ifcvt.c (noce_try_addcc): Do not call emit_conditional_add with weird operands.
[official-gcc.git] / gcc / alias.c
blobffd4991a2c68838ef10d4e98cbf10e54032a3798
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "target.h"
44 /* The alias sets assigned to MEMs assist the back-end in determining
45 which MEMs can alias which other MEMs. In general, two MEMs in
46 different alias sets cannot alias each other, with one important
47 exception. Consider something like:
49 struct S {int i; double d; };
51 a store to an `S' can alias something of either type `int' or type
52 `double'. (However, a store to an `int' cannot alias a `double'
53 and vice versa.) We indicate this via a tree structure that looks
54 like:
55 struct S
56 / \
57 / \
58 |/_ _\|
59 int double
61 (The arrows are directed and point downwards.)
62 In this situation we say the alias set for `struct S' is the
63 `superset' and that those for `int' and `double' are `subsets'.
65 To see whether two alias sets can point to the same memory, we must
66 see if either alias set is a subset of the other. We need not trace
67 past immediate descendents, however, since we propagate all
68 grandchildren up one level.
70 Alias set zero is implicitly a superset of all other alias sets.
71 However, this is no actual entry for alias set zero. It is an
72 error to attempt to explicitly construct a subset of zero. */
74 typedef struct alias_set_entry
76 /* The alias set number, as stored in MEM_ALIAS_SET. */
77 HOST_WIDE_INT alias_set;
79 /* The children of the alias set. These are not just the immediate
80 children, but, in fact, all descendents. So, if we have:
82 struct T { struct S s; float f; }
84 continuing our example above, the children here will be all of
85 `int', `double', `float', and `struct S'. */
86 splay_tree children;
88 /* Nonzero if would have a child of zero: this effectively makes this
89 alias set the same as alias set zero. */
90 int has_zero_child;
91 } *alias_set_entry;
93 static int rtx_equal_for_memref_p PARAMS ((rtx, rtx));
94 static rtx find_symbolic_term PARAMS ((rtx));
95 rtx get_addr PARAMS ((rtx));
96 static int memrefs_conflict_p PARAMS ((int, rtx, int, rtx,
97 HOST_WIDE_INT));
98 static void record_set PARAMS ((rtx, rtx, void *));
99 static rtx find_base_term PARAMS ((rtx));
100 static int base_alias_check PARAMS ((rtx, rtx, enum machine_mode,
101 enum machine_mode));
102 static rtx find_base_value PARAMS ((rtx));
103 static int mems_in_disjoint_alias_sets_p PARAMS ((rtx, rtx));
104 static int insert_subset_children PARAMS ((splay_tree_node, void*));
105 static tree find_base_decl PARAMS ((tree));
106 static alias_set_entry get_alias_set_entry PARAMS ((HOST_WIDE_INT));
107 static rtx fixed_scalar_and_varying_struct_p PARAMS ((rtx, rtx, rtx, rtx,
108 int (*) (rtx, int)));
109 static int aliases_everything_p PARAMS ((rtx));
110 static bool nonoverlapping_component_refs_p PARAMS ((tree, tree));
111 static tree decl_for_component_ref PARAMS ((tree));
112 static rtx adjust_offset_for_component_ref PARAMS ((tree, rtx));
113 static int nonoverlapping_memrefs_p PARAMS ((rtx, rtx));
114 static int write_dependence_p PARAMS ((rtx, rtx, int));
116 static int nonlocal_mentioned_p_1 PARAMS ((rtx *, void *));
117 static int nonlocal_mentioned_p PARAMS ((rtx));
118 static int nonlocal_referenced_p_1 PARAMS ((rtx *, void *));
119 static int nonlocal_referenced_p PARAMS ((rtx));
120 static int nonlocal_set_p_1 PARAMS ((rtx *, void *));
121 static int nonlocal_set_p PARAMS ((rtx));
122 static void memory_modified_1 PARAMS ((rtx, rtx, void *));
124 /* Set up all info needed to perform alias analysis on memory references. */
126 /* Returns the size in bytes of the mode of X. */
127 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
129 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
130 different alias sets. We ignore alias sets in functions making use
131 of variable arguments because the va_arg macros on some systems are
132 not legal ANSI C. */
133 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
134 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
136 /* Cap the number of passes we make over the insns propagating alias
137 information through set chains. 10 is a completely arbitrary choice. */
138 #define MAX_ALIAS_LOOP_PASSES 10
140 /* reg_base_value[N] gives an address to which register N is related.
141 If all sets after the first add or subtract to the current value
142 or otherwise modify it so it does not point to a different top level
143 object, reg_base_value[N] is equal to the address part of the source
144 of the first set.
146 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
147 expressions represent certain special values: function arguments and
148 the stack, frame, and argument pointers.
