* doc/install.texi (Prerequisites): Update link for MPC.
[official-gcc.git] / gcc / gimple-ssa-store-merging.c
blob0ae45817347ff456393abd38f331cafca090e657
1 /* GIMPLE store merging and byte swapping passes.
2 Copyright (C) 2009-2018 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The purpose of the store merging pass is to combine multiple memory stores
22 of constant values, values loaded from memory, bitwise operations on those,
23 or bit-field values, to consecutive locations, into fewer wider stores.
25 For example, if we have a sequence peforming four byte stores to
26 consecutive memory locations:
27 [p ] := imm1;
28 [p + 1B] := imm2;
29 [p + 2B] := imm3;
30 [p + 3B] := imm4;
31 we can transform this into a single 4-byte store if the target supports it:
32 [p] := imm1:imm2:imm3:imm4 concatenated according to endianness.
34 Or:
35 [p ] := [q ];
36 [p + 1B] := [q + 1B];
37 [p + 2B] := [q + 2B];
38 [p + 3B] := [q + 3B];
39 if there is no overlap can be transformed into a single 4-byte
40 load followed by single 4-byte store.
42 Or:
43 [p ] := [q ] ^ imm1;
44 [p + 1B] := [q + 1B] ^ imm2;
45 [p + 2B] := [q + 2B] ^ imm3;
46 [p + 3B] := [q + 3B] ^ imm4;
47 if there is no overlap can be transformed into a single 4-byte
48 load, xored with imm1:imm2:imm3:imm4 and stored using a single 4-byte store.
50 Or:
51 [p:1 ] := imm;
52 [p:31] := val & 0x7FFFFFFF;
53 we can transform this into a single 4-byte store if the target supports it:
54 [p] := imm:(val & 0x7FFFFFFF) concatenated according to endianness.
56 The algorithm is applied to each basic block in three phases:
58 1) Scan through the basic block and record assignments to destinations
59 that can be expressed as a store to memory of a certain size at a certain
60 bit offset from base expressions we can handle. For bit-fields we also
61 record the surrounding bit region, i.e. bits that could be stored in
62 a read-modify-write operation when storing the bit-field. Record store
63 chains to different bases in a hash_map (m_stores) and make sure to
64 terminate such chains when appropriate (for example when when the stored
65 values get used subsequently).
66 These stores can be a result of structure element initializers, array stores
67 etc. A store_immediate_info object is recorded for every such store.
68 Record as many such assignments to a single base as possible until a
69 statement that interferes with the store sequence is encountered.
70 Each store has up to 2 operands, which can be a either constant, a memory
71 load or an SSA name, from which the value to be stored can be computed.
72 At most one of the operands can be a constant. The operands are recorded
73 in store_operand_info struct.
75 2) Analyze the chains of stores recorded in phase 1) (i.e. the vector of
76 store_immediate_info objects) and coalesce contiguous stores into
77 merged_store_group objects. For bit-field stores, we don't need to
78 require the stores to be contiguous, just their surrounding bit regions
79 have to be contiguous. If the expression being stored is different
80 between adjacent stores, such as one store storing a constant and
81 following storing a value loaded from memory, or if the loaded memory
82 objects are not adjacent, a new merged_store_group is created as well.
84 For example, given the stores:
85 [p ] := 0;
86 [p + 1B] := 1;
87 [p + 3B] := 0;
88 [p + 4B] := 1;
89 [p + 5B] := 0;
90 [p + 6B] := 0;
91 This phase would produce two merged_store_group objects, one recording the
92 two bytes stored in the memory region [p : p + 1] and another
93 recording the four bytes stored in the memory region [p + 3 : p + 6].
95 3) The merged_store_group objects produced in phase 2) are processed
96 to generate the sequence of wider stores that set the contiguous memory
97 regions to the sequence of bytes that correspond to it. This may emit
98 multiple stores per store group to handle contiguous stores that are not
99 of a size that is a power of 2. For example it can try to emit a 40-bit
100 store as a 32-bit store followed by an 8-bit store.
101 We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT
102 or TARGET_SLOW_UNALIGNED_ACCESS settings.
104 Note on endianness and example:
105 Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores:
106 [p ] := 0x1234;
107 [p + 2B] := 0x5678;
108 [p + 4B] := 0xab;
109 [p + 5B] := 0xcd;
111 The memory layout for little-endian (LE) and big-endian (BE) must be:
112 p |LE|BE|
113 ---------
114 0 |34|12|
115 1 |12|34|
116 2 |78|56|
117 3 |56|78|
118 4 |ab|ab|
119 5 |cd|cd|
121 To merge these into a single 48-bit merged value 'val' in phase 2)
122 on little-endian we insert stores to higher (consecutive) bitpositions
123 into the most significant bits of the merged value.
124 The final merged value would be: 0xcdab56781234
126 For big-endian we insert stores to higher bitpositions into the least
127 significant bits of the merged value.
128 The final merged value would be: 0x12345678abcd
130 Then, in phase 3), we want to emit this 48-bit value as a 32-bit store
131 followed by a 16-bit store. Again, we must consider endianness when
132 breaking down the 48-bit value 'val' computed above.
133 For little endian we emit:
134 [p] (32-bit) := 0x56781234; // val & 0x0000ffffffff;
135 [p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32;
137 Whereas for big-endian we emit:
138 [p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16;
139 [p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */
141 #include "config.h"
142 #include "system.h"
143 #include "coretypes.h"
144 #include "backend.h"
145 #include "tree.h"
146 #include "gimple.h"
147 #include "builtins.h"
148 #include "fold-const.h"
149 #include "tree-pass.h"
150 #include "ssa.h"
151 #include "gimple-pretty-print.h"
152 #include "alias.h"
153 #include "fold-const.h"
154 #include "params.h"
155 #include "print-tree.h"
156 #include "tree-hash-traits.h"
157 #include "gimple-iterator.h"
158 #include "gimplify.h"
159 #include "gimple-fold.h"
160 #include "stor-layout.h"
161 #include "timevar.h"
162 #include "tree-cfg.h"
163 #include "tree-eh.h"
164 #include "target.h"
165 #include "gimplify-me.h"
166 #include "rtl.h"
167 #include "expr.h" /* For get_bit_range. */
168 #include "optabs-tree.h"
169 #include "selftest.h"
171 /* The maximum size (in bits) of the stores this pass should generate. */
172 #define MAX_STORE_BITSIZE (BITS_PER_WORD)
173 #define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
175 /* Limit to bound the number of aliasing checks for loads with the same
176 vuse as the corresponding store. */
177 #define MAX_STORE_ALIAS_CHECKS 64
179 namespace {
181 struct bswap_stat
183 /* Number of hand-written 16-bit nop / bswaps found. */
184 int found_16bit;
186 /* Number of hand-written 32-bit nop / bswaps found. */
187 int found_32bit;
189 /* Number of hand-written 64-bit nop / bswaps found. */
190 int found_64bit;
191 } nop_stats, bswap_stats;
193 /* A symbolic number structure is used to detect byte permutation and selection
194 patterns of a source. To achieve that, its field N contains an artificial
195 number consisting of BITS_PER_MARKER sized markers tracking where does each
196 byte come from in the source:
198 0 - target byte has the value 0
199 FF - target byte has an unknown value (eg. due to sign extension)
200 1..size - marker value is the byte index in the source (0 for lsb).
202 To detect permutations on memory sources (arrays and structures), a symbolic
203 number is also associated:
204 - a base address BASE_ADDR and an OFFSET giving the address of the source;
205 - a range which gives the difference between the highest and lowest accessed
206 memory location to make such a symbolic number;
207 - the address SRC of the source element of lowest address as a convenience
208 to easily get BASE_ADDR + offset + lowest bytepos;
209 - number of expressions N_OPS bitwise ored together to represent
210 approximate cost of the computation.
212 Note 1: the range is different from size as size reflects the size of the
213 type of the current expression. For instance, for an array char a[],
214 (short) a[0] | (short) a[3] would have a size of 2 but a range of 4 while
215 (short) a[0] | ((short) a[0] << 1) would still have a size of 2 but this
216 time a range of 1.
218 Note 2: for non-memory sources, range holds the same value as size.
220 Note 3: SRC points to the SSA_NAME in case of non-memory source. */
222 struct symbolic_number {
223 uint64_t n;
224 tree type;
225 tree base_addr;
226 tree offset;
227 poly_int64_pod bytepos;
228 tree src;
229 tree alias_set;
230 tree vuse;
231 unsigned HOST_WIDE_INT range;
232 int n_ops;
235 #define BITS_PER_MARKER 8
236 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
237 #define MARKER_BYTE_UNKNOWN MARKER_MASK
238 #define HEAD_MARKER(n, size) \
239 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
241 /* The number which the find_bswap_or_nop_1 result should match in
242 order to have a nop. The number is masked according to the size of
243 the symbolic number before using it. */
244 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
245 (uint64_t)0x08070605 << 32 | 0x04030201)
247 /* The number which the find_bswap_or_nop_1 result should match in
248 order to have a byte swap. The number is masked according to the
249 size of the symbolic number before using it. */
250 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
251 (uint64_t)0x01020304 << 32 | 0x05060708)
253 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
254 number N. Return false if the requested operation is not permitted
255 on a symbolic number. */
257 inline bool
258 do_shift_rotate (enum tree_code code,
259 struct symbolic_number *n,
260 int count)
262 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
263 unsigned head_marker;
265 if (count % BITS_PER_UNIT != 0)
266 return false;
267 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
269 /* Zero out the extra bits of N in order to avoid them being shifted
270 into the significant bits. */
271 if (size < 64 / BITS_PER_MARKER)
272 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
274 switch (code)
276 case LSHIFT_EXPR:
277 n->n <<= count;
278 break;
279 case RSHIFT_EXPR:
280 head_marker = HEAD_MARKER (n->n, size);
281 n->n >>= count;
282 /* Arithmetic shift of signed type: result is dependent on the value. */
283 if (!TYPE_UNSIGNED (n->type) && head_marker)
284 for (i = 0; i < count / BITS_PER_MARKER; i++)
285 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
286 << ((size - 1 - i) * BITS_PER_MARKER);
287 break;
288 case LROTATE_EXPR:
289 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
290 break;
291 case RROTATE_EXPR:
292 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
293 break;
294 default:
295 return false;
297 /* Zero unused bits for size. */
298 if (size < 64 / BITS_PER_MARKER)
299 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
300 return true;
303 /* Perform sanity checking for the symbolic number N and the gimple
304 statement STMT. */
306 inline bool
307 verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt)
309 tree lhs_type;
311 lhs_type = gimple_expr_type (stmt);
313 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
314 return false;
316 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
317 return false;
319 return true;
322 /* Initialize the symbolic number N for the bswap pass from the base element
323 SRC manipulated by the bitwise OR expression. */
325 bool
326 init_symbolic_number (struct symbolic_number *n, tree src)
328 int size;
330 if (! INTEGRAL_TYPE_P (TREE_TYPE (src)))
331 return false;
333 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
334 n->src = src;
336 /* Set up the symbolic number N by setting each byte to a value between 1 and
337 the byte size of rhs1. The highest order byte is set to n->size and the
338 lowest order byte to 1. */
339 n->type = TREE_TYPE (src);
340 size = TYPE_PRECISION (n->type);
341 if (size % BITS_PER_UNIT != 0)
342 return false;
343 size /= BITS_PER_UNIT;
344 if (size > 64 / BITS_PER_MARKER)
345 return false;
346 n->range = size;
347 n->n = CMPNOP;
348 n->n_ops = 1;
350 if (size < 64 / BITS_PER_MARKER)
351 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
353 return true;
356 /* Check if STMT might be a byte swap or a nop from a memory source and returns
357 the answer. If so, REF is that memory source and the base of the memory area
358 accessed and the offset of the access from that base are recorded in N. */
360 bool
361 find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n)
363 /* Leaf node is an array or component ref. Memorize its base and
364 offset from base to compare to other such leaf node. */
365 poly_int64 bitsize, bitpos, bytepos;
366 machine_mode mode;
367 int unsignedp, reversep, volatilep;
368 tree offset, base_addr;
370 /* Not prepared to handle PDP endian. */
371 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
372 return false;
374 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
375 return false;
377 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
378 &unsignedp, &reversep, &volatilep);
380 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
381 /* Do not rewrite TARGET_MEM_REF. */
382 return false;
383 else if (TREE_CODE (base_addr) == MEM_REF)
385 poly_offset_int bit_offset = 0;
386 tree off = TREE_OPERAND (base_addr, 1);
388 if (!integer_zerop (off))
390 poly_offset_int boff = mem_ref_offset (base_addr);
391 boff <<= LOG2_BITS_PER_UNIT;
392 bit_offset += boff;
395 base_addr = TREE_OPERAND (base_addr, 0);
397 /* Avoid returning a negative bitpos as this may wreak havoc later. */
398 if (maybe_lt (bit_offset, 0))
400 tree byte_offset = wide_int_to_tree
401 (sizetype, bits_to_bytes_round_down (bit_offset));
402 bit_offset = num_trailing_bits (bit_offset);
403 if (offset)
404 offset = size_binop (PLUS_EXPR, offset, byte_offset);
405 else
406 offset = byte_offset;
409 bitpos += bit_offset.force_shwi ();
411 else
412 base_addr = build_fold_addr_expr (base_addr);
414 if (!multiple_p (bitpos, BITS_PER_UNIT, &bytepos))
415 return false;
416 if (!multiple_p (bitsize, BITS_PER_UNIT))
417 return false;
418 if (reversep)
419 return false;
421 if (!init_symbolic_number (n, ref))
422 return false;
423 n->base_addr = base_addr;
424 n->offset = offset;
425 n->bytepos = bytepos;
426 n->alias_set = reference_alias_ptr_type (ref);
427 n->vuse = gimple_vuse (stmt);
428 return true;
431 /* Compute the symbolic number N representing the result of a bitwise OR on 2
432 symbolic number N1 and N2 whose source statements are respectively
433 SOURCE_STMT1 and SOURCE_STMT2. */
435 gimple *
436 perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1,
437 gimple *source_stmt2, struct symbolic_number *n2,
438 struct symbolic_number *n)
440 int i, size;
441 uint64_t mask;
442 gimple *source_stmt;
443 struct symbolic_number *n_start;
445 tree rhs1 = gimple_assign_rhs1 (source_stmt1);
446 if (TREE_CODE (rhs1) == BIT_FIELD_REF
447 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
448 rhs1 = TREE_OPERAND (rhs1, 0);
449 tree rhs2 = gimple_assign_rhs1 (source_stmt2);
450 if (TREE_CODE (rhs2) == BIT_FIELD_REF
451 && TREE_CODE (TREE_OPERAND (rhs2, 0)) == SSA_NAME)
452 rhs2 = TREE_OPERAND (rhs2, 0);
454 /* Sources are different, cancel bswap if they are not memory location with
455 the same base (array, structure, ...). */
456 if (rhs1 != rhs2)
458 uint64_t inc;
459 HOST_WIDE_INT start1, start2, start_sub, end_sub, end1, end2, end;
460 struct symbolic_number *toinc_n_ptr, *n_end;
461 basic_block bb1, bb2;
463 if (!n1->base_addr || !n2->base_addr
464 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
465 return NULL;
467 if (!n1->offset != !n2->offset
468 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
469 return NULL;
471 start1 = 0;
472 if (!(n2->bytepos - n1->bytepos).is_constant (&start2))
473 return NULL;
475 if (start1 < start2)
477 n_start = n1;
478 start_sub = start2 - start1;
480 else
482 n_start = n2;
483 start_sub = start1 - start2;
486 bb1 = gimple_bb (source_stmt1);
487 bb2 = gimple_bb (source_stmt2);
488 if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
489 source_stmt = source_stmt1;
490 else
491 source_stmt = source_stmt2;
493 /* Find the highest address at which a load is performed and
494 compute related info. */
495 end1 = start1 + (n1->range - 1);
496 end2 = start2 + (n2->range - 1);
497 if (end1 < end2)
499 end = end2;
500 end_sub = end2 - end1;
502 else
504 end = end1;
505 end_sub = end1 - end2;
507 n_end = (end2 > end1) ? n2 : n1;
509 /* Find symbolic number whose lsb is the most significant. */
510 if (BYTES_BIG_ENDIAN)
511 toinc_n_ptr = (n_end == n1) ? n2 : n1;
512 else
513 toinc_n_ptr = (n_start == n1) ? n2 : n1;
515 n->range = end - MIN (start1, start2) + 1;
517 /* Check that the range of memory covered can be represented by
518 a symbolic number. */
519 if (n->range > 64 / BITS_PER_MARKER)
520 return NULL;
522 /* Reinterpret byte marks in symbolic number holding the value of
523 bigger weight according to target endianness. */
524 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
525 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
526 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
528 unsigned marker
529 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
530 if (marker && marker != MARKER_BYTE_UNKNOWN)
531 toinc_n_ptr->n += inc;
534 else
536 n->range = n1->range;
537 n_start = n1;
538 source_stmt = source_stmt1;
541 if (!n1->alias_set
542 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
543 n->alias_set = n1->alias_set;
544 else
545 n->alias_set = ptr_type_node;
546 n->vuse = n_start->vuse;
547 n->base_addr = n_start->base_addr;
548 n->offset = n_start->offset;
549 n->src = n_start->src;
550 n->bytepos = n_start->bytepos;
551 n->type = n_start->type;
552 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
554 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
556 uint64_t masked1, masked2;
558 masked1 = n1->n & mask;
559 masked2 = n2->n & mask;
560 if (masked1 && masked2 && masked1 != masked2)
561 return NULL;
563 n->n = n1->n | n2->n;
564 n->n_ops = n1->n_ops + n2->n_ops;
566 return source_stmt;
569 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
570 the operation given by the rhs of STMT on the result. If the operation
571 could successfully be executed the function returns a gimple stmt whose
572 rhs's first tree is the expression of the source operand and NULL
573 otherwise. */
575 gimple *
576 find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit)
578 enum tree_code code;
579 tree rhs1, rhs2 = NULL;
580 gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1;
581 enum gimple_rhs_class rhs_class;
583 if (!limit || !is_gimple_assign (stmt))
584 return NULL;
586 rhs1 = gimple_assign_rhs1 (stmt);
588 if (find_bswap_or_nop_load (stmt, rhs1, n))
589 return stmt;
591 /* Handle BIT_FIELD_REF. */
592 if (TREE_CODE (rhs1) == BIT_FIELD_REF
593 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
595 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TREE_OPERAND (rhs1, 1));
596 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (TREE_OPERAND (rhs1, 2));
597 if (bitpos % BITS_PER_UNIT == 0
598 && bitsize % BITS_PER_UNIT == 0
599 && init_symbolic_number (n, TREE_OPERAND (rhs1, 0)))
601 /* Handle big-endian bit numbering in BIT_FIELD_REF. */
602 if (BYTES_BIG_ENDIAN)
603 bitpos = TYPE_PRECISION (n->type) - bitpos - bitsize;
605 /* Shift. */
606 if (!do_shift_rotate (RSHIFT_EXPR, n, bitpos))
607 return NULL;
609 /* Mask. */
610 uint64_t mask = 0;
611 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
612 for (unsigned i = 0; i < bitsize / BITS_PER_UNIT;
613 i++, tmp <<= BITS_PER_UNIT)
614 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
615 n->n &= mask;
617 /* Convert. */
618 n->type = TREE_TYPE (rhs1);
619 if (!n->base_addr)
620 n->range = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
622 return verify_symbolic_number_p (n, stmt) ? stmt : NULL;
625 return NULL;
628 if (TREE_CODE (rhs1) != SSA_NAME)
629 return NULL;
631 code = gimple_assign_rhs_code (stmt);
632 rhs_class = gimple_assign_rhs_class (stmt);
633 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
635 if (rhs_class == GIMPLE_BINARY_RHS)
636 rhs2 = gimple_assign_rhs2 (stmt);
638 /* Handle unary rhs and binary rhs with integer constants as second
639 operand. */
641 if (rhs_class == GIMPLE_UNARY_RHS
642 || (rhs_class == GIMPLE_BINARY_RHS
