Disable tests for strdup/strndup on __hpux__
[official-gcc.git] / gcc / ada / libgnat / s-imagei.adb
blobcbe03e74c357469b7b0bcebd326c24a4a1f1394c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- S Y S T E M . I M A G E _ I --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 with Ada.Numerics.Big_Numbers.Big_Integers_Ghost;
33 use Ada.Numerics.Big_Numbers.Big_Integers_Ghost;
35 with System.Val_Spec;
37 package body System.Image_I is
39 -- Ghost code, loop invariants and assertions in this unit are meant for
40 -- analysis only, not for run-time checking, as it would be too costly
41 -- otherwise. This is enforced by setting the assertion policy to Ignore.
43 pragma Assertion_Policy (Ghost => Ignore,
44 Loop_Invariant => Ignore,
45 Assert => Ignore,
46 Assert_And_Cut => Ignore,
47 Pre => Ignore,
48 Post => Ignore,
49 Subprogram_Variant => Ignore);
51 subtype Non_Positive is Int range Int'First .. 0;
53 function Uns_Of_Non_Positive (T : Non_Positive) return Uns is
54 (if T = Int'First then Uns (Int'Last) + 1 else Uns (-T));
56 procedure Set_Digits
57 (T : Non_Positive;
58 S : in out String;
59 P : in out Natural)
60 with
61 Pre => P < Integer'Last
62 and then S'Last < Integer'Last
63 and then S'First <= P + 1
64 and then S'First <= S'Last
65 and then P <= S'Last - Unsigned_Width_Ghost + 1,
66 Post => S (S'First .. P'Old) = S'Old (S'First .. P'Old)
67 and then P in P'Old + 1 .. S'Last
68 and then UP.Only_Decimal_Ghost (S, From => P'Old + 1, To => P)
69 and then UP.Scan_Based_Number_Ghost (S, From => P'Old + 1, To => P)
70 = UP.Wrap_Option (Uns_Of_Non_Positive (T));
71 -- Set digits of absolute value of T, which is zero or negative. We work
72 -- with the negative of the value so that the largest negative number is
73 -- not a special case.
75 package Unsigned_Conversion is new Unsigned_Conversions (Int => Uns);
77 function Big (Arg : Uns) return Big_Integer renames
78 Unsigned_Conversion.To_Big_Integer;
80 function From_Big (Arg : Big_Integer) return Uns renames
81 Unsigned_Conversion.From_Big_Integer;
83 Big_10 : constant Big_Integer := Big (10) with Ghost;
85 ------------------
86 -- Local Lemmas --
87 ------------------
89 procedure Lemma_Non_Zero (X : Uns)
90 with
91 Ghost,
92 Pre => X /= 0,
93 Post => Big (X) /= 0;
95 procedure Lemma_Div_Commutation (X, Y : Uns)
96 with
97 Ghost,
98 Pre => Y /= 0,
99 Post => Big (X) / Big (Y) = Big (X / Y);
101 procedure Lemma_Div_Twice (X : Big_Natural; Y, Z : Big_Positive)
102 with
103 Ghost,
104 Post => X / Y / Z = X / (Y * Z);
106 ---------------------------
107 -- Lemma_Div_Commutation --
108 ---------------------------
110 procedure Lemma_Non_Zero (X : Uns) is null;
111 procedure Lemma_Div_Commutation (X, Y : Uns) is null;
113 ---------------------
114 -- Lemma_Div_Twice --
115 ---------------------
117 procedure Lemma_Div_Twice (X : Big_Natural; Y, Z : Big_Positive) is
118 XY : constant Big_Natural := X / Y;
119 YZ : constant Big_Natural := Y * Z;
120 XYZ : constant Big_Natural := X / Y / Z;
121 R : constant Big_Natural := (XY rem Z) * Y + (X rem Y);
122 begin
123 pragma Assert (X = XY * Y + (X rem Y));
124 pragma Assert (XY = XY / Z * Z + (XY rem Z));
125 pragma Assert (X = XYZ * YZ + R);
126 pragma Assert ((XY rem Z) * Y <= (Z - 1) * Y);
127 pragma Assert (R <= YZ - 1);
128 pragma Assert (X / YZ = (XYZ * YZ + R) / YZ);
129 pragma Assert (X / YZ = XYZ + R / YZ);
130 end Lemma_Div_Twice;
132 -------------------
133 -- Image_Integer --
134 -------------------
136 procedure Image_Integer
137 (V : Int;
138 S : in out String;
139 P : out Natural)
141 pragma Assert (S'First = 1);
143 procedure Prove_Value_Integer
144 with
145 Ghost,
146 Pre => S'First = 1
147 and then S'Last < Integer'Last
148 and then P in 2 .. S'Last
149 and then S (1) in ' ' | '-'
150 and then (S (1) = '-') = (V < 0)
151 and then UP.Only_Decimal_Ghost (S, From => 2, To => P)
152 and then UP.Scan_Based_Number_Ghost (S, From => 2, To => P)
153 = UP.Wrap_Option (IP.Abs_Uns_Of_Int (V)),
154 Post => not System.Val_Spec.Only_Space_Ghost (S, 1, P)
155 and then IP.Is_Integer_Ghost (S (1 .. P))
156 and then IP.Is_Value_Integer_Ghost (S (1 .. P), V);
157 -- Ghost lemma to prove the value of Value_Integer from the value of
158 -- Scan_Based_Number_Ghost and the sign on a decimal string.
