1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
32 Let us demonstrate what is done on an example:
34 for (i = 0; i < 100; i++)
36 a[i+2] = a[i] + a[i+1];
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
68 In our example, we get the following chains (the chain for c is invalid).
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
80 single root reference of the chain (adjusting their distance
81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
94 e[i] + f[i+1] + e[i+1] + f[i]
96 can be reassociated as
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
100 and we can combine the chains for e and f into one chain.
102 5) For each root reference (end of the chain) R, let N be maximum distance
103 of a reference reusing its value. Variables R0 up to RN are created,
104 together with phi nodes that transfer values from R1 .. RN to
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
141 In our case, F = 2 and the (main loop of the) result is
143 for (i = 0; i < ...; i += 2)
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
171 for (i = 0; i < n; i++)
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
190 #include "coretypes.h"
195 #include "tree-flow.h"
197 #include "tree-data-ref.h"
198 #include "tree-scalar-evolution.h"
199 #include "tree-chrec.h"
201 #include "gimple-pretty-print.h"
202 #include "tree-pass.h"
203 #include "tree-affine.h"
204 #include "tree-inline.h"
206 /* The maximum number of iterations between the considered memory
209 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
211 /* Data references (or phi nodes that carry data reference values across
214 typedef struct dref_d
216 /* The reference itself. */
217 struct data_reference
*ref
;
219 /* The statement in that the reference appears. */
222 /* In case that STMT is a phi node, this field is set to the SSA name
223 defined by it in replace_phis_by_defined_names (in order to avoid
224 pointing to phi node that got reallocated in the meantime). */
225 tree name_defined_by_phi
;
227 /* Distance of the reference from the root of the chain (in number of
228 iterations of the loop). */
231 /* Number of iterations offset from the first reference in the component. */
234 /* Number of the reference in a component, in dominance ordering. */
237 /* True if the memory reference is always accessed when the loop is
239 unsigned always_accessed
: 1;
243 /* Type of the chain of the references. */
247 /* The addresses of the references in the chain are constant. */
250 /* There are only loads in the chain. */
253 /* Root of the chain is store, the rest are loads. */
256 /* A combination of two chains. */
260 /* Chains of data references. */
264 /* Type of the chain. */
265 enum chain_type type
;
267 /* For combination chains, the operator and the two chains that are
268 combined, and the type of the result. */
271 struct chain
*ch1
, *ch2
;
273 /* The references in the chain. */
276 /* The maximum distance of the reference in the chain from the root. */
279 /* The variables used to copy the value throughout iterations. */
282 /* Initializers for the variables. */
285 /* True if there is a use of a variable with the maximal distance
286 that comes after the root in the loop. */
287 unsigned has_max_use_after
: 1;
289 /* True if all the memory references in the chain are always accessed. */
290 unsigned all_always_accessed
: 1;
292 /* True if this chain was combined together with some other chain. */
293 unsigned combined
: 1;
297 /* Describes the knowledge about the step of the memory references in
302 /* The step is zero. */
305 /* The step is nonzero. */
308 /* The step may or may not be nonzero. */
312 /* Components of the data dependence graph. */
316 /* The references in the component. */
319 /* What we know about the step of the references in the component. */
320 enum ref_step_type comp_step
;
322 /* Next component in the list. */
323 struct component
*next
;
326 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
328 static bitmap looparound_phis
;
330 /* Cache used by tree_to_aff_combination_expand. */
332 static struct pointer_map_t
*name_expansions
;
334 /* Dumps data reference REF to FILE. */
336 extern void dump_dref (FILE *, dref
);
338 dump_dref (FILE *file
, dref ref
)
343 print_generic_expr (file
, DR_REF (ref
->ref
), TDF_SLIM
);
344 fprintf (file
, " (id %u%s)\n", ref
->pos
,
345 DR_IS_READ (ref
->ref
) ? "" : ", write");
347 fprintf (file
, " offset ");
348 dump_double_int (file
, ref
->offset
, false);
349 fprintf (file
, "\n");
351 fprintf (file
, " distance %u\n", ref
->distance
);
355 if (gimple_code (ref
->stmt
) == GIMPLE_PHI
)
356 fprintf (file
, " looparound ref\n");
358 fprintf (file
, " combination ref\n");
359 fprintf (file
, " in statement ");
360 print_gimple_stmt (file
, ref
->stmt
, 0, TDF_SLIM
);
361 fprintf (file
, "\n");
362 fprintf (file
, " distance %u\n", ref
->distance
);
367 /* Dumps CHAIN to FILE. */
369 extern void dump_chain (FILE *, chain_p
);
371 dump_chain (FILE *file
, chain_p chain
)
374 const char *chain_type
;
381 chain_type
= "Load motion";
385 chain_type
= "Loads-only";
389 chain_type
= "Store-loads";
393 chain_type
= "Combination";
400 fprintf (file
, "%s chain %p%s\n", chain_type
, (void *) chain
,
401 chain
->combined
? " (combined)" : "");
402 if (chain
->type
!= CT_INVARIANT
)
403 fprintf (file
, " max distance %u%s\n", chain
->length
,
404 chain
->has_max_use_after
? "" : ", may reuse first");
406 if (chain
->type
== CT_COMBINATION
)
408 fprintf (file
, " equal to %p %s %p in type ",
409 (void *) chain
->ch1
, op_symbol_code (chain
->op
),
410 (void *) chain
->ch2
);
411 print_generic_expr (file
, chain
->rslt_type
, TDF_SLIM
);
412 fprintf (file
, "\n");
415 if (chain
->vars
.exists ())
417 fprintf (file
, " vars");
418 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
421 print_generic_expr (file
, var
, TDF_SLIM
);
423 fprintf (file
, "\n");
426 if (chain
->inits
.exists ())
428 fprintf (file
, " inits");
429 FOR_EACH_VEC_ELT (chain
->inits
, i
, var
)
432 print_generic_expr (file
, var
, TDF_SLIM
);
434 fprintf (file
, "\n");
437 fprintf (file
, " references:\n");
438 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
441 fprintf (file
, "\n");
444 /* Dumps CHAINS to FILE. */
446 extern void dump_chains (FILE *, vec
<chain_p
> );
448 dump_chains (FILE *file
, vec
<chain_p
> chains
)
453 FOR_EACH_VEC_ELT (chains
, i
, chain
)
454 dump_chain (file
, chain
);
457 /* Dumps COMP to FILE. */
459 extern void dump_component (FILE *, struct component
*);
461 dump_component (FILE *file
, struct component
*comp
)
466 fprintf (file
, "Component%s:\n",
467 comp
->comp_step
== RS_INVARIANT
? " (invariant)" : "");
468 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
470 fprintf (file
, "\n");
473 /* Dumps COMPS to FILE. */
475 extern void dump_components (FILE *, struct component
*);
477 dump_components (FILE *file
, struct component
*comps
)
479 struct component
*comp
;
481 for (comp
= comps
; comp
; comp
= comp
->next
)
482 dump_component (file
, comp
);
485 /* Frees a chain CHAIN. */
488 release_chain (chain_p chain
)
496 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
499 chain
->refs
.release ();
500 chain
->vars
.release ();
501 chain
->inits
.release ();
509 release_chains (vec
<chain_p
> chains
)
