jit: update test suite for change to -Warray-bounds
[official-gcc.git] / gcc / config / xtensa / xtensa.h
blobb4cf53708b3eb4a60846cf24003ae7b82f9aee99
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Get Xtensa configuration settings */
22 #include "xtensa-config.h"
24 /* External variables defined in xtensa.c. */
26 /* Macros used in the machine description to select various Xtensa
27 configuration options. */
28 #ifndef XCHAL_HAVE_MUL32_HIGH
29 #define XCHAL_HAVE_MUL32_HIGH 0
30 #endif
31 #ifndef XCHAL_HAVE_RELEASE_SYNC
32 #define XCHAL_HAVE_RELEASE_SYNC 0
33 #endif
34 #ifndef XCHAL_HAVE_S32C1I
35 #define XCHAL_HAVE_S32C1I 0
36 #endif
37 #ifndef XCHAL_HAVE_THREADPTR
38 #define XCHAL_HAVE_THREADPTR 0
39 #endif
40 #ifndef XCHAL_HAVE_FP_POSTINC
41 #define XCHAL_HAVE_FP_POSTINC 0
42 #endif
43 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
44 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
45 #define TARGET_MAC16 XCHAL_HAVE_MAC16
46 #define TARGET_MUL16 XCHAL_HAVE_MUL16
47 #define TARGET_MUL32 XCHAL_HAVE_MUL32
48 #define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
49 #define TARGET_DIV32 XCHAL_HAVE_DIV32
50 #define TARGET_NSA XCHAL_HAVE_NSA
51 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
52 #define TARGET_SEXT XCHAL_HAVE_SEXT
53 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
54 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
55 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
56 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
57 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
58 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
59 #define TARGET_HARD_FLOAT_POSTINC XCHAL_HAVE_FP_POSTINC
60 #define TARGET_ABS XCHAL_HAVE_ABS
61 #define TARGET_ADDX XCHAL_HAVE_ADDX
62 #define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
63 #define TARGET_S32C1I XCHAL_HAVE_S32C1I
64 #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
65 #define TARGET_THREADPTR XCHAL_HAVE_THREADPTR
66 #define TARGET_LOOPS XCHAL_HAVE_LOOPS
67 #define TARGET_WINDOWED_ABI (XSHAL_ABI == XTHAL_ABI_WINDOWED)
68 #define TARGET_DEBUG XCHAL_HAVE_DEBUG
69 #define TARGET_L32R XCHAL_HAVE_L32R
71 #define TARGET_DEFAULT (MASK_SERIALIZE_VOLATILE)
73 #ifndef HAVE_AS_TLS
74 #define HAVE_AS_TLS 0
75 #endif
78 /* Target CPU builtins. */
79 #define TARGET_CPU_CPP_BUILTINS() \
80 do { \
81 builtin_assert ("cpu=xtensa"); \
82 builtin_assert ("machine=xtensa"); \
83 builtin_define ("__xtensa__"); \
84 builtin_define ("__XTENSA__"); \
85 builtin_define (TARGET_WINDOWED_ABI ? \
86 "__XTENSA_WINDOWED_ABI__" : "__XTENSA_CALL0_ABI__");\
87 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
88 if (!TARGET_HARD_FLOAT) \
89 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
90 } while (0)
92 #define CPP_SPEC " %(subtarget_cpp_spec) "
94 #ifndef SUBTARGET_CPP_SPEC
95 #define SUBTARGET_CPP_SPEC ""
96 #endif
98 #define EXTRA_SPECS \
99 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
101 /* Target machine storage layout */
103 /* Define this if most significant bit is lowest numbered
104 in instructions that operate on numbered bit-fields. */
105 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
107 /* Define this if most significant byte of a word is the lowest numbered. */
108 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
110 /* Define this if most significant word of a multiword number is the lowest. */
111 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
113 #define MAX_BITS_PER_WORD 32
115 /* Width of a word, in units (bytes). */
116 #define UNITS_PER_WORD 4
117 #define MIN_UNITS_PER_WORD 4
119 /* Width of a floating point register. */
120 #define UNITS_PER_FPREG 4
122 /* Size in bits of various types on the target machine. */
