined_Dispatching_Operation (Subp)
14264 or else Comes_From_Source (Subp)
14265 then
14266 Append_Elmt (Subp, Aux_List);
14267 end if;
14269 Next_Elmt (Elmt);
14270 end loop;
14272 Act_List := Aux_List;
14273 end;
14274 end if;
14276 Act_Elmt := First_Elmt (Act_List);
14277 Act_Subp := Node (Act_Elmt);
14278 end;
14279 end if;
14281 -- Stage 1: If the generic actual is not present we derive the
14282 -- primitives inherited from the parent type. If the generic parent
14283 -- type is present, the derived type is an instance of a formal
14284 -- derived type, and within the instance its operations are those of
14285 -- the actual. We derive from the formal type but make the inherited
14286 -- operations aliases of the corresponding operations of the actual.
14288 Elmt := First_Elmt (Op_List);
14289 while Present (Elmt) loop
14290 Subp := Node (Elmt);
14291 Alias_Subp := Ultimate_Alias (Subp);
14293 -- Do not derive internal entities of the parent that link
14294 -- interface primitives with their covering primitive. These
14295 -- entities will be added to this type when frozen.
14297 if Present (Interface_Alias (Subp)) then
14298 goto Continue;
14299 end if;
14301 -- If the generic actual is present find the corresponding
14302 -- operation in the generic actual. If the parent type is a
14303 -- direct ancestor of the derived type then, even if it is an
14304 -- interface, the operations are inherited from the primary
14305 -- dispatch table and are in the proper order. If we detect here
14306 -- that primitives are not in the same order we traverse the list
14307 -- of primitive operations of the actual to find the one that
14308 -- implements the interface primitive.
14310 if Need_Search
14311 or else
14312 (Present (Generic_Actual)
14313 and then Present (Act_Subp)
14314 and then not
14315 (Primitive_Names_Match (Subp, Act_Subp)
14316 and then
14317 Type_Conformant (Subp, Act_Subp,
14318 Skip_Controlling_Formals => True)))
14319 then
14320 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14321 Use_Full_View => True));
14323 -- Remember that we need searching for all pending primitives
14325 Need_Search := True;
14327 -- Handle entities associated with interface primitives
14329 if Present (Alias_Subp)
14330 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14331 and then not Is_Predefined_Dispatching_Operation (Subp)
14332 then
14333 -- Search for the primitive in the homonym chain
14335 Act_Subp :=
14336 Find_Primitive_Covering_Interface
14337 (Tagged_Type => Generic_Actual,
14338 Iface_Prim => Alias_Subp);
14340 -- Previous search may not locate primitives covering
14341 -- interfaces defined in generics units or instantiations.
14342 -- (it fails if the covering primitive has formals whose
14343 -- type is also defined in generics or instantiations).
14344 -- In such case we search in the list of primitives of the
14345 -- generic actual for the internal entity that links the
14346 -- interface primitive and the covering primitive.
14348 if No (Act_Subp)
14349 and then Is_Generic_Type (Parent_Type)
14350 then
14351 -- This code has been designed to handle only generic
14352 -- formals that implement interfaces that are defined
14353 -- in a generic unit or instantiation. If this code is
14354 -- needed for other cases we must review it because
14355 -- (given that it relies on Original_Location to locate
14356 -- the primitive of Generic_Actual that covers the
14357 -- interface) it could leave linked through attribute
14358 -- Alias entities of unrelated instantiations).
14360 pragma Assert
14361 (Is_Generic_Unit
14362 (Scope (Find_Dispatching_Type (Alias_Subp)))
14363 or else
14364 Instantiation_Depth
14365 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
14367 declare
14368 Iface_Prim_Loc : constant Source_Ptr :=
14369 Original_Location (Sloc (Alias_Subp));
14371 Elmt : Elmt_Id;
14372 Prim : Entity_Id;
14374 begin
14375 Elmt :=
14376 First_Elmt (Primitive_Operations (Generic_Actual));
14378 Search : while Present (Elmt) loop
14379 Prim := Node (Elmt);
14381 if Present (Interface_Alias (Prim))
14382 and then Original_Location
14383 (Sloc (Interface_Alias (Prim))) =
14384 Iface_Prim_Loc
14385 then
14386 Act_Subp := Alias (Prim);
14387 exit Search;
14388 end if;
14390 Next_Elmt (Elmt);
14391 end loop Search;
14392 end;
14393 end if;
14395 pragma Assert (Present (Act_Subp)
14396 or else Is_Abstract_Type (Generic_Actual)
14397 or else Serious_Errors_Detected > 0);
14399 -- Handle predefined primitives plus the rest of user-defined
14400 -- primitives
14402 else
14403 Act_Elmt := First_Elmt (Act_List);
14404 while Present (Act_Elmt) loop
14405 Act_Subp := Node (Act_Elmt);
14407 exit when Primitive_Names_Match (Subp, Act_Subp)
14408 and then Type_Conformant
14409 (Subp, Act_Subp,
14410 Skip_Controlling_Formals => True)
14411 and then No (Interface_Alias (Act_Subp));
14413 Next_Elmt (Act_Elmt);
14414 end loop;
14416 if No (Act_Elmt) then
14417 Act_Subp := Empty;
14418 end if;
14419 end if;
14420 end if;
14422 -- Case 1: If the parent is a limited interface then it has the
14423 -- predefined primitives of synchronized interfaces. However, the
14424 -- actual type may be a non-limited type and hence it does not
14425 -- have such primitives.
14427 if Present (Generic_Actual)
14428 and then not Present (Act_Subp)
14429 and then Is_Limited_Interface (Parent_Base)
14430 and then Is_Predefined_Interface_Primitive (Subp)
14431 then
14432 null;
14434 -- Case 2: Inherit entities associated with interfaces that were
14435 -- not covered by the parent type. We exclude here null interface
14436 -- primitives because they do not need special management.
14438 -- We also exclude interface operations that are renamings. If the
14439 -- subprogram is an explicit renaming of an interface primitive,
14440 -- it is a regular primitive operation, and the presence of its
14441 -- alias is not relevant: it has to be derived like any other
14442 -- primitive.
14444 elsif Present (Alias (Subp))
14445 and then Nkind (Unit_Declaration_Node (Subp)) /=
14446 N_Subprogram_Renaming_Declaration
14447 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14448 and then not
14449 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
14450 and then Null_Present (Parent (Alias_Subp)))
14451 then
14452 -- If this is an abstract private type then we transfer the
14453 -- derivation of the interface primitive from the partial view
14454 -- to the full view. This is safe because all the interfaces
14455 -- must be visible in the partial view. Done to avoid adding
14456 -- a new interface derivation to the private part of the
14457 -- enclosing package; otherwise this new derivation would be
14458 -- decorated as hidden when the analysis of the enclosing
14459 -- package completes.
14461 if Is_Abstract_Type (Derived_Type)
14462 and then In_Private_Part (Current_Scope)
14463 and then Has_Private_Declaration (Derived_Type)
14464 then
14465 declare
14466 Partial_View : Entity_Id;
14467 Elmt : Elmt_Id;
14468 Ent : Entity_Id;
14470 begin
14471 Partial_View := First_Entity (Current_Scope);
14472 loop
14473 exit when No (Partial_View)
14474 or else (Has_Private_Declaration (Partial_View)
14475 and then
14476 Full_View (Partial_View) = Derived_Type);
14478 Next_Entity (Partial_View);
14479 end loop;
14481 -- If the partial view was not found then the source code
14482 -- has errors and the derivation is not needed.
14484 if Present (Partial_View) then
14485 Elmt :=
14486 First_Elmt (Primitive_Operations (Partial_View));
14487 while Present (Elmt) loop
14488 Ent := Node (Elmt);
14490 if Present (Alias (Ent))
14491 and then Ultimate_Alias (Ent) = Alias (Subp)
14492 then
14493 Append_Elmt
14494 (Ent, Primitive_Operations (Derived_Type));
14495 exit;
14496 end if;
14498 Next_Elmt (Elmt);
14499 end loop;
14501 -- If the interface primitive was not found in the
14502 -- partial view then this interface primitive was
14503 -- overridden. We add a derivation to activate in
14504 -- Derive_Progenitor_Subprograms the machinery to
14505 -- search for it.
14507 if No (Elmt) then
14508 Derive_Interface_Subprogram
14509 (New_Subp => New_Subp,
14510 Subp => Subp,
14511 Actual_Subp => Act_Subp);
14512 end if;
14513 end if;
14514 end;
14515 else
14516 Derive_Interface_Subprogram
14517 (New_Subp => New_Subp,
14518 Subp => Subp,
14519 Actual_Subp => Act_Subp);
14520 end if;
14522 -- Case 3: Common derivation
14524 else
14525 Derive_Subprogram
14526 (New_Subp => New_Subp,
14527 Parent_Subp => Subp,
14528 Derived_Type => Derived_Type,
14529 Parent_Type => Parent_Base,
14530 Actual_Subp => Act_Subp);
14531 end if;
14533 -- No need to update Act_Elm if we must search for the
14534 -- corresponding operation in the generic actual
14536 if not Need_Search
14537 and then Present (Act_Elmt)
14538 then
14539 Next_Elmt (Act_Elmt);
14540 Act_Subp := Node (Act_Elmt);
14541 end if;
14543 <<Continue>>
14544 Next_Elmt (Elmt);
14545 end loop;
14547 -- Inherit additional operations from progenitors. If the derived
14548 -- type is a generic actual, there are not new primitive operations
14549 -- for the type because it has those of the actual, and therefore
14550 -- nothing needs to be done. The renamings generated above are not
14551 -- primitive operations, and their purpose is simply to make the
14552 -- proper operations visible within an instantiation.
14554 if No (Generic_Actual) then
14555 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
14556 end if;
14557 end if;
14559 -- Final check: Direct descendants must have their primitives in the
14560 -- same order. We exclude from this test untagged types and instances
14561 -- of formal derived types. We skip this test if we have already
14562 -- reported serious errors in the sources.
14564 pragma Assert (not Is_Tagged_Type (Derived_Type)
14565 or else Present (Generic_Actual)
14566 or else Serious_Errors_Detected > 0
14567 or else Check_Derived_Type);
14568 end Derive_Subprograms;
14570 --------------------------------
14571 -- Derived_Standard_Character --
14572 --------------------------------
14574 procedure Derived_Standard_Character
14575 (N : Node_Id;
14576 Parent_Type : Entity_Id;
14577 Derived_Type : Entity_Id)
14579 Loc : constant Source_Ptr := Sloc (N);
14580 Def : constant Node_Id := Type_Definition (N);
14581 Indic : constant Node_Id := Subtype_Indication (Def);
14582 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
14583 Implicit_Base : constant Entity_Id :=
14584 Create_Itype
14585 (E_Enumeration_Type, N, Derived_Type, 'B');
14587 Lo : Node_Id;
14588 Hi : Node_Id;
14590 begin
14591 Discard_Node (Process_Subtype (Indic, N));
14593 Set_Etype (Implicit_Base, Parent_Base);
14594 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
14595 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
14597 Set_Is_Character_Type (Implicit_Base, True);
14598 Set_Has_Delayed_Freeze (Implicit_Base);
14600 -- The bounds of the implicit base are the bounds of the parent base.
14601 -- Note that their type is the parent base.
14603 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
14604 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
14606 Set_Scalar_Range (Implicit_Base,
14607 Make_Range (Loc,
14608 Low_Bound => Lo,
14609 High_Bound => Hi));
14611 Conditional_Delay (Derived_Type, Parent_Type);
14613 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
14614 Set_Etype (Derived_Type, Implicit_Base);
14615 Set_Size_Info (Derived_Type, Parent_Type);
14617 if Unknown_RM_Size (Derived_Type) then
14618 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
14619 end if;
14621 Set_Is_Character_Type (Derived_Type, True);
14623 if Nkind (Indic) /= N_Subtype_Indication then
14625 -- If no explicit constraint, the bounds are those
14626 -- of the parent type.
14628 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
14629 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
14630 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
14631 end if;
14633 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
14635 -- Because the implicit base is used in the conversion of the bounds, we
14636 -- have to freeze it now. This is similar to what is done for numeric
14637 -- types, and it equally suspicious, but otherwise a non-static bound
14638 -- will have a reference to an unfrozen type, which is rejected by Gigi
14639 -- (???). This requires specific care for definition of stream
14640 -- attributes. For details, see comments at the end of
14641 -- Build_Derived_Numeric_Type.
14643 Freeze_Before (N, Implicit_Base);
14644 end Derived_Standard_Character;
14646 ------------------------------
14647 -- Derived_Type_Declaration --
14648 ------------------------------
14650 procedure Derived_Type_Declaration
14651 (T : Entity_Id;
14652 N : Node_Id;
14653 Is_Completion : Boolean)
14655 Parent_Type : Entity_Id;
14657 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
14658 -- Check whether the parent type is a generic formal, or derives
14659 -- directly or indirectly from one.
14661 ------------------------
14662 -- Comes_From_Generic --
14663 ------------------------
14665 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
14666 begin
14667 if Is_Generic_Type (Typ) then
14668 return True;
14670 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
14671 return True;
14673 elsif Is_Private_Type (Typ)
14674 and then Present (Full_View (Typ))
14675 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
14676 then
14677 return True;
14679 elsif Is_Generic_Actual_Type (Typ) then
14680 return True;
14682 else
14683 return False;
14684 end if;
14685 end Comes_From_Generic;
14687 -- Local variables
14689 Def : constant Node_Id := Type_Definition (N);
14690 Iface_Def : Node_Id;
14691 Indic : constant Node_Id := Subtype_Indication (Def);
14692 Extension : constant Node_Id := Record_Extension_Part (Def);
14693 Parent_Node : Node_Id;
14694 Taggd : Boolean;
14696 -- Start of processing for Derived_Type_Declaration
14698 begin
14699 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
14701 -- Ada 2005 (AI-251): In case of interface derivation check that the
14702 -- parent is also an interface.
14704 if Interface_Present (Def) then
14705 Check_SPARK_Restriction ("interface is not allowed", Def);
14707 if not Is_Interface (Parent_Type) then
14708 Diagnose_Interface (Indic, Parent_Type);
14710 else
14711 Parent_Node := Parent (Base_Type (Parent_Type));
14712 Iface_Def := Type_Definition (Parent_Node);
14714 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14715 -- other limited interfaces.
14717 if Limited_Present (Def) then
14718 if Limited_Present (Iface_Def) then
14719 null;
14721 elsif Protected_Present (Iface_Def) then
14722 Error_Msg_NE
14723 ("descendant of& must be declared"
14724 & " as a protected interface",
14725 N, Parent_Type);
14727 elsif Synchronized_Present (Iface_Def) then
14728 Error_Msg_NE
14729 ("descendant of& must be declared"
14730 & " as a synchronized interface",
14731 N, Parent_Type);
14733 elsif Task_Present (Iface_Def) then
14734 Error_Msg_NE
14735 ("descendant of& must be declared as a task interface",
14736 N, Parent_Type);
14738 else
14739 Error_Msg_N
14740 ("(Ada 2005) limited interface cannot "
14741 & "inherit from non-limited interface", Indic);
14742 end if;
14744 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14745 -- from non-limited or limited interfaces.
14747 elsif not Protected_Present (Def)
14748 and then not Synchronized_Present (Def)
14749 and then not Task_Present (Def)
14750 then
14751 if Limited_Present (Iface_Def) then
14752 null;
14754 elsif Protected_Present (Iface_Def) then
14755 Error_Msg_NE
14756 ("descendant of& must be declared"
14757 & " as a protected interface",
14758 N, Parent_Type);
14760 elsif Synchronized_Present (Iface_Def) then
14761 Error_Msg_NE
14762 ("descendant of& must be declared"
14763 & " as a synchronized interface",
14764 N, Parent_Type);
14766 elsif Task_Present (Iface_Def) then
14767 Error_Msg_NE
14768 ("descendant of& must be declared as a task interface",
14769 N, Parent_Type);
14770 else
14771 null;
14772 end if;
14773 end if;
14774 end if;
14775 end if;
14777 if Is_Tagged_Type (Parent_Type)
14778 and then Is_Concurrent_Type (Parent_Type)
14779 and then not Is_Interface (Parent_Type)
14780 then
14781 Error_Msg_N
14782 ("parent type of a record extension cannot be "
14783 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
14784 Set_Etype (T, Any_Type);
14785 return;
14786 end if;
14788 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14789 -- interfaces
14791 if Is_Tagged_Type (Parent_Type)
14792 and then Is_Non_Empty_List (Interface_List (Def))
14793 then
14794 declare
14795 Intf : Node_Id;
14796 T : Entity_Id;
14798 begin
14799 Intf := First (Interface_List (Def));
14800 while Present (Intf) loop
14801 T := Find_Type_Of_Subtype_Indic (Intf);
14803 if not Is_Interface (T) then
14804 Diagnose_Interface (Intf, T);
14806 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14807 -- a limited type from having a nonlimited progenitor.
14809 elsif (Limited_Present (Def)
14810 or else (not Is_Interface (Parent_Type)
14811 and then Is_Limited_Type (Parent_Type)))
14812 and then not Is_Limited_Interface (T)
14813 then
14814 Error_Msg_NE
14815 ("progenitor interface& of limited type must be limited",
14816 N, T);
14817 end if;
14819 Next (Intf);
14820 end loop;
14821 end;
14822 end if;
14824 if Parent_Type = Any_Type
14825 or else Etype (Parent_Type) = Any_Type
14826 or else (Is_Class_Wide_Type (Parent_Type)
14827 and then Etype (Parent_Type) = T)
14828 then
14829 -- If Parent_Type is undefined or illegal, make new type into a
14830 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14831 -- errors. If this is a self-definition, emit error now.
14833 if T = Parent_Type
14834 or else T = Etype (Parent_Type)
14835 then
14836 Error_Msg_N ("type cannot be used in its own definition", Indic);
14837 end if;
14839 Set_Ekind (T, Ekind (Parent_Type));
14840 Set_Etype (T, Any_Type);
14841 Set_Scalar_Range (T, Scalar_Range (Any_Type));
14843 if Is_Tagged_Type (T)
14844 and then Is_Record_Type (T)
14845 then
14846 Set_Direct_Primitive_Operations (T, New_Elmt_List);
14847 end if;
14849 return;
14850 end if;
14852 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14853 -- an interface is special because the list of interfaces in the full
14854 -- view can be given in any order. For example:
14856 -- type A is interface;
14857 -- type B is interface and A;
14858 -- type D is new B with private;
14859 -- private
14860 -- type D is new A and B with null record; -- 1 --
14862 -- In this case we perform the following transformation of -1-:
14864 -- type D is new B and A with null record;
14866 -- If the parent of the full-view covers the parent of the partial-view
14867 -- we have two possible cases:
14869 -- 1) They have the same parent
14870 -- 2) The parent of the full-view implements some further interfaces
14872 -- In both cases we do not need to perform the transformation. In the
14873 -- first case the source program is correct and the transformation is
14874 -- not needed; in the second case the source program does not fulfill
14875 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14876 -- later.
14878 -- This transformation not only simplifies the rest of the analysis of
14879 -- this type declaration but also simplifies the correct generation of
14880 -- the object layout to the expander.
14882 if In_Private_Part (Current_Scope)
14883 and then Is_Interface (Parent_Type)
14884 then
14885 declare
14886 Iface : Node_Id;
14887 Partial_View : Entity_Id;
14888 Partial_View_Parent : Entity_Id;
14889 New_Iface : Node_Id;
14891 begin
14892 -- Look for the associated private type declaration
14894 Partial_View := First_Entity (Current_Scope);
14895 loop
14896 exit when No (Partial_View)
14897 or else (Has_Private_Declaration (Partial_View)
14898 and then Full_View (Partial_View) = T);
14900 Next_Entity (Partial_View);
14901 end loop;
14903 -- If the partial view was not found then the source code has
14904 -- errors and the transformation is not needed.
14906 if Present (Partial_View) then
14907 Partial_View_Parent := Etype (Partial_View);
14909 -- If the parent of the full-view covers the parent of the
14910 -- partial-view we have nothing else to do.
14912 if Interface_Present_In_Ancestor
14913 (Parent_Type, Partial_View_Parent)
14914 then
14915 null;
14917 -- Traverse the list of interfaces of the full-view to look
14918 -- for the parent of the partial-view and perform the tree
14919 -- transformation.
14921 else
14922 Iface := First (Interface_List (Def));
14923 while Present (Iface) loop
14924 if Etype (Iface) = Etype (Partial_View) then
14925 Rewrite (Subtype_Indication (Def),
14926 New_Copy (Subtype_Indication
14927 (Parent (Partial_View))));
14929 New_Iface :=
14930 Make_Identifier (Sloc (N), Chars (Parent_Type));
14931 Append (New_Iface, Interface_List (Def));
14933 -- Analyze the transformed code
14935 Derived_Type_Declaration (T, N, Is_Completion);
14936 return;
14937 end if;
14939 Next (Iface);
14940 end loop;
14941 end if;
14942 end if;
14943 end;
14944 end if;
14946 -- Only composite types other than array types are allowed to have
14947 -- discriminants. In SPARK, no types are allowed to have discriminants.
14949 if Present (Discriminant_Specifications (N)) then
14950 if (Is_Elementary_Type (Parent_Type)
14951 or else Is_Array_Type (Parent_Type))
14952 and then not Error_Posted (N)
14953 then
14954 Error_Msg_N
14955 ("elementary or array type cannot have discriminants",
14956 Defining_Identifier (First (Discriminant_Specifications (N))));
14957 Set_Has_Discriminants (T, False);
14958 else
14959 Check_SPARK_Restriction ("discriminant type is not allowed", N);
14960 end if;
14961 end if;
14963 -- In Ada 83, a derived type defined in a package specification cannot
14964 -- be used for further derivation until the end of its visible part.
14965 -- Note that derivation in the private part of the package is allowed.
14967 if Ada_Version = Ada_83
14968 and then Is_Derived_Type (Parent_Type)
14969 and then In_Visible_Part (Scope (Parent_Type))
14970 then
14971 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
14972 Error_Msg_N
14973 ("(Ada 83): premature use of type for derivation", Indic);
14974 end if;
14975 end if;
14977 -- Check for early use of incomplete or private type
14979 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
14980 Error_Msg_N ("premature derivation of incomplete type", Indic);
14981 return;
14983 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
14984 and then not Comes_From_Generic (Parent_Type))
14985 or else Has_Private_Component (Parent_Type)
14986 then
14987 -- The ancestor type of a formal type can be incomplete, in which
14988 -- case only the operations of the partial view are available in the
14989 -- generic. Subsequent checks may be required when the full view is
14990 -- analyzed to verify that a derivation from a tagged type has an
14991 -- extension.
14993 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
14994 null;
14996 elsif No (Underlying_Type (Parent_Type))
14997 or else Has_Private_Component (Parent_Type)
14998 then
14999 Error_Msg_N
15000 ("premature derivation of derived or private type", Indic);
15002 -- Flag the type itself as being in error, this prevents some
15003 -- nasty problems with subsequent uses of the malformed type.
15005 Set_Error_Posted (T);
15007 -- Check that within the immediate scope of an untagged partial
15008 -- view it's illegal to derive from the partial view if the
15009 -- full view is tagged. (7.3(7))
15011 -- We verify that the Parent_Type is a partial view by checking
15012 -- that it is not a Full_Type_Declaration (i.e. a private type or
15013 -- private extension declaration), to distinguish a partial view
15014 -- from a derivation from a private type which also appears as
15015 -- E_Private_Type. If the parent base type is not declared in an
15016 -- enclosing scope there is no need to check.
15018 elsif Present (Full_View (Parent_Type))
15019 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15020 and then not Is_Tagged_Type (Parent_Type)
15021 and then Is_Tagged_Type (Full_View (Parent_Type))
15022 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15023 then
15024 Error_Msg_N
15025 ("premature derivation from type with tagged full view",
15026 Indic);
15027 end if;
15028 end if;
15030 -- Check that form of derivation is appropriate
15032 Taggd := Is_Tagged_Type (Parent_Type);
15034 -- Perhaps the parent type should be changed to the class-wide type's
15035 -- specific type in this case to prevent cascading errors ???
15037 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15038 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15039 return;
15040 end if;
15042 if Present (Extension) and then not Taggd then
15043 Error_Msg_N
15044 ("type derived from untagged type cannot have extension", Indic);
15046 elsif No (Extension) and then Taggd then
15048 -- If this declaration is within a private part (or body) of a
15049 -- generic instantiation then the derivation is allowed (the parent
15050 -- type can only appear tagged in this case if it's a generic actual
15051 -- type, since it would otherwise have been rejected in the analysis
15052 -- of the generic template).