160 -------------------------
161 -- Prove_Value_Integer --
162 -------------------------
164 procedure Prove_Value_Integer is
165 Str : constant String := S (1 .. P);
166 begin
167 pragma Assert (Str'First = 1);
168 pragma Assert (Str (2) /= ' ');
169 pragma Assert
170 (UP.Only_Decimal_Ghost (Str, From => 2, To => P));
171 UP.Prove_Scan_Based_Number_Ghost_Eq (S, Str, From => 2, To => P);
172 pragma Assert
173 (UP.Scan_Based_Number_Ghost (Str, From => 2, To => P)
174 = UP.Wrap_Option (IP.Abs_Uns_Of_Int (V)));
175 IP.Prove_Scan_Only_Decimal_Ghost (Str, V);
176 end Prove_Value_Integer;
178 -- Start of processing for Image_Integer
180 begin
181 if V >= 0 then
182 pragma Annotate (CodePeer, False_Positive, "test always false",
183 "V can be positive");
184 S (1) := ' ';
185 P := 1;
186 pragma Assert (P < S'Last);
188 else
189 P := 0;
190 pragma Assert (P < S'Last - 1);
191 end if;
193 declare
194 P_Prev : constant Integer := P with Ghost;
195 Offset : constant Positive := (if V >= 0 then 1 else 2) with Ghost;
196 begin
197 Set_Image_Integer (V, S, P);
199 pragma Assert (P_Prev + Offset = 2);
200 end;
201 pragma Assert (if V >= 0 then S (1) = ' ');
202 pragma Assert (S (1) in ' ' | '-');
204 Prove_Value_Integer;
205 end Image_Integer;
207 ----------------
208 -- Set_Digits --
209 ----------------
211 procedure Set_Digits
212 (T : Non_Positive;
213 S : in out String;
214 P : in out Natural)
216 Nb_Digits : Natural := 0;
217 Value : Non_Positive := T;
219 -- Local ghost variables
221 Pow : Big_Positive := 1 with Ghost;
222 S_Init : constant String := S with Ghost;
223 Uns_T : constant Uns := Uns_Of_Non_Positive (T) with Ghost;
224 Uns_Value : Uns := Uns_Of_Non_Positive (Value) with Ghost;
225 Prev_Value : Uns with Ghost;
226 Prev_S : String := S with Ghost;
228 -- Local ghost lemmas
230 procedure Prove_Character_Val (RU : Uns; RI : Non_Positive)
231 with
232 Ghost,
233 Post => RU rem 10 in 0 .. 9
234 and then -(RI rem 10) in 0 .. 9
235 and then Character'Val (48 + RU rem 10) in '0' .. '9'
236 and then Character'Val (48 - RI rem 10) in '0' .. '9';
237 -- Ghost lemma to prove the value of a character corresponding to the
238 -- next figure.
240 procedure Prove_Euclidian (Val, Quot, Rest : Uns)
241 with
242 Ghost,
243 Pre => Quot = Val / 10
244 and then Rest = Val rem 10,
245 Post => Uns'Last - Rest >= 10 * Quot and then Val = 10 * Quot + Rest;
246 -- Ghost lemma to prove the relation between the quotient/remainder of
247 -- division by 10 and the initial value.
