1 /* Subroutines needed for unwinding stack frames for exception handling. */
2 /* Copyright (C) 1997-2023 Free Software Foundation, Inc.
3 Contributed by Jason Merrill <jason@cygnus.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #ifndef _Unwind_Find_FDE
29 #include "coretypes.h"
31 #include "libgcc_tm.h"
34 #define NO_BASE_OF_ENCODED_VALUE
35 #include "unwind-pe.h"
36 #include "unwind-dw2-fde.h"
39 #if (defined(__GTHREAD_MUTEX_INIT) || defined(__GTHREAD_MUTEX_INIT_FUNCTION)) \
40 && defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4)
41 #define ATOMIC_FDE_FAST_PATH 1
45 typedef __UINTPTR_TYPE__ uintptr_type
;
47 #ifdef ATOMIC_FDE_FAST_PATH
48 #include "unwind-dw2-btree.h"
50 static struct btree registered_frames
;
51 static bool in_shutdown
;
54 release_registered_frames (void) __attribute__ ((destructor
));
56 release_registered_frames (void)
58 /* Release the b-tree and all frames. Frame releases that happen later are
60 btree_destroy (®istered_frames
);
65 get_pc_range (const struct object
*ob
, uintptr_type
*range
);
68 /* Without fast path frame deregistration must always succeed. */
69 static const int in_shutdown
= 0;
71 /* The unseen_objects list contains objects that have been registered
72 but not yet categorized in any way. The seen_objects list has had
73 its pc_begin and count fields initialized at minimum, and is sorted
74 by decreasing value of pc_begin. */
75 static struct object
*unseen_objects
;
76 static struct object
*seen_objects
;
79 #ifdef __GTHREAD_MUTEX_INIT
80 static __gthread_mutex_t object_mutex
= __GTHREAD_MUTEX_INIT
;
81 #define init_object_mutex_once()
83 #ifdef __GTHREAD_MUTEX_INIT_FUNCTION
84 static __gthread_mutex_t object_mutex
;
87 init_object_mutex (void)
89 __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex
);
93 init_object_mutex_once (void)
95 static __gthread_once_t once
= __GTHREAD_ONCE_INIT
;
96 __gthread_once (&once
, init_object_mutex
);
99 /* ??? Several targets include this file with stubbing parts of gthr.h
100 and expect no locking to be done. */
101 #define init_object_mutex_once()
102 static __gthread_mutex_t object_mutex
;
106 /* Called from crtbegin.o to register the unwind info for an object. */
109 __register_frame_info_bases (const void *begin
, struct object
*ob
,
110 void *tbase
, void *dbase
)
112 /* If .eh_frame is empty, don't register at all. */
113 if ((const uword
*) begin
== 0 || *(const uword
*) begin
== 0)
116 ob
->pc_begin
= (void *)-1;
119 ob
->u
.single
= begin
;
121 ob
->s
.b
.encoding
= DW_EH_PE_omit
;
122 #ifdef DWARF2_OBJECT_END_PTR_EXTENSION
126 #ifdef ATOMIC_FDE_FAST_PATH
127 // Register the frame in the b-tree
128 uintptr_type range
[2];
129 get_pc_range (ob
, range
);
130 btree_insert (®istered_frames
, range
[0], range
[1] - range
[0], ob
);
132 init_object_mutex_once ();
133 __gthread_mutex_lock (&object_mutex
);
135 ob
->next
= unseen_objects
;
138 __gthread_mutex_unlock (&object_mutex
);
143 __register_frame_info (const void *begin
, struct object
*ob
)
145 __register_frame_info_bases (begin
, ob
, 0, 0);
149 __register_frame (void *begin
)
153 /* If .eh_frame is empty, don't register at all. */
154 if (*(uword
*) begin
== 0)
157 ob
= malloc (sizeof (struct object
));
158 __register_frame_info (begin
, ob
);
161 /* Similar, but BEGIN is actually a pointer to a table of unwind entries
162 for different translation units. Called from the file generated by
166 __register_frame_info_table_bases (void *begin
, struct object
*ob
,
167 void *tbase
, void *dbase
)
169 ob
->pc_begin
= (void *)-1;
174 ob
->s
.b
.from_array
= 1;
175 ob
->s
.b
.encoding
= DW_EH_PE_omit
;
177 #ifdef ATOMIC_FDE_FAST_PATH
178 // Register the frame in the b-tree
179 uintptr_type range
[2];
180 get_pc_range (ob
, range
);
181 btree_insert (®istered_frames
, range
[0], range
[1] - range
[0], ob
);
183 init_object_mutex_once ();
184 __gthread_mutex_lock (&object_mutex
);
186 ob
->next
= unseen_objects
;
189 __gthread_mutex_unlock (&object_mutex
);
194 __register_frame_info_table (void *begin
, struct object
*ob
)
196 __register_frame_info_table_bases (begin
, ob
, 0, 0);
200 __register_frame_table (void *begin
)
202 struct object
*ob
= malloc (sizeof (struct object
));
203 __register_frame_info_table (begin
, ob
);
206 /* Called from crtbegin.o to deregister the unwind info for an object. */
207 /* ??? Glibc has for a while now exported __register_frame_info and
208 __deregister_frame_info. If we call __register_frame_info_bases
209 from crtbegin (wherein it is declared weak), and this object does
210 not get pulled from libgcc.a for other reasons, then the
211 invocation of __deregister_frame_info will be resolved from glibc.
