* include/ext/array_allocator.h: Replace uses of
[official-gcc.git] / gcc / graphite-scop-detection.c
blobc6413589e0d4399a2208cb449edf8c9c15d0c55c
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
24 #ifdef HAVE_cloog
25 #include <isl/set.h>
26 #include <isl/map.h>
27 #include <isl/union_map.h>
28 #include <cloog/cloog.h>
29 #include <cloog/isl/domain.h>
30 #endif
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tree-flow.h"
35 #include "cfgloop.h"
36 #include "tree-chrec.h"
37 #include "tree-data-ref.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-pass.h"
40 #include "sese.h"
42 #ifdef HAVE_cloog
43 #include "graphite-poly.h"
44 #include "graphite-scop-detection.h"
46 /* Forward declarations. */
47 static void make_close_phi_nodes_unique (basic_block);
49 /* The type of the analyzed basic block. */
51 typedef enum gbb_type {
52 GBB_UNKNOWN,
53 GBB_LOOP_SING_EXIT_HEADER,
54 GBB_LOOP_MULT_EXIT_HEADER,
55 GBB_LOOP_EXIT,
56 GBB_COND_HEADER,
57 GBB_SIMPLE,
58 GBB_LAST
59 } gbb_type;
61 /* Detect the type of BB. Loop headers are only marked, if they are
62 new. This means their loop_father is different to LAST_LOOP.
63 Otherwise they are treated like any other bb and their type can be
64 any other type. */
66 static gbb_type
67 get_bb_type (basic_block bb, struct loop *last_loop)
69 vec<basic_block> dom;
70 int nb_dom;
71 struct loop *loop = bb->loop_father;
73 /* Check, if we entry into a new loop. */
74 if (loop != last_loop)
76 if (single_exit (loop) != NULL)
77 return GBB_LOOP_SING_EXIT_HEADER;
78 else if (loop->num != 0)
79 return GBB_LOOP_MULT_EXIT_HEADER;
80 else
81 return GBB_COND_HEADER;
84 dom = get_dominated_by (CDI_DOMINATORS, bb);
85 nb_dom = dom.length ();
86 dom.release ();
88 if (nb_dom == 0)
89 return GBB_LAST;
91 if (nb_dom == 1 && single_succ_p (bb))
92 return GBB_SIMPLE;
94 return GBB_COND_HEADER;
97 /* A SCoP detection region, defined using bbs as borders.
99 All control flow touching this region, comes in passing basic_block
100 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
101 edges for the borders we are able to represent also regions that do
102 not have a single entry or exit edge.
104 But as they have a single entry basic_block and a single exit
105 basic_block, we are able to generate for every sd_region a single
106 entry and exit edge.
110 3 <- entry
113 / \ This region contains: {3, 4, 5, 6, 7, 8}
118 9 <- exit */
121 typedef struct sd_region_p
123 /* The entry bb dominates all bbs in the sd_region. It is part of
124 the region. */
125 basic_block entry;
127 /* The exit bb postdominates all bbs in the sd_region, but is not
128 part of the region. */
129 basic_block exit;
130 } sd_region;
134 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
136 static void
137 move_sd_regions (vec<sd_region> *source, vec<sd_region> *target)
139 sd_region *s;
140 int i;
142 FOR_EACH_VEC_ELT (*source, i, s)
143 target->safe_push (*s);
145 source->release ();
148 /* Something like "n * m" is not allowed. */
150 static bool
151 graphite_can_represent_init (tree e)
153 switch (TREE_CODE (e))
155 case POLYNOMIAL_CHREC:
156 return graphite_can_represent_init (CHREC_LEFT (e))
157 && graphite_can_represent_init (CHREC_RIGHT (e));
159 case MULT_EXPR:
160 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
161 return graphite_can_represent_init (TREE_OPERAND (e, 0))
162 && host_integerp (TREE_OPERAND (e, 1), 0);
163 else
164 return graphite_can_represent_init (TREE_OPERAND (e, 1))
165 && host_integerp (TREE_OPERAND (e, 0), 0);
167 case PLUS_EXPR:
168 case POINTER_PLUS_EXPR:
169 case MINUS_EXPR:
170 return graphite_can_represent_init (TREE_OPERAND (e, 0))
171 && graphite_can_represent_init (TREE_OPERAND (e, 1));
173 case NEGATE_EXPR:
174 case BIT_NOT_EXPR:
175 CASE_CONVERT:
176 case NON_LVALUE_EXPR:
177 return graphite_can_represent_init (TREE_OPERAND (e, 0));
179 default:
180 break;
183 return true;
186 /* Return true when SCEV can be represented in the polyhedral model.
