* include/ext/array_allocator.h: Replace uses of
[official-gcc.git] / gcc / function.c
blob876e1c6297cc3f9eb1869e4afff5bd0f592103dd
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl-error.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "hashtab.h"
55 #include "ggc.h"
56 #include "tm_p.h"
57 #include "langhooks.h"
58 #include "target.h"
59 #include "common/common-target.h"
60 #include "gimple.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "params.h"
65 #include "bb-reorder.h"
67 /* So we can assign to cfun in this file. */
68 #undef cfun
70 #ifndef STACK_ALIGNMENT_NEEDED
71 #define STACK_ALIGNMENT_NEEDED 1
72 #endif
74 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
76 /* Some systems use __main in a way incompatible with its use in gcc, in these
77 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
78 give the same symbol without quotes for an alternative entry point. You
79 must define both, or neither. */
80 #ifndef NAME__MAIN
81 #define NAME__MAIN "__main"
82 #endif
84 /* Round a value to the lowest integer less than it that is a multiple of
85 the required alignment. Avoid using division in case the value is
86 negative. Assume the alignment is a power of two. */
87 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
89 /* Similar, but round to the next highest integer that meets the
90 alignment. */
91 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
93 /* Nonzero once virtual register instantiation has been done.
94 assign_stack_local uses frame_pointer_rtx when this is nonzero.
95 calls.c:emit_library_call_value_1 uses it to set up
96 post-instantiation libcalls. */
97 int virtuals_instantiated;
99 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
100 static GTY(()) int funcdef_no;
102 /* These variables hold pointers to functions to create and destroy
103 target specific, per-function data structures. */
104 struct machine_function * (*init_machine_status) (void);
106 /* The currently compiled function. */
107 struct function *cfun = 0;
109 /* These hashes record the prologue and epilogue insns. */
110 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
111 htab_t prologue_insn_hash;
112 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
113 htab_t epilogue_insn_hash;
116 htab_t types_used_by_vars_hash = NULL;
117 vec<tree, va_gc> *types_used_by_cur_var_decl;
119 /* Forward declarations. */
121 static struct temp_slot *find_temp_slot_from_address (rtx);
122 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
123 static void pad_below (struct args_size *, enum machine_mode, tree);
124 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
125 static int all_blocks (tree, tree *);
126 static tree *get_block_vector (tree, int *);
127 extern tree debug_find_var_in_block_tree (tree, tree);
128 /* We always define `record_insns' even if it's not used so that we
129 can always export `prologue_epilogue_contains'. */
130 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
131 static bool contains (const_rtx, htab_t);
132 static void prepare_function_start (void);
133 static void do_clobber_return_reg (rtx, void *);
134 static void do_use_return_reg (rtx, void *);
135 static void set_insn_locations (rtx, int) ATTRIBUTE_UNUSED;
137 /* Stack of nested functions. */
138 /* Keep track of the cfun stack. */
140 typedef struct function *function_p;
142 static vec<function_p> function_context_stack;
144 /* Save the current context for compilation of a nested function.
145 This is called from language-specific code. */
147 void
148 push_function_context (void)
150 if (cfun == 0)
151 allocate_struct_function (NULL, false);
153 function_context_stack.safe_push (cfun);
154 set_cfun (NULL);
157 /* Restore the last saved context, at the end of a nested function.
158 This function is called from language-specific code. */
160 void
161 pop_function_context (void)
163 struct function *p = function_context_stack.pop ();
164 set_cfun (p);
165 current_function_decl = p->decl;
167 /* Reset variables that have known state during rtx generation. */
168 virtuals_instantiated = 0;
169 generating_concat_p = 1;
172 /* Clear out all parts of the state in F that can safely be discarded
173 after the function has been parsed, but not compiled, to let
174 garbage collection reclaim the memory. */
176 void
177 free_after_parsing (struct function *f)
179 f->language = 0;
182 /* Clear out all parts of the state in F that can safely be discarded
183 after the function has been compiled, to let garbage collection
184 reclaim the memory. */
186 void
187 free_after_compilation (struct function *f)
189 prologue_insn_hash = NULL;
190 epilogue_insn_hash = NULL;
192 free (crtl->emit.regno_pointer_align);
194 memset (crtl, 0, sizeof (struct rtl_data));
195 f->eh = NULL;
196 f->machine = NULL;
197 f->cfg = NULL;
199 regno_reg_rtx = NULL;
202 /* Return size needed for stack frame based on slots so far allocated.
203 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
204 the caller may have to do that. */
206 HOST_WIDE_INT
207 get_frame_size (void)
209 if (FRAME_GROWS_DOWNWARD)
210 return -frame_offset;
211 else
212 return frame_offset;
215 /* Issue an error message and return TRUE if frame OFFSET overflows in
216 the signed target pointer arithmetics for function FUNC. Otherwise
217 return FALSE. */
219 bool
220 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
222 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
224 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
225 /* Leave room for the fixed part of the frame. */
226 - 64 * UNITS_PER_WORD)
228 error_at (DECL_SOURCE_LOCATION (func),
229 "total size of local objects too large");
230 return TRUE;
233 return FALSE;
236 /* Return stack slot alignment in bits for TYPE and MODE. */
238 static unsigned int
239 get_stack_local_alignment (tree type, enum machine_mode mode)
241 unsigned int alignment;
243 if (mode == BLKmode)
244 alignment = BIGGEST_ALIGNMENT;
245 else
246 alignment = GET_MODE_ALIGNMENT (mode);
248 /* Allow the frond-end to (possibly) increase the alignment of this
249 stack slot. */
250 if (! type)
251 type = lang_hooks.types.type_for_mode (mode, 0);
253 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
256 /* Determine whether it is possible to fit a stack slot of size SIZE and
257 alignment ALIGNMENT into an area in the stack frame that starts at
258 frame offset START and has a length of LENGTH. If so, store the frame
259 offset to be used for the stack slot in *POFFSET and return true;
260 return false otherwise. This function will extend the frame size when
261 given a start/length pair that lies at the end of the frame. */
263 static bool
264 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
265 HOST_WIDE_INT size, unsigned int alignment,
266 HOST_WIDE_INT *poffset)
268 HOST_WIDE_INT this_frame_offset;
269 int frame_off, frame_alignment, frame_phase;
271 /* Calculate how many bytes the start of local variables is off from
272 stack alignment. */
273 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
274 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
275 frame_phase = frame_off ? frame_alignment - frame_off : 0;
277 /* Round the frame offset to the specified alignment. */
279 /* We must be careful here, since FRAME_OFFSET might be negative and
280 division with a negative dividend isn't as well defined as we might
281 like. So we instead assume that ALIGNMENT is a power of two and
282 use logical operations which are unambiguous. */
283 if (FRAME_GROWS_DOWNWARD)
284 this_frame_offset
285 = (FLOOR_ROUND (start + length - size - frame_phase,
286 (unsigned HOST_WIDE_INT) alignment)
287 + frame_phase);
288 else
289 this_frame_offset
290 = (CEIL_ROUND (start - frame_phase,
291 (unsigned HOST_WIDE_INT) alignment)
292 + frame_phase);
294 /* See if it fits. If this space is at the edge of the frame,
295 consider extending the frame to make it fit. Our caller relies on
296 this when allocating a new slot. */
297 if (frame_offset == start && this_frame_offset < frame_offset)
298 frame_offset = this_frame_offset;
299 else if (this_frame_offset < start)
300 return false;
301 else if (start + length == frame_offset
302 && this_frame_offset + size > start + length)
303 frame_offset = this_frame_offset + size;
304 else if (this_frame_offset + size > start + length)
305 return false;
307 *poffset = this_frame_offset;
308 return true;
311 /* Create a new frame_space structure describing free space in the stack
312 frame beginning at START and ending at END, and chain it into the
313 function's frame_space_list. */
315 static void
316 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
318 struct frame_space *space = ggc_alloc_frame_space ();
319 space->next = crtl->frame_space_list;
320 crtl->frame_space_list = space;
321 space->start = start;
322 space->length = end - start;
325 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
326 with machine mode MODE.
328 ALIGN controls the amount of alignment for the address of the slot:
329 0 means according to MODE,
330 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
331 -2 means use BITS_PER_UNIT,
332 positive specifies alignment boundary in bits.
334 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
335 alignment and ASLK_RECORD_PAD bit set if we should remember
336 extra space we allocated for alignment purposes. When we are
337 called from assign_stack_temp_for_type, it is not set so we don't
338 track the same stack slot in two independent lists.
340 We do not round to stack_boundary here. */
343 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
344 int align, int kind)
346 rtx x, addr;
347 int bigend_correction = 0;
348 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
349 unsigned int alignment, alignment_in_bits;
351 if (align == 0)
353 alignment = get_stack_local_alignment (NULL, mode);
354 alignment /= BITS_PER_UNIT;
356 else if (align == -1)
358 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
359 size = CEIL_ROUND (size, alignment);
361 else if (align == -2)
362 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
363 else
364 alignment = align / BITS_PER_UNIT;
366 alignment_in_bits = alignment * BITS_PER_UNIT;
368 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
369 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
371 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
372 alignment = alignment_in_bits / BITS_PER_UNIT;
375 if (SUPPORTS_STACK_ALIGNMENT)
377 if (crtl->stack_alignment_estimated < alignment_in_bits)
379 if (!crtl->stack_realign_processed)
380 crtl->stack_alignment_estimated = alignment_in_bits;
381 else
383 /* If stack is realigned and stack alignment value
384 hasn't been finalized, it is OK not to increase
385 stack_alignment_estimated. The bigger alignment
386 requirement is recorded in stack_alignment_needed
387 below. */
388 gcc_assert (!crtl->stack_realign_finalized);
389 if (!crtl->stack_realign_needed)
391 /* It is OK to reduce the alignment as long as the
392 requested size is 0 or the estimated stack
393 alignment >= mode alignment. */
394 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
395 || size == 0
396 || (crtl->stack_alignment_estimated
397 >= GET_MODE_ALIGNMENT (mode)));
398 alignment_in_bits = crtl->stack_alignment_estimated;
399 alignment = alignment_in_bits / BITS_PER_UNIT;
405 if (crtl->stack_alignment_needed < alignment_in_bits)
406 crtl->stack_alignment_needed = alignment_in_bits;
407 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
408 crtl->max_used_stack_slot_alignment = alignment_in_bits;
410 if (mode != BLKmode || size != 0)
412 if (kind & ASLK_RECORD_PAD)
414 struct frame_space **psp;
416 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
418 struct frame_space *space = *psp;
419 if (!try_fit_stack_local (space->start, space->length, size,
420 alignment, &slot_offset))
421 continue;
422 *psp = space->next;
423 if (slot_offset > space->start)
424 add_frame_space (space->start, slot_offset);
425 if (slot_offset + size < space->start + space->length)
426 add_frame_space (slot_offset + size,
427 space->start + space->length);
428 goto found_space;
432 else if (!STACK_ALIGNMENT_NEEDED)
434 slot_offset = frame_offset;
435 goto found_space;
438 old_frame_offset = frame_offset;
440 if (FRAME_GROWS_DOWNWARD)
442 frame_offset -= size;
443 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
445 if (kind & ASLK_RECORD_PAD)
447 if (slot_offset > frame_offset)
448 add_frame_space (frame_offset, slot_offset);
449 if (slot_offset + size < old_frame_offset)
450 add_frame_space (slot_offset + size, old_frame_offset);
453 else
455 frame_offset += size;
456 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
458 if (kind & ASLK_RECORD_PAD)
460 if (slot_offset > old_frame_offset)
461 add_frame_space (old_frame_offset, slot_offset);
462 if (slot_offset + size < frame_offset)
463 add_frame_space (slot_offset + size, frame_offset);
467 found_space:
468 /* On a big-endian machine, if we are allocating more space than we will use,
469 use the least significant bytes of those that are allocated. */
470 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
471 bigend_correction = size - GET_MODE_SIZE (mode);
473 /* If we have already instantiated virtual registers, return the actual
474 address relative to the frame pointer. */
475 if (virtuals_instantiated)
476 addr = plus_constant (Pmode, frame_pointer_rtx,
477 trunc_int_for_mode
478 (slot_offset + bigend_correction
479 + STARTING_FRAME_OFFSET, Pmode));
480 else
481 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
482 trunc_int_for_mode
483 (slot_offset + bigend_correction,
484 Pmode));
486 x = gen_rtx_MEM (mode, addr);
487 set_mem_align (x, alignment_in_bits);
488 MEM_NOTRAP_P (x) = 1;
490 stack_slot_list
491 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
493 if (frame_offset_overflow (frame_offset, current_function_decl))
494 frame_offset = 0;
496 return x;
499 /* Wrap up assign_stack_local_1 with last parameter as false. */
502 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
504 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
507 /* In order to evaluate some expressions, such as function calls returning
508 structures in memory, we need to temporarily allocate stack locations.
509 We record each allocated temporary in the following structure.
511 Associated with each temporary slot is a nesting level. When we pop up
512 one level, all temporaries associated with the previous level are freed.
513 Normally, all temporaries are freed after the execution of the statement
514 in which they were created. However, if we are inside a ({...}) grouping,
515 the result may be in a temporary and hence must be preserved. If the
516 result could be in a temporary, we preserve it if we can determine which
517 one it is in. If we cannot determine which temporary may contain the
518 result, all temporaries are preserved. A temporary is preserved by
519 pretending it was allocated at the previous nesting level. */
521 struct GTY(()) temp_slot {
522 /* Points to next temporary slot. */
523 struct temp_slot *next;
524 /* Points to previous temporary slot. */
525 struct temp_slot *prev;
526 /* The rtx to used to reference the slot. */
527 rtx slot;
528 /* The size, in units, of the slot. */
529 HOST_WIDE_INT size;
530 /* The type of the object in the slot, or zero if it doesn't correspond
531 to a type. We use this to determine whether a slot can be reused.
532 It can be reused if objects of the type of the new slot will always
533 conflict with objects of the type of the old slot. */
534 tree type;
535 /* The alignment (in bits) of the slot. */
536 unsigned int align;
537 /* Nonzero if this temporary is currently in use. */
538 char in_use;
539 /* Nesting level at which this slot is being used. */
540 int level;
541 /* The offset of the slot from the frame_pointer, including extra space
542 for alignment. This info is for combine_temp_slots. */
543 HOST_WIDE_INT base_offset;
544 /* The size of the slot, including extra space for alignment. This
545 info is for combine_temp_slots. */
546 HOST_WIDE_INT full_size;
549 /* A table of addresses that represent a stack slot. The table is a mapping
550 from address RTXen to a temp slot. */
551 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
552 static size_t n_temp_slots_in_use;
554 /* Entry for the above hash table. */
555 struct GTY(()) temp_slot_address_entry {
556 hashval_t hash;
557 rtx address;
558 struct temp_slot *temp_slot;
561 /* Removes temporary slot TEMP from LIST. */
563 static void
564 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
566 if (temp->next)
567 temp->next->prev = temp->prev;
568 if (temp->prev)
569 temp->prev->next = temp->next;
570 else
571 *list = temp->next;
573 temp->prev = temp->next = NULL;
576 /* Inserts temporary slot TEMP to LIST. */
578 static void
579 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
581 temp->next = *list;
582 if (*list)
583 (*list)->prev = temp;
584 temp->prev = NULL;
585 *list = temp;
588 /* Returns the list of used temp slots at LEVEL. */
590 static struct temp_slot **
591 temp_slots_at_level (int level)
593 if (level >= (int) vec_safe_length (used_temp_slots))
594 vec_safe_grow_cleared (used_temp_slots, level + 1);
596 return &(*used_temp_slots)[level];
599 /* Returns the maximal temporary slot level. */
601 static int
602 max_slot_level (void)
604 if (!used_temp_slots)
605 return -1;
607 return used_temp_slots->length () - 1;
610 /* Moves temporary slot TEMP to LEVEL. */
612 static void
613 move_slot_to_level (struct temp_slot *temp, int level)
615 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
616 insert_slot_to_list (temp, temp_slots_at_level (level));
617 temp->level = level;
620 /* Make temporary slot TEMP available. */
622 static void
623 make_slot_available (struct temp_slot *temp)
625 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
626 insert_slot_to_list (temp, &avail_temp_slots);
627 temp->in_use = 0;
628 temp->level = -1;
629 n_temp_slots_in_use--;
632 /* Compute the hash value for an address -> temp slot mapping.
633 The value is cached on the mapping entry. */
634 static hashval_t
635 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
637 int do_not_record = 0;
638 return hash_rtx (t->address, GET_MODE (t->address),
639 &do_not_record, NULL, false);
642 /* Return the hash value for an address -> temp slot mapping. */
643 static hashval_t
644 temp_slot_address_hash (const void *p)
646 const struct temp_slot_address_entry *t;
647 t = (const struct temp_slot_address_entry *) p;
648 return t->hash;
651 /* Compare two address -> temp slot mapping entries. */
652 static int
653 temp_slot_address_eq (const void *p1, const void *p2)
655 const struct temp_slot_address_entry *t1, *t2;
656 t1 = (const struct temp_slot_address_entry *) p1;
657 t2 = (const struct temp_slot_address_entry *) p2;
658 return exp_equiv_p (t1->address, t2->address, 0, true);
661 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
662 static void
663 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
665 void **slot;
666 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
667 t->address = address;
668 t->temp_slot = temp_slot;
669 t->hash = temp_slot_address_compute_hash (t);
670 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
671 *slot = t;
674 /* Remove an address -> temp slot mapping entry if the temp slot is
675 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
676 static int
677 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
679 const struct temp_slot_address_entry *t;
680 t = (const struct temp_slot_address_entry *) *slot;
681 if (! t->temp_slot->in_use)
682 htab_clear_slot (temp_slot_address_table, slot);
683 return 1;
686 /* Remove all mappings of addresses to unused temp slots. */
687 static void
688 remove_unused_temp_slot_addresses (void)
690 /* Use quicker clearing if there aren't any active temp slots. */
691 if (n_temp_slots_in_use)
692 htab_traverse (temp_slot_address_table,
693 remove_unused_temp_slot_addresses_1,
694 NULL);
695 else
696 htab_empty (temp_slot_address_table);
699 /* Find the temp slot corresponding to the object at address X. */
701 static struct temp_slot *
702 find_temp_slot_from_address (rtx x)
704 struct temp_slot *p;
705 struct temp_slot_address_entry tmp, *t;
707 /* First try the easy way:
708 See if X exists in the address -> temp slot mapping. */
709 tmp.address = x;
710 tmp.temp_slot = NULL;
711 tmp.hash = temp_slot_address_compute_hash (&tmp);
712 t = (struct temp_slot_address_entry *)
713 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
714 if (t)
715 return t->temp_slot;
717 /* If we have a sum involving a register, see if it points to a temp
718 slot. */
719 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
720 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
721 return p;
722 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
723 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
724 return p;
726 /* Last resort: Address is a virtual stack var address. */
727 if (GET_CODE (x) == PLUS
728 && XEXP (x, 0) == virtual_stack_vars_rtx
729 && CONST_INT_P (XEXP (x, 1)))
731 int i;
732 for (i = max_slot_level (); i >= 0; i--)
733 for (p = *temp_slots_at_level (i); p; p = p->next)
735 if (INTVAL (XEXP (x, 1)) >= p->base_offset
736 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
737 return p;
741 return NULL;
744 /* Allocate a temporary stack slot and record it for possible later
745 reuse.
747 MODE is the machine mode to be given to the returned rtx.
749 SIZE is the size in units of the space required. We do no rounding here
750 since assign_stack_local will do any required rounding.
752 TYPE is the type that will be used for the stack slot. */
755 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
756 tree type)
758 unsigned int align;
759 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
760 rtx slot;
762 /* If SIZE is -1 it means that somebody tried to allocate a temporary
763 of a variable size. */
764 gcc_assert (size != -1);
766 align = get_stack_local_alignment (type, mode);
768 /* Try to find an available, already-allocated temporary of the proper
769 mode which meets the size and alignment requirements. Choose the
770 smallest one with the closest alignment.
772 If assign_stack_temp is called outside of the tree->rtl expansion,
773 we cannot reuse the stack slots (that may still refer to
774 VIRTUAL_STACK_VARS_REGNUM). */
775 if (!virtuals_instantiated)
777 for (p = avail_temp_slots; p; p = p->next)
779 if (p->align >= align && p->size >= size
780 && GET_MODE (p->slot) == mode
781 && objects_must_conflict_p (p->type, type)
782 && (best_p == 0 || best_p->size > p->size
783 || (best_p->size == p->size && best_p->align > p->align)))
785 if (p->align == align && p->size == size)
787 selected = p;
788 cut_slot_from_list (selected, &avail_temp_slots);
789 best_p = 0;
790 break;
792 best_p = p;
797 /* Make our best, if any, the one to use. */
798 if (best_p)
800 selected = best_p;
801 cut_slot_from_list (selected, &avail_temp_slots);
803 /* If there are enough aligned bytes left over, make them into a new
804 temp_slot so that the extra bytes don't get wasted. Do this only
805 for BLKmode slots, so that we can be sure of the alignment. */
806 if (GET_MODE (best_p->slot) == BLKmode)
808 int alignment = best_p->align / BITS_PER_UNIT;
809 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
811 if (best_p->size - rounded_size >= alignment)
813 p = ggc_alloc_temp_slot ();
814 p->in_use = 0;
815 p->size = best_p->size - rounded_size;
816 p->base_offset = best_p->base_offset + rounded_size;
817 p->full_size = best_p->full_size - rounded_size;
818 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
819 p->align = best_p->align;
820 p->type = best_p->type;
821 insert_slot_to_list (p, &avail_temp_slots);
823 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
824 stack_slot_list);
826 best_p->size = rounded_size;
827 best_p->full_size = rounded_size;
832 /* If we still didn't find one, make a new temporary. */
833 if (selected == 0)
835 HOST_WIDE_INT frame_offset_old = frame_offset;
837 p = ggc_alloc_temp_slot ();
839 /* We are passing an explicit alignment request to assign_stack_local.
840 One side effect of that is assign_stack_local will not round SIZE
841 to ensure the frame offset remains suitably aligned.
843 So for requests which depended on the rounding of SIZE, we go ahead
844 and round it now. We also make sure ALIGNMENT is at least
845 BIGGEST_ALIGNMENT. */
846 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
847 p->slot = assign_stack_local_1 (mode,
848 (mode == BLKmode
849 ? CEIL_ROUND (size,
850 (int) align
851 / BITS_PER_UNIT)
852 : size),
853 align, 0);
855 p->align = align;
857 /* The following slot size computation is necessary because we don't
858 know the actual size of the temporary slot until assign_stack_local
859 has performed all the frame alignment and size rounding for the
860 requested temporary. Note that extra space added for alignment
861 can be either above or below this stack slot depending on which
862 way the frame grows. We include the extra space if and only if it
863 is above this slot. */
864 if (FRAME_GROWS_DOWNWARD)
865 p->size = frame_offset_old - frame_offset;
866 else
867 p->size = size;
869 /* Now define the fields used by combine_temp_slots. */
870 if (FRAME_GROWS_DOWNWARD)
872 p->base_offset = frame_offset;
873 p->full_size = frame_offset_old - frame_offset;
875 else
877 p->base_offset = frame_offset_old;
878 p->full_size = frame_offset - frame_offset_old;
881 selected = p;
884 p = selected;
885 p->in_use = 1;
886 p->type = type;
887 p->level = temp_slot_level;
888 n_temp_slots_in_use++;
890 pp = temp_slots_at_level (p->level);
891 insert_slot_to_list (p, pp);
892 insert_temp_slot_address (XEXP (p->slot, 0), p);
894 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
895 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
896 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
898 /* If we know the alias set for the memory that will be used, use
899 it. If there's no TYPE, then we don't know anything about the
900 alias set for the memory. */
901 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
902 set_mem_align (slot, align);
904 /* If a type is specified, set the relevant flags. */
905 if (type != 0)
906 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
907 MEM_NOTRAP_P (slot) = 1;
909 return slot;
912 /* Allocate a temporary stack slot and record it for possible later
913 reuse. First two arguments are same as in preceding function. */
916 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
918 return assign_stack_temp_for_type (mode, size, NULL_TREE);
921 /* Assign a temporary.
922 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
923 and so that should be used in error messages. In either case, we
924 allocate of the given type.
925 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
926 it is 0 if a register is OK.
