1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
26 #include "tree-flow.h"
28 #include "tree-iterator.h"
29 #include "tree-pass.h"
30 #include "tree-ssa-propagate.h"
33 /* For each complex ssa name, a lattice value. We're interested in finding
34 out whether a complex number is degenerate in some way, having only real
35 or only complex parts. */
45 /* The type complex_lattice_t holds combinations of the above
47 typedef int complex_lattice_t
;
49 #define PAIR(a, b) ((a) << 2 | (b))
52 static vec
<complex_lattice_t
> complex_lattice_values
;
54 /* For each complex variable, a pair of variables for the components exists in
56 static htab_t complex_variable_components
;
58 /* For each complex SSA_NAME, a pair of ssa names for the components. */
59 static vec
<tree
> complex_ssa_name_components
;
61 /* Lookup UID in the complex_variable_components hashtable and return the
64 cvc_lookup (unsigned int uid
)
66 struct int_tree_map
*h
, in
;
68 h
= (struct int_tree_map
*) htab_find_with_hash (complex_variable_components
, &in
, uid
);
69 return h
? h
->to
: NULL
;
72 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
75 cvc_insert (unsigned int uid
, tree to
)
77 struct int_tree_map
*h
;
80 h
= XNEW (struct int_tree_map
);
83 loc
= htab_find_slot_with_hash (complex_variable_components
, h
,
85 *(struct int_tree_map
**) loc
= h
;
88 /* Return true if T is not a zero constant. In the case of real values,
89 we're only interested in +0.0. */
92 some_nonzerop (tree t
)
96 /* Operations with real or imaginary part of a complex number zero
97 cannot be treated the same as operations with a real or imaginary
98 operand if we care about the signs of zeros in the result. */
99 if (TREE_CODE (t
) == REAL_CST
&& !flag_signed_zeros
)
100 zerop
= REAL_VALUES_IDENTICAL (TREE_REAL_CST (t
), dconst0
);
101 else if (TREE_CODE (t
) == FIXED_CST
)
102 zerop
= fixed_zerop (t
);
103 else if (TREE_CODE (t
) == INTEGER_CST
)
104 zerop
= integer_zerop (t
);
110 /* Compute a lattice value from the components of a complex type REAL
113 static complex_lattice_t
114 find_lattice_value_parts (tree real
, tree imag
)
117 complex_lattice_t ret
;
119 r
= some_nonzerop (real
);
120 i
= some_nonzerop (imag
);
121 ret
= r
* ONLY_REAL
+ i
* ONLY_IMAG
;
123 /* ??? On occasion we could do better than mapping 0+0i to real, but we
124 certainly don't want to leave it UNINITIALIZED, which eventually gets
125 mapped to VARYING. */
126 if (ret
== UNINITIALIZED
)
133 /* Compute a lattice value from gimple_val T. */
135 static complex_lattice_t
136 find_lattice_value (tree t
)
140 switch (TREE_CODE (t
))
143 return complex_lattice_values
[SSA_NAME_VERSION (t
)];
146 real
= TREE_REALPART (t
);
147 imag
= TREE_IMAGPART (t
);
154 return find_lattice_value_parts (real
, imag
);
157 /* Determine if LHS is something for which we're interested in seeing
158 simulation results. */
161 is_complex_reg (tree lhs
)
163 return TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
&& is_gimple_reg (lhs
);
166 /* Mark the incoming parameters to the function as VARYING. */
169 init_parameter_lattice_values (void)
173 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
174 if (is_complex_reg (parm
)
175 && (ssa_name
= ssa_default_def (cfun
, parm
)) != NULL_TREE
)
176 complex_lattice_values
[SSA_NAME_VERSION (ssa_name
)] = VARYING
;
179 /* Initialize simulation state for each statement. Return false if we
180 found no statements we want to simulate, and thus there's nothing
181 for the entire pass to do. */
184 init_dont_simulate_again (void)
187 gimple_stmt_iterator gsi
;
189 bool saw_a_complex_op
= false;
193 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
195 phi
= gsi_stmt (gsi
);
196 prop_set_simulate_again (phi
,
197 is_complex_reg (gimple_phi_result (phi
)));
200 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
206 stmt
= gsi_stmt (gsi
);
207 op0
= op1
= NULL_TREE
;
209 /* Most control-altering statements must be initially
210 simulated, else we won't cover the entire cfg. */
211 sim_again_p
= stmt_ends_bb_p (stmt
);
213 switch (gimple_code (stmt
))
216 if (gimple_call_lhs (stmt
))
217 sim_again_p
= is_complex_reg (gimple_call_lhs (stmt
));
221 sim_again_p
= is_complex_reg (gimple_assign_lhs (stmt
));
222 if (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