212 Since the registration did not happen there, we'll die.
214 Therefore, declare a new deregistration entry point that does the
215 exact same thing, but will resolve to the same library as
216 implements __register_frame_info_bases. */
219 __deregister_frame_info_bases (const void *begin
)
221 struct object
*ob
= 0;
223 /* If .eh_frame is empty, we haven't registered. */
224 if ((const uword
*) begin
== 0 || *(const uword
*) begin
== 0)
227 #ifdef ATOMIC_FDE_FAST_PATH
228 // Find the corresponding PC range
229 struct object lookupob
;
232 lookupob
.u
.single
= begin
;
234 lookupob
.s
.b
.encoding
= DW_EH_PE_omit
;
235 #ifdef DWARF2_OBJECT_END_PTR_EXTENSION
236 lookupob
.fde_end
= NULL
;
238 uintptr_type range
[2];
239 get_pc_range (&lookupob
, range
);
242 ob
= btree_remove (®istered_frames
, range
[0]);
243 bool empty_table
= (range
[1] - range
[0]) == 0;
245 init_object_mutex_once ();
246 __gthread_mutex_lock (&object_mutex
);
249 for (p
= &unseen_objects
; *p
; p
= &(*p
)->next
)
250 if ((*p
)->u
.single
== begin
)
257 for (p
= &seen_objects
; *p
; p
= &(*p
)->next
)
258 if ((*p
)->s
.b
.sorted
)
260 if ((*p
)->u
.sort
->orig_data
== begin
)
270 if ((*p
)->u
.single
== begin
)
279 __gthread_mutex_unlock (&object_mutex
);
280 const int empty_table
= 0; // The non-atomic path stores all tables.
283 // If we didn't find anything in the lookup data structures then they
284 // were either already destroyed or we tried to remove an empty range.
285 gcc_assert (in_shutdown
|| (empty_table
|| ob
));
290 __deregister_frame_info (const void *begin
)
292 return __deregister_frame_info_bases (begin
);
296 __deregister_frame (void *begin
)
298 /* If .eh_frame is empty, we haven't registered. */
299 if (*(uword
*) begin
!= 0)
300 free (__deregister_frame_info (begin
));
304 /* Like base_of_encoded_value, but take the base from a struct object
305 instead of an _Unwind_Context. */
308 base_from_object (unsigned char encoding
, const struct object
*ob
)
310 if (encoding
== DW_EH_PE_omit
)
313 switch (encoding
& 0x70)
315 case DW_EH_PE_absptr
:
317 case DW_EH_PE_aligned
:
320 case DW_EH_PE_textrel
:
321 return (_Unwind_Ptr
) ob
->tbase
;
322 case DW_EH_PE_datarel
:
323 return (_Unwind_Ptr
) ob
->dbase
;
329 /* Return the FDE pointer encoding from the CIE. */
330 /* ??? This is a subset of extract_cie_info from unwind-dw2.c. */
333 get_cie_encoding (const struct dwarf_cie
*cie
)
335 const unsigned char *aug
, *p
;
340 aug
= cie
->augmentation
;
341 p
= aug
+ strlen ((const char *)aug
) + 1; /* Skip the augmentation string. */
342 if (__builtin_expect (cie
->version
>= 4, 0))
344 if (p
[0] != sizeof (void *) || p
[1] != 0)
345 return DW_EH_PE_omit
; /* We are not prepared to handle unexpected
346 address sizes or segment selectors. */
347 p
+= 2; /* Skip address size and segment size. */
351 return DW_EH_PE_absptr
;
353 p
= read_uleb128 (p
, &utmp
); /* Skip code alignment. */
354 p
= read_sleb128 (p
, &stmp
); /* Skip data alignment. */
355 if (cie
->version
== 1) /* Skip return address column. */
358 p
= read_uleb128 (p
, &utmp
);
360 aug
++; /* Skip 'z' */
361 p
= read_uleb128 (p
, &utmp
); /* Skip augmentation length. */
364 /* This is what we're looking for. */
367 /* Personality encoding and pointer. */
368 else if (*aug
== 'P')
370 /* ??? Avoid dereferencing indirect pointers, since we're
371 faking the base address. Gotta keep DW_EH_PE_aligned
373 p
= read_encoded_value_with_base (*p
& 0x7F, 0, p
+ 1, &dummy
);
376 else if (*aug
== 'L')
378 /* aarch64 b-key pointer authentication. */
379 else if (*aug
== 'B')
381 /* Otherwise end of string, or unknown augmentation. */
383 return DW_EH_PE_absptr
;
389 get_fde_encoding (const struct dwarf_fde
*f
)
391 return get_cie_encoding (get_cie (f
));
395 /* Sorting an array of FDEs by address.