15054 if not Is_Generic_Actual_Type (Parent_Type)
15055 or else In_Visible_Part (Scope (Parent_Type))
15056 then
15057 if Is_Class_Wide_Type (Parent_Type) then
15058 Error_Msg_N
15059 ("parent type must not be a class-wide type", Indic);
15061 -- Use specific type to prevent cascaded errors.
15063 Parent_Type := Etype (Parent_Type);
15065 else
15066 Error_Msg_N
15067 ("type derived from tagged type must have extension", Indic);
15068 end if;
15069 end if;
15070 end if;
15072 -- AI-443: Synchronized formal derived types require a private
15073 -- extension. There is no point in checking the ancestor type or
15074 -- the progenitors since the construct is wrong to begin with.
15076 if Ada_Version >= Ada_2005
15077 and then Is_Generic_Type (T)
15078 and then Present (Original_Node (N))
15079 then
15080 declare
15081 Decl : constant Node_Id := Original_Node (N);
15083 begin
15084 if Nkind (Decl) = N_Formal_Type_Declaration
15085 and then Nkind (Formal_Type_Definition (Decl)) =
15086 N_Formal_Derived_Type_Definition
15087 and then Synchronized_Present (Formal_Type_Definition (Decl))
15088 and then No (Extension)
15090 -- Avoid emitting a duplicate error message
15092 and then not Error_Posted (Indic)
15093 then
15094 Error_Msg_N
15095 ("synchronized derived type must have extension", N);
15096 end if;
15097 end;
15098 end if;
15100 if Null_Exclusion_Present (Def)
15101 and then not Is_Access_Type (Parent_Type)
15102 then
15103 Error_Msg_N ("null exclusion can only apply to an access type", N);
15104 end if;
15106 -- Avoid deriving parent primitives of underlying record views
15108 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15109 Derive_Subps => not Is_Underlying_Record_View (T));
15111 -- AI-419: The parent type of an explicitly limited derived type must
15112 -- be a limited type or a limited interface.
15114 if Limited_Present (Def) then
15115 Set_Is_Limited_Record (T);
15117 if Is_Interface (T) then
15118 Set_Is_Limited_Interface (T);
15119 end if;
15121 if not Is_Limited_Type (Parent_Type)
15122 and then
15123 (not Is_Interface (Parent_Type)
15124 or else not Is_Limited_Interface (Parent_Type))
15125 then
15126 -- AI05-0096: a derivation in the private part of an instance is
15127 -- legal if the generic formal is untagged limited, and the actual
15128 -- is non-limited.
15130 if Is_Generic_Actual_Type (Parent_Type)
15131 and then In_Private_Part (Current_Scope)
15132 and then
15133 not Is_Tagged_Type
15134 (Generic_Parent_Type (Parent (Parent_Type)))
15135 then
15136 null;
15138 else
15139 Error_Msg_NE
15140 ("parent type& of limited type must be limited",
15141 N, Parent_Type);
15142 end if;
15143 end if;
15144 end if;
15146 -- In SPARK, there are no derived type definitions other than type
15147 -- extensions of tagged record types.
15149 if No (Extension) then
15150 Check_SPARK_Restriction
15151 ("derived type is not allowed", Original_Node (N));
15152 end if;
15153 end Derived_Type_Declaration;
15155 ------------------------
15156 -- Diagnose_Interface --
15157 ------------------------
15159 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15160 begin
15161 if not Is_Interface (E)
15162 and then E /= Any_Type
15163 then
15164 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15165 end if;
15166 end Diagnose_Interface;
15168 ----------------------------------
15169 -- Enumeration_Type_Declaration --
15170 ----------------------------------
15172 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15173 Ev : Uint;
15174 L : Node_Id;
15175 R_Node : Node_Id;
15176 B_Node : Node_Id;
15178 begin
15179 -- Create identifier node representing lower bound
15181 B_Node := New_Node (N_Identifier, Sloc (Def));
15182 L := First (Literals (Def));
15183 Set_Chars (B_Node, Chars (L));
15184 Set_Entity (B_Node, L);
15185 Set_Etype (B_Node, T);
15186 Set_Is_Static_Expression (B_Node, True);
15188 R_Node := New_Node (N_Range, Sloc (Def));
15189 Set_Low_Bound (R_Node, B_Node);
15191 Set_Ekind (T, E_Enumeration_Type);
15192 Set_First_Literal (T, L);
15193 Set_Etype (T, T);
15194 Set_Is_Constrained (T);
15196 Ev := Uint_0;
15198 -- Loop through literals of enumeration type setting pos and rep values
15199 -- except that if the Ekind is already set, then it means the literal
15200 -- was already constructed (case of a derived type declaration and we
15201 -- should not disturb the Pos and Rep values.
15203 while Present (L) loop
15204 if Ekind (L) /= E_Enumeration_Literal then
15205 Set_Ekind (L, E_Enumeration_Literal);
15206 Set_Enumeration_Pos (L, Ev);
15207 Set_Enumeration_Rep (L, Ev);
15208 Set_Is_Known_Valid (L, True);
15209 end if;
15211 Set_Etype (L, T);
15212 New_Overloaded_Entity (L);
15213 Generate_Definition (L);
15214 Set_Convention (L, Convention_Intrinsic);
15216 -- Case of character literal
15218 if Nkind (L) = N_Defining_Character_Literal then
15219 Set_Is_Character_Type (T, True);
15221 -- Check violation of No_Wide_Characters
15223 if Restriction_Check_Required (No_Wide_Characters) then
15224 Get_Name_String (Chars (L));
15226 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15227 Check_Restriction (No_Wide_Characters, L);
15228 end if;
15229 end if;
15230 end if;
15232 Ev := Ev + 1;
15233 Next (L);
15234 end loop;
15236 -- Now create a node representing upper bound
15238 B_Node := New_Node (N_Identifier, Sloc (Def));
15239 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15240 Set_Entity (B_Node, Last (Literals (Def)));
15241 Set_Etype (B_Node, T);
15242 Set_Is_Static_Expression (B_Node, True);
15244 Set_High_Bound (R_Node, B_Node);
15246 -- Initialize various fields of the type. Some of this information
15247 -- may be overwritten later through rep.clauses.
15249 Set_Scalar_Range (T, R_Node);
15250 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15251 Set_Enum_Esize (T);
15252 Set_Enum_Pos_To_Rep (T, Empty);
15254 -- Set Discard_Names if configuration pragma set, or if there is
15255 -- a parameterless pragma in the current declarative region
15257 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15258 Set_Discard_Names (T);
15259 end if;
15261 -- Process end label if there is one
15263 if Present (Def) then
15264 Process_End_Label (Def, 'e', T);
15265 end if;
15266 end Enumeration_Type_Declaration;
15268 ---------------------------------
15269 -- Expand_To_Stored_Constraint --
15270 ---------------------------------
15272 function Expand_To_Stored_Constraint
15273 (Typ : Entity_Id;
15274 Constraint : Elist_Id) return Elist_Id
15276 Explicitly_Discriminated_Type : Entity_Id;
15277 Expansion : Elist_Id;
15278 Discriminant : Entity_Id;
15280 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15281 -- Find the nearest type that actually specifies discriminants
15283 ---------------------------------
15284 -- Type_With_Explicit_Discrims --
15285 ---------------------------------
15287 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15288 Typ : constant E := Base_Type (Id);
15290 begin
15291 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15292 if Present (Full_View (Typ)) then
15293 return Type_With_Explicit_Discrims (Full_View (Typ));
15294 end if;
15296 else
15297 if Has_Discriminants (Typ) then
15298 return Typ;
15299 end if;
15300 end if;
15302 if Etype (Typ) = Typ then
15303 return Empty;
15304 elsif Has_Discriminants (Typ) then
15305 return Typ;
15306 else
15307 return Type_With_Explicit_Discrims (Etype (Typ));
15308 end if;
15310 end Type_With_Explicit_Discrims;
15312 -- Start of processing for Expand_To_Stored_Constraint
15314 begin
15315 if No (Constraint)
15316 or else Is_Empty_Elmt_List (Constraint)
15317 then
15318 return No_Elist;
15319 end if;
15321 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15323 if No (Explicitly_Discriminated_Type) then
15324 return No_Elist;
15325 end if;
15327 Expansion := New_Elmt_List;
15329 Discriminant :=
15330 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15331 while Present (Discriminant) loop
15332 Append_Elmt (
15333 Get_Discriminant_Value (
15334 Discriminant, Explicitly_Discriminated_Type, Constraint),
15335 Expansion);
15336 Next_Stored_Discriminant (Discriminant);
15337 end loop;
15339 return Expansion;
15340 end Expand_To_Stored_Constraint;
15342 ---------------------------
15343 -- Find_Hidden_Interface --
15344 ---------------------------
15346 function Find_Hidden_Interface
15347 (Src : Elist_Id;
15348 Dest : Elist_Id) return Entity_Id
15350 Iface : Entity_Id;
15351 Iface_Elmt : Elmt_Id;
15353 begin
15354 if Present (Src) and then Present (Dest) then
15355 Iface_Elmt := First_Elmt (Src);
15356 while Present (Iface_Elmt) loop
15357 Iface := Node (Iface_Elmt);
15359 if Is_Interface (Iface)
15360 and then not Contain_Interface (Iface, Dest)
15361 then
15362 return Iface;
15363 end if;
15365 Next_Elmt (Iface_Elmt);
15366 end loop;
15367 end if;
15369 return Empty;
15370 end Find_Hidden_Interface;
15372 --------------------
15373 -- Find_Type_Name --
15374 --------------------
15376 function Find_Type_Name (N : Node_Id) return Entity_Id is
15377 Id : constant Entity_Id := Defining_Identifier (N);
15378 Prev : Entity_Id;
15379 New_Id : Entity_Id;
15380 Prev_Par : Node_Id;
15382 procedure Check_Duplicate_Aspects;
15383 -- Check that aspects specified in a completion have not been specified
15384 -- already in the partial view. Type_Invariant and others can be
15385 -- specified on either view but never on both.
15387 procedure Tag_Mismatch;
15388 -- Diagnose a tagged partial view whose full view is untagged.
15389 -- We post the message on the full view, with a reference to
15390 -- the previous partial view. The partial view can be private
15391 -- or incomplete, and these are handled in a different manner,
15392 -- so we determine the position of the error message from the
15393 -- respective slocs of both.
15395 -----------------------------
15396 -- Check_Duplicate_Aspects --
15397 -----------------------------
15398 procedure Check_Duplicate_Aspects is
15399 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
15400 Full_Aspects : constant List_Id := Aspect_Specifications (N);
15401 F_Spec, P_Spec : Node_Id;
15403 begin
15404 if Present (Prev_Aspects) and then Present (Full_Aspects) then
15405 F_Spec := First (Full_Aspects);
15406 while Present (F_Spec) loop
15407 P_Spec := First (Prev_Aspects);
15408 while Present (P_Spec) loop
15410 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
15411 then
15412 Error_Msg_N
15413 ("aspect already specified in private declaration",
15414 F_Spec);
15415 Remove (F_Spec);
15416 return;
15417 end if;
15419 Next (P_Spec);
15420 end loop;
15422 Next (F_Spec);
15423 end loop;
15424 end if;
15425 end Check_Duplicate_Aspects;
15427 ------------------
15428 -- Tag_Mismatch --
15429 ------------------
15431 procedure Tag_Mismatch is
15432 begin
15433 if Sloc (Prev) < Sloc (Id) then
15434 if Ada_Version >= Ada_2012
15435 and then Nkind (N) = N_Private_Type_Declaration
15436 then
15437 Error_Msg_NE
15438 ("declaration of private } must be a tagged type ", Id, Prev);
15439 else
15440 Error_Msg_NE
15441 ("full declaration of } must be a tagged type ", Id, Prev);
15442 end if;
15444 else
15445 if Ada_Version >= Ada_2012
15446 and then Nkind (N) = N_Private_Type_Declaration
15447 then
15448 Error_Msg_NE
15449 ("declaration of private } must be a tagged type ", Prev, Id);
15450 else
15451 Error_Msg_NE
15452 ("full declaration of } must be a tagged type ", Prev, Id);
15453 end if;
15454 end if;
15455 end Tag_Mismatch;
15457 -- Start of processing for Find_Type_Name
15459 begin
15460 -- Find incomplete declaration, if one was given
15462 Prev := Current_Entity_In_Scope (Id);
15464 -- New type declaration
15466 if No (Prev) then
15467 Enter_Name (Id);
15468 return Id;
15470 -- Previous declaration exists
15472 else
15473 Prev_Par := Parent (Prev);
15475 -- Error if not incomplete/private case except if previous
15476 -- declaration is implicit, etc. Enter_Name will emit error if
15477 -- appropriate.
15479 if not Is_Incomplete_Or_Private_Type (Prev) then
15480 Enter_Name (Id);
15481 New_Id := Id;
15483 -- Check invalid completion of private or incomplete type
15485 elsif not Nkind_In (N, N_Full_Type_Declaration,
15486 N_Task_Type_Declaration,
15487 N_Protected_Type_Declaration)
15488 and then
15489 (Ada_Version < Ada_2012
15490 or else not Is_Incomplete_Type (Prev)
15491 or else not Nkind_In (N, N_Private_Type_Declaration,
15492 N_Private_Extension_Declaration))
15493 then
15494 -- Completion must be a full type declarations (RM 7.3(4))
15496 Error_Msg_Sloc := Sloc (Prev);
15497 Error_Msg_NE ("invalid completion of }", Id, Prev);
15499 -- Set scope of Id to avoid cascaded errors. Entity is never
15500 -- examined again, except when saving globals in generics.
15502 Set_Scope (Id, Current_Scope);
15503 New_Id := Id;
15505 -- If this is a repeated incomplete declaration, no further
15506 -- checks are possible.
15508 if Nkind (N) = N_Incomplete_Type_Declaration then
15509 return Prev;
15510 end if;
15512 -- Case of full declaration of incomplete type
15514 elsif Ekind (Prev) = E_Incomplete_Type
15515 and then (Ada_Version < Ada_2012
15516 or else No (Full_View (Prev))
15517 or else not Is_Private_Type (Full_View (Prev)))
15518 then
15519 -- Indicate that the incomplete declaration has a matching full
15520 -- declaration. The defining occurrence of the incomplete
15521 -- declaration remains the visible one, and the procedure
15522 -- Get_Full_View dereferences it whenever the type is used.
15524 if Present (Full_View (Prev)) then
15525 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15526 end if;
15528 Set_Full_View (Prev, Id);
15529 Append_Entity (Id, Current_Scope);
15530 Set_Is_Public (Id, Is_Public (Prev));
15531 Set_Is_Internal (Id);
15532 New_Id := Prev;
15534 -- If the incomplete view is tagged, a class_wide type has been
15535 -- created already. Use it for the private type as well, in order
15536 -- to prevent multiple incompatible class-wide types that may be
15537 -- created for self-referential anonymous access components.
15539 if Is_Tagged_Type (Prev)
15540 and then Present (Class_Wide_Type (Prev))
15541 then
15542 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
15543 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
15545 -- If the incomplete type is completed by a private declaration
15546 -- the class-wide type remains associated with the incomplete
15547 -- type, to prevent order-of-elaboration issues in gigi, else
15548 -- we associate the class-wide type with the known full view.
15550 if Nkind (N) /= N_Private_Type_Declaration then
15551 Set_Etype (Class_Wide_Type (Id), Id);
15552 end if;
15553 end if;
15555 -- Case of full declaration of private type
15557 else
15558 -- If the private type was a completion of an incomplete type then
15559 -- update Prev to reference the private type
15561 if Ada_Version >= Ada_2012
15562 and then Ekind (Prev) = E_Incomplete_Type
15563 and then Present (Full_View (Prev))
15564 and then Is_Private_Type (Full_View (Prev))
15565 then
15566 Prev := Full_View (Prev);
15567 Prev_Par := Parent (Prev);
15568 end if;
15570 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
15571 if Etype (Prev) /= Prev then
15573 -- Prev is a private subtype or a derived type, and needs
15574 -- no completion.
15576 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15577 New_Id := Id;
15579 elsif Ekind (Prev) = E_Private_Type
15580 and then Nkind_In (N, N_Task_Type_Declaration,
15581 N_Protected_Type_Declaration)
15582 then
15583 Error_Msg_N
15584 ("completion of nonlimited type cannot be limited", N);
15586 elsif Ekind (Prev) = E_Record_Type_With_Private
15587 and then Nkind_In (N, N_Task_Type_Declaration,
15588 N_Protected_Type_Declaration)
15589 then
15590 if not Is_Limited_Record (Prev) then
15591 Error_Msg_N
15592 ("completion of nonlimited type cannot be limited", N);
15594 elsif No (Interface_List (N)) then
15595 Error_Msg_N
15596 ("completion of tagged private type must be tagged",
15598 end if;
15600 elsif Nkind (N) = N_Full_Type_Declaration
15601 and then Nkind_In
15602 (Type_Definition (N), N_Record_Definition,
15603 N_Derived_Type_Definition)
15604 and then Interface_Present (Type_Definition (N))
15605 then
15606 Error_Msg_N
15607 ("completion of private type cannot be an interface", N);
15608 end if;
15610 -- Ada 2005 (AI-251): Private extension declaration of a task
15611 -- type or a protected type. This case arises when covering
15612 -- interface types.
15614 elsif Nkind_In (N, N_Task_Type_Declaration,
15615 N_Protected_Type_Declaration)
15616 then
15617 null;
15619 elsif Nkind (N) /= N_Full_Type_Declaration
15620 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
15621 then
15622 Error_Msg_N
15623 ("full view of private extension must be an extension", N);
15625 elsif not (Abstract_Present (Parent (Prev)))
15626 and then Abstract_Present (Type_Definition (N))
15627 then
15628 Error_Msg_N
15629 ("full view of non-abstract extension cannot be abstract", N);
15630 end if;
15632 if not In_Private_Part (Current_Scope) then
15633 Error_Msg_N
15634 ("declaration of full view must appear in private part", N);
15635 end if;
15637 if Ada_Version >= Ada_2012 then
15638 Check_Duplicate_Aspects;
15639 end if;
15641 Copy_And_Swap (Prev, Id);
15642 Set_Has_Private_Declaration (Prev);
15643 Set_Has_Private_Declaration (Id);
15645 -- Preserve aspect and iterator flags that may have been set on
15646 -- the partial view.
15648 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
15649 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
15651 -- If no error, propagate freeze_node from private to full view.
15652 -- It may have been generated for an early operational item.
15654 if Present (Freeze_Node (Id))
15655 and then Serious_Errors_Detected = 0
15656 and then No (Full_View (Id))
15657 then
15658 Set_Freeze_Node (Prev, Freeze_Node (Id));
15659 Set_Freeze_Node (Id, Empty);
15660 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
15661 end if;
15663 Set_Full_View (Id, Prev);
15664 New_Id := Prev;
15665 end if;
15667 -- Verify that full declaration conforms to partial one
15669 if Is_Incomplete_Or_Private_Type (Prev)
15670 and then Present (Discriminant_Specifications (Prev_Par))
15671 then
15672 if Present (Discriminant_Specifications (N)) then
15673 if Ekind (Prev) = E_Incomplete_Type then
15674 Check_Discriminant_Conformance (N, Prev, Prev);
15675 else
15676 Check_Discriminant_Conformance (N, Prev, Id);
15677 end if;
15679 else
15680 Error_Msg_N
15681 ("missing discriminants in full type declaration", N);
15683 -- To avoid cascaded errors on subsequent use, share the
15684 -- discriminants of the partial view.
15686 Set_Discriminant_Specifications (N,
15687 Discriminant_Specifications (Prev_Par));
15688 end if;
15689 end if;
15691 -- A prior untagged partial view can have an associated class-wide
15692 -- type due to use of the class attribute, and in this case the full
15693 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15694 -- of incomplete tagged declarations, but we check for it.
15696 if Is_Type (Prev)
15697 and then (Is_Tagged_Type (Prev)
15698 or else Present (Class_Wide_Type (Prev)))
15699 then
15700 -- Ada 2012 (AI05-0162): A private type may be the completion of
15701 -- an incomplete type.
15703 if Ada_Version >= Ada_2012
15704 and then Is_Incomplete_Type (Prev)
15705 and then Nkind_In (N, N_Private_Type_Declaration,
15706 N_Private_Extension_Declaration)
15707 then
15708 -- No need to check private extensions since they are tagged
15710 if Nkind (N) = N_Private_Type_Declaration
15711 and then not Tagged_Present (N)
15712 then
15713 Tag_Mismatch;
15714 end if;
15716 -- The full declaration is either a tagged type (including
15717 -- a synchronized type that implements interfaces) or a
15718 -- type extension, otherwise this is an error.
15720 elsif Nkind_In (N, N_Task_Type_Declaration,
15721 N_Protected_Type_Declaration)
15722 then
15723 if No (Interface_List (N))
15724 and then not Error_Posted (N)
15725 then
15726 Tag_Mismatch;
15727 end if;
15729 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
15731 -- Indicate that the previous declaration (tagged incomplete
15732 -- or private declaration) requires the same on the full one.
15734 if not Tagged_Present (Type_Definition (N)) then
15735 Tag_Mismatch;
15736 Set_Is_Tagged_Type (Id);
15737 end if;
15739 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
15740 if No (Record_Extension_Part (Type_Definition (N))) then
15741 Error_Msg_NE
15742 ("full declaration of } must be a record extension",
15743 Prev, Id);
15745 -- Set some attributes to produce a usable full view
15747 Set_Is_Tagged_Type (Id);
15748 end if;
15750 else
15751 Tag_Mismatch;
15752 end if;
15753 end if;
15755 if Present (Prev)
15756 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
15757 and then Present (Premature_Use (Parent (Prev)))
15758 then
15759 Error_Msg_Sloc := Sloc (N);
15760 Error_Msg_N
15761 ("\full declaration #", Premature_Use (Parent (Prev)));
15762 end if;
15764 return New_Id;
15765 end if;
15766 end Find_Type_Name;
15768 -------------------------
15769 -- Find_Type_Of_Object --
15770 -------------------------
15772 function Find_Type_Of_Object
15773 (Obj_Def : Node_Id;
15774 Related_Nod : Node_Id) return Entity_Id
15776 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
15777 P : Node_Id := Parent (Obj_Def);
15778 T : Entity_Id;
15779 Nam : Name_Id;
15781 begin
15782 -- If the parent is a component_definition node we climb to the
15783 -- component_declaration node
15785 if Nkind (P) = N_Component_Definition then
15786 P := Parent (P);
15787 end if;
15789 -- Case of an anonymous array subtype
15791 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
15792 N_Unconstrained_Array_Definition)
15793 then
15794 T := Empty;
15795 Array_Type_Declaration (T, Obj_Def);
15797 -- Create an explicit subtype whenever possible
15799 elsif Nkind (P) /= N_Component_Declaration
15800 and then Def_Kind = N_Subtype_Indication
15801 then
15802 -- Base name of subtype on object name, which will be unique in
15803 -- the current scope.
15805 -- If this is a duplicate declaration, return base type, to avoid
15806 -- generating duplicate anonymous types.
15808 if Error_Posted (P) then
15809 Analyze (Subtype_Mark (Obj_Def));
15810 return Entity (Subtype_Mark (Obj_Def));
15811 end if;
15813 Nam :=
15814 New_External_Name
15815 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
15817 T := Make_Defining_Identifier (Sloc (P), Nam);
15819 Insert_Action (Obj_Def,
15820 Make_Subtype_Declaration (Sloc (P),
15821 Defining_Identifier => T,
15822 Subtype_Indication => Relocate_Node (Obj_Def)));
15824 -- This subtype may need freezing, and this will not be done
15825 -- automatically if the object declaration is not in declarative
15826 -- part. Since this is an object declaration, the type cannot always
15827 -- be frozen here. Deferred constants do not freeze their type
15828 -- (which often enough will be private).
15830 if Nkind (P) = N_Object_Declaration
15831 and then Constant_Present (P)
15832 and then No (Expression (P))
15833 then
15834 null;
15836 -- Here we freeze the base type of object type to catch premature use
15837 -- of discriminated private type without a full view.
15839 else
15840 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
15841 end if;
15843 -- Ada 2005 AI-406: the object definition in an object declaration
15844 -- can be an access definition.
15846 elsif Def_Kind = N_Access_Definition then
15847 T := Access_Definition (Related_Nod, Obj_Def);
15849 Set_Is_Local_Anonymous_Access
15851 V => (Ada_Version < Ada_2012)
15852 or else (Nkind (P) /= N_Object_Declaration)
15853 or else Is_Library_Level_Entity (Defining_Identifier (P)));
15855 -- Otherwise, the object definition is just a subtype_mark
15857 else
15858 T := Process_Subtype (Obj_Def, Related_Nod);
15860 -- If expansion is disabled an object definition that is an aggregate
15861 -- will not get expanded and may lead to scoping problems in the back
15862 -- end, if the object is referenced in an inner scope. In that case
15863 -- create an itype reference for the object definition now. This
15864 -- may be redundant in some cases, but harmless.
