gcc/
[official-gcc.git] / gcc / ada / s-asthan-vms-alpha.adb
blob253870f619b9b3f01c525768ebe84f2f0ce9ac38
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- S Y S T E M . A S T _ H A N D L I N G --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1996-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This is the OpenVMS/Alpha version
34 with System; use System;
36 with System.IO;
38 with System.Machine_Code;
39 with System.Parameters;
40 with System.Storage_Elements;
42 with System.Tasking;
43 with System.Tasking.Rendezvous;
44 with System.Tasking.Initialization;
45 with System.Tasking.Utilities;
47 with System.Task_Primitives;
48 with System.Task_Primitives.Operations;
49 with System.Task_Primitives.Operations.DEC;
51 with Ada.Finalization;
52 with Ada.Task_Attributes;
54 with Ada.Exceptions; use Ada.Exceptions;
56 with Ada.Unchecked_Conversion;
57 with Ada.Unchecked_Deallocation;
59 package body System.AST_Handling is
61 package ATID renames Ada.Task_Identification;
63 package SP renames System.Parameters;
64 package ST renames System.Tasking;
65 package STR renames System.Tasking.Rendezvous;
66 package STI renames System.Tasking.Initialization;
67 package STU renames System.Tasking.Utilities;
69 package SSE renames System.Storage_Elements;
70 package STPO renames System.Task_Primitives.Operations;
71 package STPOD renames System.Task_Primitives.Operations.DEC;
73 AST_Lock : aliased System.Task_Primitives.RTS_Lock;
74 -- This is a global lock; it is used to execute in mutual exclusion
75 -- from all other AST tasks. It is only used by Lock_AST and
76 -- Unlock_AST.
78 procedure Lock_AST (Self_ID : ST.Task_Id);
79 -- Locks out other AST tasks. Preceding a section of code by Lock_AST and
80 -- following it by Unlock_AST creates a critical region.
82 procedure Unlock_AST (Self_ID : ST.Task_Id);
83 -- Releases lock previously set by call to Lock_AST.
84 -- All nested locks must be released before other tasks competing for the
85 -- tasking lock are released.
87 --------------
88 -- Lock_AST --
89 --------------
91 procedure Lock_AST (Self_ID : ST.Task_Id) is
92 begin
93 STI.Defer_Abort_Nestable (Self_ID);
94 STPO.Write_Lock (AST_Lock'Access, Global_Lock => True);
95 end Lock_AST;
97 ----------------
98 -- Unlock_AST --
99 ----------------
101 procedure Unlock_AST (Self_ID : ST.Task_Id) is
102 begin
103 STPO.Unlock (AST_Lock'Access, Global_Lock => True);
104 STI.Undefer_Abort_Nestable (Self_ID);
105 end Unlock_AST;
107 ---------------------------------
108 -- AST_Handler Data Structures --
109 ---------------------------------
111 -- As noted in the private part of the spec of System.Aux_DEC, the
112 -- AST_Handler type is simply a pointer to a procedure that takes
113 -- a single 64bit parameter. The following is a local copy
114 -- of that definition.
116 -- We need our own copy because we need to get our hands on this
117 -- and we cannot see the private part of System.Aux_DEC. We don't
118 -- want to be a child of Aux_Dec because of complications resulting
119 -- from the use of pragma Extend_System. We will use unchecked
120 -- conversions between the two versions of the declarations.
122 type AST_Handler is access procedure (Param : Long_Integer);
124 -- However, this declaration is somewhat misleading, since the values
125 -- referenced by AST_Handler values (all produced in this package by
126 -- calls to Create_AST_Handler) are highly stylized.
128 -- The first point is that in VMS/Alpha, procedure pointers do not in
129 -- fact point to code, but rather to a 48-byte procedure descriptor.
130 -- So a value of type AST_Handler is in fact a pointer to one of these
131 -- 48-byte descriptors.
133 type Descriptor_Type is new SSE.Storage_Array (1 .. 48);
134 for Descriptor_Type'Alignment use Standard'Maximum_Alignment;
136 type Descriptor_Ref is access all Descriptor_Type;
138 -- Normally, there is only one such descriptor for a given procedure, but
139 -- it works fine to make a copy of the single allocated descriptor, and
140 -- use the copy itself, and we take advantage of this in the design here.