396 (Ideally we would have the linker sort the FDEs so we don't have to do
397 it at run time. But the linkers are not yet prepared for this.) */
399 /* Comparison routines. Three variants of increasing complexity. */
402 fde_unencoded_compare (struct object
*ob
__attribute__((unused
)),
403 const fde
*x
, const fde
*y
)
405 _Unwind_Ptr x_ptr
, y_ptr
;
406 memcpy (&x_ptr
, x
->pc_begin
, sizeof (_Unwind_Ptr
));
407 memcpy (&y_ptr
, y
->pc_begin
, sizeof (_Unwind_Ptr
));
417 fde_single_encoding_compare (struct object
*ob
, const fde
*x
, const fde
*y
)
419 _Unwind_Ptr base
, x_ptr
, y_ptr
;
421 base
= base_from_object (ob
->s
.b
.encoding
, ob
);
422 read_encoded_value_with_base (ob
->s
.b
.encoding
, base
, x
->pc_begin
, &x_ptr
);
423 read_encoded_value_with_base (ob
->s
.b
.encoding
, base
, y
->pc_begin
, &y_ptr
);
433 fde_mixed_encoding_compare (struct object
*ob
, const fde
*x
, const fde
*y
)
435 int x_encoding
, y_encoding
;
436 _Unwind_Ptr x_ptr
, y_ptr
;
438 x_encoding
= get_fde_encoding (x
);
439 read_encoded_value_with_base (x_encoding
, base_from_object (x_encoding
, ob
),
440 x
->pc_begin
, &x_ptr
);
442 y_encoding
= get_fde_encoding (y
);
443 read_encoded_value_with_base (y_encoding
, base_from_object (y_encoding
, ob
),
444 y
->pc_begin
, &y_ptr
);
453 typedef int (*fde_compare_t
) (struct object
*, const fde
*, const fde
*);
455 // The extractor functions compute the pointer values for a block of
456 // fdes. The block processing hides the call overhead.
459 fde_unencoded_extract (struct object
*ob
__attribute__ ((unused
)),
460 _Unwind_Ptr
*target
, const fde
**x
, int count
)
462 for (int index
= 0; index
< count
; ++index
)
463 memcpy (target
+ index
, x
[index
]->pc_begin
, sizeof (_Unwind_Ptr
));
467 fde_single_encoding_extract (struct object
*ob
, _Unwind_Ptr
*target
,
468 const fde
**x
, int count
)
472 base
= base_from_object (ob
->s
.b
.encoding
, ob
);
473 for (int index
= 0; index
< count
; ++index
)
474 read_encoded_value_with_base (ob
->s
.b
.encoding
, base
, x
[index
]->pc_begin
,
479 fde_mixed_encoding_extract (struct object
*ob
, _Unwind_Ptr
*target
,
480 const fde
**x
, int count
)
482 for (int index
= 0; index
< count
; ++index
)
484 int encoding
= get_fde_encoding (x
[index
]);
485 read_encoded_value_with_base (encoding
, base_from_object (encoding
, ob
),
486 x
[index
]->pc_begin
, target
+ index
);
490 typedef void (*fde_extractor_t
) (struct object
*, _Unwind_Ptr
*, const fde
**,
493 // Data is is sorted using radix sort if possible, using an temporary
494 // auxiliary data structure of the same size as the input. When running
495 // out of memory do in-place heap sort.
