* include/ext/array_allocator.h: Replace uses of
[official-gcc.git] / gcc / postreload.c
blob32c5b5f207300d55613948d93fbfc6960edd435b
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "cselib.h"
42 #include "diagnostic-core.h"
43 #include "except.h"
44 #include "tree.h"
45 #include "target.h"
46 #include "tree-pass.h"
47 #include "df.h"
48 #include "dbgcnt.h"
50 static int reload_cse_noop_set_p (rtx);
51 static bool reload_cse_simplify (rtx, rtx);
52 static void reload_cse_regs_1 (void);
53 static int reload_cse_simplify_set (rtx, rtx);
54 static int reload_cse_simplify_operands (rtx, rtx);
56 static void reload_combine (void);
57 static void reload_combine_note_use (rtx *, rtx, int, rtx);
58 static void reload_combine_note_store (rtx, const_rtx, void *);
60 static bool reload_cse_move2add (rtx);
61 static void move2add_note_store (rtx, const_rtx, void *);
63 /* Call cse / combine like post-reload optimization phases.
64 FIRST is the first instruction. */
66 static void
67 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
69 bool moves_converted;
70 reload_cse_regs_1 ();
71 reload_combine ();
72 moves_converted = reload_cse_move2add (first);
73 if (flag_expensive_optimizations)
75 if (moves_converted)
76 reload_combine ();
77 reload_cse_regs_1 ();
81 /* See whether a single set SET is a noop. */
82 static int
83 reload_cse_noop_set_p (rtx set)
85 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
86 return 0;
88 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
91 /* Try to simplify INSN. Return true if the CFG may have changed. */
92 static bool
93 reload_cse_simplify (rtx insn, rtx testreg)
95 rtx body = PATTERN (insn);
96 basic_block insn_bb = BLOCK_FOR_INSN (insn);
97 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
99 if (GET_CODE (body) == SET)
101 int count = 0;
103 /* Simplify even if we may think it is a no-op.
104 We may think a memory load of a value smaller than WORD_SIZE
105 is redundant because we haven't taken into account possible
106 implicit extension. reload_cse_simplify_set() will bring
107 this out, so it's safer to simplify before we delete. */
108 count += reload_cse_simplify_set (body, insn);
110 if (!count && reload_cse_noop_set_p (body))
112 rtx value = SET_DEST (body);
113 if (REG_P (value)
114 && ! REG_FUNCTION_VALUE_P (value))
115 value = 0;
116 if (check_for_inc_dec (insn))
117 delete_insn_and_edges (insn);
118 /* We're done with this insn. */
119 goto done;
122 if (count > 0)
123 apply_change_group ();
124 else
125 reload_cse_simplify_operands (insn, testreg);
127 else if (GET_CODE (body) == PARALLEL)
129 int i;
130 int count = 0;
131 rtx value = NULL_RTX;
133 /* Registers mentioned in the clobber list for an asm cannot be reused
134 within the body of the asm. Invalidate those registers now so that
135 we don't try to substitute values for them. */
136 if (asm_noperands (body) >= 0)
138 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
140 rtx part = XVECEXP (body, 0, i);
141 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
142 cselib_invalidate_rtx (XEXP (part, 0));
146 /* If every action in a PARALLEL is a noop, we can delete
147 the entire PARALLEL. */
148 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
150 rtx part = XVECEXP (body, 0, i);
151 if (GET_CODE (part) == SET)
153 if (! reload_cse_noop_set_p (part))
154 break;
155 if (REG_P (SET_DEST (part))
156 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
158 if (value)
159 break;
160 value = SET_DEST (part);
163 else if (GET_CODE (part) != CLOBBER)
164 break;
167 if (i < 0)
169 if (check_for_inc_dec (insn))
170 delete_insn_and_edges (insn);
171 /* We're done with this insn. */
172 goto done;
175 /* It's not a no-op, but we can try to simplify it. */
176 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
177 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
178 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
180 if (count > 0)
181 apply_change_group ();
182 else
183 reload_cse_simplify_operands (insn, testreg);
186 done:
187 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
190 /* Do a very simple CSE pass over the hard registers.
192 This function detects no-op moves where we happened to assign two
193 different pseudo-registers to the same hard register, and then
194 copied one to the other. Reload will generate a useless
195 instruction copying a register to itself.
197 This function also detects cases where we load a value from memory
198 into two different registers, and (if memory is more expensive than
199 registers) changes it to simply copy the first register into the
200 second register.
202 Another optimization is performed that scans the operands of each
203 instruction to see whether the value is already available in a
204 hard register. It then replaces the operand with the hard register
205 if possible, much like an optional reload would. */
207 static void
208 reload_cse_regs_1 (void)
210 bool cfg_changed = false;
211 basic_block bb;
212 rtx insn;
213 rtx testreg = gen_rtx_REG (VOIDmode, -1);
215 cselib_init (CSELIB_RECORD_MEMORY);
216 init_alias_analysis ();
218 FOR_EACH_BB (bb)
219 FOR_BB_INSNS (bb, insn)
221 if (INSN_P (insn))
222 cfg_changed |= reload_cse_simplify (insn, testreg);
224 cselib_process_insn (insn);
227 /* Clean up. */
228 end_alias_analysis ();
229 cselib_finish ();
230 if (cfg_changed)
231 cleanup_cfg (0);
234 /* Try to simplify a single SET instruction. SET is the set pattern.
235 INSN is the instruction it came from.
236 This function only handles one case: if we set a register to a value
237 which is not a register, we try to find that value in some other register
238 and change the set into a register copy. */
240 static int
241 reload_cse_simplify_set (rtx set, rtx insn)
243 int did_change = 0;
244 int dreg;
245 rtx src;
246 reg_class_t dclass;
247 int old_cost;
248 cselib_val *val;
249 struct elt_loc_list *l;
250 #ifdef LOAD_EXTEND_OP
251 enum rtx_code extend_op = UNKNOWN;
252 #endif
253 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
255 dreg = true_regnum (SET_DEST (set));
256 if (dreg < 0)
257 return 0;
259 src = SET_SRC (set);
260 if (side_effects_p (src) || true_regnum (src) >= 0)
261 return 0;
263 dclass = REGNO_REG_CLASS (dreg);
265 #ifdef LOAD_EXTEND_OP
266 /* When replacing a memory with a register, we need to honor assumptions
267 that combine made wrt the contents of sign bits. We'll do this by
268 generating an extend instruction instead of a reg->reg copy. Thus
269 the destination must be a register that we can widen. */
270 if (MEM_P (src)
271 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
272 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
273 && !REG_P (SET_DEST (set)))
274 return 0;
275 #endif
277 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
278 if (! val)
279 return 0;
281 /* If memory loads are cheaper than register copies, don't change them. */
282 if (MEM_P (src))
283 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
284 else if (REG_P (src))
285 old_cost = register_move_cost (GET_MODE (src),
286 REGNO_REG_CLASS (REGNO (src)), dclass);
287 else
288 old_cost = set_src_cost (src, speed);
290 for (l = val->locs; l; l = l->next)
292 rtx this_rtx = l->loc;
293 int this_cost;
295 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
297 #ifdef LOAD_EXTEND_OP
298 if (extend_op != UNKNOWN)
300 HOST_WIDE_INT this_val;
302 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
303 constants, such as SYMBOL_REF, cannot be extended. */
304 if (!CONST_INT_P (this_rtx))
305 continue;
307 this_val = INTVAL (this_rtx);
308 switch (extend_op)
310 case ZERO_EXTEND:
311 this_val &= GET_MODE_MASK (GET_MODE (src));
312 break;
313 case SIGN_EXTEND:
314 /* ??? In theory we're already extended. */
315 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
316 break;
317 default:
318 gcc_unreachable ();
320 this_rtx = GEN_INT (this_val);
322 #endif
323 this_cost = set_src_cost (this_rtx, speed);
325 else if (REG_P (this_rtx))
327 #ifdef LOAD_EXTEND_OP
328 if (extend_op != UNKNOWN)
330 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
331 this_cost = set_src_cost (this_rtx, speed);
333 else
334 #endif
335 this_cost = register_move_cost (GET_MODE (this_rtx),
336 REGNO_REG_CLASS (REGNO (this_rtx)),
337 dclass);
339 else
340 continue;
342 /* If equal costs, prefer registers over anything else. That
343 tends to lead to smaller instructions on some machines. */
344 if (this_cost < old_cost
345 || (this_cost == old_cost
346 && REG_P (this_rtx)
347 && !REG_P (SET_SRC (set))))
349 #ifdef LOAD_EXTEND_OP
350 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
351 && extend_op != UNKNOWN
352 #ifdef CANNOT_CHANGE_MODE_CLASS
353 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
354 word_mode,
355 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
356 #endif
359 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
360 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
361 validate_change (insn, &SET_DEST (set), wide_dest, 1);
363 #endif
365 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
366 old_cost = this_cost, did_change = 1;
370 return did_change;
373 /* Try to replace operands in INSN with equivalent values that are already
374 in registers. This can be viewed as optional reloading.