643 && TREE_CODE (rhs2) == INTEGER_CST))
645 if (code != BIT_AND_EXPR
646 && code != LSHIFT_EXPR
647 && code != RSHIFT_EXPR
648 && code != LROTATE_EXPR
649 && code != RROTATE_EXPR
650 && !CONVERT_EXPR_CODE_P (code))
651 return NULL;
653 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
655 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
656 we have to initialize the symbolic number. */
657 if (!source_stmt1)
659 if (gimple_assign_load_p (stmt)
660 || !init_symbolic_number (n, rhs1))
661 return NULL;
662 source_stmt1 = stmt;
665 switch (code)
667 case BIT_AND_EXPR:
669 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
670 uint64_t val = int_cst_value (rhs2), mask = 0;
671 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
673 /* Only constants masking full bytes are allowed. */
674 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
675 if ((val & tmp) != 0 && (val & tmp) != tmp)
676 return NULL;
677 else if (val & tmp)
678 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
680 n->n &= mask;
682 break;
683 case LSHIFT_EXPR:
684 case RSHIFT_EXPR:
685 case LROTATE_EXPR:
686 case RROTATE_EXPR:
687 if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
688 return NULL;
689 break;
690 CASE_CONVERT:
692 int i, type_size, old_type_size;
693 tree type;
695 type = gimple_expr_type (stmt);
696 type_size = TYPE_PRECISION (type);
697 if (type_size % BITS_PER_UNIT != 0)
698 return NULL;
699 type_size /= BITS_PER_UNIT;
700 if (type_size > 64 / BITS_PER_MARKER)
701 return NULL;
703 /* Sign extension: result is dependent on the value. */
704 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
705 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
706 && HEAD_MARKER (n->n, old_type_size))
707 for (i = 0; i < type_size - old_type_size; i++)
708 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
709 << ((type_size - 1 - i) * BITS_PER_MARKER);
711 if (type_size < 64 / BITS_PER_MARKER)
713 /* If STMT casts to a smaller type mask out the bits not
714 belonging to the target type. */
715 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
717 n->type = type;
718 if (!n->base_addr)
719 n->range = type_size;
721 break;
722 default:
723 return NULL;
725 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
728 /* Handle binary rhs. */
730 if (rhs_class == GIMPLE_BINARY_RHS)
732 struct symbolic_number n1, n2;
733 gimple *source_stmt, *source_stmt2;
735 if (code != BIT_IOR_EXPR)
736 return NULL;
738 if (TREE_CODE (rhs2) != SSA_NAME)
739 return NULL;
741 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
743 switch (code)
745 case BIT_IOR_EXPR:
746 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
748 if (!source_stmt1)
749 return NULL;
751 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
753 if (!source_stmt2)
754 return NULL;
756 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
757 return NULL;
759 if (n1.vuse != n2.vuse)
760 return NULL;
762 source_stmt
763 = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
765 if (!source_stmt)
766 return NULL;
768 if (!verify_symbolic_number_p (n, stmt))
769 return NULL;
771 break;
772 default:
773 return NULL;
775 return source_stmt;
777 return NULL;
780 /* Helper for find_bswap_or_nop and try_coalesce_bswap to compute
781 *CMPXCHG, *CMPNOP and adjust *N. */
783 void
784 find_bswap_or_nop_finalize (struct symbolic_number *n, uint64_t *cmpxchg,
785 uint64_t *cmpnop)
787 unsigned rsize;
788 uint64_t tmpn, mask;
790 /* The number which the find_bswap_or_nop_1 result should match in order
791 to have a full byte swap. The number is shifted to the right
792 according to the size of the symbolic number before using it. */
793 *cmpxchg = CMPXCHG;
794 *cmpnop = CMPNOP;
796 /* Find real size of result (highest non-zero byte). */
797 if (n->base_addr)
798 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
799 else
800 rsize = n->range;
802 /* Zero out the bits corresponding to untouched bytes in original gimple
803 expression. */
804 if (n->range < (int) sizeof (int64_t))
806 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
807 *cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
808 *cmpnop &= mask;
811 /* Zero out the bits corresponding to unused bytes in the result of the
812 gimple expression. */
813 if (rsize < n->range)
815 if (BYTES_BIG_ENDIAN)
817 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
818 *cmpxchg &= mask;
819 *cmpnop >>= (n->range - rsize) * BITS_PER_MARKER;
821 else
823 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
824 *cmpxchg >>= (n->range - rsize) * BITS_PER_MARKER;
825 *cmpnop &= mask;
827 n->range = rsize;
830 n->range *= BITS_PER_UNIT;
833 /* Check if STMT completes a bswap implementation or a read in a given
834 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
835 accordingly. It also sets N to represent the kind of operations
836 performed: size of the resulting expression and whether it works on
837 a memory source, and if so alias-set and vuse. At last, the
838 function returns a stmt whose rhs's first tree is the source
839 expression. */
841 gimple *
842 find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap)
844 /* The last parameter determines the depth search limit. It usually
845 correlates directly to the number n of bytes to be touched. We
846 increase that number by log2(n) + 1 here in order to also
847 cover signed -> unsigned conversions of the src operand as can be seen
848 in libgcc, and for initial shift/and operation of the src operand. */
849 int limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
850 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
851 gimple *ins_stmt = find_bswap_or_nop_1 (stmt, n, limit);
853 if (!ins_stmt)
854 return NULL;
856 uint64_t cmpxchg, cmpnop;
857 find_bswap_or_nop_finalize (n, &cmpxchg, &cmpnop);
859 /* A complete byte swap should make the symbolic number to start with
860 the largest digit in the highest order byte. Unchanged symbolic
861 number indicates a read with same endianness as target architecture. */
862 if (n->n == cmpnop)
863 *bswap = false;
864 else if (n->n == cmpxchg)
865 *bswap = true;
866 else
867 return NULL;
869 /* Useless bit manipulation performed by code. */
870 if (!n->base_addr && n->n == cmpnop && n->n_ops == 1)
871 return NULL;
873 return ins_stmt;
876 const pass_data pass_data_optimize_bswap =
878 GIMPLE_PASS, /* type */
879 "bswap", /* name */
880 OPTGROUP_NONE, /* optinfo_flags */
881 TV_NONE, /* tv_id */
882 PROP_ssa, /* properties_required */
883 0, /* properties_provided */
884 0, /* properties_destroyed */
885 0, /* todo_flags_start */
886 0, /* todo_flags_finish */
889 class pass_optimize_bswap : public gimple_opt_pass
891 public:
892 pass_optimize_bswap (gcc::context *ctxt)
893 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
896 /* opt_pass methods: */
897 virtual bool gate (function *)
899 return flag_expensive_optimizations && optimize && BITS_PER_UNIT == 8;
902 virtual unsigned int execute (function *);
904 }; // class pass_optimize_bswap
906 /* Perform the bswap optimization: replace the expression computed in the rhs
907 of gsi_stmt (GSI) (or if NULL add instead of replace) by an equivalent
908 bswap, load or load + bswap expression.
909 Which of these alternatives replace the rhs is given by N->base_addr (non
910 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
911 load to perform are also given in N while the builtin bswap invoke is given
912 in FNDEL. Finally, if a load is involved, INS_STMT refers to one of the
913 load statements involved to construct the rhs in gsi_stmt (GSI) and
914 N->range gives the size of the rhs expression for maintaining some
915 statistics.
917 Note that if the replacement involve a load and if gsi_stmt (GSI) is
918 non-NULL, that stmt is moved just after INS_STMT to do the load with the
919 same VUSE which can lead to gsi_stmt (GSI) changing of basic block. */
921 tree
922 bswap_replace (gimple_stmt_iterator gsi, gimple *ins_stmt, tree fndecl,
923 tree bswap_type, tree load_type, struct symbolic_number *n,
924 bool bswap)
926 tree src, tmp, tgt = NULL_TREE;
927 gimple *bswap_stmt;
929 gimple *cur_stmt = gsi_stmt (gsi);
930 src = n->src;
931 if (cur_stmt)
932 tgt = gimple_assign_lhs (cur_stmt);
934 /* Need to load the value from memory first. */
935 if (n->base_addr)
937 gimple_stmt_iterator gsi_ins = gsi;
938 if (ins_stmt)
939 gsi_ins = gsi_for_stmt (ins_stmt);
940 tree addr_expr, addr_tmp, val_expr, val_tmp;
941 tree load_offset_ptr, aligned_load_type;
942 gimple *load_stmt;
943 unsigned align = get_object_alignment (src);
944 poly_int64 load_offset = 0;
946 if (cur_stmt)
948 basic_block ins_bb = gimple_bb (ins_stmt);
949 basic_block cur_bb = gimple_bb (cur_stmt);
950 if (!dominated_by_p (CDI_DOMINATORS, cur_bb, ins_bb))
951 return NULL_TREE;
953 /* Move cur_stmt just before one of the load of the original
954 to ensure it has the same VUSE. See PR61517 for what could
955 go wrong. */
956 if (gimple_bb (cur_stmt) != gimple_bb (ins_stmt))
957 reset_flow_sensitive_info (gimple_assign_lhs (cur_stmt));
958 gsi_move_before (&gsi, &gsi_ins);
959 gsi = gsi_for_stmt (cur_stmt);
961 else
962 gsi = gsi_ins;
964 /* Compute address to load from and cast according to the size
965 of the load. */
966 addr_expr = build_fold_addr_expr (src);
967 if (is_gimple_mem_ref_addr (addr_expr))
968 addr_tmp = unshare_expr (addr_expr);
969 else
971 addr_tmp = unshare_expr (n->base_addr);
972 if (!is_gimple_mem_ref_addr (addr_tmp))
973 addr_tmp = force_gimple_operand_gsi_1 (&gsi, addr_tmp,
974 is_gimple_mem_ref_addr,
975 NULL_TREE, true,
976 GSI_SAME_STMT);
977 load_offset = n->bytepos;
978 if (n->offset)
980 tree off
981 = force_gimple_operand_gsi (&gsi, unshare_expr (n->offset),
982 true, NULL_TREE, true,
983 GSI_SAME_STMT);
984 gimple *stmt
985 = gimple_build_assign (make_ssa_name (TREE_TYPE (addr_tmp)),
986 POINTER_PLUS_EXPR, addr_tmp, off);
987 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
988 addr_tmp = gimple_assign_lhs (stmt);
992 /* Perform the load. */
993 aligned_load_type = load_type;
994 if (align < TYPE_ALIGN (load_type))
995 aligned_load_type = build_aligned_type (load_type, align);
996 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
997 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
998 load_offset_ptr);
1000 if (!bswap)
1002 if (n->range == 16)
1003 nop_stats.found_16bit++;
1004 else if (n->range == 32)
1005 nop_stats.found_32bit++;
1006 else
1008 gcc_assert (n->range == 64);
1009 nop_stats.found_64bit++;
1012 /* Convert the result of load if necessary. */
1013 if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), load_type))
1015 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
1016 "load_dst");
1017 load_stmt = gimple_build_assign (val_tmp, val_expr);
1018 gimple_set_vuse (load_stmt, n->vuse);
1019 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1020 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
1021 update_stmt (cur_stmt);
1023 else if (cur_stmt)
1025 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
1026 gimple_set_vuse (cur_stmt, n->vuse);
1027 update_stmt (cur_stmt);
1029 else
1031 tgt = make_ssa_name (load_type);
1032 cur_stmt = gimple_build_assign (tgt, MEM_REF, val_expr);
1033 gimple_set_vuse (cur_stmt, n->vuse);
1034 gsi_insert_before (&gsi, cur_stmt, GSI_SAME_STMT);
1037 if (dump_file)
1039 fprintf (dump_file,
1040 "%d bit load in target endianness found at: ",
1041 (int) n->range);
1042 print_gimple_stmt (dump_file, cur_stmt, 0);
1044 return tgt;
1046 else
1048 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
1049 load_stmt = gimple_build_assign (val_tmp, val_expr);
1050 gimple_set_vuse (load_stmt, n->vuse);
1051 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1053 src = val_tmp;
1055 else if (!bswap)
1057 gimple *g = NULL;
1058 if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), TREE_TYPE (src)))
1060 if (!is_gimple_val (src))
1061 return NULL_TREE;
1062 g = gimple_build_assign (tgt, NOP_EXPR, src);
1064 else if (cur_stmt)
1065 g = gimple_build_assign (tgt, src);
1066 else
1067 tgt = src;
1068 if (n->range == 16)
1069 nop_stats.found_16bit++;
1070 else if (n->range == 32)
1071 nop_stats.found_32bit++;
1072 else
1074 gcc_assert (n->range == 64);
1075 nop_stats.found_64bit++;
1077 if (dump_file)
1079 fprintf (dump_file,
1080 "%d bit reshuffle in target endianness found at: ",
1081 (int) n->range);
1082 if (cur_stmt)
1083 print_gimple_stmt (dump_file, cur_stmt, 0);
1084 else
1086 print_generic_expr (dump_file, tgt, TDF_NONE);
1087 fprintf (dump_file, "\n");
1090 if (cur_stmt)
1091 gsi_replace (&gsi, g, true);
1092 return tgt;
1094 else if (TREE_CODE (src) == BIT_FIELD_REF)
1095 src = TREE_OPERAND (src, 0);
1097 if (n->range == 16)
1098 bswap_stats.found_16bit++;
1099 else if (n->range == 32)
1100 bswap_stats.found_32bit++;
1101 else
1103 gcc_assert (n->range == 64);
1104 bswap_stats.found_64bit++;
1107 tmp = src;
1109 /* Convert the src expression if necessary. */
1110 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
1112 gimple *convert_stmt;
1114 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
1115 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
1116 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1119 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
1120 are considered as rotation of 2N bit values by N bits is generally not
1121 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
1122 gives 0x03040102 while a bswap for that value is 0x04030201. */
1123 if (bswap && n->range == 16)
1125 tree count = build_int_cst (NULL, BITS_PER_UNIT);
1126 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
1127 bswap_stmt = gimple_build_assign (NULL, src);
1129 else
1130 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
1132 if (tgt == NULL_TREE)
1133 tgt = make_ssa_name (bswap_type);
1134 tmp = tgt;
1136 /* Convert the result if necessary. */
1137 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
1139 gimple *convert_stmt;
1141 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
1142 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
1143 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1146 gimple_set_lhs (bswap_stmt, tmp);
1148 if (dump_file)
1150 fprintf (dump_file, "%d bit bswap implementation found at: ",
1151 (int) n->range);
1152 if (cur_stmt)
1153 print_gimple_stmt (dump_file, cur_stmt, 0);
1154 else
1156 print_generic_expr (dump_file, tgt, TDF_NONE);
1157 fprintf (dump_file, "\n");
1161 if (cur_stmt)
1163 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
1164 gsi_remove (&gsi, true);
1166 else
1167 gsi_insert_before (&gsi, bswap_stmt, GSI_SAME_STMT);
1168 return tgt;
1171 /* Find manual byte swap implementations as well as load in a given
1172 endianness. Byte swaps are turned into a bswap builtin invokation
1173 while endian loads are converted to bswap builtin invokation or
1174 simple load according to the target endianness. */
1176 unsigned int
1177 pass_optimize_bswap::execute (function *fun)
1179 basic_block bb;
1180 bool bswap32_p, bswap64_p;
1181 bool changed = false;
1182 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1184 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1185 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1186 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1187 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1188 || (bswap32_p && word_mode == SImode)));
1190 /* Determine the argument type of the builtins. The code later on
1191 assumes that the return and argument type are the same. */
1192 if (bswap32_p)
1194 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1195 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1198 if (bswap64_p)
1200 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1201 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1204 memset (&nop_stats, 0, sizeof (nop_stats));
1205 memset (&bswap_stats, 0, sizeof (bswap_stats));
1206 calculate_dominance_info (CDI_DOMINATORS);
1208 FOR_EACH_BB_FN (bb, fun)
1210 gimple_stmt_iterator gsi;
1212 /* We do a reverse scan for bswap patterns to make sure we get the
1213 widest match. As bswap pattern matching doesn't handle previously
1214 inserted smaller bswap replacements as sub-patterns, the wider
1215 variant wouldn't be detected. */
1216 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
1218 gimple *ins_stmt, *cur_stmt = gsi_stmt (gsi);
1219 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
1220 enum tree_code code;
1221 struct symbolic_number n;
1222 bool bswap;
1224 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
1225 might be moved to a different basic block by bswap_replace and gsi
1226 must not points to it if that's the case. Moving the gsi_prev
1227 there make sure that gsi points to the statement previous to
1228 cur_stmt while still making sure that all statements are
1229 considered in this basic block. */
1230 gsi_prev (&gsi);
1232 if (!is_gimple_assign (cur_stmt))
1233 continue;
1235 code = gimple_assign_rhs_code (cur_stmt);
1236 switch (code)
1238 case LROTATE_EXPR:
1239 case RROTATE_EXPR:
1240 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
1241 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
1242 % BITS_PER_UNIT)
1243 continue;
1244 /* Fall through. */
1245 case BIT_IOR_EXPR:
1246 break;
1247 default:
1248 continue;
1251 ins_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
1253 if (!ins_stmt)
1254 continue;
1256 switch (n.range)
1258 case 16:
1259 /* Already in canonical form, nothing to do. */
1260 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
1261 continue;
1262 load_type = bswap_type = uint16_type_node;
1263 break;
1264 case 32:
1265 load_type = uint32_type_node;
1266 if (bswap32_p)
1268 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1269 bswap_type = bswap32_type;
1271 break;
1272 case 64:
1273 load_type = uint64_type_node;
1274 if (bswap64_p)
1276 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1277 bswap_type = bswap64_type;
1279 break;
1280 default:
1281 continue;
1284 if (bswap && !fndecl && n.range != 16)
1285 continue;
1287 if (bswap_replace (gsi_for_stmt (cur_stmt), ins_stmt, fndecl,
1288 bswap_type, load_type, &n, bswap))
1289 changed = true;
1293 statistics_counter_event (fun, "16-bit nop implementations found",
1294 nop_stats.found_16bit);
1295 statistics_counter_event (fun, "32-bit nop implementations found",
1296 nop_stats.found_32bit);
1297 statistics_counter_event (fun, "64-bit nop implementations found",
1298 nop_stats.found_64bit);
1299 statistics_counter_event (fun, "16-bit bswap implementations found",
1300 bswap_stats.found_16bit);
1301 statistics_counter_event (fun, "32-bit bswap implementations found",
1302 bswap_stats.found_32bit);
1303 statistics_counter_event (fun, "64-bit bswap implementations found",
1304 bswap_stats.found_64bit);
1306 return (changed ? TODO_update_ssa : 0);
1309 } // anon namespace
1311 gimple_opt_pass *
1312 make_pass_optimize_bswap (gcc::context *ctxt)
1314 return new pass_optimize_bswap (ctxt);
1317 namespace {
1319 /* Struct recording one operand for the store, which is either a constant,
1320 then VAL represents the constant and all the other fields are zero, or
1321 a memory load, then VAL represents the reference, BASE_ADDR is non-NULL
1322 and the other fields also reflect the memory load, or an SSA name, then
1323 VAL represents the SSA name and all the other fields are zero, */
1325 struct store_operand_info
1327 tree val;
1328 tree base_addr;
1329 poly_uint64 bitsize;
1330 poly_uint64 bitpos;
1331 poly_uint64 bitregion_start;
1332 poly_uint64 bitregion_end;
1333 gimple *stmt;
1334 bool bit_not_p;
1335 store_operand_info ();
1338 store_operand_info::store_operand_info ()
1339 : val (NULL_TREE), base_addr (NULL_TREE), bitsize (0), bitpos (0),
1340 bitregion_start (0), bitregion_end (0), stmt (NULL), bit_not_p (false)
1344 /* Struct recording the information about a single store of an immediate
1345 to memory. These are created in the first phase and coalesced into
1346 merged_store_group objects in the second phase. */
1348 struct store_immediate_info
1350 unsigned HOST_WIDE_INT bitsize;
1351 unsigned HOST_WIDE_INT bitpos;
1352 unsigned HOST_WIDE_INT bitregion_start;
1353 /* This is one past the last bit of the bit region. */
1354 unsigned HOST_WIDE_INT bitregion_end;
1355 gimple *stmt;
1356 unsigned int order;
1357 /* INTEGER_CST for constant stores, MEM_REF for memory copy,
1358 BIT_*_EXPR for logical bitwise operation, BIT_INSERT_EXPR
1359 for bit insertion.