188 An expression can be represented, if it can be expressed as an
189 affine expression. For loops (i, j) and parameters (m, n) all
190 affine expressions are of the form:
192 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
194 1 i + 20 j + (-2) m + 25
196 Something like "i * n" or "n * m" is not allowed. */
198 static bool
199 graphite_can_represent_scev (tree scev)
201 if (chrec_contains_undetermined (scev))
202 return false;
204 switch (TREE_CODE (scev))
206 case PLUS_EXPR:
207 case MINUS_EXPR:
208 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
209 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
211 case MULT_EXPR:
212 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
213 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
214 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
215 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
216 && graphite_can_represent_init (scev)
217 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
218 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
220 case POLYNOMIAL_CHREC:
221 /* Check for constant strides. With a non constant stride of
222 'n' we would have a value of 'iv * n'. Also check that the
223 initial value can represented: for example 'n * m' cannot be
224 represented. */
225 if (!evolution_function_right_is_integer_cst (scev)
226 || !graphite_can_represent_init (scev))
227 return false;
229 default:
230 break;
233 /* Only affine functions can be represented. */
234 if (!scev_is_linear_expression (scev))
235 return false;
237 return true;
241 /* Return true when EXPR can be represented in the polyhedral model.
243 This means an expression can be represented, if it is linear with
244 respect to the loops and the strides are non parametric.
245 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
246 entry of the region we analyse. */
248 static bool
249 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
250 tree expr)
252 tree scev = analyze_scalar_evolution (loop, expr);
254 scev = instantiate_scev (scop_entry, loop, scev);
256 return graphite_can_represent_scev (scev);
259 /* Return true if the data references of STMT can be represented by
260 Graphite. */
262 static bool
263 stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED,
264 gimple stmt)
266 data_reference_p dr;
267 unsigned i;
268 int j;
269 bool res = true;
270 vec<data_reference_p> drs = vec<data_reference_p>();
271 loop_p outer;
273 for (outer = loop_containing_stmt (stmt); outer; outer = loop_outer (outer))
275 graphite_find_data_references_in_stmt (outer,
276 loop_containing_stmt (stmt),
277 stmt, &drs);
279 FOR_EACH_VEC_ELT (drs, j, dr)
280 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
281 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
283 res = false;
284 goto done;
287 free_data_refs (drs);
288 drs.create (0);
291 done:
292 free_data_refs (drs);
293 return res;
296 /* Return true only when STMT is simple enough for being handled by
297 Graphite. This depends on SCOP_ENTRY, as the parameters are
298 initialized relatively to this basic block, the linear functions
299 are initialized to OUTERMOST_LOOP and BB is the place where we try
300 to evaluate the STMT. */
302 static bool
303 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
304 gimple stmt, basic_block bb)
306 loop_p loop = bb->loop_father;
308 gcc_assert (scop_entry);
310 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
311 Calls have side-effects, except those to const or pure
312 functions. */
313 if (gimple_has_volatile_ops (stmt)
314 || (gimple_code (stmt) == GIMPLE_CALL
315 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
316 || (gimple_code (stmt) == GIMPLE_ASM))
317 return false;
319 if (is_gimple_debug (stmt))
320 return true;
322 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
323 return false;
325 switch (gimple_code (stmt))
327 case GIMPLE_RETURN:
328 case GIMPLE_LABEL:
329 return true;
331 case GIMPLE_COND:
333 tree op;
334 ssa_op_iter op_iter;
335 enum tree_code code = gimple_cond_code (stmt);
337 /* We can handle all binary comparisons. Inequalities are
338 also supported as they can be represented with union of
339 polyhedra. */
340 if (!(code == LT_EXPR
341 || code == GT_EXPR
342 || code == LE_EXPR
343 || code == GE_EXPR
344 || code == EQ_EXPR
345 || code == NE_EXPR))
346 return false;
348 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
349 if (!graphite_can_represent_expr (scop_entry, loop, op)
350 /* We can not handle REAL_TYPE. Failed for pr39260. */
351 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
352 return false;
354 return true;
357 case GIMPLE_ASSIGN:
358 case GIMPLE_CALL:
359 return true;
361 default:
362 /* These nodes cut a new scope. */
363 return false;
366 return false;
369 /* Returns the statement of BB that contains a harmful operation: that
370 can be a function call with side effects, the induction variables
371 are not linear with respect to SCOP_ENTRY, etc. The current open
372 scop should end before this statement. The evaluation is limited using
373 OUTERMOST_LOOP as outermost loop that may change. */
375 static gimple
376 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
378 gimple_stmt_iterator gsi;
380 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
381 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
382 return gsi_stmt (gsi);
384 return NULL;
387 /* Return true if LOOP can be represented in the polyhedral
388 representation. This is evaluated taking SCOP_ENTRY and
389 OUTERMOST_LOOP in mind. */
391 static bool
392 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
394 tree niter;
395 struct tree_niter_desc niter_desc;
397 /* FIXME: For the moment, graphite cannot be used on loops that
398 iterate using induction variables that wrap. */
400 return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
401 && niter_desc.control.no_overflow
402 && (niter = number_of_latch_executions (loop))
