1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "basic-block.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "diagnostic-core.h"
39 #include "tree-ssa-propagate.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "tree-inline.h"
45 /* This file contains functions for building the Control Flow Graph (CFG)
46 for a function tree. */
48 /* Local declarations. */
50 /* Initial capacity for the basic block array. */
51 static const int initial_cfg_capacity
= 20;
53 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
54 which use a particular edge. The CASE_LABEL_EXPRs are chained together
55 via their CASE_CHAIN field, which we clear after we're done with the
56 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
58 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
59 update the case vector in response to edge redirections.
61 Right now this table is set up and torn down at key points in the
62 compilation process. It would be nice if we could make the table
63 more persistent. The key is getting notification of changes to
64 the CFG (particularly edge removal, creation and redirection). */
66 static struct pointer_map_t
*edge_to_cases
;
68 /* If we record edge_to_cases, this bitmap will hold indexes
69 of basic blocks that end in a GIMPLE_SWITCH which we touched
70 due to edge manipulations. */
72 static bitmap touched_switch_bbs
;
77 long num_merged_labels
;
80 static struct cfg_stats_d cfg_stats
;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto
;
85 /* Hash table to store last discriminator assigned for each locus. */
86 struct locus_discrim_map
91 static htab_t discriminator_per_locus
;
93 /* Basic blocks and flowgraphs. */
94 static void make_blocks (gimple_seq
);
95 static void factor_computed_gotos (void);
98 static void make_edges (void);
99 static void make_cond_expr_edges (basic_block
);
100 static void make_gimple_switch_edges (basic_block
);
101 static void make_goto_expr_edges (basic_block
);
102 static void make_gimple_asm_edges (basic_block
);
103 static unsigned int locus_map_hash (const void *);
104 static int locus_map_eq (const void *, const void *);
105 static void assign_discriminator (location_t
, basic_block
);
106 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
107 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
108 static unsigned int split_critical_edges (void);
110 /* Various helpers. */
111 static inline bool stmt_starts_bb_p (gimple
, gimple
);
112 static int gimple_verify_flow_info (void);
113 static void gimple_make_forwarder_block (edge
);
114 static void gimple_cfg2vcg (FILE *);
115 static gimple
first_non_label_stmt (basic_block
);
116 static bool verify_gimple_transaction (gimple
);
118 /* Flowgraph optimization and cleanup. */
119 static void gimple_merge_blocks (basic_block
, basic_block
);
120 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
121 static void remove_bb (basic_block
);
122 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
123 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
124 static edge
find_taken_edge_switch_expr (basic_block
, tree
);
125 static tree
find_case_label_for_value (gimple
, tree
);
128 init_empty_tree_cfg_for_function (struct function
*fn
)
130 /* Initialize the basic block array. */
132 profile_status_for_function (fn
) = PROFILE_ABSENT
;
133 n_basic_blocks_for_function (fn
) = NUM_FIXED_BLOCKS
;
134 last_basic_block_for_function (fn
) = NUM_FIXED_BLOCKS
;
135 vec_alloc (basic_block_info_for_function (fn
), initial_cfg_capacity
);
136 vec_safe_grow_cleared (basic_block_info_for_function (fn
),
137 initial_cfg_capacity
);
139 /* Build a mapping of labels to their associated blocks. */
140 vec_alloc (label_to_block_map_for_function (fn
), initial_cfg_capacity
);
141 vec_safe_grow_cleared (label_to_block_map_for_function (fn
),
142 initial_cfg_capacity
);
144 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, ENTRY_BLOCK
,
145 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
));
146 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, EXIT_BLOCK
,
147 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
));
149 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
)->next_bb
150 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn
);
151 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
)->prev_bb
152 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
);
156 init_empty_tree_cfg (void)
158 init_empty_tree_cfg_for_function (cfun
);
161 /*---------------------------------------------------------------------------
163 ---------------------------------------------------------------------------*/
165 /* Entry point to the CFG builder for trees. SEQ is the sequence of
166 statements to be added to the flowgraph. */
169 build_gimple_cfg (gimple_seq seq
)
171 /* Register specific gimple functions. */
172 gimple_register_cfg_hooks ();
174 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
176 init_empty_tree_cfg ();
178 found_computed_goto
= 0;
181 /* Computed gotos are hell to deal with, especially if there are
182 lots of them with a large number of destinations. So we factor
183 them to a common computed goto location before we build the
184 edge list. After we convert back to normal form, we will un-factor
185 the computed gotos since factoring introduces an unwanted jump. */
186 if (found_computed_goto
)
187 factor_computed_gotos ();
189 /* Make sure there is always at least one block, even if it's empty. */
190 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
191 create_empty_bb (ENTRY_BLOCK_PTR
);
193 /* Adjust the size of the array. */
194 if (basic_block_info
->length () < (size_t) n_basic_blocks
)
195 vec_safe_grow_cleared (basic_block_info
, n_basic_blocks
);
197 /* To speed up statement iterator walks, we first purge dead labels. */
198 cleanup_dead_labels ();
200 /* Group case nodes to reduce the number of edges.
201 We do this after cleaning up dead labels because otherwise we miss
202 a lot of obvious case merging opportunities. */
203 group_case_labels ();
205 /* Create the edges of the flowgraph. */
206 discriminator_per_locus
= htab_create (13, locus_map_hash
, locus_map_eq
,
209 cleanup_dead_labels ();
210 htab_delete (discriminator_per_locus
);
212 /* Debugging dumps. */
214 /* Write the flowgraph to a VCG file. */
216 int local_dump_flags
;
217 FILE *vcg_file
= dump_begin (TDI_vcg
, &local_dump_flags
);
220 gimple_cfg2vcg (vcg_file
);
221 dump_end (TDI_vcg
, vcg_file
);
227 execute_build_cfg (void)
229 gimple_seq body
= gimple_body (current_function_decl
);
231 build_gimple_cfg (body
);
232 gimple_set_body (current_function_decl
, NULL
);
233 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
235 fprintf (dump_file
, "Scope blocks:\n");
236 dump_scope_blocks (dump_file
, dump_flags
);
241 struct gimple_opt_pass pass_build_cfg
=
246 OPTGROUP_NONE
, /* optinfo_flags */
248 execute_build_cfg
, /* execute */
251 0, /* static_pass_number */
252 TV_TREE_CFG
, /* tv_id */
253 PROP_gimple_leh
, /* properties_required */
254 PROP_cfg
, /* properties_provided */
255 0, /* properties_destroyed */
256 0, /* todo_flags_start */
257 TODO_verify_stmts
| TODO_cleanup_cfg
/* todo_flags_finish */
262 /* Return true if T is a computed goto. */
265 computed_goto_p (gimple t
)
267 return (gimple_code (t
) == GIMPLE_GOTO
268 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
272 /* Search the CFG for any computed gotos. If found, factor them to a
273 common computed goto site. Also record the location of that site so
274 that we can un-factor the gotos after we have converted back to
278 factor_computed_gotos (void)
281 tree factored_label_decl
= NULL
;
283 gimple factored_computed_goto_label
= NULL
;
284 gimple factored_computed_goto
= NULL
;
286 /* We know there are one or more computed gotos in this function.
287 Examine the last statement in each basic block to see if the block
288 ends with a computed goto. */
292 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
298 last
= gsi_stmt (gsi
);
300 /* Ignore the computed goto we create when we factor the original
302 if (last
== factored_computed_goto
)
305 /* If the last statement is a computed goto, factor it. */
306 if (computed_goto_p (last
))
310 /* The first time we find a computed goto we need to create
311 the factored goto block and the variable each original
312 computed goto will use for their goto destination. */
313 if (!factored_computed_goto
)
315 basic_block new_bb
= create_empty_bb (bb
);
316 gimple_stmt_iterator new_gsi
= gsi_start_bb (new_bb
);
318 /* Create the destination of the factored goto. Each original
319 computed goto will put its desired destination into this
320 variable and jump to the label we create immediately
322 var
= create_tmp_var (ptr_type_node
, "gotovar");
324 /* Build a label for the new block which will contain the
325 factored computed goto. */
326 factored_label_decl
= create_artificial_label (UNKNOWN_LOCATION
);
327 factored_computed_goto_label
328 = gimple_build_label (factored_label_decl
);
329 gsi_insert_after (&new_gsi
, factored_computed_goto_label
,
332 /* Build our new computed goto. */
333 factored_computed_goto
= gimple_build_goto (var
);
334 gsi_insert_after (&new_gsi
, factored_computed_goto
, GSI_NEW_STMT
);
337 /* Copy the original computed goto's destination into VAR. */
338 assignment
= gimple_build_assign (var
, gimple_goto_dest (last
));
339 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
341 /* And re-vector the computed goto to the new destination. */
342 gimple_goto_set_dest (last
, factored_label_decl
);
348 /* Build a flowgraph for the sequence of stmts SEQ. */
351 make_blocks (gimple_seq seq
)
353 gimple_stmt_iterator i
= gsi_start (seq
);
355 bool start_new_block
= true;
356 bool first_stmt_of_seq
= true;
357 basic_block bb
= ENTRY_BLOCK_PTR
;
359 while (!gsi_end_p (i
))
366 /* If the statement starts a new basic block or if we have determined
367 in a previous pass that we need to create a new block for STMT, do
369 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
371 if (!first_stmt_of_seq
)
372 gsi_split_seq_before (&i
, &seq
);
373 bb
= create_basic_block (seq
, NULL
, bb
);
374 start_new_block
= false;
377 /* Now add STMT to BB and create the subgraphs for special statement
379 gimple_set_bb (stmt
, bb
);
381 if (computed_goto_p (stmt
))
382 found_computed_goto
= true;
384 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
386 if (stmt_ends_bb_p (stmt
))
388 /* If the stmt can make abnormal goto use a new temporary
389 for the assignment to the LHS. This makes sure the old value
390 of the LHS is available on the abnormal edge. Otherwise
391 we will end up with overlapping life-ranges for abnormal
393 if (gimple_has_lhs (stmt
)
394 && stmt_can_make_abnormal_goto (stmt
)
395 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
397 tree lhs
= gimple_get_lhs (stmt
);
398 tree tmp
= create_tmp_var (TREE_TYPE (lhs
), NULL
);
399 gimple s
= gimple_build_assign (lhs
, tmp
);
400 gimple_set_location (s
, gimple_location (stmt
));
401 gimple_set_block (s
, gimple_block (stmt
));
402 gimple_set_lhs (stmt
, tmp
);
403 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
404 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
405 DECL_GIMPLE_REG_P (tmp
) = 1;
406 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
408 start_new_block
= true;
412 first_stmt_of_seq
= false;
417 /* Create and return a new empty basic block after bb AFTER. */
420 create_bb (void *h
, void *e
, basic_block after
)
426 /* Create and initialize a new basic block. Since alloc_block uses
427 GC allocation that clears memory to allocate a basic block, we do
428 not have to clear the newly allocated basic block here. */
431 bb
->index
= last_basic_block
;
433 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
435 /* Add the new block to the linked list of blocks. */
436 link_block (bb
, after
);
438 /* Grow the basic block array if needed. */
439 if ((size_t) last_basic_block
== basic_block_info
->length ())
441 size_t new_size
= last_basic_block
+ (last_basic_block
+ 3) / 4;
442 vec_safe_grow_cleared (basic_block_info
, new_size
);
445 /* Add the newly created block to the array. */
446 SET_BASIC_BLOCK (last_basic_block
, bb
);
455 /*---------------------------------------------------------------------------
457 ---------------------------------------------------------------------------*/
459 /* Fold COND_EXPR_COND of each COND_EXPR. */
462 fold_cond_expr_cond (void)
468 gimple stmt
= last_stmt (bb
);
470 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
472 location_t loc
= gimple_location (stmt
);
476 fold_defer_overflow_warnings ();
477 cond
= fold_binary_loc (loc
, gimple_cond_code (stmt
), boolean_type_node
,
478 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
481 zerop
= integer_zerop (cond
);
482 onep
= integer_onep (cond
);
485 zerop
= onep
= false;
487 fold_undefer_overflow_warnings (zerop
|| onep
,
489 WARN_STRICT_OVERFLOW_CONDITIONAL
);
491 gimple_cond_make_false (stmt
);
493 gimple_cond_make_true (stmt
);
498 /* Join all the blocks in the flowgraph. */
504 struct omp_region
*cur_region
= NULL
;
506 /* Create an edge from entry to the first block with executable
508 make_edge (ENTRY_BLOCK_PTR
, BASIC_BLOCK (NUM_FIXED_BLOCKS
), EDGE_FALLTHRU
);
510 /* Traverse the basic block array placing edges. */
513 gimple last
= last_stmt (bb
);
518 enum gimple_code code
= gimple_code (last
);
522 make_goto_expr_edges (bb
);
526 make_edge (bb
, EXIT_BLOCK_PTR
, 0);
530 make_cond_expr_edges (bb
);
534 make_gimple_switch_edges (bb
);
538 make_eh_edges (last
);
541 case GIMPLE_EH_DISPATCH
:
542 fallthru
= make_eh_dispatch_edges (last
);
546 /* If this function receives a nonlocal goto, then we need to
547 make edges from this call site to all the nonlocal goto
549 if (stmt_can_make_abnormal_goto (last
))
550 make_abnormal_goto_edges (bb
, true);
552 /* If this statement has reachable exception handlers, then
553 create abnormal edges to them. */
554 make_eh_edges (last
);
556 /* BUILTIN_RETURN is really a return statement. */
557 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
558 make_edge (bb
, EXIT_BLOCK_PTR
, 0), fallthru
= false;
559 /* Some calls are known not to return. */
561 fallthru
= !(gimple_call_flags (last
) & ECF_NORETURN
);
565 /* A GIMPLE_ASSIGN may throw internally and thus be considered
567 if (is_ctrl_altering_stmt (last
))
568 make_eh_edges (last
);
573 make_gimple_asm_edges (bb
);
577 case GIMPLE_OMP_PARALLEL
:
578 case GIMPLE_OMP_TASK
:
580 case GIMPLE_OMP_SINGLE
:
581 case GIMPLE_OMP_MASTER
:
582 case GIMPLE_OMP_ORDERED
:
583 case GIMPLE_OMP_CRITICAL
:
584 case GIMPLE_OMP_SECTION
:
585 cur_region
= new_omp_region (bb
, code
, cur_region
);
589 case GIMPLE_OMP_SECTIONS
:
590 cur_region
= new_omp_region (bb
, code
, cur_region
);
594 case GIMPLE_OMP_SECTIONS_SWITCH
:
598 case GIMPLE_OMP_ATOMIC_LOAD
:
599 case GIMPLE_OMP_ATOMIC_STORE
:
603 case GIMPLE_OMP_RETURN
:
604 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
605 somewhere other than the next block. This will be
607 cur_region
->exit
= bb
;
608 fallthru
= cur_region
->type
!= GIMPLE_OMP_SECTION
;
609 cur_region
= cur_region
->outer
;
612 case GIMPLE_OMP_CONTINUE
:
613 cur_region
->cont
= bb
;
614 switch (cur_region
->type
)
617 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
618 succs edges as abnormal to prevent splitting
620 single_succ_edge (cur_region
->entry
)->flags
|= EDGE_ABNORMAL
;
621 /* Make the loopback edge. */
622 make_edge (bb
, single_succ (cur_region
->entry
),
625 /* Create an edge from GIMPLE_OMP_FOR to exit, which
626 corresponds to the case that the body of the loop
627 is not executed at all. */
628 make_edge (cur_region
->entry
, bb
->next_bb
, EDGE_ABNORMAL
);
629 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
| EDGE_ABNORMAL
);
633 case GIMPLE_OMP_SECTIONS
:
634 /* Wire up the edges into and out of the nested sections. */
636 basic_block switch_bb
= single_succ (cur_region
->entry
);
638 struct omp_region
*i
;
639 for (i
= cur_region
->inner
; i
; i
= i
->next
)
641 gcc_assert (i
->type
== GIMPLE_OMP_SECTION
);
642 make_edge (switch_bb
, i
->entry
, 0);
643 make_edge (i
->exit
, bb
, EDGE_FALLTHRU
);
646 /* Make the loopback edge to the block with
647 GIMPLE_OMP_SECTIONS_SWITCH. */
648 make_edge (bb
, switch_bb
, 0);
650 /* Make the edge from the switch to exit. */
651 make_edge (switch_bb
, bb
->next_bb
, 0);
661 case GIMPLE_TRANSACTION
:
663 tree abort_label
= gimple_transaction_label (last
);
665 make_edge (bb
, label_to_block (abort_label
), EDGE_TM_ABORT
);
671 gcc_assert (!stmt_ends_bb_p (last
));
680 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
682 assign_discriminator (gimple_location (last
), bb
->next_bb
);
689 /* Fold COND_EXPR_COND of each COND_EXPR. */
690 fold_cond_expr_cond ();
693 /* Trivial hash function for a location_t. ITEM is a pointer to
694 a hash table entry that maps a location_t to a discriminator. */
697 locus_map_hash (const void *item
)
699 return ((const struct locus_discrim_map
*) item
)->locus
;
702 /* Equality function for the locus-to-discriminator map. VA and VB
703 point to the two hash table entries to compare. */
706 locus_map_eq (const void *va
, const void *vb
)
708 const struct locus_discrim_map
*a
= (const struct locus_discrim_map
*) va
;
709 const struct locus_discrim_map
*b
= (const struct locus_discrim_map
*) vb
;
710 return a
->locus
== b
->locus
;
713 /* Find the next available discriminator value for LOCUS. The
714 discriminator distinguishes among several basic blocks that
715 share a common locus, allowing for more accurate sample-based
719 next_discriminator_for_locus (location_t locus
)
721 struct locus_discrim_map item
;
722 struct locus_discrim_map
**slot
;
725 item
.discriminator
= 0;
726 slot
= (struct locus_discrim_map
**)
727 htab_find_slot_with_hash (discriminator_per_locus
, (void *) &item
,
728 (hashval_t
) locus
, INSERT
);
730 if (*slot
== HTAB_EMPTY_ENTRY
)
732 *slot
= XNEW (struct locus_discrim_map
);
734 (*slot
)->locus
= locus
;
735 (*slot
)->discriminator
= 0;
737 (*slot
)->discriminator
++;
738 return (*slot
)->discriminator
;
741 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
744 same_line_p (location_t locus1
, location_t locus2
)
746 expanded_location from
, to
;
748 if (locus1
== locus2
)
751 from
= expand_location (locus1
);
752 to
= expand_location (locus2
);
754 if (from
.line
!= to
.line
)
756 if (from
.file
== to
.file
)
758 return (from
.file
!= NULL
760 && filename_cmp (from
.file
, to
.file
) == 0);
763 /* Assign a unique discriminator value to block BB if it begins at the same
764 LOCUS as its predecessor block. */
767 assign_discriminator (location_t locus
, basic_block bb
)
769 gimple first_in_to_bb
, last_in_to_bb
;
771 if (locus
== 0 || bb
->discriminator
!= 0)
774 first_in_to_bb
= first_non_label_stmt (bb
);
775 last_in_to_bb
= last_stmt (bb
);
776 if ((first_in_to_bb
&& same_line_p (locus
, gimple_location (first_in_to_bb
)))
777 || (last_in_to_bb
&& same_line_p (locus
, gimple_location (last_in_to_bb
))))
778 bb
->discriminator
= next_discriminator_for_locus (locus
);
781 /* Create the edges for a GIMPLE_COND starting at block BB. */
784 make_cond_expr_edges (basic_block bb
)
786 gimple entry
= last_stmt (bb
);
787 gimple then_stmt
, else_stmt
;
788 basic_block then_bb
, else_bb
;
789 tree then_label
, else_label
;
791 location_t entry_locus
;
794 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
796 entry_locus
= gimple_location (entry
);
798 /* Entry basic blocks for each component. */
799 then_label
= gimple_cond_true_label (entry
);
800 else_label
= gimple_cond_false_label (entry
);
801 then_bb
= label_to_block (then_label
);
802 else_bb
= label_to_block (else_label
);
803 then_stmt
= first_stmt (then_bb
);
804 else_stmt
= first_stmt (else_bb
);
806 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
807 assign_discriminator (entry_locus
, then_bb
);
808 e
->goto_locus
= gimple_location (then_stmt
);
809 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
812 assign_discriminator (entry_locus
, else_bb
);
813 e
->goto_locus
= gimple_location (else_stmt
);
816 /* We do not need the labels anymore. */
817 gimple_cond_set_true_label (entry
, NULL_TREE
);
818 gimple_cond_set_false_label (entry
, NULL_TREE
);
822 /* Called for each element in the hash table (P) as we delete the
823 edge to cases hash table.
825 Clear all the TREE_CHAINs to prevent problems with copying of
826 SWITCH_EXPRs and structure sharing rules, then free the hash table
830 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED
, void **value
,
831 void *data ATTRIBUTE_UNUSED
)
835 for (t
= (tree
) *value
; t
; t
= next
)
837 next
= CASE_CHAIN (t
);
838 CASE_CHAIN (t
) = NULL
;
845 /* Start recording information mapping edges to case labels. */
848 start_recording_case_labels (void)
850 gcc_assert (edge_to_cases
== NULL
);
851 edge_to_cases
= pointer_map_create ();
852 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
855 /* Return nonzero if we are recording information for case labels. */
858 recording_case_labels_p (void)
860 return (edge_to_cases
!= NULL
);
863 /* Stop recording information mapping edges to case labels and
864 remove any information we have recorded. */
866 end_recording_case_labels (void)
870 pointer_map_traverse (edge_to_cases
, edge_to_cases_cleanup
, NULL
);
871 pointer_map_destroy (edge_to_cases
);
872 edge_to_cases
= NULL
;
873 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
875 basic_block bb
= BASIC_BLOCK (i
);
878 gimple stmt
= last_stmt (bb
);
879 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
880 group_case_labels_stmt (stmt
);
883 BITMAP_FREE (touched_switch_bbs
);
886 /* If we are inside a {start,end}_recording_cases block, then return
887 a chain of CASE_LABEL_EXPRs from T which reference E.
