1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Paolo Bonzini and Steven Bosscher.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
26 #include "diagnostic-core.h"
28 #include "sparseset.h"
31 #include "insn-config.h"
35 #include "basic-block.h"
39 #include "tree-pass.h"
44 /* This pass does simple forward propagation and simplification when an
45 operand of an insn can only come from a single def. This pass uses
46 df.c, so it is global. However, we only do limited analysis of
47 available expressions.
49 1) The pass tries to propagate the source of the def into the use,
50 and checks if the result is independent of the substituted value.
51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52 zero, independent of the source register.
54 In particular, we propagate constants into the use site. Sometimes
55 RTL expansion did not put the constant in the same insn on purpose,
56 to satisfy a predicate, and the result will fail to be recognized;
57 but this happens rarely and in this case we can still create a
58 REG_EQUAL note. For multi-word operations, this
60 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62 (set (subreg:SI (reg:DI 122) 0)
63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64 (set (subreg:SI (reg:DI 122) 4)
65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
67 can be simplified to the much simpler
69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
72 This particular propagation is also effective at putting together
73 complex addressing modes. We are more aggressive inside MEMs, in
74 that all definitions are propagated if the use is in a MEM; if the
75 result is a valid memory address we check address_cost to decide
76 whether the substitution is worthwhile.
78 2) The pass propagates register copies. This is not as effective as
79 the copy propagation done by CSE's canon_reg, which works by walking
80 the instruction chain, it can help the other transformations.
82 We should consider removing this optimization, and instead reorder the
83 RTL passes, because GCSE does this transformation too. With some luck,
84 the CSE pass at the end of rest_of_handle_gcse could also go away.
86 3) The pass looks for paradoxical subregs that are actually unnecessary.
89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92 (subreg:SI (reg:QI 121) 0)))
94 are very common on machines that can only do word-sized operations.
95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97 we can replace the paradoxical subreg with simply (reg:WIDE M). The
98 above will simplify this to
100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
104 where the first two insns are now dead.
106 We used to use reaching definitions to find which uses have a
107 single reaching definition (sounds obvious...), but this is too
108 complex a problem in nasty testcases like PR33928. Now we use the
109 multiple definitions problem in df-problems.c. The similarity
110 between that problem and SSA form creation is taken further, in
111 that fwprop does a dominator walk to create its chains; however,
112 instead of creating a PHI function where multiple definitions meet
113 I just punt and record only singleton use-def chains, which is
114 all that is needed by fwprop. */
117 static int num_changes
;
119 static vec
<df_ref
> use_def_ref
;
120 static vec
<df_ref
> reg_defs
;
121 static vec
<df_ref
> reg_defs_stack
;
123 /* The MD bitmaps are trimmed to include only live registers to cut
124 memory usage on testcases like insn-recog.c. Track live registers
125 in the basic block and do not perform forward propagation if the
126 destination is a dead pseudo occurring in a note. */
127 static bitmap local_md
;
128 static bitmap local_lr
;
130 /* Return the only def in USE's use-def chain, or NULL if there is
131 more than one def in the chain. */
134 get_def_for_use (df_ref use
)
136 return use_def_ref
[DF_REF_ID (use
)];
140 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
141 TOP_FLAG says which artificials uses should be used, when DEF_REC
142 is an artificial def vector. LOCAL_MD is modified as after a
143 df_md_simulate_* function; we do more or less the same processing
144 done there, so we do not use those functions. */
146 #define DF_MD_GEN_FLAGS \
147 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
150 process_defs (df_ref
*def_rec
, int top_flag
)
153 while ((def
= *def_rec
++) != NULL
)
155 df_ref curr_def
= reg_defs
[DF_REF_REGNO (def
)];
158 if ((DF_REF_FLAGS (def
) & DF_REF_AT_TOP
) != top_flag
)
161 dregno
= DF_REF_REGNO (def
);
163 reg_defs_stack
.safe_push (curr_def
);
166 /* Do not store anything if "transitioning" from NULL to NULL. But
167 otherwise, push a special entry on the stack to tell the
168 leave_block callback that the entry in reg_defs was NULL. */
169 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
172 reg_defs_stack
.safe_push (def
);
175 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
177 bitmap_set_bit (local_md
, dregno
);
178 reg_defs
[dregno
] = NULL
;
182 bitmap_clear_bit (local_md
, dregno
);
183 reg_defs
[dregno
] = def
;
189 /* Fill the use_def_ref vector with values for the uses in USE_REC,
190 taking reaching definitions info from LOCAL_MD and REG_DEFS.