403 && !chrec_contains_undetermined (niter)
404 && graphite_can_represent_expr (scop_entry, loop, niter);
407 /* Store information needed by scopdet_* functions. */
409 struct scopdet_info
411 /* Exit of the open scop would stop if the current BB is harmful. */
412 basic_block exit;
414 /* Where the next scop would start if the current BB is harmful. */
415 basic_block next;
417 /* The bb or one of its children contains open loop exits. That means
418 loop exit nodes that are not surrounded by a loop dominated by bb. */
419 bool exits;
421 /* The bb or one of its children contains only structures we can handle. */
422 bool difficult;
425 static struct scopdet_info build_scops_1 (basic_block, loop_p,
426 vec<sd_region> *, loop_p);
428 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
429 to SCOPS. TYPE is the gbb_type of BB. */
431 static struct scopdet_info
432 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
433 vec<sd_region> *scops, gbb_type type)
435 loop_p loop = bb->loop_father;
436 struct scopdet_info result;
437 gimple stmt;
439 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
440 basic_block entry_block = ENTRY_BLOCK_PTR;
441 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
442 result.difficult = (stmt != NULL);
443 result.exit = NULL;
445 switch (type)
447 case GBB_LAST:
448 result.next = NULL;
449 result.exits = false;
451 /* Mark bbs terminating a SESE region difficult, if they start
452 a condition. */
453 if (!single_succ_p (bb))
454 result.difficult = true;
455 else
456 result.exit = single_succ (bb);
458 break;
460 case GBB_SIMPLE:
461 result.next = single_succ (bb);
462 result.exits = false;
463 result.exit = single_succ (bb);
464 break;
466 case GBB_LOOP_SING_EXIT_HEADER:
468 vec<sd_region> regions;
469 regions.create (3);
470 struct scopdet_info sinfo;
471 edge exit_e = single_exit (loop);
473 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
475 if (!graphite_can_represent_loop (entry_block, loop))
476 result.difficult = true;
478 result.difficult |= sinfo.difficult;
480 /* Try again with another loop level. */
481 if (result.difficult
482 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
484 outermost_loop = loop;
486 regions.release ();
487 regions.create (3);
489 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
491 result = sinfo;
492 result.difficult = true;
494 if (sinfo.difficult)
495 move_sd_regions (&regions, scops);
496 else
498 sd_region open_scop;
499 open_scop.entry = bb;
500 open_scop.exit = exit_e->dest;
501 scops->safe_push (open_scop);
502 regions.release ();
505 else
507 result.exit = exit_e->dest;
508 result.next = exit_e->dest;
510 /* If we do not dominate result.next, remove it. It's either
511 the EXIT_BLOCK_PTR, or another bb dominates it and will
512 call the scop detection for this bb. */
513 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
514 result.next = NULL;
516 if (exit_e->src->loop_father != loop)
517 result.next = NULL;
519 result.exits = false;
521 if (result.difficult)
522 move_sd_regions (&regions, scops);
523 else
524 regions.release ();
527 break;
530 case GBB_LOOP_MULT_EXIT_HEADER:
532 /* XXX: For now we just do not join loops with multiple exits. If the
533 exits lead to the same bb it may be possible to join the loop. */
534 vec<sd_region> regions;
535 regions.create (3);
536 vec<edge> exits = get_loop_exit_edges (loop);
537 edge e;
538 int i;
539 build_scops_1 (bb, loop, &regions, loop);
541 /* Scan the code dominated by this loop. This means all bbs, that are
542 are dominated by a bb in this loop, but are not part of this loop.
544 The easiest case:
545 - The loop exit destination is dominated by the exit sources.
547 TODO: We miss here the more complex cases:
548 - The exit destinations are dominated by another bb inside
549 the loop.
550 - The loop dominates bbs, that are not exit destinations. */
551 FOR_EACH_VEC_ELT (exits, i, e)
552 if (e->src->loop_father == loop
553 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
555 if (loop_outer (outermost_loop))
556 outermost_loop = loop_outer (outermost_loop);
558 /* Pass loop_outer to recognize e->dest as loop header in
559 build_scops_1. */
560 if (e->dest->loop_father->header == e->dest)
561 build_scops_1 (e->dest, outermost_loop, &regions,
562 loop_outer (e->dest->loop_father));
563 else
564 build_scops_1 (e->dest, outermost_loop, &regions,
565 e->dest->loop_father);
568 result.next = NULL;
569 result.exit = NULL;
570 result.difficult = true;
571 result.exits = false;
572 move_sd_regions (&regions, scops);
573 exits.release ();
574 break;
576 case GBB_COND_HEADER:
578 vec<sd_region> regions;
579 regions.create (3);
580 struct scopdet_info sinfo;
581 vec<basic_block> dominated;
582 int i;
583 basic_block dom_bb;
584 basic_block last_exit = NULL;
585 edge e;
586 result.exits = false;
588 /* First check the successors of BB, and check if it is
589 possible to join the different branches. */
590 FOR_EACH_VEC_SAFE_ELT (bb->succs, i, e)
592 /* Ignore loop exits. They will be handled after the loop
593 body. */
594 if (loop_exits_to_bb_p (loop, e->dest))
596 result.exits = true;
597 continue;
600 /* Do not follow edges that lead to the end of the
601 conditions block. For example, in
604 | /|\
605 | 1 2 |
606 | | | |
607 | 3 4 |
608 | \|/
611 the edge from 0 => 6. Only check if all paths lead to
612 the same node 6. */
614 if (!single_pred_p (e->dest))
616 /* Check, if edge leads directly to the end of this
617 condition. */
618 if (!last_exit)
619 last_exit = e->dest;
621 if (e->dest != last_exit)
622 result.difficult = true;
624 continue;
627 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
629 result.difficult = true;
630 continue;
633 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
635 result.exits |= sinfo.exits;
636 result.difficult |= sinfo.difficult;
638 /* Checks, if all branches end at the same point.