889 Otherwise return NULL. */
892 get_cases_for_edge (edge e
, gimple t
)
897 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
898 chains available. Return NULL so the caller can detect this case. */
899 if (!recording_case_labels_p ())
902 slot
= pointer_map_contains (edge_to_cases
, e
);
906 /* If we did not find E in the hash table, then this must be the first
907 time we have been queried for information about E & T. Add all the
908 elements from T to the hash table then perform the query again. */
910 n
= gimple_switch_num_labels (t
);
911 for (i
= 0; i
< n
; i
++)
913 tree elt
= gimple_switch_label (t
, i
);
914 tree lab
= CASE_LABEL (elt
);
915 basic_block label_bb
= label_to_block (lab
);
916 edge this_edge
= find_edge (e
->src
, label_bb
);
918 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
920 slot
= pointer_map_insert (edge_to_cases
, this_edge
);
921 CASE_CHAIN (elt
) = (tree
) *slot
;
925 return (tree
) *pointer_map_contains (edge_to_cases
, e
);
928 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
931 make_gimple_switch_edges (basic_block bb
)
933 gimple entry
= last_stmt (bb
);
934 location_t entry_locus
;
937 entry_locus
= gimple_location (entry
);
939 n
= gimple_switch_num_labels (entry
);
941 for (i
= 0; i
< n
; ++i
)
943 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
944 basic_block label_bb
= label_to_block (lab
);
945 make_edge (bb
, label_bb
, 0);
946 assign_discriminator (entry_locus
, label_bb
);
951 /* Return the basic block holding label DEST. */
954 label_to_block_fn (struct function
*ifun
, tree dest
)
956 int uid
= LABEL_DECL_UID (dest
);
958 /* We would die hard when faced by an undefined label. Emit a label to
959 the very first basic block. This will hopefully make even the dataflow
960 and undefined variable warnings quite right. */
961 if (seen_error () && uid
< 0)
963 gimple_stmt_iterator gsi
= gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS
));
966 stmt
= gimple_build_label (dest
);
967 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
968 uid
= LABEL_DECL_UID (dest
);
970 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
972 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
975 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
976 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
979 make_abnormal_goto_edges (basic_block bb
, bool for_call
)
981 basic_block target_bb
;
982 gimple_stmt_iterator gsi
;
984 FOR_EACH_BB (target_bb
)
985 for (gsi
= gsi_start_bb (target_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
987 gimple label_stmt
= gsi_stmt (gsi
);
990 if (gimple_code (label_stmt
) != GIMPLE_LABEL
)
993 target
= gimple_label_label (label_stmt
);
995 /* Make an edge to every label block that has been marked as a
996 potential target for a computed goto or a non-local goto. */
997 if ((FORCED_LABEL (target
) && !for_call
)
998 || (DECL_NONLOCAL (target
) && for_call
))
1000 make_edge (bb
, target_bb
, EDGE_ABNORMAL
);
1006 /* Create edges for a goto statement at block BB. */
1009 make_goto_expr_edges (basic_block bb
)
1011 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1012 gimple goto_t
= gsi_stmt (last
);
1014 /* A simple GOTO creates normal edges. */
1015 if (simple_goto_p (goto_t
))
1017 tree dest
= gimple_goto_dest (goto_t
);
1018 basic_block label_bb
= label_to_block (dest
);
1019 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1020 e
->goto_locus
= gimple_location (goto_t
);
1021 assign_discriminator (e
->goto_locus
, label_bb
);
1022 gsi_remove (&last
, true);
1026 /* A computed GOTO creates abnormal edges. */
1027 make_abnormal_goto_edges (bb
, false);
1030 /* Create edges for an asm statement with labels at block BB. */
1033 make_gimple_asm_edges (basic_block bb
)
1035 gimple stmt
= last_stmt (bb
);
1036 location_t stmt_loc
= gimple_location (stmt
);
1037 int i
, n
= gimple_asm_nlabels (stmt
);
1039 for (i
= 0; i
< n
; ++i
)
1041 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1042 basic_block label_bb
= label_to_block (label
);
1043 make_edge (bb
, label_bb
, 0);
1044 assign_discriminator (stmt_loc
, label_bb
);
1048 /*---------------------------------------------------------------------------
1050 ---------------------------------------------------------------------------*/
1052 /* Cleanup useless labels in basic blocks. This is something we wish
1053 to do early because it allows us to group case labels before creating
1054 the edges for the CFG, and it speeds up block statement iterators in
1055 all passes later on.
1056 We rerun this pass after CFG is created, to get rid of the labels that
1057 are no longer referenced. After then we do not run it any more, since
1058 (almost) no new labels should be created. */
1060 /* A map from basic block index to the leading label of that block. */
1061 static struct label_record
1066 /* True if the label is referenced from somewhere. */
1070 /* Given LABEL return the first label in the same basic block. */
1073 main_block_label (tree label
)
1075 basic_block bb
= label_to_block (label
);
1076 tree main_label
= label_for_bb
[bb
->index
].label
;
1078 /* label_to_block possibly inserted undefined label into the chain. */
1081 label_for_bb
[bb
->index
].label
= label
;
1085 label_for_bb
[bb
->index
].used
= true;
1089 /* Clean up redundant labels within the exception tree. */
1092 cleanup_dead_labels_eh (void)
1099 if (cfun
->eh
== NULL
)
1102 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1103 if (lp
&& lp
->post_landing_pad
)
1105 lab
= main_block_label (lp
->post_landing_pad
);
1106 if (lab
!= lp
->post_landing_pad
)
1108 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1109 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1113 FOR_ALL_EH_REGION (r
)
1117 case ERT_MUST_NOT_THROW
:
1123 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1127 c
->label
= main_block_label (lab
);
1132 case ERT_ALLOWED_EXCEPTIONS
:
1133 lab
= r
->u
.allowed
.label
;
1135 r
->u
.allowed
.label
= main_block_label (lab
);
1141 /* Cleanup redundant labels. This is a three-step process:
1142 1) Find the leading label for each block.
1143 2) Redirect all references to labels to the leading labels.
1144 3) Cleanup all useless labels. */
1147 cleanup_dead_labels (void)
1150 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block
);
1152 /* Find a suitable label for each block. We use the first user-defined
1153 label if there is one, or otherwise just the first label we see. */
1156 gimple_stmt_iterator i
;
1158 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1161 gimple stmt
= gsi_stmt (i
);
1163 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1166 label
= gimple_label_label (stmt
);
1168 /* If we have not yet seen a label for the current block,
1169 remember this one and see if there are more labels. */
1170 if (!label_for_bb
[bb
->index
].label
)
1172 label_for_bb
[bb
->index
].label
= label
;
1176 /* If we did see a label for the current block already, but it
1177 is an artificially created label, replace it if the current
1178 label is a user defined label. */
1179 if (!DECL_ARTIFICIAL (label
)
1180 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1182 label_for_bb
[bb
->index
].label
= label
;
1188 /* Now redirect all jumps/branches to the selected label.
1189 First do so for each block ending in a control statement. */
1192 gimple stmt
= last_stmt (bb
);
1193 tree label
, new_label
;
1198 switch (gimple_code (stmt
))
1201 label
= gimple_cond_true_label (stmt
);
1204 new_label
= main_block_label (label
);
1205 if (new_label
!= label
)
1206 gimple_cond_set_true_label (stmt
, new_label
);
1209 label
= gimple_cond_false_label (stmt
);
1212 new_label
= main_block_label (label
);
1213 if (new_label
!= label
)
1214 gimple_cond_set_false_label (stmt
, new_label
);
1220 size_t i
, n
= gimple_switch_num_labels (stmt
);
1222 /* Replace all destination labels. */
1223 for (i
= 0; i
< n
; ++i
)
1225 tree case_label
= gimple_switch_label (stmt
, i
);
1226 label
= CASE_LABEL (case_label
);
1227 new_label
= main_block_label (label
);
1228 if (new_label
!= label
)
1229 CASE_LABEL (case_label
) = new_label
;
1236 int i
, n
= gimple_asm_nlabels (stmt
);
1238 for (i
= 0; i
< n
; ++i
)
1240 tree cons
= gimple_asm_label_op (stmt
, i
);
1241 tree label
= main_block_label (TREE_VALUE (cons
));
1242 TREE_VALUE (cons
) = label
;
1247 /* We have to handle gotos until they're removed, and we don't
1248 remove them until after we've created the CFG edges. */
1250 if (!computed_goto_p (stmt
))
1252 label
= gimple_goto_dest (stmt
);
1253 new_label
= main_block_label (label
);
1254 if (new_label
!= label
)
1255 gimple_goto_set_dest (stmt
, new_label
);
1259 case GIMPLE_TRANSACTION
:
1261 tree label
= gimple_transaction_label (stmt
);
1264 tree new_label
= main_block_label (label
);
1265 if (new_label
!= label
)
1266 gimple_transaction_set_label (stmt
, new_label
);
1276 /* Do the same for the exception region tree labels. */
1277 cleanup_dead_labels_eh ();
1279 /* Finally, purge dead labels. All user-defined labels and labels that
1280 can be the target of non-local gotos and labels which have their
1281 address taken are preserved. */
1284 gimple_stmt_iterator i
;
1285 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1287 if (!label_for_this_bb
)
1290 /* If the main label of the block is unused, we may still remove it. */
1291 if (!label_for_bb
[bb
->index
].used
)
1292 label_for_this_bb
= NULL
;
1294 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1297 gimple stmt
= gsi_stmt (i
);
1299 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1302 label
= gimple_label_label (stmt
);
1304 if (label
== label_for_this_bb
1305 || !DECL_ARTIFICIAL (label
)
1306 || DECL_NONLOCAL (label
)
1307 || FORCED_LABEL (label
))
1310 gsi_remove (&i
, true);
1314 free (label_for_bb
);
1317 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1318 the ones jumping to the same label.
1319 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1322 group_case_labels_stmt (gimple stmt
)
1324 int old_size
= gimple_switch_num_labels (stmt
);
1325 int i
, j
, new_size
= old_size
;
1326 basic_block default_bb
= NULL
;
1328 default_bb
= label_to_block (CASE_LABEL (gimple_switch_default_label (stmt
)));
1330 /* Look for possible opportunities to merge cases. */
1332 while (i
< old_size
)
1334 tree base_case
, base_high
;
1335 basic_block base_bb
;
1337 base_case
= gimple_switch_label (stmt
, i
);
1339 gcc_assert (base_case
);
1340 base_bb
= label_to_block (CASE_LABEL (base_case
));
1342 /* Discard cases that have the same destination as the
1344 if (base_bb
== default_bb
)
1346 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1352 base_high
= CASE_HIGH (base_case
)
1353 ? CASE_HIGH (base_case
)
1354 : CASE_LOW (base_case
);
1357 /* Try to merge case labels. Break out when we reach the end
1358 of the label vector or when we cannot merge the next case
1359 label with the current one. */
1360 while (i
< old_size
)
1362 tree merge_case
= gimple_switch_label (stmt
, i
);
1363 basic_block merge_bb
= label_to_block (CASE_LABEL (merge_case
));
1364 double_int bhp1
= tree_to_double_int (base_high
) + double_int_one
;
1366 /* Merge the cases if they jump to the same place,
1367 and their ranges are consecutive. */
1368 if (merge_bb
== base_bb
1369 && tree_to_double_int (CASE_LOW (merge_case
)) == bhp1
)
1371 base_high
= CASE_HIGH (merge_case
) ?
1372 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1373 CASE_HIGH (base_case
) = base_high
;
1374 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1383 /* Compress the case labels in the label vector, and adjust the
1384 length of the vector. */
1385 for (i
= 0, j
= 0; i
< new_size
; i
++)
1387 while (! gimple_switch_label (stmt
, j
))
1389 gimple_switch_set_label (stmt
, i
,
1390 gimple_switch_label (stmt
, j
++));
1393 gcc_assert (new_size
<= old_size
);
1394 gimple_switch_set_num_labels (stmt
, new_size
);
1397 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1398 and scan the sorted vector of cases. Combine the ones jumping to the
1402 group_case_labels (void)
1408 gimple stmt
= last_stmt (bb
);
1409 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1410 group_case_labels_stmt (stmt
);
1414 /* Checks whether we can merge block B into block A. */
1417 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1420 gimple_stmt_iterator gsi
;
1422 if (!single_succ_p (a
))
1425 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1428 if (single_succ (a
) != b
)
1431 if (!single_pred_p (b
))
1434 if (b
== EXIT_BLOCK_PTR
)
1437 /* If A ends by a statement causing exceptions or something similar, we
1438 cannot merge the blocks. */
1439 stmt
= last_stmt (a
);
1440 if (stmt
&& stmt_ends_bb_p (stmt
))
1443 /* Do not allow a block with only a non-local label to be merged. */
1445 && gimple_code (stmt
) == GIMPLE_LABEL
1446 && DECL_NONLOCAL (gimple_label_label (stmt
)))
1449 /* Examine the labels at the beginning of B. */
1450 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1453 stmt
= gsi_stmt (gsi
);
1454 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1456 lab
= gimple_label_label (stmt
);
1458 /* Do not remove user forced labels or for -O0 any user labels. */
1459 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1463 /* Protect the loop latches. */
1464 if (current_loops
&& b
->loop_father
->latch
== b
)
1467 /* It must be possible to eliminate all phi nodes in B. If ssa form
1468 is not up-to-date and a name-mapping is registered, we cannot eliminate
1469 any phis. Symbols marked for renaming are never a problem though. */
1470 for (gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1472 gimple phi
= gsi_stmt (gsi
);
1473 /* Technically only new names matter. */
1474 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1478 /* When not optimizing, don't merge if we'd lose goto_locus. */
1480 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1482 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1483 gimple_stmt_iterator prev
, next
;
1484 prev
= gsi_last_nondebug_bb (a
);
1485 next
= gsi_after_labels (b
);
1486 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1487 gsi_next_nondebug (&next
);
1488 if ((gsi_end_p (prev
)
1489 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1490 && (gsi_end_p (next
)
1491 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1498 /* Return true if the var whose chain of uses starts at PTR has no
1501 has_zero_uses_1 (const ssa_use_operand_t
*head
)
1503 const ssa_use_operand_t
*ptr
;
1505 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1506 if (!is_gimple_debug (USE_STMT (ptr
)))
1512 /* Return true if the var whose chain of uses starts at PTR has a
1513 single nondebug use. Set USE_P and STMT to that single nondebug
1514 use, if so, or to NULL otherwise. */
1516 single_imm_use_1 (const ssa_use_operand_t
*head
,
1517 use_operand_p
*use_p
, gimple
*stmt
)
1519 ssa_use_operand_t
*ptr
, *single_use
= 0;
1521 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1522 if (!is_gimple_debug (USE_STMT (ptr
)))
1533 *use_p
= single_use
;
1536 *stmt
= single_use
? single_use
->loc
.stmt
: NULL
;
1538 return !!single_use
;
1541 /* Replaces all uses of NAME by VAL. */
1544 replace_uses_by (tree name
, tree val
)
1546 imm_use_iterator imm_iter
;
1551 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1553 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1555 replace_exp (use
, val
);
1557 if (gimple_code (stmt
) == GIMPLE_PHI
)
1559 e
= gimple_phi_arg_edge (stmt
, PHI_ARG_INDEX_FROM_USE (use
));
1560 if (e
->flags
& EDGE_ABNORMAL
)
1562 /* This can only occur for virtual operands, since
1563 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1564 would prevent replacement. */
1565 gcc_checking_assert (virtual_operand_p (name
));
1566 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1571 if (gimple_code (stmt
) != GIMPLE_PHI
)
1573 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1574 gimple orig_stmt
= stmt
;
1577 /* Mark the block if we changed the last stmt in it. */
1578 if (cfgcleanup_altered_bbs
1579 && stmt_ends_bb_p (stmt
))
1580 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1582 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1583 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1584 only change sth from non-invariant to invariant, and only
1585 when propagating constants. */
1586 if (is_gimple_min_invariant (val
))
1587 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1589 tree op
= gimple_op (stmt
, i
);
1590 /* Operands may be empty here. For example, the labels
1591 of a GIMPLE_COND are nulled out following the creation
1592 of the corresponding CFG edges. */
1593 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1594 recompute_tree_invariant_for_addr_expr (op
);
1597 if (fold_stmt (&gsi
))
1598 stmt
= gsi_stmt (gsi
);
1600 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
1601 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
1607 gcc_checking_assert (has_zero_uses (name
));
1609 /* Also update the trees stored in loop structures. */
1615 FOR_EACH_LOOP (li
, loop
, 0)
1617 substitute_in_loop_info (loop
, name
, val
);
1622 /* Merge block B into block A. */
1625 gimple_merge_blocks (basic_block a
, basic_block b
)
1627 gimple_stmt_iterator last
, gsi
, psi
;
1630 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1632 /* Remove all single-valued PHI nodes from block B of the form
1633 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1634 gsi
= gsi_last_bb (a
);
1635 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
1637 gimple phi
= gsi_stmt (psi
);
1638 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1640 bool may_replace_uses
= (virtual_operand_p (def
)
1641 || may_propagate_copy (def
, use
));
1643 /* In case we maintain loop closed ssa form, do not propagate arguments
1644 of loop exit phi nodes. */
1646 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1647 && !virtual_operand_p (def
)
1648 && TREE_CODE (use
) == SSA_NAME
1649 && a
->loop_father
!= b
->loop_father
)
1650 may_replace_uses
= false;
1652 if (!may_replace_uses
)
1654 gcc_assert (!virtual_operand_p (def
));
1656 /* Note that just emitting the copies is fine -- there is no problem
1657 with ordering of phi nodes. This is because A is the single
1658 predecessor of B, therefore results of the phi nodes cannot
1659 appear as arguments of the phi nodes. */
1660 copy
= gimple_build_assign (def
, use
);
1661 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
1662 remove_phi_node (&psi
, false);
1666 /* If we deal with a PHI for virtual operands, we can simply
1667 propagate these without fussing with folding or updating
1669 if (virtual_operand_p (def
))
1671 imm_use_iterator iter
;
1672 use_operand_p use_p
;
1675 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
1676 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
1677 SET_USE (use_p
, use
);
1679 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
1680 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
1683 replace_uses_by (def
, use
);
1685 remove_phi_node (&psi
, true);
1689 /* Ensure that B follows A. */
1690 move_block_after (b
, a
);
1692 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
1693 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
1695 /* Remove labels from B and set gimple_bb to A for other statements. */
1696 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
1698 gimple stmt
= gsi_stmt (gsi
);
1699 if (gimple_code (stmt
) == GIMPLE_LABEL
)
1701 tree label
= gimple_label_label (stmt
);
1704 gsi_remove (&gsi
, false);
1706 /* Now that we can thread computed gotos, we might have
1707 a situation where we have a forced label in block B
1708 However, the label at the start of block B might still be
1709 used in other ways (think about the runtime checking for
1710 Fortran assigned gotos). So we can not just delete the
1711 label. Instead we move the label to the start of block A. */
1712 if (FORCED_LABEL (label
))
1714 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
1715 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
1717 /* Other user labels keep around in a form of a debug stmt. */
1718 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_STMTS
)
1720 gimple dbg
= gimple_build_debug_bind (label
,
1723 gimple_debug_bind_reset_value (dbg
);
1724 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
1727 lp_nr
= EH_LANDING_PAD_NR (label
);
1730 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
1731 lp
->post_landing_pad
= NULL
;
1736 gimple_set_bb (stmt
, a
);
1741 /* Merge the sequences. */
1742 last
= gsi_last_bb (a
);
1743 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
1744 set_bb_seq (b
, NULL
);
1746 if (cfgcleanup_altered_bbs
)
1747 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
1751 /* Return the one of two successors of BB that is not reachable by a
1752 complex edge, if there is one. Else, return BB. We use
1753 this in optimizations that use post-dominators for their heuristics,
1754 to catch the cases in C++ where function calls are involved. */
1757 single_noncomplex_succ (basic_block bb
)
1760 if (EDGE_COUNT (bb
->succs
) != 2)
1763 e0
= EDGE_SUCC (bb
, 0);
1764 e1
= EDGE_SUCC (bb
, 1);
1765 if (e0
->flags
& EDGE_COMPLEX
)
1767 if (e1
->flags
& EDGE_COMPLEX
)
1773 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1776 notice_special_calls (gimple call
)
1778 int flags
= gimple_call_flags (call
);
1780 if (flags
& ECF_MAY_BE_ALLOCA
)
1781 cfun
->calls_alloca
= true;
1782 if (flags
& ECF_RETURNS_TWICE
)
1783 cfun
->calls_setjmp
= true;
1787 /* Clear flags set by notice_special_calls. Used by dead code removal
1788 to update the flags. */
1791 clear_special_calls (void)
1793 cfun
->calls_alloca
= false;
1794 cfun
->calls_setjmp
= false;
1797 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1800 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
1802 /* Since this block is no longer reachable, we can just delete all
1803 of its PHI nodes. */
1804 remove_phi_nodes (bb
);
1806 /* Remove edges to BB's successors. */
1807 while (EDGE_COUNT (bb
->succs
) > 0)
1808 remove_edge (EDGE_SUCC (bb
, 0));
1812 /* Remove statements of basic block BB. */
1815 remove_bb (basic_block bb
)
1817 gimple_stmt_iterator i
;
1821 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
1822 if (dump_flags
& TDF_DETAILS
)
1824 dump_bb (dump_file
, bb
, 0, dump_flags
);
1825 fprintf (dump_file
, "\n");
1831 struct loop
*loop
= bb
->loop_father
;
1833 /* If a loop gets removed, clean up the information associated
1835 if (loop
->latch
== bb
1836 || loop
->header
== bb
)
1837 free_numbers_of_iterations_estimates_loop (loop
);
1840 /* Remove all the instructions in the block. */
1841 if (bb_seq (bb
) != NULL
)
1843 /* Walk backwards so as to get a chance to substitute all
1844 released DEFs into debug stmts. See
1845 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1847 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
1849 gimple stmt
= gsi_stmt (i
);
1850 if (gimple_code (stmt
) == GIMPLE_LABEL
1851 && (FORCED_LABEL (gimple_label_label (stmt
))
1852 || DECL_NONLOCAL (gimple_label_label (stmt
))))
1855 gimple_stmt_iterator new_gsi
;
1857 /* A non-reachable non-local label may still be referenced.
1858 But it no longer needs to carry the extra semantics of
1860 if (DECL_NONLOCAL (gimple_label_label (stmt
)))
1862 DECL_NONLOCAL (gimple_label_label (stmt
)) = 0;
1863 FORCED_LABEL (gimple_label_label (stmt
)) = 1;
1866 new_bb
= bb
->prev_bb
;
1867 new_gsi
= gsi_start_bb (new_bb
);
1868 gsi_remove (&i
, false);
1869 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
1873 /* Release SSA definitions if we are in SSA. Note that we
1874 may be called when not in SSA. For example,
1875 final_cleanup calls this function via
1876 cleanup_tree_cfg. */
1877 if (gimple_in_ssa_p (cfun
))
1878 release_defs (stmt
);
1880 gsi_remove (&i
, true);
1884 i
= gsi_last_bb (bb
);
1890 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
1891 bb
->il
.gimple
.seq
= NULL
;
1892 bb
->il
.gimple
.phi_nodes
= NULL
;
1896 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1897 predicate VAL, return the edge that will be taken out of the block.