223 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
224 op0
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0);
226 op0
= gimple_assign_rhs1 (stmt
);
227 if (gimple_num_ops (stmt
) > 2)
228 op1
= gimple_assign_rhs2 (stmt
);
232 op0
= gimple_cond_lhs (stmt
);
233 op1
= gimple_cond_rhs (stmt
);
241 switch (gimple_expr_code (stmt
))
253 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
254 || TREE_CODE (TREE_TYPE (op1
)) == COMPLEX_TYPE
)
255 saw_a_complex_op
= true;
260 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
)
261 saw_a_complex_op
= true;
266 /* The total store transformation performed during
267 gimplification creates such uninitialized loads
268 and we need to lower the statement to be able
270 if (TREE_CODE (op0
) == SSA_NAME
271 && ssa_undefined_value_p (op0
))
272 saw_a_complex_op
= true;
279 prop_set_simulate_again (stmt
, sim_again_p
);
283 return saw_a_complex_op
;
287 /* Evaluate statement STMT against the complex lattice defined above. */
289 static enum ssa_prop_result
290 complex_visit_stmt (gimple stmt
, edge
*taken_edge_p ATTRIBUTE_UNUSED
,
293 complex_lattice_t new_l
, old_l
, op1_l
, op2_l
;
297 lhs
= gimple_get_lhs (stmt
);
298 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
300 return SSA_PROP_VARYING
;
302 /* These conditions should be satisfied due to the initial filter
303 set up in init_dont_simulate_again. */
304 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
305 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
308 ver
= SSA_NAME_VERSION (lhs
);
309 old_l
= complex_lattice_values
[ver
];
311 switch (gimple_expr_code (stmt
))
315 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
319 new_l
= find_lattice_value_parts (gimple_assign_rhs1 (stmt
),
320 gimple_assign_rhs2 (stmt
));
325 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
326 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
328 /* We've set up the lattice values such that IOR neatly
330 new_l
= op1_l
| op2_l
;
339 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
340 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
342 /* Obviously, if either varies, so does the result. */
343 if (op1_l
== VARYING
|| op2_l
== VARYING
)
345 /* Don't prematurely promote variables if we've not yet seen
347 else if (op1_l
== UNINITIALIZED
)
349 else if (op2_l
== UNINITIALIZED
)
353 /* At this point both numbers have only one component. If the
354 numbers are of opposite kind, the result is imaginary,
355 otherwise the result is real. The add/subtract translates
356 the real/imag from/to 0/1; the ^ performs the comparison. */
357 new_l
= ((op1_l
- ONLY_REAL
) ^ (op2_l
- ONLY_REAL
)) + ONLY_REAL
;
359 /* Don't allow the lattice value to flip-flop indefinitely. */
366 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
374 /* If nothing changed this round, let the propagator know. */
376 return SSA_PROP_NOT_INTERESTING
;
378 complex_lattice_values
[ver
] = new_l
;
379 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
382 /* Evaluate a PHI node against the complex lattice defined above. */
384 static enum ssa_prop_result
385 complex_visit_phi (gimple phi
)
387 complex_lattice_t new_l
, old_l
;
392 lhs
= gimple_phi_result (phi
);
394 /* This condition should be satisfied due to the initial filter
395 set up in init_dont_simulate_again. */
396 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
398 /* We've set up the lattice values such that IOR neatly models PHI meet. */
399 new_l
= UNINITIALIZED
;
400 for (i
= gimple_phi_num_args (phi
) - 1; i
>= 0; --i
)
401 new_l
|= find_lattice_value (gimple_phi_arg_def (phi
, i
));
403 ver
= SSA_NAME_VERSION (lhs
);
404 old_l
= complex_lattice_values
[ver
];
407 return SSA_PROP_NOT_INTERESTING
;
409 complex_lattice_values
[ver
] = new_l
;
410 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
413 /* Create one backing variable for a complex component of ORIG. */
416 create_one_component_var (tree type
, tree orig
, const char *prefix
,
417 const char *suffix
, enum tree_code code
)
419 tree r
= create_tmp_var (type
, prefix
);
421 DECL_SOURCE_LOCATION (r
) = DECL_SOURCE_LOCATION (orig
);
422 DECL_ARTIFICIAL (r
) = 1;
424 if (DECL_NAME (orig
) && !DECL_IGNORED_P (orig
))
426 const char *name
= IDENTIFIER_POINTER (DECL_NAME (orig
));
428 DECL_NAME (r