514 FOR_EACH_VEC_ELT (chains
, i
, chain
)
515 release_chain (chain
);
519 /* Frees a component COMP. */
522 release_component (struct component
*comp
)
524 comp
->refs
.release ();
528 /* Frees list of components COMPS. */
531 release_components (struct component
*comps
)
533 struct component
*act
, *next
;
535 for (act
= comps
; act
; act
= next
)
538 release_component (act
);
542 /* Finds a root of tree given by FATHERS containing A, and performs path
546 component_of (unsigned fathers
[], unsigned a
)
550 for (root
= a
; root
!= fathers
[root
]; root
= fathers
[root
])
553 for (; a
!= root
; a
= n
)
562 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
563 components, A and B are components to merge. */
566 merge_comps (unsigned fathers
[], unsigned sizes
[], unsigned a
, unsigned b
)
568 unsigned ca
= component_of (fathers
, a
);
569 unsigned cb
= component_of (fathers
, b
);
574 if (sizes
[ca
] < sizes
[cb
])
576 sizes
[cb
] += sizes
[ca
];
581 sizes
[ca
] += sizes
[cb
];
586 /* Returns true if A is a reference that is suitable for predictive commoning
587 in the innermost loop that contains it. REF_STEP is set according to the
588 step of the reference A. */
591 suitable_reference_p (struct data_reference
*a
, enum ref_step_type
*ref_step
)
593 tree ref
= DR_REF (a
), step
= DR_STEP (a
);
596 || TREE_THIS_VOLATILE (ref
)
597 || !is_gimple_reg_type (TREE_TYPE (ref
))
598 || tree_could_throw_p (ref
))
601 if (integer_zerop (step
))
602 *ref_step
= RS_INVARIANT
;
603 else if (integer_nonzerop (step
))
604 *ref_step
= RS_NONZERO
;
611 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
614 aff_combination_dr_offset (struct data_reference
*dr
, aff_tree
*offset
)
616 tree type
= TREE_TYPE (DR_OFFSET (dr
));
619 tree_to_aff_combination_expand (DR_OFFSET (dr
), type
, offset
,
621 aff_combination_const (&delta
, type
, tree_to_double_int (DR_INIT (dr
)));
622 aff_combination_add (offset
, &delta
);
625 /* Determines number of iterations of the innermost enclosing loop before B
626 refers to exactly the same location as A and stores it to OFF. If A and
627 B do not have the same step, they never meet, or anything else fails,
628 returns false, otherwise returns true. Both A and B are assumed to
629 satisfy suitable_reference_p. */
632 determine_offset (struct data_reference
*a
, struct data_reference
*b
,
635 aff_tree diff
, baseb
, step
;
638 /* Check that both the references access the location in the same type. */
639 typea
= TREE_TYPE (DR_REF (a
));
640 typeb
= TREE_TYPE (DR_REF (b
));
641 if (!useless_type_conversion_p (typeb
, typea
))
644 /* Check whether the base address and the step of both references is the
646 if (!operand_equal_p (DR_STEP (a
), DR_STEP (b
), 0)
647 || !operand_equal_p (DR_BASE_ADDRESS (a
), DR_BASE_ADDRESS (b
), 0))
650 if (integer_zerop (DR_STEP (a
)))
652 /* If the references have loop invariant address, check that they access
653 exactly the same location. */
654 *off
= double_int_zero
;
655 return (operand_equal_p (DR_OFFSET (a
), DR_OFFSET (b
), 0)
656 && operand_equal_p (DR_INIT (a
), DR_INIT (b
), 0));
659 /* Compare the offsets of the addresses, and check whether the difference
660 is a multiple of step. */
661 aff_combination_dr_offset (a
, &diff
);
662 aff_combination_dr_offset (b
, &baseb
);
663 aff_combination_scale (&baseb
, double_int_minus_one
);
664 aff_combination_add (&diff
, &baseb
);
666 tree_to_aff_combination_expand (DR_STEP (a
), TREE_TYPE (DR_STEP (a
)),
667 &step
, &name_expansions
);
668 return aff_combination_constant_multiple_p (&diff
, &step
, off
);
671 /* Returns the last basic block in LOOP for that we are sure that
672 it is executed whenever the loop is entered. */
675 last_always_executed_block (struct loop
*loop
)
678 vec
<edge
> exits
= get_loop_exit_edges (loop
);
680 basic_block last
= loop
->latch
;
682 FOR_EACH_VEC_ELT (exits
, i
, ex
)
683 last
= nearest_common_dominator (CDI_DOMINATORS
, last
, ex
->src
);
689 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
691 static struct component
*
692 split_data_refs_to_components (struct loop
*loop
,
693 vec
<data_reference_p
> datarefs
,
696 unsigned i
, n
= datarefs
.length ();
697 unsigned ca
, ia
, ib
, bad
;
698 unsigned *comp_father
= XNEWVEC (unsigned, n
+ 1);
699 unsigned *comp_size
= XNEWVEC (unsigned, n
+ 1);
700 struct component
**comps
;
701 struct data_reference
*dr
, *dra
, *drb
;
702 struct data_dependence_relation
*ddr
;
703 struct component
*comp_list
= NULL
, *comp
;
705 basic_block last_always_executed
= last_always_executed_block (loop
);
707 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
711 /* A fake reference for call or asm_expr that may clobber memory;
715 dr
->aux
= (void *) (size_t) i
;
720 /* A component reserved for the "bad" data references. */
724 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
726 enum ref_step_type dummy
;
728 if (!suitable_reference_p (dr
, &dummy
))
730 ia
= (unsigned) (size_t) dr
->aux
;
731 merge_comps (comp_father
, comp_size
, n
, ia
);
735 FOR_EACH_VEC_ELT (depends
, i
, ddr
)
737 double_int dummy_off
;
739 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
744 ia
= component_of (comp_father
, (unsigned) (size_t) dra
->aux
);
745 ib
= component_of (comp_father
, (unsigned) (size_t) drb
->aux
);
749 bad
= component_of (comp_father
, n
);
751 /* If both A and B are reads, we may ignore unsuitable dependences. */
752 if (DR_IS_READ (dra
) && DR_IS_READ (drb
)
753 && (ia
== bad
|| ib
== bad
754 || !determine_offset (dra
, drb
, &dummy_off
)))
757 merge_comps (comp_father
, comp_size
, ia
, ib
);
760 comps
= XCNEWVEC (struct component
*, n
);
761 bad
= component_of (comp_father
, n
);
762 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
764 ia
= (unsigned) (size_t) dr
->aux
;
765 ca
= component_of (comp_father
, ia
);
772 comp
= XCNEW (struct component
);
773 comp
->refs
.create (comp_size
[ca
]);
777 dataref
= XCNEW (struct dref_d
);
779 dataref
->stmt
= DR_STMT (dr
);
780 dataref
->offset
= double_int_zero
;
781 dataref
->distance
= 0;
783 dataref
->always_accessed
784 = dominated_by_p (CDI_DOMINATORS
, last_always_executed
,
785 gimple_bb (dataref
->stmt
));
786 dataref
->pos
= comp
->refs
.length ();
787 comp
->refs
.quick_push (dataref
);
790 for (i
= 0; i
< n
; i
++)
795 comp
->next
= comp_list
;
807 /* Returns true if the component COMP satisfies the conditions
808 described in 2) at the beginning of this file. LOOP is the current
812 suitable_component_p (struct loop
*loop
, struct component
*comp
)
816 basic_block ba
, bp
= loop
->header
;
817 bool ok
, has_write
= false;
819 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
821 ba
= gimple_bb (a
->stmt
);
823 if (!just_once_each_iteration_p (loop
, ba
))
826 gcc_assert (dominated_by_p (CDI_DOMINATORS
, ba
, bp
));
829 if (DR_IS_WRITE (a
->ref
))
833 first
= comp
->refs
[0];
834 ok
= suitable_reference_p (first
->ref
, &comp
->comp_step
);
836 first
->offset
= double_int_zero
;
838 for (i
= 1; comp
->refs
.iterate (i
, &a
); i
++)
840 if (!determine_offset (first
->ref
, a
->ref
, &a
->offset
))
843 #ifdef ENABLE_CHECKING
845 enum ref_step_type a_step
;
846 ok
= suitable_reference_p (a
->ref
, &a_step
);
847 gcc_assert (ok
&& a_step
== comp
->comp_step
);
852 /* If there is a write inside the component, we must know whether the