927 DONT_PROMOTE is 1 if we should not promote values in register
928 to wider modes. */
931 assign_temp (tree type_or_decl, int memory_required,
932 int dont_promote ATTRIBUTE_UNUSED)
934 tree type, decl;
935 enum machine_mode mode;
936 #ifdef PROMOTE_MODE
937 int unsignedp;
938 #endif
940 if (DECL_P (type_or_decl))
941 decl = type_or_decl, type = TREE_TYPE (decl);
942 else
943 decl = NULL, type = type_or_decl;
945 mode = TYPE_MODE (type);
946 #ifdef PROMOTE_MODE
947 unsignedp = TYPE_UNSIGNED (type);
948 #endif
950 if (mode == BLKmode || memory_required)
952 HOST_WIDE_INT size = int_size_in_bytes (type);
953 rtx tmp;
955 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
956 problems with allocating the stack space. */
957 if (size == 0)
958 size = 1;
960 /* Unfortunately, we don't yet know how to allocate variable-sized
961 temporaries. However, sometimes we can find a fixed upper limit on
962 the size, so try that instead. */
963 else if (size == -1)
964 size = max_int_size_in_bytes (type);
966 /* The size of the temporary may be too large to fit into an integer. */
967 /* ??? Not sure this should happen except for user silliness, so limit
968 this to things that aren't compiler-generated temporaries. The
969 rest of the time we'll die in assign_stack_temp_for_type. */
970 if (decl && size == -1
971 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
973 error ("size of variable %q+D is too large", decl);
974 size = 1;
977 tmp = assign_stack_temp_for_type (mode, size, type);
978 return tmp;
981 #ifdef PROMOTE_MODE
982 if (! dont_promote)
983 mode = promote_mode (type, mode, &unsignedp);
984 #endif
986 return gen_reg_rtx (mode);
989 /* Combine temporary stack slots which are adjacent on the stack.
991 This allows for better use of already allocated stack space. This is only
992 done for BLKmode slots because we can be sure that we won't have alignment
993 problems in this case. */
995 static void
996 combine_temp_slots (void)
998 struct temp_slot *p, *q, *next, *next_q;
999 int num_slots;
1001 /* We can't combine slots, because the information about which slot
1002 is in which alias set will be lost. */
1003 if (flag_strict_aliasing)
1004 return;
1006 /* If there are a lot of temp slots, don't do anything unless
1007 high levels of optimization. */
1008 if (! flag_expensive_optimizations)
1009 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1010 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1011 return;
1013 for (p = avail_temp_slots; p; p = next)
1015 int delete_p = 0;
1017 next = p->next;
1019 if (GET_MODE (p->slot) != BLKmode)
1020 continue;
1022 for (q = p->next; q; q = next_q)
1024 int delete_q = 0;
1026 next_q = q->next;
1028 if (GET_MODE (q->slot) != BLKmode)
1029 continue;
1031 if (p->base_offset + p->full_size == q->base_offset)
1033 /* Q comes after P; combine Q into P. */
1034 p->size += q->size;
1035 p->full_size += q->full_size;
1036 delete_q = 1;
1038 else if (q->base_offset + q->full_size == p->base_offset)
1040 /* P comes after Q; combine P into Q. */
1041 q->size += p->size;
1042 q->full_size += p->full_size;
1043 delete_p = 1;
1044 break;
1046 if (delete_q)
1047 cut_slot_from_list (q, &avail_temp_slots);
1050 /* Either delete P or advance past it. */
1051 if (delete_p)
1052 cut_slot_from_list (p, &avail_temp_slots);
1056 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1057 slot that previously was known by OLD_RTX. */
1059 void
1060 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1062 struct temp_slot *p;
1064 if (rtx_equal_p (old_rtx, new_rtx))
1065 return;
1067 p = find_temp_slot_from_address (old_rtx);
1069 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1070 NEW_RTX is a register, see if one operand of the PLUS is a
1071 temporary location. If so, NEW_RTX points into it. Otherwise,
1072 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1073 in common between them. If so, try a recursive call on those
1074 values. */
1075 if (p == 0)
1077 if (GET_CODE (old_rtx) != PLUS)
1078 return;
1080 if (REG_P (new_rtx))
1082 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1083 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1084 return;
1086 else if (GET_CODE (new_rtx) != PLUS)
1087 return;
1089 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1090 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1091 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1092 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1093 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1094 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1095 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1096 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1098 return;
1101 /* Otherwise add an alias for the temp's address. */
1102 insert_temp_slot_address (new_rtx, p);
1105 /* If X could be a reference to a temporary slot, mark that slot as
1106 belonging to the to one level higher than the current level. If X
1107 matched one of our slots, just mark that one. Otherwise, we can't
1108 easily predict which it is, so upgrade all of them.
1110 This is called when an ({...}) construct occurs and a statement
1111 returns a value in memory. */
1113 void
1114 preserve_temp_slots (rtx x)
1116 struct temp_slot *p = 0, *next;
1118 if (x == 0)
1119 return;
1121 /* If X is a register that is being used as a pointer, see if we have
1122 a temporary slot we know it points to. */
1123 if (REG_P (x) && REG_POINTER (x))
1124 p = find_temp_slot_from_address (x);
1126 /* If X is not in memory or is at a constant address, it cannot be in
1127 a temporary slot. */
1128 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1129 return;
1131 /* First see if we can find a match. */
1132 if (p == 0)
1133 p = find_temp_slot_from_address (XEXP (x, 0));
1135 if (p != 0)
1137 if (p->level == temp_slot_level)
1138 move_slot_to_level (p, temp_slot_level - 1);
1139 return;
1142 /* Otherwise, preserve all non-kept slots at this level. */
1143 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1145 next = p->next;
1146 move_slot_to_level (p, temp_slot_level - 1);
1150 /* Free all temporaries used so far. This is normally called at the
1151 end of generating code for a statement. */
1153 void
1154 free_temp_slots (void)
1156 struct temp_slot *p, *next;
1157 bool some_available = false;
1159 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1161 next = p->next;
1162 make_slot_available (p);
1163 some_available = true;
1166 if (some_available)
1168 remove_unused_temp_slot_addresses ();
1169 combine_temp_slots ();
1173 /* Push deeper into the nesting level for stack temporaries. */
1175 void
1176 push_temp_slots (void)
1178 temp_slot_level++;
1181 /* Pop a temporary nesting level. All slots in use in the current level
1182 are freed. */
1184 void
1185 pop_temp_slots (void)
1187 free_temp_slots ();
1188 temp_slot_level--;
1191 /* Initialize temporary slots. */
1193 void
1194 init_temp_slots (void)
1196 /* We have not allocated any temporaries yet. */
1197 avail_temp_slots = 0;
1198 vec_alloc (used_temp_slots, 0);
1199 temp_slot_level = 0;
1200 n_temp_slots_in_use = 0;
1202 /* Set up the table to map addresses to temp slots. */
1203 if (! temp_slot_address_table)
1204 temp_slot_address_table = htab_create_ggc (32,
1205 temp_slot_address_hash,
1206 temp_slot_address_eq,
1207 NULL);
1208 else
1209 htab_empty (temp_slot_address_table);
1212 /* Functions and data structures to keep track of the values hard regs
1213 had at the start of the function. */
1215 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1216 and has_hard_reg_initial_val.. */
1217 typedef struct GTY(()) initial_value_pair {
1218 rtx hard_reg;
1219 rtx pseudo;
1220 } initial_value_pair;
1221 /* ??? This could be a VEC but there is currently no way to define an
1222 opaque VEC type. This could be worked around by defining struct
1223 initial_value_pair in function.h. */
1224 typedef struct GTY(()) initial_value_struct {
1225 int num_entries;
1226 int max_entries;
1227 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1228 } initial_value_struct;
1230 /* If a pseudo represents an initial hard reg (or expression), return
1231 it, else return NULL_RTX. */
1234 get_hard_reg_initial_reg (rtx reg)
1236 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1237 int i;
1239 if (ivs == 0)
1240 return NULL_RTX;
1242 for (i = 0; i < ivs->num_entries; i++)
1243 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1244 return ivs->entries[i].hard_reg;
1246 return NULL_RTX;
1249 /* Make sure that there's a pseudo register of mode MODE that stores the
1250 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1253 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1255 struct initial_value_struct *ivs;
1256 rtx rv;
1258 rv = has_hard_reg_initial_val (mode, regno);
1259 if (rv)
1260 return rv;
1262 ivs = crtl->hard_reg_initial_vals;
1263 if (ivs == 0)
1265 ivs = ggc_alloc_initial_value_struct ();
1266 ivs->num_entries = 0;
1267 ivs->max_entries = 5;
1268 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1269 crtl->hard_reg_initial_vals = ivs;
1272 if (ivs->num_entries >= ivs->max_entries)
1274 ivs->max_entries += 5;
1275 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1276 ivs->max_entries);
1279 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1280 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1282 return ivs->entries[ivs->num_entries++].pseudo;
1285 /* See if get_hard_reg_initial_val has been used to create a pseudo
1286 for the initial value of hard register REGNO in mode MODE. Return
1287 the associated pseudo if so, otherwise return NULL. */
1290 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1292 struct initial_value_struct *ivs;
1293 int i;
1295 ivs = crtl->hard_reg_initial_vals;
1296 if (ivs != 0)
1297 for (i = 0; i < ivs->num_entries; i++)
1298 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1299 && REGNO (ivs->entries[i].hard_reg) == regno)
1300 return ivs->entries[i].pseudo;
1302 return NULL_RTX;
1305 unsigned int
1306 emit_initial_value_sets (void)
1308 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1309 int i;
1310 rtx seq;
1312 if (ivs == 0)
1313 return 0;
1315 start_sequence ();
1316 for (i = 0; i < ivs->num_entries; i++)
1317 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1318 seq = get_insns ();
1319 end_sequence ();
1321 emit_insn_at_entry (seq);
1322 return 0;
1325 /* Return the hardreg-pseudoreg initial values pair entry I and
1326 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1327 bool
1328 initial_value_entry (int i, rtx *hreg, rtx *preg)
1330 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1331 if (!ivs || i >= ivs->num_entries)
1332 return false;
1334 *hreg = ivs->entries[i].hard_reg;
1335 *preg = ivs->entries[i].pseudo;
1336 return true;
1339 /* These routines are responsible for converting virtual register references
1340 to the actual hard register references once RTL generation is complete.
1342 The following four variables are used for communication between the
1343 routines. They contain the offsets of the virtual registers from their
1344 respective hard registers. */
1346 static int in_arg_offset;
1347 static int var_offset;
1348 static int dynamic_offset;
1349 static int out_arg_offset;
1350 static int cfa_offset;
1352 /* In most machines, the stack pointer register is equivalent to the bottom
1353 of the stack. */
1355 #ifndef STACK_POINTER_OFFSET
1356 #define STACK_POINTER_OFFSET 0
1357 #endif
1359 /* If not defined, pick an appropriate default for the offset of dynamically
1360 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1361 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1363 #ifndef STACK_DYNAMIC_OFFSET
1365 /* The bottom of the stack points to the actual arguments. If
1366 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1367 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1368 stack space for register parameters is not pushed by the caller, but
1369 rather part of the fixed stack areas and hence not included in
1370 `crtl->outgoing_args_size'. Nevertheless, we must allow
1371 for it when allocating stack dynamic objects. */
1373 #if defined(REG_PARM_STACK_SPACE)
1374 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1375 ((ACCUMULATE_OUTGOING_ARGS \
1376 ? (crtl->outgoing_args_size \
1377 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1378 : REG_PARM_STACK_SPACE (FNDECL))) \
1379 : 0) + (STACK_POINTER_OFFSET))
1380 #else
1381 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1382 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1383 + (STACK_POINTER_OFFSET))
1384 #endif
1385 #endif
1388 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1389 is a virtual register, return the equivalent hard register and set the
1390 offset indirectly through the pointer. Otherwise, return 0. */
1392 static rtx
1393 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1395 rtx new_rtx;
1396 HOST_WIDE_INT offset;
1398 if (x == virtual_incoming_args_rtx)
1400 if (stack_realign_drap)
1402 /* Replace virtual_incoming_args_rtx with internal arg
1403 pointer if DRAP is used to realign stack. */
1404 new_rtx = crtl->args.internal_arg_pointer;
1405 offset = 0;
1407 else
1408 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1410 else if (x == virtual_stack_vars_rtx)
1411 new_rtx = frame_pointer_rtx, offset = var_offset;
1412 else if (x == virtual_stack_dynamic_rtx)
1413 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1414 else if (x == virtual_outgoing_args_rtx)
1415 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1416 else if (x == virtual_cfa_rtx)
1418 #ifdef FRAME_POINTER_CFA_OFFSET
1419 new_rtx = frame_pointer_rtx;
1420 #else
1421 new_rtx = arg_pointer_rtx;
1422 #endif
1423 offset = cfa_offset;
1425 else if (x == virtual_preferred_stack_boundary_rtx)
1427 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1428 offset = 0;
1430 else
1431 return NULL_RTX;
1433 *poffset = offset;
1434 return new_rtx;
1437 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1438 Instantiate any virtual registers present inside of *LOC. The expression
1439 is simplified, as much as possible, but is not to be considered "valid"
1440 in any sense implied by the target. If any change is made, set CHANGED
1441 to true. */
1443 static int
1444 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1446 HOST_WIDE_INT offset;
1447 bool *changed = (bool *) data;
1448 rtx x, new_rtx;
1450 x = *loc;
1451 if (x == 0)
1452 return 0;
1454 switch (GET_CODE (x))
1456 case REG:
1457 new_rtx = instantiate_new_reg (x, &offset);
1458 if (new_rtx)
1460 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1461 if (changed)
1462 *changed = true;
1464 return -1;
1466 case PLUS:
1467 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1468 if (new_rtx)
1470 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1471 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1472 if (changed)
1473 *changed = true;
1474 return -1;
1477 /* FIXME -- from old code */
1478 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1479 we can commute the PLUS and SUBREG because pointers into the
1480 frame are well-behaved. */
1481 break;
1483 default:
1484 break;
1487 return 0;
1490 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1491 matches the predicate for insn CODE operand OPERAND. */
1493 static int
1494 safe_insn_predicate (int code, int operand, rtx x)
1496 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1499 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1500 registers present inside of insn. The result will be a valid insn. */
1502 static void
1503 instantiate_virtual_regs_in_insn (rtx insn)
1505 HOST_WIDE_INT offset;
1506 int insn_code, i;
1507 bool any_change = false;
1508 rtx set, new_rtx, x, seq;
1510 /* There are some special cases to be handled first. */
1511 set = single_set (insn);
1512 if (set)
1514 /* We're allowed to assign to a virtual register. This is interpreted
1515 to mean that the underlying register gets assigned the inverse
1516 transformation. This is used, for example, in the handling of
1517 non-local gotos. */
1518 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1519 if (new_rtx)
1521 start_sequence ();
1523 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1524 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1525 GEN_INT (-offset));
1526 x = force_operand (x, new_rtx);
1527 if (x != new_rtx)
1528 emit_move_insn (new_rtx, x);
1530 seq = get_insns ();
1531 end_sequence ();
1533 emit_insn_before (seq, insn);
1534 delete_insn (insn);
1535 return;
1538 /* Handle a straight copy from a virtual register by generating a
1539 new add insn. The difference between this and falling through
1540 to the generic case is avoiding a new pseudo and eliminating a
1541 move insn in the initial rtl stream. */
1542 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1543 if (new_rtx && offset != 0
1544 && REG_P (SET_DEST (set))
1545 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1547 start_sequence ();
1549 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1550 new_rtx, GEN_INT (offset), SET_DEST (set),
1551 1, OPTAB_LIB_WIDEN);
1552 if (x != SET_DEST (set))
1553 emit_move_insn (SET_DEST (set), x);
1555 seq = get_insns ();
1556 end_sequence ();
1558 emit_insn_before (seq, insn);
1559 delete_insn (insn);
1560 return;
1563 extract_insn (insn);
1564 insn_code = INSN_CODE (insn);
1566 /* Handle a plus involving a virtual register by determining if the
1567 operands remain valid if they're modified in place. */
1568 if (GET_CODE (SET_SRC (set)) == PLUS
1569 && recog_data.n_operands >= 3
1570 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1571 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1572 && CONST_INT_P (recog_data.operand[2])
1573 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1575 offset += INTVAL (recog_data.operand[2]);
1577 /* If the sum is zero, then replace with a plain move. */
1578 if (offset == 0
1579 && REG_P (SET_DEST (set))
1580 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1582 start_sequence ();
1583 emit_move_insn (SET_DEST (set), new_rtx);
1584 seq = get_insns ();
1585 end_sequence ();
1587 emit_insn_before (seq, insn);
1588 delete_insn (insn);
1589 return;
1592 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1594 /* Using validate_change and apply_change_group here leaves
1595 recog_data in an invalid state. Since we know exactly what
1596 we want to check, do those two by hand. */
1597 if (safe_insn_predicate (insn_code, 1, new_rtx)
1598 && safe_insn_predicate (insn_code, 2, x))
1600 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1601 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1602 any_change = true;
1604 /* Fall through into the regular operand fixup loop in
1605 order to take care of operands other than 1 and 2. */
1609 else
1611 extract_insn (insn);
1612 insn_code = INSN_CODE (insn);
1615 /* In the general case, we expect virtual registers to appear only in
1616 operands, and then only as either bare registers or inside memories. */
1617 for (i = 0; i < recog_data.n_operands; ++i)
1619 x = recog_data.operand[i];
1620 switch (GET_CODE (x))
1622 case MEM:
1624 rtx addr = XEXP (x, 0);
1625 bool changed = false;
1627 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1628 if (!changed)
1629 continue;
1631 start_sequence ();
1632 x = replace_equiv_address (x, addr);
1633 /* It may happen that the address with the virtual reg
1634 was valid (e.g. based on the virtual stack reg, which might
1635 be acceptable to the predicates with all offsets), whereas
1636 the address now isn't anymore, for instance when the address
1637 is still offsetted, but the base reg isn't virtual-stack-reg
1638 anymore. Below we would do a force_reg on the whole operand,
1639 but this insn might actually only accept memory. Hence,
1640 before doing that last resort, try to reload the address into
1641 a register, so this operand stays a MEM. */
1642 if (!safe_insn_predicate (insn_code, i, x))
1644 addr = force_reg (GET_MODE (addr), addr);
1645 x = replace_equiv_address (x, addr);
1647 seq = get_insns ();
1648 end_sequence ();
1649 if (seq)
1650 emit_insn_before (seq, insn);
1652 break;
1654 case REG:
1655 new_rtx = instantiate_new_reg (x, &offset);
1656 if (new_rtx == NULL)
1657 continue;
1658 if (offset == 0)
1659 x = new_rtx;
1660 else
1662 start_sequence ();
1664 /* Careful, special mode predicates may have stuff in
1665 insn_data[insn_code].operand[i].mode that isn't useful
1666 to us for computing a new value. */
1667 /* ??? Recognize address_operand and/or "p" constraints
1668 to see if (plus new offset) is a valid before we put
1669 this through expand_simple_binop. */
1670 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1671 GEN_INT (offset), NULL_RTX,
1672 1, OPTAB_LIB_WIDEN);
1673 seq = get_insns ();
1674 end_sequence ();
1675 emit_insn_before (seq, insn);
1677 break;
1679 case SUBREG:
1680 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1681 if (new_rtx == NULL)
1682 continue;
1683 if (offset != 0)
1685 start_sequence ();
1686 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1687 GEN_INT (offset), NULL_RTX,
1688 1, OPTAB_LIB_WIDEN);
1689 seq = get_insns ();
1690 end_sequence ();
1691 emit_insn_before (seq, insn);
1693 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1694 GET_MODE (new_rtx), SUBREG_BYTE (x));
1695 gcc_assert (x);
1696 break;
1698 default:
1699 continue;
1702 /* At this point, X contains the new value for the operand.
1703 Validate the new value vs the insn predicate. Note that
1704 asm insns will have insn_code -1 here. */
1705 if (!safe_insn_predicate (insn_code, i, x))
1707 start_sequence ();
1708 if (REG_P (x))
1710 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1711 x = copy_to_reg (x);
1713 else
1714 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1715 seq = get_insns ();
1716 end_sequence ();
1717 if (seq)
1718 emit_insn_before (seq, insn);
1721 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1722 any_change = true;
1725 if (any_change)
1727 /* Propagate operand changes into the duplicates. */
1728 for (i = 0; i < recog_data.n_dups; ++i)
1729 *recog_data.dup_loc[i]
1730 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1732 /* Force re-recognition of the instruction for validation. */
1733 INSN_CODE (insn) = -1;
1736 if (asm_noperands (PATTERN (insn)) >= 0)
1738 if (!check_asm_operands (PATTERN (insn)))
1740 error_for_asm (insn, "impossible constraint in %<asm%>");
1741 delete_insn_and_edges (insn);
1744 else
1746 if (recog_memoized (insn) < 0)
1747 fatal_insn_not_found (insn);
1751 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1752 do any instantiation required. */
1754 void
1755 instantiate_decl_rtl (rtx x)
1757 rtx addr;
1759 if (x == 0)
1760 return;
1762 /* If this is a CONCAT, recurse for the pieces. */
1763 if (GET_CODE (x) == CONCAT)
1765 instantiate_decl_rtl (XEXP (x, 0));
1766 instantiate_decl_rtl (XEXP (x, 1));
1767 return;
1770 /* If this is not a MEM, no need to do anything. Similarly if the
1771 address is a constant or a register that is not a virtual register. */
1772 if (!MEM_P (x))
1773 return;
1775 addr = XEXP (x, 0);
1776 if (CONSTANT_P (addr)
1777 || (REG_P (addr)
1778 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1779 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1780 return;
1782 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1785 /* Helper for instantiate_decls called via walk_tree: Process all decls
1786 in the given DECL_VALUE_EXPR. */
1788 static tree
1789 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1791 tree t = *tp;
1792 if (! EXPR_P (t))
1794 *walk_subtrees = 0;
1795 if (DECL_P (t))
1797 if (DECL_RTL_SET_P (t))
1798 instantiate_decl_rtl (DECL_RTL (t));
1799 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1800 && DECL_INCOMING_RTL (t))
1801 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1802 if ((TREE_CODE (t) == VAR_DECL
1803 || TREE_CODE (t) == RESULT_DECL)
1804 && DECL_HAS_VALUE_EXPR_P (t))
1806 tree v = DECL_VALUE_EXPR (t);
1807 walk_tree (&v, instantiate_expr, NULL, NULL);
1811 return NULL;
1814 /* Subroutine of instantiate_decls: Process all decls in the given
1815 BLOCK node and all its subblocks. */
1817 static void
1818 instantiate_decls_1 (tree let)
1820 tree t;
1822 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1824 if (DECL_RTL_SET_P (t))
1825 instantiate_decl_rtl (DECL_RTL (t));
1826 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1828 tree v = DECL_VALUE_EXPR (t);
1829 walk_tree (&v, instantiate_expr, NULL, NULL);
1833 /* Process all subblocks. */
1834 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1835 instantiate_decls_1 (t);
1838 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1839 all virtual registers in their DECL_RTL's. */
1841 static void
1842 instantiate_decls (tree fndecl)
1844 tree decl;
1845 unsigned ix;
1847 /* Process all parameters of the function. */
1848 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1850 instantiate_decl_rtl (DECL_RTL (decl));
1851 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1852 if (DECL_HAS_VALUE_EXPR_P (decl))
1854 tree v = DECL_VALUE_EXPR (decl);
1855 walk_tree (&v, instantiate_expr, NULL, NULL);
1859 if ((decl = DECL_RESULT (fndecl))
1860 && TREE_CODE (decl) == RESULT_DECL)
1862 if (DECL_RTL_SET_P (decl))
1863 instantiate_decl_rtl (DECL_RTL (decl));
1864 if (DECL_HAS_VALUE_EXPR_P (decl))
1866 tree v = DECL_VALUE_EXPR (decl);
1867 walk_tree (&v, instantiate_expr, NULL, NULL);
1871 /* Now process all variables defined in the function or its subblocks. */
1872 instantiate_decls_1 (DECL_INITIAL (fndecl));
1874 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1875 if (DECL_RTL_SET_P (decl))
1876 instantiate_decl_rtl (DECL_RTL (decl));
1877 vec_free (cfun->local_decls);
1880 /* Pass through the INSNS of function FNDECL and convert virtual register
1881 references to hard register references. */
1883 static unsigned int
1884 instantiate_virtual_regs (void)
1886 rtx insn;
1888 /* Compute the offsets to use for this function. */
1889 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1890 var_offset = STARTING_FRAME_OFFSET;
1891 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1892 out_arg_offset = STACK_POINTER_OFFSET;
1893 #ifdef FRAME_POINTER_CFA_OFFSET
1894 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1895 #else
1896 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1897 #endif
1899 /* Initialize recognition, indicating that volatile is OK. */
1900 init_recog ();
1902 /* Scan through all the insns, instantiating every virtual register still
1903 present. */
1904 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1905 if (INSN_P (insn))
1907 /* These patterns in the instruction stream can never be recognized.