) = get_identifier (ACONCAT ((name
, suffix
, NULL
)));
430 SET_DECL_DEBUG_EXPR (r
, build1 (code
, type
, orig
));
431 DECL_HAS_DEBUG_EXPR_P (r
) = 1;
432 DECL_IGNORED_P (r
) = 0;
433 TREE_NO_WARNING (r
) = TREE_NO_WARNING (orig
);
437 DECL_IGNORED_P (r
) = 1;
438 TREE_NO_WARNING (r
) = 1;
444 /* Retrieve a value for a complex component of VAR. */
447 get_component_var (tree var
, bool imag_p
)
449 size_t decl_index
= DECL_UID (var
) * 2 + imag_p
;
450 tree ret
= cvc_lookup (decl_index
);
454 ret
= create_one_component_var (TREE_TYPE (TREE_TYPE (var
)), var
,
455 imag_p
? "CI" : "CR",
456 imag_p
? "$imag" : "$real",
457 imag_p
? IMAGPART_EXPR
: REALPART_EXPR
);
458 cvc_insert (decl_index
, ret
);
464 /* Retrieve a value for a complex component of SSA_NAME. */
467 get_component_ssa_name (tree ssa_name
, bool imag_p
)
469 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
470 size_t ssa_name_index
;
473 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
475 tree inner_type
= TREE_TYPE (TREE_TYPE (ssa_name
));
476 if (SCALAR_FLOAT_TYPE_P (inner_type
))
477 return build_real (inner_type
, dconst0
);
479 return build_int_cst (inner_type
, 0);
482 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
483 ret
= complex_ssa_name_components
[ssa_name_index
];
486 if (SSA_NAME_VAR (ssa_name
))
487 ret
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
489 ret
= TREE_TYPE (TREE_TYPE (ssa_name
));
490 ret
= make_ssa_name (ret
, NULL
);
492 /* Copy some properties from the original. In particular, whether it
493 is used in an abnormal phi, and whether it's uninitialized. */
494 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret
)
495 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
);
496 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name
)
497 && TREE_CODE (SSA_NAME_VAR (ssa_name
)) == VAR_DECL
)
499 SSA_NAME_DEF_STMT (ret
) = SSA_NAME_DEF_STMT (ssa_name
);
500 set_ssa_default_def (cfun
, SSA_NAME_VAR (ret
), ret
);
503 complex_ssa_name_components
[ssa_name_index
] = ret
;
509 /* Set a value for a complex component of SSA_NAME, return a
510 gimple_seq of stuff that needs doing. */
513 set_component_ssa_name (tree ssa_name
, bool imag_p
, tree value
)
515 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
516 size_t ssa_name_index
;
521 /* We know the value must be zero, else there's a bug in our lattice
522 analysis. But the value may well be a variable known to contain
523 zero. We should be safe ignoring it. */
524 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
527 /* If we've already assigned an SSA_NAME to this component, then this
528 means that our walk of the basic blocks found a use before the set.
529 This is fine. Now we should create an initialization for the value
530 we created earlier. */
531 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
532 comp
= complex_ssa_name_components
[ssa_name_index
];
536 /* If we've nothing assigned, and the value we're given is already stable,
537 then install that as the value for this SSA_NAME. This preemptively
538 copy-propagates the value, which avoids unnecessary memory allocation. */
539 else if (is_gimple_min_invariant (value
)
540 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
542 complex_ssa_name_components
[ssa_name_index
] = value
;
545 else if (TREE_CODE (value
) == SSA_NAME
546 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
548 /* Replace an anonymous base value with the variable from cvc_lookup.
549 This should result in better debug info. */
550 if (SSA_NAME_VAR (ssa_name
)
551 && (!SSA_NAME_VAR (value
) || DECL_IGNORED_P (SSA_NAME_VAR (value
)))
552 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name
)))
554 comp
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
555 replace_ssa_name_symbol (value
, comp
);
558 complex_ssa_name_components
[ssa_name_index
] = value
;
562 /* Finally, we need to stabilize the result by installing the value into
565 comp
= get_component_ssa_name (ssa_name
, imag_p
);
567 /* Do all the work to assign VALUE to COMP. */
569 value
= force_gimple_operand (value
, &list
, false, NULL
);
570 last
= gimple_build_assign (comp
, value
);
571 gimple_seq_add_stmt (&list
, last
);
572 gcc_assert (SSA_NAME_DEF_STMT (comp
) == last
);
577 /* Extract the real or imaginary part of a complex variable or constant.