853 step is nonzero or not -- we would not otherwise be able to recognize
854 whether the value accessed by reads comes from the OFFSET-th iteration
855 or the previous one. */
856 if (has_write
&& comp
->comp_step
== RS_ANY
)
862 /* Check the conditions on references inside each of components COMPS,
863 and remove the unsuitable components from the list. The new list
864 of components is returned. The conditions are described in 2) at
865 the beginning of this file. LOOP is the current loop. */
867 static struct component
*
868 filter_suitable_components (struct loop
*loop
, struct component
*comps
)
870 struct component
**comp
, *act
;
872 for (comp
= &comps
; *comp
; )
875 if (suitable_component_p (loop
, act
))
883 FOR_EACH_VEC_ELT (act
->refs
, i
, ref
)
885 release_component (act
);
892 /* Compares two drefs A and B by their offset and position. Callback for
896 order_drefs (const void *a
, const void *b
)
898 const dref
*const da
= (const dref
*) a
;
899 const dref
*const db
= (const dref
*) b
;
900 int offcmp
= (*da
)->offset
.scmp ((*db
)->offset
);
905 return (*da
)->pos
- (*db
)->pos
;
908 /* Returns root of the CHAIN. */
911 get_chain_root (chain_p chain
)
913 return chain
->refs
[0];
916 /* Adds REF to the chain CHAIN. */
919 add_ref_to_chain (chain_p chain
, dref ref
)
921 dref root
= get_chain_root (chain
);
924 gcc_assert (root
->offset
.sle (ref
->offset
));
925 dist
= ref
->offset
- root
->offset
;
926 if (double_int::from_uhwi (MAX_DISTANCE
).ule (dist
))
931 gcc_assert (dist
.fits_uhwi ());
933 chain
->refs
.safe_push (ref
);
935 ref
->distance
= dist
.to_uhwi ();
937 if (ref
->distance
>= chain
->length
)
939 chain
->length
= ref
->distance
;
940 chain
->has_max_use_after
= false;
943 if (ref
->distance
== chain
->length
944 && ref
->pos
> root
->pos
)
945 chain
->has_max_use_after
= true;
947 chain
->all_always_accessed
&= ref
->always_accessed
;
950 /* Returns the chain for invariant component COMP. */
953 make_invariant_chain (struct component
*comp
)
955 chain_p chain
= XCNEW (struct chain
);
959 chain
->type
= CT_INVARIANT
;
961 chain
->all_always_accessed
= true;
963 FOR_EACH_VEC_ELT (comp
->refs
, i
, ref
)
965 chain
->refs
.safe_push (ref
);
966 chain
->all_always_accessed
&= ref
->always_accessed
;
972 /* Make a new chain rooted at REF. */
975 make_rooted_chain (dref ref
)
977 chain_p chain
= XCNEW (struct chain
);
979 chain
->type
= DR_IS_READ (ref
->ref
) ? CT_LOAD
: CT_STORE_LOAD
;
981 chain
->refs
.safe_push (ref
);
982 chain
->all_always_accessed
= ref
->always_accessed
;
989 /* Returns true if CHAIN is not trivial. */
992 nontrivial_chain_p (chain_p chain
)
994 return chain
!= NULL
&& chain
->refs
.length () > 1;
997 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1001 name_for_ref (dref ref
)
1005 if (is_gimple_assign (ref
->stmt
))
1007 if (!ref
->ref
|| DR_IS_READ (ref
->ref
))
1008 name
= gimple_assign_lhs (ref
->stmt
);
1010 name
= gimple_assign_rhs1 (ref
->stmt
);
1013 name
= PHI_RESULT (ref
->stmt
);
1015 return (TREE_CODE (name
) == SSA_NAME
? name
: NULL_TREE
);
1018 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1019 iterations of the innermost enclosing loop). */
1022 valid_initializer_p (struct data_reference
*ref
,
1023 unsigned distance
, struct data_reference
*root
)
1025 aff_tree diff
, base
, step
;
1028 /* Both REF and ROOT must be accessing the same object. */
1029 if (!operand_equal_p (DR_BASE_ADDRESS (ref
), DR_BASE_ADDRESS (root
), 0))
1032 /* The initializer is defined outside of loop, hence its address must be
1033 invariant inside the loop. */
1034 gcc_assert (integer_zerop (DR_STEP (ref
)));
1036 /* If the address of the reference is invariant, initializer must access
1037 exactly the same location. */
1038 if (integer_zerop (DR_STEP (root
)))
1039 return (operand_equal_p (DR_OFFSET (ref
), DR_OFFSET (root
), 0)
1040 && operand_equal_p (DR_INIT (ref
), DR_INIT (root
), 0));
1042 /* Verify that this index of REF is equal to the root's index at
1043 -DISTANCE-th iteration. */
1044 aff_combination_dr_offset (root
, &diff
);
1045 aff_combination_dr_offset (ref
, &base
);
1046 aff_combination_scale (&base
, double_int_minus_one
);
1047 aff_combination_add (&diff
, &base
);
1049 tree_to_aff_combination_expand (DR_STEP (root
), TREE_TYPE (DR_STEP (root
)),
1050 &step
, &name_expansions
);
1051 if (!aff_combination_constant_multiple_p (&diff
, &step
, &off
))
1054 if (off
!= double_int::from_uhwi (distance
))
1060 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1061 initial value is correct (equal to initial value of REF shifted by one
1062 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1063 is the root of the current chain. */
1066 find_looparound_phi (struct loop
*loop
, dref ref
, dref root
)
1068 tree name
, init
, init_ref
;
1069 gimple phi
= NULL
, init_stmt
;
1070 edge latch
= loop_latch_edge (loop
);
1071 struct data_reference init_dr
;
1072 gimple_stmt_iterator psi
;
1074 if (is_gimple_assign (ref
->stmt
))
1076 if (DR_IS_READ (ref
->ref
))
1077 name
= gimple_assign_lhs (ref
->stmt
);
1079 name
= gimple_assign_rhs1 (ref
->stmt
);
1082 name
= PHI_RESULT (ref
->stmt
);
1086 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1088 phi
= gsi_stmt (psi
);
1089 if (PHI_ARG_DEF_FROM_EDGE (phi
, latch
) == name
)
1093 if (gsi_end_p (psi
))
1096 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1097 if (TREE_CODE (init
) != SSA_NAME
)
1099 init_stmt
= SSA_NAME_DEF_STMT (init
);
1100 if (gimple_code (init_stmt
) != GIMPLE_ASSIGN
)
1102 gcc_assert (gimple_assign_lhs (init_stmt
) == init
);
1104 init_ref
= gimple_assign_rhs1 (init_stmt
);
1105 if (!REFERENCE_CLASS_P (init_ref
)
1106 && !DECL_P (init_ref
))
1109 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1110 loop enclosing PHI). */
1111 memset (&init_dr
, 0, sizeof (struct data_reference
));
1112 DR_REF (&init_dr
) = init_ref
;
1113 DR_STMT (&init_dr
) = phi
;
1114 if (!dr_analyze_innermost (&init_dr
, loop
))
1117 if (!valid_initializer_p (&init_dr
, ref
->distance
+ 1, root
->ref
))
1123 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1126 insert_looparound_copy (chain_p chain
, dref ref
, gimple phi
)
1128 dref nw
= XCNEW (struct dref_d
), aref
;
1132 nw
->distance
= ref
->distance
+ 1;
1133 nw
->always_accessed
= 1;
1135 FOR_EACH_VEC_ELT (chain
->refs
, i
, aref
)
1136 if (aref
->distance
>= nw
->distance
)
1138 chain
->refs
.safe_insert (i
, nw
);
1140 if (nw
->distance
> chain
->length
)
1142 chain
->length
= nw
->distance
;
1143 chain
->has_max_use_after
= false;
1147 /* For references in CHAIN that are copied around the LOOP (created previously
1148 by PRE, or by user), add the results of such copies to the chain. This
1149 enables us to remove the copies by unrolling, and may need less registers
1150 (also, it may allow us to combine chains together). */
1153 add_looparound_copies (struct loop
*loop
, chain_p chain
)
1156 dref ref
, root
= get_chain_root (chain
);
1159 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
1161 phi
= find_looparound_phi (loop
, ref
, root
);
1165 bitmap_set_bit (looparound_phis
, SSA_NAME_VERSION (PHI_RESULT (phi
)));
1166 insert_looparound_copy (chain
, ref
, phi
);
1170 /* Find roots of the values and determine distances in the component COMP.