1898 If VAL does not match a unique edge, NULL is returned. */
1901 find_taken_edge (basic_block bb
, tree val
)
1905 stmt
= last_stmt (bb
);
1908 gcc_assert (is_ctrl_stmt (stmt
));
1913 if (!is_gimple_min_invariant (val
))
1916 if (gimple_code (stmt
) == GIMPLE_COND
)
1917 return find_taken_edge_cond_expr (bb
, val
);
1919 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1920 return find_taken_edge_switch_expr (bb
, val
);
1922 if (computed_goto_p (stmt
))
1924 /* Only optimize if the argument is a label, if the argument is
1925 not a label then we can not construct a proper CFG.
1927 It may be the case that we only need to allow the LABEL_REF to
1928 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1929 appear inside a LABEL_EXPR just to be safe. */
1930 if ((TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
1931 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
1932 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
1939 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1940 statement, determine which of the outgoing edges will be taken out of the
1941 block. Return NULL if either edge may be taken. */
1944 find_taken_edge_computed_goto (basic_block bb
, tree val
)
1949 dest
= label_to_block (val
);
1952 e
= find_edge (bb
, dest
);
1953 gcc_assert (e
!= NULL
);
1959 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1960 statement, determine which of the two edges will be taken out of the
1961 block. Return NULL if either edge may be taken. */
1964 find_taken_edge_cond_expr (basic_block bb
, tree val
)
1966 edge true_edge
, false_edge
;
1968 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
1970 gcc_assert (TREE_CODE (val
) == INTEGER_CST
);
1971 return (integer_zerop (val
) ? false_edge
: true_edge
);
1974 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1975 statement, determine which edge will be taken out of the block. Return
1976 NULL if any edge may be taken. */
1979 find_taken_edge_switch_expr (basic_block bb
, tree val
)
1981 basic_block dest_bb
;
1986 switch_stmt
= last_stmt (bb
);
1987 taken_case
= find_case_label_for_value (switch_stmt
, val
);
1988 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
1990 e
= find_edge (bb
, dest_bb
);
1996 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1997 We can make optimal use here of the fact that the case labels are
1998 sorted: We can do a binary search for a case matching VAL. */
2001 find_case_label_for_value (gimple switch_stmt
, tree val
)
2003 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2004 tree default_case
= gimple_switch_default_label (switch_stmt
);
2006 for (low
= 0, high
= n
; high
- low
> 1; )
2008 size_t i
= (high
+ low
) / 2;
2009 tree t
= gimple_switch_label (switch_stmt
, i
);
2012 /* Cache the result of comparing CASE_LOW and val. */
2013 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2020 if (CASE_HIGH (t
) == NULL
)
2022 /* A singe-valued case label. */
2028 /* A case range. We can only handle integer ranges. */
2029 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2034 return default_case
;
2038 /* Dump a basic block on stderr. */
2041 gimple_debug_bb (basic_block bb
)
2043 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2047 /* Dump basic block with index N on stderr. */
2050 gimple_debug_bb_n (int n
)
2052 gimple_debug_bb (BASIC_BLOCK (n
));
2053 return BASIC_BLOCK (n
);
2057 /* Dump the CFG on stderr.
2059 FLAGS are the same used by the tree dumping functions
2060 (see TDF_* in dumpfile.h). */
2063 gimple_debug_cfg (int flags
)
2065 gimple_dump_cfg (stderr
, flags
);
2069 /* Dump the program showing basic block boundaries on the given FILE.
2071 FLAGS are the same used by the tree dumping functions (see TDF_* in
2075 gimple_dump_cfg (FILE *file
, int flags
)
2077 if (flags
& TDF_DETAILS
)
2079 dump_function_header (file
, current_function_decl
, flags
);
2080 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2081 n_basic_blocks
, n_edges
, last_basic_block
);
2083 brief_dump_cfg (file
, flags
| TDF_COMMENT
);
2084 fprintf (file
, "\n");
2087 if (flags
& TDF_STATS
)
2088 dump_cfg_stats (file
);
2090 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2094 /* Dump CFG statistics on FILE. */
2097 dump_cfg_stats (FILE *file
)
2099 static long max_num_merged_labels
= 0;
2100 unsigned long size
, total
= 0;
2103 const char * const fmt_str
= "%-30s%-13s%12s\n";
2104 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2105 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2106 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2107 const char *funcname
= current_function_name ();
2109 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2111 fprintf (file
, "---------------------------------------------------------\n");
2112 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2113 fprintf (file
, fmt_str
, "", " instances ", "used ");
2114 fprintf (file
, "---------------------------------------------------------\n");
2116 size
= n_basic_blocks
* sizeof (struct basic_block_def
);
2118 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks
,
2119 SCALE (size
), LABEL (size
));
2123 num_edges
+= EDGE_COUNT (bb
->succs
);
2124 size
= num_edges
* sizeof (struct edge_def
);
2126 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2128 fprintf (file
, "---------------------------------------------------------\n");
2129 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2131 fprintf (file
, "---------------------------------------------------------\n");
2132 fprintf (file
, "\n");
2134 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2135 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2137 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2138 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2140 fprintf (file
, "\n");
2144 /* Dump CFG statistics on stderr. Keep extern so that it's always
2145 linked in the final executable. */
2148 debug_cfg_stats (void)
2150 dump_cfg_stats (stderr
);
2154 /* Dump the flowgraph to a .vcg FILE. */
2157 gimple_cfg2vcg (FILE *file
)
2162 const char *funcname
= current_function_name ();
2164 /* Write the file header. */
2165 fprintf (file
, "graph: { title: \"%s\"\n", funcname
);
2166 fprintf (file
, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2167 fprintf (file
, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2169 /* Write blocks and edges. */
2170 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
2172 fprintf (file
, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2175 if (e
->flags
& EDGE_FAKE
)
2176 fprintf (file
, " linestyle: dotted priority: 10");
2178 fprintf (file
, " linestyle: solid priority: 100");
2180 fprintf (file
, " }\n");
2186 enum gimple_code head_code
, end_code
;
2187 const char *head_name
, *end_name
;
2190 gimple first
= first_stmt (bb
);
2191 gimple last
= last_stmt (bb
);
2195 head_code
= gimple_code (first
);
2196 head_name
= gimple_code_name
[head_code
];
2197 head_line
= get_lineno (first
);
2200 head_name
= "no-statement";
2204 end_code
= gimple_code (last
);
2205 end_name
= gimple_code_name
[end_code
];
2206 end_line
= get_lineno (last
);
2209 end_name
= "no-statement";
2211 fprintf (file
, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2212 bb
->index
, bb
->index
, head_name
, head_line
, end_name
,
2215 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2217 if (e
->dest
== EXIT_BLOCK_PTR
)
2218 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb
->index
);
2220 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb
->index
, e
->dest
->index
);
2222 if (e
->flags
& EDGE_FAKE
)
2223 fprintf (file
, " priority: 10 linestyle: dotted");
2225 fprintf (file
, " priority: 100 linestyle: solid");
2227 fprintf (file
, " }\n");
2230 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
2234 fputs ("}\n\n", file
);
2239 /*---------------------------------------------------------------------------
2240 Miscellaneous helpers
2241 ---------------------------------------------------------------------------*/
2243 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2244 flow. Transfers of control flow associated with EH are excluded. */
2247 call_can_make_abnormal_goto (gimple t
)
2249 /* If the function has no non-local labels, then a call cannot make an
2250 abnormal transfer of control. */
2251 if (!cfun
->has_nonlocal_label
)
2254 /* Likewise if the call has no side effects. */
2255 if (!gimple_has_side_effects (t
))
2258 /* Likewise if the called function is leaf. */
2259 if (gimple_call_flags (t
) & ECF_LEAF
)
2266 /* Return true if T can make an abnormal transfer of control flow.
2267 Transfers of control flow associated with EH are excluded. */
2270 stmt_can_make_abnormal_goto (gimple t
)
2272 if (computed_goto_p (t
))
2274 if (is_gimple_call (t
))
2275 return call_can_make_abnormal_goto (t
);
2280 /* Return true if T represents a stmt that always transfers control. */
2283 is_ctrl_stmt (gimple t
)
2285 switch (gimple_code (t
))
2299 /* Return true if T is a statement that may alter the flow of control
2300 (e.g., a call to a non-returning function). */
2303 is_ctrl_altering_stmt (gimple t
)
2307 switch (gimple_code (t
))
2311 int flags
= gimple_call_flags (t
);
2313 /* A call alters control flow if it can make an abnormal goto. */
2314 if (call_can_make_abnormal_goto (t
))
2317 /* A call also alters control flow if it does not return. */
2318 if (flags
& ECF_NORETURN
)
2321 /* TM ending statements have backedges out of the transaction.
2322 Return true so we split the basic block containing them.
2323 Note that the TM_BUILTIN test is merely an optimization. */
2324 if ((flags
& ECF_TM_BUILTIN
)
2325 && is_tm_ending_fndecl (gimple_call_fndecl (t
)))
2328 /* BUILT_IN_RETURN call is same as return statement. */
2329 if (gimple_call_builtin_p (t
, BUILT_IN_RETURN
))
2334 case GIMPLE_EH_DISPATCH
:
2335 /* EH_DISPATCH branches to the individual catch handlers at
2336 this level of a try or allowed-exceptions region. It can
2337 fallthru to the next statement as well. */
2341 if (gimple_asm_nlabels (t
) > 0)
2346 /* OpenMP directives alter control flow. */
2349 case GIMPLE_TRANSACTION
:
2350 /* A transaction start alters control flow. */
2357 /* If a statement can throw, it alters control flow. */
2358 return stmt_can_throw_internal (t
);
2362 /* Return true if T is a simple local goto. */
2365 simple_goto_p (gimple t
)
2367 return (gimple_code (t
) == GIMPLE_GOTO
2368 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2372 /* Return true if STMT should start a new basic block. PREV_STMT is
2373 the statement preceding STMT. It is used when STMT is a label or a
2374 case label. Labels should only start a new basic block if their
2375 previous statement wasn't a label. Otherwise, sequence of labels
2376 would generate unnecessary basic blocks that only contain a single
2380 stmt_starts_bb_p (gimple stmt
, gimple prev_stmt
)
2385 /* Labels start a new basic block only if the preceding statement
2386 wasn't a label of the same type. This prevents the creation of
2387 consecutive blocks that have nothing but a single label. */
2388 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2390 /* Nonlocal and computed GOTO targets always start a new block. */
2391 if (DECL_NONLOCAL (gimple_label_label (stmt
))
2392 || FORCED_LABEL (gimple_label_label (stmt
)))
2395 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2397 if (DECL_NONLOCAL (gimple_label_label (prev_stmt
)))
2400 cfg_stats
.num_merged_labels
++;
2411 /* Return true if T should end a basic block. */
2414 stmt_ends_bb_p (gimple t
)
2416 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2419 /* Remove block annotations and other data structures. */
2422 delete_tree_cfg_annotations (void)
2424 vec_free (label_to_block_map
);
2428 /* Return the first statement in basic block BB. */
2431 first_stmt (basic_block bb
)
2433 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2436 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2444 /* Return the first non-label statement in basic block BB. */
2447 first_non_label_stmt (basic_block bb
)
2449 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2450 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2452 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2455 /* Return the last statement in basic block BB. */
2458 last_stmt (basic_block bb
)
2460 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2463 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2471 /* Return the last statement of an otherwise empty block. Return NULL
2472 if the block is totally empty, or if it contains more than one
2476 last_and_only_stmt (basic_block bb
)
2478 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2484 last
= gsi_stmt (i
);
2485 gsi_prev_nondebug (&i
);
2489 /* Empty statements should no longer appear in the instruction stream.
2490 Everything that might have appeared before should be deleted by
2491 remove_useless_stmts, and the optimizers should just gsi_remove
2492 instead of smashing with build_empty_stmt.
2494 Thus the only thing that should appear here in a block containing
2495 one executable statement is a label. */
2496 prev
= gsi_stmt (i
);
2497 if (gimple_code (prev
) == GIMPLE_LABEL
)
2503 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2506 reinstall_phi_args (edge new_edge
, edge old_edge
)
2508 edge_var_map_vector
*v
;
2511 gimple_stmt_iterator phis
;
2513 v
= redirect_edge_var_map_vector (old_edge
);
2517 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2518 v
->iterate (i
, &vm
) && !gsi_end_p (phis
);
2519 i
++, gsi_next (&phis
))
2521 gimple phi
= gsi_stmt (phis
);
2522 tree result
= redirect_edge_var_map_result (vm
);
2523 tree arg
= redirect_edge_var_map_def (vm
);
2525 gcc_assert (result
== gimple_phi_result (phi
));
2527 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2530 redirect_edge_var_map_clear (old_edge
);
2533 /* Returns the basic block after which the new basic block created
2534 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2535 near its "logical" location. This is of most help to humans looking
2536 at debugging dumps. */
2539 split_edge_bb_loc (edge edge_in
)
2541 basic_block dest
= edge_in
->dest
;
2542 basic_block dest_prev
= dest
->prev_bb
;
2546 edge e
= find_edge (dest_prev
, dest
);
2547 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2548 return edge_in
->src
;
2553 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2554 Abort on abnormal edges. */
2557 gimple_split_edge (edge edge_in
)
2559 basic_block new_bb
, after_bb
, dest
;
2562 /* Abnormal edges cannot be split. */
2563 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2565 dest
= edge_in
->dest
;
2567 after_bb
= split_edge_bb_loc (edge_in
);
2569 new_bb
= create_empty_bb (after_bb
);
2570 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2571 new_bb
->count
= edge_in
->count
;
2572 new_edge
= make_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2573 new_edge
->probability
= REG_BR_PROB_BASE
;
2574 new_edge
->count
= edge_in
->count
;
2576 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2577 gcc_assert (e
== edge_in
);
2578 reinstall_phi_args (new_edge
, e
);
2584 /* Verify properties of the address expression T with base object BASE. */
2587 verify_address (tree t
, tree base
)
2590 bool old_side_effects
;
2592 bool new_side_effects
;
2594 old_constant
= TREE_CONSTANT (t
);
2595 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2597 recompute_tree_invariant_for_addr_expr (t
);
2598 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2599 new_constant
= TREE_CONSTANT (t
);
2601 if (old_constant
!= new_constant
)
2603 error ("constant not recomputed when ADDR_EXPR changed");
2606 if (old_side_effects
!= new_side_effects
)
2608 error ("side effects not recomputed when ADDR_EXPR changed");
2612 if (!(TREE_CODE (base
) == VAR_DECL
2613 || TREE_CODE (base
) == PARM_DECL
2614 || TREE_CODE (base
) == RESULT_DECL
))
2617 if (DECL_GIMPLE_REG_P (base
))
2619 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2626 /* Callback for walk_tree, check that all elements with address taken are
2627 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2628 inside a PHI node. */
2631 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2638 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2639 #define CHECK_OP(N, MSG) \
2640 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2641 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2643 switch (TREE_CODE (t
))
2646 if (SSA_NAME_IN_FREE_LIST (t
))
2648 error ("SSA name in freelist but still referenced");
2654 error ("INDIRECT_REF in gimple IL");
2658 x
= TREE_OPERAND (t
, 0);
2659 if (!POINTER_TYPE_P (TREE_TYPE (x
))
2660 || !is_gimple_mem_ref_addr (x
))
2662 error ("invalid first operand of MEM_REF");
2665 if (TREE_CODE (TREE_OPERAND (t
, 1)) != INTEGER_CST
2666 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
2668 error ("invalid offset operand of MEM_REF");
2669 return TREE_OPERAND (t
, 1);
2671 if (TREE_CODE (x
) == ADDR_EXPR
2672 && (x
= verify_address (x
, TREE_OPERAND (x
, 0))))
2678 x
= fold (ASSERT_EXPR_COND (t
));
2679 if (x
== boolean_false_node
)
2681 error ("ASSERT_EXPR with an always-false condition");
2687 error ("MODIFY_EXPR not expected while having tuples");
2694 gcc_assert (is_gimple_address (t
));
2696 /* Skip any references (they will be checked when we recurse down the
2697 tree) and ensure that any variable used as a prefix is marked
2699 for (x
= TREE_OPERAND (t
, 0);
2700 handled_component_p (x
);
2701 x
= TREE_OPERAND (x
, 0))
2704 if ((tem
= verify_address (t
, x
)))
2707 if (!(TREE_CODE (x
) == VAR_DECL
2708 || TREE_CODE (x
) == PARM_DECL
2709 || TREE_CODE (x
) == RESULT_DECL
))
2712 if (!TREE_ADDRESSABLE (x
))
2714 error ("address taken, but ADDRESSABLE bit not set");
2722 x
= COND_EXPR_COND (t
);
2723 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
2725 error ("non-integral used in condition");
2728 if (!is_gimple_condexpr (x
))
2730 error ("invalid conditional operand");
2735 case NON_LVALUE_EXPR
:
2736 case TRUTH_NOT_EXPR
:
2740 case FIX_TRUNC_EXPR
:
2745 CHECK_OP (0, "invalid operand to unary operator");
2752 case ARRAY_RANGE_REF
:
2754 case VIEW_CONVERT_EXPR
:
2755 /* We have a nest of references. Verify that each of the operands
2756 that determine where to reference is either a constant or a variable,
2757 verify that the base is valid, and then show we've already checked
2759 while (handled_component_p (t
))
2761 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
2762 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2763 else if (TREE_CODE (t
) == ARRAY_REF
2764 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
2766 CHECK_OP (1, "invalid array index");
2767 if (TREE_OPERAND (t
, 2))
2768 CHECK_OP (2, "invalid array lower bound");
2769 if (TREE_OPERAND (t
, 3))
2770 CHECK_OP (3, "invalid array stride");
2772 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
2774 if (!host_integerp (TREE_OPERAND (t
, 1), 1)
2775 || !host_integerp (TREE_OPERAND (t
, 2), 1))
2777 error ("invalid position or size operand to BIT_FIELD_REF");
2780 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
2781 && (TYPE_PRECISION (TREE_TYPE (t
))
2782 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2784 error ("integral result type precision does not match "
2785 "field size of BIT_FIELD_REF");
2788 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
2789 && !AGGREGATE_TYPE_P (TREE_TYPE (t
))
2790 && TYPE_MODE (TREE_TYPE (t
)) != BLKmode
2791 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t
)))
2792 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2794 error ("mode precision of non-integral result does not "
2795 "match field size of BIT_FIELD_REF");
2800 t
= TREE_OPERAND (t
, 0);
2803 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
2805 error ("invalid reference prefix");
2812 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2813 POINTER_PLUS_EXPR. */
2814 if (POINTER_TYPE_P (TREE_TYPE (t
)))
2816 error ("invalid operand to plus/minus, type is a pointer");
2819 CHECK_OP (0, "invalid operand to binary operator");
2820 CHECK_OP (1, "invalid operand to binary operator");
2823 case POINTER_PLUS_EXPR
:
2824 /* Check to make sure the first operand is a pointer or reference type. */
2825 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
2827 error ("invalid operand to pointer plus, first operand is not a pointer");
2830 /* Check to make sure the second operand is a ptrofftype. */
2831 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t
, 1))))
2833 error ("invalid operand to pointer plus, second operand is not an "
2834 "integer type of appropriate width");
2844 case UNORDERED_EXPR
:
2853 case TRUNC_DIV_EXPR
:
2855 case FLOOR_DIV_EXPR
:
2856 case ROUND_DIV_EXPR
:
2857 case TRUNC_MOD_EXPR
:
2859 case FLOOR_MOD_EXPR
:
2860 case ROUND_MOD_EXPR
:
2862 case EXACT_DIV_EXPR
:
2872 CHECK_OP (0, "invalid operand to binary operator");
2873 CHECK_OP (1, "invalid operand to binary operator");
2877 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
2881 case CASE_LABEL_EXPR
:
2884 error ("invalid CASE_CHAIN");
2898 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2899 Returns true if there is an error, otherwise false. */
2902 verify_types_in_gimple_min_lval (tree expr
)
2906 if (is_gimple_id (expr
))
2909 if (TREE_CODE (expr
) != TARGET_MEM_REF
2910 && TREE_CODE (expr
) != MEM_REF
)
2912 error ("invalid expression for min lvalue");
2916 /* TARGET_MEM_REFs are strange beasts. */
2917 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2920 op
= TREE_OPERAND (expr
, 0);
2921 if (!is_gimple_val (op
))
2923 error ("invalid operand in indirect reference");
2924 debug_generic_stmt (op
);
2927 /* Memory references now generally can involve a value conversion. */
2932 /* Verify if EXPR is a valid GIMPLE reference expression. If
2933 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2934 if there is an error, otherwise false. */
2937 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
2939 while (handled_component_p (expr
))
2941 tree op
= TREE_OPERAND (expr
, 0);
2943 if (TREE_CODE (expr
) == ARRAY_REF
2944 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
2946 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
2947 || (TREE_OPERAND (expr
, 2)
2948 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
2949 || (TREE_OPERAND (expr
, 3)
2950 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
2952 error ("invalid operands to array reference");
2953 debug_generic_stmt (expr
);
2958 /* Verify if the reference array element types are compatible. */
2959 if (TREE_CODE (expr
) == ARRAY_REF
2960 && !useless_type_conversion_p (TREE_TYPE (expr
),
2961 TREE_TYPE (TREE_TYPE (op
))))
2963 error ("type mismatch in array reference");
2964 debug_generic_stmt (TREE_TYPE (expr
));
2965 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2968 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
2969 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
2970 TREE_TYPE (TREE_TYPE (op
))))
2972 error ("type mismatch in array range reference");
2973 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
2974 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2978 if ((TREE_CODE (expr
) == REALPART_EXPR
2979 || TREE_CODE (expr
) == IMAGPART_EXPR
)
2980 && !useless_type_conversion_p (TREE_TYPE (expr
),
2981 TREE_TYPE (TREE_TYPE (op
))))
2983 error ("type mismatch in real/imagpart reference");
2984 debug_generic_stmt (TREE_TYPE (expr
));
2985 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2989 if (TREE_CODE (expr
) == COMPONENT_REF
2990 && !useless_type_conversion_p (TREE_TYPE (expr
),
2991 TREE_TYPE (TREE_OPERAND (expr
, 1))))
2993 error ("type mismatch in component reference");
2994 debug_generic_stmt (TREE_TYPE (expr
));
2995 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
2999 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3001 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3002 that their operand is not an SSA name or an invariant when
3003 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3004 bug). Otherwise there is nothing to verify, gross mismatches at
3005 most invoke undefined behavior. */
3007 && (TREE_CODE (op
) == SSA_NAME
3008 || is_gimple_min_invariant (op
)))
3010 error ("conversion of an SSA_NAME on the left hand side");
3011 debug_generic_stmt (expr
);
3014 else if (TREE_CODE (op
) == SSA_NAME
3015 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
3017 error ("conversion of register to a different size");
3018 debug_generic_stmt (expr
);
3021 else if (!handled_component_p (op
))
3028 if (TREE_CODE (expr
) == MEM_REF
)
3030 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
3032 error ("invalid address operand in MEM_REF");
3033 debug_generic_stmt (expr
);
3036 if (TREE_CODE (TREE_OPERAND (expr
, 1)) != INTEGER_CST
3037 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
3039 error ("invalid offset operand in MEM_REF");
3040 debug_generic_stmt (expr
);
3044 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3046 if (!TMR_BASE (expr
)
3047 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
3049 error ("invalid address operand in TARGET_MEM_REF");
3052 if (!TMR_OFFSET (expr
)
3053 || TREE_CODE (TMR_OFFSET (expr
)) != INTEGER_CST
3054 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3056 error ("invalid offset operand in TARGET_MEM_REF");
3057 debug_generic_stmt (expr
);
3062 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3063 && verify_types_in_gimple_min_lval (expr
));
3066 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3067 list of pointer-to types that is trivially convertible to DEST. */
3070 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3074 if (!TYPE_POINTER_TO (src_obj
))
3077 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3078 if (useless_type_conversion_p (dest
, src
))
3084 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3085 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3088 valid_fixed_convert_types_p (tree type1
, tree type2
)
3090 return (FIXED_POINT_TYPE_P (type1
)
3091 && (INTEGRAL_TYPE_P (type2
)
3092 || SCALAR_FLOAT_TYPE_P (type2
)
3093 || FIXED_POINT_TYPE_P (type2
)));
3096 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3097 is a problem, otherwise false. */
3100 verify_gimple_call (gimple stmt
)
3102 tree fn
= gimple_call_fn (stmt
);
3103 tree fntype
, fndecl
;
3106 if (gimple_call_internal_p (stmt
))
3110 error ("gimple call has two targets");
3111 debug_generic_stmt (fn
);
3119 error ("gimple call has no target");
3124 if (fn
&& !is_gimple_call_addr (fn
))
3126 error ("invalid function in gimple call");
3127 debug_generic_stmt (fn
);
3132 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3133 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3134 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3136 error ("non-function in gimple call");
3140 fndecl
= gimple_call_fndecl (stmt
);
3142 && TREE_CODE (fndecl
) == FUNCTION_DECL
3143 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3144 && !DECL_PURE_P (fndecl
)
3145 && !TREE_READONLY (fndecl
))
3147 error ("invalid pure const state for function");
3151 if (gimple_call_lhs (stmt
)
3152 && (!is_gimple_lvalue (gimple_call_lhs (stmt
))
3153 || verify_types_in_gimple_reference (gimple_call_lhs (stmt
), true)))
3155 error ("invalid LHS in gimple call");
3159 if (gimple_call_lhs (stmt
) && gimple_call_noreturn_p (stmt
))
3161 error ("LHS in noreturn call");
3165 fntype
= gimple_call_fntype (stmt
);
3167 && gimple_call_lhs (stmt
)
3168 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt
)),
3170 /* ??? At least C++ misses conversions at assignments from
3171 void * call results.