150 The contents of an ADDRESS is not normally used, the mode of the
151 ADDRESS determines whether the ADDRESS is a function argument or some
152 other special value. Pointer equality, not rtx_equal_p, determines whether
153 two ADDRESS expressions refer to the same base address.
155 The only use of the contents of an ADDRESS is for determining if the
156 current function performs nonlocal memory memory references for the
157 purposes of marking the function as a constant function. */
159 static GTY((length ("reg_base_value_size"))) rtx *reg_base_value;
160 static rtx *new_reg_base_value;
161 static unsigned int reg_base_value_size; /* size of reg_base_value array */
163 /* Static hunks of RTL used by the aliasing code; these are initialized
164 once per function to avoid unnecessary RTL allocations. */
165 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
167 #define REG_BASE_VALUE(X) \
168 (REGNO (X) < reg_base_value_size \
169 ? reg_base_value[REGNO (X)] : 0)
171 /* Vector of known invariant relationships between registers. Set in
172 loop unrolling. Indexed by register number, if nonzero the value
173 is an expression describing this register in terms of another.
175 The length of this array is REG_BASE_VALUE_SIZE.
177 Because this array contains only pseudo registers it has no effect
178 after reload. */
179 static rtx *alias_invariant;
181 /* Vector indexed by N giving the initial (unchanging) value known for
182 pseudo-register N. This array is initialized in
183 init_alias_analysis, and does not change until end_alias_analysis
184 is called. */
185 rtx *reg_known_value;
187 /* Indicates number of valid entries in reg_known_value. */
188 static unsigned int reg_known_value_size;
190 /* Vector recording for each reg_known_value whether it is due to a
191 REG_EQUIV note. Future passes (viz., reload) may replace the
192 pseudo with the equivalent expression and so we account for the
193 dependences that would be introduced if that happens.
195 The REG_EQUIV notes created in assign_parms may mention the arg
196 pointer, and there are explicit insns in the RTL that modify the
197 arg pointer. Thus we must ensure that such insns don't get
198 scheduled across each other because that would invalidate the
199 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
200 wrong, but solving the problem in the scheduler will likely give
201 better code, so we do it here. */
202 char *reg_known_equiv_p;
204 /* True when scanning insns from the start of the rtl to the
205 NOTE_INSN_FUNCTION_BEG note. */
206 static bool copying_arguments;
208 /* The splay-tree used to store the various alias set entries. */
209 static splay_tree alias_sets;
211 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
212 such an entry, or NULL otherwise. */
214 static alias_set_entry
215 get_alias_set_entry (alias_set)
216 HOST_WIDE_INT alias_set;
218 splay_tree_node sn
219 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
221 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
224 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
225 the two MEMs cannot alias each other. */
227 static int
228 mems_in_disjoint_alias_sets_p (mem1, mem2)
229 rtx mem1;
230 rtx mem2;
232 #ifdef ENABLE_CHECKING
233 /* Perform a basic sanity check. Namely, that there are no alias sets
234 if we're not using strict aliasing. This helps to catch bugs
235 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
236 where a MEM is allocated in some way other than by the use of
237 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
238 use alias sets to indicate that spilled registers cannot alias each
239 other, we might need to remove this check. */
240 if (! flag_strict_aliasing
241 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
242 abort ();
243 #endif
245 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
248 /* Insert the NODE into the splay tree given by DATA. Used by
249 record_alias_subset via splay_tree_foreach. */
251 static int
252 insert_subset_children (node, data)
253 splay_tree_node node;
254 void *data;
256 splay_tree_insert ((splay_tree) data, node->key, node->value);
258 return 0;
261 /* Return 1 if the two specified alias sets may conflict. */
264 alias_sets_conflict_p (set1, set2)
265 HOST_WIDE_INT set1, set2;
267 alias_set_entry ase;
269 /* If have no alias set information for one of the operands, we have
270 to assume it can alias anything. */
271 if (set1 == 0 || set2 == 0
272 /* If the two alias sets are the same, they may alias. */
273 || set1 == set2)
274 return 1;
276 /* See if the first alias set is a subset of the second. */
277 ase = get_alias_set_entry (set1);
278 if (ase != 0
279 && (ase->has_zero_child
280 || splay_tree_lookup (ase->children,
281 (splay_tree_key) set2)))
282 return 1;
284 /* Now do the same, but with the alias sets reversed. */
285 ase = get_alias_set_entry (set2);
286 if (ase != 0
287 && (ase->has_zero_child
288 || splay_tree_lookup (ase->children,
289 (splay_tree_key) set1)))
290 return 1;
292 /* The two alias sets are distinct and neither one is the
293 child of the other. Therefore, they cannot alias. */
294 return 0;
297 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
298 has any readonly fields. If any of the fields have types that
299 contain readonly fields, return true as well. */
302 readonly_fields_p (type)
303 tree type;
305 tree field;
307 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
308 && TREE_CODE (type) != QUAL_UNION_TYPE)
309 return 0;
311 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
312 if (TREE_CODE (field) == FIELD_DECL
313 && (TREE_READONLY (field)
314 || readonly_fields_p (TREE_TYPE (field))))
315 return 1;
317 return 0;
320 /* Return 1 if any MEM object of type T1 will always conflict (using the
321 dependency routines in this file) with any MEM object of type T2.
