1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992-2012 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
38 #include "diagnostic-core.h"
46 #include "hard-reg-set.h"
48 #include "insn-config.h"
51 #include "basic-block.h"
54 #include "langhooks.h"
59 struct target_rtl default_target_rtl
;
61 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
64 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
66 /* Commonly used modes. */
68 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
69 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
70 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
71 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
73 /* Datastructures maintained for currently processed function in RTL form. */
75 struct rtl_data x_rtl
;
77 /* Indexed by pseudo register number, gives the rtx for that pseudo.
78 Allocated in parallel with regno_pointer_align.
79 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
80 with length attribute nested in top level structures. */
84 /* This is *not* reset after each function. It gives each CODE_LABEL
85 in the entire compilation a unique label number. */
87 static GTY(()) int label_num
= 1;
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
92 is set only for MODE_INT and MODE_VECTOR_INT modes. */
94 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
98 REAL_VALUE_TYPE dconst0
;
99 REAL_VALUE_TYPE dconst1
;
100 REAL_VALUE_TYPE dconst2
;
101 REAL_VALUE_TYPE dconstm1
;
102 REAL_VALUE_TYPE dconsthalf
;
104 /* Record fixed-point constant 0 and 1. */
105 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
106 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
108 /* We make one copy of (const_int C) where C is in
109 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
110 to save space during the compilation and simplify comparisons of
113 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
115 /* Standard pieces of rtx, to be substituted directly into things. */
118 rtx simple_return_rtx
;
121 /* A hash table storing CONST_INTs whose absolute value is greater
122 than MAX_SAVED_CONST_INT. */
124 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
125 htab_t const_int_htab
;
127 /* A hash table storing memory attribute structures. */
128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
129 htab_t mem_attrs_htab
;
131 /* A hash table storing register attribute structures. */
132 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
133 htab_t reg_attrs_htab
;
135 /* A hash table storing all CONST_DOUBLEs. */
136 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
137 htab_t const_double_htab
;
139 /* A hash table storing all CONST_FIXEDs. */
140 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
141 htab_t const_fixed_htab
;
143 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
144 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
145 #define first_label_num (crtl->emit.x_first_label_num)
147 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
148 static void set_used_decls (tree
);
149 static void mark_label_nuses (rtx
);
150 static hashval_t
const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t
const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx
lookup_const_double (rtx
);
155 static hashval_t
const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx
lookup_const_fixed (rtx
);
158 static hashval_t
mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static hashval_t
reg_attrs_htab_hash (const void *);
161 static int reg_attrs_htab_eq (const void *, const void *);
162 static reg_attrs
*get_reg_attrs (tree
, int);
163 static rtx
gen_const_vector (enum machine_mode
, int);
164 static void copy_rtx_if_shared_1 (rtx
*orig
);
166 /* Probability of the conditional branch currently proceeded by try_split.
167 Set to -1 otherwise. */
168 int split_branch_probability
= -1;
170 /* Returns a hash code for X (which is a really a CONST_INT). */
173 const_int_htab_hash (const void *x
)
175 return (hashval_t
) INTVAL ((const_rtx
) x
);
178 /* Returns nonzero if the value represented by X (which is really a
179 CONST_INT) is the same as that given by Y (which is really a
183 const_int_htab_eq (const void *x
, const void *y
)
185 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
188 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
190 const_double_htab_hash (const void *x
)
192 const_rtx
const value
= (const_rtx
) x
;
195 if (GET_MODE (value
) == VOIDmode
)
196 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
199 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
200 /* MODE is used in the comparison, so it should be in the hash. */
201 h
^= GET_MODE (value
);
206 /* Returns nonzero if the value represented by X (really a ...)
207 is the same as that represented by Y (really a ...) */
209 const_double_htab_eq (const void *x
, const void *y
)
211 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
213 if (GET_MODE (a
) != GET_MODE (b
))
215 if (GET_MODE (a
) == VOIDmode
)
216 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
217 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
219 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
220 CONST_DOUBLE_REAL_VALUE (b
));
223 /* Returns a hash code for X (which is really a CONST_FIXED). */
226 const_fixed_htab_hash (const void *x
)
228 const_rtx
const value
= (const_rtx
) x
;
231 h
= fixed_hash (CONST_FIXED_VALUE (value
));
232 /* MODE is used in the comparison, so it should be in the hash. */
233 h
^= GET_MODE (value
);
237 /* Returns nonzero if the value represented by X (really a ...)
238 is the same as that represented by Y (really a ...). */
241 const_fixed_htab_eq (const void *x
, const void *y
)
243 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
245 if (GET_MODE (a
) != GET_MODE (b
))
247 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
250 /* Returns a hash code for X (which is a really a mem_attrs *). */
253 mem_attrs_htab_hash (const void *x
)
255 const mem_attrs
*const p
= (const mem_attrs
*) x
;
257 return (p
->alias
^ (p
->align
* 1000)
258 ^ (p
->addrspace
* 4000)
259 ^ ((p
->offset_known_p
? p
->offset
: 0) * 50000)
260 ^ ((p
->size_known_p
? p
->size
: 0) * 2500000)
261 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
264 /* Return true if the given memory attributes are equal. */
267 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
269 return (p
->alias
== q
->alias
270 && p
->offset_known_p
== q
->offset_known_p
271 && (!p
->offset_known_p
|| p
->offset
== q
->offset
)
272 && p
->size_known_p
== q
->size_known_p
273 && (!p
->size_known_p
|| p
->size
== q
->size
)
274 && p
->align
== q
->align
275 && p
->addrspace
== q
->addrspace
276 && (p
->expr
== q
->expr
277 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
278 && operand_equal_p (p
->expr
, q
->expr
, 0))));
281 /* Returns nonzero if the value represented by X (which is really a
282 mem_attrs *) is the same as that given by Y (which is also really a
286 mem_attrs_htab_eq (const void *x
, const void *y
)
288 return mem_attrs_eq_p ((const mem_attrs
*) x
, (const mem_attrs
*) y
);
291 /* Set MEM's memory attributes so that they are the same as ATTRS. */
294 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
298 /* If everything is the default, we can just clear the attributes. */
299 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
305 slot
= htab_find_slot (mem_attrs_htab
, attrs
, INSERT
);
308 *slot
= ggc_alloc_mem_attrs ();
309 memcpy (*slot
, attrs
, sizeof (mem_attrs
));
312 MEM_ATTRS (mem
) = (mem_attrs
*) *slot
;
315 /* Returns a hash code for X (which is a really a reg_attrs *). */
318 reg_attrs_htab_hash (const void *x
)
320 const reg_attrs
*const p
= (const reg_attrs
*) x
;
322 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
325 /* Returns nonzero if the value represented by X (which is really a
326 reg_attrs *) is the same as that given by Y (which is also really a
330 reg_attrs_htab_eq (const void *x
, const void *y
)
332 const reg_attrs
*const p
= (const reg_attrs
*) x
;
333 const reg_attrs
*const q
= (const reg_attrs
*) y
;
335 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
337 /* Allocate a new reg_attrs structure and insert it into the hash table if
338 one identical to it is not already in the table. We are doing this for
342 get_reg_attrs (tree decl
, int offset
)
347 /* If everything is the default, we can just return zero. */
348 if (decl
== 0 && offset
== 0)
352 attrs
.offset
= offset
;
354 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
357 *slot
= ggc_alloc_reg_attrs ();
358 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
361 return (reg_attrs
*) *slot
;
366 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
372 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
373 MEM_VOLATILE_P (x
) = true;
379 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
380 don't attempt to share with the various global pieces of rtl (such as
381 frame_pointer_rtx). */
384 gen_raw_REG (enum machine_mode mode
, int regno
)
386 rtx x
= gen_rtx_raw_REG (mode
, regno
);
387 ORIGINAL_REGNO (x
) = regno
;
391 /* There are some RTL codes that require special attention; the generation
392 functions do the raw handling. If you add to this list, modify
393 special_rtx in gengenrtl.c as well. */
396 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
400 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
401 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
403 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
404 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
405 return const_true_rtx
;
408 /* Look up the CONST_INT in the hash table. */
409 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
410 (hashval_t
) arg
, INSERT
);
412 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
418 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
420 return GEN_INT (trunc_int_for_mode (c
, mode
));
423 /* CONST_DOUBLEs might be created from pairs of integers, or from
424 REAL_VALUE_TYPEs. Also, their length is known only at run time,
425 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
427 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
428 hash table. If so, return its counterpart; otherwise add it
429 to the hash table and return it. */
431 lookup_const_double (rtx real
)
433 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
440 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
441 VALUE in mode MODE. */
443 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
445 rtx real
= rtx_alloc (CONST_DOUBLE
);
446 PUT_MODE (real
, mode
);
450 return lookup_const_double (real
);
453 /* Determine whether FIXED, a CONST_FIXED, already exists in the
454 hash table. If so, return its counterpart; otherwise add it
455 to the hash table and return it. */
458 lookup_const_fixed (rtx fixed
)
460 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
467 /* Return a CONST_FIXED rtx for a fixed-point value specified by
468 VALUE in mode MODE. */
471 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
473 rtx fixed
= rtx_alloc (CONST_FIXED
);
474 PUT_MODE (fixed
, mode
);
478 return lookup_const_fixed (fixed
);
481 /* Constructs double_int from rtx CST. */
484 rtx_to_double_int (const_rtx cst
)
488 if (CONST_INT_P (cst
))
489 r
= double_int::from_shwi (INTVAL (cst
));
490 else if (CONST_DOUBLE_AS_INT_P (cst
))
492 r
.low
= CONST_DOUBLE_LOW (cst
);
493 r
.high
= CONST_DOUBLE_HIGH (cst
);
502 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
506 immed_double_int_const (double_int i
, enum machine_mode mode
)
508 return immed_double_const (i
.low
, i
.high
, mode
);
511 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
512 of ints: I0 is the low-order word and I1 is the high-order word.
513 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
514 implied upper bits are copies of the high bit of i1. The value
515 itself is neither signed nor unsigned. Do not use this routine for
516 non-integer modes; convert to REAL_VALUE_TYPE and use
517 CONST_DOUBLE_FROM_REAL_VALUE. */
520 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
525 /* There are the following cases (note that there are no modes with
526 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
528 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
530 2) If the value of the integer fits into HOST_WIDE_INT anyway
531 (i.e., i1 consists only from copies of the sign bit, and sign
532 of i0 and i1 are the same), then we return a CONST_INT for i0.
533 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
534 if (mode
!= VOIDmode
)
536 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
537 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
538 /* We can get a 0 for an error mark. */
539 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
540 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
542 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
543 return gen_int_mode (i0
, mode
);
546 /* If this integer fits in one word, return a CONST_INT. */
547 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
550 /* We use VOIDmode for integers. */
551 value
= rtx_alloc (CONST_DOUBLE
);
552 PUT_MODE (value
, VOIDmode
);
554 CONST_DOUBLE_LOW (value
) = i0
;
555 CONST_DOUBLE_HIGH (value
) = i1
;
557 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
558 XWINT (value
, i
) = 0;
560 return lookup_const_double (value
);
564 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
566 /* In case the MD file explicitly references the frame pointer, have
567 all such references point to the same frame pointer. This is
568 used during frame pointer elimination to distinguish the explicit
569 references to these registers from pseudos that happened to be
572 If we have eliminated the frame pointer or arg pointer, we will
573 be using it as a normal register, for example as a spill
574 register. In such cases, we might be accessing it in a mode that
575 is not Pmode and therefore cannot use the pre-allocated rtx.
577 Also don't do this when we are making new REGs in reload, since
578 we don't want to get confused with the real pointers. */
580 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
582 if (regno
== FRAME_POINTER_REGNUM
583 && (!reload_completed
|| frame_pointer_needed
))
584 return frame_pointer_rtx
;
585 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
586 if (regno
== HARD_FRAME_POINTER_REGNUM
587 && (!reload_completed
|| frame_pointer_needed
))
588 return hard_frame_pointer_rtx
;
590 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
591 if (regno
== ARG_POINTER_REGNUM
)
592 return arg_pointer_rtx
;
594 #ifdef RETURN_ADDRESS_POINTER_REGNUM
595 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
596 return return_address_pointer_rtx
;
598 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
599 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
600 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
601 return pic_offset_table_rtx
;
602 if (regno
== STACK_POINTER_REGNUM
)
603 return stack_pointer_rtx
;
607 /* If the per-function register table has been set up, try to re-use
608 an existing entry in that table to avoid useless generation of RTL.
610 This code is disabled for now until we can fix the various backends
611 which depend on having non-shared hard registers in some cases. Long
612 term we want to re-enable this code as it can significantly cut down
613 on the amount of useless RTL that gets generated.
615 We'll also need to fix some code that runs after reload that wants to
616 set ORIGINAL_REGNO. */
621 && regno
< FIRST_PSEUDO_REGISTER
622 && reg_raw_mode
[regno
] == mode
)
623 return regno_reg_rtx
[regno
];
626 return gen_raw_REG (mode
, regno
);
630 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
632 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
634 /* This field is not cleared by the mere allocation of the rtx, so
641 /* Generate a memory referring to non-trapping constant memory. */
644 gen_const_mem (enum machine_mode mode
, rtx addr
)
646 rtx mem
= gen_rtx_MEM (mode
, addr
);
647 MEM_READONLY_P (mem
) = 1;
648 MEM_NOTRAP_P (mem
) = 1;
652 /* Generate a MEM referring to fixed portions of the frame, e.g., register
656 gen_frame_mem (enum machine_mode mode
, rtx addr
)
658 rtx mem
= gen_rtx_MEM (mode
, addr
);
659 MEM_NOTRAP_P (mem
) = 1;
660 set_mem_alias_set (mem
, get_frame_alias_set ());
664 /* Generate a MEM referring to a temporary use of the stack, not part
665 of the fixed stack frame. For example, something which is pushed
666 by a target splitter. */
668 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
670 rtx mem
= gen_rtx_MEM (mode
, addr
);
671 MEM_NOTRAP_P (mem
) = 1;
672 if (!cfun
->calls_alloca
)
673 set_mem_alias_set (mem
, get_frame_alias_set ());
677 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
678 this construct would be valid, and false otherwise. */
681 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
682 const_rtx reg
, unsigned int offset
)
684 unsigned int isize
= GET_MODE_SIZE (imode
);
685 unsigned int osize
= GET_MODE_SIZE (omode
);
687 /* All subregs must be aligned. */
688 if (offset
% osize
!= 0)
691 /* The subreg offset cannot be outside the inner object. */
695 /* ??? This should not be here. Temporarily continue to allow word_mode
696 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
697 Generally, backends are doing something sketchy but it'll take time to
699 if (omode
== word_mode
)
701 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
702 is the culprit here, and not the backends. */
703 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
705 /* Allow component subregs of complex and vector. Though given the below
706 extraction rules, it's not always clear what that means. */
707 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
708 && GET_MODE_INNER (imode
) == omode
)
710 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
711 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
712 represent this. It's questionable if this ought to be represented at
713 all -- why can't this all be hidden in post-reload splitters that make
714 arbitrarily mode changes to the registers themselves. */
715 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
717 /* Subregs involving floating point modes are not allowed to
718 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
719 (subreg:SI (reg:DF) 0) isn't. */
720 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
722 if (! (isize
== osize
723 /* LRA can use subreg to store a floating point value in
724 an integer mode. Although the floating point and the
725 integer modes need the same number of hard registers,
726 the size of floating point mode can be less than the
727 integer mode. LRA also uses subregs for a register
728 should be used in different mode in on insn. */
733 /* Paradoxical subregs must have offset zero. */
737 /* This is a normal subreg. Verify that the offset is representable. */
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
743 unsigned int regno
= REGNO (reg
);
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
747 && GET_MODE_INNER (imode
) == omode
)
749 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
753 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize
< UNITS_PER_WORD
763 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
765 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
766 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
767 if (offset
% UNITS_PER_WORD
!= low_off
)
774 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
776 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
777 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
780 /* Generate a SUBREG representing the least-significant part of REG if MODE
781 is smaller than mode of REG, otherwise paradoxical SUBREG. */
784 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
786 enum machine_mode inmode
;
788 inmode
= GET_MODE (reg
);
789 if (inmode
== VOIDmode
)
791 return gen_rtx_SUBREG (mode
, reg
,
792 subreg_lowpart_offset (mode
, inmode
));
796 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
799 gen_rtvec (int n
, ...)