123 #define INT_TYPE_SIZE 32
124 #define SHORT_TYPE_SIZE 16
125 #define LONG_TYPE_SIZE 32
126 #define LONG_LONG_TYPE_SIZE 64
127 #define FLOAT_TYPE_SIZE 32
128 #define DOUBLE_TYPE_SIZE 64
129 #define LONG_DOUBLE_TYPE_SIZE 64
131 /* Allocation boundary (in *bits*) for storing pointers in memory. */
132 #define POINTER_BOUNDARY 32
134 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
135 #define PARM_BOUNDARY 32
137 /* Allocation boundary (in *bits*) for the code of a function. */
138 #define FUNCTION_BOUNDARY 32
140 /* Alignment of field after 'int : 0' in a structure. */
141 #define EMPTY_FIELD_BOUNDARY 32
143 /* Every structure's size must be a multiple of this. */
144 #define STRUCTURE_SIZE_BOUNDARY 8
146 /* There is no point aligning anything to a rounder boundary than this. */
147 #define BIGGEST_ALIGNMENT 128
149 /* Set this nonzero if move instructions will actually fail to work
150 when given unaligned data. */
151 #define STRICT_ALIGNMENT 1
153 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
154 for QImode, because there is no 8-bit load from memory with sign
155 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
156 loads both with and without sign extension. */
157 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
158 do { \
159 if (GET_MODE_CLASS (MODE) == MODE_INT \
160 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
162 if ((MODE) == QImode) \
163 (UNSIGNEDP) = 1; \
164 (MODE) = SImode; \
166 } while (0)
168 /* Imitate the way many other C compilers handle alignment of
169 bitfields and the structures that contain them. */
170 #define PCC_BITFIELD_TYPE_MATTERS 1
172 /* Align arrays, unions and records to at least a word boundary.
173 One use of this macro is to increase alignment of medium-size
174 data to make it all fit in fewer cache lines. Another is to
175 cause character arrays to be word-aligned so that 'strcpy' calls
176 that copy constants to character arrays can be done inline. */
177 #undef DATA_ALIGNMENT
178 #define DATA_ALIGNMENT(TYPE, ALIGN) \
179 (!optimize_size && (((ALIGN) < BITS_PER_WORD) \
180 && (TREE_CODE (TYPE) == ARRAY_TYPE \
181 || TREE_CODE (TYPE) == UNION_TYPE \
182 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
184 /* Operations between registers always perform the operation
185 on the full register even if a narrower mode is specified. */
186 #define WORD_REGISTER_OPERATIONS 1
188 /* Xtensa loads are zero-extended by default. */
189 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
191 /* Standard register usage. */
193 /* Number of actual hardware registers.
194 The hardware registers are assigned numbers for the compiler
195 from 0 to just below FIRST_PSEUDO_REGISTER.
196 All registers that the compiler knows about must be given numbers,
197 even those that are not normally considered general registers.
199 The fake frame pointer and argument pointer will never appear in
200 the generated code, since they will always be eliminated and replaced
201 by either the stack pointer or the hard frame pointer.
203 0 - 15 AR[0] - AR[15]
204 16 FRAME_POINTER (fake = initial sp)
205 17 ARG_POINTER (fake = initial sp + framesize)
206 18 BR[0] for floating-point CC
207 19 - 34 FR[0] - FR[15]
208 35 MAC16 accumulator */
210 #define FIRST_PSEUDO_REGISTER 36
212 /* Return the stabs register number to use for REGNO. */
213 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
215 /* 1 for registers that have pervasive standard uses
216 and are not available for the register allocator. */
217 #define FIXED_REGISTERS \
219 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
220 1, 1, 0, \
221 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
222 0, \
225 /* 1 for registers not available across function calls.