3172 ??? Java is completely off. Especially with functions
3173 returning java.lang.Object.
3174 For now simply allow arbitrary pointer type conversions. */
3175 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt
)))
3176 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3178 error ("invalid conversion in gimple call");
3179 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt
)));
3180 debug_generic_stmt (TREE_TYPE (fntype
));
3184 if (gimple_call_chain (stmt
)
3185 && !is_gimple_val (gimple_call_chain (stmt
)))
3187 error ("invalid static chain in gimple call");
3188 debug_generic_stmt (gimple_call_chain (stmt
));
3192 /* If there is a static chain argument, this should not be an indirect
3193 call, and the decl should have DECL_STATIC_CHAIN set. */
3194 if (gimple_call_chain (stmt
))
3196 if (!gimple_call_fndecl (stmt
))
3198 error ("static chain in indirect gimple call");
3201 fn
= TREE_OPERAND (fn
, 0);
3203 if (!DECL_STATIC_CHAIN (fn
))
3205 error ("static chain with function that doesn%'t use one");
3210 /* ??? The C frontend passes unpromoted arguments in case it
3211 didn't see a function declaration before the call. So for now
3212 leave the call arguments mostly unverified. Once we gimplify
3213 unit-at-a-time we have a chance to fix this. */
3215 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3217 tree arg
= gimple_call_arg (stmt
, i
);
3218 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3219 && !is_gimple_val (arg
))
3220 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3221 && !is_gimple_lvalue (arg
)))
3223 error ("invalid argument to gimple call");
3224 debug_generic_expr (arg
);
3232 /* Verifies the gimple comparison with the result type TYPE and
3233 the operands OP0 and OP1. */
3236 verify_gimple_comparison (tree type
, tree op0
, tree op1
)
3238 tree op0_type
= TREE_TYPE (op0
);
3239 tree op1_type
= TREE_TYPE (op1
);
3241 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3243 error ("invalid operands in gimple comparison");
3247 /* For comparisons we do not have the operations type as the
3248 effective type the comparison is carried out in. Instead
3249 we require that either the first operand is trivially
3250 convertible into the second, or the other way around.
3251 Because we special-case pointers to void we allow
3252 comparisons of pointers with the same mode as well. */
3253 if (!useless_type_conversion_p (op0_type
, op1_type
)
3254 && !useless_type_conversion_p (op1_type
, op0_type
)
3255 && (!POINTER_TYPE_P (op0_type
)
3256 || !POINTER_TYPE_P (op1_type
)
3257 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3259 error ("mismatching comparison operand types");
3260 debug_generic_expr (op0_type
);
3261 debug_generic_expr (op1_type
);
3265 /* The resulting type of a comparison may be an effective boolean type. */
3266 if (INTEGRAL_TYPE_P (type
)
3267 && (TREE_CODE (type
) == BOOLEAN_TYPE
3268 || TYPE_PRECISION (type
) == 1))
3270 /* Or an integer vector type with the same size and element count
3271 as the comparison operand types. */
3272 else if (TREE_CODE (type
) == VECTOR_TYPE
3273 && TREE_CODE (TREE_TYPE (type
)) == INTEGER_TYPE
)
3275 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3276 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3278 error ("non-vector operands in vector comparison");
3279 debug_generic_expr (op0_type
);
3280 debug_generic_expr (op1_type
);
3284 if (TYPE_VECTOR_SUBPARTS (type
) != TYPE_VECTOR_SUBPARTS (op0_type
)
3285 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type
)))
3286 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type
)))))
3288 error ("invalid vector comparison resulting type");
3289 debug_generic_expr (type
);
3295 error ("bogus comparison result type");
3296 debug_generic_expr (type
);
3303 /* Verify a gimple assignment statement STMT with an unary rhs.
3304 Returns true if anything is wrong. */
3307 verify_gimple_assign_unary (gimple stmt
)
3309 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3310 tree lhs
= gimple_assign_lhs (stmt
);
3311 tree lhs_type
= TREE_TYPE (lhs
);
3312 tree rhs1
= gimple_assign_rhs1 (stmt
);
3313 tree rhs1_type
= TREE_TYPE (rhs1
);
3315 if (!is_gimple_reg (lhs
))
3317 error ("non-register as LHS of unary operation");
3321 if (!is_gimple_val (rhs1
))
3323 error ("invalid operand in unary operation");
3327 /* First handle conversions. */
3332 /* Allow conversions from pointer type to integral type only if
3333 there is no sign or zero extension involved.
3334 For targets were the precision of ptrofftype doesn't match that
3335 of pointers we need to allow arbitrary conversions to ptrofftype. */
3336 if ((POINTER_TYPE_P (lhs_type
)
3337 && INTEGRAL_TYPE_P (rhs1_type
))
3338 || (POINTER_TYPE_P (rhs1_type
)
3339 && INTEGRAL_TYPE_P (lhs_type
)
3340 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3341 || ptrofftype_p (sizetype
))))
3344 /* Allow conversion from integral to offset type and vice versa. */
3345 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3346 && INTEGRAL_TYPE_P (rhs1_type
))
3347 || (INTEGRAL_TYPE_P (lhs_type
)
3348 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3351 /* Otherwise assert we are converting between types of the
3353 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3355 error ("invalid types in nop conversion");
3356 debug_generic_expr (lhs_type
);
3357 debug_generic_expr (rhs1_type
);
3364 case ADDR_SPACE_CONVERT_EXPR
:
3366 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3367 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3368 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3370 error ("invalid types in address space conversion");
3371 debug_generic_expr (lhs_type
);
3372 debug_generic_expr (rhs1_type
);
3379 case FIXED_CONVERT_EXPR
:
3381 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3382 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3384 error ("invalid types in fixed-point conversion");
3385 debug_generic_expr (lhs_type
);
3386 debug_generic_expr (rhs1_type
);
3395 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3396 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3397 || !VECTOR_FLOAT_TYPE_P(lhs_type
)))
3399 error ("invalid types in conversion to floating point");
3400 debug_generic_expr (lhs_type
);
3401 debug_generic_expr (rhs1_type
);
3408 case FIX_TRUNC_EXPR
:
3410 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3411 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3412 || !VECTOR_FLOAT_TYPE_P(rhs1_type
)))
3414 error ("invalid types in conversion to integer");
3415 debug_generic_expr (lhs_type
);
3416 debug_generic_expr (rhs1_type
);
3423 case VEC_UNPACK_HI_EXPR
:
3424 case VEC_UNPACK_LO_EXPR
:
3425 case REDUC_MAX_EXPR
:
3426 case REDUC_MIN_EXPR
:
3427 case REDUC_PLUS_EXPR
:
3428 case VEC_UNPACK_FLOAT_HI_EXPR
:
3429 case VEC_UNPACK_FLOAT_LO_EXPR
:
3437 case NON_LVALUE_EXPR
:
3445 /* For the remaining codes assert there is no conversion involved. */
3446 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3448 error ("non-trivial conversion in unary operation");
3449 debug_generic_expr (lhs_type
);
3450 debug_generic_expr (rhs1_type
);
3457 /* Verify a gimple assignment statement STMT with a binary rhs.
3458 Returns true if anything is wrong. */
3461 verify_gimple_assign_binary (gimple stmt
)
3463 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3464 tree lhs
= gimple_assign_lhs (stmt
);
3465 tree lhs_type
= TREE_TYPE (lhs
);
3466 tree rhs1
= gimple_assign_rhs1 (stmt
);
3467 tree rhs1_type
= TREE_TYPE (rhs1
);
3468 tree rhs2
= gimple_assign_rhs2 (stmt
);
3469 tree rhs2_type
= TREE_TYPE (rhs2
);
3471 if (!is_gimple_reg (lhs
))
3473 error ("non-register as LHS of binary operation");
3477 if (!is_gimple_val (rhs1
)
3478 || !is_gimple_val (rhs2
))
3480 error ("invalid operands in binary operation");
3484 /* First handle operations that involve different types. */
3489 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3490 || !(INTEGRAL_TYPE_P (rhs1_type
)
3491 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3492 || !(INTEGRAL_TYPE_P (rhs2_type
)
3493 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3495 error ("type mismatch in complex expression");
3496 debug_generic_expr (lhs_type
);
3497 debug_generic_expr (rhs1_type
);
3498 debug_generic_expr (rhs2_type
);
3510 /* Shifts and rotates are ok on integral types, fixed point
3511 types and integer vector types. */
3512 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3513 && !FIXED_POINT_TYPE_P (rhs1_type
)
3514 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3515 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3516 || (!INTEGRAL_TYPE_P (rhs2_type
)
3517 /* Vector shifts of vectors are also ok. */
3518 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3519 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3520 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3521 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3522 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3524 error ("type mismatch in shift expression");
3525 debug_generic_expr (lhs_type
);
3526 debug_generic_expr (rhs1_type
);
3527 debug_generic_expr (rhs2_type
);
3534 case VEC_LSHIFT_EXPR
:
3535 case VEC_RSHIFT_EXPR
:
3537 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3538 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3539 || POINTER_TYPE_P (TREE_TYPE (rhs1_type
))
3540 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type
))
3541 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3542 || (!INTEGRAL_TYPE_P (rhs2_type
)
3543 && (TREE_CODE (rhs2_type
) != VECTOR_TYPE
3544 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3545 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3547 error ("type mismatch in vector shift expression");
3548 debug_generic_expr (lhs_type
);
3549 debug_generic_expr (rhs1_type
);
3550 debug_generic_expr (rhs2_type
);
3553 /* For shifting a vector of non-integral components we
3554 only allow shifting by a constant multiple of the element size. */
3555 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3556 && (TREE_CODE (rhs2
) != INTEGER_CST
3557 || !div_if_zero_remainder (EXACT_DIV_EXPR
, rhs2
,
3558 TYPE_SIZE (TREE_TYPE (rhs1_type
)))))
3560 error ("non-element sized vector shift of floating point vector");
3567 case WIDEN_LSHIFT_EXPR
:
3569 if (!INTEGRAL_TYPE_P (lhs_type
)
3570 || !INTEGRAL_TYPE_P (rhs1_type
)
3571 || TREE_CODE (rhs2
) != INTEGER_CST
3572 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3574 error ("type mismatch in widening vector shift expression");
3575 debug_generic_expr (lhs_type
);
3576 debug_generic_expr (rhs1_type
);
3577 debug_generic_expr (rhs2_type
);
3584 case VEC_WIDEN_LSHIFT_HI_EXPR
:
3585 case VEC_WIDEN_LSHIFT_LO_EXPR
:
3587 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3588 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3589 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3590 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3591 || TREE_CODE (rhs2
) != INTEGER_CST
3592 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
3593 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
3595 error ("type mismatch in widening vector shift expression");
3596 debug_generic_expr (lhs_type
);
3597 debug_generic_expr (rhs1_type
);
3598 debug_generic_expr (rhs2_type
);
3608 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3609 ??? This just makes the checker happy and may not be what is
3611 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
3612 && POINTER_TYPE_P (TREE_TYPE (lhs_type
)))
3614 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3615 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3617 error ("invalid non-vector operands to vector valued plus");
3620 lhs_type
= TREE_TYPE (lhs_type
);
3621 rhs1_type
= TREE_TYPE (rhs1_type
);
3622 rhs2_type
= TREE_TYPE (rhs2_type
);
3623 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3624 the pointer to 2nd place. */
3625 if (POINTER_TYPE_P (rhs2_type
))
3627 tree tem
= rhs1_type
;
3628 rhs1_type
= rhs2_type
;
3631 goto do_pointer_plus_expr_check
;
3633 if (POINTER_TYPE_P (lhs_type
)
3634 || POINTER_TYPE_P (rhs1_type
)
3635 || POINTER_TYPE_P (rhs2_type
))
3637 error ("invalid (pointer) operands to plus/minus");
3641 /* Continue with generic binary expression handling. */
3645 case POINTER_PLUS_EXPR
:
3647 do_pointer_plus_expr_check
:
3648 if (!POINTER_TYPE_P (rhs1_type
)
3649 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3650 || !ptrofftype_p (rhs2_type
))
3652 error ("type mismatch in pointer plus expression");
3653 debug_generic_stmt (lhs_type
);
3654 debug_generic_stmt (rhs1_type
);
3655 debug_generic_stmt (rhs2_type
);
3662 case TRUTH_ANDIF_EXPR
:
3663 case TRUTH_ORIF_EXPR
:
3664 case TRUTH_AND_EXPR
:
3666 case TRUTH_XOR_EXPR
:
3676 case UNORDERED_EXPR
:
3684 /* Comparisons are also binary, but the result type is not
3685 connected to the operand types. */
3686 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
);
3688 case WIDEN_MULT_EXPR
:
3689 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3691 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
3692 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3694 case WIDEN_SUM_EXPR
:
3695 case VEC_WIDEN_MULT_HI_EXPR
:
3696 case VEC_WIDEN_MULT_LO_EXPR
:
3697 case VEC_WIDEN_MULT_EVEN_EXPR
:
3698 case VEC_WIDEN_MULT_ODD_EXPR
:
3699 case VEC_PACK_TRUNC_EXPR
:
3700 case VEC_PACK_SAT_EXPR
:
3701 case VEC_PACK_FIX_TRUNC_EXPR
:
3706 case MULT_HIGHPART_EXPR
:
3707 case TRUNC_DIV_EXPR
:
3709 case FLOOR_DIV_EXPR
:
3710 case ROUND_DIV_EXPR
:
3711 case TRUNC_MOD_EXPR
:
3713 case FLOOR_MOD_EXPR
:
3714 case ROUND_MOD_EXPR
:
3716 case EXACT_DIV_EXPR
:
3722 /* Continue with generic binary expression handling. */
3729 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3730 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3732 error ("type mismatch in binary expression");
3733 debug_generic_stmt (lhs_type
);
3734 debug_generic_stmt (rhs1_type
);
3735 debug_generic_stmt (rhs2_type
);
3742 /* Verify a gimple assignment statement STMT with a ternary rhs.
3743 Returns true if anything is wrong. */
3746 verify_gimple_assign_ternary (gimple stmt
)
3748 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3749 tree lhs
= gimple_assign_lhs (stmt
);
3750 tree lhs_type
= TREE_TYPE (lhs
);
3751 tree rhs1
= gimple_assign_rhs1 (stmt
);
3752 tree rhs1_type
= TREE_TYPE (rhs1
);
3753 tree rhs2
= gimple_assign_rhs2 (stmt
);
3754 tree rhs2_type
= TREE_TYPE (rhs2
);
3755 tree rhs3
= gimple_assign_rhs3 (stmt
);
3756 tree rhs3_type
= TREE_TYPE (rhs3
);
3758 if (!is_gimple_reg (lhs
))
3760 error ("non-register as LHS of ternary operation");
3764 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
3765 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
3766 || !is_gimple_val (rhs2
)
3767 || !is_gimple_val (rhs3
))
3769 error ("invalid operands in ternary operation");
3773 /* First handle operations that involve different types. */
3776 case WIDEN_MULT_PLUS_EXPR
:
3777 case WIDEN_MULT_MINUS_EXPR
:
3778 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3779 && !FIXED_POINT_TYPE_P (rhs1_type
))
3780 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
3781 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
3782 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
3783 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
3785 error ("type mismatch in widening multiply-accumulate expression");
3786 debug_generic_expr (lhs_type
);
3787 debug_generic_expr (rhs1_type
);
3788 debug_generic_expr (rhs2_type
);
3789 debug_generic_expr (rhs3_type
);
3795 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3796 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3797 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3799 error ("type mismatch in fused multiply-add expression");
3800 debug_generic_expr (lhs_type
);
3801 debug_generic_expr (rhs1_type
);
3802 debug_generic_expr (rhs2_type
);
3803 debug_generic_expr (rhs3_type
);
3810 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
3811 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3813 error ("type mismatch in conditional expression");
3814 debug_generic_expr (lhs_type
);
3815 debug_generic_expr (rhs2_type
);
3816 debug_generic_expr (rhs3_type
);
3822 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3823 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3825 error ("type mismatch in vector permute expression");
3826 debug_generic_expr (lhs_type
);
3827 debug_generic_expr (rhs1_type
);
3828 debug_generic_expr (rhs2_type
);
3829 debug_generic_expr (rhs3_type
);
3833 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3834 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
3835 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
3837 error ("vector types expected in vector permute expression");
3838 debug_generic_expr (lhs_type
);
3839 debug_generic_expr (rhs1_type
);
3840 debug_generic_expr (rhs2_type
);
3841 debug_generic_expr (rhs3_type
);
3845 if (TYPE_VECTOR_SUBPARTS (rhs1_type
) != TYPE_VECTOR_SUBPARTS (rhs2_type
)
3846 || TYPE_VECTOR_SUBPARTS (rhs2_type
)
3847 != TYPE_VECTOR_SUBPARTS (rhs3_type
)
3848 || TYPE_VECTOR_SUBPARTS (rhs3_type
)
3849 != TYPE_VECTOR_SUBPARTS (lhs_type
))
3851 error ("vectors with different element number found "
3852 "in vector permute expression");
3853 debug_generic_expr (lhs_type
);
3854 debug_generic_expr (rhs1_type
);
3855 debug_generic_expr (rhs2_type
);
3856 debug_generic_expr (rhs3_type
);
3860 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
3861 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type
)))
3862 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
))))
3864 error ("invalid mask type in vector permute expression");
3865 debug_generic_expr (lhs_type
);
3866 debug_generic_expr (rhs1_type
);
3867 debug_generic_expr (rhs2_type
);
3868 debug_generic_expr (rhs3_type
);
3875 case REALIGN_LOAD_EXPR
:
3885 /* Verify a gimple assignment statement STMT with a single rhs.