249 procedure Prove_Hexa_To_Unsigned_Ghost (RU : Uns; RI : Int)
250 with
251 Ghost,
252 Pre => RU in 0 .. 9
253 and then RI in 0 .. 9,
254 Post => UP.Hexa_To_Unsigned_Ghost
255 (Character'Val (48 + RU)) = RU
256 and then UP.Hexa_To_Unsigned_Ghost
257 (Character'Val (48 + RI)) = Uns (RI);
258 -- Ghost lemma to prove that Hexa_To_Unsigned_Ghost returns the source
259 -- figure when applied to the corresponding character.
261 procedure Prove_Scan_Iter
262 (S, Prev_S : String;
263 V, Prev_V, Res : Uns;
264 P, Max : Natural)
265 with
266 Ghost,
267 Pre =>
268 S'First = Prev_S'First and then S'Last = Prev_S'Last
269 and then S'Last < Natural'Last and then
270 Max in S'Range and then P in S'First .. Max and then
271 (for all I in P + 1 .. Max => Prev_S (I) in '0' .. '9')
272 and then (for all I in P + 1 .. Max => Prev_S (I) = S (I))
273 and then S (P) in '0' .. '9'
274 and then V <= Uns'Last / 10
275 and then Uns'Last - UP.Hexa_To_Unsigned_Ghost (S (P))
276 >= 10 * V
277 and then Prev_V =
278 V * 10 + UP.Hexa_To_Unsigned_Ghost (S (P))
279 and then
280 (if P = Max then Prev_V = Res
281 else UP.Scan_Based_Number_Ghost
282 (Str => Prev_S,
283 From => P + 1,
284 To => Max,
285 Base => 10,
286 Acc => Prev_V) = UP.Wrap_Option (Res)),
287 Post =>
288 (for all I in P .. Max => S (I) in '0' .. '9')
289 and then UP.Scan_Based_Number_Ghost
290 (Str => S,
291 From => P,
292 To => Max,
293 Base => 10,
294 Acc => V) = UP.Wrap_Option (Res);
295 -- Ghost lemma to prove that Scan_Based_Number_Ghost is preserved
296 -- through an iteration of the loop.
298 procedure Prove_Uns_Of_Non_Positive_Value
299 with
300 Ghost,
301 Pre => Uns_Value = Uns_Of_Non_Positive (Value),
302 Post => Uns_Value / 10 = Uns_Of_Non_Positive (Value / 10)
303 and then Uns_Value rem 10 = Uns_Of_Non_Positive (Value rem 10);
304 -- Ghost lemma to prove that the relation between Value and its unsigned
305 -- version is preserved.
307 -----------------------------
308 -- Local lemma null bodies --
309 -----------------------------
311 procedure Prove_Character_Val (RU : Uns; RI : Non_Positive) is null;
312 procedure Prove_Euclidian (Val, Quot, Rest : Uns) is null;
313 procedure Prove_Hexa_To_Unsigned_Ghost (RU : Uns; RI : Int) is null;
314 procedure Prove_Uns_Of_Non_Positive_Value is null;
316 ---------------------
317 -- Prove_Scan_Iter --
318 ---------------------
320 procedure Prove_Scan_Iter
321 (S, Prev_S : String;
322 V, Prev_V, Res : Uns;
323 P, Max : Natural)
325 pragma Unreferenced (Res);
326 begin
327 UP.Lemma_Scan_Based_Number_Ghost_Step
328 (Str => S,
329 From => P,
330 To => Max,
331 Base => 10,
332 Acc => V);
333 if P < Max then
334 UP.Prove_Scan_Based_Number_Ghost_Eq
335 (Prev_S, S, P + 1, Max, 10, Prev_V);
336 else
337 UP.Lemma_Scan_Based_Number_Ghost_Base
338 (Str => S,
339 From => P + 1,
340 To => Max,
341 Base => 10,
342 Acc => Prev_V);
343 end if;
344 end Prove_Scan_Iter;
346 -- Start of processing for Set_Digits
348 begin
349 pragma Assert (P >= S'First - 1 and P < S'Last);
350 -- No check is done since, as documented in the Set_Image_Integer
351 -- specification, the caller guarantees that S is long enough to
352 -- hold the result.
354 -- First we compute the number of characters needed for representing
355 -- the number.