1360 LROTATE_EXPR if it can be only bswap optimized and
1361 ops are not really meaningful.
1362 NOP_EXPR if bswap optimization detected identity, ops
1363 are not meaningful. */
1364 enum tree_code rhs_code;
1365 /* Two fields for bswap optimization purposes. */
1366 struct symbolic_number n;
1367 gimple *ins_stmt;
1368 /* True if BIT_{AND,IOR,XOR}_EXPR result is inverted before storing. */
1369 bool bit_not_p;
1370 /* True if ops have been swapped and thus ops[1] represents
1371 rhs1 of BIT_{AND,IOR,XOR}_EXPR and ops[0] represents rhs2. */
1372 bool ops_swapped_p;
1373 /* Operands. For BIT_*_EXPR rhs_code both operands are used, otherwise
1374 just the first one. */
1375 store_operand_info ops[2];
1376 store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
1377 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
1378 gimple *, unsigned int, enum tree_code,
1379 struct symbolic_number &, gimple *, bool,
1380 const store_operand_info &,
1381 const store_operand_info &);
1384 store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs,
1385 unsigned HOST_WIDE_INT bp,
1386 unsigned HOST_WIDE_INT brs,
1387 unsigned HOST_WIDE_INT bre,
1388 gimple *st,
1389 unsigned int ord,
1390 enum tree_code rhscode,
1391 struct symbolic_number &nr,
1392 gimple *ins_stmtp,
1393 bool bitnotp,
1394 const store_operand_info &op0r,
1395 const store_operand_info &op1r)
1396 : bitsize (bs), bitpos (bp), bitregion_start (brs), bitregion_end (bre),
1397 stmt (st), order (ord), rhs_code (rhscode), n (nr),
1398 ins_stmt (ins_stmtp), bit_not_p (bitnotp), ops_swapped_p (false)
1399 #if __cplusplus >= 201103L
1400 , ops { op0r, op1r }
1403 #else
1405 ops[0] = op0r;
1406 ops[1] = op1r;
1408 #endif
1410 /* Struct representing a group of stores to contiguous memory locations.
1411 These are produced by the second phase (coalescing) and consumed in the
1412 third phase that outputs the widened stores. */
1414 struct merged_store_group
1416 unsigned HOST_WIDE_INT start;
1417 unsigned HOST_WIDE_INT width;
1418 unsigned HOST_WIDE_INT bitregion_start;
1419 unsigned HOST_WIDE_INT bitregion_end;
1420 /* The size of the allocated memory for val and mask. */
1421 unsigned HOST_WIDE_INT buf_size;
1422 unsigned HOST_WIDE_INT align_base;
1423 poly_uint64 load_align_base[2];
1425 unsigned int align;
1426 unsigned int load_align[2];
1427 unsigned int first_order;
1428 unsigned int last_order;
1429 bool bit_insertion;
1431 auto_vec<store_immediate_info *> stores;
1432 /* We record the first and last original statements in the sequence because
1433 we'll need their vuse/vdef and replacement position. It's easier to keep
1434 track of them separately as 'stores' is reordered by apply_stores. */
1435 gimple *last_stmt;
1436 gimple *first_stmt;
1437 unsigned char *val;
1438 unsigned char *mask;
1440 merged_store_group (store_immediate_info *);
1441 ~merged_store_group ();
1442 bool can_be_merged_into (store_immediate_info *);
1443 void merge_into (store_immediate_info *);
1444 void merge_overlapping (store_immediate_info *);
1445 bool apply_stores ();
1446 private:
1447 void do_merge (store_immediate_info *);
1450 /* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */
1452 static void
1453 dump_char_array (FILE *fd, unsigned char *ptr, unsigned int len)
1455 if (!fd)
1456 return;
1458 for (unsigned int i = 0; i < len; i++)
1459 fprintf (fd, "%02x ", ptr[i]);
1460 fprintf (fd, "\n");
1463 /* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the
1464 bits between adjacent elements. AMNT should be within
1465 [0, BITS_PER_UNIT).
1466 Example, AMNT = 2:
1467 00011111|11100000 << 2 = 01111111|10000000
1468 PTR[1] | PTR[0] PTR[1] | PTR[0]. */
1470 static void
1471 shift_bytes_in_array (unsigned char *ptr, unsigned int sz, unsigned int amnt)
1473 if (amnt == 0)
1474 return;
1476 unsigned char carry_over = 0U;
1477 unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt);
1478 unsigned char clear_mask = (~0U) << amnt;
1480 for (unsigned int i = 0; i < sz; i++)
1482 unsigned prev_carry_over = carry_over;
1483 carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt);
1485 ptr[i] <<= amnt;
1486 if (i != 0)
1488 ptr[i] &= clear_mask;
1489 ptr[i] |= prev_carry_over;
1494 /* Like shift_bytes_in_array but for big-endian.
1495 Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the
1496 bits between adjacent elements. AMNT should be within
1497 [0, BITS_PER_UNIT).
1498 Example, AMNT = 2:
1499 00011111|11100000 >> 2 = 00000111|11111000
1500 PTR[0] | PTR[1] PTR[0] | PTR[1]. */
1502 static void
1503 shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz,
1504 unsigned int amnt)
1506 if (amnt == 0)
1507 return;
1509 unsigned char carry_over = 0U;
1510 unsigned char carry_mask = ~(~0U << amnt);
1512 for (unsigned int i = 0; i < sz; i++)
1514 unsigned prev_carry_over = carry_over;
1515 carry_over = ptr[i] & carry_mask;
1517 carry_over <<= (unsigned char) BITS_PER_UNIT - amnt;
1518 ptr[i] >>= amnt;
1519 ptr[i] |= prev_carry_over;
1523 /* Clear out LEN bits starting from bit START in the byte array
1524 PTR. This clears the bits to the *right* from START.
1525 START must be within [0, BITS_PER_UNIT) and counts starting from
1526 the least significant bit. */
1528 static void
1529 clear_bit_region_be (unsigned char *ptr, unsigned int start,
1530 unsigned int len)
1532 if (len == 0)
1533 return;
1534 /* Clear len bits to the right of start. */
1535 else if (len <= start + 1)
1537 unsigned char mask = (~(~0U << len));
1538 mask = mask << (start + 1U - len);
1539 ptr[0] &= ~mask;
1541 else if (start != BITS_PER_UNIT - 1)
1543 clear_bit_region_be (ptr, start, (start % BITS_PER_UNIT) + 1);
1544 clear_bit_region_be (ptr + 1, BITS_PER_UNIT - 1,
1545 len - (start % BITS_PER_UNIT) - 1);
1547 else if (start == BITS_PER_UNIT - 1
1548 && len > BITS_PER_UNIT)
1550 unsigned int nbytes = len / BITS_PER_UNIT;
1551 memset (ptr, 0, nbytes);
1552 if (len % BITS_PER_UNIT != 0)
1553 clear_bit_region_be (ptr + nbytes, BITS_PER_UNIT - 1,
1554 len % BITS_PER_UNIT);
1556 else
1557 gcc_unreachable ();
1560 /* In the byte array PTR clear the bit region starting at bit
1561 START and is LEN bits wide.
1562 For regions spanning multiple bytes do this recursively until we reach
1563 zero LEN or a region contained within a single byte. */
1565 static void
1566 clear_bit_region (unsigned char *ptr, unsigned int start,
1567 unsigned int len)
1569 /* Degenerate base case. */
1570 if (len == 0)
1571 return;
1572 else if (start >= BITS_PER_UNIT)
1573 clear_bit_region (ptr + 1, start - BITS_PER_UNIT, len);
1574 /* Second base case. */
1575 else if ((start + len) <= BITS_PER_UNIT)
1577 unsigned char mask = (~0U) << (unsigned char) (BITS_PER_UNIT - len);
1578 mask >>= BITS_PER_UNIT - (start + len);
1580 ptr[0] &= ~mask;
1582 return;
1584 /* Clear most significant bits in a byte and proceed with the next byte. */
1585 else if (start != 0)
1587 clear_bit_region (ptr, start, BITS_PER_UNIT - start);
1588 clear_bit_region (ptr + 1, 0, len - (BITS_PER_UNIT - start));
1590 /* Whole bytes need to be cleared. */
1591 else if (start == 0 && len > BITS_PER_UNIT)
1593 unsigned int nbytes = len / BITS_PER_UNIT;
1594 /* We could recurse on each byte but we clear whole bytes, so a simple
1595 memset will do. */
1596 memset (ptr, '\0', nbytes);
1597 /* Clear the remaining sub-byte region if there is one. */
1598 if (len % BITS_PER_UNIT != 0)
1599 clear_bit_region (ptr + nbytes, 0, len % BITS_PER_UNIT);
1601 else
1602 gcc_unreachable ();
1605 /* Write BITLEN bits of EXPR to the byte array PTR at
1606 bit position BITPOS. PTR should contain TOTAL_BYTES elements.
1607 Return true if the operation succeeded. */
1609 static bool
1610 encode_tree_to_bitpos (tree expr, unsigned char *ptr, int bitlen, int bitpos,
1611 unsigned int total_bytes)
1613 unsigned int first_byte = bitpos / BITS_PER_UNIT;
1614 tree tmp_int = expr;
1615 bool sub_byte_op_p = ((bitlen % BITS_PER_UNIT)
1616 || (bitpos % BITS_PER_UNIT)
1617 || !int_mode_for_size (bitlen, 0).exists ());
1619 if (!sub_byte_op_p)
1620 return native_encode_expr (tmp_int, ptr + first_byte, total_bytes) != 0;
1622 /* LITTLE-ENDIAN
1623 We are writing a non byte-sized quantity or at a position that is not
1624 at a byte boundary.
1625 |--------|--------|--------| ptr + first_byte
1627 xxx xxxxxxxx xxx< bp>
1628 |______EXPR____|
1630 First native_encode_expr EXPR into a temporary buffer and shift each
1631 byte in the buffer by 'bp' (carrying the bits over as necessary).
1632 |00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000|
1633 <------bitlen---->< bp>
1634 Then we clear the destination bits:
1635 |---00000|00000000|000-----| ptr + first_byte
1636 <-------bitlen--->< bp>
1638 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1639 |---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte.
1641 BIG-ENDIAN
1642 We are writing a non byte-sized quantity or at a position that is not
1643 at a byte boundary.
1644 ptr + first_byte |--------|--------|--------|
1646 <bp >xxx xxxxxxxx xxx
1647 |_____EXPR_____|
1649 First native_encode_expr EXPR into a temporary buffer and shift each
1650 byte in the buffer to the right by (carrying the bits over as necessary).
1651 We shift by as much as needed to align the most significant bit of EXPR
1652 with bitpos:
1653 |00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000|
1654 <---bitlen----> <bp ><-----bitlen----->
1655 Then we clear the destination bits:
1656 ptr + first_byte |-----000||00000000||00000---|
1657 <bp ><-------bitlen----->
1659 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1660 ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|.
1661 The awkwardness comes from the fact that bitpos is counted from the
1662 most significant bit of a byte. */
1664 /* We must be dealing with fixed-size data at this point, since the
1665 total size is also fixed. */
1666 fixed_size_mode mode = as_a <fixed_size_mode> (TYPE_MODE (TREE_TYPE (expr)));
1667 /* Allocate an extra byte so that we have space to shift into. */
1668 unsigned int byte_size = GET_MODE_SIZE (mode) + 1;
1669 unsigned char *tmpbuf = XALLOCAVEC (unsigned char, byte_size);
1670 memset (tmpbuf, '\0', byte_size);
1671 /* The store detection code should only have allowed constants that are
1672 accepted by native_encode_expr. */
1673 if (native_encode_expr (expr, tmpbuf, byte_size - 1) == 0)
1674 gcc_unreachable ();
1676 /* The native_encode_expr machinery uses TYPE_MODE to determine how many
1677 bytes to write. This means it can write more than
1678 ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example
1679 write 8 bytes for a bitlen of 40). Skip the bytes that are not within
1680 bitlen and zero out the bits that are not relevant as well (that may
1681 contain a sign bit due to sign-extension). */
1682 unsigned int padding
1683 = byte_size - ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT - 1;
1684 /* On big-endian the padding is at the 'front' so just skip the initial
1685 bytes. */
1686 if (BYTES_BIG_ENDIAN)
1687 tmpbuf += padding;
1689 byte_size -= padding;
1691 if (bitlen % BITS_PER_UNIT != 0)
1693 if (BYTES_BIG_ENDIAN)
1694 clear_bit_region_be (tmpbuf, BITS_PER_UNIT - 1,
1695 BITS_PER_UNIT - (bitlen % BITS_PER_UNIT));
1696 else
1697 clear_bit_region (tmpbuf, bitlen,
1698 byte_size * BITS_PER_UNIT - bitlen);
1700 /* Left shifting relies on the last byte being clear if bitlen is
1701 a multiple of BITS_PER_UNIT, which might not be clear if
1702 there are padding bytes. */
1703 else if (!BYTES_BIG_ENDIAN)
1704 tmpbuf[byte_size - 1] = '\0';
1706 /* Clear the bit region in PTR where the bits from TMPBUF will be
1707 inserted into. */
1708 if (BYTES_BIG_ENDIAN)
1709 clear_bit_region_be (ptr + first_byte,
1710 BITS_PER_UNIT - 1 - (bitpos % BITS_PER_UNIT), bitlen);
1711 else
1712 clear_bit_region (ptr + first_byte, bitpos % BITS_PER_UNIT, bitlen);
1714 int shift_amnt;
1715 int bitlen_mod = bitlen % BITS_PER_UNIT;
1716 int bitpos_mod = bitpos % BITS_PER_UNIT;
1718 bool skip_byte = false;
1719 if (BYTES_BIG_ENDIAN)
1721 /* BITPOS and BITLEN are exactly aligned and no shifting
1722 is necessary. */
1723 if (bitpos_mod + bitlen_mod == BITS_PER_UNIT
1724 || (bitpos_mod == 0 && bitlen_mod == 0))
1725 shift_amnt = 0;
1726 /* |. . . . . . . .|
1727 <bp > <blen >.
1728 We always shift right for BYTES_BIG_ENDIAN so shift the beginning
1729 of the value until it aligns with 'bp' in the next byte over. */
1730 else if (bitpos_mod + bitlen_mod < BITS_PER_UNIT)
1732 shift_amnt = bitlen_mod + bitpos_mod;
1733 skip_byte = bitlen_mod != 0;
1735 /* |. . . . . . . .|
1736 <----bp--->
1737 <---blen---->.
1738 Shift the value right within the same byte so it aligns with 'bp'. */
1739 else
1740 shift_amnt = bitlen_mod + bitpos_mod - BITS_PER_UNIT;
1742 else
1743 shift_amnt = bitpos % BITS_PER_UNIT;
1745 /* Create the shifted version of EXPR. */
1746 if (!BYTES_BIG_ENDIAN)
1748 shift_bytes_in_array (tmpbuf, byte_size, shift_amnt);
1749 if (shift_amnt == 0)
1750 byte_size--;
1752 else
1754 gcc_assert (BYTES_BIG_ENDIAN);
1755 shift_bytes_in_array_right (tmpbuf, byte_size, shift_amnt);
1756 /* If shifting right forced us to move into the next byte skip the now
1757 empty byte. */
1758 if (skip_byte)
1760 tmpbuf++;
1761 byte_size--;
1765 /* Insert the bits from TMPBUF. */
1766 for (unsigned int i = 0; i < byte_size; i++)
1767 ptr[first_byte + i] |= tmpbuf[i];
1769 return true;
1772 /* Sorting function for store_immediate_info objects.
1773 Sorts them by bitposition. */
1775 static int
1776 sort_by_bitpos (const void *x, const void *y)
1778 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
1779 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
1781 if ((*tmp)->bitpos < (*tmp2)->bitpos)
1782 return -1;
1783 else if ((*tmp)->bitpos > (*tmp2)->bitpos)
1784 return 1;
1785 else
1786 /* If they are the same let's use the order which is guaranteed to
1787 be different. */
1788 return (*tmp)->order - (*tmp2)->order;
1791 /* Sorting function for store_immediate_info objects.
1792 Sorts them by the order field. */
1794 static int
1795 sort_by_order (const void *x, const void *y)
1797 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
1798 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
1800 if ((*tmp)->order < (*tmp2)->order)
1801 return -1;
1802 else if ((*tmp)->order > (*tmp2)->order)
1803 return 1;
1805 gcc_unreachable ();
1808 /* Initialize a merged_store_group object from a store_immediate_info
1809 object. */
1811 merged_store_group::merged_store_group (store_immediate_info *info)
1813 start = info->bitpos;
1814 width = info->bitsize;
1815 bitregion_start = info->bitregion_start;
1816 bitregion_end = info->bitregion_end;
1817 /* VAL has memory allocated for it in apply_stores once the group
1818 width has been finalized. */
1819 val = NULL;
1820 mask = NULL;
1821 bit_insertion = false;
1822 unsigned HOST_WIDE_INT align_bitpos = 0;
1823 get_object_alignment_1 (gimple_assign_lhs (info->stmt),
1824 &align, &align_bitpos);
1825 align_base = start - align_bitpos;
1826 for (int i = 0; i < 2; ++i)
1828 store_operand_info &op = info->ops[i];
1829 if (op.base_addr == NULL_TREE)
1831 load_align[i] = 0;
1832 load_align_base[i] = 0;
1834 else
1836 get_object_alignment_1 (op.val, &load_align[i], &align_bitpos);
1837 load_align_base[i] = op.bitpos - align_bitpos;
1840 stores.create (1);
1841 stores.safe_push (info);
1842 last_stmt = info->stmt;
1843 last_order = info->order;
1844 first_stmt = last_stmt;
1845 first_order = last_order;
1846 buf_size = 0;
1849 merged_store_group::~merged_store_group ()
1851 if (val)
1852 XDELETEVEC (val);
1855 /* Return true if the store described by INFO can be merged into the group. */
1857 bool
1858 merged_store_group::can_be_merged_into (store_immediate_info *info)
1860 /* Do not merge bswap patterns. */
1861 if (info->rhs_code == LROTATE_EXPR)
1862 return false;
1864 /* The canonical case. */
1865 if (info->rhs_code == stores[0]->rhs_code)
1866 return true;
1868 /* BIT_INSERT_EXPR is compatible with INTEGER_CST. */
1869 if (info->rhs_code == BIT_INSERT_EXPR && stores[0]->rhs_code == INTEGER_CST)
1870 return true;
1872 if (stores[0]->rhs_code == BIT_INSERT_EXPR && info->rhs_code == INTEGER_CST)
1873 return true;
1875 /* We can turn MEM_REF into BIT_INSERT_EXPR for bit-field stores. */
1876 if (info->rhs_code == MEM_REF
1877 && (stores[0]->rhs_code == INTEGER_CST
1878 || stores[0]->rhs_code == BIT_INSERT_EXPR)
1879 && info->bitregion_start == stores[0]->bitregion_start
1880 && info->bitregion_end == stores[0]->bitregion_end)
1881 return true;
1883 if (stores[0]->rhs_code == MEM_REF
1884 && (info->rhs_code == INTEGER_CST
1885 || info->rhs_code == BIT_INSERT_EXPR)
1886 && info->bitregion_start == stores[0]->bitregion_start
1887 && info->bitregion_end == stores[0]->bitregion_end)
1888 return true;
1890 return false;
1893 /* Helper method for merge_into and merge_overlapping to do
1894 the common part. */
1896 void
1897 merged_store_group::do_merge (store_immediate_info *info)
1899 bitregion_start = MIN (bitregion_start, info->bitregion_start);
1900 bitregion_end = MAX (bitregion_end, info->bitregion_end);
1902 unsigned int this_align;
1903 unsigned HOST_WIDE_INT align_bitpos = 0;
1904 get_object_alignment_1 (gimple_assign_lhs (info->stmt),
1905 &this_align, &align_bitpos);
1906 if (this_align > align)
1908 align = this_align;
1909 align_base = info->bitpos - align_bitpos;
1911 for (int i = 0; i < 2; ++i)
1913 store_operand_info &op = info->ops[i];
1914 if (!op.base_addr)
1915 continue;
1917 get_object_alignment_1 (op.val, &this_align, &align_bitpos);
1918 if (this_align > load_align[i])
1920 load_align[i] = this_align;
1921 load_align_base[i] = op.bitpos - align_bitpos;
1925 gimple *stmt = info->stmt;
1926 stores.safe_push (info);
1927 if (info->order > last_order)
1929 last_order = info->order;
1930 last_stmt = stmt;
1932 else if (info->order < first_order)
1934 first_order = info->order;
1935 first_stmt = stmt;
1939 /* Merge a store recorded by INFO into this merged store.