226 These must include the FIXED_REGISTERS and also any
227 registers that can be used without being saved.
228 The latter must include the registers where values are returned
229 and the register where structure-value addresses are passed.
230 Aside from that, you can include as many other registers as you like.
232 The value encoding is the following:
233 1: register is used by all ABIs;
234 bit 1 is set: register is used by windowed ABI;
235 bit 2 is set: register is used by call0 ABI.
237 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
239 #define CALL_USED_REGISTERS \
241 1, 1, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 2, 2, \
242 1, 1, 1, \
243 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
244 1, \
247 /* For non-leaf procedures on Xtensa processors, the allocation order
248 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
249 want to use the lowest numbered registers first to minimize
250 register window overflows. However, local-alloc is not smart
251 enough to consider conflicts with incoming arguments. If an
252 incoming argument in a2 is live throughout the function and
253 local-alloc decides to use a2, then the incoming argument must
254 either be spilled or copied to another register. To get around
255 this, we define ADJUST_REG_ALLOC_ORDER to redefine
256 reg_alloc_order for leaf functions such that lowest numbered
257 registers are used first with the exception that the incoming
258 argument registers are not used until after other register choices
259 have been exhausted. */
261 #define REG_ALLOC_ORDER \
262 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
263 18, \
264 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
265 0, 1, 16, 17, \
266 35, \
269 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
271 /* For Xtensa, the only point of this is to prevent GCC from otherwise
272 giving preference to call-used registers. To minimize window
273 overflows for the AR registers, we want to give preference to the
274 lower-numbered AR registers. For other register files, which are
275 not windowed, we still prefer call-used registers, if there are any. */
276 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
277 #define LEAF_REGISTERS xtensa_leaf_regs
279 /* For Xtensa, no remapping is necessary, but this macro must be
280 defined if LEAF_REGISTERS is defined. */
281 #define LEAF_REG_REMAP(REGNO) (REGNO)
283 /* This must be declared if LEAF_REGISTERS is set. */
284 extern int leaf_function;
286 /* Internal macros to classify a register number. */
288 /* 16 address registers + fake registers */
289 #define GP_REG_FIRST 0
290 #define GP_REG_LAST 17
291 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
293 /* Coprocessor registers */
294 #define BR_REG_FIRST 18
295 #define BR_REG_LAST 18
296 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
298 /* 16 floating-point registers */
299 #define FP_REG_FIRST 19
300 #define FP_REG_LAST 34
301 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
303 /* MAC16 accumulator */
304 #define ACC_REG_FIRST 35
305 #define ACC_REG_LAST 35
306 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
308 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
309 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
310 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
311 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
313 /* Register to use for pushing function arguments. */
314 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
316 /* Base register for access to local variables of the function. */
317 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + \
318 (TARGET_WINDOWED_ABI ? 7 : 15))
320 /* The register number of the frame pointer register, which is used to
321 access automatic variables in the stack frame. For Xtensa, this
322 register never appears in the output. It is always eliminated to
323 either the stack pointer or the hard frame pointer. */
324 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
326 /* Base register for access to arguments of the function. */
327 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
329 /* Hard frame pointer is neither frame nor arg pointer.