141 -- The idea is that AST_Handler values will all point to a record with the
142 -- following structure:
144 -- Note: When we say it works fine, there is one delicate point, which
145 -- is that the code for the AST procedure itself requires the original
146 -- descriptor address. We handle this by saving the original descriptor
147 -- address in this structure and restoring in Process_AST.
149 type AST_Handler_Data is record
150 Descriptor : Descriptor_Type;
151 Original_Descriptor_Ref : Descriptor_Ref;
152 Taskid : ATID.Task_Id;
153 Entryno : Natural;
154 end record;
156 type AST_Handler_Data_Ref is access all AST_Handler_Data;
158 function To_AST_Handler is new Ada.Unchecked_Conversion
159 (AST_Handler_Data_Ref, System.Aux_DEC.AST_Handler);
161 -- Each time Create_AST_Handler is called, a new value of this record
162 -- type is created, containing a copy of the procedure descriptor for
163 -- the routine used to handle all AST's (Process_AST), and the Task_Id
164 -- and entry number parameters identifying the task entry involved.
166 -- The AST_Handler value returned is a pointer to this record. Since
167 -- the record starts with the procedure descriptor, it can be used
168 -- by the system in the normal way to call the procedure. But now
169 -- when the procedure gets control, it can determine the address of
170 -- the procedure descriptor used to call it (since the ABI specifies
171 -- that this is left sitting in register r27 on entry), and then use
172 -- that address to retrieve the Task_Id and entry number so that it
173 -- knows on which entry to queue the AST request.
175 -- The next issue is where are these records placed. Since we intend
176 -- to pass pointers to these records to asynchronous system service
177 -- routines, they have to be on the heap, which means we have to worry
178 -- about when to allocate them and deallocate them.
180 -- We solve this problem by introducing a task attribute that points to
181 -- a vector, indexed by the entry number, of AST_Handler_Data records
182 -- for a given task. The pointer itself is a controlled object allowing
183 -- us to write a finalization routine that frees the referenced vector.
185 -- An entry in this vector is either initialized (Entryno non-zero) and
186 -- can be used for any subsequent reference to the same entry, or it is
187 -- unused, marked by the Entryno value being zero.
189 type AST_Handler_Vector is array (Natural range <>) of AST_Handler_Data;
190 type AST_Handler_Vector_Ref is access all AST_Handler_Vector;
192 type AST_Vector_Ptr is new Ada.Finalization.Controlled with record
193 Vector : AST_Handler_Vector_Ref;
194 end record;
196 procedure Finalize (Obj : in out AST_Vector_Ptr);
197 -- Override Finalize so that the AST Vector gets freed.
199 procedure Finalize (Obj : in out AST_Vector_Ptr) is
200 procedure Free is new
201 Ada.Unchecked_Deallocation (AST_Handler_Vector, AST_Handler_Vector_Ref);
202 begin
203 if Obj.Vector /= null then
204 Free (Obj.Vector);
205 end if;
206 end Finalize;
208 AST_Vector_Init : AST_Vector_Ptr;
209 -- Initial value, treated as constant, Vector will be null
211 package AST_Attribute is new Ada.Task_Attributes
212 (Attribute => AST_Vector_Ptr,
213 Initial_Value => AST_Vector_Init);
215 use AST_Attribute;
217 -----------------------
218 -- AST Service Queue --
219 -----------------------
221 -- The following global data structures are used to queue pending
222 -- AST requests. When an AST is signalled, the AST service routine
223 -- Process_AST is called, and it makes an entry in this structure.
225 type AST_Instance is record
226 Taskid : ATID.Task_Id;
227 Entryno : Natural;
228 Param : Long_Integer;
229 end record;
230 -- The Taskid and Entryno indicate the entry on which this AST is to
231 -- be queued, and Param is the parameter provided from the AST itself.
233 AST_Service_Queue_Size : constant := 256;
234 AST_Service_Queue_Limit : constant := 250;
235 type AST_Service_Queue_Index is mod AST_Service_Queue_Size;
236 -- Index used to refer to entries in the circular buffer which holds
237 -- active AST_Instance values. The upper bound reflects the maximum
238 -- number of AST instances that can be stored in the buffer. Since
239 -- these entries are immediately serviced by the high priority server
240 -- task that does the actual entry queuing, it is very unusual to have
241 -- any significant number of entries simultaneously queued.