639 If that is true, the condition stays joinable.
640 Have a look at the example above. */
641 if (sinfo.exit)
643 if (!last_exit)
644 last_exit = sinfo.exit;
646 if (sinfo.exit != last_exit)
647 result.difficult = true;
649 else
650 result.difficult = true;
653 if (!last_exit)
654 result.difficult = true;
656 /* Join the branches of the condition if possible. */
657 if (!result.exits && !result.difficult)
659 /* Only return a next pointer if we dominate this pointer.
660 Otherwise it will be handled by the bb dominating it. */
661 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
662 && last_exit != bb)
663 result.next = last_exit;
664 else
665 result.next = NULL;
667 result.exit = last_exit;
669 regions.release ();
670 break;
673 /* Scan remaining bbs dominated by BB. */
674 dominated = get_dominated_by (CDI_DOMINATORS, bb);
676 FOR_EACH_VEC_ELT (dominated, i, dom_bb)
678 /* Ignore loop exits: they will be handled after the loop body. */
679 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
680 < loop_depth (loop))
682 result.exits = true;
683 continue;
686 /* Ignore the bbs processed above. */
687 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
688 continue;
690 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
691 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
692 loop_outer (loop));
693 else
694 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
696 result.exits |= sinfo.exits;
697 result.difficult = true;
698 result.exit = NULL;
701 dominated.release ();
703 result.next = NULL;
704 move_sd_regions (&regions, scops);
706 break;
709 default:
710 gcc_unreachable ();
713 return result;
716 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
717 SCOPS. The analyse if a sd_region can be handled is based on the value
718 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
719 is the loop in which CURRENT is handled.
721 TODO: These functions got a little bit big. They definitely should be cleaned
722 up. */
724 static struct scopdet_info
725 build_scops_1 (basic_block current, loop_p outermost_loop,
726 vec<sd_region> *scops, loop_p loop)
728 bool in_scop = false;
729 sd_region open_scop;
730 struct scopdet_info sinfo;
732 /* Initialize result. */
733 struct scopdet_info result;
734 result.exits = false;
735 result.difficult = false;
736 result.next = NULL;
737 result.exit = NULL;
738 open_scop.entry = NULL;
739 open_scop.exit = NULL;
740 sinfo.exit = NULL;
742 /* Loop over the dominance tree. If we meet a difficult bb, close
743 the current SCoP. Loop and condition header start a new layer,
744 and can only be added if all bbs in deeper layers are simple. */
745 while (current != NULL)
747 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
748 get_bb_type (current, loop));
750 if (!in_scop && !(sinfo.exits || sinfo.difficult))
752 open_scop.entry = current;
753 open_scop.exit = NULL;
754 in_scop = true;
756 else if (in_scop && (sinfo.exits || sinfo.difficult))
758 open_scop.exit = current;
759 scops->safe_push (open_scop);
760 in_scop = false;
763 result.difficult |= sinfo.difficult;
764 result.exits |= sinfo.exits;
766 current = sinfo.next;
769 /* Try to close open_scop, if we are still in an open SCoP. */
770 if (in_scop)
772 open_scop.exit = sinfo.exit;
773 gcc_assert (open_scop.exit);
774 scops->safe_push (open_scop);
777 result.exit = sinfo.exit;
778 return result;
781 /* Checks if a bb is contained in REGION. */
783 static bool
784 bb_in_sd_region (basic_block bb, sd_region *region)
786 return bb_in_region (bb, region->entry, region->exit);
789 /* Returns the single entry edge of REGION, if it does not exits NULL. */
791 static edge
792 find_single_entry_edge (sd_region *region)
794 edge e;
795 edge_iterator ei;
796 edge entry = NULL;
798 FOR_EACH_EDGE (e, ei, region->entry->preds)
799 if (!bb_in_sd_region (e->src, region))
801 if (entry)
803 entry = NULL;
804 break;
807 else
808 entry = e;
811 return entry;
814 /* Returns the single exit edge of REGION, if it does not exits NULL. */
816 static edge
817 find_single_exit_edge (sd_region *region)
819 edge e;
820 edge_iterator ei;
821 edge exit = NULL;
823 FOR_EACH_EDGE (e, ei, region->exit->preds)
824 if (bb_in_sd_region (e->src, region))
826 if (exit)
828 exit = NULL;
829 break;
832 else
833 exit = e;
836 return exit;
839 /* Create a single entry edge for REGION. */
841 static void
842 create_single_entry_edge (sd_region *region)
844 if (find_single_entry_edge (region))
845 return;
847 /* There are multiple predecessors for bb_3
849 | 1 2
850 | | /
851 | |/
852 | 3 <- entry
853 | |\
854 | | |
855 | 4 ^
856 | | |
857 | |/
860 There are two edges (1->3, 2->3), that point from outside into the region,
861 and another one (5->3), a loop latch, lead to bb_3.