1908 Fortunately, they shouldn't contain virtual registers either. */
1909 if (GET_CODE (PATTERN (insn)) == USE
1910 || GET_CODE (PATTERN (insn)) == CLOBBER
1911 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1912 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1913 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1914 continue;
1915 else if (DEBUG_INSN_P (insn))
1916 for_each_rtx (&INSN_VAR_LOCATION (insn),
1917 instantiate_virtual_regs_in_rtx, NULL);
1918 else
1919 instantiate_virtual_regs_in_insn (insn);
1921 if (INSN_DELETED_P (insn))
1922 continue;
1924 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1926 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1927 if (CALL_P (insn))
1928 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1929 instantiate_virtual_regs_in_rtx, NULL);
1932 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1933 instantiate_decls (current_function_decl);
1935 targetm.instantiate_decls ();
1937 /* Indicate that, from now on, assign_stack_local should use
1938 frame_pointer_rtx. */
1939 virtuals_instantiated = 1;
1941 return 0;
1944 struct rtl_opt_pass pass_instantiate_virtual_regs =
1947 RTL_PASS,
1948 "vregs", /* name */
1949 OPTGROUP_NONE, /* optinfo_flags */
1950 NULL, /* gate */
1951 instantiate_virtual_regs, /* execute */
1952 NULL, /* sub */
1953 NULL, /* next */
1954 0, /* static_pass_number */
1955 TV_NONE, /* tv_id */
1956 0, /* properties_required */
1957 0, /* properties_provided */
1958 0, /* properties_destroyed */
1959 0, /* todo_flags_start */
1960 0 /* todo_flags_finish */
1965 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1966 This means a type for which function calls must pass an address to the
1967 function or get an address back from the function.
1968 EXP may be a type node or an expression (whose type is tested). */
1971 aggregate_value_p (const_tree exp, const_tree fntype)
1973 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1974 int i, regno, nregs;
1975 rtx reg;
1977 if (fntype)
1978 switch (TREE_CODE (fntype))
1980 case CALL_EXPR:
1982 tree fndecl = get_callee_fndecl (fntype);
1983 fntype = (fndecl
1984 ? TREE_TYPE (fndecl)
1985 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1987 break;
1988 case FUNCTION_DECL:
1989 fntype = TREE_TYPE (fntype);
1990 break;
1991 case FUNCTION_TYPE:
1992 case METHOD_TYPE:
1993 break;
1994 case IDENTIFIER_NODE:
1995 fntype = NULL_TREE;
1996 break;
1997 default:
1998 /* We don't expect other tree types here. */
1999 gcc_unreachable ();
2002 if (VOID_TYPE_P (type))
2003 return 0;
2005 /* If a record should be passed the same as its first (and only) member
2006 don't pass it as an aggregate. */
2007 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2008 return aggregate_value_p (first_field (type), fntype);
2010 /* If the front end has decided that this needs to be passed by
2011 reference, do so. */
2012 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2013 && DECL_BY_REFERENCE (exp))
2014 return 1;
2016 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2017 if (fntype && TREE_ADDRESSABLE (fntype))
2018 return 1;
2020 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2021 and thus can't be returned in registers. */
2022 if (TREE_ADDRESSABLE (type))
2023 return 1;
2025 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2026 return 1;
2028 if (targetm.calls.return_in_memory (type, fntype))
2029 return 1;
2031 /* Make sure we have suitable call-clobbered regs to return
2032 the value in; if not, we must return it in memory. */
2033 reg = hard_function_value (type, 0, fntype, 0);
2035 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2036 it is OK. */
2037 if (!REG_P (reg))
2038 return 0;
2040 regno = REGNO (reg);
2041 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2042 for (i = 0; i < nregs; i++)
2043 if (! call_used_regs[regno + i])
2044 return 1;
2046 return 0;
2049 /* Return true if we should assign DECL a pseudo register; false if it
2050 should live on the local stack. */
2052 bool
2053 use_register_for_decl (const_tree decl)
2055 if (!targetm.calls.allocate_stack_slots_for_args())
2056 return true;
2058 /* Honor volatile. */
2059 if (TREE_SIDE_EFFECTS (decl))
2060 return false;
2062 /* Honor addressability. */
2063 if (TREE_ADDRESSABLE (decl))
2064 return false;
2066 /* Only register-like things go in registers. */
2067 if (DECL_MODE (decl) == BLKmode)
2068 return false;
2070 /* If -ffloat-store specified, don't put explicit float variables
2071 into registers. */
2072 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2073 propagates values across these stores, and it probably shouldn't. */
2074 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2075 return false;
2077 /* If we're not interested in tracking debugging information for
2078 this decl, then we can certainly put it in a register. */
2079 if (DECL_IGNORED_P (decl))
2080 return true;
2082 if (optimize)
2083 return true;
2085 if (!DECL_REGISTER (decl))
2086 return false;
2088 switch (TREE_CODE (TREE_TYPE (decl)))
2090 case RECORD_TYPE:
2091 case UNION_TYPE:
2092 case QUAL_UNION_TYPE:
2093 /* When not optimizing, disregard register keyword for variables with
2094 types containing methods, otherwise the methods won't be callable
2095 from the debugger. */
2096 if (TYPE_METHODS (TREE_TYPE (decl)))
2097 return false;
2098 break;
2099 default:
2100 break;
2103 return true;
2106 /* Return true if TYPE should be passed by invisible reference. */
2108 bool
2109 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2110 tree type, bool named_arg)
2112 if (type)
2114 /* If this type contains non-trivial constructors, then it is
2115 forbidden for the middle-end to create any new copies. */
2116 if (TREE_ADDRESSABLE (type))
2117 return true;
2119 /* GCC post 3.4 passes *all* variable sized types by reference. */
2120 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2121 return true;
2123 /* If a record type should be passed the same as its first (and only)
2124 member, use the type and mode of that member. */
2125 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2127 type = TREE_TYPE (first_field (type));
2128 mode = TYPE_MODE (type);
2132 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2133 type, named_arg);
2136 /* Return true if TYPE, which is passed by reference, should be callee
2137 copied instead of caller copied. */
2139 bool
2140 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2141 tree type, bool named_arg)
2143 if (type && TREE_ADDRESSABLE (type))
2144 return false;
2145 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2146 named_arg);
2149 /* Structures to communicate between the subroutines of assign_parms.
2150 The first holds data persistent across all parameters, the second
2151 is cleared out for each parameter. */
2153 struct assign_parm_data_all
2155 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2156 should become a job of the target or otherwise encapsulated. */
2157 CUMULATIVE_ARGS args_so_far_v;
2158 cumulative_args_t args_so_far;
2159 struct args_size stack_args_size;
2160 tree function_result_decl;
2161 tree orig_fnargs;
2162 rtx first_conversion_insn;
2163 rtx last_conversion_insn;
2164 HOST_WIDE_INT pretend_args_size;
2165 HOST_WIDE_INT extra_pretend_bytes;
2166 int reg_parm_stack_space;
2169 struct assign_parm_data_one
2171 tree nominal_type;
2172 tree passed_type;
2173 rtx entry_parm;
2174 rtx stack_parm;
2175 enum machine_mode nominal_mode;
2176 enum machine_mode passed_mode;
2177 enum machine_mode promoted_mode;
2178 struct locate_and_pad_arg_data locate;
2179 int partial;
2180 BOOL_BITFIELD named_arg : 1;
2181 BOOL_BITFIELD passed_pointer : 1;
2182 BOOL_BITFIELD on_stack : 1;
2183 BOOL_BITFIELD loaded_in_reg : 1;
2186 /* A subroutine of assign_parms. Initialize ALL. */
2188 static void
2189 assign_parms_initialize_all (struct assign_parm_data_all *all)
2191 tree fntype ATTRIBUTE_UNUSED;
2193 memset (all, 0, sizeof (*all));
2195 fntype = TREE_TYPE (current_function_decl);
2197 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2198 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2199 #else
2200 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2201 current_function_decl, -1);
2202 #endif
2203 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2205 #ifdef REG_PARM_STACK_SPACE
2206 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2207 #endif
2210 /* If ARGS contains entries with complex types, split the entry into two
2211 entries of the component type. Return a new list of substitutions are
2212 needed, else the old list. */
2214 static void
2215 split_complex_args (vec<tree> *args)
2217 unsigned i;
2218 tree p;
2220 FOR_EACH_VEC_ELT (*args, i, p)
2222 tree type = TREE_TYPE (p);
2223 if (TREE_CODE (type) == COMPLEX_TYPE
2224 && targetm.calls.split_complex_arg (type))
2226 tree decl;
2227 tree subtype = TREE_TYPE (type);
2228 bool addressable = TREE_ADDRESSABLE (p);
2230 /* Rewrite the PARM_DECL's type with its component. */
2231 p = copy_node (p);
2232 TREE_TYPE (p) = subtype;
2233 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2234 DECL_MODE (p) = VOIDmode;
2235 DECL_SIZE (p) = NULL;
2236 DECL_SIZE_UNIT (p) = NULL;
2237 /* If this arg must go in memory, put it in a pseudo here.
2238 We can't allow it to go in memory as per normal parms,
2239 because the usual place might not have the imag part
2240 adjacent to the real part. */
2241 DECL_ARTIFICIAL (p) = addressable;
2242 DECL_IGNORED_P (p) = addressable;
2243 TREE_ADDRESSABLE (p) = 0;
2244 layout_decl (p, 0);
2245 (*args)[i] = p;
2247 /* Build a second synthetic decl. */
2248 decl = build_decl (EXPR_LOCATION (p),
2249 PARM_DECL, NULL_TREE, subtype);
2250 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2251 DECL_ARTIFICIAL (decl) = addressable;
2252 DECL_IGNORED_P (decl) = addressable;
2253 layout_decl (decl, 0);
2254 args->safe_insert (++i, decl);
2259 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2260 the hidden struct return argument, and (abi willing) complex args.
2261 Return the new parameter list. */
2263 static vec<tree>
2264 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2266 tree fndecl = current_function_decl;
2267 tree fntype = TREE_TYPE (fndecl);
2268 vec<tree> fnargs = vec<tree>();
2269 tree arg;
2271 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2272 fnargs.safe_push (arg);
2274 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2276 /* If struct value address is treated as the first argument, make it so. */
2277 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2278 && ! cfun->returns_pcc_struct
2279 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2281 tree type = build_pointer_type (TREE_TYPE (fntype));
2282 tree decl;
2284 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2285 PARM_DECL, get_identifier (".result_ptr"), type);
2286 DECL_ARG_TYPE (decl) = type;
2287 DECL_ARTIFICIAL (decl) = 1;
2288 DECL_NAMELESS (decl) = 1;
2289 TREE_CONSTANT (decl) = 1;
2291 DECL_CHAIN (decl) = all->orig_fnargs;
2292 all->orig_fnargs = decl;
2293 fnargs.safe_insert (0, decl);
2295 all->function_result_decl = decl;
2298 /* If the target wants to split complex arguments into scalars, do so. */
2299 if (targetm.calls.split_complex_arg)
2300 split_complex_args (&fnargs);
2302 return fnargs;
2305 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2306 data for the parameter. Incorporate ABI specifics such as pass-by-
2307 reference and type promotion. */
2309 static void
2310 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2311 struct assign_parm_data_one *data)
2313 tree nominal_type, passed_type;
2314 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2315 int unsignedp;
2317 memset (data, 0, sizeof (*data));
2319 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2320 if (!cfun->stdarg)
2321 data->named_arg = 1; /* No variadic parms. */
2322 else if (DECL_CHAIN (parm))
2323 data->named_arg = 1; /* Not the last non-variadic parm. */
2324 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2325 data->named_arg = 1; /* Only variadic ones are unnamed. */
2326 else
2327 data->named_arg = 0; /* Treat as variadic. */
2329 nominal_type = TREE_TYPE (parm);
2330 passed_type = DECL_ARG_TYPE (parm);
2332 /* Look out for errors propagating this far. Also, if the parameter's
2333 type is void then its value doesn't matter. */
2334 if (TREE_TYPE (parm) == error_mark_node
2335 /* This can happen after weird syntax errors
2336 or if an enum type is defined among the parms. */
2337 || TREE_CODE (parm) != PARM_DECL
2338 || passed_type == NULL
2339 || VOID_TYPE_P (nominal_type))
2341 nominal_type = passed_type = void_type_node;
2342 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2343 goto egress;
2346 /* Find mode of arg as it is passed, and mode of arg as it should be
2347 during execution of this function. */
2348 passed_mode = TYPE_MODE (passed_type);
2349 nominal_mode = TYPE_MODE (nominal_type);
2351 /* If the parm is to be passed as a transparent union or record, use the
2352 type of the first field for the tests below. We have already verified
2353 that the modes are the same. */
2354 if ((TREE_CODE (passed_type) == UNION_TYPE
2355 || TREE_CODE (passed_type) == RECORD_TYPE)
2356 && TYPE_TRANSPARENT_AGGR (passed_type))
2357 passed_type = TREE_TYPE (first_field (passed_type));
2359 /* See if this arg was passed by invisible reference. */
2360 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2361 passed_type, data->named_arg))
2363 passed_type = nominal_type = build_pointer_type (passed_type);
2364 data->passed_pointer = true;
2365 passed_mode = nominal_mode = Pmode;
2368 /* Find mode as it is passed by the ABI. */
2369 unsignedp = TYPE_UNSIGNED (passed_type);
2370 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2371 TREE_TYPE (current_function_decl), 0);
2373 egress:
2374 data->nominal_type = nominal_type;
2375 data->passed_type = passed_type;
2376 data->nominal_mode = nominal_mode;
2377 data->passed_mode = passed_mode;
2378 data->promoted_mode = promoted_mode;
2381 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2383 static void
2384 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2385 struct assign_parm_data_one *data, bool no_rtl)
2387 int varargs_pretend_bytes = 0;
2389 targetm.calls.setup_incoming_varargs (all->args_so_far,
2390 data->promoted_mode,
2391 data->passed_type,
2392 &varargs_pretend_bytes, no_rtl);
2394 /* If the back-end has requested extra stack space, record how much is
2395 needed. Do not change pretend_args_size otherwise since it may be
2396 nonzero from an earlier partial argument. */
2397 if (varargs_pretend_bytes > 0)
2398 all->pretend_args_size = varargs_pretend_bytes;
2401 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2402 the incoming location of the current parameter. */
2404 static void
2405 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2406 struct assign_parm_data_one *data)
2408 HOST_WIDE_INT pretend_bytes = 0;
2409 rtx entry_parm;
2410 bool in_regs;
2412 if (data->promoted_mode == VOIDmode)
2414 data->entry_parm = data->stack_parm = const0_rtx;
2415 return;
2418 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2419 data->promoted_mode,
2420 data->passed_type,
2421 data->named_arg);
2423 if (entry_parm == 0)
2424 data->promoted_mode = data->passed_mode;
2426 /* Determine parm's home in the stack, in case it arrives in the stack
2427 or we should pretend it did. Compute the stack position and rtx where
2428 the argument arrives and its size.
2430 There is one complexity here: If this was a parameter that would
2431 have been passed in registers, but wasn't only because it is
2432 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2433 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2434 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2435 as it was the previous time. */
2436 in_regs = entry_parm != 0;
2437 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2438 in_regs = true;
2439 #endif
2440 if (!in_regs && !data->named_arg)
2442 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2444 rtx tem;
2445 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2446 data->promoted_mode,
2447 data->passed_type, true);
2448 in_regs = tem != NULL;
2452 /* If this parameter was passed both in registers and in the stack, use
2453 the copy on the stack. */
2454 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2455 data->passed_type))
2456 entry_parm = 0;
2458 if (entry_parm)
2460 int partial;
2462 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2463 data->promoted_mode,
2464 data->passed_type,
2465 data->named_arg);
2466 data->partial = partial;
2468 /* The caller might already have allocated stack space for the
2469 register parameters. */
2470 if (partial != 0 && all->reg_parm_stack_space == 0)
2472 /* Part of this argument is passed in registers and part
2473 is passed on the stack. Ask the prologue code to extend
2474 the stack part so that we can recreate the full value.
2476 PRETEND_BYTES is the size of the registers we need to store.
2477 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2478 stack space that the prologue should allocate.
2480 Internally, gcc assumes that the argument pointer is aligned
2481 to STACK_BOUNDARY bits. This is used both for alignment
2482 optimizations (see init_emit) and to locate arguments that are
2483 aligned to more than PARM_BOUNDARY bits. We must preserve this
2484 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2485 a stack boundary. */
2487 /* We assume at most one partial arg, and it must be the first
2488 argument on the stack. */
2489 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2491 pretend_bytes = partial;
2492 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2494 /* We want to align relative to the actual stack pointer, so
2495 don't include this in the stack size until later. */
2496 all->extra_pretend_bytes = all->pretend_args_size;
2500 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2501 entry_parm ? data->partial : 0, current_function_decl,
2502 &all->stack_args_size, &data->locate);
2504 /* Update parm_stack_boundary if this parameter is passed in the
2505 stack. */
2506 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2507 crtl->parm_stack_boundary = data->locate.boundary;
2509 /* Adjust offsets to include the pretend args. */
2510 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2511 data->locate.slot_offset.constant += pretend_bytes;
2512 data->locate.offset.constant += pretend_bytes;
2514 data->entry_parm = entry_parm;
2517 /* A subroutine of assign_parms. If there is actually space on the stack
2518 for this parm, count it in stack_args_size and return true. */
2520 static bool
2521 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2522 struct assign_parm_data_one *data)
2524 /* Trivially true if we've no incoming register. */
2525 if (data->entry_parm == NULL)
2527 /* Also true if we're partially in registers and partially not,
2528 since we've arranged to drop the entire argument on the stack. */
2529 else if (data->partial != 0)
2531 /* Also true if the target says that it's passed in both registers
2532 and on the stack. */
2533 else if (GET_CODE (data->entry_parm) == PARALLEL
2534 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2536 /* Also true if the target says that there's stack allocated for
2537 all register parameters. */
2538 else if (all->reg_parm_stack_space > 0)
2540 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2541 else
2542 return false;
2544 all->stack_args_size.constant += data->locate.size.constant;
2545 if (data->locate.size.var)
2546 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2548 return true;
2551 /* A subroutine of assign_parms. Given that this parameter is allocated
2552 stack space by the ABI, find it. */
2554 static void
2555 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2557 rtx offset_rtx, stack_parm;
2558 unsigned int align, boundary;
2560 /* If we're passing this arg using a reg, make its stack home the
2561 aligned stack slot. */
2562 if (data->entry_parm)
2563 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2564 else
2565 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2567 stack_parm = crtl->args.internal_arg_pointer;
2568 if (offset_rtx != const0_rtx)
2569 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2570 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2572 if (!data->passed_pointer)
2574 set_mem_attributes (stack_parm, parm, 1);
2575 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2576 while promoted mode's size is needed. */
2577 if (data->promoted_mode != BLKmode
2578 && data->promoted_mode != DECL_MODE (parm))
2580 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2581 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2583 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2584 data->promoted_mode);
2585 if (offset)
2586 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2591 boundary = data->locate.boundary;
2592 align = BITS_PER_UNIT;
2594 /* If we're padding upward, we know that the alignment of the slot
2595 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2596 intentionally forcing upward padding. Otherwise we have to come
2597 up with a guess at the alignment based on OFFSET_RTX. */
2598 if (data->locate.where_pad != downward || data->entry_parm)
2599 align = boundary;
2600 else if (CONST_INT_P (offset_rtx))
2602 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2603 align = align & -align;
2605 set_mem_align (stack_parm, align);
2607 if (data->entry_parm)
2608 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2610 data->stack_parm = stack_parm;
2613 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2614 always valid and contiguous. */
2616 static void
2617 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2619 rtx entry_parm = data->entry_parm;
2620 rtx stack_parm = data->stack_parm;
2622 /* If this parm was passed part in regs and part in memory, pretend it
2623 arrived entirely in memory by pushing the register-part onto the stack.
2624 In the special case of a DImode or DFmode that is split, we could put
2625 it together in a pseudoreg directly, but for now that's not worth
2626 bothering with. */
2627 if (data->partial != 0)
2629 /* Handle calls that pass values in multiple non-contiguous
2630 locations. The Irix 6 ABI has examples of this. */
2631 if (GET_CODE (entry_parm) == PARALLEL)
2632 emit_group_store (validize_mem (stack_parm), entry_parm,
2633 data->passed_type,
2634 int_size_in_bytes (data->passed_type));
2635 else
2637 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2638 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2639 data->partial / UNITS_PER_WORD);
2642 entry_parm = stack_parm;
2645 /* If we didn't decide this parm came in a register, by default it came
2646 on the stack. */
2647 else if (entry_parm == NULL)
2648 entry_parm = stack_parm;
2650 /* When an argument is passed in multiple locations, we can't make use
2651 of this information, but we can save some copying if the whole argument
2652 is passed in a single register. */
2653 else if (GET_CODE (entry_parm) == PARALLEL
2654 && data->nominal_mode != BLKmode
2655 && data->passed_mode != BLKmode)
2657 size_t i, len = XVECLEN (entry_parm, 0);
2659 for (i = 0; i < len; i++)
2660 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2661 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2662 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2663 == data->passed_mode)
2664 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2666 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2667 break;
2671 data->entry_parm = entry_parm;
2674 /* A subroutine of assign_parms. Reconstitute any values which were
2675 passed in multiple registers and would fit in a single register. */
2677 static void
2678 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2680 rtx entry_parm = data->entry_parm;
2682 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2683 This can be done with register operations rather than on the
2684 stack, even if we will store the reconstituted parameter on the
2685 stack later. */
2686 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2688 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2689 emit_group_store (parmreg, entry_parm, data->passed_type,
2690 GET_MODE_SIZE (GET_MODE (entry_parm)));
2691 entry_parm = parmreg;
2694 data->entry_parm = entry_parm;
2697 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2698 always valid and properly aligned. */
2700 static void
2701 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2703 rtx stack_parm = data->stack_parm;
2705 /* If we can't trust the parm stack slot to be aligned enough for its
2706 ultimate type, don't use that slot after entry. We'll make another
2707 stack slot, if we need one. */
2708 if (stack_parm
2709 && ((STRICT_ALIGNMENT
2710 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2711 || (data->nominal_type
2712 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2713 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2714 stack_parm = NULL;
2716 /* If parm was passed in memory, and we need to convert it on entry,
2717 don't store it back in that same slot. */
2718 else if (data->entry_parm == stack_parm
2719 && data->nominal_mode != BLKmode
2720 && data->nominal_mode != data->passed_mode)
2721 stack_parm = NULL;
2723 /* If stack protection is in effect for this function, don't leave any
2724 pointers in their passed stack slots. */
2725 else if (crtl->stack_protect_guard
2726 && (flag_stack_protect == 2
2727 || data->passed_pointer
2728 || POINTER_TYPE_P (data->nominal_type)))
2729 stack_parm = NULL;
2731 data->stack_parm = stack_parm;
2734 /* A subroutine of assign_parms. Return true if the current parameter
2735 should be stored as a BLKmode in the current frame. */
2737 static bool
2738 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2740 if (data->nominal_mode == BLKmode)
2741 return true;
2742 if (GET_MODE (data->entry_parm) == BLKmode)
2743 return true;
2745 #ifdef BLOCK_REG_PADDING
2746 /* Only assign_parm_setup_block knows how to deal with register arguments
2747 that are padded at the least significant end. */
2748 if (REG_P (data->entry_parm)
2749 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2750 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2751 == (BYTES_BIG_ENDIAN ? upward : downward)))
2752 return true;
2753 #endif
2755 return false;
2758 /* A subroutine of assign_parms. Arrange for the parameter to be
2759 present and valid in DATA->STACK_RTL. */
2761 static void
2762 assign_parm_setup_block (struct assign_parm_data_all *all,
2763 tree parm, struct assign_parm_data_one *data)
2765 rtx entry_parm = data->entry_parm;
2766 rtx stack_parm = data->stack_parm;
2767 HOST_WIDE_INT size;
2768 HOST_WIDE_INT size_stored;
2770 if (GET_CODE (entry_parm) == PARALLEL)
2771 entry_parm = emit_group_move_into_temps (entry_parm);
2773 size = int_size_in_bytes (data->passed_type);
2774 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2775 if (stack_parm == 0)
2777 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2778 stack_parm = assign_stack_local (BLKmode, size_stored,
2779 DECL_ALIGN (parm));
2780 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2781 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2782 set_mem_attributes (stack_parm, parm, 1);
2785 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2786 calls that pass values in multiple non-contiguous locations. */
2787 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2789 rtx mem;
2791 /* Note that we will be storing an integral number of words.