376 For each non-register operand in the insn, see if any hard regs are
377 known to be equivalent to that operand. Record the alternatives which
378 can accept these hard registers. Among all alternatives, select the
379 ones which are better or equal to the one currently matching, where
380 "better" is in terms of '?' and '!' constraints. Among the remaining
381 alternatives, select the one which replaces most operands with
382 hard registers. */
384 static int
385 reload_cse_simplify_operands (rtx insn, rtx testreg)
387 int i, j;
389 /* For each operand, all registers that are equivalent to it. */
390 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
392 const char *constraints[MAX_RECOG_OPERANDS];
394 /* Vector recording how bad an alternative is. */
395 int *alternative_reject;
396 /* Vector recording how many registers can be introduced by choosing
397 this alternative. */
398 int *alternative_nregs;
399 /* Array of vectors recording, for each operand and each alternative,
400 which hard register to substitute, or -1 if the operand should be
401 left as it is. */
402 int *op_alt_regno[MAX_RECOG_OPERANDS];
403 /* Array of alternatives, sorted in order of decreasing desirability. */
404 int *alternative_order;
406 extract_insn (insn);
408 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
409 return 0;
411 /* Figure out which alternative currently matches. */
412 if (! constrain_operands (1))
413 fatal_insn_not_found (insn);
415 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
416 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
417 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
418 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
419 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
421 /* For each operand, find out which regs are equivalent. */
422 for (i = 0; i < recog_data.n_operands; i++)
424 cselib_val *v;
425 struct elt_loc_list *l;
426 rtx op;
428 CLEAR_HARD_REG_SET (equiv_regs[i]);
430 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
431 right, so avoid the problem here. Likewise if we have a constant
432 and the insn pattern doesn't tell us the mode we need. */
433 if (LABEL_P (recog_data.operand[i])
434 || (CONSTANT_P (recog_data.operand[i])
435 && recog_data.operand_mode[i] == VOIDmode))
436 continue;
438 op = recog_data.operand[i];
439 #ifdef LOAD_EXTEND_OP
440 if (MEM_P (op)
441 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
442 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
444 rtx set = single_set (insn);
446 /* We might have multiple sets, some of which do implicit
447 extension. Punt on this for now. */
448 if (! set)
449 continue;
450 /* If the destination is also a MEM or a STRICT_LOW_PART, no
451 extension applies.
452 Also, if there is an explicit extension, we don't have to
453 worry about an implicit one. */
454 else if (MEM_P (SET_DEST (set))
455 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
456 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
457 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
458 ; /* Continue ordinary processing. */
459 #ifdef CANNOT_CHANGE_MODE_CLASS
460 /* If the register cannot change mode to word_mode, it follows that
461 it cannot have been used in word_mode. */
462 else if (REG_P (SET_DEST (set))
463 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
464 word_mode,
465 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
466 ; /* Continue ordinary processing. */
467 #endif
468 /* If this is a straight load, make the extension explicit. */
469 else if (REG_P (SET_DEST (set))
470 && recog_data.n_operands == 2
471 && SET_SRC (set) == op
472 && SET_DEST (set) == recog_data.operand[1-i])
474 validate_change (insn, recog_data.operand_loc[i],
475 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
476 word_mode, op),
478 validate_change (insn, recog_data.operand_loc[1-i],
479 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
481 if (! apply_change_group ())
482 return 0;
483 return reload_cse_simplify_operands (insn, testreg);
485 else
486 /* ??? There might be arithmetic operations with memory that are
487 safe to optimize, but is it worth the trouble? */
488 continue;
490 #endif /* LOAD_EXTEND_OP */
491 if (side_effects_p (op))
492 continue;
493 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
494 if (! v)
495 continue;
497 for (l = v->locs; l; l = l->next)
498 if (REG_P (l->loc))
499 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
502 for (i = 0; i < recog_data.n_operands; i++)
504 enum machine_mode mode;
505 int regno;
506 const char *p;
508 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
509 for (j = 0; j < recog_data.n_alternatives; j++)
510 op_alt_regno[i][j] = -1;
512 p = constraints[i] = recog_data.constraints[i];
513 mode = recog_data.operand_mode[i];
515 /* Add the reject values for each alternative given by the constraints
516 for this operand. */
517 j = 0;
518 while (*p != '\0')
520 char c = *p++;
521 if (c == ',')
522 j++;
523 else if (c == '?')
524 alternative_reject[j] += 3;
525 else if (c == '!')
526 alternative_reject[j] += 300;
529 /* We won't change operands which are already registers. We
530 also don't want to modify output operands. */
531 regno = true_regnum (recog_data.operand[i]);
532 if (regno >= 0
533 || constraints[i][0] == '='
534 || constraints[i][0] == '+')
535 continue;
537 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
539 enum reg_class rclass = NO_REGS;
541 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
542 continue;
544 SET_REGNO_RAW (testreg, regno);
545 PUT_MODE (testreg, mode);
547 /* We found a register equal to this operand. Now look for all
548 alternatives that can accept this register and have not been
549 assigned a register they can use yet. */
550 j = 0;
551 p = constraints[i];
552 for (;;)
554 char c = *p;
556 switch (c)
558 case '=': case '+': case '?':
559 case '#': case '&': case '!':
560 case '*': case '%':
561 case '0': case '1': case '2': case '3': case '4':
562 case '5': case '6': case '7': case '8': case '9':
563 case '<': case '>': case 'V': case 'o':
564 case 'E': case 'F': case 'G': case 'H':
565 case 's': case 'i': case 'n':
566 case 'I': case 'J': case 'K': case 'L':
567 case 'M': case 'N': case 'O': case 'P':
568 case 'p': case 'X': case TARGET_MEM_CONSTRAINT:
569 /* These don't say anything we care about. */
570 break;
572 case 'g': case 'r':
573 rclass = reg_class_subunion[(int) rclass][(int) GENERAL_REGS];
574 break;
576 default:
577 rclass
578 = (reg_class_subunion
579 [(int) rclass]
580 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
581 break;
583 case ',': case '\0':
584 /* See if REGNO fits this alternative, and set it up as the
585 replacement register if we don't have one for this
586 alternative yet and the operand being replaced is not
587 a cheap CONST_INT. */
588 if (op_alt_regno[i][j] == -1
589 && recog_data.alternative_enabled_p[j]
590 && reg_fits_class_p (testreg, rclass, 0, mode)
591 && (!CONST_INT_P (recog_data.operand[i])
592 || (set_src_cost (recog_data.operand[i],
593 optimize_bb_for_speed_p
594 (BLOCK_FOR_INSN (insn)))
595 > set_src_cost (testreg,
596 optimize_bb_for_speed_p
597 (BLOCK_FOR_INSN (insn))))))
599 alternative_nregs[j]++;
600 op_alt_regno[i][j] = regno;
602 j++;
603 rclass = NO_REGS;
604 break;
606 p += CONSTRAINT_LEN (c, p);
608 if (c == '\0')
609 break;
614 /* Record all alternatives which are better or equal to the currently
615 matching one in the alternative_order array. */
616 for (i = j = 0; i < recog_data.n_alternatives; i++)
617 if (alternative_reject[i] <= alternative_reject[which_alternative])
618 alternative_order[j++] = i;
619 recog_data.n_alternatives = j;
621 /* Sort it. Given a small number of alternatives, a dumb algorithm
622 won't hurt too much. */
623 for (i = 0; i < recog_data.n_alternatives - 1; i++)
625 int best = i;
626 int best_reject = alternative_reject[alternative_order[i]];
627 int best_nregs = alternative_nregs[alternative_order[i]];
628 int tmp;
630 for (j = i + 1; j < recog_data.n_alternatives; j++)
632 int this_reject = alternative_reject[alternative_order[j]];
633 int this_nregs = alternative_nregs[alternative_order[j]];
635 if (this_reject < best_reject
636 || (this_reject == best_reject && this_nregs > best_nregs))
638 best = j;
639 best_reject = this_reject;
640 best_nregs = this_nregs;
644 tmp = alternative_order[best];
645 alternative_order[best] = alternative_order[i];
646 alternative_order[i] = tmp;
649 /* Substitute the operands as determined by op_alt_regno for the best
650 alternative. */
651 j = alternative_order[0];
653 for (i = 0; i < recog_data.n_operands; i++)
655 enum machine_mode mode = recog_data.operand_mode[i];
656 if (op_alt_regno[i][j] == -1)
657 continue;
659 validate_change (insn, recog_data.operand_loc[i],
660 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
663 for (i = recog_data.n_dups - 1; i >= 0; i--)
665 int op = recog_data.dup_num[i];
666 enum machine_mode mode = recog_data.operand_mode[op];
668 if (op_alt_regno[op][j] == -1)
669 continue;
671 validate_change (insn, recog_data.dup_loc[i],
672 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
675 return apply_change_group ();
678 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
679 addressing now.