497 struct fde_accumulator
499 struct fde_vector
*linear
;
500 struct fde_vector
*aux
;
504 start_fde_sort (struct fde_accumulator
*accu
, size_t count
)
510 size
= sizeof (struct fde_vector
) + sizeof (const fde
*) * count
;
511 if ((accu
->linear
= malloc (size
)))
513 accu
->linear
->count
= 0;
514 if ((accu
->aux
= malloc (size
)))
515 accu
->aux
->count
= 0;
523 fde_insert (struct fde_accumulator
*accu
, const fde
*this_fde
)
526 accu
->linear
->array
[accu
->linear
->count
++] = this_fde
;
529 #define SWAP(x,y) do { const fde * tmp = x; x = y; y = tmp; } while (0)
531 /* Convert a semi-heap to a heap. A semi-heap is a heap except possibly
532 for the first (root) node; push it down to its rightful place. */
535 frame_downheap (struct object
*ob
, fde_compare_t fde_compare
, const fde
**a
,
540 for (i
= lo
, j
= 2*i
+1;
544 if (j
+1 < hi
&& fde_compare (ob
, a
[j
], a
[j
+1]) < 0)
547 if (fde_compare (ob
, a
[i
], a
[j
]) < 0)
557 /* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
558 use a name that does not conflict. */
561 frame_heapsort (struct object
*ob
, fde_compare_t fde_compare
,
562 struct fde_vector
*erratic
)
564 /* For a description of this algorithm, see:
565 Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
567 const fde
** a
= erratic
->array
;
568 /* A portion of the array is called a "heap" if for all i>=0:
569 If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
570 If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
571 size_t n
= erratic
->count
;
574 /* Expand our heap incrementally from the end of the array, heapifying
575 each resulting semi-heap as we go. After each step, a[m] is the top
577 for (m
= n
/2-1; m
>= 0; --m
)
578 frame_downheap (ob
, fde_compare
, a
, m
, n
);
580 /* Shrink our heap incrementally from the end of the array, first
581 swapping out the largest element a[0] and then re-heapifying the
582 resulting semi-heap. After each step, a[0..m) is a heap. */
583 for (m
= n
-1; m
>= 1; --m
)
586 frame_downheap (ob
, fde_compare
, a
, 0, m
);
591 // Radix sort data in V1 using V2 as aux memory. Runtime O(n).
593 fde_radixsort (struct object
*ob
, fde_extractor_t fde_extractor
,
594 struct fde_vector
*v1
, struct fde_vector
*v2
)
597 #define FANOUT (1 << FANOUTBITS)
598 #define BLOCKSIZE 128
599 const unsigned rounds
600 = (__CHAR_BIT__
* sizeof (_Unwind_Ptr
) + FANOUTBITS
- 1) / FANOUTBITS
;
601 const fde
**a1
= v1
->array
, **a2
= v2
->array
;
602 _Unwind_Ptr ptrs
[BLOCKSIZE
+ 1];
603 unsigned n
= v1
->count
;
604 for (unsigned round
= 0; round
!= rounds
; ++round
)
606 unsigned counts
[FANOUT
] = {0};
607 unsigned violations
= 0;
609 // Count the number of elements per bucket and check if we are already
611 _Unwind_Ptr last
= 0;
612 for (unsigned i
= 0; i
< n
;)
614 unsigned chunk
= ((n
- i
) <= BLOCKSIZE
) ? (n
- i
) : BLOCKSIZE
;
615 fde_extractor (ob
, ptrs
+ 1, a1
+ i
, chunk
);
617 for (unsigned j
= 0; j
< chunk
; ++j
)
619 unsigned b
= (ptrs
[j
+ 1] >> (round
* FANOUTBITS
)) & (FANOUT
- 1);
621 // Use summation instead of an if to eliminate branches.
622 violations
+= ptrs
[j
+ 1] < ptrs
[j
];
628 // Stop if we are already sorted.
631 // The sorted data is in a1 now.
636 // Compute the prefix sum.
638 for (unsigned i
= 0; i
!= FANOUT
; ++i
)
645 // Place all elements.