863 We split bb_3.
865 | 1 2
866 | | /
867 | |/
868 |3.0
869 | |\ (3.0 -> 3.1) = single entry edge
870 |3.1 | <- entry
871 | | |
872 | | |
873 | 4 ^
874 | | |
875 | |/
878 If the loop is part of the SCoP, we have to redirect the loop latches.
880 | 1 2
881 | | /
882 | |/
883 |3.0
884 | | (3.0 -> 3.1) = entry edge
885 |3.1 <- entry
886 | |\
887 | | |
888 | 4 ^
889 | | |
890 | |/
891 | 5 */
893 if (region->entry->loop_father->header != region->entry
894 || dominated_by_p (CDI_DOMINATORS,
895 loop_latch_edge (region->entry->loop_father)->src,
896 region->exit))
898 edge forwarder = split_block_after_labels (region->entry);
899 region->entry = forwarder->dest;
901 else
902 /* This case is never executed, as the loop headers seem always to have a
903 single edge pointing from outside into the loop. */
904 gcc_unreachable ();
906 gcc_checking_assert (find_single_entry_edge (region));
909 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
911 static bool
912 sd_region_without_exit (edge e)
914 sd_region *r = (sd_region *) e->aux;
916 if (r)
917 return r->exit == NULL;
918 else
919 return false;
922 /* Create a single exit edge for REGION. */
924 static void
925 create_single_exit_edge (sd_region *region)
927 edge e;
928 edge_iterator ei;
929 edge forwarder = NULL;
930 basic_block exit;
932 /* We create a forwarder bb (5) for all edges leaving this region
933 (3->5, 4->5). All other edges leading to the same bb, are moved
934 to a new bb (6). If these edges where part of another region (2->5)
935 we update the region->exit pointer, of this region.
937 To identify which edge belongs to which region we depend on the e->aux
938 pointer in every edge. It points to the region of the edge or to NULL,
939 if the edge is not part of any region.
941 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
942 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
943 5 <- exit
945 changes to
947 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
948 | | \/ 3->5 no region, 4->5 no region,
949 | | 5
950 \| / 5->6 region->exit = 6
953 Now there is only a single exit edge (5->6). */
954 exit = region->exit;
955 region->exit = NULL;
956 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
958 /* Unmark the edges, that are no longer exit edges. */
959 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
960 if (e->aux)
961 e->aux = NULL;
963 /* Mark the new exit edge. */
964 single_succ_edge (forwarder->src)->aux = region;
966 /* Update the exit bb of all regions, where exit edges lead to
967 forwarder->dest. */
968 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
969 if (e->aux)
970 ((sd_region *) e->aux)->exit = forwarder->dest;
972 gcc_checking_assert (find_single_exit_edge (region));
975 /* Unmark the exit edges of all REGIONS.
976 See comment in "create_single_exit_edge". */
978 static void
979 unmark_exit_edges (vec<sd_region> regions)
981 int i;
982 sd_region *s;
983 edge e;
984 edge_iterator ei;
986 FOR_EACH_VEC_ELT (regions, i, s)
987 FOR_EACH_EDGE (e, ei, s->exit->preds)
988 e->aux = NULL;
992 /* Mark the exit edges of all REGIONS.