191 TOP_FLAG says which artificials uses should be used, when USE_REC
192 is an artificial use vector. */
195 process_uses (df_ref
*use_rec
, int top_flag
)
198 while ((use
= *use_rec
++) != NULL
)
199 if ((DF_REF_FLAGS (use
) & DF_REF_AT_TOP
) == top_flag
)
201 unsigned int uregno
= DF_REF_REGNO (use
);
203 && !bitmap_bit_p (local_md
, uregno
)
204 && bitmap_bit_p (local_lr
, uregno
))
205 use_def_ref
[DF_REF_ID (use
)] = reg_defs
[uregno
];
211 single_def_use_enter_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
214 int bb_index
= bb
->index
;
215 struct df_md_bb_info
*md_bb_info
= df_md_get_bb_info (bb_index
);
216 struct df_lr_bb_info
*lr_bb_info
= df_lr_get_bb_info (bb_index
);
219 bitmap_copy (local_md
, &md_bb_info
->in
);
220 bitmap_copy (local_lr
, &lr_bb_info
->in
);
222 /* Push a marker for the leave_block callback. */
223 reg_defs_stack
.safe_push (NULL
);
225 process_uses (df_get_artificial_uses (bb_index
), DF_REF_AT_TOP
);
226 process_defs (df_get_artificial_defs (bb_index
), DF_REF_AT_TOP
);
228 /* We don't call df_simulate_initialize_forwards, as it may overestimate
229 the live registers if there are unused artificial defs. We prefer
230 liveness to be underestimated. */
232 FOR_BB_INSNS (bb
, insn
)
235 unsigned int uid
= INSN_UID (insn
);
236 process_uses (DF_INSN_UID_USES (uid
), 0);
237 process_uses (DF_INSN_UID_EQ_USES (uid
), 0);
238 process_defs (DF_INSN_UID_DEFS (uid
), 0);
239 df_simulate_one_insn_forwards (bb
, insn
, local_lr
);
242 process_uses (df_get_artificial_uses (bb_index
), 0);
243 process_defs (df_get_artificial_defs (bb_index
), 0);
246 /* Pop the definitions created in this basic block when leaving its
250 single_def_use_leave_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
251 basic_block bb ATTRIBUTE_UNUSED
)
254 while ((saved_def
= reg_defs_stack
.pop ()) != NULL
)
256 unsigned int dregno
= DF_REF_REGNO (saved_def
);
258 /* See also process_defs. */
259 if (saved_def
== reg_defs
[dregno
])
260 reg_defs
[dregno
] = NULL
;
262 reg_defs
[dregno
] = saved_def
;
267 /* Build a vector holding the reaching definitions of uses reached by a
268 single dominating definition. */
271 build_single_def_use_links (void)
273 struct dom_walk_data walk_data
;
275 /* We use the multiple definitions problem to compute our restricted
277 df_set_flags (DF_EQ_NOTES
);
278 df_md_add_problem ();
279 df_note_add_problem ();
281 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES
);
283 use_def_ref
.create (DF_USES_TABLE_SIZE ());
284 use_def_ref
.safe_grow_cleared (DF_USES_TABLE_SIZE ());
286 reg_defs
.create (max_reg_num ());
287 reg_defs
.safe_grow_cleared (max_reg_num ());
289 reg_defs_stack
.create (n_basic_blocks
* 10);
290 local_md
= BITMAP_ALLOC (NULL
);
291 local_lr
= BITMAP_ALLOC (NULL
);
293 /* Walk the dominator tree looking for single reaching definitions
294 dominating the uses. This is similar to how SSA form is built. */
295 walk_data
.dom_direction
= CDI_DOMINATORS
;
296 walk_data
.initialize_block_local_data
= NULL
;
297 walk_data
.before_dom_children
= single_def_use_enter_block
;
298 walk_data
.after_dom_children
= single_def_use_leave_block
;
300 init_walk_dominator_tree (&walk_data
);
301 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
302 fini_walk_dominator_tree (&walk_data
);
304 BITMAP_FREE (local_lr
);
305 BITMAP_FREE (local_md
);
307 reg_defs_stack
.release ();
311 /* Do not try to replace constant addresses or addresses of local and
312 argument slots. These MEM expressions are made only once and inserted
313 in many instructions, as well as being used to control symbol table
314 output. It is not safe to clobber them.
316 There are some uncommon cases where the address is already in a register
317 for some reason, but we cannot take advantage of that because we have
318 no easy way to unshare the MEM. In addition, looking up all stack
319 addresses is costly. */
322 can_simplify_addr (rtx addr
)
326 if (CONSTANT_ADDRESS_P (addr
))
329 if (GET_CODE (addr
) == PLUS
)
330 reg
= XEXP (addr
, 0);
335 || (REGNO (reg
) != FRAME_POINTER_REGNUM
336 && REGNO (reg
) != HARD_FRAME_POINTER_REGNUM
337 && REGNO (reg
) != ARG_POINTER_REGNUM
));
340 /* Returns a canonical version of X for the address, from the point of view,
341 that all multiplications are represented as MULT instead of the multiply
342 by a power of 2 being represented as ASHIFT.
344 Every ASHIFT we find has been made by simplify_gen_binary and was not
345 there before, so it is not shared. So we can do this in place. */
348 canonicalize_address (rtx x
)
351 switch (GET_CODE (x
))
354 if (CONST_INT_P (XEXP (x
, 1))
355 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
))
356 && INTVAL (XEXP (x
, 1)) >= 0)
358 HOST_WIDE_INT shift
= INTVAL (XEXP (x
, 1));
360 XEXP (x
, 1) = gen_int_mode ((HOST_WIDE_INT
) 1 << shift
,
368 if (GET_CODE (XEXP (x
, 0)) == PLUS
369 || GET_CODE (XEXP (x
, 0)) == ASHIFT
370 || GET_CODE (XEXP (x
, 0)) == CONST
)
371 canonicalize_address (XEXP (x
, 0));
385 /* OLD is a memory address. Return whether it is good to use NEW instead,
386 for a memory access in the given MODE. */
389 should_replace_address (rtx old_rtx
, rtx new_rtx
, enum machine_mode mode
,
390 addr_space_t as
, bool speed
)
394 if (rtx_equal_p (old_rtx
, new_rtx
)
395 || !memory_address_addr_space_p (mode
, new_rtx
, as
))
398 /* Copy propagation is always ok. */
399 if (REG_P (old_rtx
) && REG_P (new_rtx
))
402 /* Prefer the new address if it is less expensive. */
403 gain
= (address_cost (old_rtx
, mode
, as
, speed
)
404 - address_cost (new_rtx
, mode
, as
, speed
));
406 /* If the addresses have equivalent cost, prefer the new address
407 if it has the highest `set_src_cost'. That has the potential of
408 eliminating the most insns without additional costs, and it
409 is the same that cse.c used to do. */
411 gain
= set_src_cost (new_rtx
, speed
) - set_src_cost (old_rtx
, speed
);
417 /* Flags for the last parameter of propagate_rtx_1. */
420 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
421 if it is false, propagate_rtx_1 returns false if, for at least
422 one occurrence OLD, it failed to collapse the result to a constant.