807 /* Don't allocate an empty rtvec... */
814 rt_val
= rtvec_alloc (n
);
816 for (i
= 0; i
< n
; i
++)
817 rt_val
->elem
[i
] = va_arg (p
, rtx
);
824 gen_rtvec_v (int n
, rtx
*argp
)
829 /* Don't allocate an empty rtvec... */
833 rt_val
= rtvec_alloc (n
);
835 for (i
= 0; i
< n
; i
++)
836 rt_val
->elem
[i
] = *argp
++;
841 /* Return the number of bytes between the start of an OUTER_MODE
842 in-memory value and the start of an INNER_MODE in-memory value,
843 given that the former is a lowpart of the latter. It may be a
844 paradoxical lowpart, in which case the offset will be negative
845 on big-endian targets. */
848 byte_lowpart_offset (enum machine_mode outer_mode
,
849 enum machine_mode inner_mode
)
851 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
852 return subreg_lowpart_offset (outer_mode
, inner_mode
);
854 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
857 /* Generate a REG rtx for a new pseudo register of mode MODE.
858 This pseudo is assigned the next sequential register number. */
861 gen_reg_rtx (enum machine_mode mode
)
864 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
866 gcc_assert (can_create_pseudo_p ());
868 /* If a virtual register with bigger mode alignment is generated,
869 increase stack alignment estimation because it might be spilled
871 if (SUPPORTS_STACK_ALIGNMENT
872 && crtl
->stack_alignment_estimated
< align
873 && !crtl
->stack_realign_processed
)
875 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
876 if (crtl
->stack_alignment_estimated
< min_align
)
877 crtl
->stack_alignment_estimated
= min_align
;
880 if (generating_concat_p
881 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
882 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
884 /* For complex modes, don't make a single pseudo.
885 Instead, make a CONCAT of two pseudos.
886 This allows noncontiguous allocation of the real and imaginary parts,
887 which makes much better code. Besides, allocating DCmode
888 pseudos overstrains reload on some machines like the 386. */
889 rtx realpart
, imagpart
;
890 enum machine_mode partmode
= GET_MODE_INNER (mode
);
892 realpart
= gen_reg_rtx (partmode
);
893 imagpart
= gen_reg_rtx (partmode
);
894 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
897 /* Make sure regno_pointer_align, and regno_reg_rtx are large
898 enough to have an element for this pseudo reg number. */
900 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
902 int old_size
= crtl
->emit
.regno_pointer_align_length
;
906 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
907 memset (tmp
+ old_size
, 0, old_size
);
908 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
910 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
911 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
912 regno_reg_rtx
= new1
;
914 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
917 val
= gen_raw_REG (mode
, reg_rtx_no
);
918 regno_reg_rtx
[reg_rtx_no
++] = val
;
922 /* Update NEW with the same attributes as REG, but with OFFSET added
923 to the REG_OFFSET. */
926 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
928 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
929 REG_OFFSET (reg
) + offset
);
932 /* Generate a register with same attributes as REG, but with OFFSET
933 added to the REG_OFFSET. */
936 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
939 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
941 update_reg_offset (new_rtx
, reg
, offset
);
945 /* Generate a new pseudo-register with the same attributes as REG, but
946 with OFFSET added to the REG_OFFSET. */
949 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
951 rtx new_rtx
= gen_reg_rtx (mode
);
953 update_reg_offset (new_rtx
, reg
, offset
);
957 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
958 new register is a (possibly paradoxical) lowpart of the old one. */
961 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
963 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
964 PUT_MODE (reg
, mode
);
967 /* Copy REG's attributes from X, if X has any attributes. If REG and X
968 have different modes, REG is a (possibly paradoxical) lowpart of X. */
971 set_reg_attrs_from_value (rtx reg
, rtx x
)
974 bool can_be_reg_pointer
= true;
976 /* Don't call mark_reg_pointer for incompatible pointer sign
978 while (GET_CODE (x
) == SIGN_EXTEND
979 || GET_CODE (x
) == ZERO_EXTEND
980 || GET_CODE (x
) == TRUNCATE
981 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
983 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
984 if ((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
985 || (GET_CODE (x
) != SIGN_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
))
986 can_be_reg_pointer
= false;
991 /* Hard registers can be reused for multiple purposes within the same
992 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
994 if (HARD_REGISTER_P (reg
))
997 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1000 if (MEM_OFFSET_KNOWN_P (x
))
1001 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
1002 MEM_OFFSET (x
) + offset
);
1003 if (can_be_reg_pointer
&& MEM_POINTER (x
))
1004 mark_reg_pointer (reg
, 0);
1009 update_reg_offset (reg
, x
, offset
);
1010 if (can_be_reg_pointer
&& REG_POINTER (x
))
1011 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1015 /* Generate a REG rtx for a new pseudo register, copying the mode
1016 and attributes from X. */
1019 gen_reg_rtx_and_attrs (rtx x
)
1021 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1022 set_reg_attrs_from_value (reg
, x
);
1026 /* Set the register attributes for registers contained in PARM_RTX.
1027 Use needed values from memory attributes of MEM. */
1030 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1032 if (REG_P (parm_rtx
))
1033 set_reg_attrs_from_value (parm_rtx
, mem
);
1034 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1036 /* Check for a NULL entry in the first slot, used to indicate that the
1037 parameter goes both on the stack and in registers. */
1038 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1039 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1041 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1042 if (REG_P (XEXP (x
, 0)))
1043 REG_ATTRS (XEXP (x
, 0))
1044 = get_reg_attrs (MEM_EXPR (mem
),
1045 INTVAL (XEXP (x
, 1)));
1050 /* Set the REG_ATTRS for registers in value X, given that X represents
1054 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1056 if (GET_CODE (x
) == SUBREG
)
1058 gcc_assert (subreg_lowpart_p (x
));
1063 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1065 if (GET_CODE (x
) == CONCAT
)
1067 if (REG_P (XEXP (x
, 0)))
1068 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1069 if (REG_P (XEXP (x
, 1)))
1070 REG_ATTRS (XEXP (x
, 1))
1071 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1073 if (GET_CODE (x
) == PARALLEL
)
1077 /* Check for a NULL entry, used to indicate that the parameter goes
1078 both on the stack and in registers. */
1079 if (XEXP (XVECEXP (x
, 0, 0), 0))
1084 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1086 rtx y
= XVECEXP (x
, 0, i
);
1087 if (REG_P (XEXP (y
, 0)))
1088 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1093 /* Assign the RTX X to declaration T. */
1096 set_decl_rtl (tree t
, rtx x
)
1098 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1100 set_reg_attrs_for_decl_rtl (t
, x
);
1103 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1104 if the ABI requires the parameter to be passed by reference. */
1107 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1109 DECL_INCOMING_RTL (t
) = x
;
1110 if (x
&& !by_reference_p
)
1111 set_reg_attrs_for_decl_rtl (t
, x
);
1114 /* Identify REG (which may be a CONCAT) as a user register. */
1117 mark_user_reg (rtx reg
)
1119 if (GET_CODE (reg
) == CONCAT
)
1121 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1122 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1126 gcc_assert (REG_P (reg
));
1127 REG_USERVAR_P (reg
) = 1;
1131 /* Identify REG as a probable pointer register and show its alignment
1132 as ALIGN, if nonzero. */
1135 mark_reg_pointer (rtx reg
, int align
)
1137 if (! REG_POINTER (reg
))
1139 REG_POINTER (reg
) = 1;
1142 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1144 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1145 /* We can no-longer be sure just how aligned this pointer is. */
1146 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1149 /* Return 1 plus largest pseudo reg number used in the current function. */
1157 /* Return 1 + the largest label number used so far in the current function. */
1160 max_label_num (void)
1165 /* Return first label number used in this function (if any were used). */
1168 get_first_label_num (void)
1170 return first_label_num
;
1173 /* If the rtx for label was created during the expansion of a nested
1174 function, then first_label_num won't include this label number.
1175 Fix this now so that array indices work later. */
1178 maybe_set_first_label_num (rtx x
)
1180 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1181 first_label_num
= CODE_LABEL_NUMBER (x
);
1184 /* Return a value representing some low-order bits of X, where the number
1185 of low-order bits is given by MODE. Note that no conversion is done
1186 between floating-point and fixed-point values, rather, the bit
1187 representation is returned.
1189 This function handles the cases in common between gen_lowpart, below,
1190 and two variants in cse.c and combine.c. These are the cases that can
1191 be safely handled at all points in the compilation.
1193 If this is not a case we can handle, return 0. */
1196 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1198 int msize
= GET_MODE_SIZE (mode
);
1201 enum machine_mode innermode
;
1203 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1204 so we have to make one up. Yuk. */
1205 innermode
= GET_MODE (x
);
1207 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1208 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1209 else if (innermode
== VOIDmode
)
1210 innermode
= mode_for_size (HOST_BITS_PER_DOUBLE_INT
, MODE_INT
, 0);
1212 xsize
= GET_MODE_SIZE (innermode
);
1214 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1216 if (innermode
== mode
)
1219 /* MODE must occupy no more words than the mode of X. */
1220 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1221 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1224 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1225 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1228 offset
= subreg_lowpart_offset (mode
, innermode
);
1230 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1231 && (GET_MODE_CLASS (mode
) == MODE_INT
1232 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1234 /* If we are getting the low-order part of something that has been
1235 sign- or zero-extended, we can either just use the object being
1236 extended or make a narrower extension. If we want an even smaller
1237 piece than the size of the object being extended, call ourselves
1240 This case is used mostly by combine and cse. */
1242 if (GET_MODE (XEXP (x
, 0)) == mode
)
1244 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1245 return gen_lowpart_common (mode
, XEXP (x
, 0));
1246 else if (msize
< xsize
)
1247 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1249 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1250 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1251 || CONST_DOUBLE_AS_FLOAT_P (x
) || CONST_SCALAR_INT_P (x
))
1252 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1254 /* Otherwise, we can't do this. */
1259 gen_highpart (enum machine_mode mode
, rtx x
)
1261 unsigned int msize
= GET_MODE_SIZE (mode
);
1264 /* This case loses if X is a subreg. To catch bugs early,
1265 complain if an invalid MODE is used even in other cases. */
1266 gcc_assert (msize
<= UNITS_PER_WORD
1267 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1269 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1270 subreg_highpart_offset (mode
, GET_MODE (x
)));
1271 gcc_assert (result
);
1273 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1274 the target if we have a MEM. gen_highpart must return a valid operand,
1275 emitting code if necessary to do so. */
1278 result
= validize_mem (result
);
1279 gcc_assert (result
);
1285 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1286 be VOIDmode constant. */
1288 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1290 if (GET_MODE (exp
) != VOIDmode
)
1292 gcc_assert (GET_MODE (exp
) == innermode
);
1293 return gen_highpart (outermode
, exp
);
1295 return simplify_gen_subreg (outermode
, exp
, innermode
,
1296 subreg_highpart_offset (outermode
, innermode
));
1299 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1302 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1304 unsigned int offset
= 0;
1305 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1309 if (WORDS_BIG_ENDIAN
)
1310 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1311 if (BYTES_BIG_ENDIAN
)
1312 offset
+= difference
% UNITS_PER_WORD
;
1318 /* Return offset in bytes to get OUTERMODE high part
1319 of the value in mode INNERMODE stored in memory in target format. */
1321 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1323 unsigned int offset
= 0;
1324 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1326 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1330 if (! WORDS_BIG_ENDIAN
)
1331 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1332 if (! BYTES_BIG_ENDIAN
)
1333 offset
+= difference
% UNITS_PER_WORD
;
1339 /* Return 1 iff X, assumed to be a SUBREG,
1340 refers to the least significant part of its containing reg.
1341 If X is not a SUBREG, always return 1 (it is its own low part!). */
1344 subreg_lowpart_p (const_rtx x
)
1346 if (GET_CODE (x
) != SUBREG
)
1348 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1351 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1352 == SUBREG_BYTE (x
));
1355 /* Return true if X is a paradoxical subreg, false otherwise. */
1357 paradoxical_subreg_p (const_rtx x
)
1359 if (GET_CODE (x
) != SUBREG
)
1361 return (GET_MODE_PRECISION (GET_MODE (x
))
1362 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))));
1365 /* Return subword OFFSET of operand OP.
1366 The word number, OFFSET, is interpreted as the word number starting
1367 at the low-order address. OFFSET 0 is the low-order word if not
1368 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1370 If we cannot extract the required word, we return zero. Otherwise,
1371 an rtx corresponding to the requested word will be returned.
1373 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1374 reload has completed, a valid address will always be returned. After
1375 reload, if a valid address cannot be returned, we return zero.
1377 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1378 it is the responsibility of the caller.
1380 MODE is the mode of OP in case it is a CONST_INT.
1382 ??? This is still rather broken for some cases. The problem for the
1383 moment is that all callers of this thing provide no 'goal mode' to
1384 tell us to work with. This exists because all callers were written
1385 in a word based SUBREG world.
1386 Now use of this function can be deprecated by simplify_subreg in most
1391 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1393 if (mode
== VOIDmode
)
1394 mode
= GET_MODE (op
);
1396 gcc_assert (mode
!= VOIDmode
);
1398 /* If OP is narrower than a word, fail. */
1400 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1403 /* If we want a word outside OP, return zero. */
1405 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1408 /* Form a new MEM at the requested address. */
1411 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1413 if (! validate_address
)
1416 else if (reload_completed
)
1418 if (! strict_memory_address_addr_space_p (word_mode
,
1420 MEM_ADDR_SPACE (op
)))
1424 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1427 /* Rest can be handled by simplify_subreg. */
1428 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1431 /* Similar to `operand_subword', but never return 0. If we can't
1432 extract the required subword, put OP into a register and try again.
