1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains various simple utilities to analyze the CFG. */
25 #include "coretypes.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "insn-config.h"
35 /* Store the data structures necessary for depth-first search. */
36 struct depth_first_search_dsS
{
37 /* stack for backtracking during the algorithm */
40 /* number of edges in the stack. That is, positions 0, ..., sp-1
44 /* record of basic blocks already seen by depth-first search */
45 sbitmap visited_blocks
;
47 typedef struct depth_first_search_dsS
*depth_first_search_ds
;
49 static void flow_dfs_compute_reverse_init
50 PARAMS ((depth_first_search_ds
));
51 static void flow_dfs_compute_reverse_add_bb
52 PARAMS ((depth_first_search_ds
, basic_block
));
53 static basic_block flow_dfs_compute_reverse_execute
54 PARAMS ((depth_first_search_ds
));
55 static void flow_dfs_compute_reverse_finish
56 PARAMS ((depth_first_search_ds
));
57 static void remove_fake_successors
PARAMS ((basic_block
));
58 static bool need_fake_edge_p
PARAMS ((rtx
));
59 static bool flow_active_insn_p
PARAMS ((rtx
));
61 /* Like active_insn_p, except keep the return value clobber around
65 flow_active_insn_p (insn
)
68 if (active_insn_p (insn
))
71 /* A clobber of the function return value exists for buggy
72 programs that fail to return a value. Its effect is to
73 keep the return value from being live across the entire
74 function. If we allow it to be skipped, we introduce the
75 possibility for register livetime aborts. */
76 if (GET_CODE (PATTERN (insn
)) == CLOBBER
77 && GET_CODE (XEXP (PATTERN (insn
), 0)) == REG
78 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn
), 0)))
84 /* Return true if the block has no effect and only forwards control flow to
85 its single destination. */
88 forwarder_block_p (bb
)
93 if (bb
== EXIT_BLOCK_PTR
|| bb
== ENTRY_BLOCK_PTR
94 || !bb
->succ
|| bb
->succ
->succ_next
)
97 for (insn
= bb
->head
; insn
!= bb
->end
; insn
= NEXT_INSN (insn
))
98 if (INSN_P (insn
) && flow_active_insn_p (insn
))
101 return (!INSN_P (insn
)
102 || (GET_CODE (insn
) == JUMP_INSN
&& simplejump_p (insn
))
103 || !flow_active_insn_p (insn
));
106 /* Return nonzero if we can reach target from src by falling through. */
109 can_fallthru (src
, target
)
110 basic_block src
, target
;
113 rtx insn2
= target
->head
;
115 if (src
->next_bb
!= target
)
118 if (!active_insn_p (insn2
))
119 insn2
= next_active_insn (insn2
);
121 /* ??? Later we may add code to move jump tables offline. */
122 return next_active_insn (insn
) == insn2
;
125 /* Mark the back edges in DFS traversal.