423 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
424 collapse to zero if replacing (reg:M B) with (reg:M A).
426 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
427 propagate_rtx_1 just tries to make cheaper and valid memory
431 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
432 outside memory addresses. This is needed because propagate_rtx_1 does
433 not do any analysis on memory; thus it is very conservative and in general
434 it will fail if non-read-only MEMs are found in the source expression.
436 PR_HANDLE_MEM is set when the source of the propagation was not
437 another MEM. Then, it is safe not to treat non-read-only MEMs as
438 ``opaque'' objects. */
441 /* Set when costs should be optimized for speed. */
442 PR_OPTIMIZE_FOR_SPEED
= 4
446 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
447 resulting expression. Replace *PX with a new RTL expression if an
448 occurrence of OLD was found.
450 This is only a wrapper around simplify-rtx.c: do not add any pattern
451 matching code here. (The sole exception is the handling of LO_SUM, but
452 that is because there is no simplify_gen_* function for LO_SUM). */
455 propagate_rtx_1 (rtx
*px
, rtx old_rtx
, rtx new_rtx
, int flags
)
457 rtx x
= *px
, tem
= NULL_RTX
, op0
, op1
, op2
;
458 enum rtx_code code
= GET_CODE (x
);
459 enum machine_mode mode
= GET_MODE (x
);
460 enum machine_mode op_mode
;
461 bool can_appear
= (flags
& PR_CAN_APPEAR
) != 0;
462 bool valid_ops
= true;
464 if (!(flags
& PR_HANDLE_MEM
) && MEM_P (x
) && !MEM_READONLY_P (x
))
466 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
467 they have side effects or not). */
468 *px
= (side_effects_p (x
)
469 ? gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
)
470 : gen_rtx_SCRATCH (GET_MODE (x
)));
474 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
475 address, and we are *not* inside one. */
482 /* If this is an expression, try recursive substitution. */
483 switch (GET_RTX_CLASS (code
))
487 op_mode
= GET_MODE (op0
);
488 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
489 if (op0
== XEXP (x
, 0))
491 tem
= simplify_gen_unary (code
, mode
, op0
, op_mode
);
498 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
499 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
500 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
502 tem
= simplify_gen_binary (code
, mode
, op0
, op1
);
506 case RTX_COMM_COMPARE
:
509 op_mode
= GET_MODE (op0
) != VOIDmode
? GET_MODE (op0
) : GET_MODE (op1
);
510 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
511 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
512 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
514 tem
= simplify_gen_relational (code
, mode
, op_mode
, op0
, op1
);
518 case RTX_BITFIELD_OPS
:
522 op_mode
= GET_MODE (op0
);
523 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
524 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
525 valid_ops
&= propagate_rtx_1 (&op2
, old_rtx
, new_rtx
, flags
);
526 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1) && op2
== XEXP (x
, 2))
528 if (op_mode
== VOIDmode
)
529 op_mode
= GET_MODE (op0
);
530 tem
= simplify_gen_ternary (code
, mode
, op_mode
, op0
, op1
, op2
);
534 /* The only case we try to handle is a SUBREG. */
538 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
539 if (op0
== XEXP (x
, 0))
541 tem
= simplify_gen_subreg (mode
, op0
, GET_MODE (SUBREG_REG (x
)),
547 if (code
== MEM
&& x
!= new_rtx
)
552 /* There are some addresses that we cannot work on. */
553 if (!can_simplify_addr (op0
))
556 op0
= new_op0
= targetm
.delegitimize_address (op0
);
557 valid_ops
&= propagate_rtx_1 (&new_op0
, old_rtx
, new_rtx
,
558 flags
| PR_CAN_APPEAR
);
560 /* Dismiss transformation that we do not want to carry on. */
563 || !(GET_MODE (new_op0
) == GET_MODE (op0
)
564 || GET_MODE (new_op0
) == VOIDmode
))
567 canonicalize_address (new_op0
);
569 /* Copy propagations are always ok. Otherwise check the costs. */
570 if (!(REG_P (old_rtx
) && REG_P (new_rtx
))
571 && !should_replace_address (op0
, new_op0
, GET_MODE (x
),
573 flags
& PR_OPTIMIZE_FOR_SPEED
))
576 tem
= replace_equiv_address_nv (x
, new_op0
);
579 else if (code
== LO_SUM
)
584 /* The only simplification we do attempts to remove references to op0
585 or make it constant -- in both cases, op0's invalidity will not
586 make the result invalid. */
587 propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
| PR_CAN_APPEAR
);
588 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
589 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
592 /* (lo_sum (high x) x) -> x */
593 if (GET_CODE (op0
) == HIGH
&& rtx_equal_p (XEXP (op0
, 0), op1
))
596 tem
= gen_rtx_LO_SUM (mode
, op0
, op1
);
598 /* OP1 is likely not a legitimate address, otherwise there would have
599 been no LO_SUM. We want it to disappear if it is invalid, return
600 false in that case. */
601 return memory_address_p (mode
, tem
);
604 else if (code
== REG
)
606 if (rtx_equal_p (x
, old_rtx
))
618 /* No change, no trouble. */
624 /* The replacement we made so far is valid, if all of the recursive
625 replacements were valid, or we could simplify everything to
627 return valid_ops
|| can_appear
|| CONSTANT_P (tem
);
631 /* for_each_rtx traversal function that returns 1 if BODY points to
632 a non-constant mem. */
635 varying_mem_p (rtx
*body
, void *data ATTRIBUTE_UNUSED
)
638 return MEM_P (x
) && !MEM_READONLY_P (x
);
642 /* Replace all occurrences of OLD in X with NEW and try to simplify the
643 resulting expression (in mode MODE). Return a new expression if it is
644 a constant, otherwise X.