330 The definitions are here because actual hard frame pointer register
331 definition is not a preprocessor constant. */
332 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
333 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
335 /* For now we don't try to use the full set of boolean registers. Without
336 software pipelining of FP operations, there's not much to gain and it's
337 a real pain to get them reloaded. */
338 #define FPCC_REGNUM (BR_REG_FIRST + 0)
340 /* It is as good or better to call a constant function address than to
341 call an address kept in a register. */
342 #define NO_FUNCTION_CSE 1
344 /* Xtensa processors have "register windows". GCC does not currently
345 take advantage of the possibility for variable-sized windows; instead,
346 we use a fixed window size of 8. */
348 #define INCOMING_REGNO(OUT) \
349 (TARGET_WINDOWED_ABI ? \
350 ((GP_REG_P (OUT) && \
351 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
352 (OUT) - WINDOW_SIZE : (OUT)) : (OUT))
354 #define OUTGOING_REGNO(IN) \
355 (TARGET_WINDOWED_ABI ? \
356 ((GP_REG_P (IN) && \
357 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
358 (IN) + WINDOW_SIZE : (IN)) : (IN))
361 /* Define the classes of registers for register constraints in the
362 machine description. */
363 enum reg_class
365 NO_REGS, /* no registers in set */
366 BR_REGS, /* coprocessor boolean registers */
367 FP_REGS, /* floating point registers */
368 ACC_REG, /* MAC16 accumulator */
369 SP_REG, /* sp register (aka a1) */
370 RL_REGS, /* preferred reload regs (not sp or fp) */
371 GR_REGS, /* integer registers except sp */
372 AR_REGS, /* all integer registers */
373 ALL_REGS, /* all registers */
374 LIM_REG_CLASSES /* max value + 1 */
377 #define N_REG_CLASSES (int) LIM_REG_CLASSES
379 #define GENERAL_REGS AR_REGS
381 /* An initializer containing the names of the register classes as C
382 string constants. These names are used in writing some of the
383 debugging dumps. */
384 #define REG_CLASS_NAMES \
386 "NO_REGS", \
387 "BR_REGS", \
388 "FP_REGS", \
389 "ACC_REG", \
390 "SP_REG", \
391 "RL_REGS", \
392 "GR_REGS", \
393 "AR_REGS", \
394 "ALL_REGS" \
397 /* Contents of the register classes. The Nth integer specifies the
398 contents of class N. The way the integer MASK is interpreted is
399 that register R is in the class if 'MASK & (1 << R)' is 1. */
400 #define REG_CLASS_CONTENTS \
402 { 0x00000000, 0x00000000 }, /* no registers */ \
403 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
404 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
405 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
406 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
407 { 0x0000fffd, 0x00000000 }, /* preferred reload registers */ \
408 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
409 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
410 { 0xffffffff, 0x0000000f } /* all registers */ \
413 /* A C expression whose value is a register class containing hard
414 register REGNO. In general there is more that one such class;
415 choose a class which is "minimal", meaning that no smaller class
416 also contains the register. */
417 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class (REGNO)
419 /* Use the Xtensa AR register file for base registers.
420 No index registers. */
421 #define BASE_REG_CLASS AR_REGS
422 #define INDEX_REG_CLASS NO_REGS
424 /* The small_register_classes_for_mode_p hook must always return true for
425 Xtrnase, because all of the 16 AR registers may be explicitly used in
426 the RTL, as either incoming or outgoing arguments. */
427 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
429 /* Stack layout; function entry, exit and calling. */
431 #define STACK_GROWS_DOWNWARD 1
433 #define FRAME_GROWS_DOWNWARD flag_stack_protect
435 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
436 they are eliminated to either the stack pointer or hard frame pointer. */
437 #define ELIMINABLE_REGS \
438 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
439 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
440 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
441 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
443 /* Specify the initial difference between the specified pair of registers. */
444 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
445 (OFFSET) = xtensa_initial_elimination_offset ((FROM), (TO))
447 /* If defined, the maximum amount of space required for outgoing
448 arguments will be computed and placed into the variable
449 'crtl->outgoing_args_size'. No space will be pushed
450 onto the stack for each call; instead, the function prologue
451 should increase the stack frame size by this amount. */
452 #define ACCUMULATE_OUTGOING_ARGS 1
454 /* Offset from the argument pointer register to the first argument's
455 address. On some machines it may depend on the data type of the
456 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