2792 So we have to be careful to ensure that we allocate an
2793 integral number of words. We do this above when we call
2794 assign_stack_local if space was not allocated in the argument
2795 list. If it was, this will not work if PARM_BOUNDARY is not
2796 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2797 if it becomes a problem. Exception is when BLKmode arrives
2798 with arguments not conforming to word_mode. */
2800 if (data->stack_parm == 0)
2802 else if (GET_CODE (entry_parm) == PARALLEL)
2804 else
2805 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2807 mem = validize_mem (stack_parm);
2809 /* Handle values in multiple non-contiguous locations. */
2810 if (GET_CODE (entry_parm) == PARALLEL)
2812 push_to_sequence2 (all->first_conversion_insn,
2813 all->last_conversion_insn);
2814 emit_group_store (mem, entry_parm, data->passed_type, size);
2815 all->first_conversion_insn = get_insns ();
2816 all->last_conversion_insn = get_last_insn ();
2817 end_sequence ();
2820 else if (size == 0)
2823 /* If SIZE is that of a mode no bigger than a word, just use
2824 that mode's store operation. */
2825 else if (size <= UNITS_PER_WORD)
2827 enum machine_mode mode
2828 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2830 if (mode != BLKmode
2831 #ifdef BLOCK_REG_PADDING
2832 && (size == UNITS_PER_WORD
2833 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2834 != (BYTES_BIG_ENDIAN ? upward : downward)))
2835 #endif
2838 rtx reg;
2840 /* We are really truncating a word_mode value containing
2841 SIZE bytes into a value of mode MODE. If such an
2842 operation requires no actual instructions, we can refer
2843 to the value directly in mode MODE, otherwise we must
2844 start with the register in word_mode and explicitly
2845 convert it. */
2846 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2847 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2848 else
2850 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2851 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2853 emit_move_insn (change_address (mem, mode, 0), reg);
2856 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2857 machine must be aligned to the left before storing
2858 to memory. Note that the previous test doesn't
2859 handle all cases (e.g. SIZE == 3). */
2860 else if (size != UNITS_PER_WORD
2861 #ifdef BLOCK_REG_PADDING
2862 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2863 == downward)
2864 #else
2865 && BYTES_BIG_ENDIAN
2866 #endif
2869 rtx tem, x;
2870 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2871 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2873 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2874 tem = change_address (mem, word_mode, 0);
2875 emit_move_insn (tem, x);
2877 else
2878 move_block_from_reg (REGNO (entry_parm), mem,
2879 size_stored / UNITS_PER_WORD);
2881 else
2882 move_block_from_reg (REGNO (entry_parm), mem,
2883 size_stored / UNITS_PER_WORD);
2885 else if (data->stack_parm == 0)
2887 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2888 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2889 BLOCK_OP_NORMAL);
2890 all->first_conversion_insn = get_insns ();
2891 all->last_conversion_insn = get_last_insn ();
2892 end_sequence ();
2895 data->stack_parm = stack_parm;
2896 SET_DECL_RTL (parm, stack_parm);
2899 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2900 parameter. Get it there. Perform all ABI specified conversions. */
2902 static void
2903 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2904 struct assign_parm_data_one *data)
2906 rtx parmreg, validated_mem;
2907 rtx equiv_stack_parm;
2908 enum machine_mode promoted_nominal_mode;
2909 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2910 bool did_conversion = false;
2911 bool need_conversion, moved;
2913 /* Store the parm in a pseudoregister during the function, but we may
2914 need to do it in a wider mode. Using 2 here makes the result
2915 consistent with promote_decl_mode and thus expand_expr_real_1. */
2916 promoted_nominal_mode
2917 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2918 TREE_TYPE (current_function_decl), 2);
2920 parmreg = gen_reg_rtx (promoted_nominal_mode);
2922 if (!DECL_ARTIFICIAL (parm))
2923 mark_user_reg (parmreg);
2925 /* If this was an item that we received a pointer to,
2926 set DECL_RTL appropriately. */
2927 if (data->passed_pointer)
2929 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2930 set_mem_attributes (x, parm, 1);
2931 SET_DECL_RTL (parm, x);
2933 else
2934 SET_DECL_RTL (parm, parmreg);
2936 assign_parm_remove_parallels (data);
2938 /* Copy the value into the register, thus bridging between
2939 assign_parm_find_data_types and expand_expr_real_1. */
2941 equiv_stack_parm = data->stack_parm;
2942 validated_mem = validize_mem (data->entry_parm);
2944 need_conversion = (data->nominal_mode != data->passed_mode
2945 || promoted_nominal_mode != data->promoted_mode);
2946 moved = false;
2948 if (need_conversion
2949 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2950 && data->nominal_mode == data->passed_mode
2951 && data->nominal_mode == GET_MODE (data->entry_parm))
2953 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2954 mode, by the caller. We now have to convert it to
2955 NOMINAL_MODE, if different. However, PARMREG may be in
2956 a different mode than NOMINAL_MODE if it is being stored
2957 promoted.
2959 If ENTRY_PARM is a hard register, it might be in a register
2960 not valid for operating in its mode (e.g., an odd-numbered
2961 register for a DFmode). In that case, moves are the only
2962 thing valid, so we can't do a convert from there. This
2963 occurs when the calling sequence allow such misaligned
2964 usages.
2966 In addition, the conversion may involve a call, which could
2967 clobber parameters which haven't been copied to pseudo
2968 registers yet.
2970 First, we try to emit an insn which performs the necessary
2971 conversion. We verify that this insn does not clobber any
2972 hard registers. */
2974 enum insn_code icode;
2975 rtx op0, op1;
2977 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2978 unsignedp);
2980 op0 = parmreg;
2981 op1 = validated_mem;
2982 if (icode != CODE_FOR_nothing
2983 && insn_operand_matches (icode, 0, op0)
2984 && insn_operand_matches (icode, 1, op1))
2986 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2987 rtx insn, insns, t = op1;
2988 HARD_REG_SET hardregs;
2990 start_sequence ();
2991 /* If op1 is a hard register that is likely spilled, first
2992 force it into a pseudo, otherwise combiner might extend
2993 its lifetime too much. */
2994 if (GET_CODE (t) == SUBREG)
2995 t = SUBREG_REG (t);
2996 if (REG_P (t)
2997 && HARD_REGISTER_P (t)
2998 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
2999 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3001 t = gen_reg_rtx (GET_MODE (op1));
3002 emit_move_insn (t, op1);
3004 else
3005 t = op1;
3006 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3007 data->passed_mode, unsignedp);
3008 emit_insn (insn);
3009 insns = get_insns ();
3011 moved = true;
3012 CLEAR_HARD_REG_SET (hardregs);
3013 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3015 if (INSN_P (insn))
3016 note_stores (PATTERN (insn), record_hard_reg_sets,
3017 &hardregs);
3018 if (!hard_reg_set_empty_p (hardregs))
3019 moved = false;
3022 end_sequence ();
3024 if (moved)
3026 emit_insn (insns);
3027 if (equiv_stack_parm != NULL_RTX)
3028 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3029 equiv_stack_parm);
3034 if (moved)
3035 /* Nothing to do. */
3037 else if (need_conversion)
3039 /* We did not have an insn to convert directly, or the sequence
3040 generated appeared unsafe. We must first copy the parm to a
3041 pseudo reg, and save the conversion until after all
3042 parameters have been moved. */
3044 int save_tree_used;
3045 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3047 emit_move_insn (tempreg, validated_mem);
3049 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3050 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3052 if (GET_CODE (tempreg) == SUBREG
3053 && GET_MODE (tempreg) == data->nominal_mode
3054 && REG_P (SUBREG_REG (tempreg))
3055 && data->nominal_mode == data->passed_mode
3056 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3057 && GET_MODE_SIZE (GET_MODE (tempreg))
3058 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3060 /* The argument is already sign/zero extended, so note it
3061 into the subreg. */
3062 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3063 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3066 /* TREE_USED gets set erroneously during expand_assignment. */
3067 save_tree_used = TREE_USED (parm);
3068 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3069 TREE_USED (parm) = save_tree_used;
3070 all->first_conversion_insn = get_insns ();
3071 all->last_conversion_insn = get_last_insn ();
3072 end_sequence ();
3074 did_conversion = true;
3076 else
3077 emit_move_insn (parmreg, validated_mem);
3079 /* If we were passed a pointer but the actual value can safely live
3080 in a register, put it in one. */
3081 if (data->passed_pointer
3082 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3083 /* If by-reference argument was promoted, demote it. */
3084 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3085 || use_register_for_decl (parm)))
3087 /* We can't use nominal_mode, because it will have been set to
3088 Pmode above. We must use the actual mode of the parm. */
3089 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3090 mark_user_reg (parmreg);
3092 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3094 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3095 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3097 push_to_sequence2 (all->first_conversion_insn,
3098 all->last_conversion_insn);
3099 emit_move_insn (tempreg, DECL_RTL (parm));
3100 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3101 emit_move_insn (parmreg, tempreg);
3102 all->first_conversion_insn = get_insns ();
3103 all->last_conversion_insn = get_last_insn ();
3104 end_sequence ();
3106 did_conversion = true;
3108 else
3109 emit_move_insn (parmreg, DECL_RTL (parm));
3111 SET_DECL_RTL (parm, parmreg);
3113 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3114 now the parm. */
3115 data->stack_parm = NULL;
3118 /* Mark the register as eliminable if we did no conversion and it was
3119 copied from memory at a fixed offset, and the arg pointer was not
3120 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3121 offset formed an invalid address, such memory-equivalences as we
3122 make here would screw up life analysis for it. */
3123 if (data->nominal_mode == data->passed_mode
3124 && !did_conversion
3125 && data->stack_parm != 0
3126 && MEM_P (data->stack_parm)
3127 && data->locate.offset.var == 0
3128 && reg_mentioned_p (virtual_incoming_args_rtx,
3129 XEXP (data->stack_parm, 0)))
3131 rtx linsn = get_last_insn ();
3132 rtx sinsn, set;
3134 /* Mark complex types separately. */
3135 if (GET_CODE (parmreg) == CONCAT)
3137 enum machine_mode submode
3138 = GET_MODE_INNER (GET_MODE (parmreg));
3139 int regnor = REGNO (XEXP (parmreg, 0));
3140 int regnoi = REGNO (XEXP (parmreg, 1));
3141 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3142 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3143 GET_MODE_SIZE (submode));
3145 /* Scan backwards for the set of the real and
3146 imaginary parts. */
3147 for (sinsn = linsn; sinsn != 0;
3148 sinsn = prev_nonnote_insn (sinsn))
3150 set = single_set (sinsn);
3151 if (set == 0)
3152 continue;
3154 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3155 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3156 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3157 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3160 else
3161 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3164 /* For pointer data type, suggest pointer register. */
3165 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3166 mark_reg_pointer (parmreg,
3167 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3170 /* A subroutine of assign_parms. Allocate stack space to hold the current
3171 parameter. Get it there. Perform all ABI specified conversions. */
3173 static void
3174 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3175 struct assign_parm_data_one *data)
3177 /* Value must be stored in the stack slot STACK_PARM during function
3178 execution. */
3179 bool to_conversion = false;
3181 assign_parm_remove_parallels (data);
3183 if (data->promoted_mode != data->nominal_mode)
3185 /* Conversion is required. */
3186 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3188 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3190 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3191 to_conversion = true;
3193 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3194 TYPE_UNSIGNED (TREE_TYPE (parm)));
3196 if (data->stack_parm)
3198 int offset = subreg_lowpart_offset (data->nominal_mode,
3199 GET_MODE (data->stack_parm));
3200 /* ??? This may need a big-endian conversion on sparc64. */
3201 data->stack_parm
3202 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3203 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3204 set_mem_offset (data->stack_parm,
3205 MEM_OFFSET (data->stack_parm) + offset);
3209 if (data->entry_parm != data->stack_parm)
3211 rtx src, dest;
3213 if (data->stack_parm == 0)
3215 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3216 GET_MODE (data->entry_parm),
3217 TYPE_ALIGN (data->passed_type));
3218 data->stack_parm
3219 = assign_stack_local (GET_MODE (data->entry_parm),
3220 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3221 align);
3222 set_mem_attributes (data->stack_parm, parm, 1);
3225 dest = validize_mem (data->stack_parm);
3226 src = validize_mem (data->entry_parm);
3228 if (MEM_P (src))
3230 /* Use a block move to handle potentially misaligned entry_parm. */
3231 if (!to_conversion)
3232 push_to_sequence2 (all->first_conversion_insn,
3233 all->last_conversion_insn);
3234 to_conversion = true;
3236 emit_block_move (dest, src,
3237 GEN_INT (int_size_in_bytes (data->passed_type)),
3238 BLOCK_OP_NORMAL);
3240 else
3241 emit_move_insn (dest, src);
3244 if (to_conversion)
3246 all->first_conversion_insn = get_insns ();
3247 all->last_conversion_insn = get_last_insn ();
3248 end_sequence ();
3251 SET_DECL_RTL (parm, data->stack_parm);
3254 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3255 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3257 static void
3258 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3259 vec<tree> fnargs)
3261 tree parm;
3262 tree orig_fnargs = all->orig_fnargs;
3263 unsigned i = 0;
3265 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3267 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3268 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3270 rtx tmp, real, imag;
3271 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3273 real = DECL_RTL (fnargs[i]);
3274 imag = DECL_RTL (fnargs[i + 1]);
3275 if (inner != GET_MODE (real))
3277 real = gen_lowpart_SUBREG (inner, real);
3278 imag = gen_lowpart_SUBREG (inner, imag);
3281 if (TREE_ADDRESSABLE (parm))
3283 rtx rmem, imem;
3284 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3285 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3286 DECL_MODE (parm),
3287 TYPE_ALIGN (TREE_TYPE (parm)));
3289 /* split_complex_arg put the real and imag parts in
3290 pseudos. Move them to memory. */
3291 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3292 set_mem_attributes (tmp, parm, 1);
3293 rmem = adjust_address_nv (tmp, inner, 0);
3294 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3295 push_to_sequence2 (all->first_conversion_insn,
3296 all->last_conversion_insn);
3297 emit_move_insn (rmem, real);
3298 emit_move_insn (imem, imag);
3299 all->first_conversion_insn = get_insns ();
3300 all->last_conversion_insn = get_last_insn ();
3301 end_sequence ();
3303 else
3304 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3305 SET_DECL_RTL (parm, tmp);
3307 real = DECL_INCOMING_RTL (fnargs[i]);
3308 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3309 if (inner != GET_MODE (real))
3311 real = gen_lowpart_SUBREG (inner, real);
3312 imag = gen_lowpart_SUBREG (inner, imag);
3314 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3315 set_decl_incoming_rtl (parm, tmp, false);
3316 i++;
3321 /* Assign RTL expressions to the function's parameters. This may involve
3322 copying them into registers and using those registers as the DECL_RTL. */
3324 static void
3325 assign_parms (tree fndecl)
3327 struct assign_parm_data_all all;
3328 tree parm;
3329 vec<tree> fnargs;
3330 unsigned i;
3332 crtl->args.internal_arg_pointer
3333 = targetm.calls.internal_arg_pointer ();
3335 assign_parms_initialize_all (&all);
3336 fnargs = assign_parms_augmented_arg_list (&all);
3338 FOR_EACH_VEC_ELT (fnargs, i, parm)
3340 struct assign_parm_data_one data;
3342 /* Extract the type of PARM; adjust it according to ABI. */
3343 assign_parm_find_data_types (&all, parm, &data);
3345 /* Early out for errors and void parameters. */
3346 if (data.passed_mode == VOIDmode)
3348 SET_DECL_RTL (parm, const0_rtx);
3349 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3350 continue;
3353 /* Estimate stack alignment from parameter alignment. */
3354 if (SUPPORTS_STACK_ALIGNMENT)
3356 unsigned int align
3357 = targetm.calls.function_arg_boundary (data.promoted_mode,
3358 data.passed_type);
3359 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3360 align);
3361 if (TYPE_ALIGN (data.nominal_type) > align)
3362 align = MINIMUM_ALIGNMENT (data.nominal_type,
3363 TYPE_MODE (data.nominal_type),
3364 TYPE_ALIGN (data.nominal_type));
3365 if (crtl->stack_alignment_estimated < align)
3367 gcc_assert (!crtl->stack_realign_processed);
3368 crtl->stack_alignment_estimated = align;
3372 if (cfun->stdarg && !DECL_CHAIN (parm))
3373 assign_parms_setup_varargs (&all, &data, false);
3375 /* Find out where the parameter arrives in this function. */
3376 assign_parm_find_entry_rtl (&all, &data);
3378 /* Find out where stack space for this parameter might be. */
3379 if (assign_parm_is_stack_parm (&all, &data))
3381 assign_parm_find_stack_rtl (parm, &data);
3382 assign_parm_adjust_entry_rtl (&data);
3385 /* Record permanently how this parm was passed. */
3386 if (data.passed_pointer)
3388 rtx incoming_rtl
3389 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3390 data.entry_parm);
3391 set_decl_incoming_rtl (parm, incoming_rtl, true);
3393 else
3394 set_decl_incoming_rtl (parm, data.entry_parm, false);
3396 /* Update info on where next arg arrives in registers. */
3397 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3398 data.passed_type, data.named_arg);
3400 assign_parm_adjust_stack_rtl (&data);
3402 if (assign_parm_setup_block_p (&data))
3403 assign_parm_setup_block (&all, parm, &data);
3404 else if (data.passed_pointer || use_register_for_decl (parm))
3405 assign_parm_setup_reg (&all, parm, &data);
3406 else
3407 assign_parm_setup_stack (&all, parm, &data);
3410 if (targetm.calls.split_complex_arg)
3411 assign_parms_unsplit_complex (&all, fnargs);
3413 fnargs.release ();
3415 /* Output all parameter conversion instructions (possibly including calls)
3416 now that all parameters have been copied out of hard registers. */
3417 emit_insn (all.first_conversion_insn);
3419 /* Estimate reload stack alignment from scalar return mode. */
3420 if (SUPPORTS_STACK_ALIGNMENT)
3422 if (DECL_RESULT (fndecl))
3424 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3425 enum machine_mode mode = TYPE_MODE (type);
3427 if (mode != BLKmode
3428 && mode != VOIDmode
3429 && !AGGREGATE_TYPE_P (type))
3431 unsigned int align = GET_MODE_ALIGNMENT (mode);
3432 if (crtl->stack_alignment_estimated < align)
3434 gcc_assert (!crtl->stack_realign_processed);
3435 crtl->stack_alignment_estimated = align;
3441 /* If we are receiving a struct value address as the first argument, set up
3442 the RTL for the function result. As this might require code to convert
3443 the transmitted address to Pmode, we do this here to ensure that possible
3444 preliminary conversions of the address have been emitted already. */
3445 if (all.function_result_decl)
3447 tree result = DECL_RESULT (current_function_decl);
3448 rtx addr = DECL_RTL (all.function_result_decl);
3449 rtx x;
3451 if (DECL_BY_REFERENCE (result))
3453 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3454 x = addr;
3456 else
3458 SET_DECL_VALUE_EXPR (result,
3459 build1 (INDIRECT_REF, TREE_TYPE (result),
3460 all.function_result_decl));
3461 addr = convert_memory_address (Pmode, addr);
3462 x = gen_rtx_MEM (DECL_MODE (result), addr);
3463 set_mem_attributes (x, result, 1);
3466 DECL_HAS_VALUE_EXPR_P (result) = 1;
3468 SET_DECL_RTL (result, x);
3471 /* We have aligned all the args, so add space for the pretend args. */
3472 crtl->args.pretend_args_size = all.pretend_args_size;
3473 all.stack_args_size.constant += all.extra_pretend_bytes;
3474 crtl->args.size = all.stack_args_size.constant;
3476 /* Adjust function incoming argument size for alignment and
3477 minimum length. */
3479 #ifdef REG_PARM_STACK_SPACE
3480 crtl->args.size = MAX (crtl->args.size,
3481 REG_PARM_STACK_SPACE (fndecl));
3482 #endif
3484 crtl->args.size = CEIL_ROUND (crtl->args.size,
3485 PARM_BOUNDARY / BITS_PER_UNIT);
3487 #ifdef ARGS_GROW_DOWNWARD
3488 crtl->args.arg_offset_rtx
3489 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3490 : expand_expr (size_diffop (all.stack_args_size.var,
3491 size_int (-all.stack_args_size.constant)),
3492 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3493 #else
3494 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3495 #endif
3497 /* See how many bytes, if any, of its args a function should try to pop
3498 on return. */
3500 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3501 TREE_TYPE (fndecl),
3502 crtl->args.size);
3504 /* For stdarg.h function, save info about
3505 regs and stack space used by the named args. */
3507 crtl->args.info = all.args_so_far_v;
3509 /* Set the rtx used for the function return value. Put this in its
3510 own variable so any optimizers that need this information don't have
3511 to include tree.h. Do this here so it gets done when an inlined
3512 function gets output. */
3514 crtl->return_rtx
3515 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3516 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3518 /* If scalar return value was computed in a pseudo-reg, or was a named
3519 return value that got dumped to the stack, copy that to the hard
3520 return register. */
3521 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3523 tree decl_result = DECL_RESULT (fndecl);
3524 rtx decl_rtl = DECL_RTL (decl_result);
3526 if (REG_P (decl_rtl)
3527 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3528 : DECL_REGISTER (decl_result))
3530 rtx real_decl_rtl;
3532 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3533 fndecl, true);
3534 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3535 /* The delay slot scheduler assumes that crtl->return_rtx
3536 holds the hard register containing the return value, not a
3537 temporary pseudo. */
3538 crtl->return_rtx = real_decl_rtl;
3543 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3544 For all seen types, gimplify their sizes. */
3546 static tree
3547 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3549 tree t = *tp;
3551 *walk_subtrees = 0;
3552 if (TYPE_P (t))
3554 if (POINTER_TYPE_P (t))
3555 *walk_subtrees = 1;
3556 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3557 && !TYPE_SIZES_GIMPLIFIED (t))
3559 gimplify_type_sizes (t, (gimple_seq *) data);
3560 *walk_subtrees = 1;
3564 return NULL;
3567 /* Gimplify the parameter list for current_function_decl. This involves
3568 evaluating SAVE_EXPRs of variable sized parameters and generating code
3569 to implement callee-copies reference parameters. Returns a sequence of
3570 statements to add to the beginning of the function. */
3572 gimple_seq
3573 gimplify_parameters (void)
3575 struct assign_parm_data_all all;
3576 tree parm;
3577 gimple_seq stmts = NULL;
3578 vec<tree> fnargs;
3579 unsigned i;
3581 assign_parms_initialize_all (&all);
3582 fnargs = assign_parms_augmented_arg_list (&all);
3584 FOR_EACH_VEC_ELT (fnargs, i, parm)
3586 struct assign_parm_data_one data;
3588 /* Extract the type of PARM; adjust it according to ABI. */
3589 assign_parm_find_data_types (&all, parm, &data);
3591 /* Early out for errors and void parameters. */
3592 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3593 continue;
3595 /* Update info on where next arg arrives in registers. */
3596 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3597 data.passed_type, data.named_arg);
3599 /* ??? Once upon a time variable_size stuffed parameter list
3600 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3601 turned out to be less than manageable in the gimple world.