993 See comment in "create_single_exit_edge". */
995 static void
996 mark_exit_edges (vec<sd_region> regions)
998 int i;
999 sd_region *s;
1000 edge e;
1001 edge_iterator ei;
1003 FOR_EACH_VEC_ELT (regions, i, s)
1004 FOR_EACH_EDGE (e, ei, s->exit->preds)
1005 if (bb_in_sd_region (e->src, s))
1006 e->aux = s;
1009 /* Create for all scop regions a single entry and a single exit edge. */
1011 static void
1012 create_sese_edges (vec<sd_region> regions)
1014 int i;
1015 sd_region *s;
1017 FOR_EACH_VEC_ELT (regions, i, s)
1018 create_single_entry_edge (s);
1020 mark_exit_edges (regions);
1022 FOR_EACH_VEC_ELT (regions, i, s)
1023 /* Don't handle multiple edges exiting the function. */
1024 if (!find_single_exit_edge (s)
1025 && s->exit != EXIT_BLOCK_PTR)
1026 create_single_exit_edge (s);
1028 unmark_exit_edges (regions);
1030 calculate_dominance_info (CDI_DOMINATORS);
1031 fix_loop_structure (NULL);
1033 #ifdef ENABLE_CHECKING
1034 verify_loop_structure ();
1035 verify_ssa (false);
1036 #endif
1039 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1041 static void
1042 build_graphite_scops (vec<sd_region> regions,
1043 vec<scop_p> *scops)
1045 int i;
1046 sd_region *s;
1048 FOR_EACH_VEC_ELT (regions, i, s)
1050 edge entry = find_single_entry_edge (s);
1051 edge exit = find_single_exit_edge (s);
1052 scop_p scop;
1054 if (!exit)
1055 continue;
1057 scop = new_scop (new_sese (entry, exit));
1058 scops->safe_push (scop);
1060 /* Are there overlapping SCoPs? */
1061 #ifdef ENABLE_CHECKING
1063 int j;
1064 sd_region *s2;
1066 FOR_EACH_VEC_ELT (regions, j, s2)
1067 if (s != s2)
1068 gcc_assert (!bb_in_sd_region (s->entry, s2));
1070 #endif
1074 /* Returns true when BB contains only close phi nodes. */
1076 static bool
1077 contains_only_close_phi_nodes (basic_block bb)
1079 gimple_stmt_iterator gsi;
1081 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1082 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1083 return false;
1085 return true;
1088 /* Print statistics for SCOP to FILE. */
1090 static void
1091 print_graphite_scop_statistics (FILE* file, scop_p scop)
1093 long n_bbs = 0;
1094 long n_loops = 0;
1095 long n_stmts = 0;
1096 long n_conditions = 0;
1097 long n_p_bbs = 0;
1098 long n_p_loops = 0;
1099 long n_p_stmts = 0;
1100 long n_p_conditions = 0;
1102 basic_block bb;
1104 FOR_ALL_BB (bb)
1106 gimple_stmt_iterator psi;
1107 loop_p loop = bb->loop_father;
1109 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1110 continue;
1112 n_bbs++;
1113 n_p_bbs += bb->count;
1115 if (EDGE_COUNT (bb->succs) > 1)
1117 n_conditions++;
1118 n_p_conditions += bb->count;
1121 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1123 n_stmts++;
1124 n_p_stmts += bb->count;
1127 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1129 n_loops++;
1130 n_p_loops += bb->count;
1135 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1136 fprintf (file, "BBS:%ld, ", n_bbs);
1137 fprintf (file, "LOOPS:%ld, ", n_loops);
1138 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1139 fprintf (file, "STMTS:%ld)\n", n_stmts);
1140 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1141 fprintf (file, "BBS:%ld, ", n_p_bbs);
1142 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1143 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1144 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1147 /* Print statistics for SCOPS to FILE. */
1149 static void
1150 print_graphite_statistics (FILE* file, vec<scop_p> scops)
1152 int i;
1153 scop_p scop;
1155 FOR_EACH_VEC_ELT (scops, i, scop)
1156 print_graphite_scop_statistics (file, scop);
1159 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1161 Example:
1163 for (i |
1165 for (j | SCoP 1
1166 for (k |
1169 * SCoP frontier, as this line is not surrounded by any loop. *
1171 for (l | SCoP 2
1173 This is necessary as scalar evolution and parameter detection need a
1174 outermost loop to initialize parameters correctly.
1176 TODO: FIX scalar evolution and parameter detection to allow more flexible
1177 SCoP frontiers. */
1179 static void
1180 limit_scops (vec<scop_p> *scops)
1182 vec<sd_region> regions;
1183 regions.create (3);
1185 int i;
1186 scop_p scop;
1188 FOR_EACH_VEC_ELT (*scops, i, scop)
1190 int j;
1191 loop_p loop;
1192 sese region = SCOP_REGION (scop);
1193 build_sese_loop_nests (region);
1195 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), j, loop)
1196 if (!loop_in_sese_p (loop_outer (loop), region)
1197 && single_exit (loop))
1199 sd_region open_scop;
1200 open_scop.entry = loop->header;
1201 open_scop.exit = single_exit (loop)->dest;
1203 /* This is a hack on top of the limit_scops hack. The
1204 limit_scops hack should disappear all together. */
1205 if (single_succ_p (open_scop.exit)
1206 && contains_only_close_phi_nodes (open_scop.exit))
1207 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1209 regions.safe_push (open_scop);
1213 free_scops (*scops);
1214 scops->create (3);
1216 create_sese_edges (regions);
1217 build_graphite_scops (regions, scops);
1218 regions.release ();
1221 /* Returns true when P1 and P2 are close phis with the same
1222 argument. */
1224 static inline bool
1225 same_close_phi_node (gimple p1, gimple p2)