578 Make sure that it's a proper gimple_val and gimplify it if not.
579 Emit any new code before gsi. */
582 extract_component (gimple_stmt_iterator
*gsi
, tree t
, bool imagpart_p
,
585 switch (TREE_CODE (t
))
588 return imagpart_p
? TREE_IMAGPART (t
) : TREE_REALPART (t
);
598 case VIEW_CONVERT_EXPR
:
601 tree inner_type
= TREE_TYPE (TREE_TYPE (t
));
603 t
= build1 ((imagpart_p
? IMAGPART_EXPR
: REALPART_EXPR
),
604 inner_type
, unshare_expr (t
));
607 t
= force_gimple_operand_gsi (gsi
, t
, true, NULL
, true,
614 return get_component_ssa_name (t
, imagpart_p
);
621 /* Update the complex components of the ssa name on the lhs of STMT. */
624 update_complex_components (gimple_stmt_iterator
*gsi
, gimple stmt
, tree r
,
630 lhs
= gimple_get_lhs (stmt
);
632 list
= set_component_ssa_name (lhs
, false, r
);
634 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
636 list
= set_component_ssa_name (lhs
, true, i
);
638 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
642 update_complex_components_on_edge (edge e
, tree lhs
, tree r
, tree i
)
646 list
= set_component_ssa_name (lhs
, false, r
);
648 gsi_insert_seq_on_edge (e
, list
);
650 list
= set_component_ssa_name (lhs
, true, i
);
652 gsi_insert_seq_on_edge (e
, list
);
656 /* Update an assignment to a complex variable in place. */
659 update_complex_assignment (gimple_stmt_iterator
*gsi
, tree r
, tree i
)
663 gimple_assign_set_rhs_with_ops (gsi
, COMPLEX_EXPR
, r
, i
);
664 stmt
= gsi_stmt (*gsi
);
666 if (maybe_clean_eh_stmt (stmt
))
667 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
669 if (gimple_in_ssa_p (cfun
))
670 update_complex_components (gsi
, gsi_stmt (*gsi
), r
, i
);
674 /* Generate code at the entry point of the function to initialize the
675 component variables for a complex parameter. */
678 update_parameter_components (void)
680 edge entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR
);
683 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
685 tree type
= TREE_TYPE (parm
);
688 if (TREE_CODE (type
) != COMPLEX_TYPE
|| !is_gimple_reg (parm
))
691 type
= TREE_TYPE (type
);
692 ssa_name
= ssa_default_def (cfun
, parm
);
696 r
= build1 (REALPART_EXPR
, type
, ssa_name
);
697 i
= build1 (IMAGPART_EXPR
, type
, ssa_name
);
698 update_complex_components_on_edge (entry_edge
, ssa_name
, r
, i
);
702 /* Generate code to set the component variables of a complex variable
703 to match the PHI statements in block BB. */
706 update_phi_components (basic_block bb
)
708 gimple_stmt_iterator gsi
;
710 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
712 gimple phi
= gsi_stmt (gsi
);
714 if (is_complex_reg (gimple_phi_result (phi
)))
717 gimple pr
= NULL
, pi
= NULL
;
720 lr
= get_component_ssa_name (gimple_phi_result (phi
), false);
721 if (TREE_CODE (lr
) == SSA_NAME
)
722 pr
= create_phi_node (lr
, bb
);
724 li
= get_component_ssa_name (gimple_phi_result (phi
), true);
725 if (TREE_CODE (li
) == SSA_NAME
)
726 pi
= create_phi_node (li
, bb
);
728 for (i
= 0, n
= gimple_phi_num_args (phi
); i
< n
; ++i
)
730 tree comp
, arg
= gimple_phi_arg_def (phi
, i
);
733 comp
= extract_component (NULL
, arg
, false, false);
734 SET_PHI_ARG_DEF (pr
, i
, comp
);
738 comp
= extract_component (NULL
, arg
, true, false);
739 SET_PHI_ARG_DEF (pi
, i
, comp
);
746 /* Expand a complex move to scalars. */
749 expand_complex_move (gimple_stmt_iterator
*gsi
, tree type
)
751 tree inner_type
= TREE_TYPE (type
);
753 gimple stmt
= gsi_stmt (*gsi
);
755 if (is_gimple_assign (stmt
))
757 lhs
= gimple_assign_lhs (stmt
);
758 if (gimple_num_ops (stmt
) == 2)
759 rhs
= gimple_assign_rhs1 (stmt
);
763 else if (is_gimple_call (stmt
))
765 lhs
= gimple_call_lhs (stmt
);
771 if (TREE_CODE (lhs
) == SSA_NAME
)
773 if (is_ctrl_altering_stmt (stmt
))
777 /* The value is not assigned on the exception edges, so we need not
778 concern ourselves there. We do need to update on the fallthru
780 e
= find_fallthru_edge (gsi_bb (*gsi
)->succs
);
784 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
785 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
786 update_complex_components_on_edge (e
, lhs
, r
, i
);
788 else if (is_gimple_call (stmt
)
789 || gimple_has_side_effects (stmt
)
790 || gimple_assign_rhs_code (stmt
) == PAREN_EXPR
)
792 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
793 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
794 update_complex_components (gsi
, stmt
, r
, i
);
798 if (gimple_assign_rhs_code (stmt
) != COMPLEX_EXPR
)
800 r
= extract_component (gsi
, rhs
, 0, true);
801 i
= extract_component (gsi
, rhs
, 1, true);
805 r
= gimple_assign_rhs1 (stmt
);
806 i
= gimple_assign_rhs2 (stmt
);
808 update_complex_assignment (gsi
, r
, i
);
811 else if (rhs
&& TREE_CODE (rhs
) == SSA_NAME
&& !TREE_SIDE_EFFECTS (lhs
))
816 r
= extract_component (gsi
, rhs
, 0, false);
817 i
= extract_component (gsi
, rhs
, 1, false);
819 x
= build1 (REALPART_EXPR
, inner_type
, unshare_expr (lhs
));
820 t
= gimple_build_assign (x
, r
);
821 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
823 if (stmt
== gsi_stmt (*gsi
))
825 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
826 gimple_assign_set_lhs (stmt
, x
);
827 gimple_assign_set_rhs1 (stmt
, i
);
831 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
832 t
= gimple_build_assign (x
, i
);
833 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
835 stmt
= gsi_stmt (*gsi
);
836 gcc_assert (gimple_code (stmt
) == GIMPLE_RETURN
);
837 gimple_return_set_retval (stmt
, lhs
);
844 /* Expand complex addition to scalars:
845 a + b = (ar + br) + i(ai + bi)
846 a - b = (ar - br) + i(ai + bi)
850 expand_complex_addition (gimple_stmt_iterator
*gsi
, tree inner_type
,
851 tree ar
, tree ai
, tree br
, tree bi
,
853 complex_lattice_t al