680 This code might also be useful when reload gave up on reg+reg addressing
681 because of clashes between the return register and INDEX_REG_CLASS. */
683 /* The maximum number of uses of a register we can keep track of to
684 replace them with reg+reg addressing. */
685 #define RELOAD_COMBINE_MAX_USES 16
687 /* Describes a recorded use of a register. */
688 struct reg_use
690 /* The insn where a register has been used. */
691 rtx insn;
692 /* Points to the memory reference enclosing the use, if any, NULL_RTX
693 otherwise. */
694 rtx containing_mem;
695 /* Location of the register within INSN. */
696 rtx *usep;
697 /* The reverse uid of the insn. */
698 int ruid;
701 /* If the register is used in some unknown fashion, USE_INDEX is negative.
702 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
703 indicates where it is first set or clobbered.
704 Otherwise, USE_INDEX is the index of the last encountered use of the
705 register (which is first among these we have seen since we scan backwards).
706 USE_RUID indicates the first encountered, i.e. last, of these uses.
707 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
708 with a constant offset; OFFSET contains this constant in that case.
709 STORE_RUID is always meaningful if we only want to use a value in a
710 register in a different place: it denotes the next insn in the insn
711 stream (i.e. the last encountered) that sets or clobbers the register.
712 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
713 static struct
715 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
716 rtx offset;
717 int use_index;
718 int store_ruid;
719 int real_store_ruid;
720 int use_ruid;
721 bool all_offsets_match;
722 } reg_state[FIRST_PSEUDO_REGISTER];
724 /* Reverse linear uid. This is increased in reload_combine while scanning
725 the instructions from last to first. It is used to set last_label_ruid
726 and the store_ruid / use_ruid fields in reg_state. */
727 static int reload_combine_ruid;
729 /* The RUID of the last label we encountered in reload_combine. */
730 static int last_label_ruid;
732 /* The RUID of the last jump we encountered in reload_combine. */
733 static int last_jump_ruid;
735 /* The register numbers of the first and last index register. A value of
736 -1 in LAST_INDEX_REG indicates that we've previously computed these
737 values and found no suitable index registers. */
738 static int first_index_reg = -1;
739 static int last_index_reg;
741 #define LABEL_LIVE(LABEL) \
742 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
744 /* Subroutine of reload_combine_split_ruids, called to fix up a single
745 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
747 static inline void
748 reload_combine_split_one_ruid (int *pruid, int split_ruid)
750 if (*pruid > split_ruid)
751 (*pruid)++;
754 /* Called when we insert a new insn in a position we've already passed in
755 the scan. Examine all our state, increasing all ruids that are higher
756 than SPLIT_RUID by one in order to make room for a new insn. */
758 static void
759 reload_combine_split_ruids (int split_ruid)
761 unsigned i;
763 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
764 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
765 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
767 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
769 int j, idx = reg_state[i].use_index;
770 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
771 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
772 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
773 split_ruid);
774 if (idx < 0)
775 continue;
776 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
778 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
779 split_ruid);
784 /* Called when we are about to rescan a previously encountered insn with
785 reload_combine_note_use after modifying some part of it. This clears all
786 information about uses in that particular insn. */
788 static void
789 reload_combine_purge_insn_uses (rtx insn)
791 unsigned i;
793 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
795 int j, k, idx = reg_state[i].use_index;
796 if (idx < 0)
797 continue;
798 j = k = RELOAD_COMBINE_MAX_USES;
799 while (j-- > idx)
801 if (reg_state[i].reg_use[j].insn != insn)
803 k--;
804 if (k != j)
805 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
808 reg_state[i].use_index = k;
812 /* Called when we need to forget about all uses of REGNO after an insn
813 which is identified by RUID. */
815 static void
816 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
818 int j, k, idx = reg_state[regno].use_index;
819 if (idx < 0)
820 return;
821 j = k = RELOAD_COMBINE_MAX_USES;
822 while (j-- > idx)
824 if (reg_state[regno].reg_use[j].ruid >= ruid)
826 k--;
827 if (k != j)
828 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
831 reg_state[regno].use_index = k;
834 /* Find the use of REGNO with the ruid that is highest among those
835 lower than RUID_LIMIT, and return it if it is the only use of this
836 reg in the insn. Return NULL otherwise. */
838 static struct reg_use *
839 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
841 int i, best_ruid = 0;
842 int use_idx = reg_state[regno].use_index;
843 struct reg_use *retval;
845 if (use_idx < 0)
846 return NULL;
847 retval = NULL;
848 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
850 struct reg_use *use = reg_state[regno].reg_use + i;
851 int this_ruid = use->ruid;
852 if (this_ruid >= ruid_limit)
853 continue;
854 if (this_ruid > best_ruid)
856 best_ruid = this_ruid;
857 retval = use;
859 else if (this_ruid == best_ruid)
860 retval = NULL;
862 if (last_label_ruid >= best_ruid)
863 return NULL;
864 return retval;
867 /* After we've moved an add insn, fix up any debug insns that occur
868 between the old location of the add and the new location. REG is
869 the destination register of the add insn; REPLACEMENT is the
870 SET_SRC of the add. FROM and TO specify the range in which we
871 should make this change on debug insns. */
873 static void
874 fixup_debug_insns (rtx reg, rtx replacement, rtx from, rtx to)
876 rtx insn;
877 for (insn = from; insn != to; insn = NEXT_INSN (insn))
879 rtx t;
881 if (!DEBUG_INSN_P (insn))
882 continue;
884 t = INSN_VAR_LOCATION_LOC (insn);
885 t = simplify_replace_rtx (t, reg, replacement);
886 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
890 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
891 with SRC in the insn described by USE, taking costs into account. Return
892 true if we made the replacement. */
894 static bool
895 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
897 rtx use_insn = use->insn;
898 rtx mem = use->containing_mem;
899 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
901 if (mem != NULL_RTX)
903 addr_space_t as = MEM_ADDR_SPACE (mem);
904 rtx oldaddr = XEXP (mem, 0);
905 rtx newaddr = NULL_RTX;
906 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
907 int new_cost;
909 newaddr = simplify_replace_rtx (oldaddr, reg, src);
910 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
912 XEXP (mem, 0) = newaddr;
913 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
914 XEXP (mem, 0) = oldaddr;
915 if (new_cost <= old_cost
916 && validate_change (use_insn,
917 &XEXP (mem, 0), newaddr, 0))
918 return true;
921 else
923 rtx new_set = single_set (use_insn);
924 if (new_set
925 && REG_P (SET_DEST (new_set))
926 && GET_CODE (SET_SRC (new_set)) == PLUS
927 && REG_P (XEXP (SET_SRC (new_set), 0))
928 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
930 rtx new_src;
931 int old_cost = set_src_cost (SET_SRC (new_set), speed);
933 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
934 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
936 if (set_src_cost (new_src, speed) <= old_cost
937 && validate_change (use_insn, &SET_SRC (new_set),
938 new_src, 0))
939 return true;
942 return false;
945 /* Called by reload_combine when scanning INSN. This function tries to detect
946 patterns where a constant is added to a register, and the result is used
947 in an address.