1227 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1228 gimple_phi_arg_def (p2, 0), 0);
1231 /* Remove the close phi node at GSI and replace its rhs with the rhs
1232 of PHI. */
1234 static void
1235 remove_duplicate_close_phi (gimple phi, gimple_stmt_iterator *gsi)
1237 gimple use_stmt;
1238 use_operand_p use_p;
1239 imm_use_iterator imm_iter;
1240 tree res = gimple_phi_result (phi);
1241 tree def = gimple_phi_result (gsi_stmt (*gsi));
1243 gcc_assert (same_close_phi_node (phi, gsi_stmt (*gsi)));
1245 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1247 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1248 SET_USE (use_p, res);
1250 update_stmt (use_stmt);
1252 /* It is possible that we just created a duplicate close-phi
1253 for an already-processed containing loop. Check for this
1254 case and clean it up. */
1255 if (gimple_code (use_stmt) == GIMPLE_PHI
1256 && gimple_phi_num_args (use_stmt) == 1)
1257 make_close_phi_nodes_unique (gimple_bb (use_stmt));
1260 remove_phi_node (gsi, true);
1263 /* Removes all the close phi duplicates from BB. */
1265 static void
1266 make_close_phi_nodes_unique (basic_block bb)
1268 gimple_stmt_iterator psi;
1270 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1272 gimple_stmt_iterator gsi = psi;
1273 gimple phi = gsi_stmt (psi);
1275 /* At this point, PHI should be a close phi in normal form. */
1276 gcc_assert (gimple_phi_num_args (phi) == 1);
1278 /* Iterate over the next phis and remove duplicates. */
1279 gsi_next (&gsi);
1280 while (!gsi_end_p (gsi))
1281 if (same_close_phi_node (phi, gsi_stmt (gsi)))
1282 remove_duplicate_close_phi (phi, &gsi);
1283 else
1284 gsi_next (&gsi);
1288 /* Transforms LOOP to the canonical loop closed SSA form. */
1290 static void
1291 canonicalize_loop_closed_ssa (loop_p loop)
1293 edge e = single_exit (loop);
1294 basic_block bb;
1296 if (!e || e->flags & EDGE_ABNORMAL)
1297 return;
1299 bb = e->dest;
1301 if (single_pred_p (bb))
1303 e = split_block_after_labels (bb);
1304 make_close_phi_nodes_unique (e->src);
1306 else
1308 gimple_stmt_iterator psi;
1309 basic_block close = split_edge (e);
1311 e = single_succ_edge (close);
1313 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1315 gimple phi = gsi_stmt (psi);
1316 unsigned i;
1318 for (i = 0; i < gimple_phi_num_args (phi); i++)
1319 if (gimple_phi_arg_edge (phi, i) == e)
1321 tree res, arg = gimple_phi_arg_def (phi, i);
1322 use_operand_p use_p;
1323 gimple close_phi;
1325 if (TREE_CODE (arg) != SSA_NAME)
1326 continue;
1328 close_phi = create_phi_node (NULL_TREE, close);
1329 res = create_new_def_for (arg, close_phi,
1330 gimple_phi_result_ptr (close_phi));
1331 add_phi_arg (close_phi, arg,
1332 gimple_phi_arg_edge (close_phi, 0),
1333 UNKNOWN_LOCATION);
1334 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1335 replace_exp (use_p, res);
1336 update_stmt (phi);
1340 make_close_phi_nodes_unique (close);
1343 /* The code above does not properly handle changes in the post dominance
1344 information (yet). */
1345 free_dominance_info (CDI_POST_DOMINATORS);
1348 /* Converts the current loop closed SSA form to a canonical form
1349 expected by the Graphite code generation.
1351 The loop closed SSA form has the following invariant: a variable
1352 defined in a loop that is used outside the loop appears only in the
1353 phi nodes in the destination of the loop exit. These phi nodes are
1354 called close phi nodes.
1356 The canonical loop closed SSA form contains the extra invariants:
1358 - when the loop contains only one exit, the close phi nodes contain
1359 only one argument. That implies that the basic block that contains
1360 the close phi nodes has only one predecessor, that is a basic block
1361 in the loop.
1363 - the basic block containing the close phi nodes does not contain
1364 other statements.
1366 - there exist only one phi node per definition in the loop.
1369 static void
1370 canonicalize_loop_closed_ssa_form (void)
1372 loop_iterator li;
1373 loop_p loop;
1375 #ifdef ENABLE_CHECKING
1376 verify_loop_closed_ssa (true);
1377 #endif
1379 FOR_EACH_LOOP (li, loop, 0)
1380 canonicalize_loop_closed_ssa (loop);
1382 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1383 update_ssa (TODO_update_ssa);
1385 #ifdef ENABLE_CHECKING
1386 verify_loop_closed_ssa (true);
1387 #endif
1390 /* Find Static Control Parts (SCoP) in the current function and pushes
1391 them to SCOPS. */
1393 void
1394 build_scops (vec<scop_p> *scops)
1396 struct loop *loop = current_loops->tree_root;
1397 vec<sd_region> regions;
1398 regions.create (3);
1400 canonicalize_loop_closed_ssa_form ();
1401 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1402 &regions, loop);
1403 create_sese_edges (regions);
1404 build_graphite_scops (regions, scops);
1406 if (dump_file && (dump_flags & TDF_DETAILS))
1407 print_graphite_statistics (dump_file, *scops);
1409 limit_scops (scops);
1410 regions.release ();
1412 if (dump_file && (dump_flags & TDF_DETAILS))
1413 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1414 scops ? scops->length () : 0);
1417 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1418 different colors. If there are not enough colors, paint the
1419 remaining SCoPs in gray.