646 for (unsigned i
= 0; i
< n
;)
648 unsigned chunk
= ((n
- i
) <= BLOCKSIZE
) ? (n
- i
) : BLOCKSIZE
;
649 fde_extractor (ob
, ptrs
, a1
+ i
, chunk
);
650 for (unsigned j
= 0; j
< chunk
; ++j
)
652 unsigned b
= (ptrs
[j
] >> (round
* FANOUTBITS
)) & (FANOUT
- 1);
653 a2
[counts
[b
]++] = a1
[i
+ j
];
659 const fde
**tmp
= a1
;
667 // The data is in a2 now, move in place if needed.
669 memcpy (v1
->array
, a2
, sizeof (const fde
*) * n
);
673 end_fde_sort (struct object
*ob
, struct fde_accumulator
*accu
, size_t count
)
675 gcc_assert (!accu
->linear
|| accu
->linear
->count
== count
);
679 fde_extractor_t fde_extractor
;
680 if (ob
->s
.b
.mixed_encoding
)
681 fde_extractor
= fde_mixed_encoding_extract
;
682 else if (ob
->s
.b
.encoding
== DW_EH_PE_absptr
)
683 fde_extractor
= fde_unencoded_extract
;
685 fde_extractor
= fde_single_encoding_extract
;
687 fde_radixsort (ob
, fde_extractor
, accu
->linear
, accu
->aux
);
692 fde_compare_t fde_compare
;
693 if (ob
->s
.b
.mixed_encoding
)
694 fde_compare
= fde_mixed_encoding_compare
;
695 else if (ob
->s
.b
.encoding
== DW_EH_PE_absptr
)
696 fde_compare
= fde_unencoded_compare
;
698 fde_compare
= fde_single_encoding_compare
;
700 /* We've not managed to malloc an aux array,
701 so heap sort in the linear one. */
702 frame_heapsort (ob
, fde_compare
, accu
->linear
);
706 /* Inspect the fde array beginning at this_fde. This
707 function can be used either in query mode (RANGE is
708 not null, OB is const), or in update mode (RANGE is
709 null, OB is modified). In query mode the function computes
710 the range of PC values and stores it in RANGE. In
711 update mode it updates encoding, mixed_encoding, and pc_begin
712 for OB. Return the number of fdes encountered along the way. */
715 classify_object_over_fdes (struct object
*ob
, const fde
*this_fde
,
718 const struct dwarf_cie
*last_cie
= 0;
720 int encoding
= DW_EH_PE_absptr
;
721 _Unwind_Ptr base
= 0;
723 for (; ! last_fde (ob
, this_fde
); this_fde
= next_fde (this_fde
))
725 const struct dwarf_cie
*this_cie
;
726 _Unwind_Ptr mask
, pc_begin
;
729 if (this_fde
->CIE_delta
== 0)
732 /* Determine the encoding for this FDE. Note mixed encoded
733 objects for later. */
734 this_cie
= get_cie (this_fde
);
735 if (this_cie
!= last_cie
)
738 encoding
= get_cie_encoding (this_cie
);
739 if (encoding
== DW_EH_PE_omit
)
741 base
= base_from_object (encoding
, ob
);
744 if (ob
->s
.b
.encoding
== DW_EH_PE_omit
)
745 ob
->s
.b
.encoding
= encoding
;
746 else if (ob
->s
.b
.encoding
!= encoding
)
747 ob
->s
.b
.mixed_encoding
= 1;
751 const unsigned char *p
;
752 p
= read_encoded_value_with_base (encoding
, base
, this_fde
->pc_begin
,
755 /* Take care to ignore link-once functions that were removed.