646 Simplifications where occurrences of NEW collapse to a constant are always
647 accepted. All simplifications are accepted if NEW is a pseudo too.
648 Otherwise, we accept simplifications that have a lower or equal cost. */
651 propagate_rtx (rtx x
, enum machine_mode mode
, rtx old_rtx
, rtx new_rtx
,
658 if (REG_P (new_rtx
) && REGNO (new_rtx
) < FIRST_PSEUDO_REGISTER
)
663 || CONSTANT_P (new_rtx
)
664 || (GET_CODE (new_rtx
) == SUBREG
665 && REG_P (SUBREG_REG (new_rtx
))
666 && (GET_MODE_SIZE (mode
)
667 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx
))))))
668 flags
|= PR_CAN_APPEAR
;
669 if (!for_each_rtx (&new_rtx
, varying_mem_p
, NULL
))
670 flags
|= PR_HANDLE_MEM
;
673 flags
|= PR_OPTIMIZE_FOR_SPEED
;
676 collapsed
= propagate_rtx_1 (&tem
, old_rtx
, copy_rtx (new_rtx
), flags
);
677 if (tem
== x
|| !collapsed
)
680 /* gen_lowpart_common will not be able to process VOIDmode entities other
682 if (GET_MODE (tem
) == VOIDmode
&& !CONST_INT_P (tem
))
685 if (GET_MODE (tem
) == VOIDmode
)
686 tem
= rtl_hooks
.gen_lowpart_no_emit (mode
, tem
);
688 gcc_assert (GET_MODE (tem
) == mode
);
696 /* Return true if the register from reference REF is killed
697 between FROM to (but not including) TO. */
700 local_ref_killed_between_p (df_ref ref
, rtx from
, rtx to
)
704 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
710 for (def_rec
= DF_INSN_DEFS (insn
); *def_rec
; def_rec
++)
712 df_ref def
= *def_rec
;
713 if (DF_REF_REGNO (ref
) == DF_REF_REGNO (def
))
721 /* Check if the given DEF is available in INSN. This would require full
722 computation of available expressions; we check only restricted conditions:
723 - if DEF is the sole definition of its register, go ahead;
724 - in the same basic block, we check for no definitions killing the
725 definition of DEF_INSN;
726 - if USE's basic block has DEF's basic block as the sole predecessor,
727 we check if the definition is killed after DEF_INSN or before
728 TARGET_INSN insn, in their respective basic blocks. */
730 use_killed_between (df_ref use
, rtx def_insn
, rtx target_insn
)
732 basic_block def_bb
= BLOCK_FOR_INSN (def_insn
);
733 basic_block target_bb
= BLOCK_FOR_INSN (target_insn
);
737 /* We used to have a def reaching a use that is _before_ the def,
738 with the def not dominating the use even though the use and def
739 are in the same basic block, when a register may be used
740 uninitialized in a loop. This should not happen anymore since
741 we do not use reaching definitions, but still we test for such
742 cases and assume that DEF is not available. */
743 if (def_bb
== target_bb
744 ? DF_INSN_LUID (def_insn
) >= DF_INSN_LUID (target_insn
)
745 : !dominated_by_p (CDI_DOMINATORS
, target_bb
, def_bb
))
748 /* Check if the reg in USE has only one definition. We already
749 know that this definition reaches use, or we wouldn't be here.