15866 if Is_Itype (T)
15867 and then Nkind (Related_Nod) = N_Object_Declaration
15868 and then ASIS_Mode
15869 then
15870 Build_Itype_Reference (T, Related_Nod);
15871 end if;
15872 end if;
15874 return T;
15875 end Find_Type_Of_Object;
15877 --------------------------------
15878 -- Find_Type_Of_Subtype_Indic --
15879 --------------------------------
15881 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
15882 Typ : Entity_Id;
15884 begin
15885 -- Case of subtype mark with a constraint
15887 if Nkind (S) = N_Subtype_Indication then
15888 Find_Type (Subtype_Mark (S));
15889 Typ := Entity (Subtype_Mark (S));
15891 if not
15892 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
15893 then
15894 Error_Msg_N
15895 ("incorrect constraint for this kind of type", Constraint (S));
15896 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
15897 end if;
15899 -- Otherwise we have a subtype mark without a constraint
15901 elsif Error_Posted (S) then
15902 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
15903 return Any_Type;
15905 else
15906 Find_Type (S);
15907 Typ := Entity (S);
15908 end if;
15910 -- Check No_Wide_Characters restriction
15912 Check_Wide_Character_Restriction (Typ, S);
15914 return Typ;
15915 end Find_Type_Of_Subtype_Indic;
15917 -------------------------------------
15918 -- Floating_Point_Type_Declaration --
15919 -------------------------------------
15921 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15922 Digs : constant Node_Id := Digits_Expression (Def);
15923 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
15924 Digs_Val : Uint;
15925 Base_Typ : Entity_Id;
15926 Implicit_Base : Entity_Id;
15927 Bound : Node_Id;
15929 function Can_Derive_From (E : Entity_Id) return Boolean;
15930 -- Find if given digits value, and possibly a specified range, allows
15931 -- derivation from specified type
15933 function Find_Base_Type return Entity_Id;
15934 -- Find a predefined base type that Def can derive from, or generate
15935 -- an error and substitute Long_Long_Float if none exists.
15937 ---------------------
15938 -- Can_Derive_From --
15939 ---------------------
15941 function Can_Derive_From (E : Entity_Id) return Boolean is
15942 Spec : constant Entity_Id := Real_Range_Specification (Def);
15944 begin
15945 -- Check specified "digits" constraint
15947 if Digs_Val > Digits_Value (E) then
15948 return False;
15949 end if;
15951 -- Avoid types not matching pragma Float_Representation, if present
15953 if (Opt.Float_Format = 'I' and then Float_Rep (E) /= IEEE_Binary)
15954 or else
15955 (Opt.Float_Format = 'V' and then Float_Rep (E) /= VAX_Native)
15956 then
15957 return False;
15958 end if;
15960 -- Check for matching range, if specified
15962 if Present (Spec) then
15963 if Expr_Value_R (Type_Low_Bound (E)) >
15964 Expr_Value_R (Low_Bound (Spec))
15965 then
15966 return False;
15967 end if;
15969 if Expr_Value_R (Type_High_Bound (E)) <
15970 Expr_Value_R (High_Bound (Spec))
15971 then
15972 return False;
15973 end if;
15974 end if;
15976 return True;
15977 end Can_Derive_From;
15979 --------------------
15980 -- Find_Base_Type --
15981 --------------------
15983 function Find_Base_Type return Entity_Id is
15984 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
15986 begin
15987 -- Iterate over the predefined types in order, returning the first
15988 -- one that Def can derive from.
15990 while Present (Choice) loop
15991 if Can_Derive_From (Node (Choice)) then
15992 return Node (Choice);
15993 end if;
15995 Next_Elmt (Choice);
15996 end loop;
15998 -- If we can't derive from any existing type, use Long_Long_Float
15999 -- and give appropriate message explaining the problem.
16001 if Digs_Val > Max_Digs_Val then
16002 -- It might be the case that there is a type with the requested
16003 -- range, just not the combination of digits and range.
16005 Error_Msg_N
16006 ("no predefined type has requested range and precision",
16007 Real_Range_Specification (Def));
16009 else
16010 Error_Msg_N
16011 ("range too large for any predefined type",
16012 Real_Range_Specification (Def));
16013 end if;
16015 return Standard_Long_Long_Float;
16016 end Find_Base_Type;
16018 -- Start of processing for Floating_Point_Type_Declaration
16020 begin
16021 Check_Restriction (No_Floating_Point, Def);
16023 -- Create an implicit base type
16025 Implicit_Base :=
16026 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16028 -- Analyze and verify digits value
16030 Analyze_And_Resolve (Digs, Any_Integer);
16031 Check_Digits_Expression (Digs);
16032 Digs_Val := Expr_Value (Digs);
16034 -- Process possible range spec and find correct type to derive from
16036 Process_Real_Range_Specification (Def);
16038 -- Check that requested number of digits is not too high.
16040 if Digs_Val > Max_Digs_Val then
16041 -- The check for Max_Base_Digits may be somewhat expensive, as it
16042 -- requires reading System, so only do it when necessary.
16044 declare
16045 Max_Base_Digits : constant Uint :=
16046 Expr_Value
16047 (Expression
16048 (Parent (RTE (RE_Max_Base_Digits))));
16050 begin
16051 if Digs_Val > Max_Base_Digits then
16052 Error_Msg_Uint_1 := Max_Base_Digits;
16053 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16055 elsif No (Real_Range_Specification (Def)) then
16056 Error_Msg_Uint_1 := Max_Digs_Val;
16057 Error_Msg_N ("types with more than ^ digits need range spec "
16058 & "(RM 3.5.7(6))", Digs);
16059 end if;
16060 end;
16061 end if;
16063 -- Find a suitable type to derive from or complain and use a substitute
16065 Base_Typ := Find_Base_Type;
16067 -- If there are bounds given in the declaration use them as the bounds
16068 -- of the type, otherwise use the bounds of the predefined base type
16069 -- that was chosen based on the Digits value.
16071 if Present (Real_Range_Specification (Def)) then
16072 Set_Scalar_Range (T, Real_Range_Specification (Def));
16073 Set_Is_Constrained (T);
16075 -- The bounds of this range must be converted to machine numbers
16076 -- in accordance with RM 4.9(38).
16078 Bound := Type_Low_Bound (T);
16080 if Nkind (Bound) = N_Real_Literal then
16081 Set_Realval
16082 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16083 Set_Is_Machine_Number (Bound);
16084 end if;
16086 Bound := Type_High_Bound (T);
16088 if Nkind (Bound) = N_Real_Literal then
16089 Set_Realval
16090 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16091 Set_Is_Machine_Number (Bound);
16092 end if;
16094 else
16095 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16096 end if;
16098 -- Complete definition of implicit base and declared first subtype
16100 Set_Etype (Implicit_Base, Base_Typ);
16102 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16103 Set_Size_Info (Implicit_Base, (Base_Typ));
16104 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16105 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16106 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16107 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16109 Set_Ekind (T, E_Floating_Point_Subtype);
16110 Set_Etype (T, Implicit_Base);
16112 Set_Size_Info (T, (Implicit_Base));
16113 Set_RM_Size (T, RM_Size (Implicit_Base));
16114 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
16115 Set_Digits_Value (T, Digs_Val);
16116 end Floating_Point_Type_Declaration;
16118 ----------------------------
16119 -- Get_Discriminant_Value --
16120 ----------------------------
16122 -- This is the situation:
16124 -- There is a non-derived type
16126 -- type T0 (Dx, Dy, Dz...)
16128 -- There are zero or more levels of derivation, with each derivation
16129 -- either purely inheriting the discriminants, or defining its own.
16131 -- type Ti is new Ti-1
16132 -- or
16133 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16134 -- or
16135 -- subtype Ti is ...
16137 -- The subtype issue is avoided by the use of Original_Record_Component,
16138 -- and the fact that derived subtypes also derive the constraints.
16140 -- This chain leads back from
16142 -- Typ_For_Constraint
16144 -- Typ_For_Constraint has discriminants, and the value for each
16145 -- discriminant is given by its corresponding Elmt of Constraints.
16147 -- Discriminant is some discriminant in this hierarchy
16149 -- We need to return its value
16151 -- We do this by recursively searching each level, and looking for
16152 -- Discriminant. Once we get to the bottom, we start backing up
16153 -- returning the value for it which may in turn be a discriminant
16154 -- further up, so on the backup we continue the substitution.
16156 function Get_Discriminant_Value
16157 (Discriminant : Entity_Id;
16158 Typ_For_Constraint : Entity_Id;
16159 Constraint : Elist_Id) return Node_Id
16161 function Root_Corresponding_Discriminant
16162 (Discr : Entity_Id) return Entity_Id;
16163 -- Given a discriminant, traverse the chain of inherited discriminants
16164 -- and return the topmost discriminant.
16166 function Search_Derivation_Levels
16167 (Ti : Entity_Id;
16168 Discrim_Values : Elist_Id;
16169 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16170 -- This is the routine that performs the recursive search of levels
16171 -- as described above.
16173 -------------------------------------
16174 -- Root_Corresponding_Discriminant --
16175 -------------------------------------
16177 function Root_Corresponding_Discriminant
16178 (Discr : Entity_Id) return Entity_Id
16180 D : Entity_Id;
16182 begin
16183 D := Discr;
16184 while Present (Corresponding_Discriminant (D)) loop
16185 D := Corresponding_Discriminant (D);
16186 end loop;
16188 return D;
16189 end Root_Corresponding_Discriminant;
16191 ------------------------------
16192 -- Search_Derivation_Levels --
16193 ------------------------------
16195 function Search_Derivation_Levels
16196 (Ti : Entity_Id;
16197 Discrim_Values : Elist_Id;
16198 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16200 Assoc : Elmt_Id;
16201 Disc : Entity_Id;
16202 Result : Node_Or_Entity_Id;
16203 Result_Entity : Node_Id;
16205 begin
16206 -- If inappropriate type, return Error, this happens only in
16207 -- cascaded error situations, and we want to avoid a blow up.
16209 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16210 return Error;
16211 end if;
16213 -- Look deeper if possible. Use Stored_Constraints only for
16214 -- untagged types. For tagged types use the given constraint.
16215 -- This asymmetry needs explanation???
16217 if not Stored_Discrim_Values
16218 and then Present (Stored_Constraint (Ti))
16219 and then not Is_Tagged_Type (Ti)
16220 then
16221 Result :=
16222 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16223 else
16224 declare
16225 Td : constant Entity_Id := Etype (Ti);
16227 begin
16228 if Td = Ti then
16229 Result := Discriminant;
16231 else
16232 if Present (Stored_Constraint (Ti)) then
16233 Result :=
16234 Search_Derivation_Levels
16235 (Td, Stored_Constraint (Ti), True);
16236 else
16237 Result :=
16238 Search_Derivation_Levels
16239 (Td, Discrim_Values, Stored_Discrim_Values);
16240 end if;
16241 end if;
16242 end;
16243 end if;
16245 -- Extra underlying places to search, if not found above. For
16246 -- concurrent types, the relevant discriminant appears in the
16247 -- corresponding record. For a type derived from a private type
16248 -- without discriminant, the full view inherits the discriminants
16249 -- of the full view of the parent.
16251 if Result = Discriminant then
16252 if Is_Concurrent_Type (Ti)
16253 and then Present (Corresponding_Record_Type (Ti))
16254 then
16255 Result :=
16256 Search_Derivation_Levels (
16257 Corresponding_Record_Type (Ti),
16258 Discrim_Values,
16259 Stored_Discrim_Values);
16261 elsif Is_Private_Type (Ti)
16262 and then not Has_Discriminants (Ti)
16263 and then Present (Full_View (Ti))
16264 and then Etype (Full_View (Ti)) /= Ti
16265 then
16266 Result :=
16267 Search_Derivation_Levels (
16268 Full_View (Ti),
16269 Discrim_Values,
16270 Stored_Discrim_Values);
16271 end if;
16272 end if;
16274 -- If Result is not a (reference to a) discriminant, return it,
16275 -- otherwise set Result_Entity to the discriminant.
16277 if Nkind (Result) = N_Defining_Identifier then
16278 pragma Assert (Result = Discriminant);
16279 Result_Entity := Result;
16281 else
16282 if not Denotes_Discriminant (Result) then
16283 return Result;
16284 end if;
16286 Result_Entity := Entity (Result);
16287 end if;
16289 -- See if this level of derivation actually has discriminants
16290 -- because tagged derivations can add them, hence the lower
16291 -- levels need not have any.
16293 if not Has_Discriminants (Ti) then
16294 return Result;
16295 end if;
16297 -- Scan Ti's discriminants for Result_Entity,
16298 -- and return its corresponding value, if any.
16300 Result_Entity := Original_Record_Component (Result_Entity);
16302 Assoc := First_Elmt (Discrim_Values);
16304 if Stored_Discrim_Values then
16305 Disc := First_Stored_Discriminant (Ti);
16306 else
16307 Disc := First_Discriminant (Ti);
16308 end if;
16310 while Present (Disc) loop
16311 pragma Assert (Present (Assoc));
16313 if Original_Record_Component (Disc) = Result_Entity then
16314 return Node (Assoc);
16315 end if;
16317 Next_Elmt (Assoc);
16319 if Stored_Discrim_Values then
16320 Next_Stored_Discriminant (Disc);
16321 else
16322 Next_Discriminant (Disc);
16323 end if;
16324 end loop;
16326 -- Could not find it
16328 return Result;
16329 end Search_Derivation_Levels;
16331 -- Local Variables
16333 Result : Node_Or_Entity_Id;
16335 -- Start of processing for Get_Discriminant_Value
16337 begin
16338 -- ??? This routine is a gigantic mess and will be deleted. For the
16339 -- time being just test for the trivial case before calling recurse.
16341 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16342 declare
16343 D : Entity_Id;
16344 E : Elmt_Id;
16346 begin
16347 D := First_Discriminant (Typ_For_Constraint);
16348 E := First_Elmt (Constraint);
16349 while Present (D) loop
16350 if Chars (D) = Chars (Discriminant) then
16351 return Node (E);
16352 end if;
16354 Next_Discriminant (D);
16355 Next_Elmt (E);
16356 end loop;
16357 end;
16358 end if;
16360 Result := Search_Derivation_Levels
16361 (Typ_For_Constraint, Constraint, False);
16363 -- ??? hack to disappear when this routine is gone
16365 if Nkind (Result) = N_Defining_Identifier then
16366 declare
16367 D : Entity_Id;
16368 E : Elmt_Id;
16370 begin
16371 D := First_Discriminant (Typ_For_Constraint);
16372 E := First_Elmt (Constraint);
16373 while Present (D) loop
16374 if Root_Corresponding_Discriminant (D) = Discriminant then
16375 return Node (E);
16376 end if;
16378 Next_Discriminant (D);
16379 Next_Elmt (E);
16380 end loop;
16381 end;
16382 end if;
16384 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
16385 return Result;
16386 end Get_Discriminant_Value;
16388 --------------------------
16389 -- Has_Range_Constraint --
16390 --------------------------
16392 function Has_Range_Constraint (N : Node_Id) return Boolean is
16393 C : constant Node_Id := Constraint (N);
16395 begin
16396 if Nkind (C) = N_Range_Constraint then
16397 return True;
16399 elsif Nkind (C) = N_Digits_Constraint then
16400 return
16401 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
16402 or else
16403 Present (Range_Constraint (C));
16405 elsif Nkind (C) = N_Delta_Constraint then
16406 return Present (Range_Constraint (C));
16408 else
16409 return False;
16410 end if;
16411 end Has_Range_Constraint;
16413 ------------------------
16414 -- Inherit_Components --
16415 ------------------------
16417 function Inherit_Components
16418 (N : Node_Id;
16419 Parent_Base : Entity_Id;
16420 Derived_Base : Entity_Id;
16421 Is_Tagged : Boolean;
16422 Inherit_Discr : Boolean;
16423 Discs : Elist_Id) return Elist_Id
16425 Assoc_List : constant Elist_Id := New_Elmt_List;
16427 procedure Inherit_Component
16428 (Old_C : Entity_Id;
16429 Plain_Discrim : Boolean := False;
16430 Stored_Discrim : Boolean := False);
16431 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
16432 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
16433 -- True, Old_C is a stored discriminant. If they are both false then
16434 -- Old_C is a regular component.
16436 -----------------------
16437 -- Inherit_Component --
16438 -----------------------
16440 procedure Inherit_Component
16441 (Old_C : Entity_Id;
16442 Plain_Discrim : Boolean := False;
16443 Stored_Discrim : Boolean := False)
16445 procedure Set_Anonymous_Type (Id : Entity_Id);
16446 -- Id denotes the entity of an access discriminant or anonymous
16447 -- access component. Set the type of Id to either the same type of
16448 -- Old_C or create a new one depending on whether the parent and
16449 -- the child types are in the same scope.
16451 ------------------------
16452 -- Set_Anonymous_Type --
16453 ------------------------
16455 procedure Set_Anonymous_Type (Id : Entity_Id) is
16456 Old_Typ : constant Entity_Id := Etype (Old_C);
16458 begin
16459 if Scope (Parent_Base) = Scope (Derived_Base) then
16460 Set_Etype (Id, Old_Typ);
16462 -- The parent and the derived type are in two different scopes.
16463 -- Reuse the type of the original discriminant / component by
16464 -- copying it in order to preserve all attributes.
16466 else
16467 declare
16468 Typ : constant Entity_Id := New_Copy (Old_Typ);
16470 begin
16471 Set_Etype (Id, Typ);
16473 -- Since we do not generate component declarations for
16474 -- inherited components, associate the itype with the
16475 -- derived type.
16477 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
16478 Set_Scope (Typ, Derived_Base);
16479 end;
16480 end if;
16481 end Set_Anonymous_Type;
16483 -- Local variables and constants
16485 New_C : constant Entity_Id := New_Copy (Old_C);
16487 Corr_Discrim : Entity_Id;
16488 Discrim : Entity_Id;
16490 -- Start of processing for Inherit_Component
16492 begin
16493 pragma Assert (not Is_Tagged or else not Stored_Discrim);
16495 Set_Parent (New_C, Parent (Old_C));
16497 -- Regular discriminants and components must be inserted in the scope
16498 -- of the Derived_Base. Do it here.
16500 if not Stored_Discrim then
16501 Enter_Name (New_C);
16502 end if;
16504 -- For tagged types the Original_Record_Component must point to
16505 -- whatever this field was pointing to in the parent type. This has
16506 -- already been achieved by the call to New_Copy above.
16508 if not Is_Tagged then
16509 Set_Original_Record_Component (New_C, New_C);
16510 end if;
16512 -- Set the proper type of an access discriminant
16514 if Ekind (New_C) = E_Discriminant
16515 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
16516 then
16517 Set_Anonymous_Type (New_C);
16518 end if;
16520 -- If we have inherited a component then see if its Etype contains
16521 -- references to Parent_Base discriminants. In this case, replace
16522 -- these references with the constraints given in Discs. We do not
16523 -- do this for the partial view of private types because this is
16524 -- not needed (only the components of the full view will be used
16525 -- for code generation) and cause problem. We also avoid this
16526 -- transformation in some error situations.
16528 if Ekind (New_C) = E_Component then
16530 -- Set the proper type of an anonymous access component
16532 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
16533 Set_Anonymous_Type (New_C);
16535 elsif (Is_Private_Type (Derived_Base)
16536 and then not Is_Generic_Type (Derived_Base))
16537 or else (Is_Empty_Elmt_List (Discs)
16538 and then not Expander_Active)
16539 then
16540 Set_Etype (New_C, Etype (Old_C));
16542 else
16543 -- The current component introduces a circularity of the
16544 -- following kind:
16546 -- limited with Pack_2;
16547 -- package Pack_1 is
16548 -- type T_1 is tagged record
16549 -- Comp : access Pack_2.T_2;
16550 -- ...
16551 -- end record;
16552 -- end Pack_1;
16554 -- with Pack_1;
16555 -- package Pack_2 is
16556 -- type T_2 is new Pack_1.T_1 with ...;
16557 -- end Pack_2;
16559 Set_Etype
16560 (New_C,
16561 Constrain_Component_Type
16562 (Old_C, Derived_Base, N, Parent_Base, Discs));
16563 end if;
16564 end if;
16566 -- In derived tagged types it is illegal to reference a non
16567 -- discriminant component in the parent type. To catch this, mark
16568 -- these components with an Ekind of E_Void. This will be reset in
16569 -- Record_Type_Definition after processing the record extension of
16570 -- the derived type.
16572 -- If the declaration is a private extension, there is no further
16573 -- record extension to process, and the components retain their
16574 -- current kind, because they are visible at this point.
16576 if Is_Tagged and then Ekind (New_C) = E_Component
16577 and then Nkind (N) /= N_Private_Extension_Declaration
16578 then
16579 Set_Ekind (New_C, E_Void);
16580 end if;
16582 if Plain_Discrim then
16583 Set_Corresponding_Discriminant (New_C, Old_C);
16584 Build_Discriminal (New_C);
16586 -- If we are explicitly inheriting a stored discriminant it will be
16587 -- completely hidden.
16589 elsif Stored_Discrim then
16590 Set_Corresponding_Discriminant (New_C, Empty);
16591 Set_Discriminal (New_C, Empty);
16592 Set_Is_Completely_Hidden (New_C);
16594 -- Set the Original_Record_Component of each discriminant in the
16595 -- derived base to point to the corresponding stored that we just
16596 -- created.
16598 Discrim := First_Discriminant (Derived_Base);
16599 while Present (Discrim) loop
16600 Corr_Discrim := Corresponding_Discriminant (Discrim);
16602 -- Corr_Discrim could be missing in an error situation
16604 if Present (Corr_Discrim)
16605 and then Original_Record_Component (Corr_Discrim) = Old_C
16606 then
16607 Set_Original_Record_Component (Discrim, New_C);
16608 end if;
16610 Next_Discriminant (Discrim);
16611 end loop;
16613 Append_Entity (New_C, Derived_Base);
16614 end if;
16616 if not Is_Tagged then
16617 Append_Elmt (Old_C, Assoc_List);
16618 Append_Elmt (New_C, Assoc_List);
16619 end if;
16620 end Inherit_Component;
16622 -- Variables local to Inherit_Component
16624 Loc : constant Source_Ptr := Sloc (N);
16626 Parent_Discrim : Entity_Id;
16627 Stored_Discrim : Entity_Id;
16628 D : Entity_Id;
16629 Component : Entity_Id;
16631 -- Start of processing for Inherit_Components
16633 begin
16634 if not Is_Tagged then
16635 Append_Elmt (Parent_Base, Assoc_List);
16636 Append_Elmt (Derived_Base, Assoc_List);
16637 end if;
16639 -- Inherit parent discriminants if needed
16641 if Inherit_Discr then
16642 Parent_Discrim := First_Discriminant (Parent_Base);
16643 while Present (Parent_Discrim) loop
16644 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
16645 Next_Discriminant (Parent_Discrim);
16646 end loop;
16647 end if;
16649 -- Create explicit stored discrims for untagged types when necessary
16651 if not Has_Unknown_Discriminants (Derived_Base)
16652 and then Has_Discriminants (Parent_Base)
16653 and then not Is_Tagged
16654 and then
16655 (not Inherit_Discr
16656 or else First_Discriminant (Parent_Base) /=
16657 First_Stored_Discriminant (Parent_Base))
16658 then
16659 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
16660 while Present (Stored_Discrim) loop
16661 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
16662 Next_Stored_Discriminant (Stored_Discrim);
16663 end loop;
16664 end if;
16666 -- See if we can apply the second transformation for derived types, as
16667 -- explained in point 6. in the comments above Build_Derived_Record_Type
16668 -- This is achieved by appending Derived_Base discriminants into Discs,
16669 -- which has the side effect of returning a non empty Discs list to the
16670 -- caller of Inherit_Components, which is what we want. This must be
16671 -- done for private derived types if there are explicit stored
16672 -- discriminants, to ensure that we can retrieve the values of the
16673 -- constraints provided in the ancestors.
16675 if Inherit_Discr
16676 and then Is_Empty_Elmt_List (Discs)
16677 and then Present (First_Discriminant (Derived_Base))
16678 and then
16679 (not Is_Private_Type (Derived_Base)
16680 or else Is_Completely_Hidden
16681 (First_Stored_Discriminant (Derived_Base))
16682 or else Is_Generic_Type (Derived_Base))
16683 then
16684 D := First_Discriminant (Derived_Base);
16685 while Present (D) loop
16686 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
16687 Next_Discriminant (D);
16688 end loop;
16689 end if;
16691 -- Finally, inherit non-discriminant components unless they are not
16692 -- visible because defined or inherited from the full view of the
16693 -- parent. Don't inherit the _parent field of the parent type.