1940 The store is not overlapping with the existing recorded
1941 stores. */
1943 void
1944 merged_store_group::merge_into (store_immediate_info *info)
1946 /* Make sure we're inserting in the position we think we're inserting. */
1947 gcc_assert (info->bitpos >= start + width
1948 && info->bitregion_start <= bitregion_end);
1950 width = info->bitpos + info->bitsize - start;
1951 do_merge (info);
1954 /* Merge a store described by INFO into this merged store.
1955 INFO overlaps in some way with the current store (i.e. it's not contiguous
1956 which is handled by merged_store_group::merge_into). */
1958 void
1959 merged_store_group::merge_overlapping (store_immediate_info *info)
1961 /* If the store extends the size of the group, extend the width. */
1962 if (info->bitpos + info->bitsize > start + width)
1963 width = info->bitpos + info->bitsize - start;
1965 do_merge (info);
1968 /* Go through all the recorded stores in this group in program order and
1969 apply their values to the VAL byte array to create the final merged
1970 value. Return true if the operation succeeded. */
1972 bool
1973 merged_store_group::apply_stores ()
1975 /* Make sure we have more than one store in the group, otherwise we cannot
1976 merge anything. */
1977 if (bitregion_start % BITS_PER_UNIT != 0
1978 || bitregion_end % BITS_PER_UNIT != 0
1979 || stores.length () == 1)
1980 return false;
1982 stores.qsort (sort_by_order);
1983 store_immediate_info *info;
1984 unsigned int i;
1985 /* Create a power-of-2-sized buffer for native_encode_expr. */
1986 buf_size = 1 << ceil_log2 ((bitregion_end - bitregion_start) / BITS_PER_UNIT);
1987 val = XNEWVEC (unsigned char, 2 * buf_size);
1988 mask = val + buf_size;
1989 memset (val, 0, buf_size);
1990 memset (mask, ~0U, buf_size);
1992 FOR_EACH_VEC_ELT (stores, i, info)
1994 unsigned int pos_in_buffer = info->bitpos - bitregion_start;
1995 tree cst;
1996 if (info->ops[0].val && info->ops[0].base_addr == NULL_TREE)
1997 cst = info->ops[0].val;
1998 else if (info->ops[1].val && info->ops[1].base_addr == NULL_TREE)
1999 cst = info->ops[1].val;
2000 else
2001 cst = NULL_TREE;
2002 bool ret = true;
2003 if (cst)
2005 if (info->rhs_code == BIT_INSERT_EXPR)
2006 bit_insertion = true;
2007 else
2008 ret = encode_tree_to_bitpos (cst, val, info->bitsize,
2009 pos_in_buffer, buf_size);
2011 unsigned char *m = mask + (pos_in_buffer / BITS_PER_UNIT);
2012 if (BYTES_BIG_ENDIAN)
2013 clear_bit_region_be (m, (BITS_PER_UNIT - 1
2014 - (pos_in_buffer % BITS_PER_UNIT)),
2015 info->bitsize);
2016 else
2017 clear_bit_region (m, pos_in_buffer % BITS_PER_UNIT, info->bitsize);
2018 if (cst && dump_file && (dump_flags & TDF_DETAILS))
2020 if (ret)
2022 fputs ("After writing ", dump_file);
2023 print_generic_expr (dump_file, cst, TDF_NONE);
2024 fprintf (dump_file, " of size " HOST_WIDE_INT_PRINT_DEC
2025 " at position %d\n", info->bitsize, pos_in_buffer);
2026 fputs (" the merged value contains ", dump_file);
2027 dump_char_array (dump_file, val, buf_size);
2028 fputs (" the merged mask contains ", dump_file);
2029 dump_char_array (dump_file, mask, buf_size);
2030 if (bit_insertion)
2031 fputs (" bit insertion is required\n", dump_file);
2033 else
2034 fprintf (dump_file, "Failed to merge stores\n");
2036 if (!ret)
2037 return false;
2039 stores.qsort (sort_by_bitpos);
2040 return true;
2043 /* Structure describing the store chain. */
2045 struct imm_store_chain_info
2047 /* Doubly-linked list that imposes an order on chain processing.
2048 PNXP (prev's next pointer) points to the head of a list, or to
2049 the next field in the previous chain in the list.
2050 See pass_store_merging::m_stores_head for more rationale. */
2051 imm_store_chain_info *next, **pnxp;
2052 tree base_addr;
2053 auto_vec<store_immediate_info *> m_store_info;
2054 auto_vec<merged_store_group *> m_merged_store_groups;
2056 imm_store_chain_info (imm_store_chain_info *&inspt, tree b_a)
2057 : next (inspt), pnxp (&inspt), base_addr (b_a)
2059 inspt = this;
2060 if (next)
2062 gcc_checking_assert (pnxp == next->pnxp);
2063 next->pnxp = &next;
2066 ~imm_store_chain_info ()
2068 *pnxp = next;
2069 if (next)
2071 gcc_checking_assert (&next == next->pnxp);
2072 next->pnxp = pnxp;
2075 bool terminate_and_process_chain ();
2076 bool try_coalesce_bswap (merged_store_group *, unsigned int, unsigned int);
2077 bool coalesce_immediate_stores ();
2078 bool output_merged_store (merged_store_group *);
2079 bool output_merged_stores ();
2082 const pass_data pass_data_tree_store_merging = {
2083 GIMPLE_PASS, /* type */
2084 "store-merging", /* name */
2085 OPTGROUP_NONE, /* optinfo_flags */
2086 TV_GIMPLE_STORE_MERGING, /* tv_id */
2087 PROP_ssa, /* properties_required */
2088 0, /* properties_provided */
2089 0, /* properties_destroyed */
2090 0, /* todo_flags_start */
2091 TODO_update_ssa, /* todo_flags_finish */
2094 class pass_store_merging : public gimple_opt_pass
2096 public:
2097 pass_store_merging (gcc::context *ctxt)
2098 : gimple_opt_pass (pass_data_tree_store_merging, ctxt), m_stores_head ()
2102 /* Pass not supported for PDP-endian, nor for insane hosts or
2103 target character sizes where native_{encode,interpret}_expr
2104 doesn't work properly. */
2105 virtual bool
2106 gate (function *)
2108 return flag_store_merging
2109 && BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
2110 && CHAR_BIT == 8
2111 && BITS_PER_UNIT == 8;
2114 virtual unsigned int execute (function *);
2116 private:
2117 hash_map<tree_operand_hash, struct imm_store_chain_info *> m_stores;
2119 /* Form a doubly-linked stack of the elements of m_stores, so that
2120 we can iterate over them in a predictable way. Using this order
2121 avoids extraneous differences in the compiler output just because
2122 of tree pointer variations (e.g. different chains end up in
2123 different positions of m_stores, so they are handled in different
2124 orders, so they allocate or release SSA names in different
2125 orders, and when they get reused, subsequent passes end up
2126 getting different SSA names, which may ultimately change
2127 decisions when going out of SSA). */
2128 imm_store_chain_info *m_stores_head;
2130 void process_store (gimple *);
2131 bool terminate_and_process_all_chains ();
2132 bool terminate_all_aliasing_chains (imm_store_chain_info **, gimple *);
2133 bool terminate_and_release_chain (imm_store_chain_info *);
2134 }; // class pass_store_merging
2136 /* Terminate and process all recorded chains. Return true if any changes
2137 were made. */
2139 bool
2140 pass_store_merging::terminate_and_process_all_chains ()
2142 bool ret = false;
2143 while (m_stores_head)
2144 ret |= terminate_and_release_chain (m_stores_head);
2145 gcc_assert (m_stores.elements () == 0);
2146 gcc_assert (m_stores_head == NULL);
2148 return ret;
2151 /* Terminate all chains that are affected by the statement STMT.
2152 CHAIN_INFO is the chain we should ignore from the checks if
2153 non-NULL. */
2155 bool
2156 pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
2157 **chain_info,
2158 gimple *stmt)
2160 bool ret = false;
2162 /* If the statement doesn't touch memory it can't alias. */
2163 if (!gimple_vuse (stmt))
2164 return false;
2166 tree store_lhs = gimple_store_p (stmt) ? gimple_get_lhs (stmt) : NULL_TREE;
2167 for (imm_store_chain_info *next = m_stores_head, *cur = next; cur; cur = next)
2169 next = cur->next;
2171 /* We already checked all the stores in chain_info and terminated the
2172 chain if necessary. Skip it here. */
2173 if (chain_info && *chain_info == cur)
2174 continue;
2176 store_immediate_info *info;
2177 unsigned int i;
2178 FOR_EACH_VEC_ELT (cur->m_store_info, i, info)
2180 tree lhs = gimple_assign_lhs (info->stmt);
2181 if (ref_maybe_used_by_stmt_p (stmt, lhs)
2182 || stmt_may_clobber_ref_p (stmt, lhs)
2183 || (store_lhs && refs_output_dependent_p (store_lhs, lhs)))
2185 if (dump_file && (dump_flags & TDF_DETAILS))
2187 fprintf (dump_file, "stmt causes chain termination:\n");
2188 print_gimple_stmt (dump_file, stmt, 0);
2190 terminate_and_release_chain (cur);
2191 ret = true;
2192 break;
2197 return ret;
2200 /* Helper function. Terminate the recorded chain storing to base object
2201 BASE. Return true if the merging and output was successful. The m_stores
2202 entry is removed after the processing in any case. */
2204 bool
2205 pass_store_merging::terminate_and_release_chain (imm_store_chain_info *chain_info)
2207 bool ret = chain_info->terminate_and_process_chain ();
2208 m_stores.remove (chain_info->base_addr);
2209 delete chain_info;
2210 return ret;
2213 /* Return true if stmts in between FIRST (inclusive) and LAST (exclusive)
2214 may clobber REF. FIRST and LAST must be in the same basic block and
2215 have non-NULL vdef. We want to be able to sink load of REF across
2216 stores between FIRST and LAST, up to right before LAST. */
2218 bool
2219 stmts_may_clobber_ref_p (gimple *first, gimple *last, tree ref)
2221 ao_ref r;
2222 ao_ref_init (&r, ref);
2223 unsigned int count = 0;
2224 tree vop = gimple_vdef (last);
2225 gimple *stmt;
2227 gcc_checking_assert (gimple_bb (first) == gimple_bb (last));
2230 stmt = SSA_NAME_DEF_STMT (vop);
2231 if (stmt_may_clobber_ref_p_1 (stmt, &r))
2232 return true;
2233 if (gimple_store_p (stmt)
2234 && refs_anti_dependent_p (ref, gimple_get_lhs (stmt)))
2235 return true;
2236 /* Avoid quadratic compile time by bounding the number of checks
2237 we perform. */
2238 if (++count > MAX_STORE_ALIAS_CHECKS)
2239 return true;
2240 vop = gimple_vuse (stmt);
2242 while (stmt != first);
2243 return false;
2246 /* Return true if INFO->ops[IDX] is mergeable with the
2247 corresponding loads already in MERGED_STORE group.
2248 BASE_ADDR is the base address of the whole store group. */
2250 bool
2251 compatible_load_p (merged_store_group *merged_store,
2252 store_immediate_info *info,
2253 tree base_addr, int idx)
2255 store_immediate_info *infof = merged_store->stores[0];
2256 if (!info->ops[idx].base_addr
2257 || maybe_ne (info->ops[idx].bitpos - infof->ops[idx].bitpos,
2258 info->bitpos - infof->bitpos)
2259 || !operand_equal_p (info->ops[idx].base_addr,
2260 infof->ops[idx].base_addr, 0))
2261 return false;
2263 store_immediate_info *infol = merged_store->stores.last ();
2264 tree load_vuse = gimple_vuse (info->ops[idx].stmt);
2265 /* In this case all vuses should be the same, e.g.
2266 _1 = s.a; _2 = s.b; _3 = _1 | 1; t.a = _3; _4 = _2 | 2; t.b = _4;
2268 _1 = s.a; _2 = s.b; t.a = _1; t.b = _2;
2269 and we can emit the coalesced load next to any of those loads. */
2270 if (gimple_vuse (infof->ops[idx].stmt) == load_vuse
2271 && gimple_vuse (infol->ops[idx].stmt) == load_vuse)
2272 return true;
2274 /* Otherwise, at least for now require that the load has the same
2275 vuse as the store. See following examples. */
2276 if (gimple_vuse (info->stmt) != load_vuse)
2277 return false;
2279 if (gimple_vuse (infof->stmt) != gimple_vuse (infof->ops[idx].stmt)
2280 || (infof != infol
2281 && gimple_vuse (infol->stmt) != gimple_vuse (infol->ops[idx].stmt)))
2282 return false;
2284 /* If the load is from the same location as the store, already
2285 the construction of the immediate chain info guarantees no intervening
2286 stores, so no further checks are needed. Example:
2287 _1 = s.a; _2 = _1 & -7; s.a = _2; _3 = s.b; _4 = _3 & -7; s.b = _4; */
2288 if (known_eq (info->ops[idx].bitpos, info->bitpos)
2289 && operand_equal_p (info->ops[idx].base_addr, base_addr, 0))
2290 return true;
2292 /* Otherwise, we need to punt if any of the loads can be clobbered by any
2293 of the stores in the group, or any other stores in between those.
2294 Previous calls to compatible_load_p ensured that for all the
2295 merged_store->stores IDX loads, no stmts starting with
2296 merged_store->first_stmt and ending right before merged_store->last_stmt
2297 clobbers those loads. */
2298 gimple *first = merged_store->first_stmt;
2299 gimple *last = merged_store->last_stmt;
2300 unsigned int i;
2301 store_immediate_info *infoc;
2302 /* The stores are sorted by increasing store bitpos, so if info->stmt store
2303 comes before the so far first load, we'll be changing
2304 merged_store->first_stmt. In that case we need to give up if
2305 any of the earlier processed loads clobber with the stmts in the new
2306 range. */
2307 if (info->order < merged_store->first_order)
2309 FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
2310 if (stmts_may_clobber_ref_p (info->stmt, first, infoc->ops[idx].val))
2311 return false;
2312 first = info->stmt;
2314 /* Similarly, we could change merged_store->last_stmt, so ensure
2315 in that case no stmts in the new range clobber any of the earlier
2316 processed loads. */
2317 else if (info->order > merged_store->last_order)
2319 FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
2320 if (stmts_may_clobber_ref_p (last, info->stmt, infoc->ops[idx].val))
2321 return false;
2322 last = info->stmt;
2324 /* And finally, we'd be adding a new load to the set, ensure it isn't
2325 clobbered in the new range. */
2326 if (stmts_may_clobber_ref_p (first, last, info->ops[idx].val))
2327 return false;
2329 /* Otherwise, we are looking for:
2330 _1 = s.a; _2 = _1 ^ 15; t.a = _2; _3 = s.b; _4 = _3 ^ 15; t.b = _4;
2332 _1 = s.a; t.a = _1; _2 = s.b; t.b = _2; */
2333 return true;
2336 /* Add all refs loaded to compute VAL to REFS vector. */
2338 void
2339 gather_bswap_load_refs (vec<tree> *refs, tree val)
2341 if (TREE_CODE (val) != SSA_NAME)
2342 return;
2344 gimple *stmt = SSA_NAME_DEF_STMT (val);
2345 if (!is_gimple_assign (stmt))
2346 return;
2348 if (gimple_assign_load_p (stmt))
2350 refs->safe_push (gimple_assign_rhs1 (stmt));
2351 return;
2354 switch (gimple_assign_rhs_class (stmt))
2356 case GIMPLE_BINARY_RHS:
2357 gather_bswap_load_refs (refs, gimple_assign_rhs2 (stmt));
2358 /* FALLTHRU */
2359 case GIMPLE_UNARY_RHS:
2360 gather_bswap_load_refs (refs, gimple_assign_rhs1 (stmt));
2361 break;
2362 default:
2363 gcc_unreachable ();
2367 /* Check if there are any stores in M_STORE_INFO after index I
2368 (where M_STORE_INFO must be sorted by sort_by_bitpos) that overlap
2369 a potential group ending with END that have their order
2370 smaller than LAST_ORDER. RHS_CODE is the kind of store in the
2371 group. Return true if there are no such stores.
2372 Consider:
2373 MEM[(long long int *)p_28] = 0;
2374 MEM[(long long int *)p_28 + 8B] = 0;
2375 MEM[(long long int *)p_28 + 16B] = 0;
2376 MEM[(long long int *)p_28 + 24B] = 0;
2377 _129 = (int) _130;
2378 MEM[(int *)p_28 + 8B] = _129;
2379 MEM[(int *)p_28].a = -1;
2380 We already have
2381 MEM[(long long int *)p_28] = 0;
2382 MEM[(int *)p_28].a = -1;
2383 stmts in the current group and need to consider if it is safe to
2384 add MEM[(long long int *)p_28 + 8B] = 0; store into the same group.
2385 There is an overlap between that store and the MEM[(int *)p_28 + 8B] = _129;
2386 store though, so if we add the MEM[(long long int *)p_28 + 8B] = 0;
2387 into the group and merging of those 3 stores is successful, merged
2388 stmts will be emitted at the latest store from that group, i.e.
2389 LAST_ORDER, which is the MEM[(int *)p_28].a = -1; store.
2390 The MEM[(int *)p_28 + 8B] = _129; store that originally follows
2391 the MEM[(long long int *)p_28 + 8B] = 0; would now be before it,
2392 so we need to refuse merging MEM[(long long int *)p_28 + 8B] = 0;
2393 into the group. That way it will be its own store group and will
2394 not be touched. If RHS_CODE is INTEGER_CST and there are overlapping
2395 INTEGER_CST stores, those are mergeable using merge_overlapping,
2396 so don't return false for those. */
2398 static bool
2399 check_no_overlap (vec<store_immediate_info *> m_store_info, unsigned int i,
2400 enum tree_code rhs_code, unsigned int last_order,
2401 unsigned HOST_WIDE_INT end)
2403 unsigned int len = m_store_info.length ();
2404 for (++i; i < len; ++i)
2406 store_immediate_info *info = m_store_info[i];
2407 if (info->bitpos >= end)
2408 break;
2409 if (info->order < last_order
2410 && (rhs_code != INTEGER_CST || info->rhs_code != INTEGER_CST))
2411 return false;
2413 return true;
2416 /* Return true if m_store_info[first] and at least one following store
2417 form a group which store try_size bitsize value which is byte swapped
2418 from a memory load or some value, or identity from some value.