948 Return true if no further processing is needed on INSN; false if it wasn't
949 recognized and should be handled normally. */
951 static bool
952 reload_combine_recognize_const_pattern (rtx insn)
954 int from_ruid = reload_combine_ruid;
955 rtx set, pat, reg, src, addreg;
956 unsigned int regno;
957 struct reg_use *use;
958 bool must_move_add;
959 rtx add_moved_after_insn = NULL_RTX;
960 int add_moved_after_ruid = 0;
961 int clobbered_regno = -1;
963 set = single_set (insn);
964 if (set == NULL_RTX)
965 return false;
967 reg = SET_DEST (set);
968 src = SET_SRC (set);
969 if (!REG_P (reg)
970 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
971 || GET_MODE (reg) != Pmode
972 || reg == stack_pointer_rtx)
973 return false;
975 regno = REGNO (reg);
977 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
978 uses of REG1 inside an address, or inside another add insn. If
979 possible and profitable, merge the addition into subsequent
980 uses. */
981 if (GET_CODE (src) != PLUS
982 || !REG_P (XEXP (src, 0))
983 || !CONSTANT_P (XEXP (src, 1)))
984 return false;
986 addreg = XEXP (src, 0);
987 must_move_add = rtx_equal_p (reg, addreg);
989 pat = PATTERN (insn);
990 if (must_move_add && set != pat)
992 /* We have to be careful when moving the add; apart from the
993 single_set there may also be clobbers. Recognize one special
994 case, that of one clobber alongside the set (likely a clobber
995 of the CC register). */
996 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
997 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
998 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
999 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
1000 return false;
1001 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
1006 use = reload_combine_closest_single_use (regno, from_ruid);
1008 if (use)
1009 /* Start the search for the next use from here. */
1010 from_ruid = use->ruid;
1012 if (use && GET_MODE (*use->usep) == Pmode)
1014 bool delete_add = false;
1015 rtx use_insn = use->insn;
1016 int use_ruid = use->ruid;
1018 /* Avoid moving the add insn past a jump. */
1019 if (must_move_add && use_ruid <= last_jump_ruid)
1020 break;
1022 /* If the add clobbers another hard reg in parallel, don't move
1023 it past a real set of this hard reg. */
1024 if (must_move_add && clobbered_regno >= 0
1025 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1026 break;
1028 #ifdef HAVE_cc0
1029 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1030 if (must_move_add && sets_cc0_p (PATTERN (use_insn)))
1031 break;
1032 #endif
1034 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1035 /* Avoid moving a use of ADDREG past a point where it is stored. */
1036 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1037 break;
1039 /* We also must not move the addition past an insn that sets
1040 the same register, unless we can combine two add insns. */
1041 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1043 if (use->containing_mem == NULL_RTX)
1044 delete_add = true;
1045 else
1046 break;
1049 if (try_replace_in_use (use, reg, src))
1051 reload_combine_purge_insn_uses (use_insn);
1052 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1053 use_ruid, NULL_RTX);
1055 if (delete_add)
1057 fixup_debug_insns (reg, src, insn, use_insn);
1058 delete_insn (insn);
1059 return true;
1061 if (must_move_add)
1063 add_moved_after_insn = use_insn;
1064 add_moved_after_ruid = use_ruid;
1066 continue;
1069 /* If we get here, we couldn't handle this use. */
1070 if (must_move_add)
1071 break;
1073 while (use);
1075 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1076 /* Process the add normally. */
1077 return false;
1079 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1081 reorder_insns (insn, insn, add_moved_after_insn);
1082 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1083 reload_combine_split_ruids (add_moved_after_ruid - 1);
1084 reload_combine_note_use (&PATTERN (insn), insn,
1085 add_moved_after_ruid, NULL_RTX);
1086 reg_state[regno].store_ruid = add_moved_after_ruid;
1088 return true;
1091 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1092 can handle and improve. Return true if no further processing is needed on
1093 INSN; false if it wasn't recognized and should be handled normally. */
1095 static bool
1096 reload_combine_recognize_pattern (rtx insn)
1098 rtx set, reg, src;
1099 unsigned int regno;
1101 set = single_set (insn);
1102 if (set == NULL_RTX)
1103 return false;
1105 reg = SET_DEST (set);
1106 src = SET_SRC (set);
1107 if (!REG_P (reg)
1108 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1109 return false;
1111 regno = REGNO (reg);
1113 /* Look for (set (REGX) (CONST_INT))
1114 (set (REGX) (PLUS (REGX) (REGY)))
1116 ... (MEM (REGX)) ...
1117 and convert it to
1118 (set (REGZ) (CONST_INT))
1120 ... (MEM (PLUS (REGZ) (REGY)))... .
1122 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1123 and that we know all uses of REGX before it dies.