1421 Special nodes:
1422 - "*" after the node number denotes the entry of a SCoP,
1423 - "#" after the node number denotes the exit of a SCoP,
1424 - "()" around the node number denotes the entry or the
1425 exit nodes of the SCOP. These are not part of SCoP. */
1427 static void
1428 dot_all_scops_1 (FILE *file, vec<scop_p> scops)
1430 basic_block bb;
1431 edge e;
1432 edge_iterator ei;
1433 scop_p scop;
1434 const char* color;
1435 int i;
1437 /* Disable debugging while printing graph. */
1438 int tmp_dump_flags = dump_flags;
1439 dump_flags = 0;
1441 fprintf (file, "digraph all {\n");
1443 FOR_ALL_BB (bb)
1445 int part_of_scop = false;
1447 /* Use HTML for every bb label. So we are able to print bbs
1448 which are part of two different SCoPs, with two different
1449 background colors. */
1450 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1451 bb->index);
1452 fprintf (file, "CELLSPACING=\"0\">\n");
1454 /* Select color for SCoP. */
1455 FOR_EACH_VEC_ELT (scops, i, scop)
1457 sese region = SCOP_REGION (scop);
1458 if (bb_in_sese_p (bb, region)
1459 || (SESE_EXIT_BB (region) == bb)
1460 || (SESE_ENTRY_BB (region) == bb))
1462 switch (i % 17)
1464 case 0: /* red */
1465 color = "#e41a1c";
1466 break;
1467 case 1: /* blue */
1468 color = "#377eb8";
1469 break;
1470 case 2: /* green */
1471 color = "#4daf4a";
1472 break;
1473 case 3: /* purple */
1474 color = "#984ea3";
1475 break;
1476 case 4: /* orange */
1477 color = "#ff7f00";
1478 break;
1479 case 5: /* yellow */
1480 color = "#ffff33";
1481 break;
1482 case 6: /* brown */
1483 color = "#a65628";
1484 break;
1485 case 7: /* rose */
1486 color = "#f781bf";
1487 break;
1488 case 8:
1489 color = "#8dd3c7";
1490 break;
1491 case 9:
1492 color = "#ffffb3";
1493 break;
1494 case 10:
1495 color = "#bebada";
1496 break;
1497 case 11:
1498 color = "#fb8072";
1499 break;
1500 case 12:
1501 color = "#80b1d3";
1502 break;
1503 case 13:
1504 color = "#fdb462";
1505 break;
1506 case 14:
1507 color = "#b3de69";
1508 break;
1509 case 15:
1510 color = "#fccde5";
1511 break;
1512 case 16:
1513 color = "#bc80bd";
1514 break;
1515 default: /* gray */
1516 color = "#999999";
1519 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1521 if (!bb_in_sese_p (bb, region))
1522 fprintf (file, " (");
1524 if (bb == SESE_ENTRY_BB (region)
1525 && bb == SESE_EXIT_BB (region))
1526 fprintf (file, " %d*# ", bb->index);
1527 else if (bb == SESE_ENTRY_BB (region))
1528 fprintf (file, " %d* ", bb->index);
1529 else if (bb == SESE_EXIT_BB (region))
1530 fprintf (file, " %d# ", bb->index);
1531 else
1532 fprintf (file, " %d ", bb->index);
1534 if (!bb_in_sese_p (bb,region))
1535 fprintf (file, ")");
1537 fprintf (file, "</TD></TR>\n");
1538 part_of_scop = true;
1542 if (!part_of_scop)
1544 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1545 fprintf (file, " %d </TD></TR>\n", bb->index);
1547 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1550 FOR_ALL_BB (bb)
1552 FOR_EACH_EDGE (e, ei, bb->succs)
1553 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1556 fputs ("}\n\n", file);
1558 /* Enable debugging again. */
1559 dump_flags = tmp_dump_flags;
1562 /* Display all SCoPs using dotty. */
1564 DEBUG_FUNCTION void
1565 dot_all_scops (vec<scop_p> scops)
1567 /* When debugging, enable the following code. This cannot be used
1568 in production compilers because it calls "system". */
1569 #if 0
1570 int x;
1571 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1572 gcc_assert (stream);
1574 dot_all_scops_1 (stream, scops);
1575 fclose (stream);
1577 x = system ("dotty /tmp/allscops.dot &");
1578 #else
1579 dot_all_scops_1 (stderr, scops);
1580 #endif
1583 /* Display all SCoPs using dotty. */
1585 DEBUG_FUNCTION void
1586 dot_scop (scop_p scop)
1588 vec<scop_p> scops = vec<scop_p>();
1590 if (scop)
1591 scops.safe_push (scop);
1593 /* When debugging, enable the following code. This cannot be used
1594 in production compilers because it calls "system". */
1595 #if 0
1597 int x;
1598 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1599 gcc_assert (stream);
1601 dot_all_scops_1 (stream, scops);
1602 fclose (stream);
1603 x = system ("dotty /tmp/allscops.dot &");
1605 #else
1606 dot_all_scops_1 (stderr, scops);
1607 #endif
1609 scops.release ();
1612 #endif