457 location above the first argument's address. */
458 #define FIRST_PARM_OFFSET(FNDECL) 0
460 /* Align stack frames on 128 bits for Xtensa. This is necessary for
461 128-bit datatypes defined in TIE (e.g., for Vectra). */
462 #define STACK_BOUNDARY 128
464 /* Use a fixed register window size of 8. */
465 #define WINDOW_SIZE (TARGET_WINDOWED_ABI ? 8 : 0)
467 /* Symbolic macros for the registers used to return integer, floating
468 point, and values of coprocessor and user-defined modes. */
469 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
470 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
472 /* Symbolic macros for the first/last argument registers. */
473 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
474 #define GP_ARG_LAST (GP_REG_FIRST + 7)
475 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
476 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
478 #define MAX_ARGS_IN_REGISTERS 6
480 /* Don't worry about compatibility with PCC. */
481 #define DEFAULT_PCC_STRUCT_RETURN 0
483 /* A C expression that is nonzero if REGNO is the number of a hard
484 register in which function arguments are sometimes passed. This
485 does *not* include implicit arguments such as the static chain and
486 the structure-value address. On many machines, no registers can be
487 used for this purpose since all function arguments are pushed on
488 the stack. */
489 #define FUNCTION_ARG_REGNO_P(N) \
490 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
492 /* Record the number of argument words seen so far, along with a flag to
493 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
494 is used for both incoming and outgoing args, so a separate flag is
495 needed. */
496 typedef struct xtensa_args
498 int arg_words;
499 int incoming;
500 } CUMULATIVE_ARGS;
502 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
503 init_cumulative_args (&CUM, 0)
505 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
506 init_cumulative_args (&CUM, 1)
508 /* Profiling Xtensa code is typically done with the built-in profiling
509 feature of Tensilica's instruction set simulator, which does not
510 require any compiler support. Profiling code on a real (i.e.,
511 non-simulated) Xtensa processor is currently only supported by
512 GNU/Linux with glibc. The glibc version of _mcount doesn't require
513 counter variables. The _mcount function needs the current PC and
514 the current return address to identify an arc in the call graph.
515 Pass the current return address as the first argument; the current
516 PC is available as a0 in _mcount's register window. Both of these
517 values contain window size information in the two most significant
518 bits; we assume that _mcount will mask off those bits. The call to
519 _mcount uses a window size of 8 to make sure that it doesn't clobber
520 any incoming argument values. */
522 #define NO_PROFILE_COUNTERS 1
524 #define FUNCTION_PROFILER(FILE, LABELNO) \
525 do { \
526 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
527 if (flag_pic) \
529 fprintf (FILE, "\tmovi\ta%d, _mcount@PLT\n", WINDOW_SIZE); \
530 fprintf (FILE, "\tcallx%d\ta%d\n", WINDOW_SIZE, WINDOW_SIZE); \
532 else \
533 fprintf (FILE, "\tcall%d\t_mcount\n", WINDOW_SIZE); \
534 } while (0)
536 /* Stack pointer value doesn't matter at exit. */
537 #define EXIT_IGNORE_STACK 1
539 /* Size in bytes of the trampoline, as an integer. Make sure this is
540 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
541 #define TRAMPOLINE_SIZE (TARGET_WINDOWED_ABI ? \
542 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
543 60 : 52) : \
544 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
545 32 : 24))
547 /* Alignment required for trampolines, in bits. */
548 #define TRAMPOLINE_ALIGNMENT 32
550 /* If defined, a C expression that produces the machine-specific code
551 to setup the stack so that arbitrary frames can be accessed.
553 On Xtensa, a stack back-trace must always begin from the stack pointer,
554 so that the register overflow save area can be located. However, the
555 stack-walking code in GCC always begins from the hard_frame_pointer
556 register, not the stack pointer. The frame pointer is usually equal
557 to the stack pointer, but the __builtin_return_address and
558 __builtin_frame_address functions will not work if count > 0 and
559 they are called from a routine that uses alloca. These functions
560 are not guaranteed to work at all if count > 0 so maybe that is OK.
562 A nicer solution would be to allow the architecture-specific files to
563 specify whether to start from the stack pointer or frame pointer. That
564 would also allow us to skip the machine->accesses_prev_frame stuff that
565 we currently need to ensure that there is a frame pointer when these
566 builtin functions are used. */
568 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
570 /* A C expression whose value is RTL representing the address in a
571 stack frame where the pointer to the caller's frame is stored.