1124 Also, explicitly check that REGX != REGY; our life information
1125 does not yet show whether REGY changes in this insn. */
1127 if (GET_CODE (src) == PLUS
1128 && reg_state[regno].all_offsets_match
1129 && last_index_reg != -1
1130 && REG_P (XEXP (src, 1))
1131 && rtx_equal_p (XEXP (src, 0), reg)
1132 && !rtx_equal_p (XEXP (src, 1), reg)
1133 && reg_state[regno].use_index >= 0
1134 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1135 && last_label_ruid < reg_state[regno].use_ruid)
1137 rtx base = XEXP (src, 1);
1138 rtx prev = prev_nonnote_nondebug_insn (insn);
1139 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1140 rtx index_reg = NULL_RTX;
1141 rtx reg_sum = NULL_RTX;
1142 int i;
1144 /* Now we need to set INDEX_REG to an index register (denoted as
1145 REGZ in the illustration above) and REG_SUM to the expression
1146 register+register that we want to use to substitute uses of REG
1147 (typically in MEMs) with. First check REG and BASE for being
1148 index registers; we can use them even if they are not dead. */
1149 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1150 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1151 REGNO (base)))
1153 index_reg = reg;
1154 reg_sum = src;
1156 else
1158 /* Otherwise, look for a free index register. Since we have
1159 checked above that neither REG nor BASE are index registers,
1160 if we find anything at all, it will be different from these
1161 two registers. */
1162 for (i = first_index_reg; i <= last_index_reg; i++)
1164 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1165 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1166 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1167 && (call_used_regs[i] || df_regs_ever_live_p (i))
1168 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1169 && !fixed_regs[i] && !global_regs[i]
1170 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1171 && targetm.hard_regno_scratch_ok (i))
1173 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1174 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1175 break;
1180 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1181 (REGY), i.e. BASE, is not clobbered before the last use we'll
1182 create. */
1183 if (reg_sum
1184 && prev_set
1185 && CONST_INT_P (SET_SRC (prev_set))
1186 && rtx_equal_p (SET_DEST (prev_set), reg)
1187 && (reg_state[REGNO (base)].store_ruid
1188 <= reg_state[regno].use_ruid))
1190 /* Change destination register and, if necessary, the constant
1191 value in PREV, the constant loading instruction. */
1192 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1193 if (reg_state[regno].offset != const0_rtx)
1194 validate_change (prev,
1195 &SET_SRC (prev_set),
1196 GEN_INT (INTVAL (SET_SRC (prev_set))
1197 + INTVAL (reg_state[regno].offset)),
1200 /* Now for every use of REG that we have recorded, replace REG
1201 with REG_SUM. */
1202 for (i = reg_state[regno].use_index;
1203 i < RELOAD_COMBINE_MAX_USES; i++)
1204 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1205 reg_state[regno].reg_use[i].usep,
1206 /* Each change must have its own
1207 replacement. */
1208 reg_sum, 1);
1210 if (apply_change_group ())
1212 struct reg_use *lowest_ruid = NULL;
1214 /* For every new use of REG_SUM, we have to record the use
1215 of BASE therein, i.e. operand 1. */
1216 for (i = reg_state[regno].use_index;
1217 i < RELOAD_COMBINE_MAX_USES; i++)
1219 struct reg_use *use = reg_state[regno].reg_use + i;
1220 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1221 use->ruid, use->containing_mem);
1222 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1223 lowest_ruid = use;
1226 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1228 /* Delete the reg-reg addition. */
1229 delete_insn (insn);
1231 if (reg_state[regno].offset != const0_rtx)
1232 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1233 are now invalid. */
1234 remove_reg_equal_equiv_notes (prev);
1236 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1237 return true;
1241 return false;
1244 static void
1245 reload_combine (void)
1247 rtx insn, prev;
1248 basic_block bb;
1249 unsigned int r;
1250 int min_labelno, n_labels;
1251 HARD_REG_SET ever_live_at_start, *label_live;
1253 /* To avoid wasting too much time later searching for an index register,
1254 determine the minimum and maximum index register numbers. */
1255 if (INDEX_REG_CLASS == NO_REGS)
1256 last_index_reg = -1;
1257 else if (first_index_reg == -1 && last_index_reg == 0)
1259 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1260 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1262 if (first_index_reg == -1)
1263 first_index_reg = r;
1265 last_index_reg = r;
1268 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1269 to -1 so we'll know to quit early the next time we get here. */
1270 if (first_index_reg == -1)
1272 last_index_reg = -1;
1273 return;
1277 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1278 information is a bit fuzzy immediately after reload, but it's
1279 still good enough to determine which registers are live at a jump
1280 destination. */
1281 min_labelno = get_first_label_num ();
1282 n_labels = max_label_num () - min_labelno;
1283 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1284 CLEAR_HARD_REG_SET (ever_live_at_start);
1286 FOR_EACH_BB_REVERSE (bb)
1288 insn = BB_HEAD (bb);
1289 if (LABEL_P (insn))
1291 HARD_REG_SET live;
1292 bitmap live_in = df_get_live_in (bb);
1294 REG_SET_TO_HARD_REG_SET (live, live_in);
1295 compute_use_by_pseudos (&live, live_in);
1296 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1297 IOR_HARD_REG_SET (ever_live_at_start, live);
1301 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1302 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1303 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1305 reg_state[r].store_ruid = 0;
1306 reg_state[r].real_store_ruid = 0;
1307 if (fixed_regs[r])
1308 reg_state[r].use_index = -1;
1309 else
1310 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1313 for (insn = get_last_insn (); insn; insn = prev)
1315 bool control_flow_insn;
1316 rtx note;
1318 prev = PREV_INSN (insn);
1320 /* We cannot do our optimization across labels. Invalidating all the use
1321 information we have would be costly, so we just note where the label
1322 is and then later disable any optimization that would cross it. */
1323 if (LABEL_P (insn))
1324 last_label_ruid = reload_combine_ruid;
1325 else if (BARRIER_P (insn))
1327 /* Crossing a barrier resets all the use information. */
1328 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1329 if (! fixed_regs[r])
1330 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1332 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1333 /* Optimizations across insns being marked as volatile must be
1334 prevented. All the usage information is invalidated
1335 here. */
1336 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1337 if (! fixed_regs[r]
1338 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1339 reg_state[r].use_index = -1;
1341 if (! NONDEBUG_INSN_P (insn))
1342 continue;
1344 reload_combine_ruid++;
1346 control_flow_insn = control_flow_insn_p (insn);
1347 if (control_flow_insn)
1348 last_jump_ruid = reload_combine_ruid;
1350 if (reload_combine_recognize_const_pattern (insn)
1351 || reload_combine_recognize_pattern (insn))
1352 continue;
1354 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1356 if (CALL_P (insn))
1358 rtx link;
1360 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1361 if (call_used_regs[r])
1363 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1364 reg_state[r].store_ruid = reload_combine_ruid;
1367 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1368 link = XEXP (link, 1))
1370 rtx setuse = XEXP (link, 0);
1371 rtx usage_rtx = XEXP (setuse, 0);
1372 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1373 && REG_P (usage_rtx))
1375 unsigned int i;
1376 unsigned int start_reg = REGNO (usage_rtx);
1377 unsigned int num_regs
1378 = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1379 unsigned int end_reg = start_reg + num_regs - 1;
1380 for (i = start_reg; i <= end_reg; i++)
1381 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1383 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1384 reg_state[i].store_ruid = reload_combine_ruid;
1386 else
1387 reg_state[i].use_index = -1;
1392 if (control_flow_insn && GET_CODE (PATTERN (insn)) != RETURN)
1394 /* Non-spill registers might be used at the call destination in
1395 some unknown fashion, so we have to mark the unknown use. */
1396 HARD_REG_SET *live;
1398 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1399 && JUMP_LABEL (insn))
1400 live = &LABEL_LIVE (JUMP_LABEL (insn));
1401 else
1402 live = &ever_live_at_start;
1404 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1405 if (TEST_HARD_REG_BIT (*live, r))
1406 reg_state[r].use_index = -1;
1409 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1410 NULL_RTX);
1412 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1414 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1416 int regno = REGNO (XEXP (note, 0));
1417 reg_state[regno].store_ruid = reload_combine_ruid;
1418 reg_state[regno].real_store_ruid = reload_combine_ruid;
1419 reg_state[regno].use_index = -1;
1424 free (label_live);
1427 /* Check if DST is a register or a subreg of a register; if it is,
1428 update store_ruid, real_store_ruid and use_index in the reg_state
1429 structure accordingly. Called via note_stores from reload_combine. */
1431 static void
1432 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1434 int regno = 0;
1435 int i;
1436 enum machine_mode mode = GET_MODE (dst);
1438 if (GET_CODE (dst) == SUBREG)
1440 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1441 GET_MODE (SUBREG_REG (dst)),
1442 SUBREG_BYTE (dst),
1443 GET_MODE (dst));
1444 dst = SUBREG_REG (dst);
1447 /* Some targets do argument pushes without adding REG_INC notes. */
1449 if (MEM_P (dst))
1451 dst = XEXP (dst, 0);
1452 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1453 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1454 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1456 regno = REGNO (XEXP (dst, 0));
1457 mode = GET_MODE (XEXP (dst, 0));
1458 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1460 /* We could probably do better, but for now mark the register
1461 as used in an unknown fashion and set/clobbered at this
1462 insn. */
1463 reg_state[i].use_index = -1;
1464 reg_state[i].store_ruid = reload_combine_ruid;
1465 reg_state[i].real_store_ruid = reload_combine_ruid;
1468 else
1469 return;
1472 if (!REG_P (dst))
1473 return;
1474 regno += REGNO (dst);
1476 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1477 careful with registers / register parts that are not full words.