16695 Component := First_Entity (Parent_Base);
16696 while Present (Component) loop
16698 -- Ada 2005 (AI-251): Do not inherit components associated with
16699 -- secondary tags of the parent.
16701 if Ekind (Component) = E_Component
16702 and then Present (Related_Type (Component))
16703 then
16704 null;
16706 elsif Ekind (Component) /= E_Component
16707 or else Chars (Component) = Name_uParent
16708 then
16709 null;
16711 -- If the derived type is within the parent type's declarative
16712 -- region, then the components can still be inherited even though
16713 -- they aren't visible at this point. This can occur for cases
16714 -- such as within public child units where the components must
16715 -- become visible upon entering the child unit's private part.
16717 elsif not Is_Visible_Component (Component)
16718 and then not In_Open_Scopes (Scope (Parent_Base))
16719 then
16720 null;
16722 elsif Ekind_In (Derived_Base, E_Private_Type,
16723 E_Limited_Private_Type)
16724 then
16725 null;
16727 else
16728 Inherit_Component (Component);
16729 end if;
16731 Next_Entity (Component);
16732 end loop;
16734 -- For tagged derived types, inherited discriminants cannot be used in
16735 -- component declarations of the record extension part. To achieve this
16736 -- we mark the inherited discriminants as not visible.
16738 if Is_Tagged and then Inherit_Discr then
16739 D := First_Discriminant (Derived_Base);
16740 while Present (D) loop
16741 Set_Is_Immediately_Visible (D, False);
16742 Next_Discriminant (D);
16743 end loop;
16744 end if;
16746 return Assoc_List;
16747 end Inherit_Components;
16749 -----------------------
16750 -- Is_Null_Extension --
16751 -----------------------
16753 function Is_Null_Extension (T : Entity_Id) return Boolean is
16754 Type_Decl : constant Node_Id := Parent (Base_Type (T));
16755 Comp_List : Node_Id;
16756 Comp : Node_Id;
16758 begin
16759 if Nkind (Type_Decl) /= N_Full_Type_Declaration
16760 or else not Is_Tagged_Type (T)
16761 or else Nkind (Type_Definition (Type_Decl)) /=
16762 N_Derived_Type_Definition
16763 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
16764 then
16765 return False;
16766 end if;
16768 Comp_List :=
16769 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
16771 if Present (Discriminant_Specifications (Type_Decl)) then
16772 return False;
16774 elsif Present (Comp_List)
16775 and then Is_Non_Empty_List (Component_Items (Comp_List))
16776 then
16777 Comp := First (Component_Items (Comp_List));
16779 -- Only user-defined components are relevant. The component list
16780 -- may also contain a parent component and internal components
16781 -- corresponding to secondary tags, but these do not determine
16782 -- whether this is a null extension.
16784 while Present (Comp) loop
16785 if Comes_From_Source (Comp) then
16786 return False;
16787 end if;
16789 Next (Comp);
16790 end loop;
16792 return True;
16793 else
16794 return True;
16795 end if;
16796 end Is_Null_Extension;
16798 ------------------------------
16799 -- Is_Valid_Constraint_Kind --
16800 ------------------------------
16802 function Is_Valid_Constraint_Kind
16803 (T_Kind : Type_Kind;
16804 Constraint_Kind : Node_Kind) return Boolean
16806 begin
16807 case T_Kind is
16808 when Enumeration_Kind |
16809 Integer_Kind =>
16810 return Constraint_Kind = N_Range_Constraint;
16812 when Decimal_Fixed_Point_Kind =>
16813 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16814 N_Range_Constraint);
16816 when Ordinary_Fixed_Point_Kind =>
16817 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
16818 N_Range_Constraint);
16820 when Float_Kind =>
16821 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16822 N_Range_Constraint);
16824 when Access_Kind |
16825 Array_Kind |
16826 E_Record_Type |
16827 E_Record_Subtype |
16828 Class_Wide_Kind |
16829 E_Incomplete_Type |
16830 Private_Kind |
16831 Concurrent_Kind =>
16832 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
16834 when others =>
16835 return True; -- Error will be detected later
16836 end case;
16837 end Is_Valid_Constraint_Kind;
16839 --------------------------
16840 -- Is_Visible_Component --
16841 --------------------------
16843 function Is_Visible_Component
16844 (C : Entity_Id;
16845 N : Node_Id := Empty) return Boolean
16847 Original_Comp : Entity_Id := Empty;
16848 Original_Scope : Entity_Id;
16849 Type_Scope : Entity_Id;
16851 function Is_Local_Type (Typ : Entity_Id) return Boolean;
16852 -- Check whether parent type of inherited component is declared locally,
16853 -- possibly within a nested package or instance. The current scope is
16854 -- the derived record itself.
16856 -------------------
16857 -- Is_Local_Type --
16858 -------------------
16860 function Is_Local_Type (Typ : Entity_Id) return Boolean is
16861 Scop : Entity_Id;
16863 begin
16864 Scop := Scope (Typ);
16865 while Present (Scop)
16866 and then Scop /= Standard_Standard
16867 loop
16868 if Scop = Scope (Current_Scope) then
16869 return True;
16870 end if;
16872 Scop := Scope (Scop);
16873 end loop;
16875 return False;
16876 end Is_Local_Type;
16878 -- Start of processing for Is_Visible_Component
16880 begin
16881 if Ekind_In (C, E_Component, E_Discriminant) then
16882 Original_Comp := Original_Record_Component (C);
16883 end if;
16885 if No (Original_Comp) then
16887 -- Premature usage, or previous error
16889 return False;
16891 else
16892 Original_Scope := Scope (Original_Comp);
16893 Type_Scope := Scope (Base_Type (Scope (C)));
16894 end if;
16896 -- For an untagged type derived from a private type, the only visible
16897 -- components are new discriminants. In an instance all components are
16898 -- visible (see Analyze_Selected_Component).
16900 if not Is_Tagged_Type (Original_Scope) then
16901 return not Has_Private_Ancestor (Original_Scope)
16902 or else In_Open_Scopes (Scope (Original_Scope))
16903 or else In_Instance
16904 or else (Ekind (Original_Comp) = E_Discriminant
16905 and then Original_Scope = Type_Scope);
16907 -- If it is _Parent or _Tag, there is no visibility issue
16909 elsif not Comes_From_Source (Original_Comp) then
16910 return True;
16912 -- Discriminants are visible unless the (private) type has unknown
16913 -- discriminants. If the discriminant reference is inserted for a
16914 -- discriminant check on a full view it is also visible.
16916 elsif Ekind (Original_Comp) = E_Discriminant
16917 and then
16918 (not Has_Unknown_Discriminants (Original_Scope)
16919 or else (Present (N)
16920 and then Nkind (N) = N_Selected_Component
16921 and then Nkind (Prefix (N)) = N_Type_Conversion
16922 and then not Comes_From_Source (Prefix (N))))
16923 then
16924 return True;
16926 -- In the body of an instantiation, no need to check for the visibility
16927 -- of a component.
16929 elsif In_Instance_Body then
16930 return True;
16932 -- If the component has been declared in an ancestor which is currently
16933 -- a private type, then it is not visible. The same applies if the
16934 -- component's containing type is not in an open scope and the original
16935 -- component's enclosing type is a visible full view of a private type
16936 -- (which can occur in cases where an attempt is being made to reference
16937 -- a component in a sibling package that is inherited from a visible
16938 -- component of a type in an ancestor package; the component in the
16939 -- sibling package should not be visible even though the component it
16940 -- inherited from is visible). This does not apply however in the case
16941 -- where the scope of the type is a private child unit, or when the
16942 -- parent comes from a local package in which the ancestor is currently
16943 -- visible. The latter suppression of visibility is needed for cases
16944 -- that are tested in B730006.
16946 elsif Is_Private_Type (Original_Scope)
16947 or else
16948 (not Is_Private_Descendant (Type_Scope)
16949 and then not In_Open_Scopes (Type_Scope)
16950 and then Has_Private_Declaration (Original_Scope))
16951 then
16952 -- If the type derives from an entity in a formal package, there
16953 -- are no additional visible components.
16955 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
16956 N_Formal_Package_Declaration
16957 then
16958 return False;
16960 -- if we are not in the private part of the current package, there
16961 -- are no additional visible components.
16963 elsif Ekind (Scope (Current_Scope)) = E_Package
16964 and then not In_Private_Part (Scope (Current_Scope))
16965 then
16966 return False;
16967 else
16968 return
16969 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
16970 and then In_Open_Scopes (Scope (Original_Scope))
16971 and then Is_Local_Type (Type_Scope);
16972 end if;
16974 -- There is another weird way in which a component may be invisible when
16975 -- the private and the full view are not derived from the same ancestor.
16976 -- Here is an example :
16978 -- type A1 is tagged record F1 : integer; end record;
16979 -- type A2 is new A1 with record F2 : integer; end record;
16980 -- type T is new A1 with private;
16981 -- private
16982 -- type T is new A2 with null record;
16984 -- In this case, the full view of T inherits F1 and F2 but the private
16985 -- view inherits only F1
16987 else
16988 declare
16989 Ancestor : Entity_Id := Scope (C);
16991 begin
16992 loop
16993 if Ancestor = Original_Scope then
16994 return True;
16995 elsif Ancestor = Etype (Ancestor) then
16996 return False;
16997 end if;
16999 Ancestor := Etype (Ancestor);
17000 end loop;
17001 end;
17002 end if;
17003 end Is_Visible_Component;
17005 --------------------------
17006 -- Make_Class_Wide_Type --
17007 --------------------------
17009 procedure Make_Class_Wide_Type (T : Entity_Id) is
17010 CW_Type : Entity_Id;
17011 CW_Name : Name_Id;
17012 Next_E : Entity_Id;
17014 begin
17015 if Present (Class_Wide_Type (T)) then
17017 -- The class-wide type is a partially decorated entity created for a
17018 -- unanalyzed tagged type referenced through a limited with clause.
17019 -- When the tagged type is analyzed, its class-wide type needs to be
17020 -- redecorated. Note that we reuse the entity created by Decorate_
17021 -- Tagged_Type in order to preserve all links.
17023 if Materialize_Entity (Class_Wide_Type (T)) then
17024 CW_Type := Class_Wide_Type (T);
17025 Set_Materialize_Entity (CW_Type, False);
17027 -- The class wide type can have been defined by the partial view, in
17028 -- which case everything is already done.
17030 else
17031 return;
17032 end if;
17034 -- Default case, we need to create a new class-wide type
17036 else
17037 CW_Type :=
17038 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17039 end if;
17041 -- Inherit root type characteristics
17043 CW_Name := Chars (CW_Type);
17044 Next_E := Next_Entity (CW_Type);
17045 Copy_Node (T, CW_Type);
17046 Set_Comes_From_Source (CW_Type, False);
17047 Set_Chars (CW_Type, CW_Name);
17048 Set_Parent (CW_Type, Parent (T));
17049 Set_Next_Entity (CW_Type, Next_E);
17051 -- Ensure we have a new freeze node for the class-wide type. The partial
17052 -- view may have freeze action of its own, requiring a proper freeze
17053 -- node, and the same freeze node cannot be shared between the two
17054 -- types.
17056 Set_Has_Delayed_Freeze (CW_Type);
17057 Set_Freeze_Node (CW_Type, Empty);
17059 -- Customize the class-wide type: It has no prim. op., it cannot be
17060 -- abstract and its Etype points back to the specific root type.
17062 Set_Ekind (CW_Type, E_Class_Wide_Type);
17063 Set_Is_Tagged_Type (CW_Type, True);
17064 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17065 Set_Is_Abstract_Type (CW_Type, False);
17066 Set_Is_Constrained (CW_Type, False);
17067 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17069 if Ekind (T) = E_Class_Wide_Subtype then
17070 Set_Etype (CW_Type, Etype (Base_Type (T)));
17071 else
17072 Set_Etype (CW_Type, T);
17073 end if;
17075 -- If this is the class_wide type of a constrained subtype, it does
17076 -- not have discriminants.
17078 Set_Has_Discriminants (CW_Type,
17079 Has_Discriminants (T) and then not Is_Constrained (T));
17081 Set_Has_Unknown_Discriminants (CW_Type, True);
17082 Set_Class_Wide_Type (T, CW_Type);
17083 Set_Equivalent_Type (CW_Type, Empty);
17085 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17087 Set_Class_Wide_Type (CW_Type, CW_Type);
17088 end Make_Class_Wide_Type;
17090 ----------------
17091 -- Make_Index --
17092 ----------------
17094 procedure Make_Index
17095 (I : Node_Id;
17096 Related_Nod : Node_Id;
17097 Related_Id : Entity_Id := Empty;
17098 Suffix_Index : Nat := 1;
17099 In_Iter_Schm : Boolean := False)
17101 R : Node_Id;
17102 T : Entity_Id;
17103 Def_Id : Entity_Id := Empty;
17104 Found : Boolean := False;
17106 begin
17107 -- For a discrete range used in a constrained array definition and
17108 -- defined by a range, an implicit conversion to the predefined type
17109 -- INTEGER is assumed if each bound is either a numeric literal, a named
17110 -- number, or an attribute, and the type of both bounds (prior to the
17111 -- implicit conversion) is the type universal_integer. Otherwise, both
17112 -- bounds must be of the same discrete type, other than universal
17113 -- integer; this type must be determinable independently of the
17114 -- context, but using the fact that the type must be discrete and that
17115 -- both bounds must have the same type.
17117 -- Character literals also have a universal type in the absence of
17118 -- of additional context, and are resolved to Standard_Character.
17120 if Nkind (I) = N_Range then
17122 -- The index is given by a range constraint. The bounds are known
17123 -- to be of a consistent type.
17125 if not Is_Overloaded (I) then
17126 T := Etype (I);
17128 -- For universal bounds, choose the specific predefined type
17130 if T = Universal_Integer then
17131 T := Standard_Integer;
17133 elsif T = Any_Character then
17134 Ambiguous_Character (Low_Bound (I));
17136 T := Standard_Character;
17137 end if;
17139 -- The node may be overloaded because some user-defined operators
17140 -- are available, but if a universal interpretation exists it is
17141 -- also the selected one.
17143 elsif Universal_Interpretation (I) = Universal_Integer then
17144 T := Standard_Integer;
17146 else
17147 T := Any_Type;
17149 declare
17150 Ind : Interp_Index;
17151 It : Interp;
17153 begin
17154 Get_First_Interp (I, Ind, It);
17155 while Present (It.Typ) loop
17156 if Is_Discrete_Type (It.Typ) then
17158 if Found
17159 and then not Covers (It.Typ, T)
17160 and then not Covers (T, It.Typ)
17161 then
17162 Error_Msg_N ("ambiguous bounds in discrete range", I);
17163 exit;
17164 else
17165 T := It.Typ;
17166 Found := True;
17167 end if;
17168 end if;
17170 Get_Next_Interp (Ind, It);
17171 end loop;
17173 if T = Any_Type then
17174 Error_Msg_N ("discrete type required for range", I);
17175 Set_Etype (I, Any_Type);
17176 return;
17178 elsif T = Universal_Integer then
17179 T := Standard_Integer;
17180 end if;
17181 end;
17182 end if;
17184 if not Is_Discrete_Type (T) then
17185 Error_Msg_N ("discrete type required for range", I);
17186 Set_Etype (I, Any_Type);
17187 return;
17188 end if;
17190 if Nkind (Low_Bound (I)) = N_Attribute_Reference
17191 and then Attribute_Name (Low_Bound (I)) = Name_First
17192 and then Is_Entity_Name (Prefix (Low_Bound (I)))
17193 and then Is_Type (Entity (Prefix (Low_Bound (I))))
17194 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
17195 then
17196 -- The type of the index will be the type of the prefix, as long
17197 -- as the upper bound is 'Last of the same type.
17199 Def_Id := Entity (Prefix (Low_Bound (I)));
17201 if Nkind (High_Bound (I)) /= N_Attribute_Reference
17202 or else Attribute_Name (High_Bound (I)) /= Name_Last
17203 or else not Is_Entity_Name (Prefix (High_Bound (I)))
17204 or else Entity (Prefix (High_Bound (I))) /= Def_Id
17205 then
17206 Def_Id := Empty;
17207 end if;
17208 end if;
17210 R := I;
17211 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17213 elsif Nkind (I) = N_Subtype_Indication then
17215 -- The index is given by a subtype with a range constraint
17217 T := Base_Type (Entity (Subtype_Mark (I)));
17219 if not Is_Discrete_Type (T) then
17220 Error_Msg_N ("discrete type required for range", I);
17221 Set_Etype (I, Any_Type);
17222 return;
17223 end if;
17225 R := Range_Expression (Constraint (I));
17227 Resolve (R, T);
17228 Process_Range_Expr_In_Decl
17229 (R, Entity (Subtype_Mark (I)), In_Iter_Schm => In_Iter_Schm);
17231 elsif Nkind (I) = N_Attribute_Reference then
17233 -- The parser guarantees that the attribute is a RANGE attribute
17235 -- If the node denotes the range of a type mark, that is also the
17236 -- resulting type, and we do no need to create an Itype for it.
17238 if Is_Entity_Name (Prefix (I))
17239 and then Comes_From_Source (I)
17240 and then Is_Type (Entity (Prefix (I)))
17241 and then Is_Discrete_Type (Entity (Prefix (I)))
17242 then
17243 Def_Id := Entity (Prefix (I));
17244 end if;
17246 Analyze_And_Resolve (I);
17247 T := Etype (I);
17248 R := I;
17250 -- If none of the above, must be a subtype. We convert this to a
17251 -- range attribute reference because in the case of declared first
17252 -- named subtypes, the types in the range reference can be different
17253 -- from the type of the entity. A range attribute normalizes the
17254 -- reference and obtains the correct types for the bounds.
17256 -- This transformation is in the nature of an expansion, is only
17257 -- done if expansion is active. In particular, it is not done on
17258 -- formal generic types, because we need to retain the name of the
17259 -- original index for instantiation purposes.
17261 else
17262 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
17263 Error_Msg_N ("invalid subtype mark in discrete range ", I);
17264 Set_Etype (I, Any_Integer);
17265 return;
17267 else
17268 -- The type mark may be that of an incomplete type. It is only
17269 -- now that we can get the full view, previous analysis does
17270 -- not look specifically for a type mark.
17272 Set_Entity (I, Get_Full_View (Entity (I)));
17273 Set_Etype (I, Entity (I));
17274 Def_Id := Entity (I);
17276 if not Is_Discrete_Type (Def_Id) then
17277 Error_Msg_N ("discrete type required for index", I);
17278 Set_Etype (I, Any_Type);
17279 return;
17280 end if;
17281 end if;
17283 if Expander_Active then
17284 Rewrite (I,
17285 Make_Attribute_Reference (Sloc (I),
17286 Attribute_Name => Name_Range,
17287 Prefix => Relocate_Node (I)));
17289 -- The original was a subtype mark that does not freeze. This
17290 -- means that the rewritten version must not freeze either.
17292 Set_Must_Not_Freeze (I);
17293 Set_Must_Not_Freeze (Prefix (I));
17294 Analyze_And_Resolve (I);
17295 T := Etype (I);
17296 R := I;
17298 -- If expander is inactive, type is legal, nothing else to construct
17300 else
17301 return;
17302 end if;
17303 end if;
17305 if not Is_Discrete_Type (T) then
17306 Error_Msg_N ("discrete type required for range", I);
17307 Set_Etype (I, Any_Type);
17308 return;
17310 elsif T = Any_Type then
17311 Set_Etype (I, Any_Type);
17312 return;
17313 end if;
17315 -- We will now create the appropriate Itype to describe the range, but
17316 -- first a check. If we originally had a subtype, then we just label
17317 -- the range with this subtype. Not only is there no need to construct
17318 -- a new subtype, but it is wrong to do so for two reasons:
17320 -- 1. A legality concern, if we have a subtype, it must not freeze,
17321 -- and the Itype would cause freezing incorrectly
17323 -- 2. An efficiency concern, if we created an Itype, it would not be
17324 -- recognized as the same type for the purposes of eliminating
17325 -- checks in some circumstances.
17327 -- We signal this case by setting the subtype entity in Def_Id
17329 if No (Def_Id) then
17330 Def_Id :=
17331 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17332 Set_Etype (Def_Id, Base_Type (T));
17334 if Is_Signed_Integer_Type (T) then
17335 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17337 elsif Is_Modular_Integer_Type (T) then
17338 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17340 else
17341 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17342 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17343 Set_First_Literal (Def_Id, First_Literal (T));
17344 end if;
17346 Set_Size_Info (Def_Id, (T));
17347 Set_RM_Size (Def_Id, RM_Size (T));
17348 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17350 Set_Scalar_Range (Def_Id, R);
17351 Conditional_Delay (Def_Id, T);
17353 -- In the subtype indication case, if the immediate parent of the
17354 -- new subtype is non-static, then the subtype we create is non-
17355 -- static, even if its bounds are static.
17357 if Nkind (I) = N_Subtype_Indication
17358 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
17359 then
17360 Set_Is_Non_Static_Subtype (Def_Id);
17361 end if;
17362 end if;
17364 -- Final step is to label the index with this constructed type
17366 Set_Etype (I, Def_Id);
17367 end Make_Index;
17369 ------------------------------
17370 -- Modular_Type_Declaration --
17371 ------------------------------
17373 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17374 Mod_Expr : constant Node_Id := Expression (Def);
17375 M_Val : Uint;
17377 procedure Set_Modular_Size (Bits : Int);
17378 -- Sets RM_Size to Bits, and Esize to normal word size above this
17380 ----------------------
17381 -- Set_Modular_Size --
17382 ----------------------
17384 procedure Set_Modular_Size (Bits : Int) is
17385 begin
17386 Set_RM_Size (T, UI_From_Int (Bits));
17388 if Bits <= 8 then
17389 Init_Esize (T, 8);
17391 elsif Bits <= 16 then
17392 Init_Esize (T, 16);
17394 elsif Bits <= 32 then
17395 Init_Esize (T, 32);
17397 else
17398 Init_Esize (T, System_Max_Binary_Modulus_Power);
17399 end if;
17401 if not Non_Binary_Modulus (T)
17402 and then Esize (T) = RM_Size (T)
17403 then
17404 Set_Is_Known_Valid (T);
17405 end if;
17406 end Set_Modular_Size;
17408 -- Start of processing for Modular_Type_Declaration
17410 begin
17411 -- If the mod expression is (exactly) 2 * literal, where literal is
17412 -- 64 or less,then almost certainly the * was meant to be **. Warn.
17414 if Warn_On_Suspicious_Modulus_Value
17415 and then Nkind (Mod_Expr) = N_Op_Multiply
17416 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
17417 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
17418 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
17419 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
17420 then
17421 Error_Msg_N
17422 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
17423 end if;
17425 -- Proceed with analysis of mod expression
17427 Analyze_And_Resolve (Mod_Expr, Any_Integer);
17428 Set_Etype (T, T);
17429 Set_Ekind (T, E_Modular_Integer_Type);
17430 Init_Alignment (T);
17431 Set_Is_Constrained (T);
17433 if not Is_OK_Static_Expression (Mod_Expr) then
17434 Flag_Non_Static_Expr
17435 ("non-static expression used for modular type bound!", Mod_Expr);
17436 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17437 else
17438 M_Val := Expr_Value (Mod_Expr);
17439 end if;
17441 if M_Val < 1 then
17442 Error_Msg_N ("modulus value must be positive", Mod_Expr);
17443 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17444 end if;
17446 Set_Modulus (T, M_Val);
17448 -- Create bounds for the modular type based on the modulus given in
17449 -- the type declaration and then analyze and resolve those bounds.
17451 Set_Scalar_Range (T,
17452 Make_Range (Sloc (Mod_Expr),
17453 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
17454 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
17456 -- Properly analyze the literals for the range. We do this manually
17457 -- because we can't go calling Resolve, since we are resolving these
17458 -- bounds with the type, and this type is certainly not complete yet.
17460 Set_Etype (Low_Bound (Scalar_Range (T)), T);
17461 Set_Etype (High_Bound (Scalar_Range (T)), T);
17462 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
17463 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
17465 -- Loop through powers of two to find number of bits required
17467 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
17469 -- Binary case
17471 if M_Val = 2 ** Bits then
17472 Set_Modular_Size (Bits);
17473 return;
17475 -- Non-binary case
17477 elsif M_Val < 2 ** Bits then
17478 Check_SPARK_Restriction ("modulus should be a power of 2", T);
17479 Set_Non_Binary_Modulus (T);
17481 if Bits > System_Max_Nonbinary_Modulus_Power then
17482 Error_Msg_Uint_1 :=
17483 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
17484 Error_Msg_F
17485 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
17486 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17487 return;
17489 else
17490 -- In the non-binary case, set size as per RM 13.3(55)
17492 Set_Modular_Size (Bits);
17493 return;
17494 end if;
17495 end if;
17497 end loop;
17499 -- If we fall through, then the size exceed System.Max_Binary_Modulus
17500 -- so we just signal an error and set the maximum size.