1433 The second attempt must succeed. We always validate the address in
1436 MODE is the mode of OP, in case it is CONST_INT. */
1439 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1441 rtx result
= operand_subword (op
, offset
, 1, mode
);
1446 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1448 /* If this is a register which can not be accessed by words, copy it
1449 to a pseudo register. */
1451 op
= copy_to_reg (op
);
1453 op
= force_reg (mode
, op
);
1456 result
= operand_subword (op
, offset
, 1, mode
);
1457 gcc_assert (result
);
1462 /* Returns 1 if both MEM_EXPR can be considered equal
1466 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1471 if (! expr1
|| ! expr2
)
1474 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1477 return operand_equal_p (expr1
, expr2
, 0);
1480 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1481 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1485 get_mem_align_offset (rtx mem
, unsigned int align
)
1488 unsigned HOST_WIDE_INT offset
;
1490 /* This function can't use
1491 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1492 || (MAX (MEM_ALIGN (mem),
1493 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1497 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1499 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1500 for <variable>. get_inner_reference doesn't handle it and
1501 even if it did, the alignment in that case needs to be determined
1502 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1503 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1504 isn't sufficiently aligned, the object it is in might be. */
1505 gcc_assert (MEM_P (mem
));
1506 expr
= MEM_EXPR (mem
);
1507 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1510 offset
= MEM_OFFSET (mem
);
1513 if (DECL_ALIGN (expr
) < align
)
1516 else if (INDIRECT_REF_P (expr
))
1518 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1521 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1525 tree inner
= TREE_OPERAND (expr
, 0);
1526 tree field
= TREE_OPERAND (expr
, 1);
1527 tree byte_offset
= component_ref_field_offset (expr
);
1528 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1531 || !host_integerp (byte_offset
, 1)
1532 || !host_integerp (bit_offset
, 1))
1535 offset
+= tree_low_cst (byte_offset
, 1);
1536 offset
+= tree_low_cst (bit_offset
, 1) / BITS_PER_UNIT
;
1538 if (inner
== NULL_TREE
)
1540 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1541 < (unsigned int) align
)
1545 else if (DECL_P (inner
))
1547 if (DECL_ALIGN (inner
) < align
)
1551 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1559 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1562 /* Given REF (a MEM) and T, either the type of X or the expression
1563 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1564 if we are making a new object of this type. BITPOS is nonzero if
1565 there is an offset outstanding on T that will be applied later. */
1568 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1569 HOST_WIDE_INT bitpos
)
1571 HOST_WIDE_INT apply_bitpos
= 0;
1573 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1576 /* It can happen that type_for_mode was given a mode for which there
1577 is no language-level type. In which case it returns NULL, which
1582 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1583 if (type
== error_mark_node
)
1586 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1587 wrong answer, as it assumes that DECL_RTL already has the right alias
1588 info. Callers should not set DECL_RTL until after the call to
1589 set_mem_attributes. */
1590 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1592 memset (&attrs
, 0, sizeof (attrs
));
1594 /* Get the alias set from the expression or type (perhaps using a
1595 front-end routine) and use it. */
1596 attrs
.alias
= get_alias_set (t
);
1598 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1599 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1601 /* Default values from pre-existing memory attributes if present. */
1602 refattrs
= MEM_ATTRS (ref
);
1605 /* ??? Can this ever happen? Calling this routine on a MEM that
1606 already carries memory attributes should probably be invalid. */
1607 attrs
.expr
= refattrs
->expr
;
1608 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1609 attrs
.offset
= refattrs
->offset
;
1610 attrs
.size_known_p
= refattrs
->size_known_p
;
1611 attrs
.size
= refattrs
->size
;
1612 attrs
.align
= refattrs
->align
;
1615 /* Otherwise, default values from the mode of the MEM reference. */
1618 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1619 gcc_assert (!defattrs
->expr
);
1620 gcc_assert (!defattrs
->offset_known_p
);
1622 /* Respect mode size. */
1623 attrs
.size_known_p
= defattrs
->size_known_p
;
1624 attrs
.size
= defattrs
->size
;
1625 /* ??? Is this really necessary? We probably should always get
1626 the size from the type below. */
1628 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1629 if T is an object, always compute the object alignment below. */
1631 attrs
.align
= defattrs
->align
;
1633 attrs
.align
= BITS_PER_UNIT
;
1634 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1635 e.g. if the type carries an alignment attribute. Should we be
1636 able to simply always use TYPE_ALIGN? */
1639 /* We can set the alignment from the type if we are making an object,
1640 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1641 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1642 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1644 else if (TREE_CODE (t
) == MEM_REF
)
1646 tree op0
= TREE_OPERAND (t
, 0);
1647 if (TREE_CODE (op0
) == ADDR_EXPR
1648 && (DECL_P (TREE_OPERAND (op0
, 0))
1649 || CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0))))
1651 if (DECL_P (TREE_OPERAND (op0
, 0)))
1652 attrs
.align
= DECL_ALIGN (TREE_OPERAND (op0
, 0));
1653 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0)))
1655 attrs
.align
= TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0
, 0)));
1656 #ifdef CONSTANT_ALIGNMENT
1657 attrs
.align
= CONSTANT_ALIGNMENT (TREE_OPERAND (op0
, 0),
1661 if (TREE_INT_CST_LOW (TREE_OPERAND (t
, 1)) != 0)
1663 unsigned HOST_WIDE_INT ioff
1664 = TREE_INT_CST_LOW (TREE_OPERAND (t
, 1));
1665 unsigned HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1666 attrs
.align
= MIN (aoff
, attrs
.align
);
1670 /* ??? This isn't fully correct, we can't set the alignment from the
1671 type in all cases. */
1672 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1675 else if (TREE_CODE (t
) == TARGET_MEM_REF
)
1676 /* ??? This isn't fully correct, we can't set the alignment from the
1677 type in all cases. */
1678 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1680 /* If the size is known, we can set that. */
1681 tree new_size
= TYPE_SIZE_UNIT (type
);
1683 /* If T is not a type, we may be able to deduce some more information about
1688 bool align_computed
= false;
1690 if (TREE_THIS_VOLATILE (t
))
1691 MEM_VOLATILE_P (ref
) = 1;
1693 /* Now remove any conversions: they don't change what the underlying
1694 object is. Likewise for SAVE_EXPR. */
1695 while (CONVERT_EXPR_P (t
)
1696 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1697 || TREE_CODE (t
) == SAVE_EXPR
)
1698 t
= TREE_OPERAND (t
, 0);
1700 /* Note whether this expression can trap. */
1701 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1703 base
= get_base_address (t
);
1707 && TREE_READONLY (base
)
1708 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1709 && !TREE_THIS_VOLATILE (base
))
1710 MEM_READONLY_P (ref
) = 1;
1712 /* Mark static const strings readonly as well. */
1713 if (TREE_CODE (base
) == STRING_CST
1714 && TREE_READONLY (base
)
1715 && TREE_STATIC (base
))
1716 MEM_READONLY_P (ref
) = 1;
1718 if (TREE_CODE (base
) == MEM_REF
1719 || TREE_CODE (base
) == TARGET_MEM_REF
)
1720 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
1723 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
1726 as
= TYPE_ADDR_SPACE (type
);
1728 /* If this expression uses it's parent's alias set, mark it such
1729 that we won't change it. */
1730 if (component_uses_parent_alias_set (t
))
1731 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1733 /* If this is a decl, set the attributes of the MEM from it. */
1737 attrs
.offset_known_p
= true;
1739 apply_bitpos
= bitpos
;
1740 new_size
= DECL_SIZE_UNIT (t
);
1741 attrs
.align
= DECL_ALIGN (t
);
1742 align_computed
= true;
1745 /* If this is a constant, we know the alignment. */
1746 else if (CONSTANT_CLASS_P (t
))
1748 attrs
.align
= TYPE_ALIGN (type
);
1749 #ifdef CONSTANT_ALIGNMENT
1750 attrs
.align
= CONSTANT_ALIGNMENT (t
, attrs
.align
);
1752 align_computed
= true;
1755 /* If this is a field reference, record it. */
1756 else if (TREE_CODE (t
) == COMPONENT_REF
)
1759 attrs
.offset_known_p
= true;
1761 apply_bitpos
= bitpos
;
1762 if (DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1763 new_size
= DECL_SIZE_UNIT (TREE_OPERAND (t
, 1));
1766 /* If this is an array reference, look for an outer field reference. */
1767 else if (TREE_CODE (t
) == ARRAY_REF
)
1769 tree off_tree
= size_zero_node
;
1770 /* We can't modify t, because we use it at the end of the
1776 tree index
= TREE_OPERAND (t2
, 1);
1777 tree low_bound
= array_ref_low_bound (t2
);
1778 tree unit_size
= array_ref_element_size (t2
);
1780 /* We assume all arrays have sizes that are a multiple of a byte.
1781 First subtract the lower bound, if any, in the type of the
1782 index, then convert to sizetype and multiply by the size of
1783 the array element. */
1784 if (! integer_zerop (low_bound
))
1785 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1788 off_tree
= size_binop (PLUS_EXPR
,
1789 size_binop (MULT_EXPR
,
1790 fold_convert (sizetype
,
1794 t2
= TREE_OPERAND (t2
, 0);
1796 while (TREE_CODE (t2
) == ARRAY_REF
);
1801 attrs
.offset_known_p
= false;
1802 if (host_integerp (off_tree
, 1))
1804 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1805 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1806 attrs
.align
= DECL_ALIGN (t2
);
1807 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< attrs
.align
)
1809 align_computed
= true;
1810 attrs
.offset_known_p
= true;
1811 attrs
.offset
= ioff
;
1812 apply_bitpos
= bitpos
;
1815 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1818 attrs
.offset_known_p
= false;
1819 if (host_integerp (off_tree
, 1))
1821 attrs
.offset_known_p
= true;
1822 attrs
.offset
= tree_low_cst (off_tree
, 1);
1823 apply_bitpos
= bitpos
;
1825 /* ??? Any reason the field size would be different than
1826 the size we got from the type? */
1830 /* If this is an indirect reference, record it. */
1831 else if (TREE_CODE (t
) == MEM_REF
1832 || TREE_CODE (t
) == TARGET_MEM_REF
)
1835 attrs
.offset_known_p
= true;
1837 apply_bitpos
= bitpos
;
1840 if (!align_computed
)
1842 unsigned int obj_align
= get_object_alignment (t
);
1843 attrs
.align
= MAX (attrs
.align
, obj_align
);
1847 as
= TYPE_ADDR_SPACE (type
);
1849 if (host_integerp (new_size
, 1))
1851 attrs
.size_known_p
= true;
1852 attrs
.size
= tree_low_cst (new_size
, 1);
1855 /* If we modified OFFSET based on T, then subtract the outstanding
1856 bit position offset. Similarly, increase the size of the accessed
1857 object to contain the negative offset. */
1860 gcc_assert (attrs
.offset_known_p
);
1861 attrs
.offset
-= apply_bitpos
/ BITS_PER_UNIT
;
1862 if (attrs
.size_known_p
)
1863 attrs
.size
+= apply_bitpos
/ BITS_PER_UNIT
;
1866 /* Now set the attributes we computed above. */
1867 attrs
.addrspace
= as
;
1868 set_mem_attrs (ref
, &attrs
);
1872 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1874 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1877 /* Set the alias set of MEM to SET. */
1880 set_mem_alias_set (rtx mem
, alias_set_type set
)
1882 struct mem_attrs attrs
;
1884 /* If the new and old alias sets don't conflict, something is wrong. */
1885 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1886 attrs
= *get_mem_attrs (mem
);
1888 set_mem_attrs (mem
, &attrs
);
1891 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1894 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1896 struct mem_attrs attrs
;
1898 attrs
= *get_mem_attrs (mem
);
1899 attrs
.addrspace
= addrspace
;
1900 set_mem_attrs (mem
, &attrs
);
1903 /* Set the alignment of MEM to ALIGN bits. */
1906 set_mem_align (rtx mem
, unsigned int align
)
1908 struct mem_attrs attrs
;
1910 attrs
= *get_mem_attrs (mem
);
1911 attrs
.align
= align
;
1912 set_mem_attrs (mem
, &attrs
);
1915 /* Set the expr for MEM to EXPR. */
1918 set_mem_expr (rtx mem
, tree expr
)
1920 struct mem_attrs attrs
;
1922 attrs
= *get_mem_attrs (mem
);
1924 set_mem_attrs (mem
, &attrs
);
1927 /* Set the offset of MEM to OFFSET. */
1930 set_mem_offset (rtx mem
, HOST_WIDE_INT offset
)
1932 struct mem_attrs attrs
;
1934 attrs
= *get_mem_attrs (mem
);
1935 attrs
.offset_known_p
= true;
1936 attrs
.offset
= offset
;
1937 set_mem_attrs (mem
, &attrs
);
1940 /* Clear the offset of MEM. */
1943 clear_mem_offset (rtx mem
)
1945 struct mem_attrs attrs
;
1947 attrs
= *get_mem_attrs (mem
);
1948 attrs
.offset_known_p
= false;
1949 set_mem_attrs (mem
, &attrs
);
1952 /* Set the size of MEM to SIZE. */
1955 set_mem_size (rtx mem
, HOST_WIDE_INT size
)
1957 struct mem_attrs attrs
;
1959 attrs
= *get_mem_attrs (mem
);
1960 attrs
.size_known_p
= true;
1962 set_mem_attrs (mem
, &attrs
);
1965 /* Clear the size of MEM. */
1968 clear_mem_size (rtx mem
)
1970 struct mem_attrs attrs
;
1972 attrs
= *get_mem_attrs (mem
);
1973 attrs
.size_known_p
= false;
1974 set_mem_attrs (mem
, &attrs
);
1977 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1978 and its address changed to ADDR. (VOIDmode means don't change the mode.
1979 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1980 returned memory location is required to be valid. The memory
1981 attributes are not changed. */
1984 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1989 gcc_assert (MEM_P (memref
));
1990 as
= MEM_ADDR_SPACE (memref
);
1991 if (mode
== VOIDmode
)
1992 mode
= GET_MODE (memref
);
1994 addr
= XEXP (memref
, 0);
1995 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1996 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
2001 if (reload_in_progress
|| reload_completed
)
2002 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
2004 addr
= memory_address_addr_space (mode
, addr
, as
);
2007 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
2010 new_rtx
= gen_rtx_MEM (mode
, addr
);
2011 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2015 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2016 way we are changing MEMREF, so we only preserve the alias set. */
2019 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
2021 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1);
2022 enum machine_mode mmode
= GET_MODE (new_rtx
);
2023 struct mem_attrs attrs
, *defattrs
;
2025 attrs
= *get_mem_attrs (memref
);
2026 defattrs
= mode_mem_attrs
[(int) mmode
];
2027 attrs
.expr
= NULL_TREE
;
2028 attrs
.offset_known_p
= false;
2029 attrs
.size_known_p
= defattrs
->size_known_p
;
2030 attrs
.size
= defattrs
->size
;
2031 attrs
.align
= defattrs
->align
;
2033 /* If there are no changes, just return the original memory reference. */
2034 if (new_rtx
== memref
)
2036 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
2039 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
2040 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2043 set_mem_attrs (new_rtx
, &attrs
);
2047 /* Return a memory reference like MEMREF, but with its mode changed
2048 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2049 nonzero, the memory address is forced to be valid.
2050 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2051 and the caller is responsible for adjusting MEMREF base register.