243 AST_Service_Queue : array (AST_Service_Queue_Index) of AST_Instance;
244 pragma Volatile_Components (AST_Service_Queue);
245 -- The circular buffer used to store active AST requests
247 AST_Service_Queue_Put : AST_Service_Queue_Index := 0;
248 AST_Service_Queue_Get : AST_Service_Queue_Index := 0;
249 pragma Atomic (AST_Service_Queue_Put);
250 pragma Atomic (AST_Service_Queue_Get);
251 -- These two variables point to the next slots in the AST_Service_Queue
252 -- to be used for putting a new entry in and taking an entry out. This
253 -- is a circular buffer, so these pointers wrap around. If the two values
254 -- are equal the buffer is currently empty. The pointers are atomic to
255 -- ensure proper synchronization between the single producer (namely the
256 -- Process_AST procedure), and the single consumer (the AST_Service_Task).
258 --------------------------------
259 -- AST Server Task Structures --
260 --------------------------------
262 -- The basic approach is that when an AST comes in, a call is made to
263 -- the Process_AST procedure. It queues the request in the service queue
264 -- and then wakes up an AST server task to perform the actual call to the
265 -- required entry. We use this intermediate server task, since the AST
266 -- procedure itself cannot wait to return, and we need some caller for
267 -- the rendezvous so that we can use the normal rendezvous mechanism.
269 -- It would work to have only one AST server task, but then we would lose
270 -- all overlap in AST processing, and furthermore, we could get priority
271 -- inversion effects resulting in starvation of AST requests.
273 -- We therefore maintain a small pool of AST server tasks. We adjust
274 -- the size of the pool dynamically to reflect traffic, so that we have
275 -- a sufficient number of server tasks to avoid starvation.
277 Max_AST_Servers : constant Natural := 16;
278 -- Maximum number of AST server tasks that can be allocated
280 Num_AST_Servers : Natural := 0;
281 -- Number of AST server tasks currently active
283 Num_Waiting_AST_Servers : Natural := 0;
284 -- This is the number of AST server tasks that are either waiting for
285 -- work, or just about to go to sleep and wait for work.
287 Is_Waiting : array (1 .. Max_AST_Servers) of Boolean := (others => False);
288 -- An array of flags showing which AST server tasks are currently waiting
290 AST_Task_Ids : array (1 .. Max_AST_Servers) of ST.Task_Id;
291 -- Task Id's of allocated AST server tasks
293 task type AST_Server_Task (Num : Natural) is
294 pragma Priority (Priority'Last);
295 end AST_Server_Task;
296 -- Declaration for AST server task. This task has no entries, it is
297 -- controlled by sleep and wakeup calls at the task primitives level.
299 type AST_Server_Task_Ptr is access all AST_Server_Task;
300 -- Type used to allocate server tasks
302 -----------------------
303 -- Local Subprograms --
304 -----------------------
306 procedure Allocate_New_AST_Server;
307 -- Allocate an additional AST server task
309 procedure Process_AST (Param : Long_Integer);
310 -- This is the central routine for processing all AST's, it is referenced
311 -- as the code address of all created AST_Handler values. See detailed
312 -- description in body to understand how it works to have a single such
313 -- procedure for all AST's even though it does not get any indication of
314 -- the entry involved passed as an explicit parameter. The single explicit
315 -- parameter Param is the parameter passed by the system with the AST.
317 -----------------------------
318 -- Allocate_New_AST_Server --
319 -----------------------------
321 procedure Allocate_New_AST_Server is
322 Dummy : AST_Server_Task_Ptr;
323 pragma Unreferenced (Dummy);
325 begin
326 if Num_AST_Servers = Max_AST_Servers then
327 return;
329 else
330 -- Note: it is safe to increment Num_AST_Servers immediately, since
331 -- no one will try to activate this task until it indicates that it
332 -- is sleeping by setting its entry in Is_Waiting to True.
334 Num_AST_Servers := Num_AST_Servers + 1;
335 Dummy := new AST_Server_Task (Num_AST_Servers);
336 end if;
337 end Allocate_New_AST_Server;
339 ---------------------
340 -- AST_Server_Task --
341 ---------------------
343 task body AST_Server_Task is
344 Taskid : ATID.Task_Id;
345 Entryno : Natural;
346 Param : aliased Long_Integer;
347 Self_Id : constant ST.Task_Id := ST.Self;
349 pragma Volatile (Param);
351 begin
352 -- By making this task independent of master, when the environment
353 -- task is finalizing, the AST_Server_Task will be notified that it
354 -- should terminate.