572 Assume that FRAMEADDR is an RTL expression for the address of the
573 stack frame itself.
575 For Xtensa, there is no easy way to get the frame pointer if it is
576 not equivalent to the stack pointer. Moreover, the result of this
577 macro is used for continuing to walk back up the stack, so it must
578 return the stack pointer address. Thus, there is some inconsistency
579 here in that __builtin_frame_address will return the frame pointer
580 when count == 0 and the stack pointer when count > 0. */
582 #define DYNAMIC_CHAIN_ADDRESS(frame) \
583 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
585 /* Define this if the return address of a particular stack frame is
586 accessed from the frame pointer of the previous stack frame. */
587 #define RETURN_ADDR_IN_PREVIOUS_FRAME TARGET_WINDOWED_ABI
589 /* A C expression whose value is RTL representing the value of the
590 return address for the frame COUNT steps up from the current
591 frame, after the prologue. */
592 #define RETURN_ADDR_RTX xtensa_return_addr
594 /* Addressing modes, and classification of registers for them. */
596 /* C expressions which are nonzero if register number NUM is suitable
597 for use as a base or index register in operand addresses. */
599 #define REGNO_OK_FOR_INDEX_P(NUM) 0
600 #define REGNO_OK_FOR_BASE_P(NUM) \
601 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
603 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
604 valid for use as a base or index register. */
606 #ifdef REG_OK_STRICT
607 #define REG_OK_STRICT_FLAG 1
608 #else
609 #define REG_OK_STRICT_FLAG 0
610 #endif
612 #define BASE_REG_P(X, STRICT) \
613 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
614 || REGNO_OK_FOR_BASE_P (REGNO (X)))
616 #define REG_OK_FOR_INDEX_P(X) 0
617 #define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
619 /* Maximum number of registers that can appear in a valid memory address. */
620 #define MAX_REGS_PER_ADDRESS 1
622 /* A C expression that is 1 if the RTX X is a constant which is a
623 valid address. This is defined to be the same as 'CONSTANT_P (X)',
624 but rejecting CONST_DOUBLE. */
625 #define CONSTANT_ADDRESS_P(X) \
626 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
627 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
628 || (GET_CODE (X) == CONST)))
630 /* A C expression that is nonzero if X is a legitimate immediate
631 operand on the target machine when generating position independent
632 code. */
633 #define LEGITIMATE_PIC_OPERAND_P(X) \
634 ((GET_CODE (X) != SYMBOL_REF \
635 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
636 && GET_CODE (X) != LABEL_REF \
637 && GET_CODE (X) != CONST)
639 /* Specify the machine mode that this machine uses
640 for the index in the tablejump instruction. */
641 #define CASE_VECTOR_MODE (SImode)
643 /* Define this as 1 if 'char' should by default be signed; else as 0. */
644 #define DEFAULT_SIGNED_CHAR 0
646 /* Max number of bytes we can move from memory to memory
647 in one reasonably fast instruction. */
648 #define MOVE_MAX 4
649 #define MAX_MOVE_MAX 4
651 /* Prefer word-sized loads. */
652 #define SLOW_BYTE_ACCESS 1
654 /* Shift instructions ignore all but the low-order few bits. */
655 #define SHIFT_COUNT_TRUNCATED 1
657 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
658 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
660 /* Specify the machine mode that pointers have.
661 After generation of rtl, the compiler makes no further distinction
662 between pointers and any other objects of this machine mode. */
663 #define Pmode SImode
665 /* A function address in a call instruction is a word address (for
666 indexing purposes) so give the MEM rtx a words's mode. */
667 #define FUNCTION_MODE SImode
669 #define BRANCH_COST(speed_p, predictable_p) 3
671 /* How to refer to registers in assembler output.