3602 Now we have to hunt them down ourselves. */
3603 walk_tree_without_duplicates (&data.passed_type,
3604 gimplify_parm_type, &stmts);
3606 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3608 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3609 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3612 if (data.passed_pointer)
3614 tree type = TREE_TYPE (data.passed_type);
3615 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3616 type, data.named_arg))
3618 tree local, t;
3620 /* For constant-sized objects, this is trivial; for
3621 variable-sized objects, we have to play games. */
3622 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3623 && !(flag_stack_check == GENERIC_STACK_CHECK
3624 && compare_tree_int (DECL_SIZE_UNIT (parm),
3625 STACK_CHECK_MAX_VAR_SIZE) > 0))
3627 local = create_tmp_var (type, get_name (parm));
3628 DECL_IGNORED_P (local) = 0;
3629 /* If PARM was addressable, move that flag over
3630 to the local copy, as its address will be taken,
3631 not the PARMs. Keep the parms address taken
3632 as we'll query that flag during gimplification. */
3633 if (TREE_ADDRESSABLE (parm))
3634 TREE_ADDRESSABLE (local) = 1;
3635 else if (TREE_CODE (type) == COMPLEX_TYPE
3636 || TREE_CODE (type) == VECTOR_TYPE)
3637 DECL_GIMPLE_REG_P (local) = 1;
3639 else
3641 tree ptr_type, addr;
3643 ptr_type = build_pointer_type (type);
3644 addr = create_tmp_reg (ptr_type, get_name (parm));
3645 DECL_IGNORED_P (addr) = 0;
3646 local = build_fold_indirect_ref (addr);
3648 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3649 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3650 size_int (DECL_ALIGN (parm)));
3652 /* The call has been built for a variable-sized object. */
3653 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3654 t = fold_convert (ptr_type, t);
3655 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3656 gimplify_and_add (t, &stmts);
3659 gimplify_assign (local, parm, &stmts);
3661 SET_DECL_VALUE_EXPR (parm, local);
3662 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3667 fnargs.release ();
3669 return stmts;
3672 /* Compute the size and offset from the start of the stacked arguments for a
3673 parm passed in mode PASSED_MODE and with type TYPE.
3675 INITIAL_OFFSET_PTR points to the current offset into the stacked
3676 arguments.
3678 The starting offset and size for this parm are returned in
3679 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3680 nonzero, the offset is that of stack slot, which is returned in
3681 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3682 padding required from the initial offset ptr to the stack slot.
3684 IN_REGS is nonzero if the argument will be passed in registers. It will
3685 never be set if REG_PARM_STACK_SPACE is not defined.
3687 FNDECL is the function in which the argument was defined.
3689 There are two types of rounding that are done. The first, controlled by
3690 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3691 argument list to be aligned to the specific boundary (in bits). This
3692 rounding affects the initial and starting offsets, but not the argument
3693 size.
3695 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3696 optionally rounds the size of the parm to PARM_BOUNDARY. The
3697 initial offset is not affected by this rounding, while the size always
3698 is and the starting offset may be. */
3700 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3701 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3702 callers pass in the total size of args so far as
3703 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3705 void
3706 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3707 int partial, tree fndecl ATTRIBUTE_UNUSED,
3708 struct args_size *initial_offset_ptr,
3709 struct locate_and_pad_arg_data *locate)
3711 tree sizetree;
3712 enum direction where_pad;
3713 unsigned int boundary, round_boundary;
3714 int reg_parm_stack_space = 0;
3715 int part_size_in_regs;
3717 #ifdef REG_PARM_STACK_SPACE
3718 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3720 /* If we have found a stack parm before we reach the end of the
3721 area reserved for registers, skip that area. */
3722 if (! in_regs)
3724 if (reg_parm_stack_space > 0)
3726 if (initial_offset_ptr->var)
3728 initial_offset_ptr->var
3729 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3730 ssize_int (reg_parm_stack_space));
3731 initial_offset_ptr->constant = 0;
3733 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3734 initial_offset_ptr->constant = reg_parm_stack_space;
3737 #endif /* REG_PARM_STACK_SPACE */
3739 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3741 sizetree
3742 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3743 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3744 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3745 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3746 type);
3747 locate->where_pad = where_pad;
3749 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3750 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3751 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3753 locate->boundary = boundary;
3755 if (SUPPORTS_STACK_ALIGNMENT)
3757 /* stack_alignment_estimated can't change after stack has been
3758 realigned. */
3759 if (crtl->stack_alignment_estimated < boundary)
3761 if (!crtl->stack_realign_processed)
3762 crtl->stack_alignment_estimated = boundary;
3763 else
3765 /* If stack is realigned and stack alignment value
3766 hasn't been finalized, it is OK not to increase
3767 stack_alignment_estimated. The bigger alignment
3768 requirement is recorded in stack_alignment_needed
3769 below. */
3770 gcc_assert (!crtl->stack_realign_finalized
3771 && crtl->stack_realign_needed);
3776 /* Remember if the outgoing parameter requires extra alignment on the
3777 calling function side. */
3778 if (crtl->stack_alignment_needed < boundary)
3779 crtl->stack_alignment_needed = boundary;
3780 if (crtl->preferred_stack_boundary < boundary)
3781 crtl->preferred_stack_boundary = boundary;
3783 #ifdef ARGS_GROW_DOWNWARD
3784 locate->slot_offset.constant = -initial_offset_ptr->constant;
3785 if (initial_offset_ptr->var)
3786 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3787 initial_offset_ptr->var);
3790 tree s2 = sizetree;
3791 if (where_pad != none
3792 && (!host_integerp (sizetree, 1)
3793 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3794 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3795 SUB_PARM_SIZE (locate->slot_offset, s2);
3798 locate->slot_offset.constant += part_size_in_regs;
3800 if (!in_regs
3801 #ifdef REG_PARM_STACK_SPACE
3802 || REG_PARM_STACK_SPACE (fndecl) > 0
3803 #endif
3805 pad_to_arg_alignment (&locate->slot_offset, boundary,
3806 &locate->alignment_pad);
3808 locate->size.constant = (-initial_offset_ptr->constant
3809 - locate->slot_offset.constant);
3810 if (initial_offset_ptr->var)
3811 locate->size.var = size_binop (MINUS_EXPR,
3812 size_binop (MINUS_EXPR,
3813 ssize_int (0),
3814 initial_offset_ptr->var),
3815 locate->slot_offset.var);
3817 /* Pad_below needs the pre-rounded size to know how much to pad
3818 below. */
3819 locate->offset = locate->slot_offset;
3820 if (where_pad == downward)
3821 pad_below (&locate->offset, passed_mode, sizetree);
3823 #else /* !ARGS_GROW_DOWNWARD */
3824 if (!in_regs
3825 #ifdef REG_PARM_STACK_SPACE
3826 || REG_PARM_STACK_SPACE (fndecl) > 0
3827 #endif
3829 pad_to_arg_alignment (initial_offset_ptr, boundary,
3830 &locate->alignment_pad);
3831 locate->slot_offset = *initial_offset_ptr;
3833 #ifdef PUSH_ROUNDING
3834 if (passed_mode != BLKmode)
3835 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3836 #endif
3838 /* Pad_below needs the pre-rounded size to know how much to pad below
3839 so this must be done before rounding up. */
3840 locate->offset = locate->slot_offset;
3841 if (where_pad == downward)
3842 pad_below (&locate->offset, passed_mode, sizetree);
3844 if (where_pad != none
3845 && (!host_integerp (sizetree, 1)
3846 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3847 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3849 ADD_PARM_SIZE (locate->size, sizetree);
3851 locate->size.constant -= part_size_in_regs;
3852 #endif /* ARGS_GROW_DOWNWARD */
3854 #ifdef FUNCTION_ARG_OFFSET
3855 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3856 #endif
3859 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3860 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3862 static void
3863 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3864 struct args_size *alignment_pad)
3866 tree save_var = NULL_TREE;
3867 HOST_WIDE_INT save_constant = 0;
3868 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3869 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3871 #ifdef SPARC_STACK_BOUNDARY_HACK
3872 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3873 the real alignment of %sp. However, when it does this, the
3874 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3875 if (SPARC_STACK_BOUNDARY_HACK)
3876 sp_offset = 0;
3877 #endif
3879 if (boundary > PARM_BOUNDARY)
3881 save_var = offset_ptr->var;
3882 save_constant = offset_ptr->constant;
3885 alignment_pad->var = NULL_TREE;
3886 alignment_pad->constant = 0;
3888 if (boundary > BITS_PER_UNIT)
3890 if (offset_ptr->var)
3892 tree sp_offset_tree = ssize_int (sp_offset);
3893 tree offset = size_binop (PLUS_EXPR,
3894 ARGS_SIZE_TREE (*offset_ptr),
3895 sp_offset_tree);
3896 #ifdef ARGS_GROW_DOWNWARD
3897 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3898 #else
3899 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3900 #endif
3902 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3903 /* ARGS_SIZE_TREE includes constant term. */
3904 offset_ptr->constant = 0;
3905 if (boundary > PARM_BOUNDARY)
3906 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3907 save_var);
3909 else
3911 offset_ptr->constant = -sp_offset +
3912 #ifdef ARGS_GROW_DOWNWARD
3913 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3914 #else
3915 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3916 #endif
3917 if (boundary > PARM_BOUNDARY)
3918 alignment_pad->constant = offset_ptr->constant - save_constant;
3923 static void
3924 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3926 if (passed_mode != BLKmode)
3928 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3929 offset_ptr->constant
3930 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3931 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3932 - GET_MODE_SIZE (passed_mode));
3934 else
3936 if (TREE_CODE (sizetree) != INTEGER_CST
3937 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3939 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3940 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3941 /* Add it in. */
3942 ADD_PARM_SIZE (*offset_ptr, s2);
3943 SUB_PARM_SIZE (*offset_ptr, sizetree);
3949 /* True if register REGNO was alive at a place where `setjmp' was
3950 called and was set more than once or is an argument. Such regs may
3951 be clobbered by `longjmp'. */
3953 static bool
3954 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3956 /* There appear to be cases where some local vars never reach the
3957 backend but have bogus regnos. */
3958 if (regno >= max_reg_num ())
3959 return false;
3961 return ((REG_N_SETS (regno) > 1
3962 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3963 && REGNO_REG_SET_P (setjmp_crosses, regno));
3966 /* Walk the tree of blocks describing the binding levels within a
3967 function and warn about variables the might be killed by setjmp or
3968 vfork. This is done after calling flow_analysis before register
3969 allocation since that will clobber the pseudo-regs to hard
3970 regs. */
3972 static void
3973 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3975 tree decl, sub;
3977 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3979 if (TREE_CODE (decl) == VAR_DECL
3980 && DECL_RTL_SET_P (decl)
3981 && REG_P (DECL_RTL (decl))
3982 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3983 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3984 " %<longjmp%> or %<vfork%>", decl);
3987 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3988 setjmp_vars_warning (setjmp_crosses, sub);
3991 /* Do the appropriate part of setjmp_vars_warning
3992 but for arguments instead of local variables. */
3994 static void
3995 setjmp_args_warning (bitmap setjmp_crosses)
3997 tree decl;
3998 for (decl = DECL_ARGUMENTS (current_function_decl);
3999 decl; decl = DECL_CHAIN (decl))
4000 if (DECL_RTL (decl) != 0
4001 && REG_P (DECL_RTL (decl))
4002 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4003 warning (OPT_Wclobbered,
4004 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4005 decl);
4008 /* Generate warning messages for variables live across setjmp. */
4010 void
4011 generate_setjmp_warnings (void)
4013 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4015 if (n_basic_blocks == NUM_FIXED_BLOCKS
4016 || bitmap_empty_p (setjmp_crosses))
4017 return;
4019 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4020 setjmp_args_warning (setjmp_crosses);
4024 /* Reverse the order of elements in the fragment chain T of blocks,
4025 and return the new head of the chain (old last element).
4026 In addition to that clear BLOCK_SAME_RANGE flags when needed
4027 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4028 its super fragment origin. */
4030 static tree
4031 block_fragments_nreverse (tree t)
4033 tree prev = 0, block, next, prev_super = 0;
4034 tree super = BLOCK_SUPERCONTEXT (t);
4035 if (BLOCK_FRAGMENT_ORIGIN (super))
4036 super = BLOCK_FRAGMENT_ORIGIN (super);
4037 for (block = t; block; block = next)
4039 next = BLOCK_FRAGMENT_CHAIN (block);
4040 BLOCK_FRAGMENT_CHAIN (block) = prev;
4041 if ((prev && !BLOCK_SAME_RANGE (prev))
4042 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4043 != prev_super))
4044 BLOCK_SAME_RANGE (block) = 0;
4045 prev_super = BLOCK_SUPERCONTEXT (block);
4046 BLOCK_SUPERCONTEXT (block) = super;
4047 prev = block;
4049 t = BLOCK_FRAGMENT_ORIGIN (t);
4050 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4051 != prev_super)
4052 BLOCK_SAME_RANGE (t) = 0;
4053 BLOCK_SUPERCONTEXT (t) = super;
4054 return prev;
4057 /* Reverse the order of elements in the chain T of blocks,
4058 and return the new head of the chain (old last element).
4059 Also do the same on subblocks and reverse the order of elements
4060 in BLOCK_FRAGMENT_CHAIN as well. */
4062 static tree
4063 blocks_nreverse_all (tree t)
4065 tree prev = 0, block, next;
4066 for (block = t; block; block = next)
4068 next = BLOCK_CHAIN (block);
4069 BLOCK_CHAIN (block) = prev;
4070 if (BLOCK_FRAGMENT_CHAIN (block)
4071 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4073 BLOCK_FRAGMENT_CHAIN (block)
4074 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4075 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4076 BLOCK_SAME_RANGE (block) = 0;
4078 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4079 prev = block;
4081 return prev;
4085 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4086 and create duplicate blocks. */
4087 /* ??? Need an option to either create block fragments or to create
4088 abstract origin duplicates of a source block. It really depends
4089 on what optimization has been performed. */
4091 void
4092 reorder_blocks (void)
4094 tree block = DECL_INITIAL (current_function_decl);
4095 vec<tree> block_stack;
4097 if (block == NULL_TREE)
4098 return;
4100 block_stack.create (10);
4102 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4103 clear_block_marks (block);
4105 /* Prune the old trees away, so that they don't get in the way. */
4106 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4107 BLOCK_CHAIN (block) = NULL_TREE;
4109 /* Recreate the block tree from the note nesting. */
4110 reorder_blocks_1 (get_insns (), block, &block_stack);
4111 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4113 block_stack.release ();
4116 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4118 void
4119 clear_block_marks (tree block)
4121 while (block)
4123 TREE_ASM_WRITTEN (block) = 0;
4124 clear_block_marks (BLOCK_SUBBLOCKS (block));
4125 block = BLOCK_CHAIN (block);
4129 static void
4130 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4132 rtx insn;
4133 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4135 for (insn = insns; insn; insn = NEXT_INSN (insn))
4137 if (NOTE_P (insn))
4139 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4141 tree block = NOTE_BLOCK (insn);
4142 tree origin;
4144 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4145 origin = block;
4147 if (prev_end)
4148 BLOCK_SAME_RANGE (prev_end) = 0;
4149 prev_end = NULL_TREE;
4151 /* If we have seen this block before, that means it now
4152 spans multiple address regions. Create a new fragment. */
4153 if (TREE_ASM_WRITTEN (block))
4155 tree new_block = copy_node (block);
4157 BLOCK_SAME_RANGE (new_block) = 0;
4158 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4159 BLOCK_FRAGMENT_CHAIN (new_block)
4160 = BLOCK_FRAGMENT_CHAIN (origin);
4161 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4163 NOTE_BLOCK (insn) = new_block;
4164 block = new_block;
4167 if (prev_beg == current_block && prev_beg)
4168 BLOCK_SAME_RANGE (block) = 1;
4170 prev_beg = origin;
4172 BLOCK_SUBBLOCKS (block) = 0;
4173 TREE_ASM_WRITTEN (block) = 1;
4174 /* When there's only one block for the entire function,
4175 current_block == block and we mustn't do this, it
4176 will cause infinite recursion. */
4177 if (block != current_block)
4179 tree super;
4180 if (block != origin)
4181 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4182 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4183 (origin))
4184 == current_block);
4185 if (p_block_stack->is_empty ())
4186 super = current_block;
4187 else
4189 super = p_block_stack->last ();
4190 gcc_assert (super == current_block
4191 || BLOCK_FRAGMENT_ORIGIN (super)
4192 == current_block);
4194 BLOCK_SUPERCONTEXT (block) = super;
4195 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4196 BLOCK_SUBBLOCKS (current_block) = block;
4197 current_block = origin;
4199 p_block_stack->safe_push (block);
4201 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4203 NOTE_BLOCK (insn) = p_block_stack->pop ();
4204 current_block = BLOCK_SUPERCONTEXT (current_block);
4205 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4206 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4207 prev_beg = NULL_TREE;
4208 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4209 ? NOTE_BLOCK (insn) : NULL_TREE;
4212 else
4214 prev_beg = NULL_TREE;
4215 if (prev_end)
4216 BLOCK_SAME_RANGE (prev_end) = 0;
4217 prev_end = NULL_TREE;
4222 /* Reverse the order of elements in the chain T of blocks,
4223 and return the new head of the chain (old last element). */
4225 tree
4226 blocks_nreverse (tree t)
4228 tree prev = 0, block, next;
4229 for (block = t; block; block = next)
4231 next = BLOCK_CHAIN (block);
4232 BLOCK_CHAIN (block) = prev;
4233 prev = block;
4235 return prev;
4238 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4239 by modifying the last node in chain 1 to point to chain 2. */
4241 tree
4242 block_chainon (tree op1, tree op2)
4244 tree t1;
4246 if (!op1)
4247 return op2;
4248 if (!op2)
4249 return op1;
4251 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4252 continue;
4253 BLOCK_CHAIN (t1) = op2;
4255 #ifdef ENABLE_TREE_CHECKING
4257 tree t2;
4258 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4259 gcc_assert (t2 != t1);
4261 #endif
4263 return op1;
4266 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4267 non-NULL, list them all into VECTOR, in a depth-first preorder
4268 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4269 blocks. */
4271 static int
4272 all_blocks (tree block, tree *vector)
4274 int n_blocks = 0;
4276 while (block)
4278 TREE_ASM_WRITTEN (block) = 0;
4280 /* Record this block. */
4281 if (vector)
4282 vector[n_blocks] = block;
4284 ++n_blocks;
4286 /* Record the subblocks, and their subblocks... */
4287 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4288 vector ? vector + n_blocks : 0);
4289 block = BLOCK_CHAIN (block);
4292 return n_blocks;
4295 /* Return a vector containing all the blocks rooted at BLOCK. The
4296 number of elements in the vector is stored in N_BLOCKS_P. The
4297 vector is dynamically allocated; it is the caller's responsibility
4298 to call `free' on the pointer returned. */
4300 static tree *
4301 get_block_vector (tree block, int *n_blocks_p)
4303 tree *block_vector;
4305 *n_blocks_p = all_blocks (block, NULL);
4306 block_vector = XNEWVEC (tree, *n_blocks_p);
4307 all_blocks (block, block_vector);
4309 return block_vector;
4312 static GTY(()) int next_block_index = 2;
4314 /* Set BLOCK_NUMBER for all the blocks in FN. */
4316 void
4317 number_blocks (tree fn)
4319 int i;
4320 int n_blocks;
4321 tree *block_vector;
4323 /* For SDB and XCOFF debugging output, we start numbering the blocks
4324 from 1 within each function, rather than keeping a running
4325 count. */
4326 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4327 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4328 next_block_index = 1;
4329 #endif
4331 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4333 /* The top-level BLOCK isn't numbered at all. */
4334 for (i = 1; i < n_blocks; ++i)
4335 /* We number the blocks from two. */
4336 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4338 free (block_vector);
4340 return;
4343 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4345 DEBUG_FUNCTION tree
4346 debug_find_var_in_block_tree (tree var, tree block)
4348 tree t;
4350 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4351 if (t == var)
4352 return block;
4354 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4356 tree ret = debug_find_var_in_block_tree (var, t);
4357 if (ret)
4358 return ret;
4361 return NULL_TREE;
4364 /* Keep track of whether we're in a dummy function context. If we are,
4365 we don't want to invoke the set_current_function hook, because we'll
4366 get into trouble if the hook calls target_reinit () recursively or
4367 when the initial initialization is not yet complete. */
4369 static bool in_dummy_function;
4371 /* Invoke the target hook when setting cfun. Update the optimization options
4372 if the function uses different options than the default. */
4374 static void
4375 invoke_set_current_function_hook (tree fndecl)
4377 if (!in_dummy_function)
4379 tree opts = ((fndecl)
4380 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4381 : optimization_default_node);
4383 if (!opts)
4384 opts = optimization_default_node;
4386 /* Change optimization options if needed. */
4387 if (optimization_current_node != opts)
4389 optimization_current_node = opts;
4390 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4393 targetm.set_current_function (fndecl);
4397 /* cfun should never be set directly; use this function. */
4399 void
4400 set_cfun (struct function *new_cfun)
4402 if (cfun != new_cfun)
4404 cfun = new_cfun;
4405 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4409 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4411 static vec<function_p> cfun_stack;
4413 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4414 current_function_decl accordingly. */
4416 void
4417 push_cfun (struct function *new_cfun)
4419 gcc_assert ((!cfun && !current_function_decl)
4420 || (cfun && current_function_decl == cfun->decl));
4421 cfun_stack.safe_push (cfun);
4422 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4423 set_cfun (new_cfun);
4426 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4428 void
4429 pop_cfun (void)
4431 struct function *new_cfun = cfun_stack.pop ();
4432 /* When in_dummy_function, we do have a cfun but current_function_decl is
4433 NULL. We also allow pushing NULL cfun and subsequently changing
4434 current_function_decl to something else and have both restored by
4435 pop_cfun. */
4436 gcc_checking_assert (in_dummy_function
4437 || !cfun
4438 || current_function_decl == cfun->decl);
4439 set_cfun (new_cfun);
4440 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4443 /* Return value of funcdef and increase it. */
4445 get_next_funcdef_no (void)
4447 return funcdef_no++;
4450 /* Return value of funcdef. */
4452 get_last_funcdef_no (void)
4454 return funcdef_no;
4457 /* Allocate a function structure for FNDECL and set its contents
4458 to the defaults. Set cfun to the newly-allocated object.
4459 Some of the helper functions invoked during initialization assume
4460 that cfun has already been set. Therefore, assign the new object
4461 directly into cfun and invoke the back end hook explicitly at the
4462 very end, rather than initializing a temporary and calling set_cfun
4463 on it.