3886 Returns true if anything is wrong. */
3889 verify_gimple_assign_single (gimple stmt
)
3891 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3892 tree lhs
= gimple_assign_lhs (stmt
);
3893 tree lhs_type
= TREE_TYPE (lhs
);
3894 tree rhs1
= gimple_assign_rhs1 (stmt
);
3895 tree rhs1_type
= TREE_TYPE (rhs1
);
3898 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3900 error ("non-trivial conversion at assignment");
3901 debug_generic_expr (lhs_type
);
3902 debug_generic_expr (rhs1_type
);
3906 if (gimple_clobber_p (stmt
)
3909 error ("non-decl LHS in clobber statement");
3910 debug_generic_expr (lhs
);
3914 if (handled_component_p (lhs
))
3915 res
|= verify_types_in_gimple_reference (lhs
, true);
3917 /* Special codes we cannot handle via their class. */
3922 tree op
= TREE_OPERAND (rhs1
, 0);
3923 if (!is_gimple_addressable (op
))
3925 error ("invalid operand in unary expression");
3929 /* Technically there is no longer a need for matching types, but
3930 gimple hygiene asks for this check. In LTO we can end up
3931 combining incompatible units and thus end up with addresses
3932 of globals that change their type to a common one. */
3934 && !types_compatible_p (TREE_TYPE (op
),
3935 TREE_TYPE (TREE_TYPE (rhs1
)))
3936 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
3939 error ("type mismatch in address expression");
3940 debug_generic_stmt (TREE_TYPE (rhs1
));
3941 debug_generic_stmt (TREE_TYPE (op
));
3945 return verify_types_in_gimple_reference (op
, true);
3950 error ("INDIRECT_REF in gimple IL");
3956 case ARRAY_RANGE_REF
:
3957 case VIEW_CONVERT_EXPR
:
3960 case TARGET_MEM_REF
:
3962 if (!is_gimple_reg (lhs
)
3963 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3965 error ("invalid rhs for gimple memory store");
3966 debug_generic_stmt (lhs
);
3967 debug_generic_stmt (rhs1
);
3970 return res
|| verify_types_in_gimple_reference (rhs1
, false);
3982 /* tcc_declaration */
3987 if (!is_gimple_reg (lhs
)
3988 && !is_gimple_reg (rhs1
)
3989 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3991 error ("invalid rhs for gimple memory store");
3992 debug_generic_stmt (lhs
);
3993 debug_generic_stmt (rhs1
);
3999 if (TREE_CODE (rhs1_type
) == VECTOR_TYPE
)
4002 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
4004 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
4006 /* For vector CONSTRUCTORs we require that either it is empty
4007 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4008 (then the element count must be correct to cover the whole
4009 outer vector and index must be NULL on all elements, or it is
4010 a CONSTRUCTOR of scalar elements, where we as an exception allow
4011 smaller number of elements (assuming zero filling) and
4012 consecutive indexes as compared to NULL indexes (such
4013 CONSTRUCTORs can appear in the IL from FEs). */
4014 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
4016 if (elt_t
== NULL_TREE
)
4018 elt_t
= TREE_TYPE (elt_v
);
4019 if (TREE_CODE (elt_t
) == VECTOR_TYPE
)
4021 tree elt_t
= TREE_TYPE (elt_v
);
4022 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4025 error ("incorrect type of vector CONSTRUCTOR"
4027 debug_generic_stmt (rhs1
);
4030 else if (CONSTRUCTOR_NELTS (rhs1
)
4031 * TYPE_VECTOR_SUBPARTS (elt_t
)
4032 != TYPE_VECTOR_SUBPARTS (rhs1_type
))
4034 error ("incorrect number of vector CONSTRUCTOR"
4036 debug_generic_stmt (rhs1
);
4040 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4043 error ("incorrect type of vector CONSTRUCTOR elements");
4044 debug_generic_stmt (rhs1
);
4047 else if (CONSTRUCTOR_NELTS (rhs1
)
4048 > TYPE_VECTOR_SUBPARTS (rhs1_type
))
4050 error ("incorrect number of vector CONSTRUCTOR elements");
4051 debug_generic_stmt (rhs1
);
4055 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
4057 error ("incorrect type of vector CONSTRUCTOR elements");
4058 debug_generic_stmt (rhs1
);
4061 if (elt_i
!= NULL_TREE
4062 && (TREE_CODE (elt_t
) == VECTOR_TYPE
4063 || TREE_CODE (elt_i
) != INTEGER_CST
4064 || compare_tree_int (elt_i
, i
) != 0))
4066 error ("vector CONSTRUCTOR with non-NULL element index");
4067 debug_generic_stmt (rhs1
);
4075 case WITH_SIZE_EXPR
:
4085 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4086 is a problem, otherwise false. */
4089 verify_gimple_assign (gimple stmt
)
4091 switch (gimple_assign_rhs_class (stmt
))
4093 case GIMPLE_SINGLE_RHS
:
4094 return verify_gimple_assign_single (stmt
);
4096 case GIMPLE_UNARY_RHS
:
4097 return verify_gimple_assign_unary (stmt
);
4099 case GIMPLE_BINARY_RHS
:
4100 return verify_gimple_assign_binary (stmt
);
4102 case GIMPLE_TERNARY_RHS
:
4103 return verify_gimple_assign_ternary (stmt
);
4110 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4111 is a problem, otherwise false. */
4114 verify_gimple_return (gimple stmt
)
4116 tree op
= gimple_return_retval (stmt
);
4117 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4119 /* We cannot test for present return values as we do not fix up missing
4120 return values from the original source. */
4124 if (!is_gimple_val (op
)
4125 && TREE_CODE (op
) != RESULT_DECL
)
4127 error ("invalid operand in return statement");
4128 debug_generic_stmt (op
);
4132 if ((TREE_CODE (op
) == RESULT_DECL
4133 && DECL_BY_REFERENCE (op
))
4134 || (TREE_CODE (op
) == SSA_NAME
4135 && SSA_NAME_VAR (op
)
4136 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4137 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4138 op
= TREE_TYPE (op
);
4140 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4142 error ("invalid conversion in return statement");
4143 debug_generic_stmt (restype
);
4144 debug_generic_stmt (TREE_TYPE (op
));
4152 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4153 is a problem, otherwise false. */
4156 verify_gimple_goto (gimple stmt
)
4158 tree dest
= gimple_goto_dest (stmt
);
4160 /* ??? We have two canonical forms of direct goto destinations, a
4161 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4162 if (TREE_CODE (dest
) != LABEL_DECL
4163 && (!is_gimple_val (dest
)
4164 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4166 error ("goto destination is neither a label nor a pointer");
4173 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4174 is a problem, otherwise false. */
4177 verify_gimple_switch (gimple stmt
)
4180 tree elt
, prev_upper_bound
= NULL_TREE
;
4181 tree index_type
, elt_type
= NULL_TREE
;
4183 if (!is_gimple_val (gimple_switch_index (stmt
)))
4185 error ("invalid operand to switch statement");
4186 debug_generic_stmt (gimple_switch_index (stmt
));
4190 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4191 if (! INTEGRAL_TYPE_P (index_type
))
4193 error ("non-integral type switch statement");
4194 debug_generic_expr (index_type
);
4198 elt
= gimple_switch_label (stmt
, 0);
4199 if (CASE_LOW (elt
) != NULL_TREE
|| CASE_HIGH (elt
) != NULL_TREE
)
4201 error ("invalid default case label in switch statement");
4202 debug_generic_expr (elt
);
4206 n
= gimple_switch_num_labels (stmt
);
4207 for (i
= 1; i
< n
; i
++)
4209 elt
= gimple_switch_label (stmt
, i
);
4211 if (! CASE_LOW (elt
))
4213 error ("invalid case label in switch statement");
4214 debug_generic_expr (elt
);
4218 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4220 error ("invalid case range in switch statement");
4221 debug_generic_expr (elt
);
4227 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4228 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4230 error ("type mismatch for case label in switch statement");
4231 debug_generic_expr (elt
);
4237 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4238 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4240 error ("type precision mismatch in switch statement");
4245 if (prev_upper_bound
)
4247 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4249 error ("case labels not sorted in switch statement");
4254 prev_upper_bound
= CASE_HIGH (elt
);
4255 if (! prev_upper_bound
)
4256 prev_upper_bound
= CASE_LOW (elt
);
4262 /* Verify a gimple debug statement STMT.
4263 Returns true if anything is wrong. */
4266 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED
)
4268 /* There isn't much that could be wrong in a gimple debug stmt. A
4269 gimple debug bind stmt, for example, maps a tree, that's usually
4270 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4271 component or member of an aggregate type, to another tree, that
4272 can be an arbitrary expression. These stmts expand into debug
4273 insns, and are converted to debug notes by var-tracking.c. */
4277 /* Verify a gimple label statement STMT.
4278 Returns true if anything is wrong. */
4281 verify_gimple_label (gimple stmt
)
4283 tree decl
= gimple_label_label (stmt
);
4287 if (TREE_CODE (decl
) != LABEL_DECL
)
4290 uid
= LABEL_DECL_UID (decl
);
4292 && (uid
== -1 || (*label_to_block_map
)[uid
] != gimple_bb (stmt
)))
4294 error ("incorrect entry in label_to_block_map");
4298 uid
= EH_LANDING_PAD_NR (decl
);
4301 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4302 if (decl
!= lp
->post_landing_pad
)
4304 error ("incorrect setting of landing pad number");
4312 /* Verify the GIMPLE statement STMT. Returns true if there is an
4313 error, otherwise false. */
4316 verify_gimple_stmt (gimple stmt
)
4318 switch (gimple_code (stmt
))
4321 return verify_gimple_assign (stmt
);
4324 return verify_gimple_label (stmt
);
4327 return verify_gimple_call (stmt
);
4330 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4332 error ("invalid comparison code in gimple cond");
4335 if (!(!gimple_cond_true_label (stmt
)
4336 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4337 || !(!gimple_cond_false_label (stmt
)
4338 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4340 error ("invalid labels in gimple cond");
4344 return verify_gimple_comparison (boolean_type_node
,
4345 gimple_cond_lhs (stmt
),
4346 gimple_cond_rhs (stmt
));
4349 return verify_gimple_goto (stmt
);
4352 return verify_gimple_switch (stmt
);
4355 return verify_gimple_return (stmt
);
4360 case GIMPLE_TRANSACTION
:
4361 return verify_gimple_transaction (stmt
);
4363 /* Tuples that do not have tree operands. */
4365 case GIMPLE_PREDICT
:
4367 case GIMPLE_EH_DISPATCH
:
4368 case GIMPLE_EH_MUST_NOT_THROW
:
4372 /* OpenMP directives are validated by the FE and never operated
4373 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4374 non-gimple expressions when the main index variable has had
4375 its address taken. This does not affect the loop itself
4376 because the header of an GIMPLE_OMP_FOR is merely used to determine
4377 how to setup the parallel iteration. */
4381 return verify_gimple_debug (stmt
);
4388 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4389 and false otherwise. */
4392 verify_gimple_phi (gimple phi
)
4396 tree phi_result
= gimple_phi_result (phi
);
4401 error ("invalid PHI result");
4405 virtual_p
= virtual_operand_p (phi_result
);
4406 if (TREE_CODE (phi_result
) != SSA_NAME
4408 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4410 error ("invalid PHI result");
4414 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4416 tree t
= gimple_phi_arg_def (phi
, i
);
4420 error ("missing PHI def");
4424 /* Addressable variables do have SSA_NAMEs but they
4425 are not considered gimple values. */
4426 else if ((TREE_CODE (t
) == SSA_NAME
4427 && virtual_p
!= virtual_operand_p (t
))
4429 && (TREE_CODE (t
) != SSA_NAME
4430 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4432 && !is_gimple_val (t
)))
4434 error ("invalid PHI argument");
4435 debug_generic_expr (t
);
4438 #ifdef ENABLE_TYPES_CHECKING
4439 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4441 error ("incompatible types in PHI argument %u", i
);
4442 debug_generic_stmt (TREE_TYPE (phi_result
));
4443 debug_generic_stmt (TREE_TYPE (t
));
4452 /* Verify the GIMPLE statements inside the sequence STMTS. */
4455 verify_gimple_in_seq_2 (gimple_seq stmts
)
4457 gimple_stmt_iterator ittr
;
4460 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4462 gimple stmt
= gsi_stmt (ittr
);
4464 switch (gimple_code (stmt
))
4467 err
|= verify_gimple_in_seq_2 (gimple_bind_body (stmt
));
4471 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
4472 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
4475 case GIMPLE_EH_FILTER
:
4476 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
4479 case GIMPLE_EH_ELSE
:
4480 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt
));
4481 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt
));
4485 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (stmt
));
4488 case GIMPLE_TRANSACTION
:
4489 err
|= verify_gimple_transaction (stmt
);
4494 bool err2
= verify_gimple_stmt (stmt
);
4496 debug_gimple_stmt (stmt
);
4505 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4506 is a problem, otherwise false. */
4509 verify_gimple_transaction (gimple stmt
)
4511 tree lab
= gimple_transaction_label (stmt
);
4512 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4514 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
4518 /* Verify the GIMPLE statements inside the statement list STMTS. */
4521 verify_gimple_in_seq (gimple_seq stmts
)
4523 timevar_push (TV_TREE_STMT_VERIFY
);
4524 if (verify_gimple_in_seq_2 (stmts
))
4525 internal_error ("verify_gimple failed");
4526 timevar_pop (TV_TREE_STMT_VERIFY
);
4529 /* Return true when the T can be shared. */
4532 tree_node_can_be_shared (tree t
)
4534 if (IS_TYPE_OR_DECL_P (t
)
4535 || is_gimple_min_invariant (t
)
4536 || TREE_CODE (t
) == SSA_NAME
4537 || t
== error_mark_node
4538 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4541 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
4544 while (((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
4545 && is_gimple_min_invariant (TREE_OPERAND (t
, 1)))
4546 || TREE_CODE (t
) == COMPONENT_REF
4547 || TREE_CODE (t
) == REALPART_EXPR
4548 || TREE_CODE (t
) == IMAGPART_EXPR
)
4549 t
= TREE_OPERAND (t
, 0);
4557 /* Called via walk_gimple_stmt. Verify tree sharing. */
4560 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
4562 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4563 struct pointer_set_t
*visited
= (struct pointer_set_t
*) wi
->info
;
4565 if (tree_node_can_be_shared (*tp
))
4567 *walk_subtrees
= false;
4571 if (pointer_set_insert (visited
, *tp
))
4577 static bool eh_error_found
;
4579 verify_eh_throw_stmt_node (void **slot
, void *data
)
4581 struct throw_stmt_node
*node
= (struct throw_stmt_node
*)*slot
;
4582 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4584 if (!pointer_set_contains (visited
, node
->stmt
))
4586 error ("dead STMT in EH table");
4587 debug_gimple_stmt (node
->stmt
);
4588 eh_error_found
= true;
4593 /* Verify the GIMPLE statements in the CFG of FN. */
4596 verify_gimple_in_cfg (struct function
*fn
)
4600 struct pointer_set_t
*visited
, *visited_stmts
;
4602 timevar_push (TV_TREE_STMT_VERIFY
);
4603 visited
= pointer_set_create ();
4604 visited_stmts
= pointer_set_create ();
4606 FOR_EACH_BB_FN (bb
, fn
)
4608 gimple_stmt_iterator gsi
;
4610 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4612 gimple phi
= gsi_stmt (gsi
);
4616 pointer_set_insert (visited_stmts
, phi
);
4618 if (gimple_bb (phi
) != bb
)
4620 error ("gimple_bb (phi) is set to a wrong basic block");
4624 err2
|= verify_gimple_phi (phi
);
4626 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4628 tree arg
= gimple_phi_arg_def (phi
, i
);
4629 tree addr
= walk_tree (&arg
, verify_node_sharing
, visited
, NULL
);
4632 error ("incorrect sharing of tree nodes");
4633 debug_generic_expr (addr
);
4639 debug_gimple_stmt (phi
);
4643 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4645 gimple stmt
= gsi_stmt (gsi
);
4647 struct walk_stmt_info wi
;
4651 pointer_set_insert (visited_stmts
, stmt
);
4653 if (gimple_bb (stmt
) != bb
)
4655 error ("gimple_bb (stmt) is set to a wrong basic block");
4659 err2
|= verify_gimple_stmt (stmt
);
4661 memset (&wi
, 0, sizeof (wi
));
4662 wi
.info
= (void *) visited
;
4663 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
4666 error ("incorrect sharing of tree nodes");
4667 debug_generic_expr (addr
);
4671 /* ??? Instead of not checking these stmts at all the walker
4672 should know its context via wi. */
4673 if (!is_gimple_debug (stmt
)
4674 && !is_gimple_omp (stmt
))
4676 memset (&wi
, 0, sizeof (wi
));
4677 addr
= walk_gimple_op (stmt
, verify_expr
, &wi
);
4680 debug_generic_expr (addr
);
4681 inform (gimple_location (stmt
), "in statement");
4686 /* If the statement is marked as part of an EH region, then it is
4687 expected that the statement could throw. Verify that when we
4688 have optimizations that simplify statements such that we prove
4689 that they cannot throw, that we update other data structures
4691 lp_nr
= lookup_stmt_eh_lp (stmt
);
4694 if (!stmt_could_throw_p (stmt
))
4696 error ("statement marked for throw, but doesn%'t");
4700 && !gsi_one_before_end_p (gsi
)
4701 && stmt_can_throw_internal (stmt
))
4703 error ("statement marked for throw in middle of block");
4709 debug_gimple_stmt (stmt
);
4714 eh_error_found
= false;
4715 if (get_eh_throw_stmt_table (cfun
))
4716 htab_traverse (get_eh_throw_stmt_table (cfun
),
4717 verify_eh_throw_stmt_node
,
4720 if (err
|| eh_error_found
)
4721 internal_error ("verify_gimple failed");
4723 pointer_set_destroy (visited
);
4724 pointer_set_destroy (visited_stmts
);
4725 verify_histograms ();
4726 timevar_pop (TV_TREE_STMT_VERIFY
);
4730 /* Verifies that the flow information is OK. */
4733 gimple_verify_flow_info (void)
4737 gimple_stmt_iterator gsi
;
4742 if (ENTRY_BLOCK_PTR
->il
.gimple
.seq
|| ENTRY_BLOCK_PTR
->il
.gimple
.phi_nodes
)
4744 error ("ENTRY_BLOCK has IL associated with it");
4748 if (EXIT_BLOCK_PTR
->il
.gimple
.seq
|| EXIT_BLOCK_PTR
->il
.gimple
.phi_nodes
)
4750 error ("EXIT_BLOCK has IL associated with it");
4754 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
4755 if (e
->flags
& EDGE_FALLTHRU
)
4757 error ("fallthru to exit from bb %d", e
->src
->index
);
4763 bool found_ctrl_stmt
= false;
4767 /* Skip labels on the start of basic block. */
4768 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4771 gimple prev_stmt
= stmt
;
4773 stmt
= gsi_stmt (gsi
);
4775 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4778 label
= gimple_label_label (stmt
);
4779 if (prev_stmt
&& DECL_NONLOCAL (label
))
4781 error ("nonlocal label ");
4782 print_generic_expr (stderr
, label
, 0);
4783 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4788 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
4790 error ("EH landing pad label ");
4791 print_generic_expr (stderr
, label
, 0);
4792 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4797 if (label_to_block (label
) != bb
)
4800 print_generic_expr (stderr
, label
, 0);
4801 fprintf (stderr
, " to block does not match in bb %d",
4806 if (decl_function_context (label
) != current_function_decl
)
4809 print_generic_expr (stderr
, label
, 0);
4810 fprintf (stderr
, " has incorrect context in bb %d",
4816 /* Verify that body of basic block BB is free of control flow. */
4817 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
4819 gimple stmt
= gsi_stmt (gsi
);
4821 if (found_ctrl_stmt
)
4823 error ("control flow in the middle of basic block %d",
4828 if (stmt_ends_bb_p (stmt
))
4829 found_ctrl_stmt
= true;
4831 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4834 print_generic_expr (stderr
, gimple_label_label (stmt
), 0);
4835 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
4840 gsi
= gsi_last_bb (bb
);
4841 if (gsi_end_p (gsi
))
4844 stmt
= gsi_stmt (gsi
);
4846 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4849 err
|= verify_eh_edges (stmt
);
4851 if (is_ctrl_stmt (stmt
))
4853 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4854 if (e
->flags
& EDGE_FALLTHRU
)
4856 error ("fallthru edge after a control statement in bb %d",
4862 if (gimple_code (stmt
) != GIMPLE_COND
)
4864 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4865 after anything else but if statement. */
4866 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4867 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
4869 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4875 switch (gimple_code (stmt
))
4882 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
4886 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
4887 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
4888 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4889 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4890 || EDGE_COUNT (bb
->succs
) >= 3)
4892 error ("wrong outgoing edge flags at end of bb %d",
4900 if (simple_goto_p (stmt
))
4902 error ("explicit goto at end of bb %d", bb
->index
);
4907 /* FIXME. We should double check that the labels in the
4908 destination blocks have their address taken. */
4909 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4910 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
4911 | EDGE_FALSE_VALUE
))
4912 || !(e
->flags
& EDGE_ABNORMAL
))
4914 error ("wrong outgoing edge flags at end of bb %d",
4922 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
4924 /* ... fallthru ... */
4926 if (!single_succ_p (bb
)
4927 || (single_succ_edge (bb
)->flags
4928 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
4929 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4931 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
4934 if (single_succ (bb
) != EXIT_BLOCK_PTR
)
4936 error ("return edge does not point to exit in bb %d",
4948 n
= gimple_switch_num_labels (stmt
);
4950 /* Mark all the destination basic blocks. */
4951 for (i
= 0; i
< n
; ++i
)
4953 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4954 basic_block label_bb
= label_to_block (lab
);
4955 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
4956 label_bb
->aux
= (void *)1;
4959 /* Verify that the case labels are sorted. */
4960 prev
= gimple_switch_label (stmt
, 0);
4961 for (i
= 1; i
< n
; ++i
)
4963 tree c
= gimple_switch_label (stmt
, i
);
4966 error ("found default case not at the start of "
4972 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
4974 error ("case labels not sorted: ");
4975 print_generic_expr (stderr
, prev
, 0);
4976 fprintf (stderr
," is greater than ");
4977 print_generic_expr (stderr
, c
, 0);
4978 fprintf (stderr
," but comes before it.\n");
4983 /* VRP will remove the default case if it can prove it will
4984 never be executed. So do not verify there always exists
4985 a default case here. */
4987 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4991 error ("extra outgoing edge %d->%d",
4992 bb
->index
, e
->dest
->index
);
4996 e
->dest
->aux
= (void *)2;
4997 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
4998 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5000 error ("wrong outgoing edge flags at end of bb %d",
5006 /* Check that we have all of them. */
5007 for (i
= 0; i
< n
; ++i
)
5009 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
5010 basic_block label_bb
= label_to_block (lab
);
5012 if (label_bb
->aux
!= (void *)2)
5014 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5019 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5020 e
->dest
->aux
= (void *)0;
5024 case GIMPLE_EH_DISPATCH
:
5025 err
|= verify_eh_dispatch_edge (stmt
);
5033 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5034 verify_dominators (CDI_DOMINATORS
);
5040 /* Updates phi nodes after creating a forwarder block joined
5041 by edge FALLTHRU. */
5044 gimple_make_forwarder_block (edge fallthru
)
5048 basic_block dummy
, bb
;
5050 gimple_stmt_iterator gsi
;
5052 dummy
= fallthru
->src
;
5053 bb
= fallthru
->dest
;
5055 if (single_pred_p (bb
))
5058 /* If we redirected a branch we must create new PHI nodes at the
5060 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5062 gimple phi
, new_phi
;
5064 phi
= gsi_stmt (gsi
);
5065 var
= gimple_phi_result (phi
);
5066 new_phi
= create_phi_node (var
, bb
);
5067 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
5068 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
5072 /* Add the arguments we have stored on edges. */
5073 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5078 flush_pending_stmts (e
);
5083 /* Return a non-special label in the head of basic block BLOCK.