672 This sequence is indexed by compiler's hard-register-number (see above). */
673 #define REGISTER_NAMES \
675 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
676 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
677 "fp", "argp", "b0", \
678 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
679 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
680 "acc" \
683 /* If defined, a C initializer for an array of structures containing a
684 name and a register number. This macro defines additional names
685 for hard registers, thus allowing the 'asm' option in declarations
686 to refer to registers using alternate names. */
687 #define ADDITIONAL_REGISTER_NAMES \
689 { "a1", 1 + GP_REG_FIRST } \
692 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
693 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
695 /* Globalizing directive for a label. */
696 #define GLOBAL_ASM_OP "\t.global\t"
698 /* Declare an uninitialized external linkage data object. */
699 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
700 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
702 /* This is how to output an element of a case-vector that is absolute. */
703 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
704 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
705 LOCAL_LABEL_PREFIX, VALUE)
707 /* This is how to output an element of a case-vector that is relative.
708 This is used for pc-relative code. */
709 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
710 do { \
711 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
712 LOCAL_LABEL_PREFIX, (VALUE), \
713 LOCAL_LABEL_PREFIX, (REL)); \
714 } while (0)
716 /* This is how to output an assembler line that says to advance the
717 location counter to a multiple of 2**LOG bytes. */
718 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
719 do { \
720 if ((LOG) != 0) \
721 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
722 } while (0)
724 /* Indicate that jump tables go in the text section. This is
725 necessary when compiling PIC code. */
726 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
729 /* Define the strings to put out for each section in the object file. */
730 #define TEXT_SECTION_ASM_OP "\t.text"
731 #define DATA_SECTION_ASM_OP "\t.data"
732 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
735 /* Define output to appear before the constant pool. */
736 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
737 do { \
738 if ((SIZE) > 0 || !TARGET_WINDOWED_ABI) \
740 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
741 switch_to_section (function_section (FUNDECL)); \
742 fprintf (FILE, "\t.literal_position\n"); \
744 } while (0)
747 /* A C statement (with or without semicolon) to output a constant in
748 the constant pool, if it needs special treatment. */
749 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
750 do { \
751 xtensa_output_literal (FILE, X, MODE, LABELNO); \
752 goto JUMPTO; \
753 } while (0)
755 /* How to start an assembler comment. */
756 #define ASM_COMMENT_START "#"
758 /* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
759 machinery, but the variable size register window save areas are too
760 complicated to efficiently describe with CFI entries. The CFA must
761 still be specified in DWARF so that DW_AT_frame_base is set correctly
762 for debugging. */
763 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
764 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
765 #define DWARF_ALT_FRAME_RETURN_COLUMN 16
766 #define DWARF_FRAME_REGISTERS (DWARF_ALT_FRAME_RETURN_COLUMN \
767 + (TARGET_WINDOWED_ABI ? 0 : 1))
768 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
769 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
770 (flag_pic \
771 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
772 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
773 : DW_EH_PE_absptr)
775 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 10)
777 /* Emit a PC-relative relocation. */
778 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
779 do { \
780 fputs (integer_asm_op (SIZE, FALSE), FILE); \
781 assemble_name (FILE, LABEL); \
782 fputs ("@pcrel", FILE); \
783 } while (0)
785 /* Xtensa constant pool breaks the devices in crtstuff.c to control
786 section in where code resides. We have to write it as asm code. Use
787 a MOVI and let the assembler relax it -- for the .init and .fini
788 sections, the assembler knows to put the literal in the right
789 place. */
790 #if defined(__XTENSA_WINDOWED_ABI__)
791 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
792 asm (SECTION_OP "\n\
793 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
794 callx8\ta8\n" \
795 TEXT_SECTION_ASM_OP);
796 #elif defined(__XTENSA_CALL0_ABI__)
797 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
798 asm (SECTION_OP "\n\
799 movi\ta0, " USER_LABEL_PREFIX #FUNC "\n\
800 callx0\ta0\n" \
801 TEXT_SECTION_ASM_OP);
802 #endif