2052 If ADJUST_OBJECT is zero, the underlying object associated with the
2053 memory reference is left unchanged and the caller is responsible for
2054 dealing with it. Otherwise, if the new memory reference is outside
2055 the underlying object, even partially, then the object is dropped.
2056 SIZE, if nonzero, is the size of an access in cases where MODE
2057 has no inherent size. */
2060 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
2061 int validate
, int adjust_address
, int adjust_object
,
2064 rtx addr
= XEXP (memref
, 0);
2066 enum machine_mode address_mode
;
2068 struct mem_attrs attrs
= *get_mem_attrs (memref
), *defattrs
;
2069 unsigned HOST_WIDE_INT max_align
;
2070 #ifdef POINTERS_EXTEND_UNSIGNED
2071 enum machine_mode pointer_mode
2072 = targetm
.addr_space
.pointer_mode (attrs
.addrspace
);
2075 /* Take the size of non-BLKmode accesses from the mode. */
2076 defattrs
= mode_mem_attrs
[(int) mode
];
2077 if (defattrs
->size_known_p
)
2078 size
= defattrs
->size
;
2080 /* If there are no changes, just return the original memory reference. */
2081 if (mode
== GET_MODE (memref
) && !offset
2082 && (size
== 0 || (attrs
.size_known_p
&& attrs
.size
== size
))
2083 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2087 /* ??? Prefer to create garbage instead of creating shared rtl.
2088 This may happen even if offset is nonzero -- consider
2089 (plus (plus reg reg) const_int) -- so do this always. */
2090 addr
= copy_rtx (addr
);
2092 /* Convert a possibly large offset to a signed value within the
2093 range of the target address space. */
2094 address_mode
= get_address_mode (memref
);
2095 pbits
= GET_MODE_BITSIZE (address_mode
);
2096 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2098 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2099 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2105 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2106 object, we can merge it into the LO_SUM. */
2107 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2109 && (unsigned HOST_WIDE_INT
) offset
2110 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2111 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2112 plus_constant (address_mode
,
2113 XEXP (addr
, 1), offset
));
2114 #ifdef POINTERS_EXTEND_UNSIGNED
2115 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2116 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2117 the fact that pointers are not allowed to overflow. */
2118 else if (POINTERS_EXTEND_UNSIGNED
> 0
2119 && GET_CODE (addr
) == ZERO_EXTEND
2120 && GET_MODE (XEXP (addr
, 0)) == pointer_mode
2121 && trunc_int_for_mode (offset
, pointer_mode
) == offset
)
2122 addr
= gen_rtx_ZERO_EXTEND (address_mode
,
2123 plus_constant (pointer_mode
,
2124 XEXP (addr
, 0), offset
));
2127 addr
= plus_constant (address_mode
, addr
, offset
);
2130 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
2132 /* If the address is a REG, change_address_1 rightfully returns memref,
2133 but this would destroy memref's MEM_ATTRS. */
2134 if (new_rtx
== memref
&& offset
!= 0)
2135 new_rtx
= copy_rtx (new_rtx
);
2137 /* Conservatively drop the object if we don't know where we start from. */
2138 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2140 attrs
.expr
= NULL_TREE
;
2144 /* Compute the new values of the memory attributes due to this adjustment.
2145 We add the offsets and update the alignment. */
2146 if (attrs
.offset_known_p
)
2148 attrs
.offset
+= offset
;
2150 /* Drop the object if the new left end is not within its bounds. */
2151 if (adjust_object
&& attrs
.offset
< 0)
2153 attrs
.expr
= NULL_TREE
;
2158 /* Compute the new alignment by taking the MIN of the alignment and the
2159 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2163 max_align
= (offset
& -offset
) * BITS_PER_UNIT
;
2164 attrs
.align
= MIN (attrs
.align
, max_align
);
2169 /* Drop the object if the new right end is not within its bounds. */
2170 if (adjust_object
&& (offset
+ size
) > attrs
.size
)
2172 attrs
.expr
= NULL_TREE
;
2175 attrs
.size_known_p
= true;
2178 else if (attrs
.size_known_p
)
2180 gcc_assert (!adjust_object
);
2181 attrs
.size
-= offset
;
2182 /* ??? The store_by_pieces machinery generates negative sizes,
2183 so don't assert for that here. */
2186 set_mem_attrs (new_rtx
, &attrs
);
2191 /* Return a memory reference like MEMREF, but with its mode changed
2192 to MODE and its address changed to ADDR, which is assumed to be
2193 MEMREF offset by OFFSET bytes. If VALIDATE is
2194 nonzero, the memory address is forced to be valid. */
2197 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2198 HOST_WIDE_INT offset
, int validate
)
2200 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2201 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0, 0);
2204 /* Return a memory reference like MEMREF, but whose address is changed by
2205 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2206 known to be in OFFSET (possibly 1). */
2209 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2211 rtx new_rtx
, addr
= XEXP (memref
, 0);
2212 enum machine_mode address_mode
;
2213 struct mem_attrs attrs
, *defattrs
;
2215 attrs
= *get_mem_attrs (memref
);
2216 address_mode
= get_address_mode (memref
);
2217 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2219 /* At this point we don't know _why_ the address is invalid. It
2220 could have secondary memory references, multiplies or anything.
2222 However, if we did go and rearrange things, we can wind up not
2223 being able to recognize the magic around pic_offset_table_rtx.
2224 This stuff is fragile, and is yet another example of why it is
2225 bad to expose PIC machinery too early. */
2226 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2228 && GET_CODE (addr
) == PLUS
2229 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2231 addr
= force_reg (GET_MODE (addr
), addr
);
2232 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2235 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2236 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2238 /* If there are no changes, just return the original memory reference. */
2239 if (new_rtx
== memref
)
2242 /* Update the alignment to reflect the offset. Reset the offset, which
2244 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2245 attrs
.offset_known_p
= false;
2246 attrs
.size_known_p
= defattrs
->size_known_p
;
2247 attrs
.size
= defattrs
->size
;
2248 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2249 set_mem_attrs (new_rtx
, &attrs
);
2253 /* Return a memory reference like MEMREF, but with its address changed to
2254 ADDR. The caller is asserting that the actual piece of memory pointed
2255 to is the same, just the form of the address is being changed, such as
2256 by putting something into a register. */
2259 replace_equiv_address (rtx memref
, rtx addr
)
2261 /* change_address_1 copies the memory attribute structure without change
2262 and that's exactly what we want here. */
2263 update_temp_slot_address (XEXP (memref
, 0), addr
);
2264 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2267 /* Likewise, but the reference is not required to be valid. */
2270 replace_equiv_address_nv (rtx memref
, rtx addr
)
2272 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2275 /* Return a memory reference like MEMREF, but with its mode widened to
2276 MODE and offset by OFFSET. This would be used by targets that e.g.
2277 cannot issue QImode memory operations and have to use SImode memory
2278 operations plus masking logic. */
2281 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2283 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0, 0);
2284 struct mem_attrs attrs
;
2285 unsigned int size
= GET_MODE_SIZE (mode
);
2287 /* If there are no changes, just return the original memory reference. */
2288 if (new_rtx
== memref
)
2291 attrs
= *get_mem_attrs (new_rtx
);
2293 /* If we don't know what offset we were at within the expression, then
2294 we can't know if we've overstepped the bounds. */
2295 if (! attrs
.offset_known_p
)
2296 attrs
.expr
= NULL_TREE
;
2300 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2302 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2303 tree offset
= component_ref_field_offset (attrs
.expr
);
2305 if (! DECL_SIZE_UNIT (field
))
2307 attrs
.expr
= NULL_TREE
;
2311 /* Is the field at least as large as the access? If so, ok,
2312 otherwise strip back to the containing structure. */
2313 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2314 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2315 && attrs
.offset
>= 0)
2318 if (! host_integerp (offset
, 1))
2320 attrs
.expr
= NULL_TREE
;
2324 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2325 attrs
.offset
+= tree_low_cst (offset
, 1);
2326 attrs
.offset
+= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2329 /* Similarly for the decl. */
2330 else if (DECL_P (attrs
.expr
)
2331 && DECL_SIZE_UNIT (attrs
.expr
)
2332 && TREE_CODE (DECL_SIZE_UNIT (attrs
.expr
)) == INTEGER_CST
2333 && compare_tree_int (DECL_SIZE_UNIT (attrs
.expr
), size
) >= 0
2334 && (! attrs
.offset_known_p
|| attrs
.offset
>= 0))
2338 /* The widened memory access overflows the expression, which means
2339 that it could alias another expression. Zap it. */
2340 attrs
.expr
= NULL_TREE
;
2346 attrs
.offset_known_p
= false;
2348 /* The widened memory may alias other stuff, so zap the alias set. */
2349 /* ??? Maybe use get_alias_set on any remaining expression. */
2351 attrs
.size_known_p
= true;
2353 set_mem_attrs (new_rtx
, &attrs
);
2357 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2358 static GTY(()) tree spill_slot_decl
;
2361 get_spill_slot_decl (bool force_build_p
)
2363 tree d
= spill_slot_decl
;
2365 struct mem_attrs attrs
;
2367 if (d
|| !force_build_p
)
2370 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2371 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2372 DECL_ARTIFICIAL (d
) = 1;
2373 DECL_IGNORED_P (d
) = 1;
2375 spill_slot_decl
= d
;
2377 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2378 MEM_NOTRAP_P (rd
) = 1;
2379 attrs
= *mode_mem_attrs
[(int) BLKmode
];
2380 attrs
.alias
= new_alias_set ();
2382 set_mem_attrs (rd
, &attrs
);
2383 SET_DECL_RTL (d
, rd
);
2388 /* Given MEM, a result from assign_stack_local, fill in the memory
2389 attributes as appropriate for a register allocator spill slot.
2390 These slots are not aliasable by other memory. We arrange for
2391 them all to use a single MEM_EXPR, so that the aliasing code can
2392 work properly in the case of shared spill slots. */
2395 set_mem_attrs_for_spill (rtx mem
)
2397 struct mem_attrs attrs
;
2400 attrs
= *get_mem_attrs (mem
);
2401 attrs
.expr
= get_spill_slot_decl (true);
2402 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2403 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2405 /* We expect the incoming memory to be of the form:
2406 (mem:MODE (plus (reg sfp) (const_int offset)))
2407 with perhaps the plus missing for offset = 0. */
2408 addr
= XEXP (mem
, 0);
2409 attrs
.offset_known_p
= true;
2411 if (GET_CODE (addr
) == PLUS
2412 && CONST_INT_P (XEXP (addr
, 1)))
2413 attrs
.offset
= INTVAL (XEXP (addr
, 1));
2415 set_mem_attrs (mem
, &attrs
);
2416 MEM_NOTRAP_P (mem
) = 1;
2419 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2422 gen_label_rtx (void)
2424 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2425 NULL
, label_num
++, NULL
);
2428 /* For procedure integration. */
2430 /* Install new pointers to the first and last insns in the chain.
2431 Also, set cur_insn_uid to one higher than the last in use.
2432 Used for an inline-procedure after copying the insn chain. */
2435 set_new_first_and_last_insn (rtx first
, rtx last
)
2439 set_first_insn (first
);
2440 set_last_insn (last
);
2443 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2445 int debug_count
= 0;
2447 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2448 cur_debug_insn_uid
= 0;
2450 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2451 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2452 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2455 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2456 if (DEBUG_INSN_P (insn
))
2461 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2463 cur_debug_insn_uid
++;
2466 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2467 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2472 /* Go through all the RTL insn bodies and copy any invalid shared
2473 structure. This routine should only be called once. */
2476 unshare_all_rtl_1 (rtx insn
)
2478 /* Unshare just about everything else. */
2479 unshare_all_rtl_in_chain (insn
);
2481 /* Make sure the addresses of stack slots found outside the insn chain
2482 (such as, in DECL_RTL of a variable) are not shared
2483 with the insn chain.
2485 This special care is necessary when the stack slot MEM does not
2486 actually appear in the insn chain. If it does appear, its address
2487 is unshared from all else at that point. */
2488 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2491 /* Go through all the RTL insn bodies and copy any invalid shared
2492 structure, again. This is a fairly expensive thing to do so it
2493 should be done sparingly. */
2496 unshare_all_rtl_again (rtx insn
)
2501 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2504 reset_used_flags (PATTERN (p
));
2505 reset_used_flags (REG_NOTES (p
));
2507 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2510 /* Make sure that virtual stack slots are not shared. */
2511 set_used_decls (DECL_INITIAL (cfun
->decl
));
2513 /* Make sure that virtual parameters are not shared. */
2514 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2515 set_used_flags (DECL_RTL (decl
));
2517 reset_used_flags (stack_slot_list
);
2519 unshare_all_rtl_1 (insn
);
2523 unshare_all_rtl (void)
2525 unshare_all_rtl_1 (get_insns ());
2530 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2531 Recursively does the same for subexpressions. */
2534 verify_rtx_sharing (rtx orig
, rtx insn
)
2539 const char *format_ptr
;
2544 code
= GET_CODE (x
);
2546 /* These types may be freely shared. */
2563 /* SCRATCH must be shared because they represent distinct values. */
2565 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2570 if (shared_const_p (orig
))
2575 /* A MEM is allowed to be shared if its address is constant. */
2576 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2577 || reload_completed
|| reload_in_progress
)
2586 /* This rtx may not be shared. If it has already been seen,
2587 replace it with a copy of itself. */
2588 #ifdef ENABLE_CHECKING
2589 if (RTX_FLAG (x
, used
))
2591 error ("invalid rtl sharing found in the insn");
2593 error ("shared rtx");
2595 internal_error ("internal consistency failure");
2598 gcc_assert (!RTX_FLAG (x
, used
));
2600 RTX_FLAG (x
, used
) = 1;
2602 /* Now scan the subexpressions recursively. */
2604 format_ptr
= GET_RTX_FORMAT (code
);
2606 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2608 switch (*format_ptr
++)
2611 verify_rtx_sharing (XEXP (x
, i
), insn
);
2615 if (XVEC (x
, i
) != NULL
)
2618 int len
= XVECLEN (x
, i
);
2620 for (j
= 0; j
< len
; j
++)
2622 /* We allow sharing of ASM_OPERANDS inside single
2624 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2625 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2627 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2629 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2638 /* Go through all the RTL insn bodies and check that there is no unexpected
2639 sharing in between the subexpressions. */
2642 verify_rtl_sharing (void)
2646 timevar_push (TV_VERIFY_RTL_SHARING
);
2648 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2651 reset_used_flags (PATTERN (p
));
2652 reset_used_flags (REG_NOTES (p
));
2654 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2655 if (GET_CODE (PATTERN (p
)) == SEQUENCE
)
2658 rtx q
, sequence
= PATTERN (p
);
2660 for (i
= 0; i
< XVECLEN (sequence
, 0); i
++)
2662 q
= XVECEXP (sequence
, 0, i
);
2663 gcc_assert (INSN_P (q
));
2664 reset_used_flags (PATTERN (q
));
2665 reset_used_flags (REG_NOTES (q
));
2667 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q
));
2672 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2675 verify_rtx_sharing (PATTERN (p
), p
);
2676 verify_rtx_sharing (REG_NOTES (p
), p
);
2678 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p
), p
);
2681 timevar_pop (TV_VERIFY_RTL_SHARING
);
2684 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2685 Assumes the mark bits are cleared at entry. */
2688 unshare_all_rtl_in_chain (rtx insn
)
2690 for (; insn
; insn
= NEXT_INSN (insn
))
2693 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2694 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2696 CALL_INSN_FUNCTION_USAGE (insn
)
2697 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
2701 /* Go through all virtual stack slots of a function and mark them as
2702 shared. We never replace the DECL_RTLs themselves with a copy,
2703 but expressions mentioned into a DECL_RTL cannot be shared with
2704 expressions in the instruction stream.