322 This is used when allocating temporary storage. If T1 and/or T2 are
323 NULL_TREE, it means we know nothing about the storage. */
326 objects_must_conflict_p (t1, t2)
327 tree t1, t2;
329 /* If neither has a type specified, we don't know if they'll conflict
330 because we may be using them to store objects of various types, for
331 example the argument and local variables areas of inlined functions. */
332 if (t1 == 0 && t2 == 0)
333 return 0;
335 /* If one or the other has readonly fields or is readonly,
336 then they may not conflict. */
337 if ((t1 != 0 && readonly_fields_p (t1))
338 || (t2 != 0 && readonly_fields_p (t2))
339 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
340 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
341 return 0;
343 /* If they are the same type, they must conflict. */
344 if (t1 == t2
345 /* Likewise if both are volatile. */
346 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
347 return 1;
349 /* If one is aggregate and the other is scalar then they may not
350 conflict. */
351 if ((t1 != 0 && AGGREGATE_TYPE_P (t1))
352 != (t2 != 0 && AGGREGATE_TYPE_P (t2)))
353 return 0;
355 /* Otherwise they conflict only if the alias sets conflict. */
356 return alias_sets_conflict_p (t1 ? get_alias_set (t1) : 0,
357 t2 ? get_alias_set (t2) : 0);
360 /* T is an expression with pointer type. Find the DECL on which this
361 expression is based. (For example, in `a[i]' this would be `a'.)
362 If there is no such DECL, or a unique decl cannot be determined,
363 NULL_TREE is returned. */
365 static tree
366 find_base_decl (t)
367 tree t;
369 tree d0, d1, d2;
371 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
372 return 0;
374 /* If this is a declaration, return it. */
375 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
376 return t;
378 /* Handle general expressions. It would be nice to deal with
379 COMPONENT_REFs here. If we could tell that `a' and `b' were the
380 same, then `a->f' and `b->f' are also the same. */
381 switch (TREE_CODE_CLASS (TREE_CODE (t)))
383 case '1':
384 return find_base_decl (TREE_OPERAND (t, 0));
386 case '2':
387 /* Return 0 if found in neither or both are the same. */
388 d0 = find_base_decl (TREE_OPERAND (t, 0));
389 d1 = find_base_decl (TREE_OPERAND (t, 1));
390 if (d0 == d1)
391 return d0;
392 else if (d0 == 0)
393 return d1;
394 else if (d1 == 0)
395 return d0;
396 else
397 return 0;
399 case '3':
400 d0 = find_base_decl (TREE_OPERAND (t, 0));
401 d1 = find_base_decl (TREE_OPERAND (t, 1));
402 d2 = find_base_decl (TREE_OPERAND (t, 2));
404 /* Set any nonzero values from the last, then from the first. */
405 if (d1 == 0) d1 = d2;
406 if (d0 == 0) d0 = d1;
407 if (d1 == 0) d1 = d0;
408 if (d2 == 0) d2 = d1;
410 /* At this point all are nonzero or all are zero. If all three are the
411 same, return it. Otherwise, return zero. */
412 return (d0 == d1 && d1 == d2) ? d0 : 0;
414 default:
415 return 0;
419 /* Return 1 if all the nested component references handled by
420 get_inner_reference in T are such that we can address the object in T. */
423 can_address_p (t)
424 tree t;
426 /* If we're at the end, it is vacuously addressable. */
427 if (! handled_component_p (t))
428 return 1;
430 /* Bitfields are never addressable. */
431 else if (TREE_CODE (t) == BIT_FIELD_REF)
432 return 0;
434 /* Fields are addressable unless they are marked as nonaddressable or
435 the containing type has alias set 0. */
436 else if (TREE_CODE (t) == COMPONENT_REF
437 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
438 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
439 && can_address_p (TREE_OPERAND (t, 0)))
440 return 1;
442 /* Likewise for arrays. */
443 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
444 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
445 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
446 && can_address_p (TREE_OPERAND (t, 0)))
447 return 1;
449 return 0;
452 /* Return the alias set for T, which may be either a type or an
453 expression. Call language-specific routine for help, if needed. */
455 HOST_WIDE_INT
456 get_alias_set (t)
457 tree t;
459 HOST_WIDE_INT set;
461 /* If we're not doing any alias analysis, just assume everything
462 aliases everything else. Also return 0 if this or its type is
463 an error. */
464 if (! flag_strict_aliasing || t == error_mark_node
465 || (! TYPE_P (t)
466 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
467 return 0;
469 /* We can be passed either an expression or a type. This and the