356 STU.Make_Independent;
358 -- Record our task Id for access by Process_AST
360 AST_Task_Ids (Num) := Self_Id;
362 -- Note: this entire task operates with the main task lock set, except
363 -- when it is sleeping waiting for work, or busy doing a rendezvous
364 -- with an AST server. This lock protects the data structures that
365 -- are shared by multiple instances of the server task.
367 Lock_AST (Self_Id);
369 -- This is the main infinite loop of the task. We go to sleep and
370 -- wait to be woken up by Process_AST when there is some work to do.
372 loop
373 Num_Waiting_AST_Servers := Num_Waiting_AST_Servers + 1;
375 Unlock_AST (Self_Id);
377 STI.Defer_Abort (Self_Id);
379 if SP.Single_Lock then
380 STPO.Lock_RTS;
381 end if;
383 STPO.Write_Lock (Self_Id);
385 Is_Waiting (Num) := True;
387 Self_Id.Common.State := ST.AST_Server_Sleep;
388 STPO.Sleep (Self_Id, ST.AST_Server_Sleep);
389 Self_Id.Common.State := ST.Runnable;
391 STPO.Unlock (Self_Id);
393 if SP.Single_Lock then
394 STPO.Unlock_RTS;
395 end if;
397 -- If the process is finalizing, Undefer_Abort will simply end
398 -- this task.
400 STI.Undefer_Abort (Self_Id);
402 -- We are awake, there is something to do
404 Lock_AST (Self_Id);
405 Num_Waiting_AST_Servers := Num_Waiting_AST_Servers - 1;
407 -- Loop here to service outstanding requests. We are always
408 -- locked on entry to this loop.
410 while AST_Service_Queue_Get /= AST_Service_Queue_Put loop
411 Taskid := AST_Service_Queue (AST_Service_Queue_Get).Taskid;
412 Entryno := AST_Service_Queue (AST_Service_Queue_Get).Entryno;
413 Param := AST_Service_Queue (AST_Service_Queue_Get).Param;
415 AST_Service_Queue_Get := AST_Service_Queue_Get + 1;
417 -- This is a manual expansion of the normal call simple code
419 declare
420 type AA is access all Long_Integer;
421 P : AA := Param'Unrestricted_Access;
423 function To_ST_Task_Id is new Ada.Unchecked_Conversion
424 (ATID.Task_Id, ST.Task_Id);
426 begin
427 Unlock_AST (Self_Id);
428 STR.Call_Simple
429 (Acceptor => To_ST_Task_Id (Taskid),
430 E => ST.Task_Entry_Index (Entryno),
431 Uninterpreted_Data => P'Address);
433 exception
434 when E : others =>
435 System.IO.Put_Line ("%Debugging event");
436 System.IO.Put_Line (Exception_Name (E) &
437 " raised when trying to deliver an AST.");
439 if Exception_Message (E)'Length /= 0 then
440 System.IO.Put_Line (Exception_Message (E));
441 end if;
443 System.IO.Put_Line ("Task type is " & "Receiver_Type");
444 System.IO.Put_Line ("Task id is " & ATID.Image (Taskid));
445 end;
447 Lock_AST (Self_Id);
448 end loop;
449 end loop;
450 end AST_Server_Task;
452 ------------------------
453 -- Create_AST_Handler --
454 ------------------------
456 function Create_AST_Handler
457 (Taskid : ATID.Task_Id;
458 Entryno : Natural) return System.Aux_DEC.AST_Handler
460 Attr_Ref : Attribute_Handle;
462 Process_AST_Ptr : constant AST_Handler := Process_AST'Access;
463 -- Reference to standard procedure descriptor for Process_AST
465 pragma Warnings (Off, "*alignment*");
466 -- Suppress harmless warnings about alignment.
467 -- Should explain why this warning is harmless ???
469 function To_Descriptor_Ref is new Ada.Unchecked_Conversion
470 (AST_Handler, Descriptor_Ref);
472 Original_Descriptor_Ref : constant Descriptor_Ref :=
473 To_Descriptor_Ref (Process_AST_Ptr);
475 pragma Warnings (On, "*alignment*");
477 begin
478 if ATID.Is_Terminated (Taskid) then
479 raise Program_Error;
480 end if;
482 Attr_Ref := Reference (Taskid);
484 -- Allocate another server if supply is getting low
486 if Num_Waiting_AST_Servers < 2 then
487 Allocate_New_AST_Server;
488 end if;
490 -- No point in creating more if we have zillions waiting to
491 -- be serviced.