5084 Create one if it doesn't exist. */
5087 gimple_block_label (basic_block bb
)
5089 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
5094 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
5096 stmt
= gsi_stmt (i
);
5097 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5099 label
= gimple_label_label (stmt
);
5100 if (!DECL_NONLOCAL (label
))
5103 gsi_move_before (&i
, &s
);
5108 label
= create_artificial_label (UNKNOWN_LOCATION
);
5109 stmt
= gimple_build_label (label
);
5110 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
5115 /* Attempt to perform edge redirection by replacing a possibly complex
5116 jump instruction by a goto or by removing the jump completely.
5117 This can apply only if all edges now point to the same block. The
5118 parameters and return values are equivalent to
5119 redirect_edge_and_branch. */
5122 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
5124 basic_block src
= e
->src
;
5125 gimple_stmt_iterator i
;
5128 /* We can replace or remove a complex jump only when we have exactly
5130 if (EDGE_COUNT (src
->succs
) != 2
5131 /* Verify that all targets will be TARGET. Specifically, the
5132 edge that is not E must also go to TARGET. */
5133 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
5136 i
= gsi_last_bb (src
);
5140 stmt
= gsi_stmt (i
);
5142 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5144 gsi_remove (&i
, true);
5145 e
= ssa_redirect_edge (e
, target
);
5146 e
->flags
= EDGE_FALLTHRU
;
5154 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5155 edge representing the redirected branch. */
5158 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
5160 basic_block bb
= e
->src
;
5161 gimple_stmt_iterator gsi
;
5165 if (e
->flags
& EDGE_ABNORMAL
)
5168 if (e
->dest
== dest
)
5171 if (e
->flags
& EDGE_EH
)
5172 return redirect_eh_edge (e
, dest
);
5174 if (e
->src
!= ENTRY_BLOCK_PTR
)
5176 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
5181 gsi
= gsi_last_bb (bb
);
5182 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
5184 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
5187 /* For COND_EXPR, we only need to redirect the edge. */
5191 /* No non-abnormal edges should lead from a non-simple goto, and
5192 simple ones should be represented implicitly. */
5197 tree label
= gimple_block_label (dest
);
5198 tree cases
= get_cases_for_edge (e
, stmt
);
5200 /* If we have a list of cases associated with E, then use it
5201 as it's a lot faster than walking the entire case vector. */
5204 edge e2
= find_edge (e
->src
, dest
);
5211 CASE_LABEL (cases
) = label
;
5212 cases
= CASE_CHAIN (cases
);
5215 /* If there was already an edge in the CFG, then we need
5216 to move all the cases associated with E to E2. */
5219 tree cases2
= get_cases_for_edge (e2
, stmt
);
5221 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
5222 CASE_CHAIN (cases2
) = first
;
5224 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
5228 size_t i
, n
= gimple_switch_num_labels (stmt
);
5230 for (i
= 0; i
< n
; i
++)
5232 tree elt
= gimple_switch_label (stmt
, i
);
5233 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
5234 CASE_LABEL (elt
) = label
;
5242 int i
, n
= gimple_asm_nlabels (stmt
);
5245 for (i
= 0; i
< n
; ++i
)
5247 tree cons
= gimple_asm_label_op (stmt
, i
);
5248 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
5251 label
= gimple_block_label (dest
);
5252 TREE_VALUE (cons
) = label
;
5256 /* If we didn't find any label matching the former edge in the
5257 asm labels, we must be redirecting the fallthrough
5259 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
5264 gsi_remove (&gsi
, true);
5265 e
->flags
|= EDGE_FALLTHRU
;
5268 case GIMPLE_OMP_RETURN
:
5269 case GIMPLE_OMP_CONTINUE
:
5270 case GIMPLE_OMP_SECTIONS_SWITCH
:
5271 case GIMPLE_OMP_FOR
:
5272 /* The edges from OMP constructs can be simply redirected. */
5275 case GIMPLE_EH_DISPATCH
:
5276 if (!(e
->flags
& EDGE_FALLTHRU
))
5277 redirect_eh_dispatch_edge (stmt
, e
, dest
);
5280 case GIMPLE_TRANSACTION
:
5281 /* The ABORT edge has a stored label associated with it, otherwise
5282 the edges are simply redirectable. */
5284 gimple_transaction_set_label (stmt
, gimple_block_label (dest
));
5288 /* Otherwise it must be a fallthru edge, and we don't need to
5289 do anything besides redirecting it. */
5290 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
5294 /* Update/insert PHI nodes as necessary. */
5296 /* Now update the edges in the CFG. */
5297 e
= ssa_redirect_edge (e
, dest
);
5302 /* Returns true if it is possible to remove edge E by redirecting
5303 it to the destination of the other edge from E->src. */
5306 gimple_can_remove_branch_p (const_edge e
)
5308 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
5314 /* Simple wrapper, as we can always redirect fallthru edges. */
5317 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
5319 e
= gimple_redirect_edge_and_branch (e
, dest
);
5326 /* Splits basic block BB after statement STMT (but at least after the
5327 labels). If STMT is NULL, BB is split just after the labels. */
5330 gimple_split_block (basic_block bb
, void *stmt
)
5332 gimple_stmt_iterator gsi
;
5333 gimple_stmt_iterator gsi_tgt
;
5340 new_bb
= create_empty_bb (bb
);
5342 /* Redirect the outgoing edges. */
5343 new_bb
->succs
= bb
->succs
;
5345 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5348 if (stmt
&& gimple_code ((gimple
) stmt
) == GIMPLE_LABEL
)
5351 /* Move everything from GSI to the new basic block. */
5352 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5354 act
= gsi_stmt (gsi
);
5355 if (gimple_code (act
) == GIMPLE_LABEL
)
5368 if (gsi_end_p (gsi
))
5371 /* Split the statement list - avoid re-creating new containers as this
5372 brings ugly quadratic memory consumption in the inliner.
5373 (We are still quadratic since we need to update stmt BB pointers,
5375 gsi_split_seq_before (&gsi
, &list
);
5376 set_bb_seq (new_bb
, list
);
5377 for (gsi_tgt
= gsi_start (list
);
5378 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
5379 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
5385 /* Moves basic block BB after block AFTER. */
5388 gimple_move_block_after (basic_block bb
, basic_block after
)
5390 if (bb
->prev_bb
== after
)
5394 link_block (bb
, after
);
5400 /* Return TRUE if block BB has no executable statements, otherwise return
5404 gimple_empty_block_p (basic_block bb
)
5406 /* BB must have no executable statements. */
5407 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
5410 if (gsi_end_p (gsi
))
5412 if (is_gimple_debug (gsi_stmt (gsi
)))
5413 gsi_next_nondebug (&gsi
);
5414 return gsi_end_p (gsi
);
5418 /* Split a basic block if it ends with a conditional branch and if the
5419 other part of the block is not empty. */
5422 gimple_split_block_before_cond_jump (basic_block bb
)
5424 gimple last
, split_point
;
5425 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
5426 if (gsi_end_p (gsi
))
5428 last
= gsi_stmt (gsi
);
5429 if (gimple_code (last
) != GIMPLE_COND
5430 && gimple_code (last
) != GIMPLE_SWITCH
)
5432 gsi_prev_nondebug (&gsi
);
5433 split_point
= gsi_stmt (gsi
);
5434 return split_block (bb
, split_point
)->dest
;
5438 /* Return true if basic_block can be duplicated. */
5441 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
5446 /* Create a duplicate of the basic block BB. NOTE: This does not
5447 preserve SSA form. */
5450 gimple_duplicate_bb (basic_block bb
)
5453 gimple_stmt_iterator gsi
, gsi_tgt
;
5454 gimple_seq phis
= phi_nodes (bb
);
5455 gimple phi
, stmt
, copy
;
5457 new_bb
= create_empty_bb (EXIT_BLOCK_PTR
->prev_bb
);
5459 /* Copy the PHI nodes. We ignore PHI node arguments here because
5460 the incoming edges have not been setup yet. */
5461 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5463 phi
= gsi_stmt (gsi
);
5464 copy
= create_phi_node (NULL_TREE
, new_bb
);
5465 create_new_def_for (gimple_phi_result (phi
), copy
,
5466 gimple_phi_result_ptr (copy
));
5469 gsi_tgt
= gsi_start_bb (new_bb
);
5470 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5472 def_operand_p def_p
;
5473 ssa_op_iter op_iter
;
5476 stmt
= gsi_stmt (gsi
);
5477 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5480 /* Don't duplicate label debug stmts. */
5481 if (gimple_debug_bind_p (stmt
)
5482 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
5486 /* Create a new copy of STMT and duplicate STMT's virtual
5488 copy
= gimple_copy (stmt
);
5489 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
5491 maybe_duplicate_eh_stmt (copy
, stmt
);
5492 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
5494 /* When copying around a stmt writing into a local non-user
5495 aggregate, make sure it won't share stack slot with other
5497 lhs
= gimple_get_lhs (stmt
);
5498 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
5500 tree base
= get_base_address (lhs
);
5502 && (TREE_CODE (base
) == VAR_DECL
5503 || TREE_CODE (base
) == RESULT_DECL
)
5504 && DECL_IGNORED_P (base
)
5505 && !TREE_STATIC (base
)
5506 && !DECL_EXTERNAL (base
)
5507 && (TREE_CODE (base
) != VAR_DECL
5508 || !DECL_HAS_VALUE_EXPR_P (base
)))
5509 DECL_NONSHAREABLE (base
) = 1;
5512 /* Create new names for all the definitions created by COPY and
5513 add replacement mappings for each new name. */
5514 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
5515 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
5521 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5524 add_phi_args_after_copy_edge (edge e_copy
)
5526 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
5529 gimple phi
, phi_copy
;
5531 gimple_stmt_iterator psi
, psi_copy
;
5533 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
5536 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
5538 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
5539 dest
= get_bb_original (e_copy
->dest
);
5541 dest
= e_copy
->dest
;
5543 e
= find_edge (bb
, dest
);
5546 /* During loop unrolling the target of the latch edge is copied.
5547 In this case we are not looking for edge to dest, but to
5548 duplicated block whose original was dest. */
5549 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5551 if ((e
->dest
->flags
& BB_DUPLICATED
)
5552 && get_bb_original (e
->dest
) == dest
)
5556 gcc_assert (e
!= NULL
);
5559 for (psi
= gsi_start_phis (e
->dest
),
5560 psi_copy
= gsi_start_phis (e_copy
->dest
);
5562 gsi_next (&psi
), gsi_next (&psi_copy
))
5564 phi
= gsi_stmt (psi
);
5565 phi_copy
= gsi_stmt (psi_copy
);
5566 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
5567 add_phi_arg (phi_copy
, def
, e_copy
,
5568 gimple_phi_arg_location_from_edge (phi
, e
));
5573 /* Basic block BB_COPY was created by code duplication. Add phi node
5574 arguments for edges going out of BB_COPY. The blocks that were
5575 duplicated have BB_DUPLICATED set. */
5578 add_phi_args_after_copy_bb (basic_block bb_copy
)
5583 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
5585 add_phi_args_after_copy_edge (e_copy
);
5589 /* Blocks in REGION_COPY array of length N_REGION were created by
5590 duplication of basic blocks. Add phi node arguments for edges
5591 going from these blocks. If E_COPY is not NULL, also add
5592 phi node arguments for its destination.*/
5595 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
5600 for (i
= 0; i
< n_region
; i
++)
5601 region_copy
[i
]->flags
|= BB_DUPLICATED
;
5603 for (i
= 0; i
< n_region
; i
++)
5604 add_phi_args_after_copy_bb (region_copy
[i
]);
5606 add_phi_args_after_copy_edge (e_copy
);
5608 for (i
= 0; i
< n_region
; i
++)
5609 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
5612 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5613 important exit edge EXIT. By important we mean that no SSA name defined
5614 inside region is live over the other exit edges of the region. All entry
5615 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5616 to the duplicate of the region. Dominance and loop information is
5617 updated, but not the SSA web. The new basic blocks are stored to
5618 REGION_COPY in the same order as they had in REGION, provided that
5619 REGION_COPY is not NULL.
5620 The function returns false if it is unable to copy the region,
5624 gimple_duplicate_sese_region (edge entry
, edge exit
,
5625 basic_block
*region
, unsigned n_region
,
5626 basic_block
*region_copy
)
5629 bool free_region_copy
= false, copying_header
= false;
5630 struct loop
*loop
= entry
->dest
->loop_father
;
5632 vec
<basic_block
> doms
;
5634 int total_freq
= 0, entry_freq
= 0;
5635 gcov_type total_count
= 0, entry_count
= 0;
5637 if (!can_copy_bbs_p (region
, n_region
))
5640 /* Some sanity checking. Note that we do not check for all possible
5641 missuses of the functions. I.e. if you ask to copy something weird,
5642 it will work, but the state of structures probably will not be
5644 for (i
= 0; i
< n_region
; i
++)
5646 /* We do not handle subloops, i.e. all the blocks must belong to the
5648 if (region
[i
]->loop_father
!= loop
)
5651 if (region
[i
] != entry
->dest
5652 && region
[i
] == loop
->header
)
5656 set_loop_copy (loop
, loop
);
5658 /* In case the function is used for loop header copying (which is the primary
5659 use), ensure that EXIT and its copy will be new latch and entry edges. */
5660 if (loop
->header
== entry
->dest
)
5662 copying_header
= true;
5663 set_loop_copy (loop
, loop_outer (loop
));
5665 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
5668 for (i
= 0; i
< n_region
; i
++)
5669 if (region
[i
] != exit
->src
5670 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
5676 region_copy
= XNEWVEC (basic_block
, n_region
);
5677 free_region_copy
= true;
5680 /* Record blocks outside the region that are dominated by something
5683 initialize_original_copy_tables ();
5685 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5687 if (entry
->dest
->count
)
5689 total_count
= entry
->dest
->count
;
5690 entry_count
= entry
->count
;
5691 /* Fix up corner cases, to avoid division by zero or creation of negative
5693 if (entry_count
> total_count
)
5694 entry_count
= total_count
;
5698 total_freq
= entry
->dest
->frequency
;
5699 entry_freq
= EDGE_FREQUENCY (entry
);
5700 /* Fix up corner cases, to avoid division by zero or creation of negative
5702 if (total_freq
== 0)
5704 else if (entry_freq
> total_freq
)
5705 entry_freq
= total_freq
;
5708 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
5709 split_edge_bb_loc (entry
));
5712 scale_bbs_frequencies_gcov_type (region
, n_region
,
5713 total_count
- entry_count
,
5715 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, entry_count
,
5720 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
5722 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
5727 loop
->header
= exit
->dest
;
5728 loop
->latch
= exit
->src
;
5731 /* Redirect the entry and add the phi node arguments. */
5732 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
5733 gcc_assert (redirected
!= NULL
);
5734 flush_pending_stmts (entry
);
5736 /* Concerning updating of dominators: We must recount dominators
5737 for entry block and its copy. Anything that is outside of the
5738 region, but was dominated by something inside needs recounting as
5740 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
5741 doms
.safe_push (get_bb_original (entry
->dest
));
5742 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5745 /* Add the other PHI node arguments. */
5746 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
5748 if (free_region_copy
)
5751 free_original_copy_tables ();
5755 /* Checks if BB is part of the region defined by N_REGION BBS. */
5757 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
5761 for (n
= 0; n
< n_region
; n
++)
5769 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5770 are stored to REGION_COPY in the same order in that they appear
5771 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5772 the region, EXIT an exit from it. The condition guarding EXIT
5773 is moved to ENTRY. Returns true if duplication succeeds, false
5799 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED
, edge exit ATTRIBUTE_UNUSED
,
5800 basic_block
*region ATTRIBUTE_UNUSED
, unsigned n_region ATTRIBUTE_UNUSED
,
5801 basic_block
*region_copy ATTRIBUTE_UNUSED
)
5804 bool free_region_copy
= false;
5805 struct loop
*loop
= exit
->dest
->loop_father
;
5806 struct loop
*orig_loop
= entry
->dest
->loop_father
;
5807 basic_block switch_bb
, entry_bb
, nentry_bb
;
5808 vec
<basic_block
> doms
;
5809 int total_freq
= 0, exit_freq
= 0;
5810 gcov_type total_count
= 0, exit_count
= 0;
5811 edge exits
[2], nexits
[2], e
;
5812 gimple_stmt_iterator gsi
;
5815 basic_block exit_bb
;
5816 gimple_stmt_iterator psi
;
5819 struct loop
*target
, *aloop
, *cloop
;
5821 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
5823 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
5825 if (!can_copy_bbs_p (region
, n_region
))
5828 initialize_original_copy_tables ();
5829 set_loop_copy (orig_loop
, loop
);
5832 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
5834 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
5836 cloop
= duplicate_loop (aloop
, target
);
5837 duplicate_subloops (aloop
, cloop
);
5843 region_copy
= XNEWVEC (basic_block
, n_region
);
5844 free_region_copy
= true;
5847 gcc_assert (!need_ssa_update_p (cfun
));
5849 /* Record blocks outside the region that are dominated by something
5851 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5853 if (exit
->src
->count
)
5855 total_count
= exit
->src
->count
;
5856 exit_count
= exit
->count
;
5857 /* Fix up corner cases, to avoid division by zero or creation of negative
5859 if (exit_count
> total_count
)
5860 exit_count
= total_count
;
5864 total_freq
= exit
->src
->frequency
;
5865 exit_freq
= EDGE_FREQUENCY (exit
);
5866 /* Fix up corner cases, to avoid division by zero or creation of negative
5868 if (total_freq
== 0)
5870 if (exit_freq
> total_freq
)
5871 exit_freq
= total_freq
;
5874 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
5875 split_edge_bb_loc (exit
));
5878 scale_bbs_frequencies_gcov_type (region
, n_region
,
5879 total_count
- exit_count
,
5881 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, exit_count
,
5886 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
5888 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
5891 /* Create the switch block, and put the exit condition to it. */
5892 entry_bb
= entry
->dest
;
5893 nentry_bb
= get_bb_copy (entry_bb
);
5894 if (!last_stmt (entry
->src
)
5895 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
5896 switch_bb
= entry
->src
;
5898 switch_bb
= split_edge (entry
);
5899 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
5901 gsi
= gsi_last_bb (switch_bb
);
5902 cond_stmt
= last_stmt (exit
->src
);
5903 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
5904 cond_stmt
= gimple_copy (cond_stmt
);
5906 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
5908 sorig
= single_succ_edge (switch_bb
);
5909 sorig
->flags
= exits
[1]->flags
;
5910 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
5912 /* Register the new edge from SWITCH_BB in loop exit lists. */
5913 rescan_loop_exit (snew
, true, false);
5915 /* Add the PHI node arguments. */
5916 add_phi_args_after_copy (region_copy
, n_region
, snew
);
5918 /* Get rid of now superfluous conditions and associated edges (and phi node
5920 exit_bb
= exit
->dest
;
5922 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
5923 PENDING_STMT (e
) = NULL
;
5925 /* The latch of ORIG_LOOP was copied, and so was the backedge
5926 to the original header. We redirect this backedge to EXIT_BB. */
5927 for (i
= 0; i
< n_region
; i
++)
5928 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
5930 gcc_assert (single_succ_edge (region_copy
[i
]));
5931 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
5932 PENDING_STMT (e
) = NULL
;
5933 for (psi
= gsi_start_phis (exit_bb
);
5937 phi
= gsi_stmt (psi
);
5938 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
5939 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
5942 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
5943 PENDING_STMT (e
) = NULL
;
5945 /* Anything that is outside of the region, but was dominated by something
5946 inside needs to update dominance info. */
5947 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5949 /* Update the SSA web. */
5950 update_ssa (TODO_update_ssa
);
5952 if (free_region_copy
)
5955 free_original_copy_tables ();
5959 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5960 adding blocks when the dominator traversal reaches EXIT. This
5961 function silently assumes that ENTRY strictly dominates EXIT. */
5964 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
5965 vec
<basic_block
> *bbs_p
)
5969 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
5971 son
= next_dom_son (CDI_DOMINATORS
, son
))
5973 bbs_p
->safe_push (son
);
5975 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
5979 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5980 The duplicates are recorded in VARS_MAP. */
5983 replace_by_duplicate_decl (tree
*tp
, struct pointer_map_t
*vars_map
,
5986 tree t
= *tp
, new_t
;
5987 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
5990 if (DECL_CONTEXT (t
) == to_context
)
5993 loc
= pointer_map_contains (vars_map
, t
);
5997 loc
= pointer_map_insert (vars_map
, t
);
6001 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
6002 add_local_decl (f
, new_t
);
6006 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
6007 new_t
= copy_node (t
);
6009 DECL_CONTEXT (new_t
) = to_context
;
6014 new_t
= (tree
) *loc
;
6020 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6021 VARS_MAP maps old ssa names and var_decls to the new ones. */
6024 replace_ssa_name (tree name
, struct pointer_map_t
*vars_map
,
6030 gcc_assert (!virtual_operand_p (name
));
6032 loc
= pointer_map_contains (vars_map
, name
);
6036 tree decl
= SSA_NAME_VAR (name
);
6039 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
6040 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6041 decl
, SSA_NAME_DEF_STMT (name
));
6042 if (SSA_NAME_IS_DEFAULT_DEF (name
))
6043 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context
),
6047 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6048 name
, SSA_NAME_DEF_STMT (name
));
6050 loc
= pointer_map_insert (vars_map
, name
);
6054 new_name
= (tree
) *loc
;
6065 struct pointer_map_t
*vars_map
;
6066 htab_t new_label_map
;
6067 struct pointer_map_t
*eh_map
;
6071 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6072 contained in *TP if it has been ORIG_BLOCK previously and change the
6073 DECL_CONTEXT of every local variable referenced in *TP. */
6076 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
6078 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6079 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6084 if (TREE_BLOCK (t
) == p
->orig_block
6085 || (p
->orig_block
== NULL_TREE
6086 && TREE_BLOCK (t
) == NULL_TREE
))
6087 TREE_SET_BLOCK (t
, p
->new_block
);
6089 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
6091 if (TREE_CODE (t
) == SSA_NAME
)
6092 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
6093 else if (TREE_CODE (t
) == LABEL_DECL
)
6095 if (p
->new_label_map
)
6097 struct tree_map in
, *out
;
6099 out
= (struct tree_map
*)
6100 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
6105 DECL_CONTEXT (t
) = p
->to_context
;
6107 else if (p
->remap_decls_p
)
6109 /* Replace T with its duplicate. T should no longer appear in the
6110 parent function, so this looks wasteful; however, it may appear
6111 in referenced_vars, and more importantly, as virtual operands of
6112 statements, and in alias lists of other variables. It would be
6113 quite difficult to expunge it from all those places. ??? It might
6114 suffice to do this for addressable variables. */
6115 if ((TREE_CODE (t
) == VAR_DECL
6116 && !is_global_var (t
))
6117 || TREE_CODE (t
) == CONST_DECL
)
6118 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
6122 else if (TYPE_P (t
))
6128 /* Helper for move_stmt_r. Given an EH region number for the source
6129 function, map that to the duplicate EH regio number in the dest. */
6132 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
6134 eh_region old_r
, new_r
;
6137 old_r
= get_eh_region_from_number (old_nr
);
6138 slot
= pointer_map_contains (p
->eh_map
, old_r
);
6139 new_r
= (eh_region
) *slot
;
6141 return new_r
->index
;
6144 /* Similar, but operate on INTEGER_CSTs. */
6147 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
6151 old_nr
= tree_low_cst (old_t_nr
, 0);
6152 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
6154 return build_int_cst (integer_type_node
, new_nr
);
6157 /* Like move_stmt_op, but for gimple statements.