2419 This uses the bswap pass APIs. */
2421 bool
2422 imm_store_chain_info::try_coalesce_bswap (merged_store_group *merged_store,
2423 unsigned int first,
2424 unsigned int try_size)
2426 unsigned int len = m_store_info.length (), last = first;
2427 unsigned HOST_WIDE_INT width = m_store_info[first]->bitsize;
2428 if (width >= try_size)
2429 return false;
2430 for (unsigned int i = first + 1; i < len; ++i)
2432 if (m_store_info[i]->bitpos != m_store_info[first]->bitpos + width
2433 || m_store_info[i]->ins_stmt == NULL)
2434 return false;
2435 width += m_store_info[i]->bitsize;
2436 if (width >= try_size)
2438 last = i;
2439 break;
2442 if (width != try_size)
2443 return false;
2445 bool allow_unaligned
2446 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
2447 /* Punt if the combined store would not be aligned and we need alignment. */
2448 if (!allow_unaligned)
2450 unsigned int align = merged_store->align;
2451 unsigned HOST_WIDE_INT align_base = merged_store->align_base;
2452 for (unsigned int i = first + 1; i <= last; ++i)
2454 unsigned int this_align;
2455 unsigned HOST_WIDE_INT align_bitpos = 0;
2456 get_object_alignment_1 (gimple_assign_lhs (m_store_info[i]->stmt),
2457 &this_align, &align_bitpos);
2458 if (this_align > align)
2460 align = this_align;
2461 align_base = m_store_info[i]->bitpos - align_bitpos;
2464 unsigned HOST_WIDE_INT align_bitpos
2465 = (m_store_info[first]->bitpos - align_base) & (align - 1);
2466 if (align_bitpos)
2467 align = least_bit_hwi (align_bitpos);
2468 if (align < try_size)
2469 return false;
2472 tree type;
2473 switch (try_size)
2475 case 16: type = uint16_type_node; break;
2476 case 32: type = uint32_type_node; break;
2477 case 64: type = uint64_type_node; break;
2478 default: gcc_unreachable ();
2480 struct symbolic_number n;
2481 gimple *ins_stmt = NULL;
2482 int vuse_store = -1;
2483 unsigned int first_order = merged_store->first_order;
2484 unsigned int last_order = merged_store->last_order;
2485 gimple *first_stmt = merged_store->first_stmt;
2486 gimple *last_stmt = merged_store->last_stmt;
2487 unsigned HOST_WIDE_INT end = merged_store->start + merged_store->width;
2488 store_immediate_info *infof = m_store_info[first];
2490 for (unsigned int i = first; i <= last; ++i)
2492 store_immediate_info *info = m_store_info[i];
2493 struct symbolic_number this_n = info->n;
2494 this_n.type = type;
2495 if (!this_n.base_addr)
2496 this_n.range = try_size / BITS_PER_UNIT;
2497 else
2498 /* Update vuse in case it has changed by output_merged_stores. */
2499 this_n.vuse = gimple_vuse (info->ins_stmt);
2500 unsigned int bitpos = info->bitpos - infof->bitpos;
2501 if (!do_shift_rotate (LSHIFT_EXPR, &this_n,
2502 BYTES_BIG_ENDIAN
2503 ? try_size - info->bitsize - bitpos
2504 : bitpos))
2505 return false;
2506 if (this_n.base_addr && vuse_store)
2508 unsigned int j;
2509 for (j = first; j <= last; ++j)
2510 if (this_n.vuse == gimple_vuse (m_store_info[j]->stmt))
2511 break;
2512 if (j > last)
2514 if (vuse_store == 1)
2515 return false;
2516 vuse_store = 0;
2519 if (i == first)
2521 n = this_n;
2522 ins_stmt = info->ins_stmt;
2524 else
2526 if (n.base_addr && n.vuse != this_n.vuse)
2528 if (vuse_store == 0)
2529 return false;
2530 vuse_store = 1;
2532 if (info->order > last_order)
2534 last_order = info->order;
2535 last_stmt = info->stmt;
2537 else if (info->order < first_order)
2539 first_order = info->order;
2540 first_stmt = info->stmt;
2542 end = MAX (end, info->bitpos + info->bitsize);
2544 ins_stmt = perform_symbolic_merge (ins_stmt, &n, info->ins_stmt,
2545 &this_n, &n);
2546 if (ins_stmt == NULL)
2547 return false;
2551 uint64_t cmpxchg, cmpnop;
2552 find_bswap_or_nop_finalize (&n, &cmpxchg, &cmpnop);
2554 /* A complete byte swap should make the symbolic number to start with
2555 the largest digit in the highest order byte. Unchanged symbolic
2556 number indicates a read with same endianness as target architecture. */
2557 if (n.n != cmpnop && n.n != cmpxchg)
2558 return false;
2560 if (n.base_addr == NULL_TREE && !is_gimple_val (n.src))
2561 return false;
2563 if (!check_no_overlap (m_store_info, last, LROTATE_EXPR, last_order, end))
2564 return false;
2566 /* Don't handle memory copy this way if normal non-bswap processing
2567 would handle it too. */
2568 if (n.n == cmpnop && (unsigned) n.n_ops == last - first + 1)
2570 unsigned int i;
2571 for (i = first; i <= last; ++i)
2572 if (m_store_info[i]->rhs_code != MEM_REF)
2573 break;
2574 if (i == last + 1)
2575 return false;
2578 if (n.n == cmpxchg)
2579 switch (try_size)
2581 case 16:
2582 /* Will emit LROTATE_EXPR. */
2583 break;
2584 case 32:
2585 if (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2586 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing)
2587 break;
2588 return false;
2589 case 64:
2590 if (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2591 && optab_handler (bswap_optab, DImode) != CODE_FOR_nothing)
2592 break;
2593 return false;
2594 default:
2595 gcc_unreachable ();
2598 if (!allow_unaligned && n.base_addr)
2600 unsigned int align = get_object_alignment (n.src);
2601 if (align < try_size)
2602 return false;
2605 /* If each load has vuse of the corresponding store, need to verify
2606 the loads can be sunk right before the last store. */
2607 if (vuse_store == 1)
2609 auto_vec<tree, 64> refs;
2610 for (unsigned int i = first; i <= last; ++i)
2611 gather_bswap_load_refs (&refs,
2612 gimple_assign_rhs1 (m_store_info[i]->stmt));
2614 unsigned int i;
2615 tree ref;
2616 FOR_EACH_VEC_ELT (refs, i, ref)
2617 if (stmts_may_clobber_ref_p (first_stmt, last_stmt, ref))
2618 return false;
2619 n.vuse = NULL_TREE;
2622 infof->n = n;
2623 infof->ins_stmt = ins_stmt;
2624 for (unsigned int i = first; i <= last; ++i)
2626 m_store_info[i]->rhs_code = n.n == cmpxchg ? LROTATE_EXPR : NOP_EXPR;
2627 m_store_info[i]->ops[0].base_addr = NULL_TREE;
2628 m_store_info[i]->ops[1].base_addr = NULL_TREE;
2629 if (i != first)
2630 merged_store->merge_into (m_store_info[i]);
2633 return true;
2636 /* Go through the candidate stores recorded in m_store_info and merge them
2637 into merged_store_group objects recorded into m_merged_store_groups
2638 representing the widened stores. Return true if coalescing was successful
2639 and the number of widened stores is fewer than the original number
2640 of stores. */
2642 bool
2643 imm_store_chain_info::coalesce_immediate_stores ()
2645 /* Anything less can't be processed. */
2646 if (m_store_info.length () < 2)
2647 return false;
2649 if (dump_file && (dump_flags & TDF_DETAILS))
2650 fprintf (dump_file, "Attempting to coalesce %u stores in chain\n",
2651 m_store_info.length ());
2653 store_immediate_info *info;
2654 unsigned int i, ignore = 0;
2656 /* Order the stores by the bitposition they write to. */
2657 m_store_info.qsort (sort_by_bitpos);
2659 info = m_store_info[0];
2660 merged_store_group *merged_store = new merged_store_group (info);
2661 if (dump_file && (dump_flags & TDF_DETAILS))
2662 fputs ("New store group\n", dump_file);
2664 FOR_EACH_VEC_ELT (m_store_info, i, info)
2666 if (i <= ignore)
2667 goto done;
2669 /* First try to handle group of stores like:
2670 p[0] = data >> 24;
2671 p[1] = data >> 16;
2672 p[2] = data >> 8;
2673 p[3] = data;
2674 using the bswap framework. */
2675 if (info->bitpos == merged_store->start + merged_store->width
2676 && merged_store->stores.length () == 1
2677 && merged_store->stores[0]->ins_stmt != NULL
2678 && info->ins_stmt != NULL)
2680 unsigned int try_size;
2681 for (try_size = 64; try_size >= 16; try_size >>= 1)
2682 if (try_coalesce_bswap (merged_store, i - 1, try_size))
2683 break;
2685 if (try_size >= 16)
2687 ignore = i + merged_store->stores.length () - 1;
2688 m_merged_store_groups.safe_push (merged_store);
2689 if (ignore < m_store_info.length ())
2690 merged_store = new merged_store_group (m_store_info[ignore]);
2691 else
2692 merged_store = NULL;
2693 goto done;
2697 /* |---store 1---|
2698 |---store 2---|
2699 Overlapping stores. */
2700 if (IN_RANGE (info->bitpos, merged_store->start,
2701 merged_store->start + merged_store->width - 1))
2703 /* Only allow overlapping stores of constants. */
2704 if (info->rhs_code == INTEGER_CST
2705 && merged_store->stores[0]->rhs_code == INTEGER_CST
2706 && check_no_overlap (m_store_info, i, INTEGER_CST,
2707 MAX (merged_store->last_order, info->order),
2708 MAX (merged_store->start
2709 + merged_store->width,
2710 info->bitpos + info->bitsize)))
2712 merged_store->merge_overlapping (info);
2713 goto done;
2716 /* |---store 1---||---store 2---|
2717 This store is consecutive to the previous one.
2718 Merge it into the current store group. There can be gaps in between
2719 the stores, but there can't be gaps in between bitregions. */
2720 else if (info->bitregion_start <= merged_store->bitregion_end
2721 && merged_store->can_be_merged_into (info))
2723 store_immediate_info *infof = merged_store->stores[0];
2725 /* All the rhs_code ops that take 2 operands are commutative,
2726 swap the operands if it could make the operands compatible. */
2727 if (infof->ops[0].base_addr
2728 && infof->ops[1].base_addr
2729 && info->ops[0].base_addr
2730 && info->ops[1].base_addr
2731 && known_eq (info->ops[1].bitpos - infof->ops[0].bitpos,
2732 info->bitpos - infof->bitpos)
2733 && operand_equal_p (info->ops[1].base_addr,
2734 infof->ops[0].base_addr, 0))
2736 std::swap (info->ops[0], info->ops[1]);
2737 info->ops_swapped_p = true;
2739 if (check_no_overlap (m_store_info, i, info->rhs_code,
2740 MAX (merged_store->last_order, info->order),
2741 MAX (merged_store->start + merged_store->width,
2742 info->bitpos + info->bitsize)))
2744 /* Turn MEM_REF into BIT_INSERT_EXPR for bit-field stores. */
2745 if (info->rhs_code == MEM_REF && infof->rhs_code != MEM_REF)
2747 info->rhs_code = BIT_INSERT_EXPR;
2748 info->ops[0].val = gimple_assign_rhs1 (info->stmt);
2749 info->ops[0].base_addr = NULL_TREE;
2751 else if (infof->rhs_code == MEM_REF && info->rhs_code != MEM_REF)
2753 store_immediate_info *infoj;
2754 unsigned int j;
2755 FOR_EACH_VEC_ELT (merged_store->stores, j, infoj)
2757 infoj->rhs_code = BIT_INSERT_EXPR;
2758 infoj->ops[0].val = gimple_assign_rhs1 (infoj->stmt);
2759 infoj->ops[0].base_addr = NULL_TREE;
2762 if ((infof->ops[0].base_addr
2763 ? compatible_load_p (merged_store, info, base_addr, 0)
2764 : !info->ops[0].base_addr)
2765 && (infof->ops[1].base_addr
2766 ? compatible_load_p (merged_store, info, base_addr, 1)
2767 : !info->ops[1].base_addr))
2769 merged_store->merge_into (info);
2770 goto done;
2775 /* |---store 1---| <gap> |---store 2---|.
2776 Gap between stores or the rhs not compatible. Start a new group. */
2778 /* Try to apply all the stores recorded for the group to determine
2779 the bitpattern they write and discard it if that fails.
2780 This will also reject single-store groups. */
2781 if (merged_store->apply_stores ())
2782 m_merged_store_groups.safe_push (merged_store);
2783 else
2784 delete merged_store;
2786 merged_store = new merged_store_group (info);
2787 if (dump_file && (dump_flags & TDF_DETAILS))
2788 fputs ("New store group\n", dump_file);
2790 done:
2791 if (dump_file && (dump_flags & TDF_DETAILS))
2793 fprintf (dump_file, "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC
2794 " bitpos:" HOST_WIDE_INT_PRINT_DEC " val:",
2795 i, info->bitsize, info->bitpos);
2796 print_generic_expr (dump_file, gimple_assign_rhs1 (info->stmt));
2797 fputc ('\n', dump_file);
2801 /* Record or discard the last store group. */
2802 if (merged_store)
2804 if (merged_store->apply_stores ())
2805 m_merged_store_groups.safe_push (merged_store);
2806 else
2807 delete merged_store;
2810 gcc_assert (m_merged_store_groups.length () <= m_store_info.length ());
2812 bool success
2813 = !m_merged_store_groups.is_empty ()
2814 && m_merged_store_groups.length () < m_store_info.length ();
2816 if (success && dump_file)
2817 fprintf (dump_file, "Coalescing successful!\nMerged into %u stores\n",
2818 m_merged_store_groups.length ());
2820 return success;
2823 /* Return the type to use for the merged stores or loads described by STMTS.
2824 This is needed to get the alias sets right. If IS_LOAD, look for rhs,
2825 otherwise lhs. Additionally set *CLIQUEP and *BASEP to MR_DEPENDENCE_*
2826 of the MEM_REFs if any. */
2828 static tree
2829 get_alias_type_for_stmts (vec<gimple *> &stmts, bool is_load,
2830 unsigned short *cliquep, unsigned short *basep)
2832 gimple *stmt;
2833 unsigned int i;
2834 tree type = NULL_TREE;
2835 tree ret = NULL_TREE;
2836 *cliquep = 0;
2837 *basep = 0;
2839 FOR_EACH_VEC_ELT (stmts, i, stmt)
2841 tree ref = is_load ? gimple_assign_rhs1 (stmt)
2842 : gimple_assign_lhs (stmt);
2843 tree type1 = reference_alias_ptr_type (ref);
2844 tree base = get_base_address (ref);
2846 if (i == 0)
2848 if (TREE_CODE (base) == MEM_REF)
2850 *cliquep = MR_DEPENDENCE_CLIQUE (base);
2851 *basep = MR_DEPENDENCE_BASE (base);
2853 ret = type = type1;
2854 continue;
2856 if (!alias_ptr_types_compatible_p (type, type1))
2857 ret = ptr_type_node;
2858 if (TREE_CODE (base) != MEM_REF
2859 || *cliquep != MR_DEPENDENCE_CLIQUE (base)
2860 || *basep != MR_DEPENDENCE_BASE (base))
2862 *cliquep = 0;
2863 *basep = 0;
2866 return ret;
2869 /* Return the location_t information we can find among the statements
2870 in STMTS. */
2872 static location_t
2873 get_location_for_stmts (vec<gimple *> &stmts)
2875 gimple *stmt;
2876 unsigned int i;
2878 FOR_EACH_VEC_ELT (stmts, i, stmt)
2879 if (gimple_has_location (stmt))
2880 return gimple_location (stmt);
2882 return UNKNOWN_LOCATION;
2885 /* Used to decribe a store resulting from splitting a wide store in smaller
2886 regularly-sized stores in split_group. */
2888 struct split_store
2890 unsigned HOST_WIDE_INT bytepos;
2891 unsigned HOST_WIDE_INT size;
2892 unsigned HOST_WIDE_INT align;
2893 auto_vec<store_immediate_info *> orig_stores;
2894 /* True if there is a single orig stmt covering the whole split store. */
2895 bool orig;
2896 split_store (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
2897 unsigned HOST_WIDE_INT);
2900 /* Simple constructor. */
2902 split_store::split_store (unsigned HOST_WIDE_INT bp,
2903 unsigned HOST_WIDE_INT sz,
2904 unsigned HOST_WIDE_INT al)
2905 : bytepos (bp), size (sz), align (al), orig (false)
2907 orig_stores.create (0);
2910 /* Record all stores in GROUP that write to the region starting at BITPOS and
2911 is of size BITSIZE. Record infos for such statements in STORES if
2912 non-NULL. The stores in GROUP must be sorted by bitposition. Return INFO
2913 if there is exactly one original store in the range. */
2915 static store_immediate_info *
2916 find_constituent_stores (struct merged_store_group *group,
2917 vec<store_immediate_info *> *stores,
2918 unsigned int *first,
2919 unsigned HOST_WIDE_INT bitpos,
2920 unsigned HOST_WIDE_INT bitsize)
2922 store_immediate_info *info, *ret = NULL;
2923 unsigned int i;
2924 bool second = false;
2925 bool update_first = true;
2926 unsigned HOST_WIDE_INT end = bitpos + bitsize;
2927 for (i = *first; group->stores.iterate (i, &info); ++i)
2929 unsigned HOST_WIDE_INT stmt_start = info->bitpos;
2930 unsigned HOST_WIDE_INT stmt_end = stmt_start + info->bitsize;
2931 if (stmt_end <= bitpos)
2933 /* BITPOS passed to this function never decreases from within the
2934 same split_group call, so optimize and don't scan info records
2935 which are known to end before or at BITPOS next time.
2936 Only do it if all stores before this one also pass this. */
2937 if (update_first)
2938 *first = i + 1;
2939 continue;
2941 else
2942 update_first = false;
2944 /* The stores in GROUP are ordered by bitposition so if we're past
2945 the region for this group return early. */
2946 if (stmt_start >= end)
2947 return ret;
2949 if (stores)
2951 stores->safe_push (info);
2952 if (ret)
2954 ret = NULL;
2955 second = true;
2958 else if (ret)
2959 return NULL;
2960 if (!second)
2961 ret = info;
2963 return ret;
2966 /* Return how many SSA_NAMEs used to compute value to store in the INFO
2967 store have multiple uses. If any SSA_NAME has multiple uses, also
2968 count statements needed to compute it. */
2970 static unsigned
2971 count_multiple_uses (store_immediate_info *info)
2973 gimple *stmt = info->stmt;
2974 unsigned ret = 0;
2975 switch (info->rhs_code)
2977 case INTEGER_CST:
2978 return 0;
2979 case BIT_AND_EXPR:
2980 case BIT_IOR_EXPR:
2981 case BIT_XOR_EXPR:
2982 if (info->bit_not_p)
2984 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2985 ret = 1; /* Fall through below to return
2986 the BIT_NOT_EXPR stmt and then
2987 BIT_{AND,IOR,XOR}_EXPR and anything it
2988 uses. */
2989 else
2990 /* stmt is after this the BIT_NOT_EXPR. */
2991 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
2993 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2995 ret += 1 + info->ops[0].bit_not_p;
2996 if (info->ops[1].base_addr)
2997 ret += 1 + info->ops[1].bit_not_p;
2998 return ret + 1;
3000 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3001 /* stmt is now the BIT_*_EXPR. */
3002 if (!has_single_use (gimple_assign_rhs1 (stmt)))
3003 ret += 1 + info->ops[info->ops_swapped_p].bit_not_p;
3004 else if (info->ops[info->ops_swapped_p].bit_not_p)
3006 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3007 if (!has_single_use (gimple_assign_rhs1 (stmt2)))
3008 ++ret;
3010 if (info->ops[1].base_addr == NULL_TREE)
3012 gcc_checking_assert (!info->ops_swapped_p);
3013 return ret;
3015 if (!has_single_use (gimple_assign_rhs2 (stmt)))
3016 ret += 1 + info->ops[1 - info->ops_swapped_p].bit_not_p;
3017 else if (info->ops[1 - info->ops_swapped_p].bit_not_p)
3019 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
3020 if (!has_single_use (gimple_assign_rhs1 (stmt2)))
3021 ++ret;
3023 return ret;
3024 case MEM_REF:
3025 if (!has_single_use (gimple_assign_rhs1 (stmt)))
3026 return 1 + info->ops[0].bit_not_p;
3027 else if (info->ops[0].bit_not_p)
3029 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3030 if (!has_single_use (gimple_assign_rhs1 (stmt)))
3031 return 1;
3033 return 0;
3034 case BIT_INSERT_EXPR:
3035 return has_single_use (gimple_assign_rhs1 (stmt)) ? 0 : 1;
3036 default:
3037 gcc_unreachable ();
3041 /* Split a merged store described by GROUP by populating the SPLIT_STORES
3042 vector (if non-NULL) with split_store structs describing the byte offset
3043 (from the base), the bit size and alignment of each store as well as the
3044 original statements involved in each such split group.