126 Return nonzero if a loop (natural or otherwise) is present.
127 Inspired by Depth_First_Search_PP described in:
129 Advanced Compiler Design and Implementation
131 Morgan Kaufmann, 1997
133 and heavily borrowed from flow_depth_first_order_compute. */
136 mark_dfs_back_edges ()
147 /* Allocate the preorder and postorder number arrays. */
148 pre
= (int *) xcalloc (last_basic_block
, sizeof (int));
149 post
= (int *) xcalloc (last_basic_block
, sizeof (int));
151 /* Allocate stack for back-tracking up CFG. */
152 stack
= (edge
*) xmalloc ((n_basic_blocks
+ 1) * sizeof (edge
));
155 /* Allocate bitmap to track nodes that have been visited. */
156 visited
= sbitmap_alloc (last_basic_block
);
158 /* None of the nodes in the CFG have been visited yet. */
159 sbitmap_zero (visited
);
161 /* Push the first edge on to the stack. */
162 stack
[sp
++] = ENTRY_BLOCK_PTR
->succ
;
170 /* Look at the edge on the top of the stack. */
174 e
->flags
&= ~EDGE_DFS_BACK
;
176 /* Check if the edge destination has been visited yet. */
177 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
179 /* Mark that we have visited the destination. */
180 SET_BIT (visited
, dest
->index
);
182 pre
[dest
->index
] = prenum
++;
185 /* Since the DEST node has been visited for the first
186 time, check its successors. */
187 stack
[sp
++] = dest
->succ
;
190 post
[dest
->index
] = postnum
++;
194 if (dest
!= EXIT_BLOCK_PTR
&& src
!= ENTRY_BLOCK_PTR
195 && pre
[src
->index
] >= pre
[dest
->index
]
196 && post
[dest
->index
] == 0)
197 e
->flags
|= EDGE_DFS_BACK
, found
= true;
199 if (! e
->succ_next
&& src
!= ENTRY_BLOCK_PTR
)
200 post
[src
->index
] = postnum
++;
203 stack
[sp
- 1] = e
->succ_next
;
212 sbitmap_free (visited
);
217 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
220 set_edge_can_fallthru_flag ()
228 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
229 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
230 if (e
->flags
& EDGE_FALLTHRU
)
231 e
->flags
|= EDGE_CAN_FALLTHRU
;
233 /* If the BB ends with an invertable condjump all (2) edges are
234 CAN_FALLTHRU edges. */
235 if (!bb
->succ
|| !bb
->succ
->succ_next
|| bb
->succ
->succ_next
->succ_next
)
237 if (!any_condjump_p (bb
->end
))
239 if (!invert_jump (bb
->end
, JUMP_LABEL (bb
->end
), 0))
241 invert_jump (bb
->end
, JUMP_LABEL (bb
->end
), 0);
242 bb
->succ
->flags
|= EDGE_CAN_FALLTHRU
;
243 bb
->succ
->succ_next
->flags
|= EDGE_CAN_FALLTHRU
;
247 /* Return true if we need to add fake edge to exit.
248 Helper function for the flow_call_edges_add. */
251 need_fake_edge_p (insn
)
257 if ((GET_CODE (insn
) == CALL_INSN
258 && !SIBLING_CALL_P (insn
)
259 && !find_reg_note (insn
, REG_NORETURN
, NULL
)
260 && !find_reg_note (insn
, REG_ALWAYS_RETURN
, NULL
)
261 && !CONST_OR_PURE_CALL_P (insn
)))
264 return ((GET_CODE (PATTERN (insn
)) == ASM_OPERANDS
265 && MEM_VOLATILE_P (PATTERN (insn
)))
266 || (GET_CODE (PATTERN (insn
)) == PARALLEL
267 && asm_noperands (insn
) != -1
268 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn
), 0, 0)))
269 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
);
272 /* Add fake edges to the function exit for any non constant and non noreturn
273 calls, volatile inline assembly in the bitmap of blocks specified by
274 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
277 The goal is to expose cases in which entering a basic block does not imply
278 that all subsequent instructions must be executed. */
281 flow_call_edges_add (blocks
)
285 int blocks_split
= 0;
286 int last_bb
= last_basic_block
;
287 bool check_last_block
= false;
289 if (n_basic_blocks
== 0)
293 check_last_block
= true;
295 check_last_block
= TEST_BIT (blocks
, EXIT_BLOCK_PTR
->prev_bb
->index
);
297 /* In the last basic block, before epilogue generation, there will be
298 a fallthru edge to EXIT. Special care is required if the last insn
299 of the last basic block is a call because make_edge folds duplicate
300 edges, which would result in the fallthru edge also being marked
301 fake, which would result in the fallthru edge being removed by
302 remove_fake_edges, which would result in an invalid CFG.
304 Moreover, we can't elide the outgoing fake edge, since the block
305 profiler needs to take this into account in order to solve the minimal
306 spanning tree in the case that the call doesn't return.