1171 The references are redistributed into CHAINS. LOOP is the current
1175 determine_roots_comp (struct loop
*loop
,
1176 struct component
*comp
,
1177 vec
<chain_p
> *chains
)
1181 chain_p chain
= NULL
;
1182 double_int last_ofs
= double_int_zero
;
1184 /* Invariants are handled specially. */
1185 if (comp
->comp_step
== RS_INVARIANT
)
1187 chain
= make_invariant_chain (comp
);
1188 chains
->safe_push (chain
);
1192 comp
->refs
.qsort (order_drefs
);
1194 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
1196 if (!chain
|| DR_IS_WRITE (a
->ref
)
1197 || double_int::from_uhwi (MAX_DISTANCE
).ule (a
->offset
- last_ofs
))
1199 if (nontrivial_chain_p (chain
))
1201 add_looparound_copies (loop
, chain
);
1202 chains
->safe_push (chain
);
1205 release_chain (chain
);
1206 chain
= make_rooted_chain (a
);
1207 last_ofs
= a
->offset
;
1211 add_ref_to_chain (chain
, a
);
1214 if (nontrivial_chain_p (chain
))
1216 add_looparound_copies (loop
, chain
);
1217 chains
->safe_push (chain
);
1220 release_chain (chain
);
1223 /* Find roots of the values and determine distances in components COMPS, and
1224 separates the references to CHAINS. LOOP is the current loop. */
1227 determine_roots (struct loop
*loop
,
1228 struct component
*comps
, vec
<chain_p
> *chains
)
1230 struct component
*comp
;
1232 for (comp
= comps
; comp
; comp
= comp
->next
)
1233 determine_roots_comp (loop
, comp
, chains
);
1236 /* Replace the reference in statement STMT with temporary variable
1237 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1238 the reference in the statement. IN_LHS is true if the reference
1239 is in the lhs of STMT, false if it is in rhs. */
1242 replace_ref_with (gimple stmt
, tree new_tree
, bool set
, bool in_lhs
)
1246 gimple_stmt_iterator bsi
, psi
;
1248 if (gimple_code (stmt
) == GIMPLE_PHI
)
1250 gcc_assert (!in_lhs
&& !set
);
1252 val
= PHI_RESULT (stmt
);
1253 bsi
= gsi_after_labels (gimple_bb (stmt
));
1254 psi
= gsi_for_stmt (stmt
);
1255 remove_phi_node (&psi
, false);
1257 /* Turn the phi node into GIMPLE_ASSIGN. */
1258 new_stmt
= gimple_build_assign (val
, new_tree
);
1259 gsi_insert_before (&bsi
, new_stmt
, GSI_NEW_STMT
);
1263 /* Since the reference is of gimple_reg type, it should only
1264 appear as lhs or rhs of modify statement. */
1265 gcc_assert (is_gimple_assign (stmt
));
1267 bsi
= gsi_for_stmt (stmt
);
1269 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1272 gcc_assert (!in_lhs
);
1273 gimple_assign_set_rhs_from_tree (&bsi
, new_tree
);
1274 stmt
= gsi_stmt (bsi
);
1281 /* We have statement
1285 If OLD is a memory reference, then VAL is gimple_val, and we transform
1291 Otherwise, we are replacing a combination chain,
1292 VAL is the expression that performs the combination, and OLD is an
1293 SSA name. In this case, we transform the assignment to
1300 val
= gimple_assign_lhs (stmt
);
1301 if (TREE_CODE (val
) != SSA_NAME
)
1303 val
= gimple_assign_rhs1 (stmt
);
1304 gcc_assert (gimple_assign_single_p (stmt
));
1305 if (TREE_CLOBBER_P (val
))
1306 val
= get_or_create_ssa_default_def (cfun
, SSA_NAME_VAR (new_tree
));
1308 gcc_assert (gimple_assign_copy_p (stmt
));
1320 val
= gimple_assign_lhs (stmt
);
1323 new_stmt
= gimple_build_assign (new_tree
, unshare_expr (val
));
1324 gsi_insert_after (&bsi
, new_stmt
, GSI_NEW_STMT
);
1327 /* Returns the reference to the address of REF in the ITER-th iteration of
1328 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1329 try to preserve the original shape of the reference (not rewrite it
1330 as an indirect ref to the address), to make tree_could_trap_p in
1331 prepare_initializers_chain return false more often. */
1334 ref_at_iteration (struct loop
*loop
, tree ref
, int iter
)
1336 tree idx
, *idx_p
, type
, val
, op0
= NULL_TREE
, ret
;
1340 if (handled_component_p (ref
))
1342 op0
= ref_at_iteration (loop
, TREE_OPERAND (ref
, 0), iter
);
1346 else if (!INDIRECT_REF_P (ref
)
1347 && TREE_CODE (ref
) != MEM_REF
)
1348 return unshare_expr (ref
);
1350 if (TREE_CODE (ref
) == MEM_REF
)
1352 ret
= unshare_expr (ref
);
1353 idx
= TREE_OPERAND (ref
, 0);
1354 idx_p
= &TREE_OPERAND (ret
, 0);
1356 else if (TREE_CODE (ref
) == COMPONENT_REF
)
1358 /* Check that the offset is loop invariant. */
1359 if (TREE_OPERAND (ref
, 2)
1360 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 2)))
1363 return build3 (COMPONENT_REF
, TREE_TYPE (ref
), op0
,
1364 unshare_expr (TREE_OPERAND (ref
, 1)),
1365 unshare_expr (TREE_OPERAND (ref
, 2)));
1367 else if (TREE_CODE (ref
) == ARRAY_REF
)
1369 /* Check that the lower bound and the step are loop invariant. */
1370 if (TREE_OPERAND (ref
, 2)
1371 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 2)))
1373 if (TREE_OPERAND (ref
, 3)
1374 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 3)))
1377 ret
= build4 (ARRAY_REF
, TREE_TYPE (ref
), op0
, NULL_TREE
,
1378 unshare_expr (TREE_OPERAND (ref
, 2)),
1379 unshare_expr (TREE_OPERAND (ref
, 3)));
1380 idx
= TREE_OPERAND (ref
, 1);
1381 idx_p
= &TREE_OPERAND (ret
, 1);
1386 ok
= simple_iv (loop
, loop
, idx
, &iv
, true);
1389 iv
.base
= expand_simple_operations (iv
.base
);
1390 if (integer_zerop (iv
.step
))
1391 *idx_p
= unshare_expr (iv
.base
);
1394 type
= TREE_TYPE (iv
.base
);
1395 if (POINTER_TYPE_P (type
))
1397 val
= fold_build2 (MULT_EXPR
, sizetype
, iv
.step
,
1399 val
= fold_build_pointer_plus (iv
.base
, val
);
1403 val
= fold_build2 (MULT_EXPR
, type
, iv
.step
,
1404 build_int_cst_type (type
, iter
));
1405 val
= fold_build2 (PLUS_EXPR
, type
, iv
.base
, val
);
1407 *idx_p
= unshare_expr (val
);
1413 /* Get the initialization expression for the INDEX-th temporary variable
1417 get_init_expr (chain_p chain
, unsigned index
)
1419 if (chain
->type
== CT_COMBINATION
)
1421 tree e1
= get_init_expr (chain
->ch1
, index
);
1422 tree e2
= get_init_expr (chain
->ch2
, index
);
1424 return fold_build2 (chain
->op
, chain
->rslt_type
, e1
, e2
);
1427 return chain
->inits
[index
];
1430 /* Returns a new temporary variable used for the I-th variable carrying
1431 value of REF. The variable's uid is marked in TMP_VARS. */
1434 predcom_tmp_var (tree ref
, unsigned i
, bitmap tmp_vars
)
1436 tree type