2706 Note that reload may convert pseudo registers into memories in-place.
2707 Pseudo registers are always shared, but MEMs never are. Thus if we
2708 reset the used flags on MEMs in the instruction stream, we must set
2709 them again on MEMs that appear in DECL_RTLs. */
2712 set_used_decls (tree blk
)
2717 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2718 if (DECL_RTL_SET_P (t
))
2719 set_used_flags (DECL_RTL (t
));
2721 /* Now process sub-blocks. */
2722 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2726 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2727 Recursively does the same for subexpressions. Uses
2728 copy_rtx_if_shared_1 to reduce stack space. */
2731 copy_rtx_if_shared (rtx orig
)
2733 copy_rtx_if_shared_1 (&orig
);
2737 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2738 use. Recursively does the same for subexpressions. */
2741 copy_rtx_if_shared_1 (rtx
*orig1
)
2747 const char *format_ptr
;
2751 /* Repeat is used to turn tail-recursion into iteration. */
2758 code
= GET_CODE (x
);
2760 /* These types may be freely shared. */
2776 /* SCRATCH must be shared because they represent distinct values. */
2779 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2784 if (shared_const_p (x
))
2794 /* The chain of insns is not being copied. */
2801 /* This rtx may not be shared. If it has already been seen,
2802 replace it with a copy of itself. */
2804 if (RTX_FLAG (x
, used
))
2806 x
= shallow_copy_rtx (x
);
2809 RTX_FLAG (x
, used
) = 1;
2811 /* Now scan the subexpressions recursively.
2812 We can store any replaced subexpressions directly into X
2813 since we know X is not shared! Any vectors in X
2814 must be copied if X was copied. */
2816 format_ptr
= GET_RTX_FORMAT (code
);
2817 length
= GET_RTX_LENGTH (code
);
2820 for (i
= 0; i
< length
; i
++)
2822 switch (*format_ptr
++)
2826 copy_rtx_if_shared_1 (last_ptr
);
2827 last_ptr
= &XEXP (x
, i
);
2831 if (XVEC (x
, i
) != NULL
)
2834 int len
= XVECLEN (x
, i
);
2836 /* Copy the vector iff I copied the rtx and the length
2838 if (copied
&& len
> 0)
2839 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2841 /* Call recursively on all inside the vector. */
2842 for (j
= 0; j
< len
; j
++)
2845 copy_rtx_if_shared_1 (last_ptr
);
2846 last_ptr
= &XVECEXP (x
, i
, j
);
2861 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2864 mark_used_flags (rtx x
, int flag
)
2868 const char *format_ptr
;
2871 /* Repeat is used to turn tail-recursion into iteration. */
2876 code
= GET_CODE (x
);
2878 /* These types may be freely shared so we needn't do any resetting
2902 /* The chain of insns is not being copied. */
2909 RTX_FLAG (x
, used
) = flag
;
2911 format_ptr
= GET_RTX_FORMAT (code
);
2912 length
= GET_RTX_LENGTH (code
);
2914 for (i
= 0; i
< length
; i
++)
2916 switch (*format_ptr
++)
2924 mark_used_flags (XEXP (x
, i
), flag
);
2928 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2929 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
2935 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2936 to look for shared sub-parts. */
2939 reset_used_flags (rtx x
)
2941 mark_used_flags (x
, 0);
2944 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2945 to look for shared sub-parts. */
2948 set_used_flags (rtx x
)
2950 mark_used_flags (x
, 1);
2953 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2954 Return X or the rtx for the pseudo reg the value of X was copied into.
2955 OTHER must be valid as a SET_DEST. */
2958 make_safe_from (rtx x
, rtx other
)
2961 switch (GET_CODE (other
))
2964 other
= SUBREG_REG (other
);
2966 case STRICT_LOW_PART
:
2969 other
= XEXP (other
, 0);
2978 && GET_CODE (x
) != SUBREG
)
2980 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2981 || reg_mentioned_p (other
, x
))))
2983 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2984 emit_move_insn (temp
, x
);
2990 /* Emission of insns (adding them to the doubly-linked list). */
2992 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2995 get_last_insn_anywhere (void)
2997 struct sequence_stack
*stack
;
2998 if (get_last_insn ())
2999 return get_last_insn ();
3000 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
3001 if (stack
->last
!= 0)
3006 /* Return the first nonnote insn emitted in current sequence or current
3007 function. This routine looks inside SEQUENCEs. */
3010 get_first_nonnote_insn (void)
3012 rtx insn
= get_insns ();
3017 for (insn
= next_insn (insn
);
3018 insn
&& NOTE_P (insn
);
3019 insn
= next_insn (insn
))
3023 if (NONJUMP_INSN_P (insn
)
3024 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3025 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3032 /* Return the last nonnote insn emitted in current sequence or current
3033 function. This routine looks inside SEQUENCEs. */
3036 get_last_nonnote_insn (void)
3038 rtx insn
= get_last_insn ();
3043 for (insn
= previous_insn (insn
);
3044 insn
&& NOTE_P (insn
);
3045 insn
= previous_insn (insn
))
3049 if (NONJUMP_INSN_P (insn
)
3050 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3051 insn
= XVECEXP (PATTERN (insn
), 0,
3052 XVECLEN (PATTERN (insn
), 0) - 1);
3059 /* Return the number of actual (non-debug) insns emitted in this
3063 get_max_insn_count (void)
3065 int n
= cur_insn_uid
;
3067 /* The table size must be stable across -g, to avoid codegen
3068 differences due to debug insns, and not be affected by
3069 -fmin-insn-uid, to avoid excessive table size and to simplify
3070 debugging of -fcompare-debug failures. */
3071 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3072 n
-= cur_debug_insn_uid
;
3074 n
-= MIN_NONDEBUG_INSN_UID
;
3080 /* Return the next insn. If it is a SEQUENCE, return the first insn
3084 next_insn (rtx insn
)
3088 insn
= NEXT_INSN (insn
);
3089 if (insn
&& NONJUMP_INSN_P (insn
)
3090 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3091 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3097 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3101 previous_insn (rtx insn
)
3105 insn
= PREV_INSN (insn
);
3106 if (insn
&& NONJUMP_INSN_P (insn
)
3107 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3108 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
3114 /* Return the next insn after INSN that is not a NOTE. This routine does not
3115 look inside SEQUENCEs. */
3118 next_nonnote_insn (rtx insn
)
3122 insn
= NEXT_INSN (insn
);
3123 if (insn
== 0 || !NOTE_P (insn
))
3130 /* Return the next insn after INSN that is not a NOTE, but stop the
3131 search before we enter another basic block. This routine does not
3132 look inside SEQUENCEs. */
3135 next_nonnote_insn_bb (rtx insn
)
3139 insn
= NEXT_INSN (insn
);
3140 if (insn
== 0 || !NOTE_P (insn
))
3142 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3149 /* Return the previous insn before INSN that is not a NOTE. This routine does
3150 not look inside SEQUENCEs. */
3153 prev_nonnote_insn (rtx insn
)
3157 insn
= PREV_INSN (insn
);
3158 if (insn
== 0 || !NOTE_P (insn
))
3165 /* Return the previous insn before INSN that is not a NOTE, but stop
3166 the search before we enter another basic block. This routine does
3167 not look inside SEQUENCEs. */
3170 prev_nonnote_insn_bb (rtx insn
)
3174 insn
= PREV_INSN (insn
);
3175 if (insn
== 0 || !NOTE_P (insn
))
3177 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3184 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3185 routine does not look inside SEQUENCEs. */
3188 next_nondebug_insn (rtx insn
)
3192 insn
= NEXT_INSN (insn
);
3193 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3200 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3201 This routine does not look inside SEQUENCEs. */
3204 prev_nondebug_insn (rtx insn
)
3208 insn
= PREV_INSN (insn
);
3209 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3216 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3217 This routine does not look inside SEQUENCEs. */
3220 next_nonnote_nondebug_insn (rtx insn
)
3224 insn
= NEXT_INSN (insn
);
3225 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3232 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3233 This routine does not look inside SEQUENCEs. */
3236 prev_nonnote_nondebug_insn (rtx insn
)
3240 insn
= PREV_INSN (insn
);
3241 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3248 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3249 or 0, if there is none. This routine does not look inside
3253 next_real_insn (rtx insn
)
3257 insn
= NEXT_INSN (insn
);
3258 if (insn
== 0 || INSN_P (insn
))
3265 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3266 or 0, if there is none. This routine does not look inside
3270 prev_real_insn (rtx insn
)
3274 insn
= PREV_INSN (insn
);
3275 if (insn
== 0 || INSN_P (insn
))
3282 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3283 This routine does not look inside SEQUENCEs. */
3286 last_call_insn (void)
3290 for (insn
= get_last_insn ();
3291 insn
&& !CALL_P (insn
);
3292 insn
= PREV_INSN (insn
))
3298 /* Find the next insn after INSN that really does something. This routine
3299 does not look inside SEQUENCEs. After reload this also skips over
3300 standalone USE and CLOBBER insn. */
3303 active_insn_p (const_rtx insn
)
3305 return (CALL_P (insn
) || JUMP_P (insn
)
3306 || (NONJUMP_INSN_P (insn
)
3307 && (! reload_completed
3308 || (GET_CODE (PATTERN (insn
)) != USE
3309 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3313 next_active_insn (rtx insn
)
3317 insn
= NEXT_INSN (insn
);
3318 if (insn
== 0 || active_insn_p (insn
))
3325 /* Find the last insn before INSN that really does something. This routine
3326 does not look inside SEQUENCEs. After reload this also skips over
3327 standalone USE and CLOBBER insn. */
3330 prev_active_insn (rtx insn
)
3334 insn
= PREV_INSN (insn
);
3335 if (insn
== 0 || active_insn_p (insn
))
3342 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3345 next_label (rtx insn
)
3349 insn
= NEXT_INSN (insn
);
3350 if (insn
== 0 || LABEL_P (insn
))
3357 /* Return the last label to mark the same position as LABEL. Return LABEL
3358 itself if it is null or any return rtx. */
3361 skip_consecutive_labels (rtx label
)
3365 if (label
&& ANY_RETURN_P (label
))
3368 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
3376 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3377 and REG_CC_USER notes so we can find it. */
3380 link_cc0_insns (rtx insn
)
3382 rtx user
= next_nonnote_insn (insn
);
3384 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
3385 user
= XVECEXP (PATTERN (user
), 0, 0);
3387 add_reg_note (user
, REG_CC_SETTER
, insn
);
3388 add_reg_note (insn
, REG_CC_USER
, user
);
3391 /* Return the next insn that uses CC0 after INSN, which is assumed to
3392 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3393 applied to the result of this function should yield INSN).
3395 Normally, this is simply the next insn. However, if a REG_CC_USER note
3396 is present, it contains the insn that uses CC0.
3398 Return 0 if we can't find the insn. */
3401 next_cc0_user (rtx insn
)
3403 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3406 return XEXP (note
, 0);
3408 insn
= next_nonnote_insn (insn
);
3409 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3410 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3412 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3418 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3419 note, it is the previous insn. */
3422 prev_cc0_setter (rtx insn
)
3424 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3427 return XEXP (note
, 0);
3429 insn
= prev_nonnote_insn (insn
);
3430 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3437 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3440 find_auto_inc (rtx
*xp
, void *data
)
3443 rtx reg
= (rtx
) data
;
3445 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3448 switch (GET_CODE (x
))
3456 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3467 /* Increment the label uses for all labels present in rtx. */
3470 mark_label_nuses (rtx x
)
3476 code
= GET_CODE (x
);
3477 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3478 LABEL_NUSES (XEXP (x
, 0))++;
3480 fmt
= GET_RTX_FORMAT (code
);
3481 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3484 mark_label_nuses (XEXP (x
, i
));
3485 else if (fmt
[i
] == 'E')
3486 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3487 mark_label_nuses (XVECEXP (x
, i
, j
));
3492 /* Try splitting insns that can be split for better scheduling.
3493 PAT is the pattern which might split.
3494 TRIAL is the insn providing PAT.
3495 LAST is nonzero if we should return the last insn of the sequence produced.
3497 If this routine succeeds in splitting, it returns the first or last
3498 replacement insn depending on the value of LAST. Otherwise, it
3499 returns TRIAL. If the insn to be returned can be split, it will be. */
3502 try_split (rtx pat
, rtx trial
, int last
)
3504 rtx before
= PREV_INSN (trial
);
3505 rtx after
= NEXT_INSN (trial
);
3506 int has_barrier
= 0;
3509 rtx insn_last
, insn
;
3512 /* We're not good at redistributing frame information. */
3513 if (RTX_FRAME_RELATED_P (trial
))
3516 if (any_condjump_p (trial
)
3517 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3518 split_branch_probability
= INTVAL (XEXP (note
, 0));
3519 probability
= split_branch_probability
;
3521 seq
= split_insns (pat
, trial
);
3523 split_branch_probability
= -1;
3525 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3526 We may need to handle this specially. */
3527 if (after
&& BARRIER_P (after
))
3530 after
= NEXT_INSN (after
);
3536 /* Avoid infinite loop if any insn of the result matches
3537 the original pattern. */
3541 if (INSN_P (insn_last
)
3542 && rtx_equal_p (PATTERN (insn_last
), pat
))
3544 if (!NEXT_INSN (insn_last
))
3546 insn_last
= NEXT_INSN (insn_last
);
3549 /* We will be adding the new sequence to the function. The splitters
3550 may have introduced invalid RTL sharing, so unshare the sequence now. */
3551 unshare_all_rtl_in_chain (seq
);
3554 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3558 mark_jump_label (PATTERN (insn
), insn
, 0);
3560 if (probability
!= -1
3561 && any_condjump_p (insn
)
3562 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3564 /* We can preserve the REG_BR_PROB notes only if exactly
3565 one jump is created, otherwise the machine description
3566 is responsible for this step using
3567 split_branch_probability variable. */
3568 gcc_assert (njumps
== 1);
3569 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (probability
));
3574 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3575 in SEQ and copy any additional information across. */
3578 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3583 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3584 target may have explicitly specified. */
3585 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3588 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3590 /* If the old call was a sibling call, the new one must
3592 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3594 /* If the new call is the last instruction in the sequence,
3595 it will effectively replace the old call in-situ. Otherwise
3596 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3597 so that it comes immediately after the new call. */
3598 if (NEXT_INSN (insn
))
3599 for (next
= NEXT_INSN (trial
);
3600 next
&& NOTE_P (next
);
3601 next
= NEXT_INSN (next
))
3602 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3605 add_insn_after (next
, insn
, NULL
);
3611 /* Copy notes, particularly those related to the CFG. */
3612 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3614 switch (REG_NOTE_KIND (note
))
3617 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3623 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3626 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3630 case REG_NON_LOCAL_GOTO
:
3631 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3634 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3640 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3642 rtx reg
= XEXP (note
, 0);
3643 if (!FIND_REG_INC_NOTE (insn
, reg
)
3644 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3645 add_reg_note (insn
, REG_INC
, reg
);
3651 fixup_args_size_notes (NULL_RTX
, insn_last
, INTVAL (XEXP (note
, 0)));
3659 /* If there are LABELS inside the split insns increment the
3660 usage count so we don't delete the label. */
3664 while (insn
!= NULL_RTX
)
3666 /* JUMP_P insns have already been "marked" above. */
3667 if (NONJUMP_INSN_P (insn
))
3668 mark_label_nuses (PATTERN (insn
));
3670 insn
= PREV_INSN (insn
);
3674 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3676 delete_insn (trial
);
3678 emit_barrier_after (tem
);
3680 /* Recursively call try_split for each new insn created; by the
3681 time control returns here that insn will be fully split, so
3682 set LAST and continue from the insn after the one returned.