3045 This is to separate the splitting strategy from the statement
3046 building/emission/linking done in output_merged_store.
3047 Return number of new stores.
3048 If ALLOW_UNALIGNED_STORE is false, then all stores must be aligned.
3049 If ALLOW_UNALIGNED_LOAD is false, then all loads must be aligned.
3050 If SPLIT_STORES is NULL, it is just a dry run to count number of
3051 new stores. */
3053 static unsigned int
3054 split_group (merged_store_group *group, bool allow_unaligned_store,
3055 bool allow_unaligned_load,
3056 vec<struct split_store *> *split_stores,
3057 unsigned *total_orig,
3058 unsigned *total_new)
3060 unsigned HOST_WIDE_INT pos = group->bitregion_start;
3061 unsigned HOST_WIDE_INT size = group->bitregion_end - pos;
3062 unsigned HOST_WIDE_INT bytepos = pos / BITS_PER_UNIT;
3063 unsigned HOST_WIDE_INT group_align = group->align;
3064 unsigned HOST_WIDE_INT align_base = group->align_base;
3065 unsigned HOST_WIDE_INT group_load_align = group_align;
3066 bool any_orig = false;
3068 gcc_assert ((size % BITS_PER_UNIT == 0) && (pos % BITS_PER_UNIT == 0));
3070 if (group->stores[0]->rhs_code == LROTATE_EXPR
3071 || group->stores[0]->rhs_code == NOP_EXPR)
3073 /* For bswap framework using sets of stores, all the checking
3074 has been done earlier in try_coalesce_bswap and needs to be
3075 emitted as a single store. */
3076 if (total_orig)
3078 /* Avoid the old/new stmt count heuristics. It should be
3079 always beneficial. */
3080 total_new[0] = 1;
3081 total_orig[0] = 2;
3084 if (split_stores)
3086 unsigned HOST_WIDE_INT align_bitpos
3087 = (group->start - align_base) & (group_align - 1);
3088 unsigned HOST_WIDE_INT align = group_align;
3089 if (align_bitpos)
3090 align = least_bit_hwi (align_bitpos);
3091 bytepos = group->start / BITS_PER_UNIT;
3092 struct split_store *store
3093 = new split_store (bytepos, group->width, align);
3094 unsigned int first = 0;
3095 find_constituent_stores (group, &store->orig_stores,
3096 &first, group->start, group->width);
3097 split_stores->safe_push (store);
3100 return 1;
3103 unsigned int ret = 0, first = 0;
3104 unsigned HOST_WIDE_INT try_pos = bytepos;
3106 if (total_orig)
3108 unsigned int i;
3109 store_immediate_info *info = group->stores[0];
3111 total_new[0] = 0;
3112 total_orig[0] = 1; /* The orig store. */
3113 info = group->stores[0];
3114 if (info->ops[0].base_addr)
3115 total_orig[0]++;
3116 if (info->ops[1].base_addr)
3117 total_orig[0]++;
3118 switch (info->rhs_code)
3120 case BIT_AND_EXPR:
3121 case BIT_IOR_EXPR:
3122 case BIT_XOR_EXPR:
3123 total_orig[0]++; /* The orig BIT_*_EXPR stmt. */
3124 break;
3125 default:
3126 break;
3128 total_orig[0] *= group->stores.length ();
3130 FOR_EACH_VEC_ELT (group->stores, i, info)
3132 total_new[0] += count_multiple_uses (info);
3133 total_orig[0] += (info->bit_not_p
3134 + info->ops[0].bit_not_p
3135 + info->ops[1].bit_not_p);
3139 if (!allow_unaligned_load)
3140 for (int i = 0; i < 2; ++i)
3141 if (group->load_align[i])
3142 group_load_align = MIN (group_load_align, group->load_align[i]);
3144 while (size > 0)
3146 if ((allow_unaligned_store || group_align <= BITS_PER_UNIT)
3147 && group->mask[try_pos - bytepos] == (unsigned char) ~0U)
3149 /* Skip padding bytes. */
3150 ++try_pos;
3151 size -= BITS_PER_UNIT;
3152 continue;
3155 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
3156 unsigned int try_size = MAX_STORE_BITSIZE, nonmasked;
3157 unsigned HOST_WIDE_INT align_bitpos
3158 = (try_bitpos - align_base) & (group_align - 1);
3159 unsigned HOST_WIDE_INT align = group_align;
3160 if (align_bitpos)
3161 align = least_bit_hwi (align_bitpos);
3162 if (!allow_unaligned_store)
3163 try_size = MIN (try_size, align);
3164 if (!allow_unaligned_load)
3166 /* If we can't do or don't want to do unaligned stores
3167 as well as loads, we need to take the loads into account
3168 as well. */
3169 unsigned HOST_WIDE_INT load_align = group_load_align;
3170 align_bitpos = (try_bitpos - align_base) & (load_align - 1);
3171 if (align_bitpos)
3172 load_align = least_bit_hwi (align_bitpos);
3173 for (int i = 0; i < 2; ++i)
3174 if (group->load_align[i])
3176 align_bitpos
3177 = known_alignment (try_bitpos
3178 - group->stores[0]->bitpos
3179 + group->stores[0]->ops[i].bitpos
3180 - group->load_align_base[i]);
3181 if (align_bitpos & (group_load_align - 1))
3183 unsigned HOST_WIDE_INT a = least_bit_hwi (align_bitpos);
3184 load_align = MIN (load_align, a);
3187 try_size = MIN (try_size, load_align);
3189 store_immediate_info *info
3190 = find_constituent_stores (group, NULL, &first, try_bitpos, try_size);
3191 if (info)
3193 /* If there is just one original statement for the range, see if
3194 we can just reuse the original store which could be even larger
3195 than try_size. */
3196 unsigned HOST_WIDE_INT stmt_end
3197 = ROUND_UP (info->bitpos + info->bitsize, BITS_PER_UNIT);
3198 info = find_constituent_stores (group, NULL, &first, try_bitpos,
3199 stmt_end - try_bitpos);
3200 if (info && info->bitpos >= try_bitpos)
3202 try_size = stmt_end - try_bitpos;
3203 goto found;
3207 /* Approximate store bitsize for the case when there are no padding
3208 bits. */
3209 while (try_size > size)
3210 try_size /= 2;
3211 /* Now look for whole padding bytes at the end of that bitsize. */
3212 for (nonmasked = try_size / BITS_PER_UNIT; nonmasked > 0; --nonmasked)
3213 if (group->mask[try_pos - bytepos + nonmasked - 1]
3214 != (unsigned char) ~0U)
3215 break;
3216 if (nonmasked == 0)
3218 /* If entire try_size range is padding, skip it. */
3219 try_pos += try_size / BITS_PER_UNIT;
3220 size -= try_size;
3221 continue;
3223 /* Otherwise try to decrease try_size if second half, last 3 quarters
3224 etc. are padding. */
3225 nonmasked *= BITS_PER_UNIT;
3226 while (nonmasked <= try_size / 2)
3227 try_size /= 2;
3228 if (!allow_unaligned_store && group_align > BITS_PER_UNIT)
3230 /* Now look for whole padding bytes at the start of that bitsize. */
3231 unsigned int try_bytesize = try_size / BITS_PER_UNIT, masked;
3232 for (masked = 0; masked < try_bytesize; ++masked)
3233 if (group->mask[try_pos - bytepos + masked] != (unsigned char) ~0U)
3234 break;
3235 masked *= BITS_PER_UNIT;
3236 gcc_assert (masked < try_size);
3237 if (masked >= try_size / 2)
3239 while (masked >= try_size / 2)
3241 try_size /= 2;
3242 try_pos += try_size / BITS_PER_UNIT;
3243 size -= try_size;
3244 masked -= try_size;
3246 /* Need to recompute the alignment, so just retry at the new
3247 position. */
3248 continue;
3252 found:
3253 ++ret;
3255 if (split_stores)
3257 struct split_store *store
3258 = new split_store (try_pos, try_size, align);
3259 info = find_constituent_stores (group, &store->orig_stores,
3260 &first, try_bitpos, try_size);
3261 if (info
3262 && info->bitpos >= try_bitpos
3263 && info->bitpos + info->bitsize <= try_bitpos + try_size)
3265 store->orig = true;
3266 any_orig = true;
3268 split_stores->safe_push (store);
3271 try_pos += try_size / BITS_PER_UNIT;
3272 size -= try_size;
3275 if (total_orig)
3277 unsigned int i;
3278 struct split_store *store;
3279 /* If we are reusing some original stores and any of the
3280 original SSA_NAMEs had multiple uses, we need to subtract
3281 those now before we add the new ones. */
3282 if (total_new[0] && any_orig)
3284 FOR_EACH_VEC_ELT (*split_stores, i, store)
3285 if (store->orig)
3286 total_new[0] -= count_multiple_uses (store->orig_stores[0]);
3288 total_new[0] += ret; /* The new store. */
3289 store_immediate_info *info = group->stores[0];
3290 if (info->ops[0].base_addr)
3291 total_new[0] += ret;
3292 if (info->ops[1].base_addr)
3293 total_new[0] += ret;
3294 switch (info->rhs_code)
3296 case BIT_AND_EXPR:
3297 case BIT_IOR_EXPR:
3298 case BIT_XOR_EXPR:
3299 total_new[0] += ret; /* The new BIT_*_EXPR stmt. */
3300 break;
3301 default:
3302 break;
3304 FOR_EACH_VEC_ELT (*split_stores, i, store)
3306 unsigned int j;
3307 bool bit_not_p[3] = { false, false, false };
3308 /* If all orig_stores have certain bit_not_p set, then
3309 we'd use a BIT_NOT_EXPR stmt and need to account for it.
3310 If some orig_stores have certain bit_not_p set, then
3311 we'd use a BIT_XOR_EXPR with a mask and need to account for
3312 it. */
3313 FOR_EACH_VEC_ELT (store->orig_stores, j, info)
3315 if (info->ops[0].bit_not_p)
3316 bit_not_p[0] = true;
3317 if (info->ops[1].bit_not_p)
3318 bit_not_p[1] = true;
3319 if (info->bit_not_p)
3320 bit_not_p[2] = true;
3322 total_new[0] += bit_not_p[0] + bit_not_p[1] + bit_not_p[2];
3327 return ret;
3330 /* Return the operation through which the operand IDX (if < 2) or
3331 result (IDX == 2) should be inverted. If NOP_EXPR, no inversion
3332 is done, if BIT_NOT_EXPR, all bits are inverted, if BIT_XOR_EXPR,
3333 the bits should be xored with mask. */
3335 static enum tree_code
3336 invert_op (split_store *split_store, int idx, tree int_type, tree &mask)
3338 unsigned int i;
3339 store_immediate_info *info;
3340 unsigned int cnt = 0;
3341 bool any_paddings = false;
3342 FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
3344 bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
3345 if (bit_not_p)
3347 ++cnt;
3348 tree lhs = gimple_assign_lhs (info->stmt);
3349 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3350 && TYPE_PRECISION (TREE_TYPE (lhs)) < info->bitsize)
3351 any_paddings = true;
3354 mask = NULL_TREE;
3355 if (cnt == 0)
3356 return NOP_EXPR;
3357 if (cnt == split_store->orig_stores.length () && !any_paddings)
3358 return BIT_NOT_EXPR;
3360 unsigned HOST_WIDE_INT try_bitpos = split_store->bytepos * BITS_PER_UNIT;
3361 unsigned buf_size = split_store->size / BITS_PER_UNIT;
3362 unsigned char *buf
3363 = XALLOCAVEC (unsigned char, buf_size);
3364 memset (buf, ~0U, buf_size);
3365 FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
3367 bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
3368 if (!bit_not_p)
3369 continue;
3370 /* Clear regions with bit_not_p and invert afterwards, rather than
3371 clear regions with !bit_not_p, so that gaps in between stores aren't
3372 set in the mask. */
3373 unsigned HOST_WIDE_INT bitsize = info->bitsize;
3374 unsigned HOST_WIDE_INT prec = bitsize;
3375 unsigned int pos_in_buffer = 0;
3376 if (any_paddings)
3378 tree lhs = gimple_assign_lhs (info->stmt);
3379 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3380 && TYPE_PRECISION (TREE_TYPE (lhs)) < bitsize)
3381 prec = TYPE_PRECISION (TREE_TYPE (lhs));
3383 if (info->bitpos < try_bitpos)
3385 gcc_assert (info->bitpos + bitsize > try_bitpos);
3386 if (!BYTES_BIG_ENDIAN)
3388 if (prec <= try_bitpos - info->bitpos)
3389 continue;
3390 prec -= try_bitpos - info->bitpos;
3392 bitsize -= try_bitpos - info->bitpos;
3393 if (BYTES_BIG_ENDIAN && prec > bitsize)
3394 prec = bitsize;
3396 else
3397 pos_in_buffer = info->bitpos - try_bitpos;
3398 if (prec < bitsize)
3400 /* If this is a bool inversion, invert just the least significant
3401 prec bits rather than all bits of it. */
3402 if (BYTES_BIG_ENDIAN)
3404 pos_in_buffer += bitsize - prec;
3405 if (pos_in_buffer >= split_store->size)
3406 continue;
3408 bitsize = prec;
3410 if (pos_in_buffer + bitsize > split_store->size)
3411 bitsize = split_store->size - pos_in_buffer;
3412 unsigned char *p = buf + (pos_in_buffer / BITS_PER_UNIT);
3413 if (BYTES_BIG_ENDIAN)
3414 clear_bit_region_be (p, (BITS_PER_UNIT - 1
3415 - (pos_in_buffer % BITS_PER_UNIT)), bitsize);
3416 else
3417 clear_bit_region (p, pos_in_buffer % BITS_PER_UNIT, bitsize);
3419 for (unsigned int i = 0; i < buf_size; ++i)
3420 buf[i] = ~buf[i];
3421 mask = native_interpret_expr (int_type, buf, buf_size);
3422 return BIT_XOR_EXPR;
3425 /* Given a merged store group GROUP output the widened version of it.
3426 The store chain is against the base object BASE.
3427 Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output
3428 unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive.
3429 Make sure that the number of statements output is less than the number of
3430 original statements. If a better sequence is possible emit it and
3431 return true. */
3433 bool
3434 imm_store_chain_info::output_merged_store (merged_store_group *group)
3436 split_store *split_store;
3437 unsigned int i;
3438 unsigned HOST_WIDE_INT start_byte_pos
3439 = group->bitregion_start / BITS_PER_UNIT;
3441 unsigned int orig_num_stmts = group->stores.length ();
3442 if (orig_num_stmts < 2)
3443 return false;
3445 auto_vec<struct split_store *, 32> split_stores;
3446 bool allow_unaligned_store
3447 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
3448 bool allow_unaligned_load = allow_unaligned_store;
3449 if (allow_unaligned_store)
3451 /* If unaligned stores are allowed, see how many stores we'd emit
3452 for unaligned and how many stores we'd emit for aligned stores.
3453 Only use unaligned stores if it allows fewer stores than aligned. */
3454 unsigned aligned_cnt
3455 = split_group (group, false, allow_unaligned_load, NULL, NULL, NULL);
3456 unsigned unaligned_cnt
3457 = split_group (group, true, allow_unaligned_load, NULL, NULL, NULL);
3458 if (aligned_cnt <= unaligned_cnt)
3459 allow_unaligned_store = false;
3461 unsigned total_orig, total_new;
3462 split_group (group, allow_unaligned_store, allow_unaligned_load,
3463 &split_stores, &total_orig, &total_new);
3465 if (split_stores.length () >= orig_num_stmts)
3467 /* We didn't manage to reduce the number of statements. Bail out. */
3468 if (dump_file && (dump_flags & TDF_DETAILS))
3469 fprintf (dump_file, "Exceeded original number of stmts (%u)."