750 However, this is invalid for hard registers because if they are
751 live at the beginning of the function it does not mean that we
752 have an uninitialized access. */
753 regno
= DF_REF_REGNO (use
);
754 def
= DF_REG_DEF_CHAIN (regno
);
756 && DF_REF_NEXT_REG (def
) == NULL
757 && regno
>= FIRST_PSEUDO_REGISTER
)
760 /* Check locally if we are in the same basic block. */
761 if (def_bb
== target_bb
)
762 return local_ref_killed_between_p (use
, def_insn
, target_insn
);
764 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
765 if (single_pred_p (target_bb
)
766 && single_pred (target_bb
) == def_bb
)
770 /* See if USE is killed between DEF_INSN and the last insn in the
771 basic block containing DEF_INSN. */
772 x
= df_bb_regno_last_def_find (def_bb
, regno
);
773 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) >= DF_INSN_LUID (def_insn
))
776 /* See if USE is killed between TARGET_INSN and the first insn in the
777 basic block containing TARGET_INSN. */
778 x
= df_bb_regno_first_def_find (target_bb
, regno
);
779 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) < DF_INSN_LUID (target_insn
))
785 /* Otherwise assume the worst case. */
790 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
791 would require full computation of available expressions;
792 we check only restricted conditions, see use_killed_between. */
794 all_uses_available_at (rtx def_insn
, rtx target_insn
)
797 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
798 rtx def_set
= single_set (def_insn
);
801 gcc_assert (def_set
);
803 /* If target_insn comes right after def_insn, which is very common
804 for addresses, we can use a quicker test. Ignore debug insns
805 other than target insns for this. */
806 next
= NEXT_INSN (def_insn
);
807 while (next
&& next
!= target_insn
&& DEBUG_INSN_P (next
))
808 next
= NEXT_INSN (next
);
809 if (next
== target_insn
&& REG_P (SET_DEST (def_set
)))
811 rtx def_reg
= SET_DEST (def_set
);
813 /* If the insn uses the reg that it defines, the substitution is
815 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
817 df_ref use
= *use_rec
;
818 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
821 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
823 df_ref use
= *use_rec
;
824 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
830 rtx def_reg
= REG_P (SET_DEST (def_set
)) ? SET_DEST (def_set
) : NULL_RTX
;
832 /* Look at all the uses of DEF_INSN, and see if they are not
833 killed between DEF_INSN and TARGET_INSN. */
834 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
836 df_ref use
= *use_rec
;
837 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
839 if (use_killed_between (use
, def_insn
, target_insn
))
842 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
844 df_ref use
= *use_rec
;
845 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
847 if (use_killed_between (use
, def_insn
, target_insn
))
856 static df_ref
*active_defs
;
857 #ifdef ENABLE_CHECKING
858 static sparseset active_defs_check
;
861 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
862 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
863 too, for checking purposes. */
866 register_active_defs (df_ref
*use_rec
)
870 df_ref use
= *use_rec
++;
871 df_ref def
= get_def_for_use (use
);
872 int regno
= DF_REF_REGNO (use
);
874 #ifdef ENABLE_CHECKING
875 sparseset_set_bit (active_defs_check
, regno
);
877 active_defs
[regno
] = def
;
882 /* Build the use->def links that we use to update the dataflow info
883 for new uses. Note that building the links is very cheap and if
884 it were done earlier, they could be used to rule out invalid
885 propagations (in addition to what is done in all_uses_available_at).
886 I'm not doing this yet, though. */
889 update_df_init (rtx def_insn
, rtx insn
)
891 #ifdef ENABLE_CHECKING
892 sparseset_clear (active_defs_check
);
894 register_active_defs (DF_INSN_USES (def_insn
));
895 register_active_defs (DF_INSN_USES (insn
));
896 register_active_defs (DF_INSN_EQ_USES (insn
));
900 /* Update the USE_DEF_REF array for the given use, using the active definitions
901 in the ACTIVE_DEFS array to match pseudos to their def. */
904 update_uses (df_ref
*use_rec
)
908 df_ref use
= *use_rec
++;
909 int regno
= DF_REF_REGNO (use
);
911 /* Set up the use-def chain. */
912 if (DF_REF_ID (use
) >= (int) use_def_ref
.length ())
913 use_def_ref
.safe_grow_cleared (DF_REF_ID (use
) + 1);
915 #ifdef ENABLE_CHECKING
916 gcc_assert (sparseset_bit_p (active_defs_check
, regno
));
918 use_def_ref
[DF_REF_ID (use
)] = active_defs
[regno
];
923 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
924 uses if NOTES_ONLY is true. */