17502 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
17503 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
17505 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17506 Init_Alignment (T);
17508 end Modular_Type_Declaration;
17510 --------------------------
17511 -- New_Concatenation_Op --
17512 --------------------------
17514 procedure New_Concatenation_Op (Typ : Entity_Id) is
17515 Loc : constant Source_Ptr := Sloc (Typ);
17516 Op : Entity_Id;
17518 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
17519 -- Create abbreviated declaration for the formal of a predefined
17520 -- Operator 'Op' of type 'Typ'
17522 --------------------
17523 -- Make_Op_Formal --
17524 --------------------
17526 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
17527 Formal : Entity_Id;
17528 begin
17529 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
17530 Set_Etype (Formal, Typ);
17531 Set_Mechanism (Formal, Default_Mechanism);
17532 return Formal;
17533 end Make_Op_Formal;
17535 -- Start of processing for New_Concatenation_Op
17537 begin
17538 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
17540 Set_Ekind (Op, E_Operator);
17541 Set_Scope (Op, Current_Scope);
17542 Set_Etype (Op, Typ);
17543 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
17544 Set_Is_Immediately_Visible (Op);
17545 Set_Is_Intrinsic_Subprogram (Op);
17546 Set_Has_Completion (Op);
17547 Append_Entity (Op, Current_Scope);
17549 Set_Name_Entity_Id (Name_Op_Concat, Op);
17551 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17552 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17553 end New_Concatenation_Op;
17555 -------------------------
17556 -- OK_For_Limited_Init --
17557 -------------------------
17559 -- ???Check all calls of this, and compare the conditions under which it's
17560 -- called.
17562 function OK_For_Limited_Init
17563 (Typ : Entity_Id;
17564 Exp : Node_Id) return Boolean
17566 begin
17567 return Is_CPP_Constructor_Call (Exp)
17568 or else (Ada_Version >= Ada_2005
17569 and then not Debug_Flag_Dot_L
17570 and then OK_For_Limited_Init_In_05 (Typ, Exp));
17571 end OK_For_Limited_Init;
17573 -------------------------------
17574 -- OK_For_Limited_Init_In_05 --
17575 -------------------------------
17577 function OK_For_Limited_Init_In_05
17578 (Typ : Entity_Id;
17579 Exp : Node_Id) return Boolean
17581 begin
17582 -- An object of a limited interface type can be initialized with any
17583 -- expression of a nonlimited descendant type.
17585 if Is_Class_Wide_Type (Typ)
17586 and then Is_Limited_Interface (Typ)
17587 and then not Is_Limited_Type (Etype (Exp))
17588 then
17589 return True;
17590 end if;
17592 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17593 -- case of limited aggregates (including extension aggregates), and
17594 -- function calls. The function call may have been given in prefixed
17595 -- notation, in which case the original node is an indexed component.
17596 -- If the function is parameterless, the original node was an explicit
17597 -- dereference. The function may also be parameterless, in which case
17598 -- the source node is just an identifier.
17600 case Nkind (Original_Node (Exp)) is
17601 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
17602 return True;
17604 when N_Identifier =>
17605 return Present (Entity (Original_Node (Exp)))
17606 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
17608 when N_Qualified_Expression =>
17609 return
17610 OK_For_Limited_Init_In_05
17611 (Typ, Expression (Original_Node (Exp)));
17613 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17614 -- with a function call, the expander has rewritten the call into an
17615 -- N_Type_Conversion node to force displacement of the pointer to
17616 -- reference the component containing the secondary dispatch table.
17617 -- Otherwise a type conversion is not a legal context.
17618 -- A return statement for a build-in-place function returning a
17619 -- synchronized type also introduces an unchecked conversion.
17621 when N_Type_Conversion |
17622 N_Unchecked_Type_Conversion =>
17623 return not Comes_From_Source (Exp)
17624 and then
17625 OK_For_Limited_Init_In_05
17626 (Typ, Expression (Original_Node (Exp)));
17628 when N_Indexed_Component |
17629 N_Selected_Component |
17630 N_Explicit_Dereference =>
17631 return Nkind (Exp) = N_Function_Call;
17633 -- A use of 'Input is a function call, hence allowed. Normally the
17634 -- attribute will be changed to a call, but the attribute by itself
17635 -- can occur with -gnatc.
17637 when N_Attribute_Reference =>
17638 return Attribute_Name (Original_Node (Exp)) = Name_Input;
17640 -- For a case expression, all dependent expressions must be legal
17642 when N_Case_Expression =>
17643 declare
17644 Alt : Node_Id;
17646 begin
17647 Alt := First (Alternatives (Original_Node (Exp)));
17648 while Present (Alt) loop
17649 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
17650 return False;
17651 end if;
17653 Next (Alt);
17654 end loop;
17656 return True;
17657 end;
17659 -- For an if expression, all dependent expressions must be legal
17661 when N_If_Expression =>
17662 declare
17663 Then_Expr : constant Node_Id :=
17664 Next (First (Expressions (Original_Node (Exp))));
17665 Else_Expr : constant Node_Id := Next (Then_Expr);
17666 begin
17667 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
17668 and then
17669 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
17670 end;
17672 when others =>
17673 return False;
17674 end case;
17675 end OK_For_Limited_Init_In_05;
17677 -------------------------------------------
17678 -- Ordinary_Fixed_Point_Type_Declaration --
17679 -------------------------------------------
17681 procedure Ordinary_Fixed_Point_Type_Declaration
17682 (T : Entity_Id;
17683 Def : Node_Id)
17685 Loc : constant Source_Ptr := Sloc (Def);
17686 Delta_Expr : constant Node_Id := Delta_Expression (Def);
17687 RRS : constant Node_Id := Real_Range_Specification (Def);
17688 Implicit_Base : Entity_Id;
17689 Delta_Val : Ureal;
17690 Small_Val : Ureal;
17691 Low_Val : Ureal;
17692 High_Val : Ureal;
17694 begin
17695 Check_Restriction (No_Fixed_Point, Def);
17697 -- Create implicit base type
17699 Implicit_Base :=
17700 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
17701 Set_Etype (Implicit_Base, Implicit_Base);
17703 -- Analyze and process delta expression
17705 Analyze_And_Resolve (Delta_Expr, Any_Real);
17707 Check_Delta_Expression (Delta_Expr);
17708 Delta_Val := Expr_Value_R (Delta_Expr);
17710 Set_Delta_Value (Implicit_Base, Delta_Val);
17712 -- Compute default small from given delta, which is the largest power
17713 -- of two that does not exceed the given delta value.
17715 declare
17716 Tmp : Ureal;
17717 Scale : Int;
17719 begin
17720 Tmp := Ureal_1;
17721 Scale := 0;
17723 if Delta_Val < Ureal_1 then
17724 while Delta_Val < Tmp loop
17725 Tmp := Tmp / Ureal_2;
17726 Scale := Scale + 1;
17727 end loop;
17729 else
17730 loop
17731 Tmp := Tmp * Ureal_2;
17732 exit when Tmp > Delta_Val;
17733 Scale := Scale - 1;
17734 end loop;
17735 end if;
17737 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
17738 end;
17740 Set_Small_Value (Implicit_Base, Small_Val);
17742 -- If no range was given, set a dummy range
17744 if RRS <= Empty_Or_Error then
17745 Low_Val := -Small_Val;
17746 High_Val := Small_Val;
17748 -- Otherwise analyze and process given range
17750 else
17751 declare
17752 Low : constant Node_Id := Low_Bound (RRS);
17753 High : constant Node_Id := High_Bound (RRS);
17755 begin
17756 Analyze_And_Resolve (Low, Any_Real);
17757 Analyze_And_Resolve (High, Any_Real);
17758 Check_Real_Bound (Low);
17759 Check_Real_Bound (High);
17761 -- Obtain and set the range
17763 Low_Val := Expr_Value_R (Low);
17764 High_Val := Expr_Value_R (High);
17766 if Low_Val > High_Val then
17767 Error_Msg_NE ("??fixed point type& has null range", Def, T);
17768 end if;
17769 end;
17770 end if;
17772 -- The range for both the implicit base and the declared first subtype
17773 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17774 -- set a temporary range in place. Note that the bounds of the base
17775 -- type will be widened to be symmetrical and to fill the available
17776 -- bits when the type is frozen.
17778 -- We could do this with all discrete types, and probably should, but
17779 -- we absolutely have to do it for fixed-point, since the end-points
17780 -- of the range and the size are determined by the small value, which
17781 -- could be reset before the freeze point.
17783 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
17784 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
17786 -- Complete definition of first subtype
17788 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
17789 Set_Etype (T, Implicit_Base);
17790 Init_Size_Align (T);
17791 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
17792 Set_Small_Value (T, Small_Val);
17793 Set_Delta_Value (T, Delta_Val);
17794 Set_Is_Constrained (T);
17796 end Ordinary_Fixed_Point_Type_Declaration;
17798 ----------------------------------------
17799 -- Prepare_Private_Subtype_Completion --
17800 ----------------------------------------
17802 procedure Prepare_Private_Subtype_Completion
17803 (Id : Entity_Id;
17804 Related_Nod : Node_Id)
17806 Id_B : constant Entity_Id := Base_Type (Id);
17807 Full_B : constant Entity_Id := Full_View (Id_B);
17808 Full : Entity_Id;
17810 begin
17811 if Present (Full_B) then
17813 -- The Base_Type is already completed, we can complete the subtype
17814 -- now. We have to create a new entity with the same name, Thus we
17815 -- can't use Create_Itype.
17817 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
17818 Set_Is_Itype (Full);
17819 Set_Associated_Node_For_Itype (Full, Related_Nod);
17820 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
17821 end if;
17823 -- The parent subtype may be private, but the base might not, in some
17824 -- nested instances. In that case, the subtype does not need to be
17825 -- exchanged. It would still be nice to make private subtypes and their
17826 -- bases consistent at all times ???
17828 if Is_Private_Type (Id_B) then
17829 Append_Elmt (Id, Private_Dependents (Id_B));
17830 end if;
17831 end Prepare_Private_Subtype_Completion;
17833 ---------------------------
17834 -- Process_Discriminants --
17835 ---------------------------
17837 procedure Process_Discriminants
17838 (N : Node_Id;
17839 Prev : Entity_Id := Empty)
17841 Elist : constant Elist_Id := New_Elmt_List;
17842 Id : Node_Id;
17843 Discr : Node_Id;
17844 Discr_Number : Uint;
17845 Discr_Type : Entity_Id;
17846 Default_Present : Boolean := False;
17847 Default_Not_Present : Boolean := False;
17849 begin
17850 -- A composite type other than an array type can have discriminants.
17851 -- On entry, the current scope is the composite type.
17853 -- The discriminants are initially entered into the scope of the type
17854 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17855 -- use, as explained at the end of this procedure.
17857 Discr := First (Discriminant_Specifications (N));
17858 while Present (Discr) loop
17859 Enter_Name (Defining_Identifier (Discr));
17861 -- For navigation purposes we add a reference to the discriminant
17862 -- in the entity for the type. If the current declaration is a
17863 -- completion, place references on the partial view. Otherwise the
17864 -- type is the current scope.
17866 if Present (Prev) then
17868 -- The references go on the partial view, if present. If the
17869 -- partial view has discriminants, the references have been
17870 -- generated already.
17872 if not Has_Discriminants (Prev) then
17873 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
17874 end if;
17875 else
17876 Generate_Reference
17877 (Current_Scope, Defining_Identifier (Discr), 'd');
17878 end if;
17880 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
17881 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
17883 -- Ada 2005 (AI-254)
17885 if Present (Access_To_Subprogram_Definition
17886 (Discriminant_Type (Discr)))
17887 and then Protected_Present (Access_To_Subprogram_Definition
17888 (Discriminant_Type (Discr)))
17889 then
17890 Discr_Type :=
17891 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
17892 end if;
17894 else
17895 Find_Type (Discriminant_Type (Discr));
17896 Discr_Type := Etype (Discriminant_Type (Discr));
17898 if Error_Posted (Discriminant_Type (Discr)) then
17899 Discr_Type := Any_Type;
17900 end if;
17901 end if;
17903 if Is_Access_Type (Discr_Type) then
17905 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17906 -- record types
17908 if Ada_Version < Ada_2005 then
17909 Check_Access_Discriminant_Requires_Limited
17910 (Discr, Discriminant_Type (Discr));
17911 end if;
17913 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
17914 Error_Msg_N
17915 ("(Ada 83) access discriminant not allowed", Discr);
17916 end if;
17918 elsif not Is_Discrete_Type (Discr_Type) then
17919 Error_Msg_N ("discriminants must have a discrete or access type",
17920 Discriminant_Type (Discr));
17921 end if;
17923 Set_Etype (Defining_Identifier (Discr), Discr_Type);
17925 -- If a discriminant specification includes the assignment compound
17926 -- delimiter followed by an expression, the expression is the default
17927 -- expression of the discriminant; the default expression must be of
17928 -- the type of the discriminant. (RM 3.7.1) Since this expression is
17929 -- a default expression, we do the special preanalysis, since this
17930 -- expression does not freeze (see "Handling of Default and Per-
17931 -- Object Expressions" in spec of package Sem).
17933 if Present (Expression (Discr)) then
17934 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
17936 if Nkind (N) = N_Formal_Type_Declaration then
17937 Error_Msg_N
17938 ("discriminant defaults not allowed for formal type",
17939 Expression (Discr));
17941 -- Flag an error for a tagged type with defaulted discriminants,
17942 -- excluding limited tagged types when compiling for Ada 2012
17943 -- (see AI05-0214).
17945 elsif Is_Tagged_Type (Current_Scope)
17946 and then (not Is_Limited_Type (Current_Scope)
17947 or else Ada_Version < Ada_2012)
17948 and then Comes_From_Source (N)
17949 then
17950 -- Note: see similar test in Check_Or_Process_Discriminants, to
17951 -- handle the (illegal) case of the completion of an untagged
17952 -- view with discriminants with defaults by a tagged full view.
17953 -- We skip the check if Discr does not come from source, to
17954 -- account for the case of an untagged derived type providing
17955 -- defaults for a renamed discriminant from a private untagged
17956 -- ancestor with a tagged full view (ACATS B460006).
17958 if Ada_Version >= Ada_2012 then
17959 Error_Msg_N
17960 ("discriminants of nonlimited tagged type cannot have"
17961 & " defaults",
17962 Expression (Discr));
17963 else
17964 Error_Msg_N
17965 ("discriminants of tagged type cannot have defaults",
17966 Expression (Discr));
17967 end if;
17969 else
17970 Default_Present := True;
17971 Append_Elmt (Expression (Discr), Elist);
17973 -- Tag the defining identifiers for the discriminants with
17974 -- their corresponding default expressions from the tree.
17976 Set_Discriminant_Default_Value
17977 (Defining_Identifier (Discr), Expression (Discr));
17978 end if;
17980 else
17981 Default_Not_Present := True;
17982 end if;
17984 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
17985 -- Discr_Type but with the null-exclusion attribute
17987 if Ada_Version >= Ada_2005 then
17989 -- Ada 2005 (AI-231): Static checks
17991 if Can_Never_Be_Null (Discr_Type) then
17992 Null_Exclusion_Static_Checks (Discr);
17994 elsif Is_Access_Type (Discr_Type)
17995 and then Null_Exclusion_Present (Discr)
17997 -- No need to check itypes because in their case this check
17998 -- was done at their point of creation
18000 and then not Is_Itype (Discr_Type)
18001 then
18002 if Can_Never_Be_Null (Discr_Type) then
18003 Error_Msg_NE
18004 ("`NOT NULL` not allowed (& already excludes null)",
18005 Discr,
18006 Discr_Type);
18007 end if;
18009 Set_Etype (Defining_Identifier (Discr),
18010 Create_Null_Excluding_Itype
18011 (T => Discr_Type,
18012 Related_Nod => Discr));
18014 -- Check for improper null exclusion if the type is otherwise
18015 -- legal for a discriminant.
18017 elsif Null_Exclusion_Present (Discr)
18018 and then Is_Discrete_Type (Discr_Type)
18019 then
18020 Error_Msg_N
18021 ("null exclusion can only apply to an access type", Discr);
18022 end if;
18024 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18025 -- can't have defaults. Synchronized types, or types that are
18026 -- explicitly limited are fine, but special tests apply to derived
18027 -- types in generics: in a generic body we have to assume the
18028 -- worst, and therefore defaults are not allowed if the parent is
18029 -- a generic formal private type (see ACATS B370001).
18031 if Is_Access_Type (Discr_Type) and then Default_Present then
18032 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18033 or else Is_Limited_Record (Current_Scope)
18034 or else Is_Concurrent_Type (Current_Scope)
18035 or else Is_Concurrent_Record_Type (Current_Scope)
18036 or else Ekind (Current_Scope) = E_Limited_Private_Type
18037 then
18038 if not Is_Derived_Type (Current_Scope)
18039 or else not Is_Generic_Type (Etype (Current_Scope))
18040 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18041 or else Limited_Present
18042 (Type_Definition (Parent (Current_Scope)))
18043 then
18044 null;
18046 else
18047 Error_Msg_N ("access discriminants of nonlimited types",
18048 Expression (Discr));
18049 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18050 end if;
18052 elsif Present (Expression (Discr)) then
18053 Error_Msg_N
18054 ("(Ada 2005) access discriminants of nonlimited types",
18055 Expression (Discr));
18056 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18057 end if;
18058 end if;
18059 end if;
18061 -- A discriminant cannot be volatile. This check is only relevant
18062 -- when SPARK_Mode is on as it is not standard Ada legality rule
18063 -- (SPARK RM 7.1.3(6)).
18065 if SPARK_Mode = On
18066 and then Is_SPARK_Volatile (Defining_Identifier (Discr))
18067 then
18068 Error_Msg_N ("discriminant cannot be volatile", Discr);
18069 end if;
18071 Next (Discr);
18072 end loop;
18074 -- An element list consisting of the default expressions of the
18075 -- discriminants is constructed in the above loop and used to set
18076 -- the Discriminant_Constraint attribute for the type. If an object
18077 -- is declared of this (record or task) type without any explicit
18078 -- discriminant constraint given, this element list will form the
18079 -- actual parameters for the corresponding initialization procedure
18080 -- for the type.
18082 Set_Discriminant_Constraint (Current_Scope, Elist);
18083 Set_Stored_Constraint (Current_Scope, No_Elist);
18085 -- Default expressions must be provided either for all or for none
18086 -- of the discriminants of a discriminant part. (RM 3.7.1)
18088 if Default_Present and then Default_Not_Present then
18089 Error_Msg_N
18090 ("incomplete specification of defaults for discriminants", N);
18091 end if;
18093 -- The use of the name of a discriminant is not allowed in default
18094 -- expressions of a discriminant part if the specification of the
18095 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18097 -- To detect this, the discriminant names are entered initially with an
18098 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18099 -- attempt to use a void entity (for example in an expression that is
18100 -- type-checked) produces the error message: premature usage. Now after
18101 -- completing the semantic analysis of the discriminant part, we can set
18102 -- the Ekind of all the discriminants appropriately.
18104 Discr := First (Discriminant_Specifications (N));
18105 Discr_Number := Uint_1;
18106 while Present (Discr) loop
18107 Id := Defining_Identifier (Discr);
18108 Set_Ekind (Id, E_Discriminant);
18109 Init_Component_Location (Id);
18110 Init_Esize (Id);
18111 Set_Discriminant_Number (Id, Discr_Number);
18113 -- Make sure this is always set, even in illegal programs
18115 Set_Corresponding_Discriminant (Id, Empty);
18117 -- Initialize the Original_Record_Component to the entity itself.
18118 -- Inherit_Components will propagate the right value to
18119 -- discriminants in derived record types.
18121 Set_Original_Record_Component (Id, Id);
18123 -- Create the discriminal for the discriminant
18125 Build_Discriminal (Id);
18127 Next (Discr);
18128 Discr_Number := Discr_Number + 1;
18129 end loop;
18131 Set_Has_Discriminants (Current_Scope);
18132 end Process_Discriminants;
18134 -----------------------
18135 -- Process_Full_View --
18136 -----------------------
18138 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18139 Priv_Parent : Entity_Id;
18140 Full_Parent : Entity_Id;
18141 Full_Indic : Node_Id;
18143 procedure Collect_Implemented_Interfaces
18144 (Typ : Entity_Id;
18145 Ifaces : Elist_Id);
18146 -- Ada 2005: Gather all the interfaces that Typ directly or
18147 -- inherently implements. Duplicate entries are not added to
18148 -- the list Ifaces.
18150 ------------------------------------
18151 -- Collect_Implemented_Interfaces --
18152 ------------------------------------
18154 procedure Collect_Implemented_Interfaces
18155 (Typ : Entity_Id;
18156 Ifaces : Elist_Id)
18158 Iface : Entity_Id;
18159 Iface_Elmt : Elmt_Id;
18161 begin
18162 -- Abstract interfaces are only associated with tagged record types
18164 if not Is_Tagged_Type (Typ)
18165 or else not Is_Record_Type (Typ)
18166 then
18167 return;
18168 end if;
18170 -- Recursively climb to the ancestors
18172 if Etype (Typ) /= Typ
18174 -- Protect the frontend against wrong cyclic declarations like:
18176 -- type B is new A with private;
18177 -- type C is new A with private;
18178 -- private
18179 -- type B is new C with null record;
18180 -- type C is new B with null record;
18182 and then Etype (Typ) /= Priv_T
18183 and then Etype (Typ) /= Full_T
18184 then
18185 -- Keep separate the management of private type declarations
18187 if Ekind (Typ) = E_Record_Type_With_Private then
18189 -- Handle the following illegal usage:
18190 -- type Private_Type is tagged private;
18191 -- private
18192 -- type Private_Type is new Type_Implementing_Iface;
18194 if Present (Full_View (Typ))
18195 and then Etype (Typ) /= Full_View (Typ)
18196 then
18197 if Is_Interface (Etype (Typ)) then
18198 Append_Unique_Elmt (Etype (Typ), Ifaces);
18199 end if;
18201 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18202 end if;
18204 -- Non-private types
18206 else
18207 if Is_Interface (Etype (Typ)) then
18208 Append_Unique_Elmt (Etype (Typ), Ifaces);
18209 end if;
18211 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18212 end if;
18213 end if;
18215 -- Handle entities in the list of abstract interfaces
18217 if Present (Interfaces (Typ)) then
18218 Iface_Elmt := First_Elmt (Interfaces (Typ));
18219 while Present (Iface_Elmt) loop
18220 Iface := Node (Iface_Elmt);
18222 pragma Assert (Is_Interface (Iface));
18224 if not Contain_Interface (Iface, Ifaces) then
18225 Append_Elmt (Iface, Ifaces);
18226 Collect_Implemented_Interfaces (Iface, Ifaces);
18227 end if;
18229 Next_Elmt (Iface_Elmt);
18230 end loop;
18231 end if;
18232 end Collect_Implemented_Interfaces;
18234 -- Start of processing for Process_Full_View
18236 begin
18237 -- First some sanity checks that must be done after semantic
18238 -- decoration of the full view and thus cannot be placed with other
18239 -- similar checks in Find_Type_Name
18241 if not Is_Limited_Type (Priv_T)
18242 and then (Is_Limited_Type (Full_T)
18243 or else Is_Limited_Composite (Full_T))
18244 then
18245 if In_Instance then
18246 null;
18247 else
18248 Error_Msg_N
18249 ("completion of nonlimited type cannot be limited", Full_T);
18250 Explain_Limited_Type (Full_T, Full_T);
18251 end if;
18253 elsif Is_Abstract_Type (Full_T)
18254 and then not Is_Abstract_Type (Priv_T)
18255 then
18256 Error_Msg_N
18257 ("completion of nonabstract type cannot be abstract", Full_T);
18259 elsif Is_Tagged_Type (Priv_T)
18260 and then Is_Limited_Type (Priv_T)
18261 and then not Is_Limited_Type (Full_T)
18262 then
18263 -- If pragma CPP_Class was applied to the private declaration
18264 -- propagate the limitedness to the full-view
18266 if Is_CPP_Class (Priv_T) then
18267 Set_Is_Limited_Record (Full_T);
18269 -- GNAT allow its own definition of Limited_Controlled to disobey
18270 -- this rule in order in ease the implementation. This test is safe
18271 -- because Root_Controlled is defined in a child of System that
18272 -- normal programs are not supposed to use.