3470 " Not profitable to emit new sequence.\n",
3471 orig_num_stmts);
3472 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3473 delete split_store;
3474 return false;
3476 if (total_orig <= total_new)
3478 /* If number of estimated new statements is above estimated original
3479 statements, bail out too. */
3480 if (dump_file && (dump_flags & TDF_DETAILS))
3481 fprintf (dump_file, "Estimated number of original stmts (%u)"
3482 " not larger than estimated number of new"
3483 " stmts (%u).\n",
3484 total_orig, total_new);
3485 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3486 delete split_store;
3487 return false;
3490 gimple_stmt_iterator last_gsi = gsi_for_stmt (group->last_stmt);
3491 gimple_seq seq = NULL;
3492 tree last_vdef, new_vuse;
3493 last_vdef = gimple_vdef (group->last_stmt);
3494 new_vuse = gimple_vuse (group->last_stmt);
3495 tree bswap_res = NULL_TREE;
3497 if (group->stores[0]->rhs_code == LROTATE_EXPR
3498 || group->stores[0]->rhs_code == NOP_EXPR)
3500 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
3501 gimple *ins_stmt = group->stores[0]->ins_stmt;
3502 struct symbolic_number *n = &group->stores[0]->n;
3503 bool bswap = group->stores[0]->rhs_code == LROTATE_EXPR;
3505 switch (n->range)
3507 case 16:
3508 load_type = bswap_type = uint16_type_node;
3509 break;
3510 case 32:
3511 load_type = uint32_type_node;
3512 if (bswap)
3514 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
3515 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
3517 break;
3518 case 64:
3519 load_type = uint64_type_node;
3520 if (bswap)
3522 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
3523 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
3525 break;
3526 default:
3527 gcc_unreachable ();
3530 /* If the loads have each vuse of the corresponding store,
3531 we've checked the aliasing already in try_coalesce_bswap and
3532 we want to sink the need load into seq. So need to use new_vuse
3533 on the load. */
3534 if (n->base_addr)
3536 if (n->vuse == NULL)
3538 n->vuse = new_vuse;
3539 ins_stmt = NULL;
3541 else
3542 /* Update vuse in case it has changed by output_merged_stores. */
3543 n->vuse = gimple_vuse (ins_stmt);
3545 bswap_res = bswap_replace (gsi_start (seq), ins_stmt, fndecl,
3546 bswap_type, load_type, n, bswap);
3547 gcc_assert (bswap_res);
3550 gimple *stmt = NULL;
3551 auto_vec<gimple *, 32> orig_stmts;
3552 gimple_seq this_seq;
3553 tree addr = force_gimple_operand_1 (unshare_expr (base_addr), &this_seq,
3554 is_gimple_mem_ref_addr, NULL_TREE);
3555 gimple_seq_add_seq_without_update (&seq, this_seq);
3557 tree load_addr[2] = { NULL_TREE, NULL_TREE };
3558 gimple_seq load_seq[2] = { NULL, NULL };
3559 gimple_stmt_iterator load_gsi[2] = { gsi_none (), gsi_none () };
3560 for (int j = 0; j < 2; ++j)
3562 store_operand_info &op = group->stores[0]->ops[j];
3563 if (op.base_addr == NULL_TREE)
3564 continue;
3566 store_immediate_info *infol = group->stores.last ();
3567 if (gimple_vuse (op.stmt) == gimple_vuse (infol->ops[j].stmt))
3569 /* We can't pick the location randomly; while we've verified
3570 all the loads have the same vuse, they can be still in different
3571 basic blocks and we need to pick the one from the last bb:
3572 int x = q[0];
3573 if (x == N) return;
3574 int y = q[1];
3575 p[0] = x;
3576 p[1] = y;
3577 otherwise if we put the wider load at the q[0] load, we might
3578 segfault if q[1] is not mapped. */
3579 basic_block bb = gimple_bb (op.stmt);
3580 gimple *ostmt = op.stmt;
3581 store_immediate_info *info;
3582 FOR_EACH_VEC_ELT (group->stores, i, info)
3584 gimple *tstmt = info->ops[j].stmt;
3585 basic_block tbb = gimple_bb (tstmt);
3586 if (dominated_by_p (CDI_DOMINATORS, tbb, bb))
3588 ostmt = tstmt;
3589 bb = tbb;
3592 load_gsi[j] = gsi_for_stmt (ostmt);
3593 load_addr[j]
3594 = force_gimple_operand_1 (unshare_expr (op.base_addr),
3595 &load_seq[j], is_gimple_mem_ref_addr,
3596 NULL_TREE);
3598 else if (operand_equal_p (base_addr, op.base_addr, 0))
3599 load_addr[j] = addr;
3600 else
3602 load_addr[j]
3603 = force_gimple_operand_1 (unshare_expr (op.base_addr),
3604 &this_seq, is_gimple_mem_ref_addr,
3605 NULL_TREE);
3606 gimple_seq_add_seq_without_update (&seq, this_seq);
3610 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3612 unsigned HOST_WIDE_INT try_size = split_store->size;
3613 unsigned HOST_WIDE_INT try_pos = split_store->bytepos;
3614 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
3615 unsigned HOST_WIDE_INT align = split_store->align;
3616 tree dest, src;
3617 location_t loc;
3618 if (split_store->orig)
3620 /* If there is just a single constituent store which covers
3621 the whole area, just reuse the lhs and rhs. */
3622 gimple *orig_stmt = split_store->orig_stores[0]->stmt;
3623 dest = gimple_assign_lhs (orig_stmt);
3624 src = gimple_assign_rhs1 (orig_stmt);
3625 loc = gimple_location (orig_stmt);
3627 else
3629 store_immediate_info *info;
3630 unsigned short clique, base;
3631 unsigned int k;
3632 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3633 orig_stmts.safe_push (info->stmt);
3634 tree offset_type
3635 = get_alias_type_for_stmts (orig_stmts, false, &clique, &base);
3636 loc = get_location_for_stmts (orig_stmts);
3637 orig_stmts.truncate (0);
3639 tree int_type = build_nonstandard_integer_type (try_size, UNSIGNED);
3640 int_type = build_aligned_type (int_type, align);
3641 dest = fold_build2 (MEM_REF, int_type, addr,
3642 build_int_cst (offset_type, try_pos));
3643 if (TREE_CODE (dest) == MEM_REF)
3645 MR_DEPENDENCE_CLIQUE (dest) = clique;
3646 MR_DEPENDENCE_BASE (dest) = base;
3649 tree mask;
3650 if (bswap_res)
3651 mask = integer_zero_node;
3652 else
3653 mask = native_interpret_expr (int_type,
3654 group->mask + try_pos
3655 - start_byte_pos,
3656 group->buf_size);
3658 tree ops[2];
3659 for (int j = 0;
3660 j < 1 + (split_store->orig_stores[0]->ops[1].val != NULL_TREE);
3661 ++j)
3663 store_operand_info &op = split_store->orig_stores[0]->ops[j];
3664 if (bswap_res)
3665 ops[j] = bswap_res;
3666 else if (op.base_addr)
3668 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3669 orig_stmts.safe_push (info->ops[j].stmt);
3671 offset_type = get_alias_type_for_stmts (orig_stmts, true,
3672 &clique, &base);
3673 location_t load_loc = get_location_for_stmts (orig_stmts);
3674 orig_stmts.truncate (0);
3676 unsigned HOST_WIDE_INT load_align = group->load_align[j];
3677 unsigned HOST_WIDE_INT align_bitpos
3678 = known_alignment (try_bitpos
3679 - split_store->orig_stores[0]->bitpos
3680 + op.bitpos);
3681 if (align_bitpos & (load_align - 1))
3682 load_align = least_bit_hwi (align_bitpos);
3684 tree load_int_type
3685 = build_nonstandard_integer_type (try_size, UNSIGNED);
3686 load_int_type
3687 = build_aligned_type (load_int_type, load_align);
3689 poly_uint64 load_pos
3690 = exact_div (try_bitpos
3691 - split_store->orig_stores[0]->bitpos
3692 + op.bitpos,
3693 BITS_PER_UNIT);
3694 ops[j] = fold_build2 (MEM_REF, load_int_type, load_addr[j],
3695 build_int_cst (offset_type, load_pos));
3696 if (TREE_CODE (ops[j]) == MEM_REF)
3698 MR_DEPENDENCE_CLIQUE (ops[j]) = clique;
3699 MR_DEPENDENCE_BASE (ops[j]) = base;
3701 if (!integer_zerop (mask))
3702 /* The load might load some bits (that will be masked off
3703 later on) uninitialized, avoid -W*uninitialized
3704 warnings in that case. */
3705 TREE_NO_WARNING (ops[j]) = 1;
3707 stmt = gimple_build_assign (make_ssa_name (int_type),
3708 ops[j]);
3709 gimple_set_location (stmt, load_loc);
3710 if (gsi_bb (load_gsi[j]))
3712 gimple_set_vuse (stmt, gimple_vuse (op.stmt));
3713 gimple_seq_add_stmt_without_update (&load_seq[j], stmt);
3715 else
3717 gimple_set_vuse (stmt, new_vuse);
3718 gimple_seq_add_stmt_without_update (&seq, stmt);
3720 ops[j] = gimple_assign_lhs (stmt);
3721 tree xor_mask;
3722 enum tree_code inv_op
3723 = invert_op (split_store, j, int_type, xor_mask);
3724 if (inv_op != NOP_EXPR)
3726 stmt = gimple_build_assign (make_ssa_name (int_type),
3727 inv_op, ops[j], xor_mask);
3728 gimple_set_location (stmt, load_loc);
3729 ops[j] = gimple_assign_lhs (stmt);
3731 if (gsi_bb (load_gsi[j]))
3732 gimple_seq_add_stmt_without_update (&load_seq[j],
3733 stmt);
3734 else
3735 gimple_seq_add_stmt_without_update (&seq, stmt);
3738 else
3739 ops[j] = native_interpret_expr (int_type,
3740 group->val + try_pos
3741 - start_byte_pos,
3742 group->buf_size);
3745 switch (split_store->orig_stores[0]->rhs_code)
3747 case BIT_AND_EXPR:
3748 case BIT_IOR_EXPR:
3749 case BIT_XOR_EXPR:
3750 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3752 tree rhs1 = gimple_assign_rhs1 (info->stmt);
3753 orig_stmts.safe_push (SSA_NAME_DEF_STMT (rhs1));
3755 location_t bit_loc;
3756 bit_loc = get_location_for_stmts (orig_stmts);
3757 orig_stmts.truncate (0);
3759 stmt
3760 = gimple_build_assign (make_ssa_name (int_type),
3761 split_store->orig_stores[0]->rhs_code,
3762 ops[0], ops[1]);
3763 gimple_set_location (stmt, bit_loc);
3764 /* If there is just one load and there is a separate
3765 load_seq[0], emit the bitwise op right after it. */
3766 if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
3767 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
3768 /* Otherwise, if at least one load is in seq, we need to
3769 emit the bitwise op right before the store. If there
3770 are two loads and are emitted somewhere else, it would
3771 be better to emit the bitwise op as early as possible;
3772 we don't track where that would be possible right now
3773 though. */
3774 else
3775 gimple_seq_add_stmt_without_update (&seq, stmt);
3776 src = gimple_assign_lhs (stmt);
3777 tree xor_mask;
3778 enum tree_code inv_op;
3779 inv_op = invert_op (split_store, 2, int_type, xor_mask);
3780 if (inv_op != NOP_EXPR)
3782 stmt = gimple_build_assign (make_ssa_name (int_type),
3783 inv_op, src, xor_mask);
3784 gimple_set_location (stmt, bit_loc);
3785 if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
3786 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
3787 else
3788 gimple_seq_add_stmt_without_update (&seq, stmt);
3789 src = gimple_assign_lhs (stmt);
3791 break;
3792 case LROTATE_EXPR:
3793 case NOP_EXPR:
3794 src = ops[0];
3795 if (!is_gimple_val (src))
3797 stmt = gimple_build_assign (make_ssa_name (TREE_TYPE (src)),
3798 src);
3799 gimple_seq_add_stmt_without_update (&seq, stmt);
3800 src = gimple_assign_lhs (stmt);
3802 if (!useless_type_conversion_p (int_type, TREE_TYPE (src)))
3804 stmt = gimple_build_assign (make_ssa_name (int_type),
3805 NOP_EXPR, src);
3806 gimple_seq_add_stmt_without_update (&seq, stmt);
3807 src = gimple_assign_lhs (stmt);
3809 inv_op = invert_op (split_store, 2, int_type, xor_mask);
3810 if (inv_op != NOP_EXPR)
3812 stmt = gimple_build_assign (make_ssa_name (int_type),
3813 inv_op, src, xor_mask);
3814 gimple_set_location (stmt, loc);
3815 gimple_seq_add_stmt_without_update (&seq, stmt);
3816 src = gimple_assign_lhs (stmt);
3818 break;
3819 default:
3820 src = ops[0];
3821 break;
3824 /* If bit insertion is required, we use the source as an accumulator
3825 into which the successive bit-field values are manually inserted.
3826 FIXME: perhaps use BIT_INSERT_EXPR instead in some cases? */
3827 if (group->bit_insertion)
3828 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3829 if (info->rhs_code == BIT_INSERT_EXPR
3830 && info->bitpos < try_bitpos + try_size
3831 && info->bitpos + info->bitsize > try_bitpos)
3833 /* Mask, truncate, convert to final type, shift and ior into
3834 the accumulator. Note that every step can be a no-op. */
3835 const HOST_WIDE_INT start_gap = info->bitpos - try_bitpos;
3836 const HOST_WIDE_INT end_gap
3837 = (try_bitpos + try_size) - (info->bitpos + info->bitsize);
3838 tree tem = info->ops[0].val;
3839 if (TYPE_PRECISION (TREE_TYPE (tem)) <= info->bitsize)
3841 tree bitfield_type
3842 = build_nonstandard_integer_type (info->bitsize,
3843 UNSIGNED);
3844 tem = gimple_convert (&seq, loc, bitfield_type, tem);
3846 else if ((BYTES_BIG_ENDIAN ? start_gap : end_gap) > 0)
3848 const unsigned HOST_WIDE_INT imask
3849 = (HOST_WIDE_INT_1U << info->bitsize) - 1;
3850 tem = gimple_build (&seq, loc,
3851 BIT_AND_EXPR, TREE_TYPE (tem), tem,
3852 build_int_cst (TREE_TYPE (tem),
3853 imask));
3855 const HOST_WIDE_INT shift
3856 = (BYTES_BIG_ENDIAN ? end_gap : start_gap);
3857 if (shift < 0)
3858 tem = gimple_build (&seq, loc,
3859 RSHIFT_EXPR, TREE_TYPE (tem), tem,
3860 build_int_cst (NULL_TREE, -shift));
3861 tem = gimple_convert (&seq, loc, int_type, tem);
3862 if (shift > 0)
3863 tem = gimple_build (&seq, loc,
3864 LSHIFT_EXPR, int_type, tem,
3865 build_int_cst (NULL_TREE, shift));
3866 src = gimple_build (&seq, loc,
3867 BIT_IOR_EXPR, int_type, tem, src);
3870 if (!integer_zerop (mask))
3872 tree tem = make_ssa_name (int_type);
3873 tree load_src = unshare_expr (dest);
3874 /* The load might load some or all bits uninitialized,
3875 avoid -W*uninitialized warnings in that case.
3876 As optimization, it would be nice if all the bits are
3877 provably uninitialized (no stores at all yet or previous
3878 store a CLOBBER) we'd optimize away the load and replace
3879 it e.g. with 0. */
3880 TREE_NO_WARNING (load_src) = 1;
3881 stmt = gimple_build_assign (tem, load_src);
3882 gimple_set_location (stmt, loc);
3883 gimple_set_vuse (stmt, new_vuse);
3884 gimple_seq_add_stmt_without_update (&seq, stmt);
3886 /* FIXME: If there is a single chunk of zero bits in mask,
3887 perhaps use BIT_INSERT_EXPR instead? */
3888 stmt = gimple_build_assign (make_ssa_name (int_type),
3889 BIT_AND_EXPR, tem, mask);
3890 gimple_set_location (stmt, loc);
3891 gimple_seq_add_stmt_without_update (&seq, stmt);
3892 tem = gimple_assign_lhs (stmt);
3894 if (TREE_CODE (src) == INTEGER_CST)
3895 src = wide_int_to_tree (int_type,
3896 wi::bit_and_not (wi::to_wide (src),
3897 wi::to_wide (mask)));
3898 else
3900 tree nmask
3901 = wide_int_to_tree (int_type,
3902 wi::bit_not (wi::to_wide (mask)));
3903 stmt = gimple_build_assign (make_ssa_name (int_type),
3904 BIT_AND_EXPR, src, nmask);
3905 gimple_set_location (stmt, loc);
3906 gimple_seq_add_stmt_without_update (&seq, stmt);
3907 src = gimple_assign_lhs (stmt);
3909 stmt = gimple_build_assign (make_ssa_name (int_type),
3910 BIT_IOR_EXPR, tem, src);
3911 gimple_set_location (stmt, loc);
3912 gimple_seq_add_stmt_without_update (&seq, stmt);
3913 src = gimple_assign_lhs (stmt);
3917 stmt = gimple_build_assign (dest, src);
3918 gimple_set_location (stmt, loc);
3919 gimple_set_vuse (stmt, new_vuse);
3920 gimple_seq_add_stmt_without_update (&seq, stmt);
3922 tree new_vdef;
3923 if (i < split_stores.length () - 1)
3924 new_vdef = make_ssa_name (gimple_vop (cfun), stmt);
3925 else
3926 new_vdef = last_vdef;
3928 gimple_set_vdef (stmt, new_vdef);
3929 SSA_NAME_DEF_STMT (new_vdef) = stmt;
3930 new_vuse = new_vdef;
3933 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3934 delete split_store;
3936 gcc_assert (seq);
3937 if (dump_file)
3939 fprintf (dump_file,
3940 "New sequence of %u stores to replace old one of %u stores\n",
3941 split_stores.length (), orig_num_stmts);
3942 if (dump_flags & TDF_DETAILS)
3943 print_gimple_seq (dump_file, seq, 0, TDF_VOPS | TDF_MEMSYMS);
3945 gsi_insert_seq_after (&last_gsi, seq, GSI_SAME_STMT);
3946 for (int j = 0; j < 2; ++j)
3947 if (load_seq[j])
3948 gsi_insert_seq_after (&load_gsi[j], load_seq[j], GSI_SAME_STMT);
3950 return true;
3953 /* Process the merged_store_group objects created in the coalescing phase.
3954 The stores are all against the base object BASE.
3955 Try to output the widened stores and delete the original statements if
3956 successful. Return true iff any changes were made. */
3958 bool
3959 imm_store_chain_info::output_merged_stores ()
3961 unsigned int i;
3962 merged_store_group *merged_store;
3963 bool ret = false;
3964 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_store)
3966 if (output_merged_store (merged_store))
3968 unsigned int j;
3969 store_immediate_info *store;
3970 FOR_EACH_VEC_ELT (merged_store->stores, j, store)
3972 gimple *stmt = store->stmt;
3973 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3974 gsi_remove (&gsi, true);
3975 if (stmt != merged_store->last_stmt)
3977 unlink_stmt_vdef (stmt);
3978 release_defs (stmt);
3981 ret = true;
3984 if (ret && dump_file)
3985 fprintf (dump_file, "Merging successful!\n");
3987 return ret;
3990 /* Coalesce the store_immediate_info objects recorded against the base object
3991 BASE in the first phase and output them.
3992 Delete the allocated structures.
3993 Return true if any changes were made. */
3995 bool
3996 imm_store_chain_info::terminate_and_process_chain ()
3998 /* Process store chain. */
3999 bool ret = false;
4000 if (m_store_info.length () > 1)
4002 ret = coalesce_immediate_stores ();
4003 if (ret)
4004 ret = output_merged_stores ();
4007 /* Delete all the entries we allocated ourselves. */
4008 store_immediate_info *info;
4009 unsigned int i;
4010 FOR_EACH_VEC_ELT (m_store_info, i, info)
4011 delete info;
4013 merged_store_group *merged_info;
4014 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_info)
4015 delete merged_info;
4017 return ret;
4020 /* Return true iff LHS is a destination potentially interesting for
4021 store merging. In practice these are the codes that get_inner_reference
4022 can process. */
4024 static bool
4025 lhs_valid_for_store_merging_p (tree lhs)
4027 tree_code code = TREE_CODE (lhs);
4029 if (code == ARRAY_REF || code == ARRAY_RANGE_REF || code == MEM_REF
4030 || code == COMPONENT_REF || code == BIT_FIELD_REF)
4031 return true;
4033 return false;
4036 /* Return true if the tree RHS is a constant we want to consider
4037 during store merging. In practice accept all codes that
4038 native_encode_expr accepts. */
4040 static bool
4041 rhs_valid_for_store_merging_p (tree rhs)
4043 unsigned HOST_WIDE_INT size;
4044 return (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (rhs))).is_constant (&size)
4045 && native_encode_expr (rhs, NULL, size) != 0);
4048 /* If MEM is a memory reference usable for store merging (either as
4049 store destination or for loads), return the non-NULL base_addr
4050 and set *PBITSIZE, *PBITPOS, *PBITREGION_START and *PBITREGION_END.