356 loop
357 Lemma_Div_Commutation (Uns_Of_Non_Positive (Value), 10);
358 Lemma_Div_Twice (Big (Uns_Of_Non_Positive (T)),
359 Big_10 ** Nb_Digits, Big_10);
360 Prove_Uns_Of_Non_Positive_Value;
362 Value := Value / 10;
363 Nb_Digits := Nb_Digits + 1;
365 Uns_Value := Uns_Value / 10;
366 Pow := Pow * 10;
368 pragma Loop_Invariant (Uns_Value = Uns_Of_Non_Positive (Value));
369 pragma Loop_Invariant (Nb_Digits in 1 .. Unsigned_Width_Ghost - 1);
370 pragma Loop_Invariant (Pow = Big_10 ** Nb_Digits);
371 pragma Loop_Invariant (Big (Uns_Value) = Big (Uns_T) / Pow);
372 pragma Loop_Variant (Increases => Value);
374 exit when Value = 0;
376 Lemma_Non_Zero (Uns_Value);
377 pragma Assert (Pow <= Big (Uns'Last));
378 end loop;
380 Value := T;
381 Uns_Value := Uns_Of_Non_Positive (T);
382 Pow := 1;
384 pragma Assert (Uns_Value = From_Big (Big (Uns_T) / Big_10 ** 0));
386 -- We now populate digits from the end of the string to the beginning
387 for J in reverse 1 .. Nb_Digits loop
388 Lemma_Div_Commutation (Uns_Value, 10);
389 Lemma_Div_Twice (Big (Uns_T), Big_10 ** (Nb_Digits - J), Big_10);
390 Prove_Character_Val (Uns_Value, Value);
391 Prove_Hexa_To_Unsigned_Ghost (Uns_Value rem 10, -(Value rem 10));
392 Prove_Uns_Of_Non_Positive_Value;
394 Prev_Value := Uns_Value;
395 Prev_S := S;
396 Pow := Pow * 10;
397 Uns_Value := Uns_Value / 10;
399 S (P + J) := Character'Val (48 - (Value rem 10));
400 Value := Value / 10;
402 Prove_Euclidian
403 (Val => Prev_Value,
404 Quot => Uns_Value,
405 Rest => UP.Hexa_To_Unsigned_Ghost (S (P + J)));
407 Prove_Scan_Iter
408 (S, Prev_S, Uns_Value, Prev_Value, Uns_T, P + J, P + Nb_Digits);
410 pragma Loop_Invariant (Uns_Value = Uns_Of_Non_Positive (Value));
411 pragma Loop_Invariant (Uns_Value <= Uns'Last / 10);
412 pragma Loop_Invariant
413 (for all K in S'First .. P => S (K) = S_Init (K));
414 pragma Loop_Invariant
415 (UP.Only_Decimal_Ghost (S, P + J, P + Nb_Digits));
416 pragma Loop_Invariant
417 (for all K in P + J .. P + Nb_Digits => S (K) in '0' .. '9');
418 pragma Loop_Invariant (Pow = Big_10 ** (Nb_Digits - J + 1));
419 pragma Loop_Invariant (Big (Uns_Value) = Big (Uns_T) / Pow);
420 pragma Loop_Invariant
421 (UP.Scan_Based_Number_Ghost
422 (Str => S,
423 From => P + J,
424 To => P + Nb_Digits,
425 Base => 10,
426 Acc => Uns_Value)
427 = UP.Wrap_Option (Uns_T));
428 end loop;
430 pragma Assert (Big (Uns_Value) = Big (Uns_T) / Big_10 ** (Nb_Digits));
431 pragma Assert (Uns_Value = 0);
432 pragma Assert
433 (UP.Scan_Based_Number_Ghost
434 (Str => S,
435 From => P + 1,
436 To => P + Nb_Digits,
437 Base => 10,
438 Acc => Uns_Value)
439 = UP.Wrap_Option (Uns_T));
441 P := P + Nb_Digits;
442 end Set_Digits;
444 -----------------------
445 -- Set_Image_Integer --
446 -----------------------
448 procedure Set_Image_Integer
449 (V : Int;
450 S : in out String;
451 P : in out Natural)
453 begin
454 if V >= 0 then
455 Set_Digits (-V, S, P);
457 else
458 pragma Assert (P >= S'First - 1 and P < S'Last);
459 -- No check is done since, as documented in the specification,
460 -- the caller guarantees that S is long enough to hold the result.
461 P := P + 1;
462 S (P) := '-';
463 Set_Digits (V, S, P);
464 end if;
465 end Set_Image_Integer;
467 end System.Image_I;