756 In these cases, the function address will be NULL, but if
757 the encoding is smaller than a pointer a true NULL may not
758 be representable. Assume 0 in the representable bits is NULL. */
759 mask
= size_of_encoded_value (encoding
);
760 if (mask
< sizeof (void *))
761 mask
= (((_Unwind_Ptr
) 1) << (mask
<< 3)) - 1;
765 if ((pc_begin
& mask
) == 0)
771 _Unwind_Ptr pc_range
, pc_end
;
772 read_encoded_value_with_base (encoding
& 0x0F, 0, p
, &pc_range
);
773 pc_end
= pc_begin
+ pc_range
;
774 if ((!range
[0]) && (!range
[1]))
781 if (pc_begin
< range
[0])
783 if (pc_end
> range
[1])
789 if ((void *) pc_begin
< ob
->pc_begin
)
790 ob
->pc_begin
= (void *) pc_begin
;
798 add_fdes (struct object
*ob
, struct fde_accumulator
*accu
, const fde
*this_fde
)
800 const struct dwarf_cie
*last_cie
= 0;
801 int encoding
= ob
->s
.b
.encoding
;
802 _Unwind_Ptr base
= base_from_object (ob
->s
.b
.encoding
, ob
);
804 for (; ! last_fde (ob
, this_fde
); this_fde
= next_fde (this_fde
))
806 const struct dwarf_cie
*this_cie
;
809 if (this_fde
->CIE_delta
== 0)
812 if (ob
->s
.b
.mixed_encoding
)
814 /* Determine the encoding for this FDE. Note mixed encoded
815 objects for later. */
816 this_cie
= get_cie (this_fde
);
817 if (this_cie
!= last_cie
)
820 encoding
= get_cie_encoding (this_cie
);
821 base
= base_from_object (encoding
, ob
);
825 if (encoding
== DW_EH_PE_absptr
)
828 memcpy (&ptr
, this_fde
->pc_begin
, sizeof (_Unwind_Ptr
));
834 _Unwind_Ptr pc_begin
, mask
;
836 read_encoded_value_with_base (encoding
, base
, this_fde
->pc_begin
,
839 /* Take care to ignore link-once functions that were removed.
840 In these cases, the function address will be NULL, but if
841 the encoding is smaller than a pointer a true NULL may not
842 be representable. Assume 0 in the representable bits is NULL. */
843 mask
= size_of_encoded_value (encoding
);
844 if (mask
< sizeof (void *))
845 mask
= (((_Unwind_Ptr
) 1) << (mask
<< 3)) - 1;
849 if ((pc_begin
& mask
) == 0)
853 fde_insert (accu
, this_fde
);
857 /* Set up a sorted array of pointers to FDEs for a loaded object. We
858 count up the entries before allocating the array because it's likely to
859 be faster. We can be called multiple times, should we have failed to
860 allocate a sorted fde array on a previous occasion. */
863 init_object (struct object
* ob
)
865 struct fde_accumulator accu
;
868 count
= ob
->s
.b
.count
;
871 if (ob
->s
.b
.from_array
)
873 fde
**p
= ob
->u
.array
;
874 for (count
= 0; *p
; ++p
)
876 size_t cur_count
= classify_object_over_fdes (ob
, *p
, NULL
);
877 if (cur_count
== (size_t) -1)
884 count
= classify_object_over_fdes (ob
, ob
->u
.single
, NULL
);
885 if (count
== (size_t) -1)
887 static const fde terminator
;
890 ob
->s
.b
.encoding
= DW_EH_PE_omit
;
891 ob
->u
.single
= &terminator
;
896 /* The count field we have in the main struct object is somewhat
897 limited, but should suffice for virtually all cases. If the
898 counted value doesn't fit, re-write a zero. The worst that
899 happens is that we re-count next time -- admittedly non-trivial
900 in that this implies some 2M fdes, but at least we function. */
901 ob
->s
.b
.count
= count
;
902 if (ob
->s
.b
.count
!= count
)
906 if (!start_fde_sort (&accu
, count
))
909 if (ob
->s
.b
.from_array
)
912 for (p
= ob
->u
.array
; *p
; ++p
)
913 add_fdes (ob
, &accu
, *p
);
916 add_fdes (ob
, &accu
, ob
->u
.single
);
918 end_fde_sort (ob
, &accu
, count
);
920 /* Save the original fde pointer, since this is the key by which the
921 DSO will deregister the object. */
922 accu
.linear
->orig_data
= ob
->u
.single
;
923 ob
->u
.sort
= accu
.linear
;
925 #ifdef ATOMIC_FDE_FAST_PATH
926 // We must update the sorted bit with an atomic operation
930 __atomic_store (&(ob
->s
.b
), &(tmp
.s
.b
), __ATOMIC_RELEASE
);
936 #ifdef ATOMIC_FDE_FAST_PATH
937 /* Get the PC range for lookup */
939 get_pc_range (const struct object
*ob
, uintptr_type
*range
)
941 // It is safe to cast to non-const object* here as
942 // classify_object_over_fdes does not modify ob in query mode.