18274 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18275 Set_Is_Limited_Composite (Full_T);
18276 else
18277 Error_Msg_N
18278 ("completion of limited tagged type must be limited", Full_T);
18279 end if;
18281 elsif Is_Generic_Type (Priv_T) then
18282 Error_Msg_N ("generic type cannot have a completion", Full_T);
18283 end if;
18285 -- Check that ancestor interfaces of private and full views are
18286 -- consistent. We omit this check for synchronized types because
18287 -- they are performed on the corresponding record type when frozen.
18289 if Ada_Version >= Ada_2005
18290 and then Is_Tagged_Type (Priv_T)
18291 and then Is_Tagged_Type (Full_T)
18292 and then not Is_Concurrent_Type (Full_T)
18293 then
18294 declare
18295 Iface : Entity_Id;
18296 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
18297 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
18299 begin
18300 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
18301 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
18303 -- Ada 2005 (AI-251): The partial view shall be a descendant of
18304 -- an interface type if and only if the full type is descendant
18305 -- of the interface type (AARM 7.3 (7.3/2)).
18307 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
18309 if Present (Iface) then
18310 Error_Msg_NE
18311 ("interface in partial view& not implemented by full type "
18312 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18313 end if;
18315 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
18317 if Present (Iface) then
18318 Error_Msg_NE
18319 ("interface & not implemented by partial view "
18320 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18321 end if;
18322 end;
18323 end if;
18325 if Is_Tagged_Type (Priv_T)
18326 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18327 and then Is_Derived_Type (Full_T)
18328 then
18329 Priv_Parent := Etype (Priv_T);
18331 -- The full view of a private extension may have been transformed
18332 -- into an unconstrained derived type declaration and a subtype
18333 -- declaration (see build_derived_record_type for details).
18335 if Nkind (N) = N_Subtype_Declaration then
18336 Full_Indic := Subtype_Indication (N);
18337 Full_Parent := Etype (Base_Type (Full_T));
18338 else
18339 Full_Indic := Subtype_Indication (Type_Definition (N));
18340 Full_Parent := Etype (Full_T);
18341 end if;
18343 -- Check that the parent type of the full type is a descendant of
18344 -- the ancestor subtype given in the private extension. If either
18345 -- entity has an Etype equal to Any_Type then we had some previous
18346 -- error situation [7.3(8)].
18348 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
18349 return;
18351 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
18352 -- any order. Therefore we don't have to check that its parent must
18353 -- be a descendant of the parent of the private type declaration.
18355 elsif Is_Interface (Priv_Parent)
18356 and then Is_Interface (Full_Parent)
18357 then
18358 null;
18360 -- Ada 2005 (AI-251): If the parent of the private type declaration
18361 -- is an interface there is no need to check that it is an ancestor
18362 -- of the associated full type declaration. The required tests for
18363 -- this case are performed by Build_Derived_Record_Type.
18365 elsif not Is_Interface (Base_Type (Priv_Parent))
18366 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
18367 then
18368 Error_Msg_N
18369 ("parent of full type must descend from parent"
18370 & " of private extension", Full_Indic);
18372 -- First check a formal restriction, and then proceed with checking
18373 -- Ada rules. Since the formal restriction is not a serious error, we
18374 -- don't prevent further error detection for this check, hence the
18375 -- ELSE.
18377 else
18379 -- In formal mode, when completing a private extension the type
18380 -- named in the private part must be exactly the same as that
18381 -- named in the visible part.
18383 if Priv_Parent /= Full_Parent then
18384 Error_Msg_Name_1 := Chars (Priv_Parent);
18385 Check_SPARK_Restriction ("% expected", Full_Indic);
18386 end if;
18388 -- Check the rules of 7.3(10): if the private extension inherits
18389 -- known discriminants, then the full type must also inherit those
18390 -- discriminants from the same (ancestor) type, and the parent
18391 -- subtype of the full type must be constrained if and only if
18392 -- the ancestor subtype of the private extension is constrained.
18394 if No (Discriminant_Specifications (Parent (Priv_T)))
18395 and then not Has_Unknown_Discriminants (Priv_T)
18396 and then Has_Discriminants (Base_Type (Priv_Parent))
18397 then
18398 declare
18399 Priv_Indic : constant Node_Id :=
18400 Subtype_Indication (Parent (Priv_T));
18402 Priv_Constr : constant Boolean :=
18403 Is_Constrained (Priv_Parent)
18404 or else
18405 Nkind (Priv_Indic) = N_Subtype_Indication
18406 or else
18407 Is_Constrained (Entity (Priv_Indic));
18409 Full_Constr : constant Boolean :=
18410 Is_Constrained (Full_Parent)
18411 or else
18412 Nkind (Full_Indic) = N_Subtype_Indication
18413 or else
18414 Is_Constrained (Entity (Full_Indic));
18416 Priv_Discr : Entity_Id;
18417 Full_Discr : Entity_Id;
18419 begin
18420 Priv_Discr := First_Discriminant (Priv_Parent);
18421 Full_Discr := First_Discriminant (Full_Parent);
18422 while Present (Priv_Discr) and then Present (Full_Discr) loop
18423 if Original_Record_Component (Priv_Discr) =
18424 Original_Record_Component (Full_Discr)
18425 or else
18426 Corresponding_Discriminant (Priv_Discr) =
18427 Corresponding_Discriminant (Full_Discr)
18428 then
18429 null;
18430 else
18431 exit;
18432 end if;
18434 Next_Discriminant (Priv_Discr);
18435 Next_Discriminant (Full_Discr);
18436 end loop;
18438 if Present (Priv_Discr) or else Present (Full_Discr) then
18439 Error_Msg_N
18440 ("full view must inherit discriminants of the parent"
18441 & " type used in the private extension", Full_Indic);
18443 elsif Priv_Constr and then not Full_Constr then
18444 Error_Msg_N
18445 ("parent subtype of full type must be constrained",
18446 Full_Indic);
18448 elsif Full_Constr and then not Priv_Constr then
18449 Error_Msg_N
18450 ("parent subtype of full type must be unconstrained",
18451 Full_Indic);
18452 end if;
18453 end;
18455 -- Check the rules of 7.3(12): if a partial view has neither
18456 -- known or unknown discriminants, then the full type
18457 -- declaration shall define a definite subtype.
18459 elsif not Has_Unknown_Discriminants (Priv_T)
18460 and then not Has_Discriminants (Priv_T)
18461 and then not Is_Constrained (Full_T)
18462 then
18463 Error_Msg_N
18464 ("full view must define a constrained type if partial view"
18465 & " has no discriminants", Full_T);
18466 end if;
18468 -- ??????? Do we implement the following properly ?????
18469 -- If the ancestor subtype of a private extension has constrained
18470 -- discriminants, then the parent subtype of the full view shall
18471 -- impose a statically matching constraint on those discriminants
18472 -- [7.3(13)].
18473 end if;
18475 else
18476 -- For untagged types, verify that a type without discriminants is
18477 -- not completed with an unconstrained type. A separate error message
18478 -- is produced if the full type has defaulted discriminants.
18480 if not Is_Indefinite_Subtype (Priv_T)
18481 and then Is_Indefinite_Subtype (Full_T)
18482 then
18483 Error_Msg_Sloc := Sloc (Parent (Priv_T));
18484 Error_Msg_NE
18485 ("full view of& not compatible with declaration#",
18486 Full_T, Priv_T);
18488 if not Is_Tagged_Type (Full_T) then
18489 Error_Msg_N
18490 ("\one is constrained, the other unconstrained", Full_T);
18491 end if;
18492 end if;
18493 end if;
18495 -- AI-419: verify that the use of "limited" is consistent
18497 declare
18498 Orig_Decl : constant Node_Id := Original_Node (N);
18500 begin
18501 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18502 and then not Limited_Present (Parent (Priv_T))
18503 and then not Synchronized_Present (Parent (Priv_T))
18504 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
18505 and then Nkind
18506 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
18507 and then Limited_Present (Type_Definition (Orig_Decl))
18508 then
18509 Error_Msg_N
18510 ("full view of non-limited extension cannot be limited", N);
18511 end if;
18512 end;
18514 -- Ada 2005 (AI-443): A synchronized private extension must be
18515 -- completed by a task or protected type.
18517 if Ada_Version >= Ada_2005
18518 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18519 and then Synchronized_Present (Parent (Priv_T))
18520 and then not Is_Concurrent_Type (Full_T)
18521 then
18522 Error_Msg_N ("full view of synchronized extension must " &
18523 "be synchronized type", N);
18524 end if;
18526 -- Ada 2005 AI-363: if the full view has discriminants with
18527 -- defaults, it is illegal to declare constrained access subtypes
18528 -- whose designated type is the current type. This allows objects
18529 -- of the type that are declared in the heap to be unconstrained.
18531 if not Has_Unknown_Discriminants (Priv_T)
18532 and then not Has_Discriminants (Priv_T)
18533 and then Has_Discriminants (Full_T)
18534 and then
18535 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
18536 then
18537 Set_Has_Constrained_Partial_View (Full_T);
18538 Set_Has_Constrained_Partial_View (Priv_T);
18539 end if;
18541 -- Create a full declaration for all its subtypes recorded in
18542 -- Private_Dependents and swap them similarly to the base type. These
18543 -- are subtypes that have been define before the full declaration of
18544 -- the private type. We also swap the entry in Private_Dependents list
18545 -- so we can properly restore the private view on exit from the scope.
18547 declare
18548 Priv_Elmt : Elmt_Id;
18549 Priv : Entity_Id;
18550 Full : Entity_Id;
18552 begin
18553 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
18554 while Present (Priv_Elmt) loop
18555 Priv := Node (Priv_Elmt);
18557 if Ekind_In (Priv, E_Private_Subtype,
18558 E_Limited_Private_Subtype,
18559 E_Record_Subtype_With_Private)
18560 then
18561 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
18562 Set_Is_Itype (Full);
18563 Set_Parent (Full, Parent (Priv));
18564 Set_Associated_Node_For_Itype (Full, N);
18566 -- Now we need to complete the private subtype, but since the
18567 -- base type has already been swapped, we must also swap the
18568 -- subtypes (and thus, reverse the arguments in the call to
18569 -- Complete_Private_Subtype).
18571 Copy_And_Swap (Priv, Full);
18572 Complete_Private_Subtype (Full, Priv, Full_T, N);
18573 Replace_Elmt (Priv_Elmt, Full);
18574 end if;
18576 Next_Elmt (Priv_Elmt);
18577 end loop;
18578 end;
18580 -- If the private view was tagged, copy the new primitive operations
18581 -- from the private view to the full view.
18583 if Is_Tagged_Type (Full_T) then
18584 declare
18585 Disp_Typ : Entity_Id;
18586 Full_List : Elist_Id;
18587 Prim : Entity_Id;
18588 Prim_Elmt : Elmt_Id;
18589 Priv_List : Elist_Id;
18591 function Contains
18592 (E : Entity_Id;
18593 L : Elist_Id) return Boolean;
18594 -- Determine whether list L contains element E
18596 --------------
18597 -- Contains --
18598 --------------
18600 function Contains
18601 (E : Entity_Id;
18602 L : Elist_Id) return Boolean
18604 List_Elmt : Elmt_Id;
18606 begin
18607 List_Elmt := First_Elmt (L);
18608 while Present (List_Elmt) loop
18609 if Node (List_Elmt) = E then
18610 return True;
18611 end if;
18613 Next_Elmt (List_Elmt);
18614 end loop;
18616 return False;
18617 end Contains;
18619 -- Start of processing
18621 begin
18622 if Is_Tagged_Type (Priv_T) then
18623 Priv_List := Primitive_Operations (Priv_T);
18624 Prim_Elmt := First_Elmt (Priv_List);
18626 -- In the case of a concurrent type completing a private tagged
18627 -- type, primitives may have been declared in between the two
18628 -- views. These subprograms need to be wrapped the same way
18629 -- entries and protected procedures are handled because they
18630 -- cannot be directly shared by the two views.
18632 if Is_Concurrent_Type (Full_T) then
18633 declare
18634 Conc_Typ : constant Entity_Id :=
18635 Corresponding_Record_Type (Full_T);
18636 Curr_Nod : Node_Id := Parent (Conc_Typ);
18637 Wrap_Spec : Node_Id;
18639 begin
18640 while Present (Prim_Elmt) loop
18641 Prim := Node (Prim_Elmt);
18643 if Comes_From_Source (Prim)
18644 and then not Is_Abstract_Subprogram (Prim)
18645 then
18646 Wrap_Spec :=
18647 Make_Subprogram_Declaration (Sloc (Prim),
18648 Specification =>
18649 Build_Wrapper_Spec
18650 (Subp_Id => Prim,
18651 Obj_Typ => Conc_Typ,
18652 Formals =>
18653 Parameter_Specifications (
18654 Parent (Prim))));
18656 Insert_After (Curr_Nod, Wrap_Spec);
18657 Curr_Nod := Wrap_Spec;
18659 Analyze (Wrap_Spec);
18660 end if;
18662 Next_Elmt (Prim_Elmt);
18663 end loop;
18665 return;
18666 end;
18668 -- For non-concurrent types, transfer explicit primitives, but
18669 -- omit those inherited from the parent of the private view
18670 -- since they will be re-inherited later on.
18672 else
18673 Full_List := Primitive_Operations (Full_T);
18675 while Present (Prim_Elmt) loop
18676 Prim := Node (Prim_Elmt);
18678 if Comes_From_Source (Prim)
18679 and then not Contains (Prim, Full_List)
18680 then
18681 Append_Elmt (Prim, Full_List);
18682 end if;
18684 Next_Elmt (Prim_Elmt);
18685 end loop;
18686 end if;
18688 -- Untagged private view
18690 else
18691 Full_List := Primitive_Operations (Full_T);
18693 -- In this case the partial view is untagged, so here we locate
18694 -- all of the earlier primitives that need to be treated as
18695 -- dispatching (those that appear between the two views). Note
18696 -- that these additional operations must all be new operations
18697 -- (any earlier operations that override inherited operations
18698 -- of the full view will already have been inserted in the
18699 -- primitives list, marked by Check_Operation_From_Private_View
18700 -- as dispatching. Note that implicit "/=" operators are
18701 -- excluded from being added to the primitives list since they
18702 -- shouldn't be treated as dispatching (tagged "/=" is handled
18703 -- specially).
18705 Prim := Next_Entity (Full_T);
18706 while Present (Prim) and then Prim /= Priv_T loop
18707 if Ekind_In (Prim, E_Procedure, E_Function) then
18708 Disp_Typ := Find_Dispatching_Type (Prim);
18710 if Disp_Typ = Full_T
18711 and then (Chars (Prim) /= Name_Op_Ne
18712 or else Comes_From_Source (Prim))
18713 then
18714 Check_Controlling_Formals (Full_T, Prim);
18716 if not Is_Dispatching_Operation (Prim) then
18717 Append_Elmt (Prim, Full_List);
18718 Set_Is_Dispatching_Operation (Prim, True);
18719 Set_DT_Position (Prim, No_Uint);
18720 end if;
18722 elsif Is_Dispatching_Operation (Prim)
18723 and then Disp_Typ /= Full_T
18724 then
18726 -- Verify that it is not otherwise controlled by a
18727 -- formal or a return value of type T.
18729 Check_Controlling_Formals (Disp_Typ, Prim);
18730 end if;
18731 end if;
18733 Next_Entity (Prim);
18734 end loop;
18735 end if;
18737 -- For the tagged case, the two views can share the same primitive
18738 -- operations list and the same class-wide type. Update attributes
18739 -- of the class-wide type which depend on the full declaration.
18741 if Is_Tagged_Type (Priv_T) then
18742 Set_Direct_Primitive_Operations (Priv_T, Full_List);
18743 Set_Class_Wide_Type
18744 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
18746 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
18747 end if;
18748 end;
18749 end if;
18751 -- Ada 2005 AI 161: Check preelaborable initialization consistency
18753 if Known_To_Have_Preelab_Init (Priv_T) then
18755 -- Case where there is a pragma Preelaborable_Initialization. We
18756 -- always allow this in predefined units, which is a bit of a kludge,
18757 -- but it means we don't have to struggle to meet the requirements in
18758 -- the RM for having Preelaborable Initialization. Otherwise we
18759 -- require that the type meets the RM rules. But we can't check that
18760 -- yet, because of the rule about overriding Initialize, so we simply
18761 -- set a flag that will be checked at freeze time.
18763 if not In_Predefined_Unit (Full_T) then
18764 Set_Must_Have_Preelab_Init (Full_T);
18765 end if;
18766 end if;
18768 -- If pragma CPP_Class was applied to the private type declaration,
18769 -- propagate it now to the full type declaration.
18771 if Is_CPP_Class (Priv_T) then
18772 Set_Is_CPP_Class (Full_T);
18773 Set_Convention (Full_T, Convention_CPP);
18775 -- Check that components of imported CPP types do not have default
18776 -- expressions.
18778 Check_CPP_Type_Has_No_Defaults (Full_T);
18779 end if;
18781 -- If the private view has user specified stream attributes, then so has
18782 -- the full view.
18784 -- Why the test, how could these flags be already set in Full_T ???
18786 if Has_Specified_Stream_Read (Priv_T) then
18787 Set_Has_Specified_Stream_Read (Full_T);
18788 end if;
18790 if Has_Specified_Stream_Write (Priv_T) then
18791 Set_Has_Specified_Stream_Write (Full_T);
18792 end if;
18794 if Has_Specified_Stream_Input (Priv_T) then
18795 Set_Has_Specified_Stream_Input (Full_T);
18796 end if;
18798 if Has_Specified_Stream_Output (Priv_T) then
18799 Set_Has_Specified_Stream_Output (Full_T);
18800 end if;
18802 -- Propagate invariants to full type
18804 if Has_Invariants (Priv_T) then
18805 Set_Has_Invariants (Full_T);
18806 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
18807 end if;
18809 if Has_Inheritable_Invariants (Priv_T) then
18810 Set_Has_Inheritable_Invariants (Full_T);
18811 end if;
18813 -- Propagate predicates to full type, and predicate function if already
18814 -- defined. It is not clear that this can actually happen? the partial
18815 -- view cannot be frozen yet, and the predicate function has not been
18816 -- built. Still it is a cheap check and seems safer to make it.
18818 if Has_Predicates (Priv_T) then
18819 if Present (Predicate_Function (Priv_T)) then
18820 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
18821 end if;
18823 Set_Has_Predicates (Full_T);
18824 end if;
18825 end Process_Full_View;
18827 -----------------------------------
18828 -- Process_Incomplete_Dependents --
18829 -----------------------------------
18831 procedure Process_Incomplete_Dependents
18832 (N : Node_Id;
18833 Full_T : Entity_Id;
18834 Inc_T : Entity_Id)
18836 Inc_Elmt : Elmt_Id;
18837 Priv_Dep : Entity_Id;
18838 New_Subt : Entity_Id;
18840 Disc_Constraint : Elist_Id;
18842 begin
18843 if No (Private_Dependents (Inc_T)) then
18844 return;
18845 end if;
18847 -- Itypes that may be generated by the completion of an incomplete
18848 -- subtype are not used by the back-end and not attached to the tree.
18849 -- They are created only for constraint-checking purposes.
18851 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
18852 while Present (Inc_Elmt) loop
18853 Priv_Dep := Node (Inc_Elmt);
18855 if Ekind (Priv_Dep) = E_Subprogram_Type then
18857 -- An Access_To_Subprogram type may have a return type or a
18858 -- parameter type that is incomplete. Replace with the full view.
18860 if Etype (Priv_Dep) = Inc_T then
18861 Set_Etype (Priv_Dep, Full_T);
18862 end if;
18864 declare
18865 Formal : Entity_Id;
18867 begin
18868 Formal := First_Formal (Priv_Dep);
18869 while Present (Formal) loop
18870 if Etype (Formal) = Inc_T then
18871 Set_Etype (Formal, Full_T);
18872 end if;
18874 Next_Formal (Formal);
18875 end loop;
18876 end;
18878 elsif Is_Overloadable (Priv_Dep) then
18880 -- If a subprogram in the incomplete dependents list is primitive
18881 -- for a tagged full type then mark it as a dispatching operation,
18882 -- check whether it overrides an inherited subprogram, and check
18883 -- restrictions on its controlling formals. Note that a protected
18884 -- operation is never dispatching: only its wrapper operation
18885 -- (which has convention Ada) is.
18887 if Is_Tagged_Type (Full_T)
18888 and then Is_Primitive (Priv_Dep)
18889 and then Convention (Priv_Dep) /= Convention_Protected
18890 then
18891 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
18892 Set_Is_Dispatching_Operation (Priv_Dep);
18893 Check_Controlling_Formals (Full_T, Priv_Dep);
18894 end if;
18896 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
18898 -- Can happen during processing of a body before the completion
18899 -- of a TA type. Ignore, because spec is also on dependent list.
18901 return;
18903 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
18904 -- corresponding subtype of the full view.
18906 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
18907 Set_Subtype_Indication
18908 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
18909 Set_Etype (Priv_Dep, Full_T);
18910 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
18911 Set_Analyzed (Parent (Priv_Dep), False);
18913 -- Reanalyze the declaration, suppressing the call to
18914 -- Enter_Name to avoid duplicate names.
18916 Analyze_Subtype_Declaration
18917 (N => Parent (Priv_Dep),
18918 Skip => True);
18920 -- Dependent is a subtype
18922 else
18923 -- We build a new subtype indication using the full view of the
18924 -- incomplete parent. The discriminant constraints have been
18925 -- elaborated already at the point of the subtype declaration.
18927 New_Subt := Create_Itype (E_Void, N);
18929 if Has_Discriminants (Full_T) then
18930 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
18931 else
18932 Disc_Constraint := No_Elist;
18933 end if;
18935 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
18936 Set_Full_View (Priv_Dep, New_Subt);
18937 end if;
18939 Next_Elmt (Inc_Elmt);
18940 end loop;
18941 end Process_Incomplete_Dependents;
18943 --------------------------------
18944 -- Process_Range_Expr_In_Decl --
18945 --------------------------------
18947 procedure Process_Range_Expr_In_Decl
18948 (R : Node_Id;
18949 T : Entity_Id;
18950 Check_List : List_Id := Empty_List;
18951 R_Check_Off : Boolean := False;
18952 In_Iter_Schm : Boolean := False)
18954 Lo, Hi : Node_Id;
18955 R_Checks : Check_Result;
18956 Insert_Node : Node_Id;
18957 Def_Id : Entity_Id;
18959 begin
18960 Analyze_And_Resolve (R, Base_Type (T));
18962 if Nkind (R) = N_Range then
18964 -- In SPARK, all ranges should be static, with the exception of the
18965 -- discrete type definition of a loop parameter specification.
18967 if not In_Iter_Schm
18968 and then not Is_Static_Range (R)
18969 then
18970 Check_SPARK_Restriction ("range should be static", R);
18971 end if;
18973 Lo := Low_Bound (R);
18974 Hi := High_Bound (R);
18976 -- We need to ensure validity of the bounds here, because if we
18977 -- go ahead and do the expansion, then the expanded code will get
18978 -- analyzed with range checks suppressed and we miss the check.
18979 -- Validity checks on the range of a quantified expression are
18980 -- delayed until the construct is transformed into a loop.
18982 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
18983 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
18984 then
18985 Validity_Check_Range (R);
18986 end if;
18988 -- If there were errors in the declaration, try and patch up some
18989 -- common mistakes in the bounds. The cases handled are literals
18990 -- which are Integer where the expected type is Real and vice versa.
18991 -- These corrections allow the compilation process to proceed further
18992 -- along since some basic assumptions of the format of the bounds
18993 -- are guaranteed.
18995 if Etype (R) = Any_Type then
18996 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
18997 Rewrite (Lo,
18998 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
19000 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
19001 Rewrite (Hi,
19002 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19004 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19005 Rewrite (Lo,
19006 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19008 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19009 Rewrite (Hi,
19010 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19011 end if;
19013 Set_Etype (Lo, T);
19014 Set_Etype (Hi, T);
19015 end if;
19017 -- If the bounds of the range have been mistakenly given as string
19018 -- literals (perhaps in place of character literals), then an error
19019 -- has already been reported, but we rewrite the string literal as a
19020 -- bound of the range's type to avoid blowups in later processing
19021 -- that looks at static values.
19023 if Nkind (Lo) = N_String_Literal then
19024 Rewrite (Lo,
19025 Make_Attribute_Reference (Sloc (Lo),
19026 Attribute_Name => Name_First,
19027 Prefix => New_Occurrence_Of (T, Sloc (Lo))));
19028 Analyze_And_Resolve (Lo);
19029 end if;
19031 if Nkind (Hi) = N_String_Literal then
19032 Rewrite (Hi,
19033 Make_Attribute_Reference (Sloc (Hi),
19034 Attribute_Name => Name_First,
19035 Prefix => New_Occurrence_Of (T, Sloc (Hi))));
19036 Analyze_And_Resolve (Hi);
19037 end if;
19039 -- If bounds aren't scalar at this point then exit, avoiding
19040 -- problems with further processing of the range in this procedure.