6159 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6160 contained in the current statement in *GSI_P and change the
6161 DECL_CONTEXT of every local variable referenced in the current
6165 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
6166 struct walk_stmt_info
*wi
)
6168 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6169 gimple stmt
= gsi_stmt (*gsi_p
);
6170 tree block
= gimple_block (stmt
);
6172 if (p
->orig_block
== NULL_TREE
6173 || block
== p
->orig_block
6174 || block
== NULL_TREE
)
6175 gimple_set_block (stmt
, p
->new_block
);
6176 #ifdef ENABLE_CHECKING
6177 else if (block
!= p
->new_block
)
6179 while (block
&& block
!= p
->orig_block
)
6180 block
= BLOCK_SUPERCONTEXT (block
);
6185 switch (gimple_code (stmt
))
6188 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6190 tree r
, fndecl
= gimple_call_fndecl (stmt
);
6191 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
6192 switch (DECL_FUNCTION_CODE (fndecl
))
6194 case BUILT_IN_EH_COPY_VALUES
:
6195 r
= gimple_call_arg (stmt
, 1);
6196 r
= move_stmt_eh_region_tree_nr (r
, p
);
6197 gimple_call_set_arg (stmt
, 1, r
);
6200 case BUILT_IN_EH_POINTER
:
6201 case BUILT_IN_EH_FILTER
:
6202 r
= gimple_call_arg (stmt
, 0);
6203 r
= move_stmt_eh_region_tree_nr (r
, p
);
6204 gimple_call_set_arg (stmt
, 0, r
);
6215 int r
= gimple_resx_region (stmt
);
6216 r
= move_stmt_eh_region_nr (r
, p
);
6217 gimple_resx_set_region (stmt
, r
);
6221 case GIMPLE_EH_DISPATCH
:
6223 int r
= gimple_eh_dispatch_region (stmt
);
6224 r
= move_stmt_eh_region_nr (r
, p
);
6225 gimple_eh_dispatch_set_region (stmt
, r
);
6229 case GIMPLE_OMP_RETURN
:
6230 case GIMPLE_OMP_CONTINUE
:
6233 if (is_gimple_omp (stmt
))
6235 /* Do not remap variables inside OMP directives. Variables
6236 referenced in clauses and directive header belong to the
6237 parent function and should not be moved into the child
6239 bool save_remap_decls_p
= p
->remap_decls_p
;
6240 p
->remap_decls_p
= false;
6241 *handled_ops_p
= true;
6243 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
6246 p
->remap_decls_p
= save_remap_decls_p
;
6254 /* Move basic block BB from function CFUN to function DEST_FN. The
6255 block is moved out of the original linked list and placed after
6256 block AFTER in the new list. Also, the block is removed from the
6257 original array of blocks and placed in DEST_FN's array of blocks.
6258 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6259 updated to reflect the moved edges.
6261 The local variables are remapped to new instances, VARS_MAP is used
6262 to record the mapping. */
6265 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
6266 basic_block after
, bool update_edge_count_p
,
6267 struct move_stmt_d
*d
)
6269 struct control_flow_graph
*cfg
;
6272 gimple_stmt_iterator si
;
6273 unsigned old_len
, new_len
;
6275 /* Remove BB from dominance structures. */
6276 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
6278 remove_bb_from_loops (bb
);
6280 /* Link BB to the new linked list. */
6281 move_block_after (bb
, after
);
6283 /* Update the edge count in the corresponding flowgraphs. */
6284 if (update_edge_count_p
)
6285 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6287 cfun
->cfg
->x_n_edges
--;
6288 dest_cfun
->cfg
->x_n_edges
++;
6291 /* Remove BB from the original basic block array. */
6292 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
6293 cfun
->cfg
->x_n_basic_blocks
--;
6295 /* Grow DEST_CFUN's basic block array if needed. */
6296 cfg
= dest_cfun
->cfg
;
6297 cfg
->x_n_basic_blocks
++;
6298 if (bb
->index
>= cfg
->x_last_basic_block
)
6299 cfg
->x_last_basic_block
= bb
->index
+ 1;
6301 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
6302 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
6304 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
6305 vec_safe_grow_cleared (cfg
->x_basic_block_info
, new_len
);
6308 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
6310 /* Remap the variables in phi nodes. */
6311 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); )
6313 gimple phi
= gsi_stmt (si
);
6315 tree op
= PHI_RESULT (phi
);
6319 if (virtual_operand_p (op
))
6321 /* Remove the phi nodes for virtual operands (alias analysis will be
6322 run for the new function, anyway). */
6323 remove_phi_node (&si
, true);
6327 SET_PHI_RESULT (phi
,
6328 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6329 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
6331 op
= USE_FROM_PTR (use
);
6332 if (TREE_CODE (op
) == SSA_NAME
)
6333 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6336 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
6338 location_t locus
= gimple_phi_arg_location (phi
, i
);
6339 tree block
= LOCATION_BLOCK (locus
);
6341 if (locus
== UNKNOWN_LOCATION
)
6343 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
6345 if (d
->new_block
== NULL_TREE
)
6346 locus
= LOCATION_LOCUS (locus
);
6348 locus
= COMBINE_LOCATION_DATA (line_table
, locus
, d
->new_block
);
6349 gimple_phi_arg_set_location (phi
, i
, locus
);
6356 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6358 gimple stmt
= gsi_stmt (si
);
6359 struct walk_stmt_info wi
;
6361 memset (&wi
, 0, sizeof (wi
));
6363 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
6365 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6367 tree label
= gimple_label_label (stmt
);
6368 int uid
= LABEL_DECL_UID (label
);
6370 gcc_assert (uid
> -1);
6372 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
6373 if (old_len
<= (unsigned) uid
)
6375 new_len
= 3 * uid
/ 2 + 1;
6376 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, new_len
);
6379 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
6380 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
6382 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
6384 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
6385 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
6388 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
6389 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
6391 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
6392 gimple_remove_stmt_histograms (cfun
, stmt
);
6394 /* We cannot leave any operands allocated from the operand caches of
6395 the current function. */
6396 free_stmt_operands (stmt
);
6397 push_cfun (dest_cfun
);
6402 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6403 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
6405 tree block
= LOCATION_BLOCK (e
->goto_locus
);
6406 if (d
->orig_block
== NULL_TREE
6407 || block
== d
->orig_block
)
6408 e
->goto_locus
= d
->new_block
?
6409 COMBINE_LOCATION_DATA (line_table
, e
->goto_locus
, d
->new_block
) :
6410 LOCATION_LOCUS (e
->goto_locus
);
6411 #ifdef ENABLE_CHECKING
6412 else if (block
!= d
->new_block
)
6414 while (block
&& block
!= d
->orig_block
)
6415 block
= BLOCK_SUPERCONTEXT (block
);
6422 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6423 the outermost EH region. Use REGION as the incoming base EH region. */
6426 find_outermost_region_in_block (struct function
*src_cfun
,
6427 basic_block bb
, eh_region region
)
6429 gimple_stmt_iterator si
;
6431 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6433 gimple stmt
= gsi_stmt (si
);
6434 eh_region stmt_region
;
6437 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
6438 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
6442 region
= stmt_region
;
6443 else if (stmt_region
!= region
)
6445 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
6446 gcc_assert (region
!= NULL
);
6455 new_label_mapper (tree decl
, void *data
)
6457 htab_t hash
= (htab_t
) data
;
6461 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
6463 m
= XNEW (struct tree_map
);
6464 m
->hash
= DECL_UID (decl
);
6465 m
->base
.from
= decl
;
6466 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
6467 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
6468 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
6469 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
6471 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
6472 gcc_assert (*slot
== NULL
);
6479 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6483 replace_block_vars_by_duplicates (tree block
, struct pointer_map_t
*vars_map
,
6488 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
6491 if (TREE_CODE (t
) != VAR_DECL
&& TREE_CODE (t
) != CONST_DECL
)
6493 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
6496 if (TREE_CODE (*tp
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (*tp
))
6498 SET_DECL_VALUE_EXPR (t
, DECL_VALUE_EXPR (*tp
));
6499 DECL_HAS_VALUE_EXPR_P (t
) = 1;
6501 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
6506 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
6507 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
6510 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6511 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6512 single basic block in the original CFG and the new basic block is
6513 returned. DEST_CFUN must not have a CFG yet.
6515 Note that the region need not be a pure SESE region. Blocks inside
6516 the region may contain calls to abort/exit. The only restriction
6517 is that ENTRY_BB should be the only entry point and it must
6520 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6521 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6522 to the new function.
6524 All local variables referenced in the region are assumed to be in
6525 the corresponding BLOCK_VARS and unexpanded variable lists
6526 associated with DEST_CFUN. */
6529 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
6530 basic_block exit_bb
, tree orig_block
)
6532 vec
<basic_block
> bbs
, dom_bbs
;
6533 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
6534 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
6535 struct function
*saved_cfun
= cfun
;
6536 int *entry_flag
, *exit_flag
;
6537 unsigned *entry_prob
, *exit_prob
;
6538 unsigned i
, num_entry_edges
, num_exit_edges
;
6541 htab_t new_label_map
;
6542 struct pointer_map_t
*vars_map
, *eh_map
;
6543 struct loop
*loop
= entry_bb
->loop_father
;
6544 struct move_stmt_d d
;
6546 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6548 gcc_assert (entry_bb
!= exit_bb
6550 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
6552 /* Collect all the blocks in the region. Manually add ENTRY_BB
6553 because it won't be added by dfs_enumerate_from. */
6555 bbs
.safe_push (entry_bb
);
6556 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
6558 /* The blocks that used to be dominated by something in BBS will now be
6559 dominated by the new block. */
6560 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
6564 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6565 the predecessor edges to ENTRY_BB and the successor edges to
6566 EXIT_BB so that we can re-attach them to the new basic block that
6567 will replace the region. */
6568 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
6569 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
6570 entry_flag
= XNEWVEC (int, num_entry_edges
);
6571 entry_prob
= XNEWVEC (unsigned, num_entry_edges
);
6573 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
6575 entry_prob
[i
] = e
->probability
;
6576 entry_flag
[i
] = e
->flags
;
6577 entry_pred
[i
++] = e
->src
;
6583 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
6584 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
6585 exit_flag
= XNEWVEC (int, num_exit_edges
);
6586 exit_prob
= XNEWVEC (unsigned, num_exit_edges
);
6588 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
6590 exit_prob
[i
] = e
->probability
;
6591 exit_flag
[i
] = e
->flags
;
6592 exit_succ
[i
++] = e
->dest
;
6604 /* Switch context to the child function to initialize DEST_FN's CFG. */
6605 gcc_assert (dest_cfun
->cfg
== NULL
);
6606 push_cfun (dest_cfun
);
6608 init_empty_tree_cfg ();
6610 /* Initialize EH information for the new function. */
6612 new_label_map
= NULL
;
6615 eh_region region
= NULL
;
6617 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
6618 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
6620 init_eh_for_function ();
6623 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
6624 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
6625 new_label_mapper
, new_label_map
);
6631 /* Move blocks from BBS into DEST_CFUN. */
6632 gcc_assert (bbs
.length () >= 2);
6633 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
6634 vars_map
= pointer_map_create ();
6636 memset (&d
, 0, sizeof (d
));
6637 d
.orig_block
= orig_block
;
6638 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
6639 d
.from_context
= cfun
->decl
;
6640 d
.to_context
= dest_cfun
->decl
;
6641 d
.vars_map
= vars_map
;
6642 d
.new_label_map
= new_label_map
;
6644 d
.remap_decls_p
= true;
6646 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
6648 /* No need to update edge counts on the last block. It has
6649 already been updated earlier when we detached the region from
6650 the original CFG. */
6651 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
6655 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6659 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6661 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6662 = BLOCK_SUBBLOCKS (orig_block
);
6663 for (block
= BLOCK_SUBBLOCKS (orig_block
);
6664 block
; block
= BLOCK_CHAIN (block
))
6665 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
6666 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
6669 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
6670 vars_map
, dest_cfun
->decl
);
6673 htab_delete (new_label_map
);
6675 pointer_map_destroy (eh_map
);
6676 pointer_map_destroy (vars_map
);
6678 /* Rewire the entry and exit blocks. The successor to the entry
6679 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6680 the child function. Similarly, the predecessor of DEST_FN's
6681 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6682 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6683 various CFG manipulation function get to the right CFG.
6685 FIXME, this is silly. The CFG ought to become a parameter to
6687 push_cfun (dest_cfun
);
6688 make_edge (ENTRY_BLOCK_PTR
, entry_bb
, EDGE_FALLTHRU
);
6690 make_edge (exit_bb
, EXIT_BLOCK_PTR
, 0);
6693 /* Back in the original function, the SESE region has disappeared,
6694 create a new basic block in its place. */
6695 bb
= create_empty_bb (entry_pred
[0]);
6697 add_bb_to_loop (bb
, loop
);
6698 for (i
= 0; i
< num_entry_edges
; i
++)
6700 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
6701 e
->probability
= entry_prob
[i
];
6704 for (i
= 0; i
< num_exit_edges
; i
++)
6706 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
6707 e
->probability
= exit_prob
[i
];
6710 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
6711 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
6712 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
6730 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6734 dump_function_to_file (tree fndecl
, FILE *file
, int flags
)
6736 tree arg
, var
, old_current_fndecl
= current_function_decl
;
6737 struct function
*dsf
;
6738 bool ignore_topmost_bind
= false, any_var
= false;
6741 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
6742 && decl_is_tm_clone (fndecl
));
6743 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
6745 current_function_decl
= fndecl
;
6746 fprintf (file
, "%s %s(", function_name (fun
), tmclone
? "[tm-clone] " : "");
6748 arg
= DECL_ARGUMENTS (fndecl
);
6751 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
6752 fprintf (file
, " ");
6753 print_generic_expr (file
, arg
, dump_flags
);
6754 if (flags
& TDF_VERBOSE
)
6755 print_node (file
, "", arg
, 4);
6756 if (DECL_CHAIN (arg
))
6757 fprintf (file
, ", ");
6758 arg
= DECL_CHAIN (arg
);
6760 fprintf (file
, ")\n");
6762 if (flags
& TDF_VERBOSE
)
6763 print_node (file
, "", fndecl
, 2);
6765 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
6766 if (dsf
&& (flags
& TDF_EH
))
6767 dump_eh_tree (file
, dsf
);
6769 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
6771 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
6772 current_function_decl
= old_current_fndecl
;
6776 /* When GIMPLE is lowered, the variables are no longer available in
6777 BIND_EXPRs, so display them separately. */
6778 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
6781 ignore_topmost_bind
= true;
6783 fprintf (file
, "{\n");
6784 if (!vec_safe_is_empty (fun
->local_decls
))
6785 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
6787 print_generic_decl (file
, var
, flags
);
6788 if (flags
& TDF_VERBOSE
)
6789 print_node (file
, "", var
, 4);
6790 fprintf (file
, "\n");
6794 if (gimple_in_ssa_p (cfun
))
6795 for (ix
= 1; ix
< num_ssa_names
; ++ix
)
6797 tree name
= ssa_name (ix
);
6798 if (name
&& !SSA_NAME_VAR (name
))
6800 fprintf (file
, " ");
6801 print_generic_expr (file
, TREE_TYPE (name
), flags
);
6802 fprintf (file
, " ");
6803 print_generic_expr (file
, name
, flags
);
6804 fprintf (file
, ";\n");
6811 if (fun
&& fun
->decl
== fndecl
6813 && basic_block_info_for_function (fun
))
6815 /* If the CFG has been built, emit a CFG-based dump. */
6816 if (!ignore_topmost_bind
)
6817 fprintf (file
, "{\n");
6819 if (any_var
&& n_basic_blocks_for_function (fun
))
6820 fprintf (file
, "\n");
6822 FOR_EACH_BB_FN (bb
, fun
)
6823 dump_bb (file
, bb
, 2, flags
| TDF_COMMENT
);
6825 fprintf (file
, "}\n");
6827 else if (DECL_SAVED_TREE (fndecl
) == NULL
)
6829 /* The function is now in GIMPLE form but the CFG has not been
6830 built yet. Emit the single sequence of GIMPLE statements
6831 that make up its body. */
6832 gimple_seq body
= gimple_body (fndecl
);
6834 if (gimple_seq_first_stmt (body
)
6835 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
6836 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
6837 print_gimple_seq (file
, body
, 0, flags
);
6840 if (!ignore_topmost_bind
)
6841 fprintf (file
, "{\n");
6844 fprintf (file
, "\n");
6846 print_gimple_seq (file
, body
, 2, flags
);
6847 fprintf (file
, "}\n");
6854 /* Make a tree based dump. */
6855 chain
= DECL_SAVED_TREE (fndecl
);
6856 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
6858 if (ignore_topmost_bind
)
6860 chain
= BIND_EXPR_BODY (chain
);
6868 if (!ignore_topmost_bind
)
6869 fprintf (file
, "{\n");
6874 fprintf (file
, "\n");
6876 print_generic_stmt_indented (file
, chain
, flags
, indent
);
6877 if (ignore_topmost_bind
)
6878 fprintf (file
, "}\n");
6881 if (flags
& TDF_ENUMERATE_LOCALS
)
6882 dump_enumerated_decls (file
, flags
);
6883 fprintf (file
, "\n\n");
6885 current_function_decl
= old_current_fndecl
;
6888 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6891 debug_function (tree fn
, int flags
)
6893 dump_function_to_file (fn
, stderr
, flags
);
6897 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6900 print_pred_bbs (FILE *file
, basic_block bb
)
6905 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6906 fprintf (file
, "bb_%d ", e
->src
->index
);
6910 /* Print on FILE the indexes for the successors of basic_block BB. */
6913 print_succ_bbs (FILE *file
, basic_block bb
)
6918 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6919 fprintf (file
, "bb_%d ", e
->dest
->index
);
6922 /* Print to FILE the basic block BB following the VERBOSITY level. */
6925 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
6927 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
6928 memset ((void *) s_indent
, ' ', (size_t) indent
);
6929 s_indent
[indent
] = '\0';
6931 /* Print basic_block's header. */
6934 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
6935 print_pred_bbs (file
, bb
);
6936 fprintf (file
, "}, succs = {");
6937 print_succ_bbs (file
, bb
);
6938 fprintf (file
, "})\n");
6941 /* Print basic_block's body. */
6944 fprintf (file
, "%s {\n", s_indent
);
6945 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
6946 fprintf (file
, "%s }\n", s_indent
);
6950 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
6952 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6953 VERBOSITY level this outputs the contents of the loop, or just its
6957 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6965 s_indent
= (char *) alloca ((size_t) indent
+ 1);
6966 memset ((void *) s_indent
, ' ', (size_t) indent
);
6967 s_indent
[indent
] = '\0';
6969 /* Print loop's header. */
6970 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
6972 fprintf (file
, "header = %d", loop
->header
->index
);
6975 fprintf (file
, "deleted)\n");
6979 fprintf (file
, ", latch = %d", loop
->latch
->index
);
6981 fprintf (file
, ", multiple latches");
6982 fprintf (file
, ", niter = ");
6983 print_generic_expr (file
, loop
->nb_iterations
, 0);
6985 if (loop
->any_upper_bound
)
6987 fprintf (file
, ", upper_bound = ");
6988 dump_double_int (file
, loop
->nb_iterations_upper_bound
, true);
6991 if (loop
->any_estimate
)
6993 fprintf (file
, ", estimate = ");
6994 dump_double_int (file
, loop
->nb_iterations_estimate
, true);
6996 fprintf (file
, ")\n");
6998 /* Print loop's body. */
7001 fprintf (file
, "%s{\n", s_indent
);
7003 if (bb
->loop_father
== loop
)
7004 print_loops_bb (file
, bb
, indent
, verbosity
);
7006 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
7007 fprintf (file
, "%s}\n", s_indent
);
7011 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7012 spaces. Following VERBOSITY level this outputs the contents of the
7013 loop, or just its structure. */
7016 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
7021 print_loop (file
, loop
, indent
, verbosity
);
7022 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
7025 /* Follow a CFG edge from the entry point of the program, and on entry
7026 of a loop, pretty print the loop structure on FILE. */
7029 print_loops (FILE *file
, int verbosity
)
7033 bb
= ENTRY_BLOCK_PTR
;
7034 if (bb
&& bb
->loop_father
)
7035 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
7039 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7042 debug_loops (int verbosity
)
7044 print_loops (stderr
, verbosity
);
7047 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7050 debug_loop (struct loop
*loop
, int verbosity
)
7052 print_loop (stderr
, loop
, 0, verbosity
);
7055 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7059 debug_loop_num (unsigned num
, int verbosity
)
7061 debug_loop (get_loop (num
), verbosity
);
7064 /* Return true if BB ends with a call, possibly followed by some
7065 instructions that must stay with the call. Return false,
7069 gimple_block_ends_with_call_p (basic_block bb
)
7071 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
7072 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
7076 /* Return true if BB ends with a conditional branch. Return false,
7080 gimple_block_ends_with_condjump_p (const_basic_block bb
)
7082 gimple stmt
= last_stmt (CONST_CAST_BB (bb
));
7083 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
7087 /* Return true if we need to add fake edge to exit at statement T.
7088 Helper function for gimple_flow_call_edges_add. */
7091 need_fake_edge_p (gimple t
)
7093 tree fndecl
= NULL_TREE
;
7096 /* NORETURN and LONGJMP calls already have an edge to exit.