= TREE_TYPE (ref
);
1437 /* We never access the components of the temporary variable in predictive
1439 tree var
= create_tmp_reg (type
, get_lsm_tmp_name (ref
, i
));
1440 bitmap_set_bit (tmp_vars
, DECL_UID (var
));
1444 /* Creates the variables for CHAIN, as well as phi nodes for them and
1445 initialization on entry to LOOP. Uids of the newly created
1446 temporary variables are marked in TMP_VARS. */
1449 initialize_root_vars (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1452 unsigned n
= chain
->length
;
1453 dref root
= get_chain_root (chain
);
1454 bool reuse_first
= !chain
->has_max_use_after
;
1455 tree ref
, init
, var
, next
;
1458 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1460 /* If N == 0, then all the references are within the single iteration. And
1461 since this is an nonempty chain, reuse_first cannot be true. */
1462 gcc_assert (n
> 0 || !reuse_first
);
1464 chain
->vars
.create (n
+ 1);
1466 if (chain
->type
== CT_COMBINATION
)
1467 ref
= gimple_assign_lhs (root
->stmt
);
1469 ref
= DR_REF (root
->ref
);
1471 for (i
= 0; i
< n
+ (reuse_first
? 0 : 1); i
++)
1473 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1474 chain
->vars
.quick_push (var
);
1477 chain
->vars
.quick_push (chain
->vars
[0]);
1479 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
1480 chain
->vars
[i
] = make_ssa_name (var
, NULL
);
1482 for (i
= 0; i
< n
; i
++)
1484 var
= chain
->vars
[i
];
1485 next
= chain
->vars
[i
+ 1];
1486 init
= get_init_expr (chain
, i
);
1488 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1490 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1492 phi
= create_phi_node (var
, loop
->header
);
1493 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1494 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1498 /* Create the variables and initialization statement for root of chain
1499 CHAIN. Uids of the newly created temporary variables are marked
1503 initialize_root (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1505 dref root
= get_chain_root (chain
);
1506 bool in_lhs
= (chain
->type
== CT_STORE_LOAD
1507 || chain
->type
== CT_COMBINATION
);
1509 initialize_root_vars (loop
, chain
, tmp_vars
);
1510 replace_ref_with (root
->stmt
,
1511 chain
->vars
[chain
->length
],
1515 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1516 initialization on entry to LOOP if necessary. The ssa name for the variable
1517 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1518 around the loop is created. Uid of the newly created temporary variable
1519 is marked in TMP_VARS. INITS is the list containing the (single)
1523 initialize_root_vars_lm (struct loop
*loop
, dref root
, bool written
,
1524 vec
<tree
> *vars
, vec
<tree
> inits
,
1528 tree ref
= DR_REF (root
->ref
), init
, var
, next
;
1531 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1533 /* Find the initializer for the variable, and check that it cannot
1537 vars
->create (written
? 2 : 1);
1538 var
= predcom_tmp_var (ref
, 0, tmp_vars
);
1539 vars
->quick_push (var
);
1541 vars
->quick_push ((*vars
)[0]);
1543 FOR_EACH_VEC_ELT (*vars
, i
, var
)
1544 (*vars
)[i
] = make_ssa_name (var
, NULL
);
1548 init
= force_gimple_operand (init
, &stmts
, written
, NULL_TREE
);
1550 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1555 phi
= create_phi_node (var
, loop
->header
);
1556 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1557 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1561 gimple init_stmt
= gimple_build_assign (var
, init
);
1562 gsi_insert_on_edge_immediate (entry
, init_stmt
);
1567 /* Execute load motion for references in chain CHAIN. Uids of the newly
1568 created temporary variables are marked in TMP_VARS. */
1571 execute_load_motion (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1575 unsigned n_writes
= 0, ridx
, i
;
1578 gcc_assert (chain
->type
== CT_INVARIANT
);
1579 gcc_assert (!chain
->combined
);
1580 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
1581 if (DR_IS_WRITE (a
->ref
))
1584 /* If there are no reads in the loop, there is nothing to do. */
1585 if (n_writes
== chain
->refs
.length ())
1588 initialize_root_vars_lm (loop
, get_chain_root (chain
), n_writes
> 0,
1589 &vars
, chain
->inits
, tmp_vars
);
1592 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
1594 bool is_read
= DR_IS_READ (a
->ref
);
1596 if (DR_IS_WRITE (a
->ref
))
1602 var
= make_ssa_name (SSA_NAME_VAR (var
), NULL
);
1609 replace_ref_with (a
->stmt
, vars
[ridx
],
1610 !is_read
, !is_read
);
1616 /* Returns the single statement in that NAME is used, excepting
1617 the looparound phi nodes contained in one of the chains. If there is no
1618 such statement, or more statements, NULL is returned. */
1621 single_nonlooparound_use (tree name
)
1624 imm_use_iterator it
;
1625 gimple stmt
, ret
= NULL
;
1627 FOR_EACH_IMM_USE_FAST (use
, it
, name
)
1629 stmt
= USE_STMT (use
);
1631 if (gimple_code (stmt
) == GIMPLE_PHI
)
1633 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1634 could not be processed anyway, so just fail for them. */
1635 if (bitmap_bit_p (looparound_phis
,
1636 SSA_NAME_VERSION (PHI_RESULT (stmt
))))
1641 else if (is_gimple_debug (stmt
))
1643 else if (ret
!= NULL
)
1652 /* Remove statement STMT, as well as the chain of assignments in that it is
1656 remove_stmt (gimple stmt
)
1660 gimple_stmt_iterator psi
;
1662 if (gimple_code (stmt
) == GIMPLE_PHI
)
1664 name
= PHI_RESULT (stmt
);
1665 next
= single_nonlooparound_use (name
);
1666 reset_debug_uses (stmt
);
1667 psi
= gsi_for_stmt (stmt
);
1668 remove_phi_node (&psi
, true);
1671 || !gimple_assign_ssa_name_copy_p (next
)
1672 || gimple_assign_rhs1 (next
) != name
)
1680 gimple_stmt_iterator bsi
;
1682 bsi
= gsi_for_stmt (stmt
);
1684 name
= gimple_assign_lhs (stmt
);
1685 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
1687 next
= single_nonlooparound_use (name
);
1688 reset_debug_uses (stmt
);
1690 unlink_stmt_vdef (stmt
);
1691 gsi_remove (&bsi
, true);
1692 release_defs (stmt
);
1695 || !gimple_assign_ssa_name_copy_p (next
)
1696 || gimple_assign_rhs1 (next
) != name
)
1703 /* Perform the predictive commoning optimization for a chain CHAIN.