943 struct object
*ncob
= (struct object
*) (uintptr_type
) ob
;
944 range
[0] = range
[1] = 0;
947 classify_object_over_fdes (ncob
, ob
->u
.sort
->orig_data
, range
);
949 else if (ob
->s
.b
.from_array
)
951 fde
**p
= ob
->u
.array
;
953 classify_object_over_fdes (ncob
, *p
, range
);
957 classify_object_over_fdes (ncob
, ob
->u
.single
, range
);
962 /* A linear search through a set of FDEs for the given PC. This is
963 used when there was insufficient memory to allocate and sort an
967 linear_search_fdes (struct object
*ob
, const fde
*this_fde
, void *pc
)
969 const struct dwarf_cie
*last_cie
= 0;
970 int encoding
= ob
->s
.b
.encoding
;
971 _Unwind_Ptr base
= base_from_object (ob
->s
.b
.encoding
, ob
);
973 for (; ! last_fde (ob
, this_fde
); this_fde
= next_fde (this_fde
))
975 const struct dwarf_cie
*this_cie
;
976 _Unwind_Ptr pc_begin
, pc_range
;
979 if (this_fde
->CIE_delta
== 0)
982 if (ob
->s
.b
.mixed_encoding
)
984 /* Determine the encoding for this FDE. Note mixed encoded
985 objects for later. */
986 this_cie
= get_cie (this_fde
);
987 if (this_cie
!= last_cie
)
990 encoding
= get_cie_encoding (this_cie
);
991 base
= base_from_object (encoding
, ob
);
995 if (encoding
== DW_EH_PE_absptr
)
997 const _Unwind_Ptr
*pc_array
= (const _Unwind_Ptr
*) this_fde
->pc_begin
;
998 pc_begin
= pc_array
[0];
999 pc_range
= pc_array
[1];
1006 const unsigned char *p
;
1008 p
= read_encoded_value_with_base (encoding
, base
,
1009 this_fde
->pc_begin
, &pc_begin
);
1010 read_encoded_value_with_base (encoding
& 0x0F, 0, p
, &pc_range
);
1012 /* Take care to ignore link-once functions that were removed.
1013 In these cases, the function address will be NULL, but if
1014 the encoding is smaller than a pointer a true NULL may not
1015 be representable. Assume 0 in the representable bits is NULL. */
1016 mask
= size_of_encoded_value (encoding
);
1017 if (mask
< sizeof (void *))
1018 mask
= (((_Unwind_Ptr
) 1) << (mask
<< 3)) - 1;
1022 if ((pc_begin
& mask
) == 0)
1026 if ((_Unwind_Ptr
) pc
- pc_begin
< pc_range
)
1033 /* Binary search for an FDE containing the given PC. Here are three
1034 implementations of increasing complexity. */
1036 static inline const fde
*
1037 binary_search_unencoded_fdes (struct object
*ob
, void *pc
)
1039 struct fde_vector
*vec
= ob
->u
.sort
;
1042 for (lo
= 0, hi
= vec
->count
; lo
< hi
; )
1044 size_t i
= (lo
+ hi
) / 2;
1045 const fde
*const f
= vec
->array
[i
];
1048 memcpy (&pc_begin
, (const void * const *) f
->pc_begin
, sizeof (void *));
1049 memcpy (&pc_range
, (const uaddr
*) f
->pc_begin
+ 1, sizeof (uaddr
));
1053 else if (pc
>= pc_begin
+ pc_range
)
1062 static inline const fde
*
1063 binary_search_single_encoding_fdes (struct object
*ob
, void *pc
)
1065 struct fde_vector
*vec
= ob
->u
.sort
;
1066 int encoding
= ob
->s
.b
.encoding
;
1067 _Unwind_Ptr base
= base_from_object (encoding
, ob
);
1070 for (lo
= 0, hi
= vec
->count
; lo
< hi
; )
1072 size_t i
= (lo
+ hi
) / 2;
1073 const fde
*f
= vec
->array
[i
];
1074 _Unwind_Ptr pc_begin
, pc_range
;
1075 const unsigned char *p
;
1077 p
= read_encoded_value_with_base (encoding
, base
, f
->pc_begin
,
1079 read_encoded_value_with_base (encoding
& 0x0F, 0, p
, &pc_range
);
1081 if ((_Unwind_Ptr
) pc
< pc_begin
)
1083 else if ((_Unwind_Ptr
) pc
>= pc_begin
+ pc_range
)
1092 static inline const fde
*
1093 binary_search_mixed_encoding_fdes (struct object
*ob
, void *pc
)
1095 struct fde_vector
*vec
= ob
->u
.sort
;
1098 for (lo
= 0, hi
= vec
->count
; lo
< hi
; )
1100 size_t i
= (lo
+ hi
) / 2;
1101 const fde
*f
= vec
->array
[i
];
1102 _Unwind_Ptr pc_begin
, pc_range
;
1103 const unsigned char *p
;
1106 encoding
= get_fde_encoding (f
);
1107 p
= read_encoded_value_with_base (encoding
,
1108 base_from_object (encoding
, ob
),
1109 f
->pc_begin
, &pc_begin
);
1110 read_encoded_value_with_base (encoding
& 0x0F, 0, p
, &pc_range
);
1112 if ((_Unwind_Ptr
) pc
< pc_begin
)
1114 else if ((_Unwind_Ptr
) pc
>= pc_begin
+ pc_range
)
1124 search_object (struct object
* ob
, void *pc
)
1126 /* The fast path initializes objects eagerly to avoid locking.