3683 We can't use next_active_insn here since AFTER may be a note.
3684 Ignore deleted insns, which can be occur if not optimizing. */
3685 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3686 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3687 tem
= try_split (PATTERN (tem
), tem
, 1);
3689 /* Return either the first or the last insn, depending on which was
3692 ? (after
? PREV_INSN (after
) : get_last_insn ())
3693 : NEXT_INSN (before
);
3696 /* Make and return an INSN rtx, initializing all its slots.
3697 Store PATTERN in the pattern slots. */
3700 make_insn_raw (rtx pattern
)
3704 insn
= rtx_alloc (INSN
);
3706 INSN_UID (insn
) = cur_insn_uid
++;
3707 PATTERN (insn
) = pattern
;
3708 INSN_CODE (insn
) = -1;
3709 REG_NOTES (insn
) = NULL
;
3710 INSN_LOCATION (insn
) = curr_insn_location ();
3711 BLOCK_FOR_INSN (insn
) = NULL
;
3713 #ifdef ENABLE_RTL_CHECKING
3716 && (returnjump_p (insn
)
3717 || (GET_CODE (insn
) == SET
3718 && SET_DEST (insn
) == pc_rtx
)))
3720 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3728 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3731 make_debug_insn_raw (rtx pattern
)
3735 insn
= rtx_alloc (DEBUG_INSN
);
3736 INSN_UID (insn
) = cur_debug_insn_uid
++;
3737 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3738 INSN_UID (insn
) = cur_insn_uid
++;
3740 PATTERN (insn
) = pattern
;
3741 INSN_CODE (insn
) = -1;
3742 REG_NOTES (insn
) = NULL
;
3743 INSN_LOCATION (insn
) = curr_insn_location ();
3744 BLOCK_FOR_INSN (insn
) = NULL
;
3749 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3752 make_jump_insn_raw (rtx pattern
)
3756 insn
= rtx_alloc (JUMP_INSN
);
3757 INSN_UID (insn
) = cur_insn_uid
++;
3759 PATTERN (insn
) = pattern
;
3760 INSN_CODE (insn
) = -1;
3761 REG_NOTES (insn
) = NULL
;
3762 JUMP_LABEL (insn
) = NULL
;
3763 INSN_LOCATION (insn
) = curr_insn_location ();
3764 BLOCK_FOR_INSN (insn
) = NULL
;
3769 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3772 make_call_insn_raw (rtx pattern
)
3776 insn
= rtx_alloc (CALL_INSN
);
3777 INSN_UID (insn
) = cur_insn_uid
++;
3779 PATTERN (insn
) = pattern
;
3780 INSN_CODE (insn
) = -1;
3781 REG_NOTES (insn
) = NULL
;
3782 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3783 INSN_LOCATION (insn
) = curr_insn_location ();
3784 BLOCK_FOR_INSN (insn
) = NULL
;
3789 /* Add INSN to the end of the doubly-linked list.
3790 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3795 PREV_INSN (insn
) = get_last_insn();
3796 NEXT_INSN (insn
) = 0;
3798 if (NULL
!= get_last_insn())
3799 NEXT_INSN (get_last_insn ()) = insn
;
3801 if (NULL
== get_insns ())
3802 set_first_insn (insn
);
3804 set_last_insn (insn
);
3807 /* Add INSN into the doubly-linked list after insn AFTER. This and
3808 the next should be the only functions called to insert an insn once
3809 delay slots have been filled since only they know how to update a
3813 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3815 rtx next
= NEXT_INSN (after
);
3817 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3819 NEXT_INSN (insn
) = next
;
3820 PREV_INSN (insn
) = after
;
3824 PREV_INSN (next
) = insn
;
3825 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3826 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3828 else if (get_last_insn () == after
)
3829 set_last_insn (insn
);
3832 struct sequence_stack
*stack
= seq_stack
;
3833 /* Scan all pending sequences too. */
3834 for (; stack
; stack
= stack
->next
)
3835 if (after
== stack
->last
)
3844 if (!BARRIER_P (after
)
3845 && !BARRIER_P (insn
)
3846 && (bb
= BLOCK_FOR_INSN (after
)))
3848 set_block_for_insn (insn
, bb
);
3850 df_insn_rescan (insn
);
3851 /* Should not happen as first in the BB is always
3852 either NOTE or LABEL. */
3853 if (BB_END (bb
) == after
3854 /* Avoid clobbering of structure when creating new BB. */
3855 && !BARRIER_P (insn
)
3856 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3860 NEXT_INSN (after
) = insn
;
3861 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3863 rtx sequence
= PATTERN (after
);
3864 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3868 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3869 the previous should be the only functions called to insert an insn
3870 once delay slots have been filled since only they know how to
3871 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3875 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3877 rtx prev
= PREV_INSN (before
);
3879 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3881 PREV_INSN (insn
) = prev
;
3882 NEXT_INSN (insn
) = before
;
3886 NEXT_INSN (prev
) = insn
;
3887 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3889 rtx sequence
= PATTERN (prev
);
3890 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3893 else if (get_insns () == before
)
3894 set_first_insn (insn
);
3897 struct sequence_stack
*stack
= seq_stack
;
3898 /* Scan all pending sequences too. */
3899 for (; stack
; stack
= stack
->next
)
3900 if (before
== stack
->first
)
3902 stack
->first
= insn
;
3910 && !BARRIER_P (before
)
3911 && !BARRIER_P (insn
))
3912 bb
= BLOCK_FOR_INSN (before
);
3916 set_block_for_insn (insn
, bb
);
3918 df_insn_rescan (insn
);
3919 /* Should not happen as first in the BB is always either NOTE or
3921 gcc_assert (BB_HEAD (bb
) != insn
3922 /* Avoid clobbering of structure when creating new BB. */
3924 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3927 PREV_INSN (before
) = insn
;
3928 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3929 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3933 /* Replace insn with an deleted instruction note. */
3936 set_insn_deleted (rtx insn
)
3938 df_insn_delete (BLOCK_FOR_INSN (insn
), INSN_UID (insn
));
3939 PUT_CODE (insn
, NOTE
);
3940 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3944 /* Remove an insn from its doubly-linked list. This function knows how
3945 to handle sequences. */
3947 remove_insn (rtx insn
)
3949 rtx next
= NEXT_INSN (insn
);
3950 rtx prev
= PREV_INSN (insn
);
3953 /* Later in the code, the block will be marked dirty. */
3954 df_insn_delete (NULL
, INSN_UID (insn
));
3958 NEXT_INSN (prev
) = next
;
3959 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3961 rtx sequence
= PATTERN (prev
);
3962 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3965 else if (get_insns () == insn
)
3968 PREV_INSN (next
) = NULL
;
3969 set_first_insn (next
);
3973 struct sequence_stack
*stack
= seq_stack
;
3974 /* Scan all pending sequences too. */
3975 for (; stack
; stack
= stack
->next
)
3976 if (insn
== stack
->first
)
3978 stack
->first
= next
;
3987 PREV_INSN (next
) = prev
;
3988 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3989 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3991 else if (get_last_insn () == insn
)
3992 set_last_insn (prev
);
3995 struct sequence_stack
*stack
= seq_stack
;
3996 /* Scan all pending sequences too. */
3997 for (; stack
; stack
= stack
->next
)
3998 if (insn
== stack
->last
)
4006 if (!BARRIER_P (insn
)
4007 && (bb
= BLOCK_FOR_INSN (insn
)))
4009 if (NONDEBUG_INSN_P (insn
))
4010 df_set_bb_dirty (bb
);
4011 if (BB_HEAD (bb
) == insn
)
4013 /* Never ever delete the basic block note without deleting whole
4015 gcc_assert (!NOTE_P (insn
));
4016 BB_HEAD (bb
) = next
;
4018 if (BB_END (bb
) == insn
)
4023 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4026 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
4028 gcc_assert (call_insn
&& CALL_P (call_insn
));
4030 /* Put the register usage information on the CALL. If there is already
4031 some usage information, put ours at the end. */
4032 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4036 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4037 link
= XEXP (link
, 1))
4040 XEXP (link
, 1) = call_fusage
;
4043 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4046 /* Delete all insns made since FROM.
4047 FROM becomes the new last instruction. */
4050 delete_insns_since (rtx from
)
4055 NEXT_INSN (from
) = 0;
4056 set_last_insn (from
);
4059 /* This function is deprecated, please use sequences instead.
4061 Move a consecutive bunch of insns to a different place in the chain.
4062 The insns to be moved are those between FROM and TO.
4063 They are moved to a new position after the insn AFTER.
4064 AFTER must not be FROM or TO or any insn in between.
4066 This function does not know about SEQUENCEs and hence should not be
4067 called after delay-slot filling has been done. */
4070 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
4072 #ifdef ENABLE_CHECKING
4074 for (x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4075 gcc_assert (after
!= x
);
4076 gcc_assert (after
!= to
);
4079 /* Splice this bunch out of where it is now. */
4080 if (PREV_INSN (from
))
4081 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4083 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4084 if (get_last_insn () == to
)
4085 set_last_insn (PREV_INSN (from
));
4086 if (get_insns () == from
)
4087 set_first_insn (NEXT_INSN (to
));
4089 /* Make the new neighbors point to it and it to them. */
4090 if (NEXT_INSN (after
))
4091 PREV_INSN (NEXT_INSN (after
)) = to
;
4093 NEXT_INSN (to
) = NEXT_INSN (after
);
4094 PREV_INSN (from
) = after
;
4095 NEXT_INSN (after
) = from
;
4096 if (after
== get_last_insn())
4100 /* Same as function above, but take care to update BB boundaries. */
4102 reorder_insns (rtx from
, rtx to
, rtx after
)
4104 rtx prev
= PREV_INSN (from
);
4105 basic_block bb
, bb2
;
4107 reorder_insns_nobb (from
, to
, after
);
4109 if (!BARRIER_P (after
)
4110 && (bb
= BLOCK_FOR_INSN (after
)))
4113 df_set_bb_dirty (bb
);
4115 if (!BARRIER_P (from
)
4116 && (bb2
= BLOCK_FOR_INSN (from
)))
4118 if (BB_END (bb2
) == to
)
4119 BB_END (bb2
) = prev
;
4120 df_set_bb_dirty (bb2
);
4123 if (BB_END (bb
) == after
)
4126 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4128 df_insn_change_bb (x
, bb
);
4133 /* Emit insn(s) of given code and pattern
4134 at a specified place within the doubly-linked list.
4136 All of the emit_foo global entry points accept an object
4137 X which is either an insn list or a PATTERN of a single
4140 There are thus a few canonical ways to generate code and
4141 emit it at a specific place in the instruction stream. For
4142 example, consider the instruction named SPOT and the fact that
4143 we would like to emit some instructions before SPOT. We might
4147 ... emit the new instructions ...