1704 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1707 execute_pred_commoning_chain (struct loop
*loop
, chain_p chain
,
1714 if (chain
->combined
)
1716 /* For combined chains, just remove the statements that are used to
1717 compute the values of the expression (except for the root one). */
1718 for (i
= 1; chain
->refs
.iterate (i
, &a
); i
++)
1719 remove_stmt (a
->stmt
);
1723 /* For non-combined chains, set up the variables that hold its value,
1724 and replace the uses of the original references by these
1726 initialize_root (loop
, chain
, tmp_vars
);
1727 for (i
= 1; chain
->refs
.iterate (i
, &a
); i
++)
1729 var
= chain
->vars
[chain
->length
- a
->distance
];
1730 replace_ref_with (a
->stmt
, var
, false, false);
1735 /* Determines the unroll factor necessary to remove as many temporary variable
1736 copies as possible. CHAINS is the list of chains that will be
1740 determine_unroll_factor (vec
<chain_p
> chains
)
1743 unsigned factor
= 1, af
, nfactor
, i
;
1744 unsigned max
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
1746 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1748 if (chain
->type
== CT_INVARIANT
|| chain
->combined
)
1751 /* The best unroll factor for this chain is equal to the number of
1752 temporary variables that we create for it. */
1754 if (chain
->has_max_use_after
)
1757 nfactor
= factor
* af
/ gcd (factor
, af
);
1765 /* Perform the predictive commoning optimization for CHAINS.
1766 Uids of the newly created temporary variables are marked in TMP_VARS. */
1769 execute_pred_commoning (struct loop
*loop
, vec
<chain_p
> chains
,
1775 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1777 if (chain
->type
== CT_INVARIANT
)
1778 execute_load_motion (loop
, chain
, tmp_vars
);
1780 execute_pred_commoning_chain (loop
, chain
, tmp_vars
);
1783 update_ssa (TODO_update_ssa_only_virtuals
);
1786 /* For each reference in CHAINS, if its defining statement is
1787 phi node, record the ssa name that is defined by it. */
1790 replace_phis_by_defined_names (vec
<chain_p
> chains
)
1796 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1797 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
1799 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
1801 a
->name_defined_by_phi
= PHI_RESULT (a
->stmt
);
1807 /* For each reference in CHAINS, if name_defined_by_phi is not
1808 NULL, use it to set the stmt field. */
1811 replace_names_by_phis (vec
<chain_p
> chains
)
1817 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1818 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
1819 if (a
->stmt
== NULL
)
1821 a
->stmt
= SSA_NAME_DEF_STMT (a
->name_defined_by_phi
);
1822 gcc_assert (gimple_code (a
->stmt
) == GIMPLE_PHI
);
1823 a
->name_defined_by_phi
= NULL_TREE
;
1827 /* Wrapper over execute_pred_commoning, to pass it as a callback
1828 to tree_transform_and_unroll_loop. */
1832 vec
<chain_p
> chains
;
1837 execute_pred_commoning_cbck (struct loop
*loop
, void *data
)
1839 struct epcc_data
*const dta
= (struct epcc_data
*) data
;
1841 /* Restore phi nodes that were replaced by ssa names before
1842 tree_transform_and_unroll_loop (see detailed description in
1843 tree_predictive_commoning_loop). */
1844 replace_names_by_phis (dta
->chains
);
1845 execute_pred_commoning (loop
, dta
->chains
, dta
->tmp_vars
);
1848 /* Base NAME and all the names in the chain of phi nodes that use it
1849 on variable VAR. The phi nodes are recognized by being in the copies of
1850 the header of the LOOP. */
1853 base_names_in_chain_on (struct loop
*loop
, tree name
, tree var
)
1856 imm_use_iterator iter
;
1858 replace_ssa_name_symbol (name
, var
);
1863 FOR_EACH_IMM_USE_STMT (stmt
, iter
, name
)
1865 if (gimple_code (stmt
) == GIMPLE_PHI
1866 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
1869 BREAK_FROM_IMM_USE_STMT (iter
);
1875 name
= PHI_RESULT (phi
);
1876 replace_ssa_name_symbol (name
, var
);
1880 /* Given an unrolled LOOP after predictive commoning, remove the
1881 register copies arising from phi nodes by changing the base
1882 variables of SSA names. TMP_VARS is the set of the temporary variables
1883 for those we want to perform this. */
1886 eliminate_temp_copies (struct loop
*loop
, bitmap tmp_vars
)
1890 tree name
, use
, var
;
1891 gimple_stmt_iterator psi
;
1893 e
= loop_latch_edge (loop
);
1894 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1896 phi
= gsi_stmt (psi
);
1897 name
= PHI_RESULT (phi
);
1898 var
= SSA_NAME_VAR (name
);
1899 if (!var
|| !bitmap_bit_p (tmp_vars
, DECL_UID (var
)))
1901 use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
1902 gcc_assert (TREE_CODE (use
) == SSA_NAME
);
1904 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1905 stmt
= SSA_NAME_DEF_STMT (use
);
1906 while (gimple_code (stmt
) == GIMPLE_PHI
1907 /* In case we could not unroll the loop enough to eliminate
1908 all copies, we may reach the loop header before the defining
1909 statement (in that case, some register copies will be present
1910 in loop latch in the final code, corresponding to the newly
1911 created looparound phi nodes). */
1912 && gimple_bb (stmt
) != loop
->header
)
1914 gcc_assert (single_pred_p (gimple_bb (stmt
)));
1915 use
= PHI_ARG_DEF (stmt
, 0);
1916 stmt
= SSA_NAME_DEF_STMT (use
);
1919 base_names_in_chain_on (loop
, use
, var
);
1923 /* Returns true if CHAIN is suitable to be combined. */
1926 chain_can_be_combined_p (chain_p chain
)
1928 return (!chain
->combined
1929 && (chain
->type
== CT_LOAD
|| chain
->type
== CT_COMBINATION
));
1932 /* Returns the modify statement that uses NAME. Skips over assignment
1933 statements, NAME is replaced with the actual name used in the returned
1937 find_use_stmt (tree
*name
)
1942 /* Skip over assignments. */
1945 stmt
= single_nonlooparound_use (*name
);
1949 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1952 lhs
= gimple_assign_lhs (stmt
);
1953 if (TREE_CODE (lhs
) != SSA_NAME
)
1956 if (gimple_assign_copy_p (stmt
))
1958 rhs
= gimple_assign_rhs1 (stmt
);
1964 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
1965 == GIMPLE_BINARY_RHS
)
1972 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
1975 may_reassociate_p (tree type
, enum tree_code code
)
1977 if (FLOAT_TYPE_P (type
)
1978 && !flag_unsafe_math_optimizations
)
1981 return (commutative_tree_code (code
)
1982 && associative_tree_code (code
));
1985 /* If the operation used in STMT is associative and commutative, go through the
1986 tree of the same operations and returns its root. Distance to the root
1987 is stored in DISTANCE. */
1990 find_associative_operation_root (gimple stmt