, complex_lattice_t bl
)
857 switch (PAIR (al
, bl
))
859 case PAIR (ONLY_REAL
, ONLY_REAL
):
860 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
864 case PAIR (ONLY_REAL
, ONLY_IMAG
):
866 if (code
== MINUS_EXPR
)
867 ri
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, bi
);
872 case PAIR (ONLY_IMAG
, ONLY_REAL
):
873 if (code
== MINUS_EXPR
)
874 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ar
, br
);
880 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
882 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
885 case PAIR (VARYING
, ONLY_REAL
):
886 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
890 case PAIR (VARYING
, ONLY_IMAG
):
892 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
895 case PAIR (ONLY_REAL
, VARYING
):
896 if (code
== MINUS_EXPR
)
898 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
902 case PAIR (ONLY_IMAG
, VARYING
):
903 if (code
== MINUS_EXPR
)
906 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
909 case PAIR (VARYING
, VARYING
):
911 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
912 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
919 update_complex_assignment (gsi
, rr
, ri
);
922 /* Expand a complex multiplication or division to a libcall to the c99
923 compliant routines. */
926 expand_complex_libcall (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
927 tree br
, tree bi
, enum tree_code code
)
929 enum machine_mode mode
;
930 enum built_in_function bcode
;
932 gimple old_stmt
, stmt
;
934 old_stmt
= gsi_stmt (*gsi
);
935 lhs
= gimple_assign_lhs (old_stmt
);
936 type
= TREE_TYPE (lhs
);
938 mode
= TYPE_MODE (type
);
939 gcc_assert (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
);
941 if (code
== MULT_EXPR
)
942 bcode
= ((enum built_in_function
)
943 (BUILT_IN_COMPLEX_MUL_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
944 else if (code
== RDIV_EXPR
)
945 bcode
= ((enum built_in_function
)
946 (BUILT_IN_COMPLEX_DIV_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
949 fn
= builtin_decl_explicit (bcode
);
951 stmt
= gimple_build_call (fn
, 4, ar
, ai
, br
, bi
);
952 gimple_call_set_lhs (stmt
, lhs
);
954 gsi_replace (gsi
, stmt
, false);
956 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
957 gimple_purge_dead_eh_edges (gsi_bb (*gsi
));
959 if (gimple_in_ssa_p (cfun
))
961 type
= TREE_TYPE (type
);
962 update_complex_components (gsi
, stmt
,
963 build1 (REALPART_EXPR
, type
, lhs
),
964 build1 (IMAGPART_EXPR
, type
, lhs
));
965 SSA_NAME_DEF_STMT (lhs
) = stmt
;
969 /* Expand complex multiplication to scalars:
970 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
974 expand_complex_multiplication (gimple_stmt_iterator
*gsi
, tree inner_type
,
975 tree ar
, tree ai
, tree br
, tree bi
,
976 complex_lattice_t al
, complex_lattice_t bl
)
982 complex_lattice_t tl
;
983 rr
= ar
, ar
= br
, br
= rr
;
984 ri
= ai
, ai
= bi
, bi
= ri
;
985 tl
= al
, al
= bl
, bl
= tl
;
988 switch (PAIR (al
, bl
))
990 case PAIR (ONLY_REAL
, ONLY_REAL
):
991 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
995 case PAIR (ONLY_IMAG
, ONLY_REAL
):
997 if (TREE_CODE (ai
) == REAL_CST
998 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai
), dconst1
))
1001 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1004 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1005 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1006 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1010 case PAIR (VARYING
, ONLY_REAL
):
1011 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1012 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1015 case PAIR (VARYING
, ONLY_IMAG
):
1016 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1017 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1018 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1021 case PAIR (VARYING
, VARYING
):
1022 if (flag_complex_method
== 2 && SCALAR_FLOAT_TYPE_P (inner_type
))
1024 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, MULT_EXPR
);
1029 tree t1
, t2
, t3
, t4
;
1031 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1032 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1033 t3
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1035 /* Avoid expanding redundant multiplication for the common
1036 case of squaring a complex number. */
1037 if (ar
== br
&& ai
== bi
)
1040 t4
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1042 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1043 ri
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t3
, t4
);
1051 update_complex_assignment (gsi
, rr
, ri
);
1054 /* Keep this algorithm in sync with fold-const.c:const_binop().
1056 Expand complex division to scalars, straightforward algorithm.
1057 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1062 expand_complex_div_straight (gimple_stmt_iterator
*gsi
, tree inner_type
,
1063 tree ar
, tree ai
, tree br
, tree bi
,
1064 enum tree_code code
)
1066 tree rr
, ri
, div
, t1
, t2
, t3
;
1068 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, br
);
1069 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, bi
);
1070 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1072 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1073 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1074 t3
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1075 rr
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1077 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1078 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1079 t3
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1080 ri
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1082 update_complex_assignment (gsi
, rr
, ri
);
1085 /* Keep this algorithm in sync with fold-const.c:const_binop().