4148 insns_head = get_insns ();
4151 emit_insn_before (insns_head, SPOT);
4153 It used to be common to generate SEQUENCE rtl instead, but that
4154 is a relic of the past which no longer occurs. The reason is that
4155 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4156 generated would almost certainly die right after it was created. */
4159 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4160 rtx (*make_raw
) (rtx
))
4164 gcc_assert (before
);
4169 switch (GET_CODE (x
))
4181 rtx next
= NEXT_INSN (insn
);
4182 add_insn_before (insn
, before
, bb
);
4188 #ifdef ENABLE_RTL_CHECKING
4195 last
= (*make_raw
) (x
);
4196 add_insn_before (last
, before
, bb
);
4203 /* Make X be output before the instruction BEFORE. */
4206 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
4208 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4211 /* Make an instruction with body X and code JUMP_INSN
4212 and output it before the instruction BEFORE. */
4215 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4217 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4218 make_jump_insn_raw
);
4221 /* Make an instruction with body X and code CALL_INSN
4222 and output it before the instruction BEFORE. */
4225 emit_call_insn_before_noloc (rtx x
, rtx before
)
4227 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4228 make_call_insn_raw
);
4231 /* Make an instruction with body X and code DEBUG_INSN
4232 and output it before the instruction BEFORE. */
4235 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4237 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4238 make_debug_insn_raw
);
4241 /* Make an insn of code BARRIER
4242 and output it before the insn BEFORE. */
4245 emit_barrier_before (rtx before
)
4247 rtx insn
= rtx_alloc (BARRIER
);
4249 INSN_UID (insn
) = cur_insn_uid
++;
4251 add_insn_before (insn
, before
, NULL
);
4255 /* Emit the label LABEL before the insn BEFORE. */
4258 emit_label_before (rtx label
, rtx before
)
4260 gcc_checking_assert (INSN_UID (label
) == 0);
4261 INSN_UID (label
) = cur_insn_uid
++;
4262 add_insn_before (label
, before
, NULL
);
4266 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4269 emit_note_before (enum insn_note subtype
, rtx before
)
4271 rtx note
= rtx_alloc (NOTE
);
4272 INSN_UID (note
) = cur_insn_uid
++;
4273 NOTE_KIND (note
) = subtype
;
4274 BLOCK_FOR_INSN (note
) = NULL
;
4275 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4277 add_insn_before (note
, before
, NULL
);
4281 /* Helper for emit_insn_after, handles lists of instructions
4285 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4289 if (!bb
&& !BARRIER_P (after
))
4290 bb
= BLOCK_FOR_INSN (after
);
4294 df_set_bb_dirty (bb
);
4295 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4296 if (!BARRIER_P (last
))
4298 set_block_for_insn (last
, bb
);
4299 df_insn_rescan (last
);
4301 if (!BARRIER_P (last
))
4303 set_block_for_insn (last
, bb
);
4304 df_insn_rescan (last
);
4306 if (BB_END (bb
) == after
)
4310 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4313 after_after
= NEXT_INSN (after
);
4315 NEXT_INSN (after
) = first
;
4316 PREV_INSN (first
) = after
;
4317 NEXT_INSN (last
) = after_after
;
4319 PREV_INSN (after_after
) = last
;
4321 if (after
== get_last_insn())
4322 set_last_insn (last
);
4328 emit_pattern_after_noloc (rtx x
, rtx after
, basic_block bb
,
4329 rtx (*make_raw
)(rtx
))
4338 switch (GET_CODE (x
))
4347 last
= emit_insn_after_1 (x
, after
, bb
);
4350 #ifdef ENABLE_RTL_CHECKING
4357 last
= (*make_raw
) (x
);
4358 add_insn_after (last
, after
, bb
);
4365 /* Make X be output after the insn AFTER and set the BB of insn. If
4366 BB is NULL, an attempt is made to infer the BB from AFTER. */
4369 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4371 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4375 /* Make an insn of code JUMP_INSN with body X
4376 and output it after the insn AFTER. */
4379 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4381 return emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
);
4384 /* Make an instruction with body X and code CALL_INSN
4385 and output it after the instruction AFTER. */
4388 emit_call_insn_after_noloc (rtx x
, rtx after
)
4390 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4393 /* Make an instruction with body X and code CALL_INSN
4394 and output it after the instruction AFTER. */
4397 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4399 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4402 /* Make an insn of code BARRIER
4403 and output it after the insn AFTER. */
4406 emit_barrier_after (rtx after
)
4408 rtx insn
= rtx_alloc (BARRIER
);
4410 INSN_UID (insn
) = cur_insn_uid
++;
4412 add_insn_after (insn
, after
, NULL
);
4416 /* Emit the label LABEL after the insn AFTER. */
4419 emit_label_after (rtx label
, rtx after
)
4421 gcc_checking_assert (INSN_UID (label
) == 0);
4422 INSN_UID (label
) = cur_insn_uid
++;
4423 add_insn_after (label
, after
, NULL
);
4427 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4430 emit_note_after (enum insn_note subtype
, rtx after
)
4432 rtx note
= rtx_alloc (NOTE
);
4433 INSN_UID (note
) = cur_insn_uid
++;
4434 NOTE_KIND (note
) = subtype
;
4435 BLOCK_FOR_INSN (note
) = NULL
;
4436 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4437 add_insn_after (note
, after
, NULL
);
4441 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4442 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4445 emit_pattern_after_setloc (rtx pattern
, rtx after
, int loc
,
4446 rtx (*make_raw
) (rtx
))
4448 rtx last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4450 if (pattern
== NULL_RTX
|| !loc
)
4453 after
= NEXT_INSN (after
);
4456 if (active_insn_p (after
) && !INSN_LOCATION (after
))
4457 INSN_LOCATION (after
) = loc
;
4460 after
= NEXT_INSN (after
);
4465 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4466 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4470 emit_pattern_after (rtx pattern
, rtx after
, bool skip_debug_insns
,
4471 rtx (*make_raw
) (rtx
))
4475 if (skip_debug_insns
)
4476 while (DEBUG_INSN_P (prev
))
4477 prev
= PREV_INSN (prev
);
4480 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4483 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4486 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4488 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4490 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4493 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4495 emit_insn_after (rtx pattern
, rtx after
)
4497 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4500 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4502 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4504 return emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
);
4507 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4509 emit_jump_insn_after (rtx pattern
, rtx after
)
4511 return emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
);
4514 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4516 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4518 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4521 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4523 emit_call_insn_after (rtx pattern
, rtx after
)
4525 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4528 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4530 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4532 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4535 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4537 emit_debug_insn_after (rtx pattern
, rtx after
)
4539 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4542 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4543 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4544 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4548 emit_pattern_before_setloc (rtx pattern
, rtx before
, int loc
, bool insnp
,
4549 rtx (*make_raw
) (rtx
))
4551 rtx first
= PREV_INSN (before
);
4552 rtx last
= emit_pattern_before_noloc (pattern
, before
,
4553 insnp
? before
: NULL_RTX
,
4556 if (pattern
== NULL_RTX
|| !loc
)
4560 first
= get_insns ();
4562 first
= NEXT_INSN (first
);
4565 if (active_insn_p (first
) && !INSN_LOCATION (first
))
4566 INSN_LOCATION (first
) = loc
;
4569 first
= NEXT_INSN (first
);
4574 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4575 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4576 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4577 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4580 emit_pattern_before (rtx pattern
, rtx before
, bool skip_debug_insns
,
4581 bool insnp
, rtx (*make_raw
) (rtx
))
4585 if (skip_debug_insns
)
4586 while (DEBUG_INSN_P (next
))
4587 next
= PREV_INSN (next
);
4590 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4593 return emit_pattern_before_noloc (pattern
, before
,
4594 insnp
? before
: NULL_RTX
,
4598 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4600 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4602 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4606 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4608 emit_insn_before (rtx pattern
, rtx before
)
4610 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4613 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4615 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4617 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4618 make_jump_insn_raw
);
4621 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4623 emit_jump_insn_before (rtx pattern
, rtx before
)
4625 return emit_pattern_before (pattern
, before
, true, false,
4626 make_jump_insn_raw
);
4629 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4631 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4633 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4634 make_call_insn_raw
);
4637 /* Like emit_call_insn_before_noloc,
4638 but set insn_location according to BEFORE. */
4640 emit_call_insn_before (rtx pattern
, rtx before
)
4642 return emit_pattern_before (pattern
, before
, true, false,
4643 make_call_insn_raw
);
4646 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4648 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4650 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4651 make_debug_insn_raw
);
4654 /* Like emit_debug_insn_before_noloc,
4655 but set insn_location according to BEFORE. */
4657 emit_debug_insn_before (rtx pattern
, rtx before
)
4659 return emit_pattern_before (pattern
, before
, false, false,
4660 make_debug_insn_raw
);
4663 /* Take X and emit it at the end of the doubly-linked
4666 Returns the last insn emitted. */
4671 rtx last
= get_last_insn();
4677 switch (GET_CODE (x
))
4689 rtx next
= NEXT_INSN (insn
);
4696 #ifdef ENABLE_RTL_CHECKING
4703 last
= make_insn_raw (x
);
4711 /* Make an insn of code DEBUG_INSN with pattern X
4712 and add it to the end of the doubly-linked list. */
4715 emit_debug_insn (rtx x
)
4717 rtx last
= get_last_insn();
4723 switch (GET_CODE (x
))
4735 rtx next
= NEXT_INSN (insn
);
4742 #ifdef ENABLE_RTL_CHECKING
4749 last
= make_debug_insn_raw (x
);
4757 /* Make an insn of code JUMP_INSN with pattern X
4758 and add it to the end of the doubly-linked list. */
4761 emit_jump_insn (rtx x
)
4763 rtx last
= NULL_RTX
, insn
;
4765 switch (GET_CODE (x
))
4777 rtx next
= NEXT_INSN (insn
);
4784 #ifdef ENABLE_RTL_CHECKING
4791 last
= make_jump_insn_raw (x
);
4799 /* Make an insn of code CALL_INSN with pattern X
4800 and add it to the end of the doubly-linked list. */
4803 emit_call_insn (rtx x
)
4807 switch (GET_CODE (x
))
4816 insn
= emit_insn (x
);
4819 #ifdef ENABLE_RTL_CHECKING
4826 insn
= make_call_insn_raw (x
);
4834 /* Add the label LABEL to the end of the doubly-linked list. */
4837 emit_label (rtx label
)
4839 gcc_checking_assert (INSN_UID (label
) == 0);
4840 INSN_UID (label
) = cur_insn_uid
++;
4845 /* Make an insn of code BARRIER
4846 and add it to the end of the doubly-linked list. */
4851 rtx barrier
= rtx_alloc (BARRIER
);
4852 INSN_UID (barrier
) = cur_insn_uid
++;
4857 /* Emit a copy of note ORIG. */
4860 emit_note_copy (rtx orig
)
4864 note
= rtx_alloc (NOTE
);
4866 INSN_UID (note
) = cur_insn_uid
++;
4867 NOTE_DATA (note
) = NOTE_DATA (orig
);
4868 NOTE_KIND (note
) = NOTE_KIND (orig
);
4869 BLOCK_FOR_INSN (note
) = NULL
;
4875 /* Make an insn of code NOTE or type NOTE_NO
4876 and add it to the end of the doubly-linked list. */
4879 emit_note (enum insn_note kind
)
4883 note
= rtx_alloc (NOTE
);
4884 INSN_UID (note
) = cur_insn_uid
++;
4885 NOTE_KIND (note
) = kind
;
4886 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4887 BLOCK_FOR_INSN (note
) = NULL
;
4892 /* Emit a clobber of lvalue X. */
4895 emit_clobber (rtx x
)
4897 /* CONCATs should not appear in the insn stream. */
4898 if (GET_CODE (x
) == CONCAT
)
4900 emit_clobber (XEXP (x
, 0));
4901 return emit_clobber (XEXP (x
, 1));
4903 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
4906 /* Return a sequence of insns to clobber lvalue X. */
4920 /* Emit a use of rvalue X. */
4925 /* CONCATs should not appear in the insn stream. */
4926 if (GET_CODE (x
) == CONCAT
)
4928 emit_use (XEXP (x
, 0));
4929 return emit_use (XEXP (x
, 1));
4931 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
4934 /* Return a sequence of insns to use rvalue X. */
4948 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4949 note of this type already exists, remove it first. */
4952 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4954 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4960 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4961 has multiple sets (some callers assume single_set
4962 means the insn only has one set, when in fact it
4963 means the insn only has one * useful * set). */
4964 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4970 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4971 It serves no useful purpose and breaks eliminate_regs. */
4972 if (GET_CODE (datum
) == ASM_OPERANDS
)
4977 XEXP (note
, 0) = datum
;
4978 df_notes_rescan (insn
);
4986 XEXP (note
, 0) = datum
;
4992 add_reg_note (insn
, kind
, datum
);
4998 df_notes_rescan (insn
);
5004 return REG_NOTES (insn
);
5007 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5009 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
5011 rtx set
= single_set (insn
);
5013 if (set
&& SET_DEST (set
) == dst
)
5014 return set_unique_reg_note (insn
, kind
, datum
);
5018 /* Return an indication of which type of insn should have X as a body.
5019 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5021 static enum rtx_code
5022 classify_insn (rtx x
)
5026 if (GET_CODE (x
) == CALL
)
5028 if (ANY_RETURN_P (x
))
5030 if (GET_CODE (x
) == SET
)
5032 if (SET_DEST (x
) == pc_rtx
)
5034 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5039 if (GET_CODE (x
) == PARALLEL
)
5042 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
5043 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
5045 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5046 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
5048 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5049 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
5055 /* Emit the rtl pattern X as an appropriate kind of insn.
5056 If X is a label, it is simply added into the insn chain. */
5061 enum rtx_code code
= classify_insn (x
);
5066 return emit_label (x
);
5068 return emit_insn (x
);
5071 rtx insn
= emit_jump_insn (x
);
5072 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
5073 return emit_barrier ();
5077 return emit_call_insn (x
);
5079 return emit_debug_insn (x
);
5085 /* Space for free sequence stack entries. */
5086 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5088 /* Begin emitting insns to a sequence. If this sequence will contain
5089 something that might cause the compiler to pop arguments to function
5090 calls (because those pops have previously been deferred; see
5091 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5092 before calling this function. That will ensure that the deferred
5093 pops are not accidentally emitted in the middle of this sequence. */
5096 start_sequence (void)
5098 struct sequence_stack
*tem
;
5100 if (free_sequence_stack
!= NULL
)
5102 tem
= free_sequence_stack
;
5103 free_sequence_stack
= tem
->next
;
5106 tem
= ggc_alloc_sequence_stack ();
5108 tem
->next
= seq_stack
;
5109 tem
->first
= get_insns ();
5110 tem
->last
= get_last_insn ();
5118 /* Set up the insn chain starting with FIRST as the current sequence,
5119 saving the previously current one. See the documentation for
5120 start_sequence for more information about how to use this function. */
5123 push_to_sequence (rtx first
)
5129 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5132 set_first_insn (first
);
5133 set_last_insn (last
);
5136 /* Like push_to_sequence, but take the last insn as an argument to avoid
5137 looping through the list. */
5140 push_to_sequence2 (rtx first
, rtx last
)
5144 set_first_insn (first
);
5145 set_last_insn (last
);
5148 /* Set up the outer-level insn chain
5149 as the current sequence, saving the previously current one. */
5152 push_topmost_sequence (void)
5154 struct sequence_stack
*stack
, *top
= NULL
;
5158 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5161 set_first_insn (top
->first
);
5162 set_last_insn (top
->last
);
5165 /* After emitting to the outer-level insn chain, update the outer-level
5166 insn chain, and restore the previous saved state. */
5169 pop_topmost_sequence (void)
5171 struct sequence_stack
*stack
, *top
= NULL
;
5173 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5176 top
->first
= get_insns ();
5177 top
->last
= get_last_insn ();
5182 /* After emitting to a sequence, restore previous saved state.
5184 To get the contents of the sequence just made, you must call
5185 `get_insns' *before* calling here.
5187 If the compiler might have deferred popping arguments while
5188 generating this sequence, and this sequence will not be immediately
5189 inserted into the instruction stream, use do_pending_stack_adjust
5190 before calling get_insns. That will ensure that the deferred
5191 pops are inserted into this sequence, and not into some random
5192 location in the instruction stream. See INHIBIT_DEFER_POP for more
5193 information about deferred popping of arguments. */
5198 struct sequence_stack
*tem
= seq_stack
;
5200 set_first_insn (tem
->first
);
5201 set_last_insn (tem
->last
);
5202 seq_stack
= tem
->next
;
5204 memset (tem
, 0, sizeof (*tem
));
5205 tem
->next
= free_sequence_stack
;
5206 free_sequence_stack
= tem
;
5209 /* Return 1 if currently emitting into a sequence. */
5212 in_sequence_p (void)
5214 return seq_stack
!= 0;
5217 /* Put the various virtual registers into REGNO_REG_RTX. */
5220 init_virtual_regs (void)
5222 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5223 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5224 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5225 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5226 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5227 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5228 = virtual_preferred_stack_boundary_rtx
;
5232 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5233 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5234 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5235 static int copy_insn_n_scratches
;
5237 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5238 copied an ASM_OPERANDS.
5239 In that case, it is the original input-operand vector. */
5240 static rtvec orig_asm_operands_vector
;
5242 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5243 copied an ASM_OPERANDS.
5244 In that case, it is the copied input-operand vector. */
5245 static rtvec copy_asm_operands_vector
;
5247 /* Likewise for the constraints vector. */
5248 static rtvec orig_asm_constraints_vector
;
5249 static rtvec copy_asm_constraints_vector
;
5251 /* Recursively create a new copy of an rtx for copy_insn.