927 update_df (rtx insn
, rtx note
)
929 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (insn
);
933 df_uses_create (&XEXP (note
, 0), insn
, DF_REF_IN_NOTE
);
934 df_notes_rescan (insn
);
938 df_uses_create (&PATTERN (insn
), insn
, 0);
939 df_insn_rescan (insn
);
940 update_uses (DF_INSN_INFO_USES (insn_info
));
943 update_uses (DF_INSN_INFO_EQ_USES (insn_info
));
947 /* Try substituting NEW into LOC, which originated from forward propagation
948 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
949 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
950 new insn is not recognized. Return whether the substitution was
954 try_fwprop_subst (df_ref use
, rtx
*loc
, rtx new_rtx
, rtx def_insn
, bool set_reg_equal
)
956 rtx insn
= DF_REF_INSN (use
);
957 rtx set
= single_set (insn
);
959 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
963 update_df_init (def_insn
, insn
);
965 /* forward_propagate_subreg may be operating on an instruction with
966 multiple sets. If so, assume the cost of the new instruction is
967 not greater than the old one. */
969 old_cost
= set_src_cost (SET_SRC (set
), speed
);
972 fprintf (dump_file
, "\nIn insn %d, replacing\n ", INSN_UID (insn
));
973 print_inline_rtx (dump_file
, *loc
, 2);
974 fprintf (dump_file
, "\n with ");
975 print_inline_rtx (dump_file
, new_rtx
, 2);
976 fprintf (dump_file
, "\n");
979 validate_unshare_change (insn
, loc
, new_rtx
, true);
980 if (!verify_changes (0))
983 fprintf (dump_file
, "Changes to insn %d not recognized\n",
988 else if (DF_REF_TYPE (use
) == DF_REF_REG_USE
990 && set_src_cost (SET_SRC (set
), speed
) > old_cost
)
993 fprintf (dump_file
, "Changes to insn %d not profitable\n",
1001 fprintf (dump_file
, "Changed insn %d\n", INSN_UID (insn
));
1007 confirm_change_group ();
1014 /* Can also record a simplified value in a REG_EQUAL note,
1015 making a new one if one does not already exist. */
1019 fprintf (dump_file
, " Setting REG_EQUAL note\n");
1021 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1025 if ((ok
|| note
) && !CONSTANT_P (new_rtx
))
1026 update_df (insn
, note
);
1031 /* For the given single_set INSN, containing SRC known to be a
1032 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1033 is redundant due to the register being set by a LOAD_EXTEND_OP
1034 load from memory. */
1037 free_load_extend (rtx src
, rtx insn
)
1041 df_ref use
= 0, def
;
1043 reg
= XEXP (src
, 0);
1044 #ifdef LOAD_EXTEND_OP
1045 if (LOAD_EXTEND_OP (GET_MODE (reg
)) != GET_CODE (src
))
1049 for (use_vec
= DF_INSN_USES (insn
); *use_vec
; use_vec
++)
1053 if (!DF_REF_IS_ARTIFICIAL (use
)
1054 && DF_REF_TYPE (use
) == DF_REF_REG_USE
1055 && DF_REF_REG (use
) == reg
)
1061 def
= get_def_for_use (use
);
1065 if (DF_REF_IS_ARTIFICIAL (def
))
1068 if (NONJUMP_INSN_P (DF_REF_INSN (def
)))
1070 rtx patt
= PATTERN (DF_REF_INSN (def
));
1072 if (GET_CODE (patt
) == SET
1073 && GET_CODE (SET_SRC (patt
)) == MEM
1074 && rtx_equal_p (SET_DEST (patt
), reg
))
1080 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1083 forward_propagate_subreg (df_ref use
, rtx def_insn
, rtx def_set
)
1085 rtx use_reg
= DF_REF_REG (use
);
1088 /* Only consider subregs... */
1089 enum machine_mode use_mode
= GET_MODE (use_reg
);
1090 if (GET_CODE (use_reg
) != SUBREG
1091 || !REG_P (SET_DEST (def_set
)))
1094 /* If this is a paradoxical SUBREG... */
1095 if (GET_MODE_SIZE (use_mode
)
1096 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg
))))
1098 /* If this is a paradoxical SUBREG, we have no idea what value the
1099 extra bits would have. However, if the operand is equivalent to
1100 a SUBREG whose operand is the same as our mode, and all the modes
1101 are within a word, we can just use the inner operand because
1102 these SUBREGs just say how to treat the register. */
1103 use_insn
= DF_REF_INSN (use
);
1104 src
= SET_SRC (def_set
);
1105 if (GET_CODE (src
) == SUBREG
1106 && REG_P (SUBREG_REG (src
))
1107 && REGNO (SUBREG_REG (src
)) >= FIRST_PSEUDO_REGISTER
1108 && GET_MODE (SUBREG_REG (src
)) == use_mode
1109 && subreg_lowpart_p (src
)
1110 && all_uses_available_at (def_insn
, use_insn
))
1111 return try_fwprop_subst (use
, DF_REF_LOC (use
), SUBREG_REG (src
),
1115 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1116 is the low part of the reg being extended then just use the inner
1117 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1118 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1119 or due to the operation being a no-op when applied to registers.
1120 For example, if we have:
1122 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1123 B: (... (subreg:SI (reg:DI X)) ...)