308 Handle this by adding a dummy instruction in a new last basic block. */
309 if (check_last_block
)
311 basic_block bb
= EXIT_BLOCK_PTR
->prev_bb
;
314 /* Back up past insns that must be kept in the same block as a call. */
315 while (insn
!= bb
->head
316 && keep_with_call_p (insn
))
317 insn
= PREV_INSN (insn
);
319 if (need_fake_edge_p (insn
))
323 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
324 if (e
->dest
== EXIT_BLOCK_PTR
)
326 insert_insn_on_edge (gen_rtx_USE (VOIDmode
, const0_rtx
), e
);
327 commit_edge_insertions ();
333 /* Now add fake edges to the function exit for any non constant
334 calls since there is no way that we can determine if they will
337 for (i
= 0; i
< last_bb
; i
++)
339 basic_block bb
= BASIC_BLOCK (i
);
346 if (blocks
&& !TEST_BIT (blocks
, i
))
349 for (insn
= bb
->end
; ; insn
= prev_insn
)
351 prev_insn
= PREV_INSN (insn
);
352 if (need_fake_edge_p (insn
))
355 rtx split_at_insn
= insn
;
357 /* Don't split the block between a call and an insn that should
358 remain in the same block as the call. */
359 if (GET_CODE (insn
) == CALL_INSN
)
360 while (split_at_insn
!= bb
->end
361 && keep_with_call_p (NEXT_INSN (split_at_insn
)))
362 split_at_insn
= NEXT_INSN (split_at_insn
);
364 /* The handling above of the final block before the epilogue
365 should be enough to verify that there is no edge to the exit
366 block in CFG already. Calling make_edge in such case would
367 cause us to mark that edge as fake and remove it later. */
369 #ifdef ENABLE_CHECKING
370 if (split_at_insn
== bb
->end
)
371 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
372 if (e
->dest
== EXIT_BLOCK_PTR
)
376 /* Note that the following may create a new basic block
377 and renumber the existing basic blocks. */
378 if (split_at_insn
!= bb
->end
)
380 e
= split_block (bb
, split_at_insn
);
385 make_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
388 if (insn
== bb
->head
)
399 /* Find unreachable blocks. An unreachable block will have 0 in
400 the reachable bit in block->flags. A nonzero value indicates the
401 block is reachable. */
404 find_unreachable_blocks ()
407 basic_block
*tos
, *worklist
, bb
;
410 (basic_block
*) xmalloc (sizeof (basic_block
) * n_basic_blocks
);
412 /* Clear all the reachability flags. */
415 bb
->flags
&= ~BB_REACHABLE
;
417 /* Add our starting points to the worklist. Almost always there will
418 be only one. It isn't inconceivable that we might one day directly
419 support Fortran alternate entry points. */
421 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
425 /* Mark the block reachable. */
426 e
->dest
->flags
|= BB_REACHABLE
;
429 /* Iterate: find everything reachable from what we've already seen. */
431 while (tos
!= worklist
)
433 basic_block b
= *--tos
;
435 for (e
= b
->succ
; e
; e
= e
->succ_next
)
436 if (!(e
->dest
->flags
& BB_REACHABLE
))
439 e
->dest
->flags
|= BB_REACHABLE
;
446 /* Functions to access an edge list with a vector representation.
447 Enough data is kept such that given an index number, the
448 pred and succ that edge represents can be determined, or
449 given a pred and a succ, its index number can be returned.
450 This allows algorithms which consume a lot of memory to
451 represent the normally full matrix of edge (pred,succ) with a
452 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
453 wasted space in the client code due to sparse flow graphs. */
455 /* This functions initializes the edge list. Basically the entire
456 flowgraph is processed, and all edges are assigned a number,
457 and the data structure is filled in. */
462 struct edge_list
*elist
;
468 block_count
= n_basic_blocks
+ 2; /* Include the entry and exit blocks. */
472 /* Determine the number of edges in the flow graph by counting successor
473 edges on each basic block. */
474 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
476 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
480 elist
= (struct edge_list