4465 ABSTRACT_P is true if this is a function that will never be seen by
4466 the middle-end. Such functions are front-end concepts (like C++
4467 function templates) that do not correspond directly to functions
4468 placed in object files. */
4470 void
4471 allocate_struct_function (tree fndecl, bool abstract_p)
4473 tree result;
4474 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4476 cfun = ggc_alloc_cleared_function ();
4478 init_eh_for_function ();
4480 if (init_machine_status)
4481 cfun->machine = (*init_machine_status) ();
4483 #ifdef OVERRIDE_ABI_FORMAT
4484 OVERRIDE_ABI_FORMAT (fndecl);
4485 #endif
4487 if (fndecl != NULL_TREE)
4489 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4490 cfun->decl = fndecl;
4491 current_function_funcdef_no = get_next_funcdef_no ();
4493 result = DECL_RESULT (fndecl);
4494 if (!abstract_p && aggregate_value_p (result, fndecl))
4496 #ifdef PCC_STATIC_STRUCT_RETURN
4497 cfun->returns_pcc_struct = 1;
4498 #endif
4499 cfun->returns_struct = 1;
4502 cfun->stdarg = stdarg_p (fntype);
4504 /* Assume all registers in stdarg functions need to be saved. */
4505 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4506 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4508 /* ??? This could be set on a per-function basis by the front-end
4509 but is this worth the hassle? */
4510 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4513 invoke_set_current_function_hook (fndecl);
4516 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4517 instead of just setting it. */
4519 void
4520 push_struct_function (tree fndecl)
4522 /* When in_dummy_function we might be in the middle of a pop_cfun and
4523 current_function_decl and cfun may not match. */
4524 gcc_assert (in_dummy_function
4525 || (!cfun && !current_function_decl)
4526 || (cfun && current_function_decl == cfun->decl));
4527 cfun_stack.safe_push (cfun);
4528 current_function_decl = fndecl;
4529 allocate_struct_function (fndecl, false);
4532 /* Reset crtl and other non-struct-function variables to defaults as
4533 appropriate for emitting rtl at the start of a function. */
4535 static void
4536 prepare_function_start (void)
4538 gcc_assert (!crtl->emit.x_last_insn);
4539 init_temp_slots ();
4540 init_emit ();
4541 init_varasm_status ();
4542 init_expr ();
4543 default_rtl_profile ();
4545 if (flag_stack_usage_info)
4547 cfun->su = ggc_alloc_cleared_stack_usage ();
4548 cfun->su->static_stack_size = -1;
4551 cse_not_expected = ! optimize;
4553 /* Caller save not needed yet. */
4554 caller_save_needed = 0;
4556 /* We haven't done register allocation yet. */
4557 reg_renumber = 0;
4559 /* Indicate that we have not instantiated virtual registers yet. */
4560 virtuals_instantiated = 0;
4562 /* Indicate that we want CONCATs now. */
4563 generating_concat_p = 1;
4565 /* Indicate we have no need of a frame pointer yet. */
4566 frame_pointer_needed = 0;
4569 /* Initialize the rtl expansion mechanism so that we can do simple things
4570 like generate sequences. This is used to provide a context during global
4571 initialization of some passes. You must call expand_dummy_function_end
4572 to exit this context. */
4574 void
4575 init_dummy_function_start (void)
4577 gcc_assert (!in_dummy_function);
4578 in_dummy_function = true;
4579 push_struct_function (NULL_TREE);
4580 prepare_function_start ();
4583 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4584 and initialize static variables for generating RTL for the statements
4585 of the function. */
4587 void
4588 init_function_start (tree subr)
4590 if (subr && DECL_STRUCT_FUNCTION (subr))
4591 set_cfun (DECL_STRUCT_FUNCTION (subr));
4592 else
4593 allocate_struct_function (subr, false);
4594 prepare_function_start ();
4595 decide_function_section (subr);
4597 /* Warn if this value is an aggregate type,
4598 regardless of which calling convention we are using for it. */
4599 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4600 warning (OPT_Waggregate_return, "function returns an aggregate");
4604 void
4605 expand_main_function (void)
4607 #if (defined(INVOKE__main) \
4608 || (!defined(HAS_INIT_SECTION) \
4609 && !defined(INIT_SECTION_ASM_OP) \
4610 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4611 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4612 #endif
4615 /* Expand code to initialize the stack_protect_guard. This is invoked at
4616 the beginning of a function to be protected. */
4618 #ifndef HAVE_stack_protect_set
4619 # define HAVE_stack_protect_set 0
4620 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4621 #endif
4623 void
4624 stack_protect_prologue (void)
4626 tree guard_decl = targetm.stack_protect_guard ();
4627 rtx x, y;
4629 x = expand_normal (crtl->stack_protect_guard);
4630 y = expand_normal (guard_decl);
4632 /* Allow the target to copy from Y to X without leaking Y into a
4633 register. */
4634 if (HAVE_stack_protect_set)
4636 rtx insn = gen_stack_protect_set (x, y);
4637 if (insn)
4639 emit_insn (insn);
4640 return;
4644 /* Otherwise do a straight move. */
4645 emit_move_insn (x, y);
4648 /* Expand code to verify the stack_protect_guard. This is invoked at
4649 the end of a function to be protected. */
4651 #ifndef HAVE_stack_protect_test
4652 # define HAVE_stack_protect_test 0
4653 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4654 #endif
4656 void
4657 stack_protect_epilogue (void)
4659 tree guard_decl = targetm.stack_protect_guard ();
4660 rtx label = gen_label_rtx ();
4661 rtx x, y, tmp;
4663 x = expand_normal (crtl->stack_protect_guard);
4664 y = expand_normal (guard_decl);
4666 /* Allow the target to compare Y with X without leaking either into
4667 a register. */
4668 switch (HAVE_stack_protect_test != 0)
4670 case 1:
4671 tmp = gen_stack_protect_test (x, y, label);
4672 if (tmp)
4674 emit_insn (tmp);
4675 break;
4677 /* FALLTHRU */
4679 default:
4680 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4681 break;
4684 /* The noreturn predictor has been moved to the tree level. The rtl-level
4685 predictors estimate this branch about 20%, which isn't enough to get
4686 things moved out of line. Since this is the only extant case of adding
4687 a noreturn function at the rtl level, it doesn't seem worth doing ought
4688 except adding the prediction by hand. */
4689 tmp = get_last_insn ();
4690 if (JUMP_P (tmp))
4691 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4693 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4694 free_temp_slots ();
4695 emit_label (label);
4698 /* Start the RTL for a new function, and set variables used for
4699 emitting RTL.
4700 SUBR is the FUNCTION_DECL node.
4701 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4702 the function's parameters, which must be run at any return statement. */
4704 void
4705 expand_function_start (tree subr)
4707 /* Make sure volatile mem refs aren't considered
4708 valid operands of arithmetic insns. */
4709 init_recog_no_volatile ();
4711 crtl->profile
4712 = (profile_flag
4713 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4715 crtl->limit_stack
4716 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4718 /* Make the label for return statements to jump to. Do not special
4719 case machines with special return instructions -- they will be
4720 handled later during jump, ifcvt, or epilogue creation. */
4721 return_label = gen_label_rtx ();
4723 /* Initialize rtx used to return the value. */
4724 /* Do this before assign_parms so that we copy the struct value address
4725 before any library calls that assign parms might generate. */
4727 /* Decide whether to return the value in memory or in a register. */
4728 if (aggregate_value_p (DECL_RESULT (subr), subr))
4730 /* Returning something that won't go in a register. */
4731 rtx value_address = 0;
4733 #ifdef PCC_STATIC_STRUCT_RETURN
4734 if (cfun->returns_pcc_struct)
4736 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4737 value_address = assemble_static_space (size);
4739 else
4740 #endif
4742 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4743 /* Expect to be passed the address of a place to store the value.
4744 If it is passed as an argument, assign_parms will take care of
4745 it. */
4746 if (sv)
4748 value_address = gen_reg_rtx (Pmode);
4749 emit_move_insn (value_address, sv);
4752 if (value_address)
4754 rtx x = value_address;
4755 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4757 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4758 set_mem_attributes (x, DECL_RESULT (subr), 1);
4760 SET_DECL_RTL (DECL_RESULT (subr), x);
4763 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4764 /* If return mode is void, this decl rtl should not be used. */
4765 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4766 else
4768 /* Compute the return values into a pseudo reg, which we will copy
4769 into the true return register after the cleanups are done. */
4770 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4771 if (TYPE_MODE (return_type) != BLKmode
4772 && targetm.calls.return_in_msb (return_type))
4773 /* expand_function_end will insert the appropriate padding in
4774 this case. Use the return value's natural (unpadded) mode
4775 within the function proper. */
4776 SET_DECL_RTL (DECL_RESULT (subr),
4777 gen_reg_rtx (TYPE_MODE (return_type)));
4778 else
4780 /* In order to figure out what mode to use for the pseudo, we
4781 figure out what the mode of the eventual return register will
4782 actually be, and use that. */
4783 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4785 /* Structures that are returned in registers are not
4786 aggregate_value_p, so we may see a PARALLEL or a REG. */
4787 if (REG_P (hard_reg))
4788 SET_DECL_RTL (DECL_RESULT (subr),
4789 gen_reg_rtx (GET_MODE (hard_reg)));
4790 else
4792 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4793 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4797 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4798 result to the real return register(s). */
4799 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4802 /* Initialize rtx for parameters and local variables.
4803 In some cases this requires emitting insns. */
4804 assign_parms (subr);
4806 /* If function gets a static chain arg, store it. */
4807 if (cfun->static_chain_decl)
4809 tree parm = cfun->static_chain_decl;
4810 rtx local, chain, insn;
4812 local = gen_reg_rtx (Pmode);
4813 chain = targetm.calls.static_chain (current_function_decl, true);
4815 set_decl_incoming_rtl (parm, chain, false);
4816 SET_DECL_RTL (parm, local);
4817 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4819 insn = emit_move_insn (local, chain);
4821 /* Mark the register as eliminable, similar to parameters. */
4822 if (MEM_P (chain)
4823 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4824 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4827 /* If the function receives a non-local goto, then store the
4828 bits we need to restore the frame pointer. */
4829 if (cfun->nonlocal_goto_save_area)
4831 tree t_save;
4832 rtx r_save;
4834 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4835 gcc_assert (DECL_RTL_SET_P (var));
4837 t_save = build4 (ARRAY_REF,
4838 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4839 cfun->nonlocal_goto_save_area,
4840 integer_zero_node, NULL_TREE, NULL_TREE);
4841 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4842 gcc_assert (GET_MODE (r_save) == Pmode);
4844 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4845 update_nonlocal_goto_save_area ();
4848 /* The following was moved from init_function_start.
4849 The move is supposed to make sdb output more accurate. */
4850 /* Indicate the beginning of the function body,
4851 as opposed to parm setup. */
4852 emit_note (NOTE_INSN_FUNCTION_BEG);
4854 gcc_assert (NOTE_P (get_last_insn ()));
4856 parm_birth_insn = get_last_insn ();
4858 if (crtl->profile)
4860 #ifdef PROFILE_HOOK
4861 PROFILE_HOOK (current_function_funcdef_no);
4862 #endif
4865 /* If we are doing generic stack checking, the probe should go here. */
4866 if (flag_stack_check == GENERIC_STACK_CHECK)
4867 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4870 /* Undo the effects of init_dummy_function_start. */
4871 void
4872 expand_dummy_function_end (void)
4874 gcc_assert (in_dummy_function);
4876 /* End any sequences that failed to be closed due to syntax errors. */
4877 while (in_sequence_p ())
4878 end_sequence ();
4880 /* Outside function body, can't compute type's actual size
4881 until next function's body starts. */
4883 free_after_parsing (cfun);
4884 free_after_compilation (cfun);
4885 pop_cfun ();
4886 in_dummy_function = false;
4889 /* Call DOIT for each hard register used as a return value from
4890 the current function. */
4892 void
4893 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4895 rtx outgoing = crtl->return_rtx;
4897 if (! outgoing)
4898 return;
4900 if (REG_P (outgoing))
4901 (*doit) (outgoing, arg);
4902 else if (GET_CODE (outgoing) == PARALLEL)
4904 int i;
4906 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4908 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4910 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4911 (*doit) (x, arg);
4916 static void
4917 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4919 emit_clobber (reg);
4922 void
4923 clobber_return_register (void)
4925 diddle_return_value (do_clobber_return_reg, NULL);
4927 /* In case we do use pseudo to return value, clobber it too. */
4928 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4930 tree decl_result = DECL_RESULT (current_function_decl);
4931 rtx decl_rtl = DECL_RTL (decl_result);
4932 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4934 do_clobber_return_reg (decl_rtl, NULL);
4939 static void
4940 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4942 emit_use (reg);
4945 static void
4946 use_return_register (void)
4948 diddle_return_value (do_use_return_reg, NULL);
4951 /* Possibly warn about unused parameters. */
4952 void
4953 do_warn_unused_parameter (tree fn)
4955 tree decl;
4957 for (decl = DECL_ARGUMENTS (fn);
4958 decl; decl = DECL_CHAIN (decl))
4959 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4960 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4961 && !TREE_NO_WARNING (decl))
4962 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4965 static GTY(()) rtx initial_trampoline;
4967 /* Generate RTL for the end of the current function. */
4969 void
4970 expand_function_end (void)
4972 rtx clobber_after;
4974 /* If arg_pointer_save_area was referenced only from a nested
4975 function, we will not have initialized it yet. Do that now. */
4976 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4977 get_arg_pointer_save_area ();
4979 /* If we are doing generic stack checking and this function makes calls,
4980 do a stack probe at the start of the function to ensure we have enough
4981 space for another stack frame. */
4982 if (flag_stack_check == GENERIC_STACK_CHECK)
4984 rtx insn, seq;
4986 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4987 if (CALL_P (insn))
4989 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4990 start_sequence ();
4991 if (STACK_CHECK_MOVING_SP)
4992 anti_adjust_stack_and_probe (max_frame_size, true);
4993 else
4994 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4995 seq = get_insns ();
4996 end_sequence ();
4997 set_insn_locations (seq, prologue_location);
4998 emit_insn_before (seq, stack_check_probe_note);
4999 break;
5003 /* End any sequences that failed to be closed due to syntax errors. */
5004 while (in_sequence_p ())
5005 end_sequence ();
5007 clear_pending_stack_adjust ();
5008 do_pending_stack_adjust ();
5010 /* Output a linenumber for the end of the function.
5011 SDB depends on this. */
5012 set_curr_insn_location (input_location);
5014 /* Before the return label (if any), clobber the return
5015 registers so that they are not propagated live to the rest of
5016 the function. This can only happen with functions that drop
5017 through; if there had been a return statement, there would
5018 have either been a return rtx, or a jump to the return label.
5020 We delay actual code generation after the current_function_value_rtx
5021 is computed. */
5022 clobber_after = get_last_insn ();
5024 /* Output the label for the actual return from the function. */
5025 emit_label (return_label);
5027 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5029 /* Let except.c know where it should emit the call to unregister
5030 the function context for sjlj exceptions. */
5031 if (flag_exceptions)
5032 sjlj_emit_function_exit_after (get_last_insn ());
5034 else
5036 /* We want to ensure that instructions that may trap are not
5037 moved into the epilogue by scheduling, because we don't
5038 always emit unwind information for the epilogue. */
5039 if (cfun->can_throw_non_call_exceptions)
5040 emit_insn (gen_blockage ());
5043 /* If this is an implementation of throw, do what's necessary to
5044 communicate between __builtin_eh_return and the epilogue. */
5045 expand_eh_return ();
5047 /* If scalar return value was computed in a pseudo-reg, or was a named
5048 return value that got dumped to the stack, copy that to the hard
5049 return register. */
5050 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5052 tree decl_result = DECL_RESULT (current_function_decl);
5053 rtx decl_rtl = DECL_RTL (decl_result);
5055 if (REG_P (decl_rtl)
5056 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5057 : DECL_REGISTER (decl_result))
5059 rtx real_decl_rtl = crtl->return_rtx;
5061 /* This should be set in assign_parms. */
5062 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5064 /* If this is a BLKmode structure being returned in registers,
5065 then use the mode computed in expand_return. Note that if
5066 decl_rtl is memory, then its mode may have been changed,
5067 but that crtl->return_rtx has not. */
5068 if (GET_MODE (real_decl_rtl) == BLKmode)
5069 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5071 /* If a non-BLKmode return value should be padded at the least
5072 significant end of the register, shift it left by the appropriate
5073 amount. BLKmode results are handled using the group load/store
5074 machinery. */
5075 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5076 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5078 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5079 REGNO (real_decl_rtl)),
5080 decl_rtl);
5081 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5083 /* If a named return value dumped decl_return to memory, then
5084 we may need to re-do the PROMOTE_MODE signed/unsigned
5085 extension. */
5086 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5088 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5089 promote_function_mode (TREE_TYPE (decl_result),
5090 GET_MODE (decl_rtl), &unsignedp,
5091 TREE_TYPE (current_function_decl), 1);
5093 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5095 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5097 /* If expand_function_start has created a PARALLEL for decl_rtl,
5098 move the result to the real return registers. Otherwise, do
5099 a group load from decl_rtl for a named return. */
5100 if (GET_CODE (decl_rtl) == PARALLEL)
5101 emit_group_move (real_decl_rtl, decl_rtl);
5102 else
5103 emit_group_load (real_decl_rtl, decl_rtl,
5104 TREE_TYPE (decl_result),
5105 int_size_in_bytes (TREE_TYPE (decl_result)));
5107 /* In the case of complex integer modes smaller than a word, we'll
5108 need to generate some non-trivial bitfield insertions. Do that
5109 on a pseudo and not the hard register. */
5110 else if (GET_CODE (decl_rtl) == CONCAT
5111 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5112 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5114 int old_generating_concat_p;
5115 rtx tmp;
5117 old_generating_concat_p = generating_concat_p;
5118 generating_concat_p = 0;
5119 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5120 generating_concat_p = old_generating_concat_p;
5122 emit_move_insn (tmp, decl_rtl);
5123 emit_move_insn (real_decl_rtl, tmp);
5125 else
5126 emit_move_insn (real_decl_rtl, decl_rtl);
5130 /* If returning a structure, arrange to return the address of the value
5131 in a place where debuggers expect to find it.
5133 If returning a structure PCC style,
5134 the caller also depends on this value.
5135 And cfun->returns_pcc_struct is not necessarily set. */
5136 if (cfun->returns_struct
5137 || cfun->returns_pcc_struct)
5139 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5140 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5141 rtx outgoing;
5143 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5144 type = TREE_TYPE (type);
5145 else
5146 value_address = XEXP (value_address, 0);
5148 outgoing = targetm.calls.function_value (build_pointer_type (type),
5149 current_function_decl, true);
5151 /* Mark this as a function return value so integrate will delete the
5152 assignment and USE below when inlining this function. */
5153 REG_FUNCTION_VALUE_P (outgoing) = 1;
5155 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5156 value_address = convert_memory_address (GET_MODE (outgoing),
5157 value_address);
5159 emit_move_insn (outgoing, value_address);
5161 /* Show return register used to hold result (in this case the address
5162 of the result. */
5163 crtl->return_rtx = outgoing;
5166 /* Emit the actual code to clobber return register. */
5168 rtx seq;
5170 start_sequence ();
5171 clobber_return_register ();
5172 seq = get_insns ();
5173 end_sequence ();
5175 emit_insn_after (seq, clobber_after);
5178 /* Output the label for the naked return from the function. */
5179 if (naked_return_label)
5180 emit_label (naked_return_label);
5182 /* @@@ This is a kludge. We want to ensure that instructions that
5183 may trap are not moved into the epilogue by scheduling, because
5184 we don't always emit unwind information for the epilogue. */
5185 if (cfun->can_throw_non_call_exceptions
5186 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5187 emit_insn (gen_blockage ());
5189 /* If stack protection is enabled for this function, check the guard. */
5190 if (crtl->stack_protect_guard)
5191 stack_protect_epilogue ();
5193 /* If we had calls to alloca, and this machine needs
5194 an accurate stack pointer to exit the function,
5195 insert some code to save and restore the stack pointer. */
5196 if (! EXIT_IGNORE_STACK
5197 && cfun->calls_alloca)
5199 rtx tem = 0, seq;
5201 start_sequence ();
5202 emit_stack_save (SAVE_FUNCTION, &tem);
5203 seq = get_insns ();
5204 end_sequence ();
5205 emit_insn_before (seq, parm_birth_insn);
5207 emit_stack_restore (SAVE_FUNCTION, tem);
5210 /* ??? This should no longer be necessary since stupid is no longer with
5211 us, but there are some parts of the compiler (eg reload_combine, and
5212 sh mach_dep_reorg) that still try and compute their own lifetime info
5213 instead of using the general framework. */
5214 use_return_register ();
5218 get_arg_pointer_save_area (void)
5220 rtx ret = arg_pointer_save_area;
5222 if (! ret)
5224 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5225 arg_pointer_save_area = ret;
5228 if (! crtl->arg_pointer_save_area_init)
5230 rtx seq;
5232 /* Save the arg pointer at the beginning of the function. The
5233 generated stack slot may not be a valid memory address, so we
5234 have to check it and fix it if necessary. */
5235 start_sequence ();
5236 emit_move_insn (validize_mem (ret),
5237 crtl->args.internal_arg_pointer);
5238 seq = get_insns ();
5239 end_sequence ();
5241 push_topmost_sequence ();
5242 emit_insn_after (seq, entry_of_function ());
5243 pop_topmost_sequence ();
5245 crtl->arg_pointer_save_area_init = true;
5248 return ret;
5251 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5252 for the first time. */
5254 static void
5255 record_insns (rtx insns, rtx end, htab_t *hashp)
5257 rtx tmp;
5258 htab_t hash = *hashp;
5260 if (hash == NULL)
5261 *hashp = hash
5262 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5264 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5266 void **slot = htab_find_slot (hash, tmp, INSERT);
5267 gcc_assert (*slot == NULL);
5268 *slot = tmp;
5272 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5273 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5274 insn, then record COPY as well. */
5276 void
5277 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5279 htab_t hash;
5280 void **slot;
5282 hash = epilogue_insn_hash;
5283 if (!hash || !htab_find (hash, insn))
5285 hash = prologue_insn_hash;
5286 if (!hash || !htab_find (hash, insn))
5287 return;
5290 slot = htab_find_slot (hash, copy, INSERT);
5291 gcc_assert (*slot == NULL);
5292 *slot = copy;
5295 /* Set the location of the insn chain starting at INSN to LOC. */
5296 static void
5297 set_insn_locations (rtx insn, int loc)
5299 while (insn != NULL_RTX)
5301 if (INSN_P (insn))
5302 INSN_LOCATION (insn) = loc;
5303 insn = NEXT_INSN (insn);
5307 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5308 we can be running after reorg, SEQUENCE rtl is possible. */
5310 static bool
5311 contains (const_rtx insn, htab_t hash)
5313 if (hash == NULL)
5314 return false;
5316 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5318 int i;
5319 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5320 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5321 return true;
5322 return false;
5325 return htab_find (hash, insn) != NULL;
5329 prologue_epilogue_contains (const_rtx insn)
5331 if (contains (insn, prologue_insn_hash))
5332 return 1;
5333 if (contains (insn, epilogue_insn_hash))
5334 return 1;
5335 return 0;
5338 #ifdef HAVE_simple_return
5340 /* Return true if INSN requires the stack frame to be set up.
5341 PROLOGUE_USED contains the hard registers used in the function
5342 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5343 prologue to set up for the function. */
5344 bool
5345 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5346 HARD_REG_SET set_up_by_prologue)
5348 df_ref *df_rec;
5349 HARD_REG_SET hardregs;
5350 unsigned regno;
5352 if (CALL_P (insn))
5353 return !SIBLING_CALL_P (insn);
5355 /* We need a frame to get the unique CFA expected by the unwinder. */
5356 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5357 return true;
5359 CLEAR_HARD_REG_SET (hardregs);
5360 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5362 rtx dreg = DF_REF_REG (*df_rec);
5364 if (!REG_P (dreg))
5365 continue;
5367 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5368 REGNO (dreg));
5370 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5371 return true;
5372 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5373 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5374 if (TEST_HARD_REG_BIT (hardregs, regno)
5375 && df_regs_ever_live_p (regno))
5376 return true;
5378 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5380 rtx reg = DF_REF_REG (*df_rec);
5382 if (!REG_P (reg))
5383 continue;
5385 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5386 REGNO (reg));
5388 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5389 return true;
5391 return false;
5394 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5395 and if BB is its only predecessor. Return that block if so,
5396 otherwise return null. */
5398 static basic_block
5399 next_block_for_reg (basic_block bb, int regno, int end_regno)
5401 edge e, live_edge;
5402 edge_iterator ei;
5403 bitmap live;
5404 int i;
5406 live_edge = NULL;
5407 FOR_EACH_EDGE (e, ei, bb->succs)
5409 live = df_get_live_in (e->dest);
5410 for (i = regno; i < end_regno; i++)
5411 if (REGNO_REG_SET_P (live, i))
5413 if (live_edge && live_edge != e)
5414 return NULL;
5415 live_edge = e;
5419 /* We can sometimes encounter dead code. Don't try to move it
5420 into the exit block. */
5421 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5422 return NULL;
5424 /* Reject targets of abnormal edges. This is needed for correctness
5425 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5426 exception edges even though it is generally treated as call-saved
5427 for the majority of the compilation. Moving across abnormal edges
5428 isn't going to be interesting for shrink-wrap usage anyway. */
5429 if (live_edge->flags & EDGE_ABNORMAL)
5430 return NULL;
5432 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5433 return NULL;
5435 return live_edge->dest;
5438 /* Try to move INSN from BB to a successor. Return true on success.