1125 and mode_rep_extended says that Y is already sign-extended,
1126 the backend will typically allow A to be combined with the
1127 definition of Y or, failing that, allow A to be deleted after
1128 reload through register tying. Introducing more uses of Y
1129 prevents both optimisations. */
1130 else if (subreg_lowpart_p (use_reg
))
1132 use_insn
= DF_REF_INSN (use
);
1133 src
= SET_SRC (def_set
);
1134 if ((GET_CODE (src
) == ZERO_EXTEND
1135 || GET_CODE (src
) == SIGN_EXTEND
)
1136 && REG_P (XEXP (src
, 0))
1137 && REGNO (XEXP (src
, 0)) >= FIRST_PSEUDO_REGISTER
1138 && GET_MODE (XEXP (src
, 0)) == use_mode
1139 && !free_load_extend (src
, def_insn
)
1140 && (targetm
.mode_rep_extended (use_mode
, GET_MODE (src
))
1141 != (int) GET_CODE (src
))
1142 && all_uses_available_at (def_insn
, use_insn
))
1143 return try_fwprop_subst (use
, DF_REF_LOC (use
), XEXP (src
, 0),
1150 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1153 forward_propagate_asm (df_ref use
, rtx def_insn
, rtx def_set
, rtx reg
)
1155 rtx use_insn
= DF_REF_INSN (use
), src
, use_pat
, asm_operands
, new_rtx
, *loc
;
1159 gcc_assert ((DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
) == 0);
1161 src
= SET_SRC (def_set
);
1162 use_pat
= PATTERN (use_insn
);
1164 /* In __asm don't replace if src might need more registers than
1165 reg, as that could increase register pressure on the __asm. */
1166 use_vec
= DF_INSN_USES (def_insn
);
1167 if (use_vec
[0] && use_vec
[1])
1170 update_df_init (def_insn
, use_insn
);
1171 speed_p
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
));
1172 asm_operands
= NULL_RTX
;
1173 switch (GET_CODE (use_pat
))
1176 asm_operands
= use_pat
;
1179 if (MEM_P (SET_DEST (use_pat
)))
1181 loc
= &SET_DEST (use_pat
);
1182 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1184 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1186 asm_operands
= SET_SRC (use_pat
);
1189 for (i
= 0; i
< XVECLEN (use_pat
, 0); i
++)
1190 if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == SET
)
1192 if (MEM_P (SET_DEST (XVECEXP (use_pat
, 0, i
))))
1194 loc
= &SET_DEST (XVECEXP (use_pat
, 0, i
));
1195 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
,
1198 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1200 asm_operands
= SET_SRC (XVECEXP (use_pat
, 0, i
));
1202 else if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == ASM_OPERANDS
)
1203 asm_operands
= XVECEXP (use_pat
, 0, i
);
1209 gcc_assert (asm_operands
&& GET_CODE (asm_operands
) == ASM_OPERANDS
);
1210 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (asm_operands
); i
++)
1212 loc
= &ASM_OPERANDS_INPUT (asm_operands
, i
);
1213 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1215 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1218 if (num_changes_pending () == 0 || !apply_change_group ())
1221 update_df (use_insn
, NULL
);
1226 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1230 forward_propagate_and_simplify (df_ref use
, rtx def_insn
, rtx def_set
)
1232 rtx use_insn
= DF_REF_INSN (use
);
1233 rtx use_set
= single_set (use_insn
);
1234 rtx src
, reg
, new_rtx
, *loc
;
1236 enum machine_mode mode
;
1239 if (INSN_CODE (use_insn
) < 0)
1240 asm_use
= asm_noperands (PATTERN (use_insn
));
1242 if (!use_set
&& asm_use
< 0 && !DEBUG_INSN_P (use_insn
))
1245 /* Do not propagate into PC, CC0, etc. */
1246 if (use_set
&& GET_MODE (SET_DEST (use_set
)) == VOIDmode
)
1249 /* If def and use are subreg, check if they match. */
1250 reg
= DF_REF_REG (use
);
1251 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SET_DEST (def_set
)) == SUBREG
)
1253 if (SUBREG_BYTE (SET_DEST (def_set
)) != SUBREG_BYTE (reg
))
1256 /* Check if the def had a subreg, but the use has the whole reg. */
1257 else if (REG_P (reg
) && GET_CODE (SET_DEST (def_set
)) == SUBREG
)
1259 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1260 previous case, the optimization is possible and often useful indeed. */
1261 else if (GET_CODE (reg
) == SUBREG
&& REG_P (SET_DEST (def_set
)))
1262 reg
= SUBREG_REG (reg
);
1264 /* Make sure that we can treat REG as having the same mode as the
1265 source of DEF_SET. */
1266 if (GET_MODE (SET_DEST (def_set
)) != GET_MODE (reg
))
1269 /* Check if the substitution is valid (last, because it's the most
1270 expensive check!). */
1271 src
= SET_SRC (def_set
);
1272 if (!CONSTANT_P (src
) && !all_uses_available_at (def_insn
, use_insn
))
1275 /* Check if the def is loading something from the constant pool; in this
1276 case we would undo optimization such as compress_float_constant.
1277 Still, we can set a REG_EQUAL note. */
1278 if (MEM_P (src
) && MEM_READONLY_P (src
))
1280 rtx x
= avoid_constant_pool_reference (src
);
1281 if (x
!= src
&& use_set
)
1283 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1284 rtx old_rtx
= note
? XEXP (note
, 0) : SET_SRC (use_set
);
1285 rtx new_rtx
= simplify_replace_rtx (old_rtx
, src
, x
);
1286 if (old_rtx
!= new_rtx
)
1287 set_unique_reg_note (use_insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1293 return forward_propagate_asm (use
, def_insn
, def_set
, reg
);
1295 /* Else try simplifying. */
1297 if (DF_REF_TYPE (use
) == DF_REF_REG_MEM_STORE
)
1299 loc
= &SET_DEST (use_set
);
1300 set_reg_equal
= false;
1304 loc
= &INSN_VAR_LOCATION_LOC (use_insn
);
1305 set_reg_equal
= false;
1309 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1310 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1311 loc
= &XEXP (note
, 0);
1313 loc
= &SET_SRC (use_set
);
1315 /* Do not replace an existing REG_EQUAL note if the insn is not
1316 recognized. Either we're already replacing in the note, or we'll
1317 separately try plugging the definition in the note and simplifying.
1318 And only install a REQ_EQUAL note when the destination is a REG,
1319 as the note would be invalid otherwise. */
1320 set_reg_equal
= (note
== NULL_RTX
&& REG_P (SET_DEST (use_set
)));
1323 if (GET_MODE (*loc
) == VOIDmode
)
1324 mode
= GET_MODE (SET_DEST (use_set
));
1326 mode
= GET_MODE (*loc
);
1328 new_rtx
= propagate_rtx (*loc
, mode
, reg
, src
,
1329 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
)));
1334 return try_fwprop_subst (use
, loc
, new_rtx
, def_insn
, set_reg_equal
);
1338 /* Given a use USE of an insn, if it has a single reaching
1339 definition, try to forward propagate it into that insn.