19042 if not Is_Scalar_Type (Etype (Lo)) then
19043 return;
19044 end if;
19046 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19047 -- then range of the base type. Here we check whether the bounds
19048 -- are in the range of the subtype itself. Note that if the bounds
19049 -- represent the null range the Constraint_Error exception should
19050 -- not be raised.
19052 -- ??? The following code should be cleaned up as follows
19054 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19055 -- is done in the call to Range_Check (R, T); below
19057 -- 2. The use of R_Check_Off should be investigated and possibly
19058 -- removed, this would clean up things a bit.
19060 if Is_Null_Range (Lo, Hi) then
19061 null;
19063 else
19064 -- Capture values of bounds and generate temporaries for them
19065 -- if needed, before applying checks, since checks may cause
19066 -- duplication of the expression without forcing evaluation.
19068 -- The forced evaluation removes side effects from expressions,
19069 -- which should occur also in GNATprove mode. Otherwise, we end up
19070 -- with unexpected insertions of actions at places where this is
19071 -- not supposed to occur, e.g. on default parameters of a call.
19073 if Expander_Active or GNATprove_Mode then
19074 Force_Evaluation (Lo);
19075 Force_Evaluation (Hi);
19076 end if;
19078 -- We use a flag here instead of suppressing checks on the
19079 -- type because the type we check against isn't necessarily
19080 -- the place where we put the check.
19082 if not R_Check_Off then
19083 R_Checks := Get_Range_Checks (R, T);
19085 -- Look up tree to find an appropriate insertion point. We
19086 -- can't just use insert_actions because later processing
19087 -- depends on the insertion node. Prior to Ada 2012 the
19088 -- insertion point could only be a declaration or a loop, but
19089 -- quantified expressions can appear within any context in an
19090 -- expression, and the insertion point can be any statement,
19091 -- pragma, or declaration.
19093 Insert_Node := Parent (R);
19094 while Present (Insert_Node) loop
19095 exit when
19096 Nkind (Insert_Node) in N_Declaration
19097 and then
19098 not Nkind_In
19099 (Insert_Node, N_Component_Declaration,
19100 N_Loop_Parameter_Specification,
19101 N_Function_Specification,
19102 N_Procedure_Specification);
19104 exit when Nkind (Insert_Node) in N_Later_Decl_Item
19105 or else Nkind (Insert_Node) in
19106 N_Statement_Other_Than_Procedure_Call
19107 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
19108 N_Pragma);
19110 Insert_Node := Parent (Insert_Node);
19111 end loop;
19113 -- Why would Type_Decl not be present??? Without this test,
19114 -- short regression tests fail.
19116 if Present (Insert_Node) then
19118 -- Case of loop statement. Verify that the range is part
19119 -- of the subtype indication of the iteration scheme.
19121 if Nkind (Insert_Node) = N_Loop_Statement then
19122 declare
19123 Indic : Node_Id;
19125 begin
19126 Indic := Parent (R);
19127 while Present (Indic)
19128 and then Nkind (Indic) /= N_Subtype_Indication
19129 loop
19130 Indic := Parent (Indic);
19131 end loop;
19133 if Present (Indic) then
19134 Def_Id := Etype (Subtype_Mark (Indic));
19136 Insert_Range_Checks
19137 (R_Checks,
19138 Insert_Node,
19139 Def_Id,
19140 Sloc (Insert_Node),
19142 Do_Before => True);
19143 end if;
19144 end;
19146 -- Insertion before a declaration. If the declaration
19147 -- includes discriminants, the list of applicable checks
19148 -- is given by the caller.
19150 elsif Nkind (Insert_Node) in N_Declaration then
19151 Def_Id := Defining_Identifier (Insert_Node);
19153 if (Ekind (Def_Id) = E_Record_Type
19154 and then Depends_On_Discriminant (R))
19155 or else
19156 (Ekind (Def_Id) = E_Protected_Type
19157 and then Has_Discriminants (Def_Id))
19158 then
19159 Append_Range_Checks
19160 (R_Checks,
19161 Check_List, Def_Id, Sloc (Insert_Node), R);
19163 else
19164 Insert_Range_Checks
19165 (R_Checks,
19166 Insert_Node, Def_Id, Sloc (Insert_Node), R);
19168 end if;
19170 -- Insertion before a statement. Range appears in the
19171 -- context of a quantified expression. Insertion will
19172 -- take place when expression is expanded.
19174 else
19175 null;
19176 end if;
19177 end if;
19178 end if;
19179 end if;
19181 -- Case of other than an explicit N_Range node
19183 -- The forced evaluation removes side effects from expressions, which
19184 -- should occur also in GNATprove mode. Otherwise, we end up with
19185 -- unexpected insertions of actions at places where this is not
19186 -- supposed to occur, e.g. on default parameters of a call.
19188 elsif Expander_Active or GNATprove_Mode then
19189 Get_Index_Bounds (R, Lo, Hi);
19190 Force_Evaluation (Lo);
19191 Force_Evaluation (Hi);
19192 end if;
19193 end Process_Range_Expr_In_Decl;
19195 --------------------------------------
19196 -- Process_Real_Range_Specification --
19197 --------------------------------------
19199 procedure Process_Real_Range_Specification (Def : Node_Id) is
19200 Spec : constant Node_Id := Real_Range_Specification (Def);
19201 Lo : Node_Id;
19202 Hi : Node_Id;
19203 Err : Boolean := False;
19205 procedure Analyze_Bound (N : Node_Id);
19206 -- Analyze and check one bound
19208 -------------------
19209 -- Analyze_Bound --
19210 -------------------
19212 procedure Analyze_Bound (N : Node_Id) is
19213 begin
19214 Analyze_And_Resolve (N, Any_Real);
19216 if not Is_OK_Static_Expression (N) then
19217 Flag_Non_Static_Expr
19218 ("bound in real type definition is not static!", N);
19219 Err := True;
19220 end if;
19221 end Analyze_Bound;
19223 -- Start of processing for Process_Real_Range_Specification
19225 begin
19226 if Present (Spec) then
19227 Lo := Low_Bound (Spec);
19228 Hi := High_Bound (Spec);
19229 Analyze_Bound (Lo);
19230 Analyze_Bound (Hi);
19232 -- If error, clear away junk range specification
19234 if Err then
19235 Set_Real_Range_Specification (Def, Empty);
19236 end if;
19237 end if;
19238 end Process_Real_Range_Specification;
19240 ---------------------
19241 -- Process_Subtype --
19242 ---------------------
19244 function Process_Subtype
19245 (S : Node_Id;
19246 Related_Nod : Node_Id;
19247 Related_Id : Entity_Id := Empty;
19248 Suffix : Character := ' ') return Entity_Id
19250 P : Node_Id;
19251 Def_Id : Entity_Id;
19252 Error_Node : Node_Id;
19253 Full_View_Id : Entity_Id;
19254 Subtype_Mark_Id : Entity_Id;
19256 May_Have_Null_Exclusion : Boolean;
19258 procedure Check_Incomplete (T : Entity_Id);
19259 -- Called to verify that an incomplete type is not used prematurely
19261 ----------------------
19262 -- Check_Incomplete --
19263 ----------------------
19265 procedure Check_Incomplete (T : Entity_Id) is
19266 begin
19267 -- Ada 2005 (AI-412): Incomplete subtypes are legal
19269 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
19270 and then
19271 not (Ada_Version >= Ada_2005
19272 and then
19273 (Nkind (Parent (T)) = N_Subtype_Declaration
19274 or else
19275 (Nkind (Parent (T)) = N_Subtype_Indication
19276 and then Nkind (Parent (Parent (T))) =
19277 N_Subtype_Declaration)))
19278 then
19279 Error_Msg_N ("invalid use of type before its full declaration", T);
19280 end if;
19281 end Check_Incomplete;
19283 -- Start of processing for Process_Subtype
19285 begin
19286 -- Case of no constraints present
19288 if Nkind (S) /= N_Subtype_Indication then
19289 Find_Type (S);
19290 Check_Incomplete (S);
19291 P := Parent (S);
19293 -- Ada 2005 (AI-231): Static check
19295 if Ada_Version >= Ada_2005
19296 and then Present (P)
19297 and then Null_Exclusion_Present (P)
19298 and then Nkind (P) /= N_Access_To_Object_Definition
19299 and then not Is_Access_Type (Entity (S))
19300 then
19301 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
19302 end if;
19304 -- The following is ugly, can't we have a range or even a flag???
19306 May_Have_Null_Exclusion :=
19307 Nkind_In (P, N_Access_Definition,
19308 N_Access_Function_Definition,
19309 N_Access_Procedure_Definition,
19310 N_Access_To_Object_Definition,
19311 N_Allocator,
19312 N_Component_Definition)
19313 or else
19314 Nkind_In (P, N_Derived_Type_Definition,
19315 N_Discriminant_Specification,
19316 N_Formal_Object_Declaration,
19317 N_Object_Declaration,
19318 N_Object_Renaming_Declaration,
19319 N_Parameter_Specification,
19320 N_Subtype_Declaration);
19322 -- Create an Itype that is a duplicate of Entity (S) but with the
19323 -- null-exclusion attribute.
19325 if May_Have_Null_Exclusion
19326 and then Is_Access_Type (Entity (S))
19327 and then Null_Exclusion_Present (P)
19329 -- No need to check the case of an access to object definition.
19330 -- It is correct to define double not-null pointers.
19332 -- Example:
19333 -- type Not_Null_Int_Ptr is not null access Integer;
19334 -- type Acc is not null access Not_Null_Int_Ptr;
19336 and then Nkind (P) /= N_Access_To_Object_Definition
19337 then
19338 if Can_Never_Be_Null (Entity (S)) then
19339 case Nkind (Related_Nod) is
19340 when N_Full_Type_Declaration =>
19341 if Nkind (Type_Definition (Related_Nod))
19342 in N_Array_Type_Definition
19343 then
19344 Error_Node :=
19345 Subtype_Indication
19346 (Component_Definition
19347 (Type_Definition (Related_Nod)));
19348 else
19349 Error_Node :=
19350 Subtype_Indication (Type_Definition (Related_Nod));
19351 end if;
19353 when N_Subtype_Declaration =>
19354 Error_Node := Subtype_Indication (Related_Nod);
19356 when N_Object_Declaration =>
19357 Error_Node := Object_Definition (Related_Nod);
19359 when N_Component_Declaration =>
19360 Error_Node :=
19361 Subtype_Indication (Component_Definition (Related_Nod));
19363 when N_Allocator =>
19364 Error_Node := Expression (Related_Nod);
19366 when others =>
19367 pragma Assert (False);
19368 Error_Node := Related_Nod;
19369 end case;
19371 Error_Msg_NE
19372 ("`NOT NULL` not allowed (& already excludes null)",
19373 Error_Node,
19374 Entity (S));
19375 end if;
19377 Set_Etype (S,
19378 Create_Null_Excluding_Itype
19379 (T => Entity (S),
19380 Related_Nod => P));
19381 Set_Entity (S, Etype (S));
19382 end if;
19384 return Entity (S);
19386 -- Case of constraint present, so that we have an N_Subtype_Indication
19387 -- node (this node is created only if constraints are present).
19389 else
19390 Find_Type (Subtype_Mark (S));
19392 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
19393 and then not
19394 (Nkind (Parent (S)) = N_Subtype_Declaration
19395 and then Is_Itype (Defining_Identifier (Parent (S))))
19396 then
19397 Check_Incomplete (Subtype_Mark (S));
19398 end if;
19400 P := Parent (S);
19401 Subtype_Mark_Id := Entity (Subtype_Mark (S));
19403 -- Explicit subtype declaration case
19405 if Nkind (P) = N_Subtype_Declaration then
19406 Def_Id := Defining_Identifier (P);
19408 -- Explicit derived type definition case
19410 elsif Nkind (P) = N_Derived_Type_Definition then
19411 Def_Id := Defining_Identifier (Parent (P));
19413 -- Implicit case, the Def_Id must be created as an implicit type.
19414 -- The one exception arises in the case of concurrent types, array
19415 -- and access types, where other subsidiary implicit types may be
19416 -- created and must appear before the main implicit type. In these
19417 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
19418 -- has not yet been called to create Def_Id.
19420 else
19421 if Is_Array_Type (Subtype_Mark_Id)
19422 or else Is_Concurrent_Type (Subtype_Mark_Id)
19423 or else Is_Access_Type (Subtype_Mark_Id)
19424 then
19425 Def_Id := Empty;
19427 -- For the other cases, we create a new unattached Itype,
19428 -- and set the indication to ensure it gets attached later.
19430 else
19431 Def_Id :=
19432 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19433 end if;
19434 end if;
19436 -- If the kind of constraint is invalid for this kind of type,
19437 -- then give an error, and then pretend no constraint was given.
19439 if not Is_Valid_Constraint_Kind
19440 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
19441 then
19442 Error_Msg_N
19443 ("incorrect constraint for this kind of type", Constraint (S));
19445 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
19447 -- Set Ekind of orphan itype, to prevent cascaded errors
19449 if Present (Def_Id) then
19450 Set_Ekind (Def_Id, Ekind (Any_Type));
19451 end if;
19453 -- Make recursive call, having got rid of the bogus constraint
19455 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
19456 end if;
19458 -- Remaining processing depends on type. Select on Base_Type kind to
19459 -- ensure getting to the concrete type kind in the case of a private
19460 -- subtype (needed when only doing semantic analysis).
19462 case Ekind (Base_Type (Subtype_Mark_Id)) is
19463 when Access_Kind =>
19465 -- If this is a constraint on a class-wide type, discard it.
19466 -- There is currently no way to express a partial discriminant
19467 -- constraint on a type with unknown discriminants. This is
19468 -- a pathology that the ACATS wisely decides not to test.
19470 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
19471 if Comes_From_Source (S) then
19472 Error_Msg_N
19473 ("constraint on class-wide type ignored??",
19474 Constraint (S));
19475 end if;
19477 if Nkind (P) = N_Subtype_Declaration then
19478 Set_Subtype_Indication (P,
19479 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
19480 end if;
19482 return Subtype_Mark_Id;
19483 end if;
19485 Constrain_Access (Def_Id, S, Related_Nod);
19487 if Expander_Active
19488 and then Is_Itype (Designated_Type (Def_Id))
19489 and then Nkind (Related_Nod) = N_Subtype_Declaration
19490 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
19491 then
19492 Build_Itype_Reference
19493 (Designated_Type (Def_Id), Related_Nod);
19494 end if;
19496 when Array_Kind =>
19497 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
19499 when Decimal_Fixed_Point_Kind =>
19500 Constrain_Decimal (Def_Id, S);
19502 when Enumeration_Kind =>
19503 Constrain_Enumeration (Def_Id, S);
19505 when Ordinary_Fixed_Point_Kind =>
19506 Constrain_Ordinary_Fixed (Def_Id, S);
19508 when Float_Kind =>
19509 Constrain_Float (Def_Id, S);
19511 when Integer_Kind =>
19512 Constrain_Integer (Def_Id, S);
19514 when E_Record_Type |
19515 E_Record_Subtype |
19516 Class_Wide_Kind |
19517 E_Incomplete_Type =>
19518 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19520 if Ekind (Def_Id) = E_Incomplete_Type then
19521 Set_Private_Dependents (Def_Id, New_Elmt_List);
19522 end if;
19524 when Private_Kind =>
19525 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19526 Set_Private_Dependents (Def_Id, New_Elmt_List);
19528 -- In case of an invalid constraint prevent further processing
19529 -- since the type constructed is missing expected fields.
19531 if Etype (Def_Id) = Any_Type then
19532 return Def_Id;
19533 end if;
19535 -- If the full view is that of a task with discriminants,
19536 -- we must constrain both the concurrent type and its
19537 -- corresponding record type. Otherwise we will just propagate
19538 -- the constraint to the full view, if available.
19540 if Present (Full_View (Subtype_Mark_Id))
19541 and then Has_Discriminants (Subtype_Mark_Id)
19542 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
19543 then
19544 Full_View_Id :=
19545 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19547 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
19548 Constrain_Concurrent (Full_View_Id, S,
19549 Related_Nod, Related_Id, Suffix);
19550 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
19551 Set_Full_View (Def_Id, Full_View_Id);
19553 -- Introduce an explicit reference to the private subtype,
19554 -- to prevent scope anomalies in gigi if first use appears
19555 -- in a nested context, e.g. a later function body.
19556 -- Should this be generated in other contexts than a full
19557 -- type declaration?
19559 if Is_Itype (Def_Id)
19560 and then
19561 Nkind (Parent (P)) = N_Full_Type_Declaration
19562 then
19563 Build_Itype_Reference (Def_Id, Parent (P));
19564 end if;
19566 else
19567 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
19568 end if;
19570 when Concurrent_Kind =>
19571 Constrain_Concurrent (Def_Id, S,
19572 Related_Nod, Related_Id, Suffix);
19574 when others =>
19575 Error_Msg_N ("invalid subtype mark in subtype indication", S);
19576 end case;
19578 -- Size and Convention are always inherited from the base type
19580 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
19581 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
19583 return Def_Id;
19584 end if;
19585 end Process_Subtype;
19587 ---------------------------------------
19588 -- Check_Anonymous_Access_Components --
19589 ---------------------------------------
19591 procedure Check_Anonymous_Access_Components
19592 (Typ_Decl : Node_Id;
19593 Typ : Entity_Id;
19594 Prev : Entity_Id;
19595 Comp_List : Node_Id)
19597 Loc : constant Source_Ptr := Sloc (Typ_Decl);
19598 Anon_Access : Entity_Id;
19599 Acc_Def : Node_Id;
19600 Comp : Node_Id;
19601 Comp_Def : Node_Id;
19602 Decl : Node_Id;
19603 Type_Def : Node_Id;
19605 procedure Build_Incomplete_Type_Declaration;
19606 -- If the record type contains components that include an access to the
19607 -- current record, then create an incomplete type declaration for the
19608 -- record, to be used as the designated type of the anonymous access.
19609 -- This is done only once, and only if there is no previous partial
19610 -- view of the type.
19612 function Designates_T (Subt : Node_Id) return Boolean;
19613 -- Check whether a node designates the enclosing record type, or 'Class
19614 -- of that type
19616 function Mentions_T (Acc_Def : Node_Id) return Boolean;
19617 -- Check whether an access definition includes a reference to
19618 -- the enclosing record type. The reference can be a subtype mark
19619 -- in the access definition itself, a 'Class attribute reference, or
19620 -- recursively a reference appearing in a parameter specification
19621 -- or result definition of an access_to_subprogram definition.
19623 --------------------------------------
19624 -- Build_Incomplete_Type_Declaration --
19625 --------------------------------------
19627 procedure Build_Incomplete_Type_Declaration is
19628 Decl : Node_Id;
19629 Inc_T : Entity_Id;
19630 H : Entity_Id;
19632 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19633 -- it's "is new ... with record" or else "is tagged record ...".
19635 Is_Tagged : constant Boolean :=
19636 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
19637 and then
19638 Present
19639 (Record_Extension_Part (Type_Definition (Typ_Decl))))
19640 or else
19641 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
19642 and then Tagged_Present (Type_Definition (Typ_Decl)));
19644 begin
19645 -- If there is a previous partial view, no need to create a new one
19646 -- If the partial view, given by Prev, is incomplete, If Prev is
19647 -- a private declaration, full declaration is flagged accordingly.
19649 if Prev /= Typ then
19650 if Is_Tagged then
19651 Make_Class_Wide_Type (Prev);
19652 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
19653 Set_Etype (Class_Wide_Type (Typ), Typ);
19654 end if;
19656 return;
19658 elsif Has_Private_Declaration (Typ) then
19660 -- If we refer to T'Class inside T, and T is the completion of a
19661 -- private type, then we need to make sure the class-wide type
19662 -- exists.
19664 if Is_Tagged then
19665 Make_Class_Wide_Type (Typ);
19666 end if;
19668 return;
19670 -- If there was a previous anonymous access type, the incomplete
19671 -- type declaration will have been created already.
19673 elsif Present (Current_Entity (Typ))
19674 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
19675 and then Full_View (Current_Entity (Typ)) = Typ
19676 then
19677 if Is_Tagged
19678 and then Comes_From_Source (Current_Entity (Typ))
19679 and then not Is_Tagged_Type (Current_Entity (Typ))
19680 then
19681 Make_Class_Wide_Type (Typ);
19682 Error_Msg_N
19683 ("incomplete view of tagged type should be declared tagged??",
19684 Parent (Current_Entity (Typ)));
19685 end if;
19686 return;
19688 else
19689 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
19690 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
19692 -- Type has already been inserted into the current scope. Remove
19693 -- it, and add incomplete declaration for type, so that subsequent
19694 -- anonymous access types can use it. The entity is unchained from
19695 -- the homonym list and from immediate visibility. After analysis,
19696 -- the entity in the incomplete declaration becomes immediately
19697 -- visible in the record declaration that follows.
19699 H := Current_Entity (Typ);
19701 if H = Typ then
19702 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
19703 else
19704 while Present (H)
19705 and then Homonym (H) /= Typ
19706 loop
19707 H := Homonym (Typ);
19708 end loop;
19710 Set_Homonym (H, Homonym (Typ));
19711 end if;
19713 Insert_Before (Typ_Decl, Decl);
19714 Analyze (Decl);
19715 Set_Full_View (Inc_T, Typ);
19717 if Is_Tagged then
19719 -- Create a common class-wide type for both views, and set the
19720 -- Etype of the class-wide type to the full view.
19722 Make_Class_Wide_Type (Inc_T);
19723 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
19724 Set_Etype (Class_Wide_Type (Typ), Typ);
19725 end if;
19726 end if;
19727 end Build_Incomplete_Type_Declaration;
19729 ------------------
19730 -- Designates_T --
19731 ------------------
19733 function Designates_T (Subt : Node_Id) return Boolean is
19734 Type_Id : constant Name_Id := Chars (Typ);
19736 function Names_T (Nam : Node_Id) return Boolean;
19737 -- The record type has not been introduced in the current scope
19738 -- yet, so we must examine the name of the type itself, either
19739 -- an identifier T, or an expanded name of the form P.T, where
19740 -- P denotes the current scope.
19742 -------------
19743 -- Names_T --
19744 -------------
19746 function Names_T (Nam : Node_Id) return Boolean is
19747 begin
19748 if Nkind (Nam) = N_Identifier then
19749 return Chars (Nam) = Type_Id;
19751 elsif Nkind (Nam) = N_Selected_Component then
19752 if Chars (Selector_Name (Nam)) = Type_Id then
19753 if Nkind (Prefix (Nam)) = N_Identifier then
19754 return Chars (Prefix (Nam)) = Chars (Current_Scope);
19756 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
19757 return Chars (Selector_Name (Prefix (Nam))) =
19758 Chars (Current_Scope);
19759 else
19760 return False;
19761 end if;
19763 else
19764 return False;
19765 end if;
19767 else
19768 return False;
19769 end if;
19770 end Names_T;
19772 -- Start of processing for Designates_T
19774 begin
19775 if Nkind (Subt) = N_Identifier then
19776 return Chars (Subt) = Type_Id;
19778 -- Reference can be through an expanded name which has not been
19779 -- analyzed yet, and which designates enclosing scopes.
19781 elsif Nkind (Subt) = N_Selected_Component then
19782 if Names_T (Subt) then
19783 return True;
19785 -- Otherwise it must denote an entity that is already visible.
19786 -- The access definition may name a subtype of the enclosing
19787 -- type, if there is a previous incomplete declaration for it.
19789 else
19790 Find_Selected_Component (Subt);
19791 return
19792 Is_Entity_Name (Subt)
19793 and then Scope (Entity (Subt)) = Current_Scope
19794 and then
19795 (Chars (Base_Type (Entity (Subt))) = Type_Id
19796 or else
19797 (Is_Class_Wide_Type (Entity (Subt))
19798 and then
19799 Chars (Etype (Base_Type (Entity (Subt)))) =
19800 Type_Id));
19801 end if;
19803 -- A reference to the current type may appear as the prefix of
19804 -- a 'Class attribute.
19806 elsif Nkind (Subt) = N_Attribute_Reference
19807 and then Attribute_Name (Subt) = Name_Class
19808 then
19809 return Names_T (Prefix (Subt));
19811 else
19812 return False;
19813 end if;
19814 end Designates_T;
19816 ----------------
19817 -- Mentions_T --
19818 ----------------
19820 function Mentions_T (Acc_Def : Node_Id) return Boolean is
19821 Param_Spec : Node_Id;
19823 Acc_Subprg : constant Node_Id :=
19824 Access_To_Subprogram_Definition (Acc_Def);
19826 begin
19827 if No (Acc_Subprg) then
19828 return Designates_T (Subtype_Mark (Acc_Def));
19829 end if;
19831 -- Component is an access_to_subprogram: examine its formals,
19832 -- and result definition in the case of an access_to_function.