5439 USES and DEFS are the set of registers that are used and defined
5440 after INSN in BB. */
5442 static bool
5443 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5444 const HARD_REG_SET uses,
5445 const HARD_REG_SET defs)
5447 rtx set, src, dest;
5448 bitmap live_out, live_in, bb_uses, bb_defs;
5449 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5450 basic_block next_block;
5452 /* Look for a simple register copy. */
5453 set = single_set (insn);
5454 if (!set)
5455 return false;
5456 src = SET_SRC (set);
5457 dest = SET_DEST (set);
5458 if (!REG_P (dest) || !REG_P (src))
5459 return false;
5461 /* Make sure that the source register isn't defined later in BB. */
5462 sregno = REGNO (src);
5463 end_sregno = END_REGNO (src);
5464 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5465 return false;
5467 /* Make sure that the destination register isn't referenced later in BB. */
5468 dregno = REGNO (dest);
5469 end_dregno = END_REGNO (dest);
5470 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5471 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5472 return false;
5474 /* See whether there is a successor block to which we could move INSN. */
5475 next_block = next_block_for_reg (bb, dregno, end_dregno);
5476 if (!next_block)
5477 return false;
5479 /* At this point we are committed to moving INSN, but let's try to
5480 move it as far as we can. */
5483 live_out = df_get_live_out (bb);
5484 live_in = df_get_live_in (next_block);
5485 bb = next_block;
5487 /* Check whether BB uses DEST or clobbers DEST. We need to add
5488 INSN to BB if so. Either way, DEST is no longer live on entry,
5489 except for any part that overlaps SRC (next loop). */
5490 bb_uses = &DF_LR_BB_INFO (bb)->use;
5491 bb_defs = &DF_LR_BB_INFO (bb)->def;
5492 for (i = dregno; i < end_dregno; i++)
5494 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i))
5495 next_block = NULL;
5496 CLEAR_REGNO_REG_SET (live_out, i);
5497 CLEAR_REGNO_REG_SET (live_in, i);
5500 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5501 Either way, SRC is now live on entry. */
5502 for (i = sregno; i < end_sregno; i++)
5504 if (REGNO_REG_SET_P (bb_defs, i))
5505 next_block = NULL;
5506 SET_REGNO_REG_SET (live_out, i);
5507 SET_REGNO_REG_SET (live_in, i);
5510 /* If we don't need to add the move to BB, look for a single
5511 successor block. */
5512 if (next_block)
5513 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5515 while (next_block);
5517 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5518 (next loop). */
5519 for (i = dregno; i < end_dregno; i++)
5521 CLEAR_REGNO_REG_SET (bb_uses, i);
5522 SET_REGNO_REG_SET (bb_defs, i);
5525 /* BB now uses SRC. */
5526 for (i = sregno; i < end_sregno; i++)
5527 SET_REGNO_REG_SET (bb_uses, i);
5529 emit_insn_after (PATTERN (insn), bb_note (bb));
5530 delete_insn (insn);
5531 return true;
5534 /* Look for register copies in the first block of the function, and move
5535 them down into successor blocks if the register is used only on one
5536 path. This exposes more opportunities for shrink-wrapping. These
5537 kinds of sets often occur when incoming argument registers are moved
5538 to call-saved registers because their values are live across one or
5539 more calls during the function. */
5541 static void
5542 prepare_shrink_wrap (basic_block entry_block)
5544 rtx insn, curr, x;
5545 HARD_REG_SET uses, defs;
5546 df_ref *ref;
5548 CLEAR_HARD_REG_SET (uses);
5549 CLEAR_HARD_REG_SET (defs);
5550 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5551 if (NONDEBUG_INSN_P (insn)
5552 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5554 /* Add all defined registers to DEFs. */
5555 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5557 x = DF_REF_REG (*ref);
5558 if (REG_P (x) && HARD_REGISTER_P (x))
5559 SET_HARD_REG_BIT (defs, REGNO (x));
5562 /* Add all used registers to USESs. */
5563 for (ref = DF_INSN_USES (insn); *ref; ref++)
5565 x = DF_REF_REG (*ref);
5566 if (REG_P (x) && HARD_REGISTER_P (x))
5567 SET_HARD_REG_BIT (uses, REGNO (x));
5572 #endif
5574 #ifdef HAVE_return
5575 /* Insert use of return register before the end of BB. */
5577 static void
5578 emit_use_return_register_into_block (basic_block bb)
5580 rtx seq;
5581 start_sequence ();
5582 use_return_register ();
5583 seq = get_insns ();
5584 end_sequence ();
5585 emit_insn_before (seq, BB_END (bb));
5589 /* Create a return pattern, either simple_return or return, depending on
5590 simple_p. */
5592 static rtx
5593 gen_return_pattern (bool simple_p)
5595 #ifdef HAVE_simple_return
5596 return simple_p ? gen_simple_return () : gen_return ();
5597 #else
5598 gcc_assert (!simple_p);
5599 return gen_return ();
5600 #endif
5603 /* Insert an appropriate return pattern at the end of block BB. This
5604 also means updating block_for_insn appropriately. SIMPLE_P is
5605 the same as in gen_return_pattern and passed to it. */
5607 static void
5608 emit_return_into_block (bool simple_p, basic_block bb)
5610 rtx jump, pat;
5611 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5612 pat = PATTERN (jump);
5613 if (GET_CODE (pat) == PARALLEL)
5614 pat = XVECEXP (pat, 0, 0);
5615 gcc_assert (ANY_RETURN_P (pat));
5616 JUMP_LABEL (jump) = pat;
5618 #endif
5620 /* Set JUMP_LABEL for a return insn. */
5622 void
5623 set_return_jump_label (rtx returnjump)
5625 rtx pat = PATTERN (returnjump);
5626 if (GET_CODE (pat) == PARALLEL)
5627 pat = XVECEXP (pat, 0, 0);
5628 if (ANY_RETURN_P (pat))
5629 JUMP_LABEL (returnjump) = pat;
5630 else
5631 JUMP_LABEL (returnjump) = ret_rtx;
5634 #ifdef HAVE_simple_return
5635 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5636 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5637 static void
5638 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5639 bitmap_head *need_prologue)
5641 edge_iterator ei;
5642 edge e;
5643 rtx insn = BB_END (bb);
5645 /* We know BB has a single successor, so there is no need to copy a
5646 simple jump at the end of BB. */
5647 if (simplejump_p (insn))
5648 insn = PREV_INSN (insn);
5650 start_sequence ();
5651 duplicate_insn_chain (BB_HEAD (bb), insn);
5652 if (dump_file)
5654 unsigned count = 0;
5655 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5656 if (active_insn_p (insn))
5657 ++count;
5658 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5659 bb->index, copy_bb->index, count);
5661 insn = get_insns ();
5662 end_sequence ();
5663 emit_insn_before (insn, before);
5665 /* Redirect all the paths that need no prologue into copy_bb. */
5666 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5667 if (!bitmap_bit_p (need_prologue, e->src->index))
5669 int freq = EDGE_FREQUENCY (e);
5670 copy_bb->count += e->count;
5671 copy_bb->frequency += EDGE_FREQUENCY (e);
5672 e->dest->count -= e->count;
5673 if (e->dest->count < 0)
5674 e->dest->count = 0;
5675 e->dest->frequency -= freq;
5676 if (e->dest->frequency < 0)
5677 e->dest->frequency = 0;
5678 redirect_edge_and_branch_force (e, copy_bb);
5679 continue;
5681 else
5682 ei_next (&ei);
5684 #endif
5686 #if defined (HAVE_return) || defined (HAVE_simple_return)
5687 /* Return true if there are any active insns between HEAD and TAIL. */
5688 static bool
5689 active_insn_between (rtx head, rtx tail)
5691 while (tail)
5693 if (active_insn_p (tail))
5694 return true;
5695 if (tail == head)
5696 return false;
5697 tail = PREV_INSN (tail);
5699 return false;
5702 /* LAST_BB is a block that exits, and empty of active instructions.
5703 Examine its predecessors for jumps that can be converted to
5704 (conditional) returns. */
5705 static vec<edge>
5706 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5707 vec<edge> unconverted ATTRIBUTE_UNUSED)
5709 int i;
5710 basic_block bb;
5711 rtx label;
5712 edge_iterator ei;
5713 edge e;
5714 vec<basic_block> src_bbs;
5716 src_bbs.create (EDGE_COUNT (last_bb->preds));
5717 FOR_EACH_EDGE (e, ei, last_bb->preds)
5718 if (e->src != ENTRY_BLOCK_PTR)
5719 src_bbs.quick_push (e->src);
5721 label = BB_HEAD (last_bb);
5723 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5725 rtx jump = BB_END (bb);
5727 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5728 continue;
5730 e = find_edge (bb, last_bb);
5732 /* If we have an unconditional jump, we can replace that
5733 with a simple return instruction. */
5734 if (simplejump_p (jump))
5736 /* The use of the return register might be present in the exit
5737 fallthru block. Either:
5738 - removing the use is safe, and we should remove the use in
5739 the exit fallthru block, or
5740 - removing the use is not safe, and we should add it here.
5741 For now, we conservatively choose the latter. Either of the
5742 2 helps in crossjumping. */
5743 emit_use_return_register_into_block (bb);
5745 emit_return_into_block (simple_p, bb);
5746 delete_insn (jump);
5749 /* If we have a conditional jump branching to the last
5750 block, we can try to replace that with a conditional
5751 return instruction. */
5752 else if (condjump_p (jump))
5754 rtx dest;
5756 if (simple_p)
5757 dest = simple_return_rtx;
5758 else
5759 dest = ret_rtx;
5760 if (!redirect_jump (jump, dest, 0))
5762 #ifdef HAVE_simple_return
5763 if (simple_p)
5765 if (dump_file)
5766 fprintf (dump_file,
5767 "Failed to redirect bb %d branch.\n", bb->index);
5768 unconverted.safe_push (e);
5770 #endif
5771 continue;
5774 /* See comment in simplejump_p case above. */
5775 emit_use_return_register_into_block (bb);
5777 /* If this block has only one successor, it both jumps
5778 and falls through to the fallthru block, so we can't
5779 delete the edge. */
5780 if (single_succ_p (bb))
5781 continue;
5783 else
5785 #ifdef HAVE_simple_return
5786 if (simple_p)
5788 if (dump_file)
5789 fprintf (dump_file,
5790 "Failed to redirect bb %d branch.\n", bb->index);
5791 unconverted.safe_push (e);
5793 #endif
5794 continue;
5797 /* Fix up the CFG for the successful change we just made. */
5798 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5799 e->flags &= ~EDGE_CROSSING;
5801 src_bbs.release ();
5802 return unconverted;
5805 /* Emit a return insn for the exit fallthru block. */
5806 static basic_block
5807 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5809 basic_block last_bb = exit_fallthru_edge->src;
5811 if (JUMP_P (BB_END (last_bb)))
5813 last_bb = split_edge (exit_fallthru_edge);
5814 exit_fallthru_edge = single_succ_edge (last_bb);
5816 emit_barrier_after (BB_END (last_bb));
5817 emit_return_into_block (simple_p, last_bb);
5818 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5819 return last_bb;
5821 #endif
5824 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5825 this into place with notes indicating where the prologue ends and where
5826 the epilogue begins. Update the basic block information when possible.
5828 Notes on epilogue placement:
5829 There are several kinds of edges to the exit block:
5830 * a single fallthru edge from LAST_BB
5831 * possibly, edges from blocks containing sibcalls
5832 * possibly, fake edges from infinite loops
5834 The epilogue is always emitted on the fallthru edge from the last basic
5835 block in the function, LAST_BB, into the exit block.
5837 If LAST_BB is empty except for a label, it is the target of every
5838 other basic block in the function that ends in a return. If a
5839 target has a return or simple_return pattern (possibly with
5840 conditional variants), these basic blocks can be changed so that a
5841 return insn is emitted into them, and their target is adjusted to
5842 the real exit block.
5844 Notes on shrink wrapping: We implement a fairly conservative
5845 version of shrink-wrapping rather than the textbook one. We only
5846 generate a single prologue and a single epilogue. This is
5847 sufficient to catch a number of interesting cases involving early
5848 exits.
5850 First, we identify the blocks that require the prologue to occur before
5851 them. These are the ones that modify a call-saved register, or reference
5852 any of the stack or frame pointer registers. To simplify things, we then
5853 mark everything reachable from these blocks as also requiring a prologue.
5854 This takes care of loops automatically, and avoids the need to examine
5855 whether MEMs reference the frame, since it is sufficient to check for
5856 occurrences of the stack or frame pointer.
5858 We then compute the set of blocks for which the need for a prologue
5859 is anticipatable (borrowing terminology from the shrink-wrapping
5860 description in Muchnick's book). These are the blocks which either
5861 require a prologue themselves, or those that have only successors
5862 where the prologue is anticipatable. The prologue needs to be
5863 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5864 is not. For the moment, we ensure that only one such edge exists.
5866 The epilogue is placed as described above, but we make a
5867 distinction between inserting return and simple_return patterns
5868 when modifying other blocks that end in a return. Blocks that end
5869 in a sibcall omit the sibcall_epilogue if the block is not in
5870 ANTIC. */
5872 static void
5873 thread_prologue_and_epilogue_insns (void)
5875 bool inserted;
5876 #ifdef HAVE_simple_return
5877 vec<edge> unconverted_simple_returns = vec<edge>();
5878 bool nonempty_prologue;
5879 bitmap_head bb_flags;
5880 unsigned max_grow_size;
5881 #endif
5882 rtx returnjump;
5883 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5884 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5885 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5886 edge_iterator ei;
5888 df_analyze ();
5890 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5892 inserted = false;
5893 seq = NULL_RTX;
5894 epilogue_end = NULL_RTX;
5895 returnjump = NULL_RTX;
5897 /* Can't deal with multiple successors of the entry block at the
5898 moment. Function should always have at least one entry
5899 point. */
5900 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5901 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5902 orig_entry_edge = entry_edge;
5904 split_prologue_seq = NULL_RTX;
5905 if (flag_split_stack
5906 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5907 == NULL))
5909 #ifndef HAVE_split_stack_prologue
5910 gcc_unreachable ();
5911 #else
5912 gcc_assert (HAVE_split_stack_prologue);
5914 start_sequence ();
5915 emit_insn (gen_split_stack_prologue ());
5916 split_prologue_seq = get_insns ();
5917 end_sequence ();
5919 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5920 set_insn_locations (split_prologue_seq, prologue_location);
5921 #endif
5924 prologue_seq = NULL_RTX;
5925 #ifdef HAVE_prologue
5926 if (HAVE_prologue)
5928 start_sequence ();
5929 seq = gen_prologue ();
5930 emit_insn (seq);
5932 /* Insert an explicit USE for the frame pointer
5933 if the profiling is on and the frame pointer is required. */
5934 if (crtl->profile && frame_pointer_needed)
5935 emit_use (hard_frame_pointer_rtx);
5937 /* Retain a map of the prologue insns. */
5938 record_insns (seq, NULL, &prologue_insn_hash);
5939 emit_note (NOTE_INSN_PROLOGUE_END);
5941 /* Ensure that instructions are not moved into the prologue when
5942 profiling is on. The call to the profiling routine can be
5943 emitted within the live range of a call-clobbered register. */
5944 if (!targetm.profile_before_prologue () && crtl->profile)
5945 emit_insn (gen_blockage ());
5947 prologue_seq = get_insns ();
5948 end_sequence ();
5949 set_insn_locations (prologue_seq, prologue_location);
5951 #endif
5953 #ifdef HAVE_simple_return
5954 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5956 /* Try to perform a kind of shrink-wrapping, making sure the
5957 prologue/epilogue is emitted only around those parts of the
5958 function that require it. */
5960 nonempty_prologue = false;
5961 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5962 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5964 nonempty_prologue = true;
5965 break;
5968 if (flag_shrink_wrap && HAVE_simple_return
5969 && (targetm.profile_before_prologue () || !crtl->profile)
5970 && nonempty_prologue && !crtl->calls_eh_return)
5972 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5973 struct hard_reg_set_container set_up_by_prologue;
5974 rtx p_insn;
5975 vec<basic_block> vec;
5976 basic_block bb;
5977 bitmap_head bb_antic_flags;
5978 bitmap_head bb_on_list;
5979 bitmap_head bb_tail;
5981 if (dump_file)
5982 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
5984 /* Compute the registers set and used in the prologue. */
5985 CLEAR_HARD_REG_SET (prologue_clobbered);
5986 CLEAR_HARD_REG_SET (prologue_used);
5987 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
5989 HARD_REG_SET this_used;
5990 if (!NONDEBUG_INSN_P (p_insn))
5991 continue;
5993 CLEAR_HARD_REG_SET (this_used);
5994 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
5995 &this_used);
5996 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
5997 IOR_HARD_REG_SET (prologue_used, this_used);
5998 note_stores (PATTERN (p_insn), record_hard_reg_sets,
5999 &prologue_clobbered);
6002 prepare_shrink_wrap (entry_edge->dest);
6004 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6005 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6006 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6008 /* Find the set of basic blocks that require a stack frame,
6009 and blocks that are too big to be duplicated. */
6011 vec.create (n_basic_blocks);
6013 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6014 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6015 STACK_POINTER_REGNUM);
6016 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6017 if (frame_pointer_needed)
6018 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6019 HARD_FRAME_POINTER_REGNUM);
6020 if (pic_offset_table_rtx)
6021 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6022 PIC_OFFSET_TABLE_REGNUM);
6023 if (stack_realign_drap && crtl->drap_reg)
6024 add_to_hard_reg_set (&set_up_by_prologue.set,
6025 GET_MODE (crtl->drap_reg),
6026 REGNO (crtl->drap_reg));
6027 if (targetm.set_up_by_prologue)
6028 targetm.set_up_by_prologue (&set_up_by_prologue);
6030 /* We don't use a different max size depending on
6031 optimize_bb_for_speed_p because increasing shrink-wrapping
6032 opportunities by duplicating tail blocks can actually result
6033 in an overall decrease in code size. */
6034 max_grow_size = get_uncond_jump_length ();
6035 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6037 FOR_EACH_BB (bb)
6039 rtx insn;
6040 unsigned size = 0;
6042 FOR_BB_INSNS (bb, insn)
6043 if (NONDEBUG_INSN_P (insn))
6045 if (requires_stack_frame_p (insn, prologue_used,
6046 set_up_by_prologue.set))
6048 if (bb == entry_edge->dest)
6049 goto fail_shrinkwrap;
6050 bitmap_set_bit (&bb_flags, bb->index);
6051 vec.quick_push (bb);
6052 break;
6054 else if (size <= max_grow_size)
6056 size += get_attr_min_length (insn);
6057 if (size > max_grow_size)
6058 bitmap_set_bit (&bb_on_list, bb->index);
6063 /* Blocks that really need a prologue, or are too big for tails. */
6064 bitmap_ior_into (&bb_on_list, &bb_flags);
6066 /* For every basic block that needs a prologue, mark all blocks
6067 reachable from it, so as to ensure they are also seen as
6068 requiring a prologue. */
6069 while (!vec.is_empty ())
6071 basic_block tmp_bb = vec.pop ();
6073 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6074 if (e->dest != EXIT_BLOCK_PTR
6075 && bitmap_set_bit (&bb_flags, e->dest->index))
6076 vec.quick_push (e->dest);
6079 /* Find the set of basic blocks that need no prologue, have a
6080 single successor, can be duplicated, meet a max size
6081 requirement, and go to the exit via like blocks. */
6082 vec.quick_push (EXIT_BLOCK_PTR);
6083 while (!vec.is_empty ())
6085 basic_block tmp_bb = vec.pop ();
6087 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6088 if (single_succ_p (e->src)
6089 && !bitmap_bit_p (&bb_on_list, e->src->index)
6090 && can_duplicate_block_p (e->src))
6092 edge pe;
6093 edge_iterator pei;
6095 /* If there is predecessor of e->src which doesn't
6096 need prologue and the edge is complex,
6097 we might not be able to redirect the branch
6098 to a copy of e->src. */
6099 FOR_EACH_EDGE (pe, pei, e->src->preds)
6100 if ((pe->flags & EDGE_COMPLEX) != 0
6101 && !bitmap_bit_p (&bb_flags, pe->src->index))
6102 break;
6103 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6104 vec.quick_push (e->src);
6108 /* Now walk backwards from every block that is marked as needing
6109 a prologue to compute the bb_antic_flags bitmap. Exclude
6110 tail blocks; They can be duplicated to be used on paths not
6111 needing a prologue. */
6112 bitmap_clear (&bb_on_list);
6113 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6114 FOR_EACH_BB (bb)
6116 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6117 continue;
6118 FOR_EACH_EDGE (e, ei, bb->preds)
6119 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6120 && bitmap_set_bit (&bb_on_list, e->src->index))
6121 vec.quick_push (e->src);
6123 while (!vec.is_empty ())
6125 basic_block tmp_bb = vec.pop ();
6126 bool all_set = true;
6128 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6129 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6130 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6132 all_set = false;
6133 break;
6136 if (all_set)
6138 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6139 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6140 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6141 && bitmap_set_bit (&bb_on_list, e->src->index))
6142 vec.quick_push (e->src);
6145 /* Find exactly one edge that leads to a block in ANTIC from
6146 a block that isn't. */
6147 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6148 FOR_EACH_BB (bb)
6150 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6151 continue;
6152 FOR_EACH_EDGE (e, ei, bb->preds)
6153 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6155 if (entry_edge != orig_entry_edge)
6157 entry_edge = orig_entry_edge;
6158 if (dump_file)
6159 fprintf (dump_file, "More than one candidate edge.\n");
6160 goto fail_shrinkwrap;
6162 if (dump_file)
6163 fprintf (dump_file, "Found candidate edge for "
6164 "shrink-wrapping, %d->%d.\n", e->src->index,
6165 e->dest->index);
6166 entry_edge = e;
6170 if (entry_edge != orig_entry_edge)
6172 /* Test whether the prologue is known to clobber any register
6173 (other than FP or SP) which are live on the edge. */
6174 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6175 if (frame_pointer_needed)
6176 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6177 REG_SET_TO_HARD_REG_SET (live_on_edge,
6178 df_get_live_in (entry_edge->dest));
6179 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6181 entry_edge = orig_entry_edge;
6182 if (dump_file)
6183 fprintf (dump_file,
6184 "Shrink-wrapping aborted due to clobber.\n");
6187 if (entry_edge != orig_entry_edge)
6189 crtl->shrink_wrapped = true;
6190 if (dump_file)
6191 fprintf (dump_file, "Performing shrink-wrapping.\n");
6193 /* Find tail blocks reachable from both blocks needing a
6194 prologue and blocks not needing a prologue. */
6195 if (!bitmap_empty_p (&bb_tail))
6196 FOR_EACH_BB (bb)
6198 bool some_pro, some_no_pro;
6199 if (!bitmap_bit_p (&bb_tail, bb->index))
6200 continue;
6201 some_pro = some_no_pro = false;
6202 FOR_EACH_EDGE (e, ei, bb->preds)
6204 if (bitmap_bit_p (&bb_flags, e->src->index))
6205 some_pro = true;
6206 else
6207 some_no_pro = true;
6209 if (some_pro && some_no_pro)
6210 vec.quick_push (bb);
6211 else
6212 bitmap_clear_bit (&bb_tail, bb->index);
6214 /* Find the head of each tail. */
6215 while (!vec.is_empty ())
6217 basic_block tbb = vec.pop ();
6219 if (!bitmap_bit_p (&bb_tail, tbb->index))
6220 continue;
6222 while (single_succ_p (tbb))
6224 tbb = single_succ (tbb);
6225 bitmap_clear_bit (&bb_tail, tbb->index);
6228 /* Now duplicate the tails. */
6229 if (!bitmap_empty_p (&bb_tail))
6230 FOR_EACH_BB_REVERSE (bb)
6232 basic_block copy_bb, tbb;
6233 rtx insert_point;
6234 int eflags;
6236 if (!bitmap_clear_bit (&bb_tail, bb->index))
6237 continue;
6239 /* Create a copy of BB, instructions and all, for
6240 use on paths that don't need a prologue.