1340 Return true if cfg cleanup will be needed. */
1343 forward_propagate_into (df_ref use
)
1346 rtx def_insn
, def_set
, use_insn
;
1349 if (DF_REF_FLAGS (use
) & DF_REF_READ_WRITE
)
1351 if (DF_REF_IS_ARTIFICIAL (use
))
1354 /* Only consider uses that have a single definition. */
1355 def
= get_def_for_use (use
);
1358 if (DF_REF_FLAGS (def
) & DF_REF_READ_WRITE
)
1360 if (DF_REF_IS_ARTIFICIAL (def
))
1363 /* Do not propagate loop invariant definitions inside the loop. */
1364 if (DF_REF_BB (def
)->loop_father
!= DF_REF_BB (use
)->loop_father
)
1367 /* Check if the use is still present in the insn! */
1368 use_insn
= DF_REF_INSN (use
);
1369 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1370 parent
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1372 parent
= PATTERN (use_insn
);
1374 if (!reg_mentioned_p (DF_REF_REG (use
), parent
))
1377 def_insn
= DF_REF_INSN (def
);
1378 if (multiple_sets (def_insn
))
1380 def_set
= single_set (def_insn
);
1384 /* Only try one kind of propagation. If two are possible, we'll
1385 do it on the following iterations. */
1386 if (forward_propagate_and_simplify (use
, def_insn
, def_set
)
1387 || forward_propagate_subreg (use
, def_insn
, def_set
))
1389 if (cfun
->can_throw_non_call_exceptions
1390 && find_reg_note (use_insn
, REG_EH_REGION
, NULL_RTX
)
1391 && purge_dead_edges (DF_REF_BB (use
)))
1402 calculate_dominance_info (CDI_DOMINATORS
);
1404 /* We do not always want to propagate into loops, so we have to find
1405 loops and be careful about them. But we have to call flow_loops_find
1406 before df_analyze, because flow_loops_find may introduce new jump
1407 insns (sadly) if we are not working in cfglayout mode. */
1408 loop_optimizer_init (0);
1410 build_single_def_use_links ();
1411 df_set_flags (DF_DEFER_INSN_RESCAN
);
1413 active_defs
= XNEWVEC (df_ref
, max_reg_num ());
1414 #ifdef ENABLE_CHECKING
1415 active_defs_check
= sparseset_alloc (max_reg_num ());
1422 loop_optimizer_finalize ();
1424 use_def_ref
.release ();
1426 #ifdef ENABLE_CHECKING
1427 sparseset_free (active_defs_check
);
1430 free_dominance_info (CDI_DOMINATORS
);
1432 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1436 "\nNumber of successful forward propagations: %d\n\n",
1441 /* Main entry point. */
1446 return optimize
> 0 && flag_forward_propagate
;
1453 bool need_cleanup
= false;
1457 /* Go through all the uses. df_uses_create will create new ones at the
1458 end, and we'll go through them as well.
1460 Do not forward propagate addresses into loops until after unrolling.
1461 CSE did so because it was able to fix its own mess, but we are not. */
1463 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1465 df_ref use
= DF_USES_GET (i
);
1467 if (DF_REF_TYPE (use
) == DF_REF_REG_USE
1468 || DF_REF_BB (use
)->loop_father
== NULL
1469 /* The outer most loop is not really a loop. */
1470 || loop_outer (DF_REF_BB (use
)->loop_father
) == NULL
)
1471 need_cleanup
|= forward_propagate_into (use
);
1480 struct rtl_opt_pass pass_rtl_fwprop
=
1484 "fwprop1", /* name */
1485 OPTGROUP_NONE
, /* optinfo_flags */
1486 gate_fwprop
, /* gate */
1487 fwprop
, /* execute */
1490 0, /* static_pass_number */
1491 TV_FWPROP
, /* tv_id */
1492 0, /* properties_required */
1493 0, /* properties_provided */
1494 0, /* properties_destroyed */
1495 0, /* todo_flags_start */
1498 | TODO_verify_rtl_sharing
/* todo_flags_finish */
1506 bool need_cleanup
= false;
1510 /* Go through all the uses. df_uses_create will create new ones at the
1511 end, and we'll go through them as well. */
1512 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1514 df_ref use
= DF_USES_GET (i
);
1516 if (DF_REF_TYPE (use
) != DF_REF_REG_USE
1517 && DF_REF_BB (use
)->loop_father
!= NULL
1518 /* The outer most loop is not really a loop. */
1519 && loop_outer (DF_REF_BB (use
)->loop_father
) != NULL
)
1520 need_cleanup
|= forward_propagate_into (use
);
1530 struct rtl_opt_pass pass_rtl_fwprop_addr
=
1534 "fwprop2", /* name */
1535 OPTGROUP_NONE
, /* optinfo_flags */
1536 gate_fwprop
, /* gate */
1537 fwprop_addr
, /* execute */
1540 0, /* static_pass_number */
1541 TV_FWPROP
, /* tv_id */
1542 0, /* properties_required */
1543 0, /* properties_provided */
1544 0, /* properties_destroyed */
1545 0, /* todo_flags_start */
1546 TODO_df_finish
| TODO_verify_rtl_sharing
/* todo_flags_finish */