, unsigned *distance
)
1994 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1995 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1998 if (!may_reassociate_p (type
, code
))
2003 lhs
= gimple_assign_lhs (stmt
);
2004 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
2006 next
= find_use_stmt (&lhs
);
2008 || gimple_assign_rhs_code (next
) != code
)
2020 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2021 is no such statement, returns NULL_TREE. In case the operation used on
2022 NAME1 and NAME2 is associative and commutative, returns the root of the
2023 tree formed by this operation instead of the statement that uses NAME1 or
2027 find_common_use_stmt (tree
*name1
, tree
*name2
)
2029 gimple stmt1
, stmt2
;
2031 stmt1
= find_use_stmt (name1
);
2035 stmt2
= find_use_stmt (name2
);
2042 stmt1
= find_associative_operation_root (stmt1
, NULL
);
2045 stmt2
= find_associative_operation_root (stmt2
, NULL
);
2049 return (stmt1
== stmt2
? stmt1
: NULL
);
2052 /* Checks whether R1 and R2 are combined together using CODE, with the result
2053 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2054 if it is true. If CODE is ERROR_MARK, set these values instead. */
2057 combinable_refs_p (dref r1
, dref r2
,
2058 enum tree_code
*code
, bool *swap
, tree
*rslt_type
)
2060 enum tree_code acode
;
2066 name1
= name_for_ref (r1
);
2067 name2
= name_for_ref (r2
);
2068 gcc_assert (name1
!= NULL_TREE
&& name2
!= NULL_TREE
);
2070 stmt
= find_common_use_stmt (&name1
, &name2
);
2075 acode
= gimple_assign_rhs_code (stmt
);
2076 aswap
= (!commutative_tree_code (acode
)
2077 && gimple_assign_rhs1 (stmt
) != name1
);
2078 atype
= TREE_TYPE (gimple_assign_lhs (stmt
));
2080 if (*code
== ERROR_MARK
)
2088 return (*code
== acode
2090 && *rslt_type
== atype
);
2093 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2094 an assignment of the remaining operand. */
2097 remove_name_from_operation (gimple stmt
, tree op
)
2100 gimple_stmt_iterator si
;
2102 gcc_assert (is_gimple_assign (stmt
));
2104 if (gimple_assign_rhs1 (stmt
) == op
)
2105 other_op
= gimple_assign_rhs2 (stmt
);
2107 other_op
= gimple_assign_rhs1 (stmt
);
2109 si
= gsi_for_stmt (stmt
);
2110 gimple_assign_set_rhs_from_tree (&si
, other_op
);
2112 /* We should not have reallocated STMT. */
2113 gcc_assert (gsi_stmt (si
) == stmt
);
2118 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2119 are combined in a single statement, and returns this statement. */
2122 reassociate_to_the_same_stmt (tree name1
, tree name2
)
2124 gimple stmt1
, stmt2
, root1
, root2
, s1
, s2
;
2125 gimple new_stmt
, tmp_stmt
;
2126 tree new_name
, tmp_name
, var
, r1
, r2
;
2127 unsigned dist1
, dist2
;
2128 enum tree_code code
;
2129 tree type
= TREE_TYPE (name1
);
2130 gimple_stmt_iterator bsi
;
2132 stmt1
= find_use_stmt (&name1
);
2133 stmt2
= find_use_stmt (&name2
);
2134 root1
= find_associative_operation_root (stmt1
, &dist1
);
2135 root2
= find_associative_operation_root (stmt2
, &dist2
);
2136 code
= gimple_assign_rhs_code (stmt1
);
2138 gcc_assert (root1
&& root2
&& root1
== root2
2139 && code
== gimple_assign_rhs_code (stmt2
));
2141 /* Find the root of the nearest expression in that both NAME1 and NAME2
2148 while (dist1
> dist2
)
2150 s1
= find_use_stmt (&r1
);
2151 r1
= gimple_assign_lhs (s1
);
2154 while (dist2
> dist1
)
2156 s2
= find_use_stmt (&r2
);
2157 r2
= gimple_assign_lhs (s2
);
2163 s1
= find_use_stmt (&r1
);
2164 r1
= gimple_assign_lhs (s1
);
2165 s2
= find_use_stmt (&r2
);
2166 r2
= gimple_assign_lhs (s2
);
2169 /* Remove NAME1 and NAME2 from the statements in that they are used
2171 remove_name_from_operation (stmt1
, name1
);
2172 remove_name_from_operation (stmt2
, name2
);
2174 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2175 combine it with the rhs of S1. */
2176 var
= create_tmp_reg (type
, "predreastmp");
2177 new_name
= make_ssa_name (var
, NULL
);
2178 new_stmt
= gimple_build_assign_with_ops (code
, new_name
, name1
, name2
);
2180 var
= create_tmp_reg (type
, "predreastmp");
2181 tmp_name
= make_ssa_name (var
, NULL
);
2183 /* Rhs of S1 may now be either a binary expression with operation
2184 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2185 so that name1 or name2 was removed from it). */
2186 tmp_stmt
= gimple_build_assign_with_ops (gimple_assign_rhs_code (s1
),
2188 gimple_assign_rhs1 (s1
),
2189 gimple_assign_rhs2 (s1
));
2191 bsi
= gsi_for_stmt (s1
);
2192 gimple_assign_set_rhs_with_ops (&bsi
, code
, new_name
, tmp_name
);
2193 s1
= gsi_stmt (bsi
);
2196 gsi_insert_before (&bsi
, new_stmt
, GSI_SAME_STMT
);
2197 gsi_insert_before (&bsi
, tmp_stmt
, GSI_SAME_STMT
);
2202 /* Returns the statement that combines references R1 and R2. In case R1
2203 and R2 are not used in the same statement, but they are used with an
2204 associative and commutative operation in the same expression, reassociate
2205 the expression so that they are used in the same statement. */
2208 stmt_combining_refs (dref r1
, dref r2
)
2210 gimple stmt1
, stmt2
;
2211 tree name1
= name_for_ref (r1
);
2212 tree name2
= name_for_ref (r2
);
2214 stmt1
= find_use_stmt (&name1
);
2215 stmt2
= find_use_stmt (&name2
);
2219 return reassociate_to_the_same_stmt (name1
, name2
);
2222 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2223 description of the new chain is returned, otherwise we return NULL. */
2226 combine_chains (chain_p ch1
, chain_p ch2
)
2229 enum tree_code op
= ERROR_MARK
;
2234 tree rslt_type
= NULL_TREE
;
2238 if (ch1
->length
!= ch2
->length
)
2241 if (ch1
->refs
.length () != ch2
->refs
.length ())
2244 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2245 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2247 if (r1
->distance
!= r2
->distance
)
2250 if (!combinable_refs_p (r1
, r2
, &op
, &swap
, &rslt_type
))
2261 new_chain
= XCNEW (struct chain
);
2262 new_chain
->type
= CT_COMBINATION
;
2264 new_chain
->ch1
= ch1
;
2265 new_chain
->ch2
= ch2
;
2266 new_chain
->rslt_type
= rslt_type
;
2267 new_chain
->length
= ch1
->length
;
2269 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2270 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2272 nw
= XCNEW (struct dref_d
);
2273 nw
->stmt
= stmt_combining_refs (r1
, r2
);
2274 nw
->distance
= r1
->distance
;
2276 new_chain
->refs
.safe_push (nw
);
2279 new_chain
->has_max_use_after
= false;
2280 root_stmt
= get_chain_root (new_chain
)->stmt
;
2281 for (i
= 1; new_chain
->refs
.iterate (i
, &nw
); i
++)
2283 if (nw
->distance
== new_chain
->length
2284 && !stmt_dominates_stmt_p (nw
->stmt
, root_stmt