493 while AST_Service_Queue_Put - AST_Service_Queue_Get
494 > AST_Service_Queue_Limit
495 loop
496 delay 0.01;
497 end loop;
499 -- If no AST vector allocated, or the one we have is too short, then
500 -- allocate one of right size and initialize all entries except the
501 -- one we will use to unused. Note that the assignment automatically
502 -- frees the old allocated table if there is one.
504 if Attr_Ref.Vector = null
505 or else Attr_Ref.Vector'Length < Entryno
506 then
507 Attr_Ref.Vector := new AST_Handler_Vector (1 .. Entryno);
509 for E in 1 .. Entryno loop
510 Attr_Ref.Vector (E).Descriptor :=
511 Original_Descriptor_Ref.all;
512 Attr_Ref.Vector (E).Original_Descriptor_Ref :=
513 Original_Descriptor_Ref;
514 Attr_Ref.Vector (E).Taskid := Taskid;
515 Attr_Ref.Vector (E).Entryno := E;
516 end loop;
517 end if;
519 return To_AST_Handler (Attr_Ref.Vector (Entryno)'Unrestricted_Access);
520 end Create_AST_Handler;
522 ----------------------------
523 -- Expand_AST_Packet_Pool --
524 ----------------------------
526 procedure Expand_AST_Packet_Pool
527 (Requested_Packets : Natural;
528 Actual_Number : out Natural;
529 Total_Number : out Natural)
531 pragma Unreferenced (Requested_Packets);
532 begin
533 -- The AST implementation of GNAT does not permit dynamic expansion
534 -- of the pool, so we simply add no entries and return the total. If
535 -- it is necessary to expand the allocation, then this package body
536 -- must be recompiled with a larger value for AST_Service_Queue_Size.
538 Actual_Number := 0;
539 Total_Number := AST_Service_Queue_Size;
540 end Expand_AST_Packet_Pool;
542 -----------------
543 -- Process_AST --
544 -----------------
546 procedure Process_AST (Param : Long_Integer) is
548 Handler_Data_Ptr : AST_Handler_Data_Ref;
549 -- This variable is set to the address of the descriptor through
550 -- which Process_AST is called. Since the descriptor is part of
551 -- an AST_Handler value, this is also the address of this value,
552 -- from which we can obtain the task and entry number information.
554 function To_Address is new Ada.Unchecked_Conversion
555 (ST.Task_Id, System.Task_Primitives.Task_Address);
557 begin
558 System.Machine_Code.Asm
559 (Template => "addq $27,0,%0",
560 Outputs => AST_Handler_Data_Ref'Asm_Output ("=r", Handler_Data_Ptr),
561 Volatile => True);
563 System.Machine_Code.Asm
564 (Template => "ldq $27,%0",
565 Inputs => Descriptor_Ref'Asm_Input
566 ("m", Handler_Data_Ptr.Original_Descriptor_Ref),
567 Volatile => True);
569 AST_Service_Queue (AST_Service_Queue_Put) := AST_Instance'
570 (Taskid => Handler_Data_Ptr.Taskid,
571 Entryno => Handler_Data_Ptr.Entryno,
572 Param => Param);
574 -- OpenVMS Programming Concepts manual, chapter 8.2.3:
575 -- "Implicit synchronization can be achieved for data that is shared
576 -- for write by using only AST routines to write the data, since only
577 -- one AST can be running at any one time."
579 -- This subprogram runs at AST level so is guaranteed to be
580 -- called sequentially at a given access level.
582 AST_Service_Queue_Put := AST_Service_Queue_Put + 1;
584 -- Need to wake up processing task. If there is no waiting server
585 -- then we have temporarily run out, but things should still be
586 -- OK, since one of the active ones will eventually pick up the
587 -- service request queued in the AST_Service_Queue.
589 for J in 1 .. Num_AST_Servers loop
590 if Is_Waiting (J) then
591 Is_Waiting (J) := False;
593 -- Sleeps are handled by ASTs on VMS, so don't call Wakeup
595 STPOD.Interrupt_AST_Handler (To_Address (AST_Task_Ids (J)));
596 exit;
597 end if;
598 end loop;
599 end Process_AST;
601 begin
602 STPO.Initialize_Lock (AST_Lock'Access, STPO.Global_Task_Level);
603 end System.AST_Handling;