1478 Similarly for ZERO_EXTRACT. */
1479 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1480 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1482 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1484 reg_state[i].use_index = -1;
1485 reg_state[i].store_ruid = reload_combine_ruid;
1486 reg_state[i].real_store_ruid = reload_combine_ruid;
1489 else
1491 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1493 reg_state[i].store_ruid = reload_combine_ruid;
1494 if (GET_CODE (set) == SET)
1495 reg_state[i].real_store_ruid = reload_combine_ruid;
1496 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1501 /* XP points to a piece of rtl that has to be checked for any uses of
1502 registers.
1503 *XP is the pattern of INSN, or a part of it.
1504 Called from reload_combine, and recursively by itself. */
1505 static void
1506 reload_combine_note_use (rtx *xp, rtx insn, int ruid, rtx containing_mem)
1508 rtx x = *xp;
1509 enum rtx_code code = x->code;
1510 const char *fmt;
1511 int i, j;
1512 rtx offset = const0_rtx; /* For the REG case below. */
1514 switch (code)
1516 case SET:
1517 if (REG_P (SET_DEST (x)))
1519 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1520 return;
1522 break;
1524 case USE:
1525 /* If this is the USE of a return value, we can't change it. */
1526 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1528 /* Mark the return register as used in an unknown fashion. */
1529 rtx reg = XEXP (x, 0);
1530 int regno = REGNO (reg);
1531 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1533 while (--nregs >= 0)
1534 reg_state[regno + nregs].use_index = -1;
1535 return;
1537 break;
1539 case CLOBBER:
1540 if (REG_P (SET_DEST (x)))
1542 /* No spurious CLOBBERs of pseudo registers may remain. */
1543 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1544 return;
1546 break;
1548 case PLUS:
1549 /* We are interested in (plus (reg) (const_int)) . */
1550 if (!REG_P (XEXP (x, 0))
1551 || !CONST_INT_P (XEXP (x, 1)))
1552 break;
1553 offset = XEXP (x, 1);
1554 x = XEXP (x, 0);
1555 /* Fall through. */
1556 case REG:
1558 int regno = REGNO (x);
1559 int use_index;
1560 int nregs;
1562 /* No spurious USEs of pseudo registers may remain. */
1563 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1565 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1567 /* We can't substitute into multi-hard-reg uses. */
1568 if (nregs > 1)
1570 while (--nregs >= 0)
1571 reg_state[regno + nregs].use_index = -1;
1572 return;
1575 /* We may be called to update uses in previously seen insns.
1576 Don't add uses beyond the last store we saw. */
1577 if (ruid < reg_state[regno].store_ruid)
1578 return;
1580 /* If this register is already used in some unknown fashion, we
1581 can't do anything.
1582 If we decrement the index from zero to -1, we can't store more
1583 uses, so this register becomes used in an unknown fashion. */
1584 use_index = --reg_state[regno].use_index;
1585 if (use_index < 0)
1586 return;
1588 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1590 /* This is the first use of this register we have seen since we
1591 marked it as dead. */
1592 reg_state[regno].offset = offset;
1593 reg_state[regno].all_offsets_match = true;
1594 reg_state[regno].use_ruid = ruid;
1596 else
1598 if (reg_state[regno].use_ruid > ruid)
1599 reg_state[regno].use_ruid = ruid;
1601 if (! rtx_equal_p (offset, reg_state[regno].offset))
1602 reg_state[regno].all_offsets_match = false;
1605 reg_state[regno].reg_use[use_index].insn = insn;
1606 reg_state[regno].reg_use[use_index].ruid = ruid;
1607 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1608 reg_state[regno].reg_use[use_index].usep = xp;
1609 return;
1612 case MEM:
1613 containing_mem = x;
1614 break;
1616 default:
1617 break;
1620 /* Recursively process the components of X. */
1621 fmt = GET_RTX_FORMAT (code);
1622 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1624 if (fmt[i] == 'e')
1625 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1626 else if (fmt[i] == 'E')
1628 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1629 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1630 containing_mem);
1635 /* See if we can reduce the cost of a constant by replacing a move
1636 with an add. We track situations in which a register is set to a
1637 constant or to a register plus a constant. */
1638 /* We cannot do our optimization across labels. Invalidating all the
1639 information about register contents we have would be costly, so we
1640 use move2add_last_label_luid to note where the label is and then
1641 later disable any optimization that would cross it.
1642 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1643 are only valid if reg_set_luid[n] is greater than
1644 move2add_last_label_luid. */
1645 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1647 /* If reg_base_reg[n] is negative, register n has been set to
1648 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1649 If reg_base_reg[n] is non-negative, register n has been set to the
1650 sum of reg_offset[n] and the value of register reg_base_reg[n]
1651 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1652 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1653 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1654 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1655 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1657 /* move2add_luid is linearly increased while scanning the instructions
1658 from first to last. It is used to set reg_set_luid in
1659 reload_cse_move2add and move2add_note_store. */
1660 static int move2add_luid;
1662 /* move2add_last_label_luid is set whenever a label is found. Labels
1663 invalidate all previously collected reg_offset data. */
1664 static int move2add_last_label_luid;
1666 /* ??? We don't know how zero / sign extension is handled, hence we
1667 can't go from a narrower to a wider mode. */
1668 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1669 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1670 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1671 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1673 /* This function is called with INSN that sets REG to (SYM + OFF),
1674 while REG is known to already have value (SYM + offset).
1675 This function tries to change INSN into an add instruction
1676 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1677 It also updates the information about REG's known value.
1678 Return true if we made a change. */
1680 static bool
1681 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx insn)
1683 rtx pat = PATTERN (insn);
1684 rtx src = SET_SRC (pat);
1685 int regno = REGNO (reg);
1686 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[regno],
1687 GET_MODE (reg));
1688 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1689 bool changed = false;
1691 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1692 use (set (reg) (reg)) instead.
1693 We don't delete this insn, nor do we convert it into a
1694 note, to avoid losing register notes or the return
1695 value flag. jump2 already knows how to get rid of
1696 no-op moves. */
1697 if (new_src == const0_rtx)
1699 /* If the constants are different, this is a
1700 truncation, that, if turned into (set (reg)
1701 (reg)), would be discarded. Maybe we should
1702 try a truncMN pattern? */
1703 if (INTVAL (off) == reg_offset [regno])
1704 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1706 else
1708 struct full_rtx_costs oldcst, newcst;
1709 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1711 get_full_set_rtx_cost (pat, &oldcst);
1712 SET_SRC (pat) = tem;
1713 get_full_set_rtx_cost (pat, &newcst);
1714 SET_SRC (pat) = src;
1716 if (costs_lt_p (&newcst, &oldcst, speed)
1717 && have_add2_insn (reg, new_src))
1718 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1719 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1721 enum machine_mode narrow_mode;
1722 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1723 narrow_mode != VOIDmode
1724 && narrow_mode != GET_MODE (reg);
1725 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1727 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1728 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1729 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1731 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1732 REGNO (reg));
1733 rtx narrow_src = gen_int_mode (INTVAL (off),
1734 narrow_mode);
1735 rtx new_set
1736 = gen_rtx_SET (VOIDmode,
1737 gen_rtx_STRICT_LOW_PART (VOIDmode,
1738 narrow_reg),
1739 narrow_src);
1740 changed = validate_change (insn, &PATTERN (insn),
1741 new_set, 0);
1742 if (changed)
1743 break;
1748 reg_set_luid[regno] = move2add_luid;
1749 reg_base_reg[regno] = -1;
1750 reg_mode[regno] = GET_MODE (reg);
1751 reg_symbol_ref[regno] = sym;
1752 reg_offset[regno] = INTVAL (off);
1753 return changed;