1087 Expand complex division to scalars, modified algorithm to minimize
1088 overflow with wide input ranges. */
1091 expand_complex_div_wide (gimple_stmt_iterator
*gsi
, tree inner_type
,
1092 tree ar
, tree ai
, tree br
, tree bi
,
1093 enum tree_code code
)
1095 tree rr
, ri
, ratio
, div
, t1
, t2
, tr
, ti
, compare
;
1096 basic_block bb_cond
, bb_true
, bb_false
, bb_join
;
1099 /* Examine |br| < |bi|, and branch. */
1100 t1
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, br
);
1101 t2
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, bi
);
1102 compare
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)),
1103 LT_EXPR
, boolean_type_node
, t1
, t2
);
1104 STRIP_NOPS (compare
);
1106 bb_cond
= bb_true
= bb_false
= bb_join
= NULL
;
1107 rr
= ri
= tr
= ti
= NULL
;
1108 if (TREE_CODE (compare
) != INTEGER_CST
)
1114 tmp
= create_tmp_var (boolean_type_node
, NULL
);
1115 stmt
= gimple_build_assign (tmp
, compare
);
1116 if (gimple_in_ssa_p (cfun
))
1118 tmp
= make_ssa_name (tmp
, stmt
);
1119 gimple_assign_set_lhs (stmt
, tmp
);
1122 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1124 cond
= fold_build2_loc (gimple_location (stmt
),
1125 EQ_EXPR
, boolean_type_node
, tmp
, boolean_true_node
);
1126 stmt
= gimple_build_cond_from_tree (cond
, NULL_TREE
, NULL_TREE
);
1127 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1129 /* Split the original block, and create the TRUE and FALSE blocks. */
1130 e
= split_block (gsi_bb (*gsi
), stmt
);
1133 bb_true
= create_empty_bb (bb_cond
);
1134 bb_false
= create_empty_bb (bb_true
);
1136 /* Wire the blocks together. */
1137 e
->flags
= EDGE_TRUE_VALUE
;
1138 redirect_edge_succ (e
, bb_true
);
1139 make_edge (bb_cond
, bb_false
, EDGE_FALSE_VALUE
);
1140 make_edge (bb_true
, bb_join
, EDGE_FALLTHRU
);
1141 make_edge (bb_false
, bb_join
, EDGE_FALLTHRU
);
1143 /* Update dominance info. Note that bb_join's data was
1144 updated by split_block. */
1145 if (dom_info_available_p (CDI_DOMINATORS
))
1147 set_immediate_dominator (CDI_DOMINATORS
, bb_true
, bb_cond
);
1148 set_immediate_dominator (CDI_DOMINATORS
, bb_false
, bb_cond
);
1151 rr
= create_tmp_reg (inner_type
, NULL
);
1152 ri
= create_tmp_reg (inner_type
, NULL
);
1155 /* In the TRUE branch, we compute
1157 div = (br * ratio) + bi;
1158 tr = (ar * ratio) + ai;
1159 ti = (ai * ratio) - ar;
1162 if (bb_true
|| integer_nonzerop (compare
))
1166 *gsi
= gsi_last_bb (bb_true
);
1167 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1170 ratio
= gimplify_build2 (gsi
, code
, inner_type
, br
, bi
);
1172 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, ratio
);
1173 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, bi
);
1175 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1176 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ai
);
1178 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1179 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, ar
);
1181 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1182 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1186 stmt
= gimple_build_assign (rr
, tr
);
1187 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1188 stmt
= gimple_build_assign (ri
, ti
);
1189 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1190 gsi_remove (gsi
, true);
1194 /* In the FALSE branch, we compute
1196 divisor = (d * ratio) + c;
1197 tr = (b * ratio) + a;
1198 ti = b - (a * ratio);
1201 if (bb_false
|| integer_zerop (compare
))
1205 *gsi
= gsi_last_bb (bb_false
);
1206 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1209 ratio
= gimplify_build2 (gsi
, code
, inner_type
, bi
, br
);
1211 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, ratio
);
1212 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, br
);
1214 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1215 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ar
);
1217 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1218 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, t1
);
1220 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1221 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1225 stmt
= gimple_build_assign (rr
, tr
);
1226 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1227 stmt
= gimple_build_assign (ri
, ti
);
1228 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1229 gsi_remove (gsi
, true);
1234 *gsi
= gsi_start_bb (bb_join
);
1238 update_complex_assignment (gsi
, rr
, ri
);
1241 /* Expand complex division to scalars. */
1244 expand_complex_division (gimple_stmt_iterator
*gsi
, tree inner_type
,
1245 tree ar
, tree ai
, tree br
, tree bi
,