5252 This function differs from copy_rtx in that it handles SCRATCHes and
5253 ASM_OPERANDs properly.
5254 Normally, this function is not used directly; use copy_insn as front end.
5255 However, you could first copy an insn pattern with copy_insn and then use
5256 this function afterwards to properly copy any REG_NOTEs containing
5260 copy_insn_1 (rtx orig
)
5265 const char *format_ptr
;
5270 code
= GET_CODE (orig
);
5285 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
5290 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5291 if (copy_insn_scratch_in
[i
] == orig
)
5292 return copy_insn_scratch_out
[i
];
5296 if (shared_const_p (orig
))
5300 /* A MEM with a constant address is not sharable. The problem is that
5301 the constant address may need to be reloaded. If the mem is shared,
5302 then reloading one copy of this mem will cause all copies to appear
5303 to have been reloaded. */
5309 /* Copy the various flags, fields, and other information. We assume
5310 that all fields need copying, and then clear the fields that should
5311 not be copied. That is the sensible default behavior, and forces
5312 us to explicitly document why we are *not* copying a flag. */
5313 copy
= shallow_copy_rtx (orig
);
5315 /* We do not copy the USED flag, which is used as a mark bit during
5316 walks over the RTL. */
5317 RTX_FLAG (copy
, used
) = 0;
5319 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5322 RTX_FLAG (copy
, jump
) = 0;
5323 RTX_FLAG (copy
, call
) = 0;
5324 RTX_FLAG (copy
, frame_related
) = 0;
5327 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5329 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5330 switch (*format_ptr
++)
5333 if (XEXP (orig
, i
) != NULL
)
5334 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5339 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5340 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5341 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5342 XVEC (copy
, i
) = copy_asm_operands_vector
;
5343 else if (XVEC (orig
, i
) != NULL
)
5345 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5346 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5347 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5358 /* These are left unchanged. */
5365 if (code
== SCRATCH
)
5367 i
= copy_insn_n_scratches
++;
5368 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5369 copy_insn_scratch_in
[i
] = orig
;
5370 copy_insn_scratch_out
[i
] = copy
;
5372 else if (code
== ASM_OPERANDS
)
5374 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5375 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5376 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5377 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5383 /* Create a new copy of an rtx.
5384 This function differs from copy_rtx in that it handles SCRATCHes and
5385 ASM_OPERANDs properly.
5386 INSN doesn't really have to be a full INSN; it could be just the
5389 copy_insn (rtx insn
)
5391 copy_insn_n_scratches
= 0;
5392 orig_asm_operands_vector
= 0;
5393 orig_asm_constraints_vector
= 0;
5394 copy_asm_operands_vector
= 0;
5395 copy_asm_constraints_vector
= 0;
5396 return copy_insn_1 (insn
);
5399 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5400 on that assumption that INSN itself remains in its original place. */
5403 copy_delay_slot_insn (rtx insn
)
5405 /* Copy INSN with its rtx_code, all its notes, location etc. */
5406 insn
= copy_rtx (insn
);
5407 INSN_UID (insn
) = cur_insn_uid
++;
5411 /* Initialize data structures and variables in this file
5412 before generating rtl for each function. */
5417 set_first_insn (NULL
);
5418 set_last_insn (NULL
);
5419 if (MIN_NONDEBUG_INSN_UID
)
5420 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5423 cur_debug_insn_uid
= 1;
5424 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5425 first_label_num
= label_num
;
5428 /* Init the tables that describe all the pseudo regs. */
5430 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5432 crtl
->emit
.regno_pointer_align
5433 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5435 regno_reg_rtx
= ggc_alloc_vec_rtx (crtl
->emit
.regno_pointer_align_length
);
5437 /* Put copies of all the hard registers into regno_reg_rtx. */
5438 memcpy (regno_reg_rtx
,
5439 initial_regno_reg_rtx
,
5440 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5442 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5443 init_virtual_regs ();
5445 /* Indicate that the virtual registers and stack locations are
5447 REG_POINTER (stack_pointer_rtx
) = 1;
5448 REG_POINTER (frame_pointer_rtx
) = 1;
5449 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5450 REG_POINTER (arg_pointer_rtx
) = 1;
5452 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5453 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5454 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5455 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5456 REG_POINTER (virtual_cfa_rtx
) = 1;
5458 #ifdef STACK_BOUNDARY
5459 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5460 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5461 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5462 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5464 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5465 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5466 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5467 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5468 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5471 #ifdef INIT_EXPANDERS
5476 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5479 gen_const_vector (enum machine_mode mode
, int constant
)
5484 enum machine_mode inner
;
5486 units
= GET_MODE_NUNITS (mode
);
5487 inner
= GET_MODE_INNER (mode
);
5489 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5491 v
= rtvec_alloc (units
);
5493 /* We need to call this function after we set the scalar const_tiny_rtx
5495 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5497 for (i
= 0; i
< units
; ++i
)
5498 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5500 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5504 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5505 all elements are zero, and the one vector when all elements are one. */
5507 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5509 enum machine_mode inner
= GET_MODE_INNER (mode
);
5510 int nunits
= GET_MODE_NUNITS (mode
);
5514 /* Check to see if all of the elements have the same value. */
5515 x
= RTVEC_ELT (v
, nunits
- 1);
5516 for (i
= nunits
- 2; i
>= 0; i
--)
5517 if (RTVEC_ELT (v
, i
) != x
)
5520 /* If the values are all the same, check to see if we can use one of the
5521 standard constant vectors. */
5524 if (x
== CONST0_RTX (inner
))
5525 return CONST0_RTX (mode
);
5526 else if (x
== CONST1_RTX (inner
))
5527 return CONST1_RTX (mode
);
5528 else if (x
== CONSTM1_RTX (inner
))
5529 return CONSTM1_RTX (mode
);
5532 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5535 /* Initialise global register information required by all functions. */
5538 init_emit_regs (void)
5541 enum machine_mode mode
;
5544 /* Reset register attributes */
5545 htab_empty (reg_attrs_htab
);
5547 /* We need reg_raw_mode, so initialize the modes now. */
5548 init_reg_modes_target ();
5550 /* Assign register numbers to the globally defined register rtx. */
5551 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5552 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5553 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5554 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5555 virtual_incoming_args_rtx
=
5556 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5557 virtual_stack_vars_rtx
=
5558 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5559 virtual_stack_dynamic_rtx
=
5560 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5561 virtual_outgoing_args_rtx
=
5562 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5563 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5564 virtual_preferred_stack_boundary_rtx
=
5565 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5567 /* Initialize RTL for commonly used hard registers. These are
5568 copied into regno_reg_rtx as we begin to compile each function. */
5569 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5570 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5572 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5573 return_address_pointer_rtx
5574 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5577 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5578 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5580 pic_offset_table_rtx
= NULL_RTX
;
5582 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
5584 mode
= (enum machine_mode
) i
;
5585 attrs
= ggc_alloc_cleared_mem_attrs ();
5586 attrs
->align
= BITS_PER_UNIT
;
5587 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
5588 if (mode
!= BLKmode
)
5590 attrs
->size_known_p
= true;
5591 attrs
->size
= GET_MODE_SIZE (mode
);
5592 if (STRICT_ALIGNMENT
)
5593 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
5595 mode_mem_attrs
[i
] = attrs
;
5599 /* Create some permanent unique rtl objects shared between all functions. */
5602 init_emit_once (void)
5605 enum machine_mode mode
;
5606 enum machine_mode double_mode
;
5608 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5610 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5611 const_int_htab_eq
, NULL
);
5613 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5614 const_double_htab_eq
, NULL
);
5616 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5617 const_fixed_htab_eq
, NULL
);
5619 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5620 mem_attrs_htab_eq
, NULL
);
5621 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5622 reg_attrs_htab_eq
, NULL
);
5624 /* Compute the word and byte modes. */
5626 byte_mode
= VOIDmode
;
5627 word_mode
= VOIDmode
;
5628 double_mode
= VOIDmode
;
5630 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5632 mode
= GET_MODE_WIDER_MODE (mode
))
5634 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5635 && byte_mode
== VOIDmode
)
5638 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5639 && word_mode
== VOIDmode
)
5643 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5645 mode
= GET_MODE_WIDER_MODE (mode
))
5647 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5648 && double_mode
== VOIDmode
)
5652 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5654 #ifdef INIT_EXPANDERS
5655 /* This is to initialize {init|mark|free}_machine_status before the first
5656 call to push_function_context_to. This is needed by the Chill front
5657 end which calls push_function_context_to before the first call to
5658 init_function_start. */
5662 /* Create the unique rtx's for certain rtx codes and operand values. */
5664 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5665 tries to use these variables. */
5666 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5667 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5668 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5670 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5671 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5672 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5674 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5676 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5677 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5678 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5683 dconsthalf
= dconst1
;
5684 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5686 for (i
= 0; i
< 3; i
++)
5688 const REAL_VALUE_TYPE
*const r
=
5689 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5691 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5693 mode
= GET_MODE_WIDER_MODE (mode
))
5694 const_tiny_rtx
[i
][(int) mode
] =
5695 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5697 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5699 mode
= GET_MODE_WIDER_MODE (mode
))
5700 const_tiny_rtx
[i
][(int) mode
] =
5701 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5703 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5705 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5707 mode
= GET_MODE_WIDER_MODE (mode
))
5708 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5710 for (mode
= MIN_MODE_PARTIAL_INT
;
5711 mode
<= MAX_MODE_PARTIAL_INT
;
5712 mode
= (enum machine_mode
)((int)(mode
) + 1))
5713 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5716 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
5718 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5720 mode
= GET_MODE_WIDER_MODE (mode
))
5721 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5723 for (mode
= MIN_MODE_PARTIAL_INT
;
5724 mode
<= MAX_MODE_PARTIAL_INT
;
5725 mode
= (enum machine_mode
)((int)(mode
) + 1))
5726 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5728 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5730 mode
= GET_MODE_WIDER_MODE (mode
))
5732 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5733 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5736 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5738 mode
= GET_MODE_WIDER_MODE (mode
))
5740 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5741 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5744 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5746 mode
= GET_MODE_WIDER_MODE (mode
))
5748 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5749 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5750 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
5753 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5755 mode
= GET_MODE_WIDER_MODE (mode
))
5757 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5758 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5761 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5763 mode
= GET_MODE_WIDER_MODE (mode
))
5765 FCONST0(mode
).data
.high
= 0;
5766 FCONST0(mode
).data
.low
= 0;
5767 FCONST0(mode
).mode
= mode
;
5768 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5769 FCONST0 (mode
), mode
);
5772 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5774 mode
= GET_MODE_WIDER_MODE (mode
))
5776 FCONST0(mode
).data
.high
= 0;
5777 FCONST0(mode
).data
.low
= 0;
5778 FCONST0(mode
).mode
= mode
;
5779 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5780 FCONST0 (mode
), mode
);
5783 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5785 mode
= GET_MODE_WIDER_MODE (mode
))
5787 FCONST0(mode
).data
.high
= 0;
5788 FCONST0(mode
).data
.low
= 0;
5789 FCONST0(mode
).mode
= mode
;
5790 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5791 FCONST0 (mode
), mode
);
5793 /* We store the value 1. */
5794 FCONST1(mode
).data
.high
= 0;
5795 FCONST1(mode
).data
.low
= 0;
5796 FCONST1(mode
).mode
= mode
;
5798 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5799 HOST_BITS_PER_DOUBLE_INT
,
5800 SIGNED_FIXED_POINT_MODE_P (mode
));
5801 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5802 FCONST1 (mode
), mode
);
5805 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5807 mode
= GET_MODE_WIDER_MODE (mode
))
5809 FCONST0(mode
).data
.high
= 0;
5810 FCONST0(mode
).data
.low
= 0;
5811 FCONST0(mode
).mode
= mode
;
5812 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5813 FCONST0 (mode
), mode
);
5815 /* We store the value 1. */
5816 FCONST1(mode
).data
.high
= 0;
5817 FCONST1(mode
).data
.low
= 0;
5818 FCONST1(mode
).mode
= mode
;
5820 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5821 HOST_BITS_PER_DOUBLE_INT
,
5822 SIGNED_FIXED_POINT_MODE_P (mode
));
5823 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5824 FCONST1 (mode
), mode
);
5827 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5829 mode
= GET_MODE_WIDER_MODE (mode
))
5831 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5834 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5836 mode
= GET_MODE_WIDER_MODE (mode
))
5838 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5841 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5843 mode
= GET_MODE_WIDER_MODE (mode
))
5845 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5846 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5849 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5851 mode
= GET_MODE_WIDER_MODE (mode
))
5853 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5854 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5857 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5858 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5859 const_tiny_rtx
[0][i
] = const0_rtx
;
5861 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5862 if (STORE_FLAG_VALUE
== 1)
5863 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5865 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
5866 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
5867 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
5868 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
5871 /* Produce exact duplicate of insn INSN after AFTER.
5872 Care updating of libcall regions if present. */
5875 emit_copy_of_insn_after (rtx insn
, rtx after
)
5879 switch (GET_CODE (insn
))
5882 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5886 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5890 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
5894 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5895 if (CALL_INSN_FUNCTION_USAGE (insn
))
5896 CALL_INSN_FUNCTION_USAGE (new_rtx
)
5897 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5898 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
5899 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
5900 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
5901 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
5902 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
5909 /* Update LABEL_NUSES. */
5910 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
5912 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
5914 /* If the old insn is frame related, then so is the new one. This is
5915 primarily needed for IA-64 unwind info which marks epilogue insns,
5916 which may be duplicated by the basic block reordering code. */
5917 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
5919 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5920 will make them. REG_LABEL_TARGETs are created there too, but are
5921 supposed to be sticky, so we copy them. */
5922 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5923 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
5925 if (GET_CODE (link
) == EXPR_LIST
)
5926 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
5927 copy_insn_1 (XEXP (link
, 0)));
5929 add_reg_note (new_rtx
, REG_NOTE_KIND (link
), XEXP (link
, 0));
5932 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
5936 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5938 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5940 if (hard_reg_clobbers
[mode
][regno
])
5941 return hard_reg_clobbers
[mode
][regno
];
5943 return (hard_reg_clobbers
[mode
][regno
] =
5944 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5947 location_t prologue_location
;
5948 location_t epilogue_location
;
5950 /* Hold current location information and last location information, so the
5951 datastructures are built lazily only when some instructions in given
5952 place are needed. */
5953 static location_t curr_location
, last_location
;
5955 /* Allocate insn location datastructure. */
5957 insn_locations_init (void)
5959 prologue_location
= epilogue_location
= 0;
5960 curr_location
= UNKNOWN_LOCATION
;
5961 last_location
= UNKNOWN_LOCATION
;
5964 /* At the end of emit stage, clear current location. */
5966 insn_locations_finalize (void)
5968 epilogue_location
= curr_location
;
5969 curr_location
= UNKNOWN_LOCATION
;
5972 /* Set current location. */
5974 set_curr_insn_location (location_t location
)
5976 curr_location
= location
;
5979 /* Get current location. */
5981 curr_insn_location (void)
5983 return curr_location
;
5986 /* Return lexical scope block insn belongs to. */
5988 insn_scope (const_rtx insn
)
5990 return LOCATION_BLOCK (INSN_LOCATION (insn
));
5993 /* Return line number of the statement that produced this insn. */
5995 insn_line (const_rtx insn
)
5997 return LOCATION_LINE (INSN_LOCATION (insn
));
6000 /* Return source file of the statement that produced this insn. */
6002 insn_file (const_rtx insn
)
6004 return LOCATION_FILE (INSN_LOCATION (insn
));
6007 /* Return true if memory model MODEL requires a pre-operation (release-style)
6008 barrier or a post-operation (acquire-style) barrier. While not universal,
6009 this function matches behavior of several targets. */
6012 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6016 case MEMMODEL_RELAXED
:
6017 case MEMMODEL_CONSUME
:
6019 case MEMMODEL_RELEASE
:
6021 case MEMMODEL_ACQUIRE
:
6023 case MEMMODEL_ACQ_REL
:
6024 case MEMMODEL_SEQ_CST
:
6031 #include "gt-emit-rtl.h"