1757 /* This function is called with INSN that sets REG to (SYM + OFF),
1758 but REG doesn't have known value (SYM + offset). This function
1759 tries to find another register which is known to already have
1760 value (SYM + offset) and change INSN into an add instruction
1761 (set (REG) (plus (the found register) (OFF - offset))) if such
1762 a register is found. It also updates the information about
1763 REG's known value.
1764 Return true iff we made a change. */
1766 static bool
1767 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx insn)
1769 rtx pat = PATTERN (insn);
1770 rtx src = SET_SRC (pat);
1771 int regno = REGNO (reg);
1772 int min_regno = 0;
1773 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1774 int i;
1775 bool changed = false;
1776 struct full_rtx_costs oldcst, newcst, mincst;
1777 rtx plus_expr;
1779 init_costs_to_max (&mincst);
1780 get_full_set_rtx_cost (pat, &oldcst);
1782 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1783 SET_SRC (pat) = plus_expr;
1785 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1786 if (reg_set_luid[i] > move2add_last_label_luid
1787 && reg_mode[i] == GET_MODE (reg)
1788 && reg_base_reg[i] < 0
1789 && reg_symbol_ref[i] != NULL_RTX
1790 && rtx_equal_p (sym, reg_symbol_ref[i]))
1792 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[i],
1793 GET_MODE (reg));
1794 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1795 use (set (reg) (reg)) instead.
1796 We don't delete this insn, nor do we convert it into a
1797 note, to avoid losing register notes or the return
1798 value flag. jump2 already knows how to get rid of
1799 no-op moves. */
1800 if (new_src == const0_rtx)
1802 init_costs_to_zero (&mincst);
1803 min_regno = i;
1804 break;
1806 else
1808 XEXP (plus_expr, 1) = new_src;
1809 get_full_set_rtx_cost (pat, &newcst);
1811 if (costs_lt_p (&newcst, &mincst, speed))
1813 mincst = newcst;
1814 min_regno = i;
1818 SET_SRC (pat) = src;
1820 if (costs_lt_p (&mincst, &oldcst, speed))
1822 rtx tem;
1824 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1825 if (i != min_regno)
1827 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[min_regno],
1828 GET_MODE (reg));
1829 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1831 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1832 changed = true;
1834 reg_set_luid[regno] = move2add_luid;
1835 reg_base_reg[regno] = -1;
1836 reg_mode[regno] = GET_MODE (reg);
1837 reg_symbol_ref[regno] = sym;
1838 reg_offset[regno] = INTVAL (off);
1839 return changed;
1842 /* Convert move insns with constant inputs to additions if they are cheaper.
1843 Return true if any changes were made. */
1844 static bool
1845 reload_cse_move2add (rtx first)
1847 int i;
1848 rtx insn;
1849 bool changed = false;
1851 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1853 reg_set_luid[i] = 0;
1854 reg_offset[i] = 0;
1855 reg_base_reg[i] = 0;
1856 reg_symbol_ref[i] = NULL_RTX;
1857 reg_mode[i] = VOIDmode;
1860 move2add_last_label_luid = 0;
1861 move2add_luid = 2;
1862 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1864 rtx pat, note;
1866 if (LABEL_P (insn))
1868 move2add_last_label_luid = move2add_luid;
1869 /* We're going to increment move2add_luid twice after a
1870 label, so that we can use move2add_last_label_luid + 1 as
1871 the luid for constants. */
1872 move2add_luid++;
1873 continue;
1875 if (! INSN_P (insn))
1876 continue;
1877 pat = PATTERN (insn);
1878 /* For simplicity, we only perform this optimization on
1879 straightforward SETs. */
1880 if (GET_CODE (pat) == SET
1881 && REG_P (SET_DEST (pat)))
1883 rtx reg = SET_DEST (pat);
1884 int regno = REGNO (reg);
1885 rtx src = SET_SRC (pat);
1887 /* Check if we have valid information on the contents of this
1888 register in the mode of REG. */
1889 if (reg_set_luid[regno] > move2add_last_label_luid
1890 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
1891 && dbg_cnt (cse2_move2add))
1893 /* Try to transform (set (REGX) (CONST_INT A))
1895 (set (REGX) (CONST_INT B))
1897 (set (REGX) (CONST_INT A))
1899 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1901 (set (REGX) (CONST_INT A))
1903 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1906 if (CONST_INT_P (src)
1907 && reg_base_reg[regno] < 0
1908 && reg_symbol_ref[regno] == NULL_RTX)
1910 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1911 continue;
1914 /* Try to transform (set (REGX) (REGY))
1915 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1917 (set (REGX) (REGY))
1918 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1920 (set (REGX) (REGY))
1921 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1923 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1924 else if (REG_P (src)
1925 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1926 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1927 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1928 reg_mode[REGNO (src)]))
1930 rtx next = next_nonnote_nondebug_insn (insn);
1931 rtx set = NULL_RTX;
1932 if (next)
1933 set = single_set (next);
1934 if (set
1935 && SET_DEST (set) == reg
1936 && GET_CODE (SET_SRC (set)) == PLUS
1937 && XEXP (SET_SRC (set), 0) == reg
1938 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1940 rtx src3 = XEXP (SET_SRC (set), 1);
1941 HOST_WIDE_INT added_offset = INTVAL (src3);
1942 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1943 HOST_WIDE_INT regno_offset = reg_offset[regno];
1944 rtx new_src =
1945 gen_int_mode (added_offset
1946 + base_offset
1947 - regno_offset,
1948 GET_MODE (reg));
1949 bool success = false;
1950 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1952 if (new_src == const0_rtx)
1953 /* See above why we create (set (reg) (reg)) here. */
1954 success
1955 = validate_change (next, &SET_SRC (set), reg, 0);
1956 else
1958 rtx old_src = SET_SRC (set);
1959 struct full_rtx_costs oldcst, newcst;
1960 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1962 get_full_set_rtx_cost (set, &oldcst);
1963 SET_SRC (set) = tem;
1964 get_full_set_src_cost (tem, &newcst);
1965 SET_SRC (set) = old_src;
1966 costs_add_n_insns (&oldcst, 1);
1968 if (costs_lt_p (&newcst, &oldcst, speed)
1969 && have_add2_insn (reg, new_src))
1971 rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
1972 success
1973 = validate_change (next, &PATTERN (next),
1974 newpat, 0);
1977 if (success)
1978 delete_insn (insn);
1979 changed |= success;
1980 insn = next;
1981 reg_mode[regno] = GET_MODE (reg);
1982 reg_offset[regno] =
1983 trunc_int_for_mode (added_offset + base_offset,
1984 GET_MODE (reg));
1985 continue;
1990 /* Try to transform
1991 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1993 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
1995 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1997 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
1998 if ((GET_CODE (src) == SYMBOL_REF
1999 || (GET_CODE (src) == CONST
2000 && GET_CODE (XEXP (src, 0)) == PLUS
2001 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2002 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2003 && dbg_cnt (cse2_move2add))
2005 rtx sym, off;
2007 if (GET_CODE (src) == SYMBOL_REF)
2009 sym = src;
2010 off = const0_rtx;
2012 else
2014 sym = XEXP (XEXP (src, 0), 0);
2015 off = XEXP (XEXP (src, 0), 1);
2018 /* If the reg already contains the value which is sum of
2019 sym and some constant value, we can use an add2 insn. */
2020 if (reg_set_luid[regno] > move2add_last_label_luid
2021 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
2022 && reg_base_reg[regno] < 0
2023 && reg_symbol_ref[regno] != NULL_RTX
2024 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2025 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2027 /* Otherwise, we have to find a register whose value is sum
2028 of sym and some constant value. */
2029 else
2030 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2032 continue;
2036 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2038 if (REG_NOTE_KIND (note) == REG_INC
2039 && REG_P (XEXP (note, 0)))
2041 /* Reset the information about this register. */
2042 int regno = REGNO (XEXP (note, 0));
2043 if (regno < FIRST_PSEUDO_REGISTER)
2044 reg_set_luid[regno] = 0;
2047 note_stores (PATTERN (insn), move2add_note_store, insn);
2049 /* If INSN is a conditional branch, we try to extract an
2050 implicit set out of it. */
2051 if (any_condjump_p (insn))
2053 rtx cnd = fis_get_condition (insn);
2055 if (cnd != NULL_RTX
2056 && GET_CODE (cnd) == NE
2057 && REG_P (XEXP (cnd, 0))
2058 && !reg_set_p (XEXP (cnd, 0), insn)
2059 /* The following two checks, which are also in
2060 move2add_note_store, are intended to reduce the
2061 number of calls to gen_rtx_SET to avoid memory
2062 allocation if possible. */
2063 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2064 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
2065 && CONST_INT_P (XEXP (cnd, 1)))
2067 rtx implicit_set =
2068 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
2069 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2073 /* If this is a CALL_INSN, all call used registers are stored with
2074 unknown values. */
2075 if (CALL_P (insn))
2077 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2079 if (call_used_regs[i])
2080 /* Reset the information about this register. */
2081 reg_set_luid[i] = 0;
2085 return changed;
2088 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2089 contains SET.