))
2286 new_chain
->has_max_use_after
= true;
2291 ch1
->combined
= true;
2292 ch2
->combined
= true;
2296 /* Try to combine the CHAINS. */
2299 try_combine_chains (vec
<chain_p
> *chains
)
2302 chain_p ch1
, ch2
, cch
;
2303 vec
<chain_p
> worklist
= vec
<chain_p
>();
2305 FOR_EACH_VEC_ELT (*chains
, i
, ch1
)
2306 if (chain_can_be_combined_p (ch1
))
2307 worklist
.safe_push (ch1
);
2309 while (!worklist
.is_empty ())
2311 ch1
= worklist
.pop ();
2312 if (!chain_can_be_combined_p (ch1
))
2315 FOR_EACH_VEC_ELT (*chains
, j
, ch2
)
2317 if (!chain_can_be_combined_p (ch2
))
2320 cch
= combine_chains (ch1
, ch2
);
2323 worklist
.safe_push (cch
);
2324 chains
->safe_push (cch
);
2330 worklist
.release ();
2333 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2334 impossible because one of these initializers may trap, true otherwise. */
2337 prepare_initializers_chain (struct loop
*loop
, chain_p chain
)
2339 unsigned i
, n
= (chain
->type
== CT_INVARIANT
) ? 1 : chain
->length
;
2340 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
2344 edge entry
= loop_preheader_edge (loop
);
2346 /* Find the initializers for the variables, and check that they cannot
2348 chain
->inits
.create (n
);
2349 for (i
= 0; i
< n
; i
++)
2350 chain
->inits
.quick_push (NULL_TREE
);
2352 /* If we have replaced some looparound phi nodes, use their initializers
2353 instead of creating our own. */
2354 FOR_EACH_VEC_ELT (chain
->refs
, i
, laref
)
2356 if (gimple_code (laref
->stmt
) != GIMPLE_PHI
)
2359 gcc_assert (laref
->distance
> 0);
2360 chain
->inits
[n
- laref
->distance
]
2361 = PHI_ARG_DEF_FROM_EDGE (laref
->stmt
, entry
);
2364 for (i
= 0; i
< n
; i
++)
2366 if (chain
->inits
[i
] != NULL_TREE
)
2369 init
= ref_at_iteration (loop
, DR_REF (dr
), (int) i
- n
);
2373 if (!chain
->all_always_accessed
&& tree_could_trap_p (init
))
2376 init
= force_gimple_operand (init
, &stmts
, false, NULL_TREE
);
2378 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
2380 chain
->inits
[i
] = init
;
2386 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2387 be used because the initializers might trap. */
2390 prepare_initializers (struct loop
*loop
, vec
<chain_p
> chains
)
2395 for (i
= 0; i
< chains
.length (); )
2398 if (prepare_initializers_chain (loop
, chain
))
2402 release_chain (chain
);
2403 chains
.unordered_remove (i
);
2408 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2412 tree_predictive_commoning_loop (struct loop
*loop
)
2414 vec
<loop_p
> loop_nest
;
2415 vec
<data_reference_p
> datarefs
;
2416 vec
<ddr_p
> dependences
;
2417 struct component
*components
;
2418 vec
<chain_p
> chains
= vec
<chain_p
>();
2419 unsigned unroll_factor
;
2420 struct tree_niter_desc desc
;
2421 bool unroll
= false;
2425 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2426 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
2428 /* Find the data references and split them into components according to their
2429 dependence relations. */
2430 datarefs
.create (10);
2431 dependences
.create (10);
2432 loop_nest
.create (3);
2433 if (! compute_data_dependences_for_loop (loop
, true, &loop_nest
, &datarefs
,
2436 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2437 fprintf (dump_file
, "Cannot analyze data dependencies\n");
2438 loop_nest
.release ();
2439 free_data_refs (datarefs
);
2440 free_dependence_relations (dependences
);
2444 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2445 dump_data_dependence_relations (dump_file
, dependences
);
2447 components
= split_data_refs_to_components (loop
, datarefs
, dependences
);
2448 loop_nest
.release ();
2449 free_dependence_relations (dependences
);
2452 free_data_refs (datarefs
);
2456 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2458 fprintf (dump_file
, "Initial state:\n\n");
2459 dump_components (dump_file
, components
);
2462 /* Find the suitable components and split them into chains. */
2463 components
= filter_suitable_components (loop
, components
);
2465 tmp_vars
= BITMAP_ALLOC (NULL
);
2466 looparound_phis
= BITMAP_ALLOC (NULL
);
2467 determine_roots (loop
, components
, &chains
);
2468 release_components (components
);
2470 if (!chains
.exists ())
2472 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2474 "Predictive commoning failed: no suitable chains\n");
2477 prepare_initializers (loop
, chains
);
2479 /* Try to combine the chains that are always worked with together. */
2480 try_combine_chains (&chains
);
2482 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2484 fprintf (dump_file
, "Before commoning:\n\n");
2485 dump_chains (dump_file
, chains
);
2488 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2489 that its number of iterations is divisible by the factor. */
2490 unroll_factor
= determine_unroll_factor (chains
);
2492 unroll
= (unroll_factor
> 1
2493 && can_unroll_loop_p (loop
, unroll_factor
, &desc
));
2494 exit
= single_dom_exit (loop
);
2496 /* Execute the predictive commoning transformations, and possibly unroll the
2500 struct epcc_data dta
;
2502 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2503 fprintf (dump_file
, "Unrolling %u times.\n", unroll_factor
);
2505 dta
.chains
= chains
;
2506 dta
.tmp_vars
= tmp_vars
;
2508 update_ssa (TODO_update_ssa_only_virtuals
);
2510 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2511 execute_pred_commoning_cbck is called may cause phi nodes to be
2512 reallocated, which is a problem since CHAINS may point to these
2513 statements. To fix this, we store the ssa names defined by the
2514 phi nodes here instead of the phi nodes themselves, and restore
2515 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2516 replace_phis_by_defined_names (chains
);
2518 tree_transform_and_unroll_loop (loop
, unroll_factor
, exit
, &desc
,
2519 execute_pred_commoning_cbck
, &dta
);
2520 eliminate_temp_copies (loop
, tmp_vars
);
2524 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2526 "Executing predictive commoning without unrolling.\n");
2527 execute_pred_commoning (loop
, chains
, tmp_vars
);
2531 release_chains (chains
);
2532 free_data_refs (datarefs
);
2533 BITMAP_FREE (tmp_vars
);
2534 BITMAP_FREE (looparound_phis
);
2536 free_affine_expand_cache (&name_expansions
);
2541 /* Runs predictive commoning. */
2544 tree_predictive_commoning (void)
2546 bool unrolled
= false;
2551 initialize_original_copy_tables ();
2552 FOR_EACH_LOOP (li
, loop
, LI_ONLY_INNERMOST
)
2553 if (optimize_loop_for_speed_p (loop
))
2555 unrolled
|= tree_predictive_commoning_loop (loop
);
2561 ret
= TODO_cleanup_cfg
;
2563 free_original_copy_tables ();