19834 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
19835 while Present (Param_Spec) loop
19836 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
19837 and then Mentions_T (Parameter_Type (Param_Spec))
19838 then
19839 return True;
19841 elsif Designates_T (Parameter_Type (Param_Spec)) then
19842 return True;
19843 end if;
19845 Next (Param_Spec);
19846 end loop;
19848 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
19849 if Nkind (Result_Definition (Acc_Subprg)) =
19850 N_Access_Definition
19851 then
19852 return Mentions_T (Result_Definition (Acc_Subprg));
19853 else
19854 return Designates_T (Result_Definition (Acc_Subprg));
19855 end if;
19856 end if;
19858 return False;
19859 end Mentions_T;
19861 -- Start of processing for Check_Anonymous_Access_Components
19863 begin
19864 if No (Comp_List) then
19865 return;
19866 end if;
19868 Comp := First (Component_Items (Comp_List));
19869 while Present (Comp) loop
19870 if Nkind (Comp) = N_Component_Declaration
19871 and then Present
19872 (Access_Definition (Component_Definition (Comp)))
19873 and then
19874 Mentions_T (Access_Definition (Component_Definition (Comp)))
19875 then
19876 Comp_Def := Component_Definition (Comp);
19877 Acc_Def :=
19878 Access_To_Subprogram_Definition
19879 (Access_Definition (Comp_Def));
19881 Build_Incomplete_Type_Declaration;
19882 Anon_Access := Make_Temporary (Loc, 'S');
19884 -- Create a declaration for the anonymous access type: either
19885 -- an access_to_object or an access_to_subprogram.
19887 if Present (Acc_Def) then
19888 if Nkind (Acc_Def) = N_Access_Function_Definition then
19889 Type_Def :=
19890 Make_Access_Function_Definition (Loc,
19891 Parameter_Specifications =>
19892 Parameter_Specifications (Acc_Def),
19893 Result_Definition => Result_Definition (Acc_Def));
19894 else
19895 Type_Def :=
19896 Make_Access_Procedure_Definition (Loc,
19897 Parameter_Specifications =>
19898 Parameter_Specifications (Acc_Def));
19899 end if;
19901 else
19902 Type_Def :=
19903 Make_Access_To_Object_Definition (Loc,
19904 Subtype_Indication =>
19905 Relocate_Node
19906 (Subtype_Mark
19907 (Access_Definition (Comp_Def))));
19909 Set_Constant_Present
19910 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
19911 Set_All_Present
19912 (Type_Def, All_Present (Access_Definition (Comp_Def)));
19913 end if;
19915 Set_Null_Exclusion_Present
19916 (Type_Def,
19917 Null_Exclusion_Present (Access_Definition (Comp_Def)));
19919 Decl :=
19920 Make_Full_Type_Declaration (Loc,
19921 Defining_Identifier => Anon_Access,
19922 Type_Definition => Type_Def);
19924 Insert_Before (Typ_Decl, Decl);
19925 Analyze (Decl);
19927 -- If an access to subprogram, create the extra formals
19929 if Present (Acc_Def) then
19930 Create_Extra_Formals (Designated_Type (Anon_Access));
19932 -- If an access to object, preserve entity of designated type,
19933 -- for ASIS use, before rewriting the component definition.
19935 else
19936 declare
19937 Desig : Entity_Id;
19939 begin
19940 Desig := Entity (Subtype_Indication (Type_Def));
19942 -- If the access definition is to the current record,
19943 -- the visible entity at this point is an incomplete
19944 -- type. Retrieve the full view to simplify ASIS queries
19946 if Ekind (Desig) = E_Incomplete_Type then
19947 Desig := Full_View (Desig);
19948 end if;
19950 Set_Entity
19951 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
19952 end;
19953 end if;
19955 Rewrite (Comp_Def,
19956 Make_Component_Definition (Loc,
19957 Subtype_Indication =>
19958 New_Occurrence_Of (Anon_Access, Loc)));
19960 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
19961 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
19962 else
19963 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
19964 end if;
19966 Set_Is_Local_Anonymous_Access (Anon_Access);
19967 end if;
19969 Next (Comp);
19970 end loop;
19972 if Present (Variant_Part (Comp_List)) then
19973 declare
19974 V : Node_Id;
19975 begin
19976 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
19977 while Present (V) loop
19978 Check_Anonymous_Access_Components
19979 (Typ_Decl, Typ, Prev, Component_List (V));
19980 Next_Non_Pragma (V);
19981 end loop;
19982 end;
19983 end if;
19984 end Check_Anonymous_Access_Components;
19986 ----------------------------------
19987 -- Preanalyze_Assert_Expression --
19988 ----------------------------------
19990 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19991 begin
19992 In_Assertion_Expr := In_Assertion_Expr + 1;
19993 Preanalyze_Spec_Expression (N, T);
19994 In_Assertion_Expr := In_Assertion_Expr - 1;
19995 end Preanalyze_Assert_Expression;
19997 --------------------------------
19998 -- Preanalyze_Spec_Expression --
19999 --------------------------------
20001 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
20002 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
20003 begin
20004 In_Spec_Expression := True;
20005 Preanalyze_And_Resolve (N, T);
20006 In_Spec_Expression := Save_In_Spec_Expression;
20007 end Preanalyze_Spec_Expression;
20009 -----------------------------
20010 -- Record_Type_Declaration --
20011 -----------------------------
20013 procedure Record_Type_Declaration
20014 (T : Entity_Id;
20015 N : Node_Id;
20016 Prev : Entity_Id)
20018 Def : constant Node_Id := Type_Definition (N);
20019 Is_Tagged : Boolean;
20020 Tag_Comp : Entity_Id;
20022 begin
20023 -- These flags must be initialized before calling Process_Discriminants
20024 -- because this routine makes use of them.
20026 Set_Ekind (T, E_Record_Type);
20027 Set_Etype (T, T);
20028 Init_Size_Align (T);
20029 Set_Interfaces (T, No_Elist);
20030 Set_Stored_Constraint (T, No_Elist);
20032 -- Normal case
20034 if Ada_Version < Ada_2005
20035 or else not Interface_Present (Def)
20036 then
20037 if Limited_Present (Def) then
20038 Check_SPARK_Restriction ("limited is not allowed", N);
20039 end if;
20041 if Abstract_Present (Def) then
20042 Check_SPARK_Restriction ("abstract is not allowed", N);
20043 end if;
20045 -- The flag Is_Tagged_Type might have already been set by
20046 -- Find_Type_Name if it detected an error for declaration T. This
20047 -- arises in the case of private tagged types where the full view
20048 -- omits the word tagged.
20050 Is_Tagged :=
20051 Tagged_Present (Def)
20052 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20054 Set_Is_Tagged_Type (T, Is_Tagged);
20055 Set_Is_Limited_Record (T, Limited_Present (Def));
20057 -- Type is abstract if full declaration carries keyword, or if
20058 -- previous partial view did.
20060 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20061 or else Abstract_Present (Def));
20063 else
20064 Check_SPARK_Restriction ("interface is not allowed", N);
20066 Is_Tagged := True;
20067 Analyze_Interface_Declaration (T, Def);
20069 if Present (Discriminant_Specifications (N)) then
20070 Error_Msg_N
20071 ("interface types cannot have discriminants",
20072 Defining_Identifier
20073 (First (Discriminant_Specifications (N))));
20074 end if;
20075 end if;
20077 -- First pass: if there are self-referential access components,
20078 -- create the required anonymous access type declarations, and if
20079 -- need be an incomplete type declaration for T itself.
20081 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20083 if Ada_Version >= Ada_2005
20084 and then Present (Interface_List (Def))
20085 then
20086 Check_Interfaces (N, Def);
20088 declare
20089 Ifaces_List : Elist_Id;
20091 begin
20092 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20093 -- already in the parents.
20095 Collect_Interfaces
20096 (T => T,
20097 Ifaces_List => Ifaces_List,
20098 Exclude_Parents => True);
20100 Set_Interfaces (T, Ifaces_List);
20101 end;
20102 end if;
20104 -- Records constitute a scope for the component declarations within.
20105 -- The scope is created prior to the processing of these declarations.
20106 -- Discriminants are processed first, so that they are visible when
20107 -- processing the other components. The Ekind of the record type itself
20108 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20110 -- Enter record scope
20112 Push_Scope (T);
20114 -- If an incomplete or private type declaration was already given for
20115 -- the type, then this scope already exists, and the discriminants have
20116 -- been declared within. We must verify that the full declaration
20117 -- matches the incomplete one.
20119 Check_Or_Process_Discriminants (N, T, Prev);
20121 Set_Is_Constrained (T, not Has_Discriminants (T));
20122 Set_Has_Delayed_Freeze (T, True);
20124 -- For tagged types add a manually analyzed component corresponding
20125 -- to the component _tag, the corresponding piece of tree will be
20126 -- expanded as part of the freezing actions if it is not a CPP_Class.
20128 if Is_Tagged then
20130 -- Do not add the tag unless we are in expansion mode
20132 if Expander_Active then
20133 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20134 Enter_Name (Tag_Comp);
20136 Set_Ekind (Tag_Comp, E_Component);
20137 Set_Is_Tag (Tag_Comp);
20138 Set_Is_Aliased (Tag_Comp);
20139 Set_Etype (Tag_Comp, RTE (RE_Tag));
20140 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20141 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20142 Init_Component_Location (Tag_Comp);
20144 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20145 -- implemented interfaces.
20147 if Has_Interfaces (T) then
20148 Add_Interface_Tag_Components (N, T);
20149 end if;
20150 end if;
20152 Make_Class_Wide_Type (T);
20153 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20154 end if;
20156 -- We must suppress range checks when processing record components in
20157 -- the presence of discriminants, since we don't want spurious checks to
20158 -- be generated during their analysis, but Suppress_Range_Checks flags
20159 -- must be reset the after processing the record definition.
20161 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20162 -- couldn't we just use the normal range check suppression method here.
20163 -- That would seem cleaner ???
20165 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20166 Set_Kill_Range_Checks (T, True);
20167 Record_Type_Definition (Def, Prev);
20168 Set_Kill_Range_Checks (T, False);
20169 else
20170 Record_Type_Definition (Def, Prev);
20171 end if;
20173 -- Exit from record scope
20175 End_Scope;
20177 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20178 -- the implemented interfaces and associate them an aliased entity.
20180 if Is_Tagged
20181 and then not Is_Empty_List (Interface_List (Def))
20182 then
20183 Derive_Progenitor_Subprograms (T, T);
20184 end if;
20186 Check_Function_Writable_Actuals (N);
20187 end Record_Type_Declaration;
20189 ----------------------------
20190 -- Record_Type_Definition --
20191 ----------------------------
20193 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20194 Component : Entity_Id;
20195 Ctrl_Components : Boolean := False;
20196 Final_Storage_Only : Boolean;
20197 T : Entity_Id;
20199 begin
20200 if Ekind (Prev_T) = E_Incomplete_Type then
20201 T := Full_View (Prev_T);
20202 else
20203 T := Prev_T;
20204 end if;
20206 -- In SPARK, tagged types and type extensions may only be declared in
20207 -- the specification of library unit packages.
20209 if Present (Def) and then Is_Tagged_Type (T) then
20210 declare
20211 Typ : Node_Id;
20212 Ctxt : Node_Id;
20214 begin
20215 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20216 Typ := Parent (Def);
20217 else
20218 pragma Assert
20219 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20220 Typ := Parent (Parent (Def));
20221 end if;
20223 Ctxt := Parent (Typ);
20225 if Nkind (Ctxt) = N_Package_Body
20226 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20227 then
20228 Check_SPARK_Restriction
20229 ("type should be defined in package specification", Typ);
20231 elsif Nkind (Ctxt) /= N_Package_Specification
20232 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20233 then
20234 Check_SPARK_Restriction
20235 ("type should be defined in library unit package", Typ);
20236 end if;
20237 end;
20238 end if;
20240 Final_Storage_Only := not Is_Controlled (T);
20242 -- Ada 2005: Check whether an explicit Limited is present in a derived
20243 -- type declaration.
20245 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20246 and then Limited_Present (Parent (Def))
20247 then
20248 Set_Is_Limited_Record (T);
20249 end if;
20251 -- If the component list of a record type is defined by the reserved
20252 -- word null and there is no discriminant part, then the record type has
20253 -- no components and all records of the type are null records (RM 3.7)
20254 -- This procedure is also called to process the extension part of a
20255 -- record extension, in which case the current scope may have inherited
20256 -- components.
20258 if No (Def)
20259 or else No (Component_List (Def))
20260 or else Null_Present (Component_List (Def))
20261 then
20262 if not Is_Tagged_Type (T) then
20263 Check_SPARK_Restriction ("non-tagged record cannot be null", Def);
20264 end if;
20266 else
20267 Analyze_Declarations (Component_Items (Component_List (Def)));
20269 if Present (Variant_Part (Component_List (Def))) then
20270 Check_SPARK_Restriction ("variant part is not allowed", Def);
20271 Analyze (Variant_Part (Component_List (Def)));
20272 end if;
20273 end if;
20275 -- After completing the semantic analysis of the record definition,
20276 -- record components, both new and inherited, are accessible. Set their
20277 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20278 -- whose Ekind may be void.
20280 Component := First_Entity (Current_Scope);
20281 while Present (Component) loop
20282 if Ekind (Component) = E_Void
20283 and then not Is_Itype (Component)
20284 then
20285 Set_Ekind (Component, E_Component);
20286 Init_Component_Location (Component);
20287 end if;
20289 if Has_Task (Etype (Component)) then
20290 Set_Has_Task (T);
20291 end if;
20293 if Ekind (Component) /= E_Component then
20294 null;
20296 -- Do not set Has_Controlled_Component on a class-wide equivalent
20297 -- type. See Make_CW_Equivalent_Type.
20299 elsif not Is_Class_Wide_Equivalent_Type (T)
20300 and then (Has_Controlled_Component (Etype (Component))
20301 or else (Chars (Component) /= Name_uParent
20302 and then Is_Controlled (Etype (Component))))
20303 then
20304 Set_Has_Controlled_Component (T, True);
20305 Final_Storage_Only :=
20306 Final_Storage_Only
20307 and then Finalize_Storage_Only (Etype (Component));
20308 Ctrl_Components := True;
20309 end if;
20311 Next_Entity (Component);
20312 end loop;
20314 -- A Type is Finalize_Storage_Only only if all its controlled components
20315 -- are also.
20317 if Ctrl_Components then
20318 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20319 end if;
20321 -- Place reference to end record on the proper entity, which may
20322 -- be a partial view.
20324 if Present (Def) then
20325 Process_End_Label (Def, 'e', Prev_T);
20326 end if;
20327 end Record_Type_Definition;
20329 ------------------------
20330 -- Replace_Components --
20331 ------------------------
20333 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20334 function Process (N : Node_Id) return Traverse_Result;
20336 -------------
20337 -- Process --
20338 -------------
20340 function Process (N : Node_Id) return Traverse_Result is
20341 Comp : Entity_Id;
20343 begin
20344 if Nkind (N) = N_Discriminant_Specification then
20345 Comp := First_Discriminant (Typ);
20346 while Present (Comp) loop
20347 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20348 Set_Defining_Identifier (N, Comp);
20349 exit;
20350 end if;
20352 Next_Discriminant (Comp);
20353 end loop;
20355 elsif Nkind (N) = N_Component_Declaration then
20356 Comp := First_Component (Typ);
20357 while Present (Comp) loop
20358 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20359 Set_Defining_Identifier (N, Comp);
20360 exit;
20361 end if;
20363 Next_Component (Comp);
20364 end loop;
20365 end if;
20367 return OK;
20368 end Process;
20370 procedure Replace is new Traverse_Proc (Process);
20372 -- Start of processing for Replace_Components
20374 begin
20375 Replace (Decl);
20376 end Replace_Components;
20378 -------------------------------
20379 -- Set_Completion_Referenced --
20380 -------------------------------
20382 procedure Set_Completion_Referenced (E : Entity_Id) is
20383 begin
20384 -- If in main unit, mark entity that is a completion as referenced,
20385 -- warnings go on the partial view when needed.
20387 if In_Extended_Main_Source_Unit (E) then
20388 Set_Referenced (E);
20389 end if;
20390 end Set_Completion_Referenced;
20392 ---------------------
20393 -- Set_Fixed_Range --
20394 ---------------------
20396 -- The range for fixed-point types is complicated by the fact that we
20397 -- do not know the exact end points at the time of the declaration. This
20398 -- is true for three reasons:
20400 -- A size clause may affect the fudging of the end-points.
20401 -- A small clause may affect the values of the end-points.
20402 -- We try to include the end-points if it does not affect the size.
20404 -- This means that the actual end-points must be established at the
20405 -- point when the type is frozen. Meanwhile, we first narrow the range
20406 -- as permitted (so that it will fit if necessary in a small specified
20407 -- size), and then build a range subtree with these narrowed bounds.
20408 -- Set_Fixed_Range constructs the range from real literal values, and
20409 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20411 -- The parent of this range is set to point to the entity so that it is
20412 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20413 -- other scalar types, which are just pointers to the range in the
20414 -- original tree, this would otherwise be an orphan).
20416 -- The tree is left unanalyzed. When the type is frozen, the processing
20417 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
20418 -- analyzed, and uses this as an indication that it should complete
20419 -- work on the range (it will know the final small and size values).
20421 procedure Set_Fixed_Range
20422 (E : Entity_Id;
20423 Loc : Source_Ptr;
20424 Lo : Ureal;
20425 Hi : Ureal)
20427 S : constant Node_Id :=
20428 Make_Range (Loc,
20429 Low_Bound => Make_Real_Literal (Loc, Lo),
20430 High_Bound => Make_Real_Literal (Loc, Hi));
20431 begin
20432 Set_Scalar_Range (E, S);
20433 Set_Parent (S, E);
20435 -- Before the freeze point, the bounds of a fixed point are universal
20436 -- and carry the corresponding type.
20438 Set_Etype (Low_Bound (S), Universal_Real);
20439 Set_Etype (High_Bound (S), Universal_Real);
20440 end Set_Fixed_Range;
20442 ----------------------------------
20443 -- Set_Scalar_Range_For_Subtype --
20444 ----------------------------------
20446 procedure Set_Scalar_Range_For_Subtype
20447 (Def_Id : Entity_Id;
20448 R : Node_Id;
20449 Subt : Entity_Id)
20451 Kind : constant Entity_Kind := Ekind (Def_Id);
20453 begin
20454 -- Defend against previous error
20456 if Nkind (R) = N_Error then
20457 return;
20458 end if;
20460 Set_Scalar_Range (Def_Id, R);
20462 -- We need to link the range into the tree before resolving it so
20463 -- that types that are referenced, including importantly the subtype
20464 -- itself, are properly frozen (Freeze_Expression requires that the
20465 -- expression be properly linked into the tree). Of course if it is
20466 -- already linked in, then we do not disturb the current link.
20468 if No (Parent (R)) then
20469 Set_Parent (R, Def_Id);
20470 end if;
20472 -- Reset the kind of the subtype during analysis of the range, to
20473 -- catch possible premature use in the bounds themselves.
20475 Set_Ekind (Def_Id, E_Void);
20476 Process_Range_Expr_In_Decl (R, Subt);
20477 Set_Ekind (Def_Id, Kind);
20478 end Set_Scalar_Range_For_Subtype;
20480 --------------------------------------------------------
20481 -- Set_Stored_Constraint_From_Discriminant_Constraint --
20482 --------------------------------------------------------
20484 procedure Set_Stored_Constraint_From_Discriminant_Constraint
20485 (E : Entity_Id)
20487 begin
20488 -- Make sure set if encountered during Expand_To_Stored_Constraint
20490 Set_Stored_Constraint (E, No_Elist);
20492 -- Give it the right value
20494 if Is_Constrained (E) and then Has_Discriminants (E) then
20495 Set_Stored_Constraint (E,
20496 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
20497 end if;
20498 end Set_Stored_Constraint_From_Discriminant_Constraint;
20500 -------------------------------------
20501 -- Signed_Integer_Type_Declaration --
20502 -------------------------------------
20504 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
20505 Implicit_Base : Entity_Id;
20506 Base_Typ : Entity_Id;
20507 Lo_Val : Uint;
20508 Hi_Val : Uint;
20509 Errs : Boolean := False;
20510 Lo : Node_Id;
20511 Hi : Node_Id;
20513 function Can_Derive_From (E : Entity_Id) return Boolean;
20514 -- Determine whether given bounds allow derivation from specified type
20516 procedure Check_Bound (Expr : Node_Id);
20517 -- Check bound to make sure it is integral and static. If not, post
20518 -- appropriate error message and set Errs flag
20520 ---------------------
20521 -- Can_Derive_From --
20522 ---------------------
20524 -- Note we check both bounds against both end values, to deal with
20525 -- strange types like ones with a range of 0 .. -12341234.
20527 function Can_Derive_From (E : Entity_Id) return Boolean is
20528 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
20529 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
20530 begin
20531 return Lo <= Lo_Val and then Lo_Val <= Hi
20532 and then
20533 Lo <= Hi_Val and then Hi_Val <= Hi;
20534 end Can_Derive_From;
20536 -----------------
20537 -- Check_Bound --
20538 -----------------
20540 procedure Check_Bound (Expr : Node_Id) is
20541 begin
20542 -- If a range constraint is used as an integer type definition, each
20543 -- bound of the range must be defined by a static expression of some
20544 -- integer type, but the two bounds need not have the same integer
20545 -- type (Negative bounds are allowed.) (RM 3.5.4)
20547 if not Is_Integer_Type (Etype (Expr)) then
20548 Error_Msg_N
20549 ("integer type definition bounds must be of integer type", Expr);
20550 Errs := True;
20552 elsif not Is_OK_Static_Expression (Expr) then
20553 Flag_Non_Static_Expr
20554 ("non-static expression used for integer type bound!", Expr);
20555 Errs := True;
20557 -- The bounds are folded into literals, and we set their type to be
20558 -- universal, to avoid typing difficulties: we cannot set the type
20559 -- of the literal to the new type, because this would be a forward
20560 -- reference for the back end, and if the original type is user-
20561 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
20563 else
20564 if Is_Entity_Name (Expr) then
20565 Fold_Uint (Expr, Expr_Value (Expr), True);
20566 end if;
20568 Set_Etype (Expr, Universal_Integer);
20569 end if;
20570 end Check_Bound;
20572 -- Start of processing for Signed_Integer_Type_Declaration
20574 begin
20575 -- Create an anonymous base type
20577 Implicit_Base :=
20578 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
20580 -- Analyze and check the bounds, they can be of any integer type
20582 Lo := Low_Bound (Def);
20583 Hi := High_Bound (Def);
20585 -- Arbitrarily use Integer as the type if either bound had an error
20587 if Hi = Error or else Lo = Error then
20588 Base_Typ := Any_Integer;
20589 Set_Error_Posted (T, True);
20591 -- Here both bounds are OK expressions
20593 else
20594 Analyze_And_Resolve (Lo, Any_Integer);
20595 Analyze_And_Resolve (Hi, Any_Integer);
20597 Check_Bound (Lo);
20598 Check_Bound (Hi);
20600 if Errs then
20601 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20602 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20603 end if;
20605 -- Find type to derive from
20607 Lo_Val := Expr_Value (Lo);
20608 Hi_Val := Expr_Value (Hi);
20610 if Can_Derive_From (Standard_Short_Short_Integer) then
20611 Base_Typ := Base_Type (Standard_Short_Short_Integer);
20613 elsif Can_Derive_From (Standard_Short_Integer) then
20614 Base_Typ := Base_Type (Standard_Short_Integer);
20616 elsif Can_Derive_From (Standard_Integer) then
20617 Base_Typ := Base_Type (Standard_Integer);
20619 elsif Can_Derive_From (Standard_Long_Integer) then
20620 Base_Typ := Base_Type (Standard_Long_Integer);
20622 elsif Can_Derive_From (Standard_Long_Long_Integer) then
20623 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20625 else
20626 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20627 Error_Msg_N ("integer type definition bounds out of range", Def);
20628 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20629 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20630 end if;
20631 end if;
20633 -- Complete both implicit base and declared first subtype entities
20635 Set_Etype (Implicit_Base, Base_Typ);
20636 Set_Size_Info (Implicit_Base, (Base_Typ));
20637 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
20638 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
20640 Set_Ekind (T, E_Signed_Integer_Subtype);
20641 Set_Etype (T, Implicit_Base);
20643 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
20645 Set_Size_Info (T, (Implicit_Base));
20646 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
20647 Set_Scalar_Range (T, Def);
20648 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
20649 Set_Is_Constrained (T);
20650 end Signed_Integer_Type_Declaration;
20652 end Sem_Ch3;