2090 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2091 Called from reload_cse_move2add via note_stores. */
2093 static void
2094 move2add_note_store (rtx dst, const_rtx set, void *data)
2096 rtx insn = (rtx) data;
2097 unsigned int regno = 0;
2098 unsigned int nregs = 0;
2099 unsigned int i;
2100 enum machine_mode mode = GET_MODE (dst);
2102 if (GET_CODE (dst) == SUBREG)
2104 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
2105 GET_MODE (SUBREG_REG (dst)),
2106 SUBREG_BYTE (dst),
2107 GET_MODE (dst));
2108 nregs = subreg_nregs (dst);
2109 dst = SUBREG_REG (dst);
2112 /* Some targets do argument pushes without adding REG_INC notes. */
2114 if (MEM_P (dst))
2116 dst = XEXP (dst, 0);
2117 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2118 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2119 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
2120 return;
2122 if (!REG_P (dst))
2123 return;
2125 regno += REGNO (dst);
2126 if (!nregs)
2127 nregs = hard_regno_nregs[regno][mode];
2129 if (SCALAR_INT_MODE_P (GET_MODE (dst))
2130 && nregs == 1 && GET_CODE (set) == SET)
2132 rtx note, sym = NULL_RTX;
2133 HOST_WIDE_INT off;
2135 note = find_reg_equal_equiv_note (insn);
2136 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2138 sym = XEXP (note, 0);
2139 off = 0;
2141 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2142 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2143 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2144 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2146 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2147 off = INTVAL (XEXP (XEXP (XEXP (note, 0), 0), 1));
2150 if (sym != NULL_RTX)
2152 reg_base_reg[regno] = -1;
2153 reg_symbol_ref[regno] = sym;
2154 reg_offset[regno] = off;
2155 reg_mode[regno] = mode;
2156 reg_set_luid[regno] = move2add_luid;
2157 return;
2161 if (SCALAR_INT_MODE_P (GET_MODE (dst))
2162 && nregs == 1 && GET_CODE (set) == SET
2163 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2164 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2166 rtx src = SET_SRC (set);
2167 rtx base_reg;
2168 HOST_WIDE_INT offset;
2169 int base_regno;
2170 /* This may be different from mode, if SET_DEST (set) is a
2171 SUBREG. */
2172 enum machine_mode dst_mode = GET_MODE (dst);
2174 switch (GET_CODE (src))
2176 case PLUS:
2177 if (REG_P (XEXP (src, 0)))
2179 base_reg = XEXP (src, 0);
2181 if (CONST_INT_P (XEXP (src, 1)))
2182 offset = INTVAL (XEXP (src, 1));
2183 else if (REG_P (XEXP (src, 1))
2184 && (reg_set_luid[REGNO (XEXP (src, 1))]
2185 > move2add_last_label_luid)
2186 && (MODES_OK_FOR_MOVE2ADD
2187 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
2189 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2190 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2191 offset = reg_offset[REGNO (XEXP (src, 1))];
2192 /* Maybe the first register is known to be a
2193 constant. */
2194 else if (reg_set_luid[REGNO (base_reg)]
2195 > move2add_last_label_luid
2196 && (MODES_OK_FOR_MOVE2ADD
2197 (dst_mode, reg_mode[REGNO (base_reg)]))
2198 && reg_base_reg[REGNO (base_reg)] < 0
2199 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2201 offset = reg_offset[REGNO (base_reg)];
2202 base_reg = XEXP (src, 1);
2204 else
2205 goto invalidate;
2207 else
2208 goto invalidate;
2210 break;
2213 goto invalidate;
2215 case REG:
2216 base_reg = src;
2217 offset = 0;
2218 break;
2220 case CONST_INT:
2221 /* Start tracking the register as a constant. */
2222 reg_base_reg[regno] = -1;
2223 reg_symbol_ref[regno] = NULL_RTX;
2224 reg_offset[regno] = INTVAL (SET_SRC (set));
2225 /* We assign the same luid to all registers set to constants. */
2226 reg_set_luid[regno] = move2add_last_label_luid + 1;
2227 reg_mode[regno] = mode;
2228 return;
2230 default:
2231 invalidate:
2232 /* Invalidate the contents of the register. */
2233 reg_set_luid[regno] = 0;
2234 return;
2237 base_regno = REGNO (base_reg);
2238 /* If information about the base register is not valid, set it
2239 up as a new base register, pretending its value is known
2240 starting from the current insn. */
2241 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
2243 reg_base_reg[base_regno] = base_regno;
2244 reg_symbol_ref[base_regno] = NULL_RTX;
2245 reg_offset[base_regno] = 0;
2246 reg_set_luid[base_regno] = move2add_luid;
2247 reg_mode[base_regno] = mode;
2249 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
2250 reg_mode[base_regno]))
2251 goto invalidate;
2253 reg_mode[regno] = mode;
2255 /* Copy base information from our base register. */
2256 reg_set_luid[regno] = reg_set_luid[base_regno];
2257 reg_base_reg[regno] = reg_base_reg[base_regno];
2258 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2260 /* Compute the sum of the offsets or constants. */
2261 reg_offset[regno] = trunc_int_for_mode (offset
2262 + reg_offset[base_regno],
2263 dst_mode);
2265 else
2267 unsigned int endregno = regno + nregs;
2269 for (i = regno; i < endregno; i++)
2270 /* Reset the information about this register. */
2271 reg_set_luid[i] = 0;
2275 static bool
2276 gate_handle_postreload (void)
2278 return (optimize > 0 && reload_completed);
2282 static unsigned int
2283 rest_of_handle_postreload (void)
2285 if (!dbg_cnt (postreload_cse))
2286 return 0;
2288 /* Do a very simple CSE pass over just the hard registers. */
2289 reload_cse_regs (get_insns ());
2290 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2291 Remove any EH edges associated with them. */
2292 if (cfun->can_throw_non_call_exceptions
2293 && purge_all_dead_edges ())
2294 cleanup_cfg (0);
2296 return 0;
2299 struct rtl_opt_pass pass_postreload_cse =
2302 RTL_PASS,
2303 "postreload", /* name */
2304 OPTGROUP_NONE, /* optinfo_flags */
2305 gate_handle_postreload, /* gate */
2306 rest_of_handle_postreload, /* execute */
2307 NULL, /* sub */
2308 NULL, /* next */
2309 0, /* static_pass_number */
2310 TV_RELOAD_CSE_REGS, /* tv_id */
2311 0, /* properties_required */
2312 0, /* properties_provided */
2313 0, /* properties_destroyed */
2314 0, /* todo_flags_start */
2315 TODO_df_finish | TODO_verify_rtl_sharing |
2316 0 /* todo_flags_finish */