7097 CONST and PURE calls do not need one.
7098 We don't currently check for CONST and PURE here, although
7099 it would be a good idea, because those attributes are
7100 figured out from the RTL in mark_constant_function, and
7101 the counter incrementation code from -fprofile-arcs
7102 leads to different results from -fbranch-probabilities. */
7103 if (is_gimple_call (t
))
7105 fndecl
= gimple_call_fndecl (t
);
7106 call_flags
= gimple_call_flags (t
);
7109 if (is_gimple_call (t
)
7111 && DECL_BUILT_IN (fndecl
)
7112 && (call_flags
& ECF_NOTHROW
)
7113 && !(call_flags
& ECF_RETURNS_TWICE
)
7114 /* fork() doesn't really return twice, but the effect of
7115 wrapping it in __gcov_fork() which calls __gcov_flush()
7116 and clears the counters before forking has the same
7117 effect as returning twice. Force a fake edge. */
7118 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
7119 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
7122 if (is_gimple_call (t
))
7128 if (!(call_flags
& ECF_NORETURN
))
7132 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7133 if ((e
->flags
& EDGE_FAKE
) == 0)
7137 if (gimple_code (t
) == GIMPLE_ASM
7138 && (gimple_asm_volatile_p (t
) || gimple_asm_input_p (t
)))
7145 /* Add fake edges to the function exit for any non constant and non
7146 noreturn calls (or noreturn calls with EH/abnormal edges),
7147 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7148 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7151 The goal is to expose cases in which entering a basic block does
7152 not imply that all subsequent instructions must be executed. */
7155 gimple_flow_call_edges_add (sbitmap blocks
)
7158 int blocks_split
= 0;
7159 int last_bb
= last_basic_block
;
7160 bool check_last_block
= false;
7162 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
7166 check_last_block
= true;
7168 check_last_block
= bitmap_bit_p (blocks
, EXIT_BLOCK_PTR
->prev_bb
->index
);
7170 /* In the last basic block, before epilogue generation, there will be
7171 a fallthru edge to EXIT. Special care is required if the last insn
7172 of the last basic block is a call because make_edge folds duplicate
7173 edges, which would result in the fallthru edge also being marked
7174 fake, which would result in the fallthru edge being removed by
7175 remove_fake_edges, which would result in an invalid CFG.
7177 Moreover, we can't elide the outgoing fake edge, since the block
7178 profiler needs to take this into account in order to solve the minimal
7179 spanning tree in the case that the call doesn't return.
7181 Handle this by adding a dummy instruction in a new last basic block. */
7182 if (check_last_block
)
7184 basic_block bb
= EXIT_BLOCK_PTR
->prev_bb
;
7185 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
7188 if (!gsi_end_p (gsi
))
7191 if (t
&& need_fake_edge_p (t
))
7195 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
7198 gsi_insert_on_edge (e
, gimple_build_nop ());
7199 gsi_commit_edge_inserts ();
7204 /* Now add fake edges to the function exit for any non constant
7205 calls since there is no way that we can determine if they will
7207 for (i
= 0; i
< last_bb
; i
++)
7209 basic_block bb
= BASIC_BLOCK (i
);
7210 gimple_stmt_iterator gsi
;
7211 gimple stmt
, last_stmt
;
7216 if (blocks
&& !bitmap_bit_p (blocks
, i
))
7219 gsi
= gsi_last_nondebug_bb (bb
);
7220 if (!gsi_end_p (gsi
))
7222 last_stmt
= gsi_stmt (gsi
);
7225 stmt
= gsi_stmt (gsi
);
7226 if (need_fake_edge_p (stmt
))
7230 /* The handling above of the final block before the
7231 epilogue should be enough to verify that there is
7232 no edge to the exit block in CFG already.
7233 Calling make_edge in such case would cause us to
7234 mark that edge as fake and remove it later. */
7235 #ifdef ENABLE_CHECKING
7236 if (stmt
== last_stmt
)
7238 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
7239 gcc_assert (e
== NULL
);
7243 /* Note that the following may create a new basic block
7244 and renumber the existing basic blocks. */
7245 if (stmt
!= last_stmt
)
7247 e
= split_block (bb
, stmt
);
7251 make_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
7255 while (!gsi_end_p (gsi
));
7260 verify_flow_info ();
7262 return blocks_split
;
7265 /* Removes edge E and all the blocks dominated by it, and updates dominance
7266 information. The IL in E->src needs to be updated separately.
7267 If dominance info is not available, only the edge E is removed.*/
7270 remove_edge_and_dominated_blocks (edge e
)
7272 vec
<basic_block
> bbs_to_remove
= vec
<basic_block
>();
7273 vec
<basic_block
> bbs_to_fix_dom
= vec
<basic_block
>();
7277 bool none_removed
= false;
7279 basic_block bb
, dbb
;
7282 if (!dom_info_available_p (CDI_DOMINATORS
))
7288 /* No updating is needed for edges to exit. */
7289 if (e
->dest
== EXIT_BLOCK_PTR
)
7291 if (cfgcleanup_altered_bbs
)
7292 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
7297 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7298 that is not dominated by E->dest, then this set is empty. Otherwise,
7299 all the basic blocks dominated by E->dest are removed.
7301 Also, to DF_IDOM we store the immediate dominators of the blocks in
7302 the dominance frontier of E (i.e., of the successors of the
7303 removed blocks, if there are any, and of E->dest otherwise). */
7304 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
7309 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
7311 none_removed
= true;
7316 df
= BITMAP_ALLOC (NULL
);
7317 df_idom
= BITMAP_ALLOC (NULL
);
7320 bitmap_set_bit (df_idom
,
7321 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
7324 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
7325 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
7327 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
7329 if (f
->dest
!= EXIT_BLOCK_PTR
)
7330 bitmap_set_bit (df
, f
->dest
->index
);
7333 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
7334 bitmap_clear_bit (df
, bb
->index
);
7336 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
7338 bb
= BASIC_BLOCK (i
);
7339 bitmap_set_bit (df_idom
,
7340 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
7344 if (cfgcleanup_altered_bbs
)
7346 /* Record the set of the altered basic blocks. */
7347 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
7348 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
7351 /* Remove E and the cancelled blocks. */
7356 /* Walk backwards so as to get a chance to substitute all
7357 released DEFs into debug stmts. See
7358 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7360 for (i
= bbs_to_remove
.length (); i
-- > 0; )
7361 delete_basic_block (bbs_to_remove
[i
]);
7364 /* Update the dominance information. The immediate dominator may change only
7365 for blocks whose immediate dominator belongs to DF_IDOM:
7367 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7368 removal. Let Z the arbitrary block such that idom(Z) = Y and
7369 Z dominates X after the removal. Before removal, there exists a path P
7370 from Y to X that avoids Z. Let F be the last edge on P that is
7371 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7372 dominates W, and because of P, Z does not dominate W), and W belongs to
7373 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7374 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
7376 bb
= BASIC_BLOCK (i
);
7377 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
7379 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
7380 bbs_to_fix_dom
.safe_push (dbb
);
7383 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
7386 BITMAP_FREE (df_idom
);
7387 bbs_to_remove
.release ();
7388 bbs_to_fix_dom
.release ();
7391 /* Purge dead EH edges from basic block BB. */
7394 gimple_purge_dead_eh_edges (basic_block bb
)
7396 bool changed
= false;
7399 gimple stmt
= last_stmt (bb
);
7401 if (stmt
&& stmt_can_throw_internal (stmt
))
7404 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7406 if (e
->flags
& EDGE_EH
)
7408 remove_edge_and_dominated_blocks (e
);
7418 /* Purge dead EH edges from basic block listed in BLOCKS. */
7421 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
7423 bool changed
= false;
7427 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7429 basic_block bb
= BASIC_BLOCK (i
);
7431 /* Earlier gimple_purge_dead_eh_edges could have removed
7432 this basic block already. */
7433 gcc_assert (bb
|| changed
);
7435 changed
|= gimple_purge_dead_eh_edges (bb
);
7441 /* Purge dead abnormal call edges from basic block BB. */
7444 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
7446 bool changed
= false;
7449 gimple stmt
= last_stmt (bb
);
7451 if (!cfun
->has_nonlocal_label
)
7454 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
7457 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7459 if (e
->flags
& EDGE_ABNORMAL
)
7461 remove_edge_and_dominated_blocks (e
);
7471 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7474 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
7476 bool changed
= false;
7480 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7482 basic_block bb
= BASIC_BLOCK (i
);
7484 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7485 this basic block already. */
7486 gcc_assert (bb
|| changed
);
7488 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
7494 /* This function is called whenever a new edge is created or
7498 gimple_execute_on_growing_pred (edge e
)
7500 basic_block bb
= e
->dest
;
7502 if (!gimple_seq_empty_p (phi_nodes (bb
)))
7503 reserve_phi_args_for_new_edge (bb
);
7506 /* This function is called immediately before edge E is removed from
7507 the edge vector E->dest->preds. */
7510 gimple_execute_on_shrinking_pred (edge e
)
7512 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
7513 remove_phi_args (e
);
7516 /*---------------------------------------------------------------------------
7517 Helper functions for Loop versioning
7518 ---------------------------------------------------------------------------*/
7520 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7521 of 'first'. Both of them are dominated by 'new_head' basic block. When
7522 'new_head' was created by 'second's incoming edge it received phi arguments
7523 on the edge by split_edge(). Later, additional edge 'e' was created to
7524 connect 'new_head' and 'first'. Now this routine adds phi args on this
7525 additional edge 'e' that new_head to second edge received as part of edge
7529 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
7530 basic_block new_head
, edge e
)
7533 gimple_stmt_iterator psi1
, psi2
;
7535 edge e2
= find_edge (new_head
, second
);
7537 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7538 edge, we should always have an edge from NEW_HEAD to SECOND. */
7539 gcc_assert (e2
!= NULL
);
7541 /* Browse all 'second' basic block phi nodes and add phi args to
7542 edge 'e' for 'first' head. PHI args are always in correct order. */
7544 for (psi2
= gsi_start_phis (second
),
7545 psi1
= gsi_start_phis (first
);
7546 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
7547 gsi_next (&psi2
), gsi_next (&psi1
))
7549 phi1
= gsi_stmt (psi1
);
7550 phi2
= gsi_stmt (psi2
);
7551 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
7552 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
7557 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7558 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7559 the destination of the ELSE part. */
7562 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
7563 basic_block second_head ATTRIBUTE_UNUSED
,
7564 basic_block cond_bb
, void *cond_e
)
7566 gimple_stmt_iterator gsi
;
7567 gimple new_cond_expr
;
7568 tree cond_expr
= (tree
) cond_e
;
7571 /* Build new conditional expr */
7572 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
7573 NULL_TREE
, NULL_TREE
);
7575 /* Add new cond in cond_bb. */
7576 gsi
= gsi_last_bb (cond_bb
);
7577 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
7579 /* Adjust edges appropriately to connect new head with first head
7580 as well as second head. */
7581 e0
= single_succ_edge (cond_bb
);
7582 e0
->flags
&= ~EDGE_FALLTHRU
;
7583 e0
->flags
|= EDGE_FALSE_VALUE
;
7587 /* Do book-keeping of basic block BB for the profile consistency checker.
7588 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7589 then do post-pass accounting. Store the counting in RECORD. */
7591 gimple_account_profile_record (basic_block bb
, int after_pass
,
7592 struct profile_record
*record
)
7594 gimple_stmt_iterator i
;
7595 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
7597 record
->size
[after_pass
]
7598 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
7599 if (profile_status
== PROFILE_READ
)
7600 record
->time
[after_pass
]
7601 += estimate_num_insns (gsi_stmt (i
),
7602 &eni_time_weights
) * bb
->count
;
7603 else if (profile_status
== PROFILE_GUESSED
)
7604 record
->time
[after_pass
]
7605 += estimate_num_insns (gsi_stmt (i
),
7606 &eni_time_weights
) * bb
->frequency
;
7610 struct cfg_hooks gimple_cfg_hooks
= {
7612 gimple_verify_flow_info
,
7613 gimple_dump_bb
, /* dump_bb */
7614 create_bb
, /* create_basic_block */
7615 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
7616 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
7617 gimple_can_remove_branch_p
, /* can_remove_branch_p */
7618 remove_bb
, /* delete_basic_block */
7619 gimple_split_block
, /* split_block */
7620 gimple_move_block_after
, /* move_block_after */
7621 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
7622 gimple_merge_blocks
, /* merge_blocks */
7623 gimple_predict_edge
, /* predict_edge */
7624 gimple_predicted_by_p
, /* predicted_by_p */
7625 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
7626 gimple_duplicate_bb
, /* duplicate_block */
7627 gimple_split_edge
, /* split_edge */
7628 gimple_make_forwarder_block
, /* make_forward_block */
7629 NULL
, /* tidy_fallthru_edge */
7630 NULL
, /* force_nonfallthru */
7631 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
7632 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
7633 gimple_flow_call_edges_add
, /* flow_call_edges_add */
7634 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
7635 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
7636 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
7637 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
7638 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
7639 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
7640 flush_pending_stmts
, /* flush_pending_stmts */
7641 gimple_empty_block_p
, /* block_empty_p */
7642 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
7643 gimple_account_profile_record
,
7647 /* Split all critical edges. */
7650 split_critical_edges (void)
7656 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7657 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7658 mappings around the calls to split_edge. */
7659 start_recording_case_labels ();
7662 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7664 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
7666 /* PRE inserts statements to edges and expects that
7667 since split_critical_edges was done beforehand, committing edge
7668 insertions will not split more edges. In addition to critical
7669 edges we must split edges that have multiple successors and
7670 end by control flow statements, such as RESX.
7671 Go ahead and split them too. This matches the logic in
7672 gimple_find_edge_insert_loc. */
7673 else if ((!single_pred_p (e
->dest
)
7674 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
7675 || e
->dest
== EXIT_BLOCK_PTR
)
7676 && e
->src
!= ENTRY_BLOCK_PTR
7677 && !(e
->flags
& EDGE_ABNORMAL
))
7679 gimple_stmt_iterator gsi
;
7681 gsi
= gsi_last_bb (e
->src
);
7682 if (!gsi_end_p (gsi
)
7683 && stmt_ends_bb_p (gsi_stmt (gsi
))
7684 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
7685 && !gimple_call_builtin_p (gsi_stmt (gsi
),
7691 end_recording_case_labels ();
7695 struct gimple_opt_pass pass_split_crit_edges
=
7699 "crited", /* name */
7700 OPTGROUP_NONE
, /* optinfo_flags */
7702 split_critical_edges
, /* execute */
7705 0, /* static_pass_number */
7706 TV_TREE_SPLIT_EDGES
, /* tv_id */
7707 PROP_cfg
, /* properties required */
7708 PROP_no_crit_edges
, /* properties_provided */
7709 0, /* properties_destroyed */
7710 0, /* todo_flags_start */
7711 TODO_verify_flow
/* todo_flags_finish */
7716 /* Build a ternary operation and gimplify it. Emit code before GSI.
7717 Return the gimple_val holding the result. */
7720 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7721 tree type
, tree a
, tree b
, tree c
)
7724 location_t loc
= gimple_location (gsi_stmt (*gsi
));
7726 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
7729 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7733 /* Build a binary operation and gimplify it. Emit code before GSI.
7734 Return the gimple_val holding the result. */
7737 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7738 tree type
, tree a
, tree b
)
7742 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
7745 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7749 /* Build a unary operation and gimplify it. Emit code before GSI.
7750 Return the gimple_val holding the result. */
7753 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
7758 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
7761 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7767 /* Emit return warnings. */
7770 execute_warn_function_return (void)
7772 source_location location
;
7777 if (!targetm
.warn_func_return (cfun
->decl
))
7780 /* If we have a path to EXIT, then we do return. */
7781 if (TREE_THIS_VOLATILE (cfun
->decl
)
7782 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0)
7784 location
= UNKNOWN_LOCATION
;
7785 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7787 last
= last_stmt (e
->src
);
7788 if ((gimple_code (last
) == GIMPLE_RETURN
7789 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
7790 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
7793 if (location
== UNKNOWN_LOCATION
)
7794 location
= cfun
->function_end_locus
;
7795 warning_at (location
, 0, "%<noreturn%> function does return");
7798 /* If we see "return;" in some basic block, then we do reach the end
7799 without returning a value. */
7800 else if (warn_return_type
7801 && !TREE_NO_WARNING (cfun
->decl
)
7802 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0
7803 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun
->decl
))))
7805 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7807 gimple last
= last_stmt (e
->src
);
7808 if (gimple_code (last
) == GIMPLE_RETURN
7809 && gimple_return_retval (last
) == NULL
7810 && !gimple_no_warning_p (last
))
7812 location
= gimple_location (last
);
7813 if (location
== UNKNOWN_LOCATION
)
7814 location
= cfun
->function_end_locus
;
7815 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
7816 TREE_NO_WARNING (cfun
->decl
) = 1;
7825 /* Given a basic block B which ends with a conditional and has
7826 precisely two successors, determine which of the edges is taken if
7827 the conditional is true and which is taken if the conditional is
7828 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7831 extract_true_false_edges_from_block (basic_block b
,
7835 edge e
= EDGE_SUCC (b
, 0);
7837 if (e
->flags
& EDGE_TRUE_VALUE
)
7840 *false_edge
= EDGE_SUCC (b
, 1);
7845 *true_edge
= EDGE_SUCC (b
, 1);
7849 struct gimple_opt_pass pass_warn_function_return
=
7853 "*warn_function_return", /* name */
7854 OPTGROUP_NONE
, /* optinfo_flags */
7856 execute_warn_function_return
, /* execute */
7859 0, /* static_pass_number */
7860 TV_NONE
, /* tv_id */
7861 PROP_cfg
, /* properties_required */
7862 0, /* properties_provided */
7863 0, /* properties_destroyed */
7864 0, /* todo_flags_start */
7865 0 /* todo_flags_finish */
7869 /* Emit noreturn warnings. */
7872 execute_warn_function_noreturn (void)
7874 if (!TREE_THIS_VOLATILE (current_function_decl
)
7875 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) == 0)
7876 warn_function_noreturn (current_function_decl
);
7881 gate_warn_function_noreturn (void)
7883 return warn_suggest_attribute_noreturn
;
7886 struct gimple_opt_pass pass_warn_function_noreturn
=
7890 "*warn_function_noreturn", /* name */
7891 OPTGROUP_NONE
, /* optinfo_flags */
7892 gate_warn_function_noreturn
, /* gate */
7893 execute_warn_function_noreturn
, /* execute */
7896 0, /* static_pass_number */
7897 TV_NONE
, /* tv_id */
7898 PROP_cfg
, /* properties_required */
7899 0, /* properties_provided */
7900 0, /* properties_destroyed */
7901 0, /* todo_flags_start */
7902 0 /* todo_flags_finish */
7907 /* Walk a gimplified function and warn for functions whose return value is
7908 ignored and attribute((warn_unused_result)) is set. This is done before
7909 inlining, so we don't have to worry about that. */
7912 do_warn_unused_result (gimple_seq seq
)
7915 gimple_stmt_iterator i
;
7917 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
7919 gimple g
= gsi_stmt (i
);
7921 switch (gimple_code (g
))
7924 do_warn_unused_result (gimple_bind_body (g
));
7927 do_warn_unused_result (gimple_try_eval (g
));
7928 do_warn_unused_result (gimple_try_cleanup (g
));
7931 do_warn_unused_result (gimple_catch_handler (g
));
7933 case GIMPLE_EH_FILTER
:
7934 do_warn_unused_result (gimple_eh_filter_failure (g
));
7938 if (gimple_call_lhs (g
))
7940 if (gimple_call_internal_p (g
))
7943 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7944 LHS. All calls whose value is ignored should be
7945 represented like this. Look for the attribute. */
7946 fdecl
= gimple_call_fndecl (g
);
7947 ftype
= gimple_call_fntype (g
);
7949 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
7951 location_t loc
= gimple_location (g
);
7954 warning_at (loc
, OPT_Wunused_result
,
7955 "ignoring return value of %qD, "
7956 "declared with attribute warn_unused_result",
7959 warning_at (loc
, OPT_Wunused_result
,
7960 "ignoring return value of function "
7961 "declared with attribute warn_unused_result");
7966 /* Not a container, not a call, or a call whose value is used. */
7973 run_warn_unused_result (void)
7975 do_warn_unused_result (gimple_body (current_function_decl
));
7980 gate_warn_unused_result (void)
7982 return flag_warn_unused_result
;
7985 struct gimple_opt_pass pass_warn_unused_result
=
7989 "*warn_unused_result", /* name */
7990 OPTGROUP_NONE
, /* optinfo_flags */
7991 gate_warn_unused_result
, /* gate */
7992 run_warn_unused_result
, /* execute */
7995 0, /* static_pass_number */
7996 TV_NONE
, /* tv_id */
7997 PROP_gimple_any
, /* properties_required */
7998 0, /* properties_provided */
7999 0, /* properties_destroyed */
8000 0, /* todo_flags_start */
8001 0, /* todo_flags_finish */
8006 /* Garbage collection support for edge_def. */
8008 extern void gt_ggc_mx (tree
&);
8009 extern void gt_ggc_mx (gimple
&);
8010 extern void gt_ggc_mx (rtx
&);
8011 extern void gt_ggc_mx (basic_block
&);
8014 gt_ggc_mx (edge_def
*e
)
8016 tree block
= LOCATION_BLOCK (e
->goto_locus
);
8018 gt_ggc_mx (e
->dest
);
8019 if (current_ir_type () == IR_GIMPLE
)
8020 gt_ggc_mx (e
->insns
.g
);
8022 gt_ggc_mx (e
->insns
.r
);
8026 /* PCH support for edge_def. */
8028 extern void gt_pch_nx (tree
&);
8029 extern void gt_pch_nx (gimple
&);
8030 extern void gt_pch_nx (rtx
&);
8031 extern void gt_pch_nx (basic_block
&);
8034 gt_pch_nx (edge_def
*e
)
8036 tree block
= LOCATION_BLOCK (e
->goto_locus
);
8038 gt_pch_nx (e
->dest
);
8039 if (current_ir_type () == IR_GIMPLE
)
8040 gt_pch_nx (e
->insns
.g
);
8042 gt_pch_nx (e
->insns
.r
);
8047 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
8049 tree block
= LOCATION_BLOCK (e
->goto_locus
);
8050 op (&(e
->src
), cookie
);
8051 op (&(e
->dest
), cookie
);
8052 if (current_ir_type () == IR_GIMPLE
)
8053 op (&(e
->insns
.g
), cookie
);
8055 op (&(e
->insns
.r
), cookie
);
8056 op (&(block
), cookie
);