1127 * On the slow path we initialize them now */
1128 #ifndef ATOMIC_FDE_FAST_PATH
1129 /* If the data hasn't been sorted, try to do this now. We may have
1130 more memory available than last time we tried. */
1131 if (! ob
->s
.b
.sorted
)
1135 /* Despite the above comment, the normal reason to get here is
1136 that we've not processed this object before. A quick range
1137 check is in order. */
1138 if (pc
< ob
->pc_begin
)
1145 if (ob
->s
.b
.mixed_encoding
)
1146 return binary_search_mixed_encoding_fdes (ob
, pc
);
1147 else if (ob
->s
.b
.encoding
== DW_EH_PE_absptr
)
1148 return binary_search_unencoded_fdes (ob
, pc
);
1150 return binary_search_single_encoding_fdes (ob
, pc
);
1154 /* Long slow laborious linear search, cos we've no memory. */
1155 if (ob
->s
.b
.from_array
)
1158 for (p
= ob
->u
.array
; *p
; p
++)
1160 const fde
*f
= linear_search_fdes (ob
, *p
, pc
);
1167 return linear_search_fdes (ob
, ob
->u
.single
, pc
);
1171 #ifdef ATOMIC_FDE_FAST_PATH
1173 // Check if the object was already initialized
1175 is_object_initialized (struct object
*ob
)
1177 // We have to use acquire atomics for the read, which
1178 // is a bit involved as we read from a bitfield
1180 __atomic_load (&(ob
->s
.b
), &(tmp
.s
.b
), __ATOMIC_ACQUIRE
);
1181 return tmp
.s
.b
.sorted
;
1187 _Unwind_Find_FDE (void *pc
, struct dwarf_eh_bases
*bases
)
1190 const fde
*f
= NULL
;
1192 #ifdef ATOMIC_FDE_FAST_PATH
1193 ob
= btree_lookup (®istered_frames
, (uintptr_type
) pc
);
1197 // Initialize the object lazily
1198 if (!is_object_initialized (ob
))
1200 // Check again under mutex
1201 init_object_mutex_once ();
1202 __gthread_mutex_lock (&object_mutex
);
1204 if (!ob
->s
.b
.sorted
)
1209 __gthread_mutex_unlock (&object_mutex
);
1212 f
= search_object (ob
, pc
);
1215 init_object_mutex_once ();
1216 __gthread_mutex_lock (&object_mutex
);
1218 /* Linear search through the classified objects, to find the one
1219 containing the pc. Note that pc_begin is sorted descending, and
1220 we expect objects to be non-overlapping. */
1221 for (ob
= seen_objects
; ob
; ob
= ob
->next
)
1222 if (pc
>= ob
->pc_begin
)
1224 f
= search_object (ob
, pc
);
1230 /* Classify and search the objects we've not yet processed. */
1231 while ((ob
= unseen_objects
))
1235 unseen_objects
= ob
->next
;
1236 f
= search_object (ob
, pc
);
1238 /* Insert the object into the classified list. */
1239 for (p
= &seen_objects
; *p
; p
= &(*p
)->next
)
1240 if ((*p
)->pc_begin
< ob
->pc_begin
)
1250 __gthread_mutex_unlock (&object_mutex
);
1258 bases
->tbase
= ob
->tbase
;
1259 bases
->dbase
= ob
->dbase
;
1261 encoding
= ob
->s
.b
.encoding
;
1262 if (ob
->s
.b
.mixed_encoding
)
1263 encoding
= get_fde_encoding (f
);
1264 read_encoded_value_with_base (encoding
, base_from_object (encoding
, ob
),
1265 f
->pc_begin
, &func
);
1266 bases
->func
= (void *) func
;