4051 Otherwise return NULL, *PBITPOS should be still valid even for that
4052 case. */
4054 static tree
4055 mem_valid_for_store_merging (tree mem, poly_uint64 *pbitsize,
4056 poly_uint64 *pbitpos,
4057 poly_uint64 *pbitregion_start,
4058 poly_uint64 *pbitregion_end)
4060 poly_int64 bitsize, bitpos;
4061 poly_uint64 bitregion_start = 0, bitregion_end = 0;
4062 machine_mode mode;
4063 int unsignedp = 0, reversep = 0, volatilep = 0;
4064 tree offset;
4065 tree base_addr = get_inner_reference (mem, &bitsize, &bitpos, &offset, &mode,
4066 &unsignedp, &reversep, &volatilep);
4067 *pbitsize = bitsize;
4068 if (known_eq (bitsize, 0))
4069 return NULL_TREE;
4071 if (TREE_CODE (mem) == COMPONENT_REF
4072 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (mem, 1)))
4074 get_bit_range (&bitregion_start, &bitregion_end, mem, &bitpos, &offset);
4075 if (maybe_ne (bitregion_end, 0U))
4076 bitregion_end += 1;
4079 if (reversep)
4080 return NULL_TREE;
4082 /* We do not want to rewrite TARGET_MEM_REFs. */
4083 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
4084 return NULL_TREE;
4085 /* In some cases get_inner_reference may return a
4086 MEM_REF [ptr + byteoffset]. For the purposes of this pass
4087 canonicalize the base_addr to MEM_REF [ptr] and take
4088 byteoffset into account in the bitpos. This occurs in
4089 PR 23684 and this way we can catch more chains. */
4090 else if (TREE_CODE (base_addr) == MEM_REF)
4092 poly_offset_int byte_off = mem_ref_offset (base_addr);
4093 poly_offset_int bit_off = byte_off << LOG2_BITS_PER_UNIT;
4094 bit_off += bitpos;
4095 if (known_ge (bit_off, 0) && bit_off.to_shwi (&bitpos))
4097 if (maybe_ne (bitregion_end, 0U))
4099 bit_off = byte_off << LOG2_BITS_PER_UNIT;
4100 bit_off += bitregion_start;
4101 if (bit_off.to_uhwi (&bitregion_start))
4103 bit_off = byte_off << LOG2_BITS_PER_UNIT;
4104 bit_off += bitregion_end;
4105 if (!bit_off.to_uhwi (&bitregion_end))
4106 bitregion_end = 0;
4108 else
4109 bitregion_end = 0;
4112 else
4113 return NULL_TREE;
4114 base_addr = TREE_OPERAND (base_addr, 0);
4116 /* get_inner_reference returns the base object, get at its
4117 address now. */
4118 else
4120 if (maybe_lt (bitpos, 0))
4121 return NULL_TREE;
4122 base_addr = build_fold_addr_expr (base_addr);
4125 if (known_eq (bitregion_end, 0U))
4127 bitregion_start = round_down_to_byte_boundary (bitpos);
4128 bitregion_end = bitpos;
4129 bitregion_end = round_up_to_byte_boundary (bitregion_end + bitsize);
4132 if (offset != NULL_TREE)
4134 /* If the access is variable offset then a base decl has to be
4135 address-taken to be able to emit pointer-based stores to it.
4136 ??? We might be able to get away with re-using the original
4137 base up to the first variable part and then wrapping that inside
4138 a BIT_FIELD_REF. */
4139 tree base = get_base_address (base_addr);
4140 if (! base
4141 || (DECL_P (base) && ! TREE_ADDRESSABLE (base)))
4142 return NULL_TREE;
4144 base_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (base_addr),
4145 base_addr, offset);
4148 *pbitsize = bitsize;
4149 *pbitpos = bitpos;
4150 *pbitregion_start = bitregion_start;
4151 *pbitregion_end = bitregion_end;
4152 return base_addr;
4155 /* Return true if STMT is a load that can be used for store merging.
4156 In that case fill in *OP. BITSIZE, BITPOS, BITREGION_START and
4157 BITREGION_END are properties of the corresponding store. */
4159 static bool
4160 handled_load (gimple *stmt, store_operand_info *op,
4161 poly_uint64 bitsize, poly_uint64 bitpos,
4162 poly_uint64 bitregion_start, poly_uint64 bitregion_end)
4164 if (!is_gimple_assign (stmt))
4165 return false;
4166 if (gimple_assign_rhs_code (stmt) == BIT_NOT_EXPR)
4168 tree rhs1 = gimple_assign_rhs1 (stmt);
4169 if (TREE_CODE (rhs1) == SSA_NAME
4170 && handled_load (SSA_NAME_DEF_STMT (rhs1), op, bitsize, bitpos,
4171 bitregion_start, bitregion_end))
4173 /* Don't allow _1 = load; _2 = ~1; _3 = ~_2; which should have
4174 been optimized earlier, but if allowed here, would confuse the
4175 multiple uses counting. */
4176 if (op->bit_not_p)
4177 return false;
4178 op->bit_not_p = !op->bit_not_p;
4179 return true;
4181 return false;
4183 if (gimple_vuse (stmt)
4184 && gimple_assign_load_p (stmt)
4185 && !stmt_can_throw_internal (stmt)
4186 && !gimple_has_volatile_ops (stmt))
4188 tree mem = gimple_assign_rhs1 (stmt);
4189 op->base_addr
4190 = mem_valid_for_store_merging (mem, &op->bitsize, &op->bitpos,
4191 &op->bitregion_start,
4192 &op->bitregion_end);
4193 if (op->base_addr != NULL_TREE
4194 && known_eq (op->bitsize, bitsize)
4195 && multiple_p (op->bitpos - bitpos, BITS_PER_UNIT)
4196 && known_ge (op->bitpos - op->bitregion_start,
4197 bitpos - bitregion_start)
4198 && known_ge (op->bitregion_end - op->bitpos,
4199 bitregion_end - bitpos))
4201 op->stmt = stmt;
4202 op->val = mem;
4203 op->bit_not_p = false;
4204 return true;
4207 return false;
4210 /* Record the store STMT for store merging optimization if it can be
4211 optimized. */
4213 void
4214 pass_store_merging::process_store (gimple *stmt)
4216 tree lhs = gimple_assign_lhs (stmt);
4217 tree rhs = gimple_assign_rhs1 (stmt);
4218 poly_uint64 bitsize, bitpos;
4219 poly_uint64 bitregion_start, bitregion_end;
4220 tree base_addr
4221 = mem_valid_for_store_merging (lhs, &bitsize, &bitpos,
4222 &bitregion_start, &bitregion_end);
4223 if (known_eq (bitsize, 0U))
4224 return;
4226 bool invalid = (base_addr == NULL_TREE
4227 || (maybe_gt (bitsize,
4228 (unsigned int) MAX_BITSIZE_MODE_ANY_INT)
4229 && (TREE_CODE (rhs) != INTEGER_CST)));
4230 enum tree_code rhs_code = ERROR_MARK;
4231 bool bit_not_p = false;
4232 struct symbolic_number n;
4233 gimple *ins_stmt = NULL;
4234 store_operand_info ops[2];
4235 if (invalid)
4237 else if (rhs_valid_for_store_merging_p (rhs))
4239 rhs_code = INTEGER_CST;
4240 ops[0].val = rhs;
4242 else if (TREE_CODE (rhs) != SSA_NAME)
4243 invalid = true;
4244 else
4246 gimple *def_stmt = SSA_NAME_DEF_STMT (rhs), *def_stmt1, *def_stmt2;
4247 if (!is_gimple_assign (def_stmt))
4248 invalid = true;
4249 else if (handled_load (def_stmt, &ops[0], bitsize, bitpos,
4250 bitregion_start, bitregion_end))
4251 rhs_code = MEM_REF;
4252 else if (gimple_assign_rhs_code (def_stmt) == BIT_NOT_EXPR)
4254 tree rhs1 = gimple_assign_rhs1 (def_stmt);
4255 if (TREE_CODE (rhs1) == SSA_NAME
4256 && is_gimple_assign (SSA_NAME_DEF_STMT (rhs1)))
4258 bit_not_p = true;
4259 def_stmt = SSA_NAME_DEF_STMT (rhs1);
4263 if (rhs_code == ERROR_MARK && !invalid)
4264 switch ((rhs_code = gimple_assign_rhs_code (def_stmt)))
4266 case BIT_AND_EXPR:
4267 case BIT_IOR_EXPR:
4268 case BIT_XOR_EXPR:
4269 tree rhs1, rhs2;
4270 rhs1 = gimple_assign_rhs1 (def_stmt);
4271 rhs2 = gimple_assign_rhs2 (def_stmt);
4272 invalid = true;
4273 if (TREE_CODE (rhs1) != SSA_NAME)
4274 break;
4275 def_stmt1 = SSA_NAME_DEF_STMT (rhs1);
4276 if (!is_gimple_assign (def_stmt1)
4277 || !handled_load (def_stmt1, &ops[0], bitsize, bitpos,
4278 bitregion_start, bitregion_end))
4279 break;
4280 if (rhs_valid_for_store_merging_p (rhs2))
4281 ops[1].val = rhs2;
4282 else if (TREE_CODE (rhs2) != SSA_NAME)
4283 break;
4284 else
4286 def_stmt2 = SSA_NAME_DEF_STMT (rhs2);
4287 if (!is_gimple_assign (def_stmt2))
4288 break;
4289 else if (!handled_load (def_stmt2, &ops[1], bitsize, bitpos,
4290 bitregion_start, bitregion_end))
4291 break;
4293 invalid = false;
4294 break;
4295 default:
4296 invalid = true;
4297 break;
4300 unsigned HOST_WIDE_INT const_bitsize;
4301 if (bitsize.is_constant (&const_bitsize)
4302 && (const_bitsize % BITS_PER_UNIT) == 0
4303 && const_bitsize <= 64
4304 && multiple_p (bitpos, BITS_PER_UNIT))
4306 ins_stmt = find_bswap_or_nop_1 (def_stmt, &n, 12);
4307 if (ins_stmt)
4309 uint64_t nn = n.n;
4310 for (unsigned HOST_WIDE_INT i = 0;
4311 i < const_bitsize;
4312 i += BITS_PER_UNIT, nn >>= BITS_PER_MARKER)
4313 if ((nn & MARKER_MASK) == 0
4314 || (nn & MARKER_MASK) == MARKER_BYTE_UNKNOWN)
4316 ins_stmt = NULL;
4317 break;
4319 if (ins_stmt)
4321 if (invalid)
4323 rhs_code = LROTATE_EXPR;
4324 ops[0].base_addr = NULL_TREE;
4325 ops[1].base_addr = NULL_TREE;
4327 invalid = false;
4332 if (invalid
4333 && bitsize.is_constant (&const_bitsize)
4334 && ((const_bitsize % BITS_PER_UNIT) != 0
4335 || !multiple_p (bitpos, BITS_PER_UNIT))
4336 && const_bitsize <= 64)
4338 /* Bypass a conversion to the bit-field type. */
4339 if (!bit_not_p
4340 && is_gimple_assign (def_stmt)
4341 && CONVERT_EXPR_CODE_P (rhs_code))
4343 tree rhs1 = gimple_assign_rhs1 (def_stmt);
4344 if (TREE_CODE (rhs1) == SSA_NAME
4345 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
4346 rhs = rhs1;
4348 rhs_code = BIT_INSERT_EXPR;
4349 bit_not_p = false;
4350 ops[0].val = rhs;
4351 ops[0].base_addr = NULL_TREE;
4352 ops[1].base_addr = NULL_TREE;
4353 invalid = false;
4357 unsigned HOST_WIDE_INT const_bitsize, const_bitpos;
4358 unsigned HOST_WIDE_INT const_bitregion_start, const_bitregion_end;
4359 if (invalid
4360 || !bitsize.is_constant (&const_bitsize)
4361 || !bitpos.is_constant (&const_bitpos)
4362 || !bitregion_start.is_constant (&const_bitregion_start)
4363 || !bitregion_end.is_constant (&const_bitregion_end))
4365 terminate_all_aliasing_chains (NULL, stmt);
4366 return;
4369 if (!ins_stmt)
4370 memset (&n, 0, sizeof (n));
4372 struct imm_store_chain_info **chain_info = NULL;
4373 if (base_addr)
4374 chain_info = m_stores.get (base_addr);
4376 store_immediate_info *info;
4377 if (chain_info)
4379 unsigned int ord = (*chain_info)->m_store_info.length ();
4380 info = new store_immediate_info (const_bitsize, const_bitpos,
4381 const_bitregion_start,
4382 const_bitregion_end,
4383 stmt, ord, rhs_code, n, ins_stmt,
4384 bit_not_p, ops[0], ops[1]);
4385 if (dump_file && (dump_flags & TDF_DETAILS))
4387 fprintf (dump_file, "Recording immediate store from stmt:\n");
4388 print_gimple_stmt (dump_file, stmt, 0);
4390 (*chain_info)->m_store_info.safe_push (info);
4391 terminate_all_aliasing_chains (chain_info, stmt);
4392 /* If we reach the limit of stores to merge in a chain terminate and
4393 process the chain now. */
4394 if ((*chain_info)->m_store_info.length ()
4395 == (unsigned int) PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE))
4397 if (dump_file && (dump_flags & TDF_DETAILS))
4398 fprintf (dump_file,
4399 "Reached maximum number of statements to merge:\n");
4400 terminate_and_release_chain (*chain_info);
4402 return;
4405 /* Store aliases any existing chain? */
4406 terminate_all_aliasing_chains (NULL, stmt);
4407 /* Start a new chain. */
4408 struct imm_store_chain_info *new_chain
4409 = new imm_store_chain_info (m_stores_head, base_addr);
4410 info = new store_immediate_info (const_bitsize, const_bitpos,
4411 const_bitregion_start,
4412 const_bitregion_end,
4413 stmt, 0, rhs_code, n, ins_stmt,
4414 bit_not_p, ops[0], ops[1]);
4415 new_chain->m_store_info.safe_push (info);
4416 m_stores.put (base_addr, new_chain);
4417 if (dump_file && (dump_flags & TDF_DETAILS))
4419 fprintf (dump_file, "Starting new chain with statement:\n");
4420 print_gimple_stmt (dump_file, stmt, 0);
4421 fprintf (dump_file, "The base object is:\n");
4422 print_generic_expr (dump_file, base_addr);
4423 fprintf (dump_file, "\n");
4427 /* Entry point for the pass. Go over each basic block recording chains of
4428 immediate stores. Upon encountering a terminating statement (as defined
4429 by stmt_terminates_chain_p) process the recorded stores and emit the widened
4430 variants. */
4432 unsigned int
4433 pass_store_merging::execute (function *fun)
4435 basic_block bb;
4436 hash_set<gimple *> orig_stmts;
4438 calculate_dominance_info (CDI_DOMINATORS);
4440 FOR_EACH_BB_FN (bb, fun)
4442 gimple_stmt_iterator gsi;
4443 unsigned HOST_WIDE_INT num_statements = 0;
4444 /* Record the original statements so that we can keep track of
4445 statements emitted in this pass and not re-process new
4446 statements. */
4447 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4449 if (is_gimple_debug (gsi_stmt (gsi)))
4450 continue;
4452 if (++num_statements >= 2)
4453 break;
4456 if (num_statements < 2)
4457 continue;
4459 if (dump_file && (dump_flags & TDF_DETAILS))
4460 fprintf (dump_file, "Processing basic block <%d>:\n", bb->index);
4462 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4464 gimple *stmt = gsi_stmt (gsi);
4466 if (is_gimple_debug (stmt))
4467 continue;
4469 if (gimple_has_volatile_ops (stmt))
4471 /* Terminate all chains. */
4472 if (dump_file && (dump_flags & TDF_DETAILS))
4473 fprintf (dump_file, "Volatile access terminates "
4474 "all chains\n");
4475 terminate_and_process_all_chains ();
4476 continue;
4479 if (gimple_assign_single_p (stmt) && gimple_vdef (stmt)
4480 && !stmt_can_throw_internal (stmt)
4481 && lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt)))
4482 process_store (stmt);
4483 else
4484 terminate_all_aliasing_chains (NULL, stmt);
4486 terminate_and_process_all_chains ();
4488 return 0;
4491 } // anon namespace
4493 /* Construct and return a store merging pass object. */
4495 gimple_opt_pass *
4496 make_pass_store_merging (gcc::context *ctxt)
4498 return new pass_store_merging (ctxt);
4501 #if CHECKING_P
4503 namespace selftest {
4505 /* Selftests for store merging helpers. */
4507 /* Assert that all elements of the byte arrays X and Y, both of length N
4508 are equal. */
4510 static void
4511 verify_array_eq (unsigned char *x, unsigned char *y, unsigned int n)
4513 for (unsigned int i = 0; i < n; i++)
4515 if (x[i] != y[i])
4517 fprintf (stderr, "Arrays do not match. X:\n");
4518 dump_char_array (stderr, x, n);
4519 fprintf (stderr, "Y:\n");
4520 dump_char_array (stderr, y, n);
4522 ASSERT_EQ (x[i], y[i]);
4526 /* Test shift_bytes_in_array and that it carries bits across between
4527 bytes correctly. */
4529 static void
4530 verify_shift_bytes_in_array (void)
4532 /* byte 1 | byte 0
4533 00011111 | 11100000. */
4534 unsigned char orig[2] = { 0xe0, 0x1f };
4535 unsigned char in[2];
4536 memcpy (in, orig, sizeof orig);
4538 unsigned char expected[2] = { 0x80, 0x7f };
4539 shift_bytes_in_array (in, sizeof (in), 2);
4540 verify_array_eq (in, expected, sizeof (in));
4542 memcpy (in, orig, sizeof orig);
4543 memcpy (expected, orig, sizeof orig);
4544 /* Check that shifting by zero doesn't change anything. */
4545 shift_bytes_in_array (in, sizeof (in), 0);
4546 verify_array_eq (in, expected, sizeof (in));
4550 /* Test shift_bytes_in_array_right and that it carries bits across between
4551 bytes correctly. */
4553 static void
4554 verify_shift_bytes_in_array_right (void)
4556 /* byte 1 | byte 0
4557 00011111 | 11100000. */
4558 unsigned char orig[2] = { 0x1f, 0xe0};
4559 unsigned char in[2];
4560 memcpy (in, orig, sizeof orig);
4561 unsigned char expected[2] = { 0x07, 0xf8};
4562 shift_bytes_in_array_right (in, sizeof (in), 2);
4563 verify_array_eq (in, expected, sizeof (in));
4565 memcpy (in, orig, sizeof orig);
4566 memcpy (expected, orig, sizeof orig);
4567 /* Check that shifting by zero doesn't change anything. */
4568 shift_bytes_in_array_right (in, sizeof (in), 0);
4569 verify_array_eq (in, expected, sizeof (in));
4572 /* Test clear_bit_region that it clears exactly the bits asked and
4573 nothing more. */
4575 static void
4576 verify_clear_bit_region (void)
4578 /* Start with all bits set and test clearing various patterns in them. */
4579 unsigned char orig[3] = { 0xff, 0xff, 0xff};
4580 unsigned char in[3];
4581 unsigned char expected[3];
4582 memcpy (in, orig, sizeof in);
4584 /* Check zeroing out all the bits. */
4585 clear_bit_region (in, 0, 3 * BITS_PER_UNIT);
4586 expected[0] = expected[1] = expected[2] = 0;
4587 verify_array_eq (in, expected, sizeof in);
4589 memcpy (in, orig, sizeof in);
4590 /* Leave the first and last bits intact. */
4591 clear_bit_region (in, 1, 3 * BITS_PER_UNIT - 2);
4592 expected[0] = 0x1;
4593 expected[1] = 0;
4594 expected[2] = 0x80;
4595 verify_array_eq (in, expected, sizeof in);
4598 /* Test verify_clear_bit_region_be that it clears exactly the bits asked and
4599 nothing more. */
4601 static void
4602 verify_clear_bit_region_be (void)
4604 /* Start with all bits set and test clearing various patterns in them. */
4605 unsigned char orig[3] = { 0xff, 0xff, 0xff};
4606 unsigned char in[3];
4607 unsigned char expected[3];
4608 memcpy (in, orig, sizeof in);
4610 /* Check zeroing out all the bits. */
4611 clear_bit_region_be (in, BITS_PER_UNIT - 1, 3 * BITS_PER_UNIT);
4612 expected[0] = expected[1] = expected[2] = 0;
4613 verify_array_eq (in, expected, sizeof in);
4615 memcpy (in, orig, sizeof in);
4616 /* Leave the first and last bits intact. */
4617 clear_bit_region_be (in, BITS_PER_UNIT - 2, 3 * BITS_PER_UNIT - 2);
4618 expected[0] = 0x80;
4619 expected[1] = 0;
4620 expected[2] = 0x1;
4621 verify_array_eq (in, expected, sizeof in);
4625 /* Run all of the selftests within this file. */
4627 void
4628 store_merging_c_tests (void)
4630 verify_shift_bytes_in_array ();
4631 verify_shift_bytes_in_array_right ();
4632 verify_clear_bit_region ();
4633 verify_clear_bit_region_be ();
4636 } // namespace selftest
4637 #endif /* CHECKING_P. */