1246 enum tree_code code
,
1247 complex_lattice_t al
, complex_lattice_t bl
)
1251 switch (PAIR (al
, bl
))
1253 case PAIR (ONLY_REAL
, ONLY_REAL
):
1254 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1258 case PAIR (ONLY_REAL
, ONLY_IMAG
):
1260 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1261 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1264 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1266 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1269 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1270 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1274 case PAIR (VARYING
, ONLY_REAL
):
1275 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1276 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1279 case PAIR (VARYING
, ONLY_IMAG
):
1280 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1281 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1282 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1284 case PAIR (ONLY_REAL
, VARYING
):
1285 case PAIR (ONLY_IMAG
, VARYING
):
1286 case PAIR (VARYING
, VARYING
):
1287 switch (flag_complex_method
)
1290 /* straightforward implementation of complex divide acceptable. */
1291 expand_complex_div_straight (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1295 if (SCALAR_FLOAT_TYPE_P (inner_type
))
1297 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, code
);
1303 /* wide ranges of inputs must work for complex divide. */
1304 expand_complex_div_wide (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1316 update_complex_assignment (gsi
, rr
, ri
);
1319 /* Expand complex negation to scalars:
1324 expand_complex_negation (gimple_stmt_iterator
*gsi
, tree inner_type
,
1329 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ar
);
1330 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1332 update_complex_assignment (gsi
, rr
, ri
);
1335 /* Expand complex conjugate to scalars:
1340 expand_complex_conjugate (gimple_stmt_iterator
*gsi
, tree inner_type
,
1345 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1347 update_complex_assignment (gsi
, ar
, ri
);
1350 /* Expand complex comparison (EQ or NE only). */
1353 expand_complex_comparison (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
1354 tree br
, tree bi
, enum tree_code code
)
1356 tree cr
, ci
, cc
, type
;
1359 cr
= gimplify_build2 (gsi
, code
, boolean_type_node
, ar
, br
);
1360 ci
= gimplify_build2 (gsi
, code
, boolean_type_node
, ai
, bi
);
1361 cc
= gimplify_build2 (gsi
,
1362 (code
== EQ_EXPR
? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
),
1363 boolean_type_node
, cr
, ci
);
1365 stmt
= gsi_stmt (*gsi
);
1367 switch (gimple_code (stmt
))
1370 type
= TREE_TYPE (gimple_return_retval (stmt
));
1371 gimple_return_set_retval (stmt
, fold_convert (type
, cc
));
1375 type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1376 gimple_assign_set_rhs_from_tree (gsi
, fold_convert (type
, cc
));
1377 stmt
= gsi_stmt (*gsi
);
1381 gimple_cond_set_code (stmt
, EQ_EXPR
);
1382 gimple_cond_set_lhs (stmt
, cc
);
1383 gimple_cond_set_rhs (stmt
, boolean_true_node
);
1393 /* Expand inline asm that sets some complex SSA_NAMEs. */
1396 expand_complex_asm (gimple_stmt_iterator
*gsi
)
1398 gimple stmt
= gsi_stmt (*gsi
);
1401 for (i
= 0; i
< gimple_asm_noutputs (stmt
); ++i
)
1403 tree link
= gimple_asm_output_op (stmt
, i
);
1404 tree op
= TREE_VALUE (link
);
1405 if (TREE_CODE (op
) == SSA_NAME
1406 && TREE_CODE (TREE_TYPE (op
)) == COMPLEX_TYPE
)
1408 tree type
= TREE_TYPE (op
);
1409 tree inner_type
= TREE_TYPE (type
);
1410 tree r
= build1 (REALPART_EXPR
, inner_type
, op
);
1411 tree i
= build1 (IMAGPART_EXPR
, inner_type
, op
);
1412 gimple_seq list
= set_component_ssa_name (op
, false, r
);
1415 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1417 list
= set_component_ssa_name (op
, true, i
);
1419 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1424 /* Process one statement. If we identify a complex operation, expand it. */
1427 expand_complex_operations_1 (gimple_stmt_iterator
*gsi
)
1429 gimple stmt
= gsi_stmt (*gsi
);
1430 tree type
, inner_type
, lhs
;
1431 tree ac
, ar
, ai
, bc
, br
, bi
;
1432 complex_lattice_t al
, bl
;
1433 enum tree_code code
;
1435 if (gimple_code (stmt
) == GIMPLE_ASM
)
1437 expand_complex_asm (gsi
);
1441 lhs
= gimple_get_lhs (stmt
);
1442 if (!lhs
&& gimple_code (stmt
) != GIMPLE_COND
)
1445 type
= TREE_TYPE (gimple_op (stmt
, 0));
1446 code
= gimple_expr_code (stmt
);
1448 /* Initial filter for operations we handle. */
1454 case TRUNC_DIV_EXPR
:
1456 case FLOOR_DIV_EXPR
:
1457 case ROUND_DIV_EXPR
:
1461 if (TREE_CODE (type
) != COMPLEX_TYPE
)
1463 inner_type
= TREE_TYPE (type
);
1468 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1469 subocde, so we need to access the operands using gimple_op. */
1470 inner_type
= TREE_TYPE (gimple_op (stmt
, 1));
1471 if (TREE_CODE (inner_type
) != COMPLEX_TYPE
)
1479 /* GIMPLE_COND may also fallthru here, but we do not need to
1480 do anything with it. */
1481 if (gimple_code (stmt
) == GIMPLE_COND
)
1484 if (TREE_CODE (type
) == COMPLEX_TYPE
)
1485 expand_complex_move (gsi
, type
);
1486 else if (is_gimple_assign (stmt
)
1487 && (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
1488 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
1489 && TREE_CODE (lhs
) == SSA_NAME
)
1491 rhs
= gimple_assign_rhs1 (stmt
);
1492 rhs
= extract_component (gsi
, TREE_OPERAND (rhs
, 0),
1493 gimple_assign_rhs_code (stmt
)
1496 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1497 stmt
= gsi_stmt (*gsi
);
1504 /* Extract the components of the two complex values. Make sure and
1505 handle the common case of the same value used twice specially. */
1506 if (is_gimple_assign (stmt
))
1508 ac
= gimple_assign_rhs1 (stmt
);
1509 bc
= (gimple_num_ops (stmt
) > 2) ? gimple_assign_rhs2 (stmt
) : NULL
;
1511 /* GIMPLE_CALL can not get here. */
1514 ac
= gimple_cond_lhs (stmt
);
1515 bc
= gimple_cond_rhs (stmt
);
1518 ar
= extract_component (gsi
, ac
, false, true);
1519 ai
= extract_component (gsi
, ac
, true, true);
1525 br
= extract_component (gsi
, bc
, 0, true);
1526 bi
= extract_component (gsi
, bc
, 1, true);
1529 br
= bi
= NULL_TREE
;
1531 if (gimple_in_ssa_p (cfun
))
1533 al
= find_lattice_value (ac
);
1534 if (al
== UNINITIALIZED
)
1537 if (TREE_CODE_CLASS (code
) == tcc_unary
)
1543 bl
= find_lattice_value (bc
);
1544 if (bl
== UNINITIALIZED
)
1555 expand_complex_addition (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1559 expand_complex_multiplication (gsi
, inner_type
, ar
, ai
, br
, bi
, al
, bl
);
1562 case TRUNC_DIV_EXPR
:
1564 case FLOOR_DIV_EXPR
:
1565 case ROUND_DIV_EXPR
:
1567 expand_complex_division (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1571 expand_complex_negation (gsi
, inner_type
, ar
, ai
);
1575 expand_complex_conjugate (gsi
, inner_type
, ar
, ai
);
1580 expand_complex_comparison (gsi
, ar
, ai
, br
, bi
, code
);
1589 /* Entry point for complex operation lowering during optimization. */
1592 tree_lower_complex (void)
1594 int old_last_basic_block
;
1595 gimple_stmt_iterator gsi
;
1598 if (!init_dont_simulate_again ())
1601 complex_lattice_values
.create (num_ssa_names
);
1602 complex_lattice_values
.safe_grow_cleared (num_ssa_names
);
1604 init_parameter_lattice_values ();
1605 ssa_propagate (complex_visit_stmt
, complex_visit_phi
);
1607 complex_variable_components
= htab_create (10, int_tree_map_hash
,
1608 int_tree_map_eq
, free
);
1610 complex_ssa_name_components
.create (2 * num_ssa_names
);
1611 complex_ssa_name_components
.safe_grow_cleared (2 * num_ssa_names
);
1613 update_parameter_components ();
1615 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1616 old_last_basic_block
= last_basic_block
;
1619 if (bb
->index
>= old_last_basic_block
)
1622 update_phi_components (bb
);
1623 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1624 expand_complex_operations_1 (&gsi
);
1627 gsi_commit_edge_inserts ();
1629 htab_delete (complex_variable_components
);
1630 complex_ssa_name_components
.release ();
1631 complex_lattice_values
.release ();
1635 struct gimple_opt_pass pass_lower_complex
=
1639 "cplxlower", /* name */
1640 OPTGROUP_NONE
, /* optinfo_flags */
1642 tree_lower_complex
, /* execute */
1645 0, /* static_pass_number */
1646 TV_NONE
, /* tv_id */
1647 PROP_ssa
, /* properties_required */
1648 PROP_gimple_lcx
, /* properties_provided */
1649 0, /* properties_destroyed */
1650 0, /* todo_flags_start */
1653 | TODO_verify_stmts
/* todo_flags_finish */
1659 gate_no_optimization (void)
1661 /* With errors, normal optimization passes are not run. If we don't
1662 lower complex operations at all, rtl expansion will abort. */
1663 return !(cfun
->curr_properties
& PROP_gimple_lcx
);
1666 struct gimple_opt_pass pass_lower_complex_O0
=
1670 "cplxlower0", /* name */
1671 OPTGROUP_NONE
, /* optinfo_flags */
1672 gate_no_optimization
, /* gate */
1673 tree_lower_complex
, /* execute */
1676 0, /* static_pass_number */
1677 TV_NONE
, /* tv_id */
1678 PROP_cfg
, /* properties_required */
1679 PROP_gimple_lcx
, /* properties_provided */
1680 0, /* properties_destroyed */
1681 0, /* todo_flags_start */
1684 | TODO_verify_stmts
/* todo_flags_finish */