*) xmalloc (sizeof (struct edge_list
));
481 elist
->num_blocks
= block_count
;
482 elist
->num_edges
= num_edges
;
483 elist
->index_to_edge
= (edge
*) xmalloc (sizeof (edge
) * num_edges
);
487 /* Follow successors of blocks, and register these edges. */
488 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
489 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
490 elist
->index_to_edge
[num_edges
++] = e
;
495 /* This function free's memory associated with an edge list. */
498 free_edge_list (elist
)
499 struct edge_list
*elist
;
503 free (elist
->index_to_edge
);
508 /* This function provides debug output showing an edge list. */
511 print_edge_list (f
, elist
)
513 struct edge_list
*elist
;
517 fprintf (f
, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
518 elist
->num_blocks
- 2, elist
->num_edges
);
520 for (x
= 0; x
< elist
->num_edges
; x
++)
522 fprintf (f
, " %-4d - edge(", x
);
523 if (INDEX_EDGE_PRED_BB (elist
, x
) == ENTRY_BLOCK_PTR
)
524 fprintf (f
, "entry,");
526 fprintf (f
, "%d,", INDEX_EDGE_PRED_BB (elist
, x
)->index
);
528 if (INDEX_EDGE_SUCC_BB (elist
, x
) == EXIT_BLOCK_PTR
)
529 fprintf (f
, "exit)\n");
531 fprintf (f
, "%d)\n", INDEX_EDGE_SUCC_BB (elist
, x
)->index
);
535 /* This function provides an internal consistency check of an edge list,
536 verifying that all edges are present, and that there are no
540 verify_edge_list (f
, elist
)
542 struct edge_list
*elist
;
544 int pred
, succ
, index
;
546 basic_block bb
, p
, s
;
548 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
550 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
552 pred
= e
->src
->index
;
553 succ
= e
->dest
->index
;
554 index
= EDGE_INDEX (elist
, e
->src
, e
->dest
);
555 if (index
== EDGE_INDEX_NO_EDGE
)
557 fprintf (f
, "*p* No index for edge from %d to %d\n", pred
, succ
);
561 if (INDEX_EDGE_PRED_BB (elist
, index
)->index
!= pred
)
562 fprintf (f
, "*p* Pred for index %d should be %d not %d\n",
563 index
, pred
, INDEX_EDGE_PRED_BB (elist
, index
)->index
);
564 if (INDEX_EDGE_SUCC_BB (elist
, index
)->index
!= succ
)
565 fprintf (f
, "*p* Succ for index %d should be %d not %d\n",
566 index
, succ
, INDEX_EDGE_SUCC_BB (elist
, index
)->index
);
570 /* We've verified that all the edges are in the list, now lets make sure
571 there are no spurious edges in the list. */
573 FOR_BB_BETWEEN (p
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
574 FOR_BB_BETWEEN (s
, ENTRY_BLOCK_PTR
->next_bb
, NULL
, next_bb
)
578 for (e
= p
->succ
; e
; e
= e
->succ_next
)
585 for (e
= s
->pred
; e
; e
= e
->pred_next
)
592 if (EDGE_INDEX (elist
, p
, s
)
593 == EDGE_INDEX_NO_EDGE
&& found_edge
!= 0)
594 fprintf (f
, "*** Edge (%d, %d) appears to not have an index\n",
596 if (EDGE_INDEX (elist
, p
, s
)
597 != EDGE_INDEX_NO_EDGE
&& found_edge
== 0)
598 fprintf (f
, "*** Edge (%d, %d) has index %d, but there is no edge\n",
599 p
->index
, s
->index
, EDGE_INDEX (elist
, p
, s
));
603 /* This routine will determine what, if any, edge there is between
604 a specified predecessor and successor. */
607 find_edge_index (edge_list
, pred
, succ
)
608 struct edge_list
*edge_list
;
609 basic_block pred
, succ
;
613 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
614 if (INDEX_EDGE_PRED_BB (edge_list
, x
) == pred
615 && INDEX_EDGE_SUCC_BB (edge_list
, x
) == succ
)
618 return (EDGE_INDEX_NO_EDGE
);
621 /* Dump the list of basic blocks in the bitmap NODES. */
624 flow_nodes_print (str
, nodes
, file
)
634 fprintf (file
, "%s { ", str
);
635 EXECUTE_IF_SET_IN_SBITMAP (nodes
, 0, node
, {fprintf (file
, "%d ", node
);});
639 /* Dump the list of edges in the array EDGE_LIST. */
642 flow_edge_list_print (str
, edge_list
, num_edges
, file
)
644 const edge
*edge_list
;
653 fprintf (file
, "%s { ", str
);
654 for (i
= 0; i
< num_edges
; i
++)
655 fprintf (file
, "%d->%d ", edge_list
[i
]->src
->index
,
656 edge_list
[i
]->dest
->index
);
662 /* This routine will remove any fake successor edges for a basic block.