6241 Ideal placement of the copy is on a fall-thru edge
6242 or after a block that would jump to the copy. */
6243 FOR_EACH_EDGE (e, ei, bb->preds)
6244 if (!bitmap_bit_p (&bb_flags, e->src->index)
6245 && single_succ_p (e->src))
6246 break;
6247 if (e)
6249 copy_bb = create_basic_block (NEXT_INSN (BB_END (e->src)),
6250 NULL_RTX, e->src);
6251 BB_COPY_PARTITION (copy_bb, e->src);
6253 else
6255 /* Otherwise put the copy at the end of the function. */
6256 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6257 EXIT_BLOCK_PTR->prev_bb);
6258 BB_COPY_PARTITION (copy_bb, bb);
6261 insert_point = emit_note_after (NOTE_INSN_DELETED,
6262 BB_END (copy_bb));
6263 emit_barrier_after (BB_END (copy_bb));
6265 tbb = bb;
6266 while (1)
6268 dup_block_and_redirect (tbb, copy_bb, insert_point,
6269 &bb_flags);
6270 tbb = single_succ (tbb);
6271 if (tbb == EXIT_BLOCK_PTR)
6272 break;
6273 e = split_block (copy_bb, PREV_INSN (insert_point));
6274 copy_bb = e->dest;
6277 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6278 We have yet to add a simple_return to the tails,
6279 as we'd like to first convert_jumps_to_returns in
6280 case the block is no longer used after that. */
6281 eflags = EDGE_FAKE;
6282 if (CALL_P (PREV_INSN (insert_point))
6283 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6284 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6285 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6287 /* verify_flow_info doesn't like a note after a
6288 sibling call. */
6289 delete_insn (insert_point);
6290 if (bitmap_empty_p (&bb_tail))
6291 break;
6295 fail_shrinkwrap:
6296 bitmap_clear (&bb_tail);
6297 bitmap_clear (&bb_antic_flags);
6298 bitmap_clear (&bb_on_list);
6299 vec.release ();
6301 #endif
6303 if (split_prologue_seq != NULL_RTX)
6305 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6306 inserted = true;
6308 if (prologue_seq != NULL_RTX)
6310 insert_insn_on_edge (prologue_seq, entry_edge);
6311 inserted = true;
6314 /* If the exit block has no non-fake predecessors, we don't need
6315 an epilogue. */
6316 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6317 if ((e->flags & EDGE_FAKE) == 0)
6318 break;
6319 if (e == NULL)
6320 goto epilogue_done;
6322 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6324 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6326 /* If we're allowed to generate a simple return instruction, then by
6327 definition we don't need a full epilogue. If the last basic
6328 block before the exit block does not contain active instructions,
6329 examine its predecessors and try to emit (conditional) return
6330 instructions. */
6331 #ifdef HAVE_simple_return
6332 if (entry_edge != orig_entry_edge)
6334 if (optimize)
6336 unsigned i, last;
6338 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6339 (but won't remove). Stop at end of current preds. */
6340 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6341 for (i = 0; i < last; i++)
6343 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6344 if (LABEL_P (BB_HEAD (e->src))
6345 && !bitmap_bit_p (&bb_flags, e->src->index)
6346 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6347 unconverted_simple_returns
6348 = convert_jumps_to_returns (e->src, true,
6349 unconverted_simple_returns);
6353 if (exit_fallthru_edge != NULL
6354 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6355 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6357 basic_block last_bb;
6359 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6360 returnjump = BB_END (last_bb);
6361 exit_fallthru_edge = NULL;
6364 #endif
6365 #ifdef HAVE_return
6366 if (HAVE_return)
6368 if (exit_fallthru_edge == NULL)
6369 goto epilogue_done;
6371 if (optimize)
6373 basic_block last_bb = exit_fallthru_edge->src;
6375 if (LABEL_P (BB_HEAD (last_bb))
6376 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6377 convert_jumps_to_returns (last_bb, false, vec<edge>());
6379 if (EDGE_COUNT (last_bb->preds) != 0
6380 && single_succ_p (last_bb))
6382 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6383 epilogue_end = returnjump = BB_END (last_bb);
6384 #ifdef HAVE_simple_return
6385 /* Emitting the return may add a basic block.
6386 Fix bb_flags for the added block. */
6387 if (last_bb != exit_fallthru_edge->src)
6388 bitmap_set_bit (&bb_flags, last_bb->index);
6389 #endif
6390 goto epilogue_done;
6394 #endif
6396 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6397 this marker for the splits of EH_RETURN patterns, and nothing else
6398 uses the flag in the meantime. */
6399 epilogue_completed = 1;
6401 #ifdef HAVE_eh_return
6402 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6403 some targets, these get split to a special version of the epilogue
6404 code. In order to be able to properly annotate these with unwind
6405 info, try to split them now. If we get a valid split, drop an
6406 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6407 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6409 rtx prev, last, trial;
6411 if (e->flags & EDGE_FALLTHRU)
6412 continue;
6413 last = BB_END (e->src);
6414 if (!eh_returnjump_p (last))
6415 continue;
6417 prev = PREV_INSN (last);
6418 trial = try_split (PATTERN (last), last, 1);
6419 if (trial == last)
6420 continue;
6422 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6423 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6425 #endif
6427 /* If nothing falls through into the exit block, we don't need an
6428 epilogue. */
6430 if (exit_fallthru_edge == NULL)
6431 goto epilogue_done;
6433 #ifdef HAVE_epilogue
6434 if (HAVE_epilogue)
6436 start_sequence ();
6437 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6438 seq = gen_epilogue ();
6439 if (seq)
6440 emit_jump_insn (seq);
6442 /* Retain a map of the epilogue insns. */
6443 record_insns (seq, NULL, &epilogue_insn_hash);
6444 set_insn_locations (seq, epilogue_location);
6446 seq = get_insns ();
6447 returnjump = get_last_insn ();
6448 end_sequence ();
6450 insert_insn_on_edge (seq, exit_fallthru_edge);
6451 inserted = true;
6453 if (JUMP_P (returnjump))
6454 set_return_jump_label (returnjump);
6456 else
6457 #endif
6459 basic_block cur_bb;
6461 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6462 goto epilogue_done;
6463 /* We have a fall-through edge to the exit block, the source is not
6464 at the end of the function, and there will be an assembler epilogue
6465 at the end of the function.
6466 We can't use force_nonfallthru here, because that would try to
6467 use return. Inserting a jump 'by hand' is extremely messy, so
6468 we take advantage of cfg_layout_finalize using
6469 fixup_fallthru_exit_predecessor. */
6470 cfg_layout_initialize (0);
6471 FOR_EACH_BB (cur_bb)
6472 if (cur_bb->index >= NUM_FIXED_BLOCKS
6473 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6474 cur_bb->aux = cur_bb->next_bb;
6475 cfg_layout_finalize ();
6478 epilogue_done:
6480 default_rtl_profile ();
6482 if (inserted)
6484 sbitmap blocks;
6486 commit_edge_insertions ();
6488 /* Look for basic blocks within the prologue insns. */
6489 blocks = sbitmap_alloc (last_basic_block);
6490 bitmap_clear (blocks);
6491 bitmap_set_bit (blocks, entry_edge->dest->index);
6492 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6493 find_many_sub_basic_blocks (blocks);
6494 sbitmap_free (blocks);
6496 /* The epilogue insns we inserted may cause the exit edge to no longer
6497 be fallthru. */
6498 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6500 if (((e->flags & EDGE_FALLTHRU) != 0)
6501 && returnjump_p (BB_END (e->src)))
6502 e->flags &= ~EDGE_FALLTHRU;
6506 #ifdef HAVE_simple_return
6507 /* If there were branches to an empty LAST_BB which we tried to
6508 convert to conditional simple_returns, but couldn't for some
6509 reason, create a block to hold a simple_return insn and redirect
6510 those remaining edges. */
6511 if (!unconverted_simple_returns.is_empty ())
6513 basic_block simple_return_block_hot = NULL;
6514 basic_block simple_return_block_cold = NULL;
6515 edge pending_edge_hot = NULL;
6516 edge pending_edge_cold = NULL;
6517 basic_block exit_pred = EXIT_BLOCK_PTR->prev_bb;
6518 int i;
6520 gcc_assert (entry_edge != orig_entry_edge);
6522 /* See if we can reuse the last insn that was emitted for the
6523 epilogue. */
6524 if (returnjump != NULL_RTX
6525 && JUMP_LABEL (returnjump) == simple_return_rtx)
6527 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6528 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6529 simple_return_block_hot = e->dest;
6530 else
6531 simple_return_block_cold = e->dest;
6534 /* Also check returns we might need to add to tail blocks. */
6535 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6536 if (EDGE_COUNT (e->src->preds) != 0
6537 && (e->flags & EDGE_FAKE) != 0
6538 && !bitmap_bit_p (&bb_flags, e->src->index))
6540 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6541 pending_edge_hot = e;
6542 else
6543 pending_edge_cold = e;
6546 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
6548 basic_block *pdest_bb;
6549 edge pending;
6551 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6553 pdest_bb = &simple_return_block_hot;
6554 pending = pending_edge_hot;
6556 else
6558 pdest_bb = &simple_return_block_cold;
6559 pending = pending_edge_cold;
6562 if (*pdest_bb == NULL && pending != NULL)
6564 emit_return_into_block (true, pending->src);
6565 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6566 *pdest_bb = pending->src;
6568 else if (*pdest_bb == NULL)
6570 basic_block bb;
6571 rtx start;
6573 bb = create_basic_block (NULL, NULL, exit_pred);
6574 BB_COPY_PARTITION (bb, e->src);
6575 start = emit_jump_insn_after (gen_simple_return (),
6576 BB_END (bb));
6577 JUMP_LABEL (start) = simple_return_rtx;
6578 emit_barrier_after (start);
6580 *pdest_bb = bb;
6581 make_edge (bb, EXIT_BLOCK_PTR, 0);
6583 redirect_edge_and_branch_force (e, *pdest_bb);
6585 unconverted_simple_returns.release ();
6588 if (entry_edge != orig_entry_edge)
6590 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6591 if (EDGE_COUNT (e->src->preds) != 0
6592 && (e->flags & EDGE_FAKE) != 0
6593 && !bitmap_bit_p (&bb_flags, e->src->index))
6595 emit_return_into_block (true, e->src);
6596 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6599 #endif
6601 #ifdef HAVE_sibcall_epilogue
6602 /* Emit sibling epilogues before any sibling call sites. */
6603 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6605 basic_block bb = e->src;
6606 rtx insn = BB_END (bb);
6607 rtx ep_seq;
6609 if (!CALL_P (insn)
6610 || ! SIBLING_CALL_P (insn)
6611 #ifdef HAVE_simple_return
6612 || (entry_edge != orig_entry_edge
6613 && !bitmap_bit_p (&bb_flags, bb->index))
6614 #endif
6617 ei_next (&ei);
6618 continue;
6621 ep_seq = gen_sibcall_epilogue ();
6622 if (ep_seq)
6624 start_sequence ();
6625 emit_note (NOTE_INSN_EPILOGUE_BEG);
6626 emit_insn (ep_seq);
6627 seq = get_insns ();
6628 end_sequence ();
6630 /* Retain a map of the epilogue insns. Used in life analysis to
6631 avoid getting rid of sibcall epilogue insns. Do this before we
6632 actually emit the sequence. */
6633 record_insns (seq, NULL, &epilogue_insn_hash);
6634 set_insn_locations (seq, epilogue_location);
6636 emit_insn_before (seq, insn);
6638 ei_next (&ei);
6640 #endif
6642 #ifdef HAVE_epilogue
6643 if (epilogue_end)
6645 rtx insn, next;
6647 /* Similarly, move any line notes that appear after the epilogue.
6648 There is no need, however, to be quite so anal about the existence
6649 of such a note. Also possibly move
6650 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6651 info generation. */
6652 for (insn = epilogue_end; insn; insn = next)
6654 next = NEXT_INSN (insn);
6655 if (NOTE_P (insn)
6656 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6657 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6660 #endif
6662 #ifdef HAVE_simple_return
6663 bitmap_clear (&bb_flags);
6664 #endif
6666 /* Threading the prologue and epilogue changes the artificial refs
6667 in the entry and exit blocks. */
6668 epilogue_completed = 1;
6669 df_update_entry_exit_and_calls ();
6672 /* Reposition the prologue-end and epilogue-begin notes after
6673 instruction scheduling. */
6675 void
6676 reposition_prologue_and_epilogue_notes (void)
6678 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6679 || defined (HAVE_sibcall_epilogue)
6680 /* Since the hash table is created on demand, the fact that it is
6681 non-null is a signal that it is non-empty. */
6682 if (prologue_insn_hash != NULL)
6684 size_t len = htab_elements (prologue_insn_hash);
6685 rtx insn, last = NULL, note = NULL;
6687 /* Scan from the beginning until we reach the last prologue insn. */
6688 /* ??? While we do have the CFG intact, there are two problems:
6689 (1) The prologue can contain loops (typically probing the stack),
6690 which means that the end of the prologue isn't in the first bb.
6691 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6692 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6694 if (NOTE_P (insn))
6696 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6697 note = insn;
6699 else if (contains (insn, prologue_insn_hash))
6701 last = insn;
6702 if (--len == 0)
6703 break;
6707 if (last)
6709 if (note == NULL)
6711 /* Scan forward looking for the PROLOGUE_END note. It should
6712 be right at the beginning of the block, possibly with other
6713 insn notes that got moved there. */
6714 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6716 if (NOTE_P (note)
6717 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6718 break;
6722 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6723 if (LABEL_P (last))
6724 last = NEXT_INSN (last);
6725 reorder_insns (note, note, last);
6729 if (epilogue_insn_hash != NULL)
6731 edge_iterator ei;
6732 edge e;
6734 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6736 rtx insn, first = NULL, note = NULL;
6737 basic_block bb = e->src;
6739 /* Scan from the beginning until we reach the first epilogue insn. */
6740 FOR_BB_INSNS (bb, insn)
6742 if (NOTE_P (insn))
6744 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6746 note = insn;
6747 if (first != NULL)
6748 break;
6751 else if (first == NULL && contains (insn, epilogue_insn_hash))
6753 first = insn;
6754 if (note != NULL)
6755 break;
6759 if (note)
6761 /* If the function has a single basic block, and no real
6762 epilogue insns (e.g. sibcall with no cleanup), the
6763 epilogue note can get scheduled before the prologue
6764 note. If we have frame related prologue insns, having
6765 them scanned during the epilogue will result in a crash.
6766 In this case re-order the epilogue note to just before
6767 the last insn in the block. */
6768 if (first == NULL)
6769 first = BB_END (bb);
6771 if (PREV_INSN (first) != note)
6772 reorder_insns (note, note, PREV_INSN (first));
6776 #endif /* HAVE_prologue or HAVE_epilogue */
6779 /* Returns the name of function declared by FNDECL. */
6780 const char *
6781 fndecl_name (tree fndecl)
6783 if (fndecl == NULL)
6784 return "(nofn)";
6785 return lang_hooks.decl_printable_name (fndecl, 2);
6788 /* Returns the name of function FN. */
6789 const char *
6790 function_name (struct function *fn)
6792 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6793 return fndecl_name (fndecl);
6796 /* Returns the name of the current function. */
6797 const char *
6798 current_function_name (void)
6800 return function_name (cfun);
6804 static unsigned int
6805 rest_of_handle_check_leaf_regs (void)
6807 #ifdef LEAF_REGISTERS
6808 crtl->uses_only_leaf_regs
6809 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6810 #endif
6811 return 0;
6814 /* Insert a TYPE into the used types hash table of CFUN. */
6816 static void
6817 used_types_insert_helper (tree type, struct function *func)
6819 if (type != NULL && func != NULL)
6821 void **slot;
6823 if (func->used_types_hash == NULL)
6824 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6825 htab_eq_pointer, NULL);
6826 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6827 if (*slot == NULL)
6828 *slot = type;
6832 /* Given a type, insert it into the used hash table in cfun. */
6833 void
6834 used_types_insert (tree t)
6836 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6837 if (TYPE_NAME (t))
6838 break;
6839 else
6840 t = TREE_TYPE (t);
6841 if (TREE_CODE (t) == ERROR_MARK)
6842 return;
6843 if (TYPE_NAME (t) == NULL_TREE
6844 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6845 t = TYPE_MAIN_VARIANT (t);
6846 if (debug_info_level > DINFO_LEVEL_NONE)
6848 if (cfun)
6849 used_types_insert_helper (t, cfun);
6850 else
6852 /* So this might be a type referenced by a global variable.
6853 Record that type so that we can later decide to emit its
6854 debug information. */
6855 vec_safe_push (types_used_by_cur_var_decl, t);
6860 /* Helper to Hash a struct types_used_by_vars_entry. */
6862 static hashval_t
6863 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6865 gcc_assert (entry && entry->var_decl && entry->type);
6867 return iterative_hash_object (entry->type,
6868 iterative_hash_object (entry->var_decl, 0));
6871 /* Hash function of the types_used_by_vars_entry hash table. */
6873 hashval_t
6874 types_used_by_vars_do_hash (const void *x)
6876 const struct types_used_by_vars_entry *entry =
6877 (const struct types_used_by_vars_entry *) x;
6879 return hash_types_used_by_vars_entry (entry);
6882 /*Equality function of the types_used_by_vars_entry hash table. */
6885 types_used_by_vars_eq (const void *x1, const void *x2)
6887 const struct types_used_by_vars_entry *e1 =
6888 (const struct types_used_by_vars_entry *) x1;
6889 const struct types_used_by_vars_entry *e2 =
6890 (const struct types_used_by_vars_entry *)x2;
6892 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6895 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6897 void
6898 types_used_by_var_decl_insert (tree type, tree var_decl)
6900 if (type != NULL && var_decl != NULL)
6902 void **slot;
6903 struct types_used_by_vars_entry e;
6904 e.var_decl = var_decl;
6905 e.type = type;
6906 if (types_used_by_vars_hash == NULL)
6907 types_used_by_vars_hash =
6908 htab_create_ggc (37, types_used_by_vars_do_hash,
6909 types_used_by_vars_eq, NULL);
6910 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6911 hash_types_used_by_vars_entry (&e), INSERT);
6912 if (*slot == NULL)
6914 struct types_used_by_vars_entry *entry;
6915 entry = ggc_alloc_types_used_by_vars_entry ();
6916 entry->type = type;
6917 entry->var_decl = var_decl;
6918 *slot = entry;
6923 struct rtl_opt_pass pass_leaf_regs =
6926 RTL_PASS,
6927 "*leaf_regs", /* name */
6928 OPTGROUP_NONE, /* optinfo_flags */
6929 NULL, /* gate */
6930 rest_of_handle_check_leaf_regs, /* execute */
6931 NULL, /* sub */
6932 NULL, /* next */
6933 0, /* static_pass_number */
6934 TV_NONE, /* tv_id */
6935 0, /* properties_required */
6936 0, /* properties_provided */
6937 0, /* properties_destroyed */
6938 0, /* todo_flags_start */
6939 0 /* todo_flags_finish */
6943 static unsigned int
6944 rest_of_handle_thread_prologue_and_epilogue (void)
6946 if (optimize)
6947 cleanup_cfg (CLEANUP_EXPENSIVE);
6949 /* On some machines, the prologue and epilogue code, or parts thereof,
6950 can be represented as RTL. Doing so lets us schedule insns between
6951 it and the rest of the code and also allows delayed branch
6952 scheduling to operate in the epilogue. */
6953 thread_prologue_and_epilogue_insns ();
6955 /* The stack usage info is finalized during prologue expansion. */
6956 if (flag_stack_usage_info)
6957 output_stack_usage ();
6959 return 0;
6962 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
6965 RTL_PASS,
6966 "pro_and_epilogue", /* name */
6967 OPTGROUP_NONE, /* optinfo_flags */
6968 NULL, /* gate */
6969 rest_of_handle_thread_prologue_and_epilogue, /* execute */
6970 NULL, /* sub */
6971 NULL, /* next */
6972 0, /* static_pass_number */
6973 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6974 0, /* properties_required */
6975 0, /* properties_provided */
6976 0, /* properties_destroyed */
6977 TODO_verify_flow, /* todo_flags_start */
6978 TODO_df_verify |
6979 TODO_df_finish | TODO_verify_rtl_sharing |
6980 TODO_ggc_collect /* todo_flags_finish */
6985 /* This mini-pass fixes fall-out from SSA in asm statements that have
6986 in-out constraints. Say you start with
6988 orig = inout;
6989 asm ("": "+mr" (inout));
6990 use (orig);
6992 which is transformed very early to use explicit output and match operands:
6994 orig = inout;
6995 asm ("": "=mr" (inout) : "0" (inout));
6996 use (orig);
6998 Or, after SSA and copyprop,
7000 asm ("": "=mr" (inout_2) : "0" (inout_1));
7001 use (inout_1);
7003 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7004 they represent two separate values, so they will get different pseudo
7005 registers during expansion. Then, since the two operands need to match
7006 per the constraints, but use different pseudo registers, reload can
7007 only register a reload for these operands. But reloads can only be
7008 satisfied by hardregs, not by memory, so we need a register for this
7009 reload, just because we are presented with non-matching operands.
7010 So, even though we allow memory for this operand, no memory can be
7011 used for it, just because the two operands don't match. This can
7012 cause reload failures on register-starved targets.
7014 So it's a symptom of reload not being able to use memory for reloads
7015 or, alternatively it's also a symptom of both operands not coming into
7016 reload as matching (in which case the pseudo could go to memory just
7017 fine, as the alternative allows it, and no reload would be necessary).
7018 We fix the latter problem here, by transforming
7020 asm ("": "=mr" (inout_2) : "0" (inout_1));
7022 back to
7024 inout_2 = inout_1;
7025 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7027 static void
7028 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7030 int i;
7031 bool changed = false;
7032 rtx op = SET_SRC (p_sets[0]);
7033 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7034 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7035 bool *output_matched = XALLOCAVEC (bool, noutputs);
7037 memset (output_matched, 0, noutputs * sizeof (bool));
7038 for (i = 0; i < ninputs; i++)
7040 rtx input, output, insns;
7041 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7042 char *end;
7043 int match, j;
7045 if (*constraint == '%')
7046 constraint++;
7048 match = strtoul (constraint, &end, 10);
7049 if (end == constraint)
7050 continue;
7052 gcc_assert (match < noutputs);
7053 output = SET_DEST (p_sets[match]);
7054 input = RTVEC_ELT (inputs, i);
7055 /* Only do the transformation for pseudos. */
7056 if (! REG_P (output)
7057 || rtx_equal_p (output, input)
7058 || (GET_MODE (input) != VOIDmode
7059 && GET_MODE (input) != GET_MODE (output)))
7060 continue;
7062 /* We can't do anything if the output is also used as input,
7063 as we're going to overwrite it. */
7064 for (j = 0; j < ninputs; j++)
7065 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7066 break;
7067 if (j != ninputs)
7068 continue;
7070 /* Avoid changing the same input several times. For
7071 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7072 only change in once (to out1), rather than changing it
7073 first to out1 and afterwards to out2. */
7074 if (i > 0)
7076 for (j = 0; j < noutputs; j++)
7077 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7078 break;
7079 if (j != noutputs)
7080 continue;
7082 output_matched[match] = true;
7084 start_sequence ();
7085 emit_move_insn (output, input);
7086 insns = get_insns ();
7087 end_sequence ();
7088 emit_insn_before (insns, insn);
7090 /* Now replace all mentions of the input with output. We can't
7091 just replace the occurrence in inputs[i], as the register might
7092 also be used in some other input (or even in an address of an
7093 output), which would mean possibly increasing the number of
7094 inputs by one (namely 'output' in addition), which might pose
7095 a too complicated problem for reload to solve. E.g. this situation:
7097 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7099 Here 'input' is used in two occurrences as input (once for the
7100 input operand, once for the address in the second output operand).
7101 If we would replace only the occurrence of the input operand (to
7102 make the matching) we would be left with this:
7104 output = input
7105 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7107 Now we suddenly have two different input values (containing the same
7108 value, but different pseudos) where we formerly had only one.
7109 With more complicated asms this might lead to reload failures
7110 which wouldn't have happen without this pass. So, iterate over
7111 all operands and replace all occurrences of the register used. */
7112 for (j = 0; j < noutputs; j++)
7113 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7114 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7115 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7116 input, output);
7117 for (j = 0; j < ninputs; j++)
7118 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7119 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7120 input, output);
7122 changed = true;
7125 if (changed)
7126 df_insn_rescan (insn);
7129 static unsigned
7130 rest_of_match_asm_constraints (void)
7132 basic_block bb;
7133 rtx insn, pat, *p_sets;
7134 int noutputs;
7136 if (!crtl->has_asm_statement)
7137 return 0;
7139 df_set_flags (DF_DEFER_INSN_RESCAN);
7140 FOR_EACH_BB (bb)
7142 FOR_BB_INSNS (bb, insn)
7144 if (!INSN_P (insn))
7145 continue;
7147 pat = PATTERN (insn);
7148 if (GET_CODE (pat) == PARALLEL)
7149 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7150 else if (GET_CODE (pat) == SET)
7151 p_sets = &PATTERN (insn), noutputs = 1;
7152 else
7153 continue;
7155 if (GET_CODE (*p_sets) == SET
7156 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7157 match_asm_constraints_1 (insn, p_sets, noutputs);
7161 return TODO_df_finish;
7164 struct rtl_opt_pass pass_match_asm_constraints =
7167 RTL_PASS,
7168 "asmcons", /* name */
7169 OPTGROUP_NONE, /* optinfo_flags */
7170 NULL, /* gate */
7171 rest_of_match_asm_constraints, /* execute */
7172 NULL, /* sub */
7173 NULL, /* next */
7174 0, /* static_pass_number */
7175 TV_NONE, /* tv_id */
7176 0, /* properties_required */
7177 0, /* properties_provided */
7178 0, /* properties_destroyed */
7179 0, /* todo_flags_start */
7180 0 /* todo_flags_finish */
7185 #include "gt-function.h"