663 When the edge is removed, it is also removed from whatever predecessor
667 remove_fake_successors (bb
)
672 for (e
= bb
->succ
; e
;)
677 if ((tmp
->flags
& EDGE_FAKE
) == EDGE_FAKE
)
682 /* This routine will remove all fake edges from the flow graph. If
683 we remove all fake successors, it will automatically remove all
684 fake predecessors. */
691 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
692 remove_fake_successors (bb
);
695 /* This function will add a fake edge between any block which has no
696 successors, and the exit block. Some data flow equations require these
700 add_noreturn_fake_exit_edges ()
705 if (bb
->succ
== NULL
)
706 make_single_succ_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
709 /* This function adds a fake edge between any infinite loops to the
710 exit block. Some optimizations require a path from each node to
713 See also Morgan, Figure 3.10, pp. 82-83.
715 The current implementation is ugly, not attempting to minimize the
716 number of inserted fake edges. To reduce the number of fake edges
717 to insert, add fake edges from _innermost_ loops containing only
718 nodes not reachable from the exit block. */
721 connect_infinite_loops_to_exit ()
723 basic_block unvisited_block
;
724 struct depth_first_search_dsS dfs_ds
;
726 /* Perform depth-first search in the reverse graph to find nodes
727 reachable from the exit block. */
728 flow_dfs_compute_reverse_init (&dfs_ds
);
729 flow_dfs_compute_reverse_add_bb (&dfs_ds
, EXIT_BLOCK_PTR
);
731 /* Repeatedly add fake edges, updating the unreachable nodes. */
734 unvisited_block
= flow_dfs_compute_reverse_execute (&dfs_ds
);
735 if (!unvisited_block
)
738 make_edge (unvisited_block
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
739 flow_dfs_compute_reverse_add_bb (&dfs_ds
, unvisited_block
);
742 flow_dfs_compute_reverse_finish (&dfs_ds
);
746 /* Compute reverse top sort order */
749 flow_reverse_top_sort_order_compute (rts_order
)
757 /* Allocate stack for back-tracking up CFG. */
758 stack
= (edge
*) xmalloc ((n_basic_blocks
+ 1) * sizeof (edge
));
761 /* Allocate bitmap to track nodes that have been visited. */
762 visited
= sbitmap_alloc (last_basic_block
);
764 /* None of the nodes in the CFG have been visited yet. */
765 sbitmap_zero (visited
);
767 /* Push the first edge on to the stack. */
768 stack
[sp
++] = ENTRY_BLOCK_PTR
->succ
;
776 /* Look at the edge on the top of the stack. */
781 /* Check if the edge destination has been visited yet. */
782 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
784 /* Mark that we have visited the destination. */
785 SET_BIT (visited
, dest
->index
);
788 /* Since the DEST node has been visited for the first
789 time, check its successors. */
790 stack
[sp
++] = dest
->succ
;
792 rts_order
[postnum
++] = dest
->index
;
796 if (! e
->succ_next
&& src
!= ENTRY_BLOCK_PTR
)
797 rts_order
[postnum
++] = src
->index
;
800 stack
[sp
- 1] = e
->succ_next
;
807 sbitmap_free (visited
);
810 /* Compute the depth first search order and store in the array
811 DFS_ORDER if nonzero, marking the nodes visited in VISITED. If
812 RC_ORDER is nonzero, return the reverse completion number for each
813 node. Returns the number of nodes visited. A depth first search
814 tries to get as far away from the starting point as quickly as
818 flow_depth_first_order_compute (dfs_order
, rc_order
)
825 int rcnum
= n_basic_blocks
- 1;
828 /* Allocate stack for back-tracking up CFG. */
829 stack
= (edge
*) xmalloc ((n_basic_blocks
+ 1) * sizeof (edge
));
832 /* Allocate bitmap to track nodes that have been visited. */
833 visited
= sbitmap_alloc (last_basic_block
);
835 /* None of the nodes in the CFG have been visited yet. */
836 sbitmap_zero (visited
);
838 /* Push the first edge on to the stack. */
839 stack
[sp
++] = ENTRY_BLOCK_PTR
->succ
;
847 /* Look at the edge on the top of the stack. */
852 /* Check if the edge destination has been visited yet. */
853 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
855 /* Mark that we have visited the destination. */
856 SET_BIT (visited
, dest
->index
);
859 dfs_order
[dfsnum
] = dest
->index
;
864 /* Since the DEST node has been visited for the first
865 time, check its successors. */
866 stack
[sp
++] = dest
->succ
;
868 /* There are no successors for the DEST node so assign
869 its reverse completion number. */
870 rc_order
[rcnum
--] = dest
->index
;
874 if (! e
->succ_next
&& src
!= ENTRY_BLOCK_PTR
876 /* There are no more successors for the SRC node
877 so assign its reverse completion number. */
878 rc_order
[rcnum
--] = src
->index
;
881 stack
[sp
- 1] = e
->succ_next
;
888 sbitmap_free (visited
);
890 /* The number of nodes visited should not be greater than
892 if (dfsnum
> n_basic_blocks
)
895 /* There are some nodes left in the CFG that are unreachable. */
896 if (dfsnum
< n_basic_blocks
)
905 struct dfst_node
**node
;
906 struct dfst_node
*up
;
909 /* Compute a preorder transversal ordering such that a sub-tree which
910 is the source of a cross edge appears before the sub-tree which is
911 the destination of the cross edge. This allows for easy detection
912 of all the entry blocks for a loop.
914 The ordering is compute by:
916 1) Generating a depth first spanning tree.
918 2) Walking the resulting tree from right to left. */
921 flow_preorder_transversal_compute (pot_order
)
930 struct dfst_node
*node
;
931 struct dfst_node
*dfst
;
934 /* Allocate stack for back-tracking up CFG. */
935 stack
= (edge
*) xmalloc ((n_basic_blocks
+ 1) * sizeof (edge
));
938 /* Allocate the tree. */
939 dfst
= (struct dfst_node
*) xcalloc (last_basic_block
,
940 sizeof (struct dfst_node
));
945 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
950 ? (struct dfst_node
**) xcalloc (max_successors
,
951 sizeof (struct dfst_node
*))
955 /* Allocate bitmap to track nodes that have been visited. */
956 visited
= sbitmap_alloc (last_basic_block
);
958 /* None of the nodes in the CFG have been visited yet. */
959 sbitmap_zero (visited
);
961 /* Push the first edge on to the stack. */
962 stack
[sp
++] = ENTRY_BLOCK_PTR
->succ
;
969 /* Look at the edge on the top of the stack. */
974 /* Check if the edge destination has been visited yet. */
975 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
977 /* Mark that we have visited the destination. */
978 SET_BIT (visited
, dest
->index
);
980 /* Add the destination to the preorder tree. */
981 if (src
!= ENTRY_BLOCK_PTR
)
983 dfst
[src
->index
].node
[dfst
[src
->index
].nnodes
++]
984 = &dfst
[dest
->index
];
985 dfst
[dest
->index
].up
= &dfst
[src
->index
];
989 /* Since the DEST node has been visited for the first
990 time, check its successors. */
991 stack
[sp
++] = dest
->succ
;
994 else if (e
->succ_next
)
995 stack
[sp
- 1] = e
->succ_next
;
1001 sbitmap_free (visited
);
1003 /* Record the preorder transversal order by
1004 walking the tree from right to left. */
1007 node
= &dfst
[ENTRY_BLOCK_PTR
->next_bb
->index
];
1014 node
= node
->node
[--node
->nnodes
];
1015 pot_order
[i
++] = node
- dfst
;
1021 /* Free the tree. */
1023 for (i
= 0; i
< last_basic_block
; i
++)
1025 free (dfst
[i
].node
);
1030 /* Compute the depth first search order on the _reverse_ graph and
1031 store in the array DFS_ORDER, marking the nodes visited in VISITED.
1032 Returns the number of nodes visited.
1034 The computation is split into three pieces:
1036 flow_dfs_compute_reverse_init () creates the necessary data
1039 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1040 structures. The block will start the search.
1042 flow_dfs_compute_reverse_execute () continues (or starts) the
1043 search using the block on the top of the stack, stopping when the
1046 flow_dfs_compute_reverse_finish () destroys the necessary data
1049 Thus, the user will probably call ..._init(), call ..._add_bb() to
1050 add a beginning basic block to the stack, call ..._execute(),
1051 possibly add another bb to the stack and again call ..._execute(),
1052 ..., and finally call _finish(). */
1054 /* Initialize the data structures used for depth-first search on the
1055 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1056 added to the basic block stack. DATA is the current depth-first
1057 search context. If INITIALIZE_STACK is nonzero, there is an
1058 element on the stack. */
1061 flow_dfs_compute_reverse_init (data
)
1062 depth_first_search_ds data
;
1064 /* Allocate stack for back-tracking up CFG. */
1065 data
->stack
= (basic_block
*) xmalloc ((n_basic_blocks
- (INVALID_BLOCK
+ 1))
1066 * sizeof (basic_block
));
1069 /* Allocate bitmap to track nodes that have been visited. */
1070 data
->visited_blocks
= sbitmap_alloc (last_basic_block
- (INVALID_BLOCK
+ 1));
1072 /* None of the nodes in the CFG have been visited yet. */
1073 sbitmap_zero (data
->visited_blocks
);
1078 /* Add the specified basic block to the top of the dfs data
1079 structures. When the search continues, it will start at the
1083 flow_dfs_compute_reverse_add_bb (data
, bb
)
1084 depth_first_search_ds data
;
1087 data
->stack
[data
->sp
++] = bb
;
1088 SET_BIT (data
->visited_blocks
, bb
->index
- (INVALID_BLOCK
+ 1));
1091 /* Continue the depth-first search through the reverse graph starting with the
1092 block at the stack's top and ending when the stack is empty. Visited nodes
1093 are marked. Returns an unvisited basic block, or NULL if there is none
1097 flow_dfs_compute_reverse_execute (data
)
1098 depth_first_search_ds data
;
1103 while (data
->sp
> 0)
1105 bb
= data
->stack
[--data
->sp
];
1107 /* Perform depth-first search on adjacent vertices. */
1108 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
1109 if (!TEST_BIT (data
->visited_blocks
,
1110 e
->src
->index
- (INVALID_BLOCK
+ 1)))
1111 flow_dfs_compute_reverse_add_bb (data
, e
->src
);
1114 /* Determine if there are unvisited basic blocks. */
1115 FOR_BB_BETWEEN (bb
, EXIT_BLOCK_PTR
, NULL
, prev_bb
)
1116 if (!TEST_BIT (data
->visited_blocks
, bb
->index
- (INVALID_BLOCK
+ 1)))
1122 /* Destroy the data structures needed for depth-first search on the
1126 flow_dfs_compute_reverse_finish (data
)
1127 depth_first_search_ds data
;
1130 sbitmap_free (data
->visited_blocks
);
1133 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1134 if REVERSE, go against direction of edges. Returns number of blocks
1135 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1137 dfs_enumerate_from (bb
, reverse
, predicate
, rslt
, rslt_max
, data
)
1140 bool (*predicate
) PARAMS ((basic_block
, void *));
1145 basic_block
*st
, lbb
;
1148 st
= xcalloc (rslt_max
, sizeof (basic_block
));
1149 rslt
[tv
++] = st
[sp
++] = bb
;
1150 bb
->flags
|= BB_VISITED
;
1157 for (e
= lbb
->pred
; e
; e
= e
->pred_next
)
1158 if (!(e
->src
->flags
& BB_VISITED
) && predicate (e
->src
, data
))
1162 rslt
[tv
++] = st
[sp
++] = e
->src
;
1163 e
->src
->flags
|= BB_VISITED
;
1168 for (e
= lbb
->succ
; e
; e
= e
->succ_next
)
1169 if (!(e
->dest
->flags
& BB_VISITED
) && predicate (e
->dest
, data
))
1173 rslt
[tv
++] = st
[sp
++] = e
->dest
;
1174 e
->dest
->flags
|= BB_VISITED
;
1179 for (sp
= 0; sp
< tv
; sp
++)
1180 rslt
[sp
]->flags
&= ~BB_VISITED
;