470 language-specific routine may make mutually-recursive calls to each other
471 to figure out what to do. At each juncture, we see if this is a tree
472 that the language may need to handle specially. First handle things that
473 aren't types. */
474 if (! TYPE_P (t))
476 tree inner = t;
477 tree placeholder_ptr = 0;
479 /* Remove any nops, then give the language a chance to do
480 something with this tree before we look at it. */
481 STRIP_NOPS (t);
482 set = (*lang_hooks.get_alias_set) (t);
483 if (set != -1)
484 return set;
486 /* First see if the actual object referenced is an INDIRECT_REF from a
487 restrict-qualified pointer or a "void *". Replace
488 PLACEHOLDER_EXPRs. */
489 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
490 || handled_component_p (inner))
492 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
493 inner = find_placeholder (inner, &placeholder_ptr);
494 else
495 inner = TREE_OPERAND (inner, 0);
497 STRIP_NOPS (inner);
500 /* Check for accesses through restrict-qualified pointers. */
501 if (TREE_CODE (inner) == INDIRECT_REF)
503 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
505 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
507 /* If we haven't computed the actual alias set, do it now. */
508 if (DECL_POINTER_ALIAS_SET (decl) == -2)
510 /* No two restricted pointers can point at the same thing.
511 However, a restricted pointer can point at the same thing
512 as an unrestricted pointer, if that unrestricted pointer
513 is based on the restricted pointer. So, we make the
514 alias set for the restricted pointer a subset of the
515 alias set for the type pointed to by the type of the
516 decl. */
517 HOST_WIDE_INT pointed_to_alias_set
518 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
520 if (pointed_to_alias_set == 0)
521 /* It's not legal to make a subset of alias set zero. */
523 else
525 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
526 record_alias_subset (pointed_to_alias_set,
527 DECL_POINTER_ALIAS_SET (decl));
531 /* We use the alias set indicated in the declaration. */
532 return DECL_POINTER_ALIAS_SET (decl);
535 /* If we have an INDIRECT_REF via a void pointer, we don't
536 know anything about what that might alias. */
537 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
538 return 0;
541 /* Otherwise, pick up the outermost object that we could have a pointer
542 to, processing conversion and PLACEHOLDER_EXPR as above. */
543 placeholder_ptr = 0;
544 while (TREE_CODE (t) == PLACEHOLDER_EXPR
545 || (handled_component_p (t) && ! can_address_p (t)))
547 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
548 t = find_placeholder (t, &placeholder_ptr);
549 else
550 t = TREE_OPERAND (t, 0);
552 STRIP_NOPS (t);
555 /* If we've already determined the alias set for a decl, just return
556 it. This is necessary for C++ anonymous unions, whose component
557 variables don't look like union members (boo!). */
558 if (TREE_CODE (t) == VAR_DECL
559 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
560 return MEM_ALIAS_SET (DECL_RTL (t));
562 /* Now all we care about is the type. */
563 t = TREE_TYPE (t);
566 /* Variant qualifiers don't affect the alias set, so get the main
567 variant. If this is a type with a known alias set, return it. */
568 t = TYPE_MAIN_VARIANT (t);
569 if (TYPE_ALIAS_SET_KNOWN_P (t))
570 return TYPE_ALIAS_SET (t);
572 /* See if the language has special handling for this type. */
573 set = (*lang_hooks.get_alias_set) (t);
574 if (set != -1)
575 return set;
577 /* There are no objects of FUNCTION_TYPE, so there's no point in
578 using up an alias set for them. (There are, of course, pointers
579 and references to functions, but that's different.) */
580 else if (TREE_CODE (t) == FUNCTION_TYPE)
581 set = 0;
583 /* Unless the language specifies otherwise, let vector types alias
584 their components. This avoids some nasty type punning issues in
585 normal usage. And indeed lets vectors be treated more like an
586 array slice. */
587 else if (TREE_CODE (t) == VECTOR_TYPE)
588 set = get_alias_set (TREE_TYPE (t));
590 else
591 /* Otherwise make a new alias set for this type. */
592 set = new_alias_set ();
594 TYPE_ALIAS_SET (t) = set;
596 /* If this is an aggregate type, we must record any component aliasing
597 information. */
598 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
599 record_component_aliases (t);
601 return set;
604 /* Return a brand-new alias set. */
606 HOST_WIDE_INT
607 new_alias_set ()
609 static HOST_WIDE_INT last_alias_set;
611 if (flag_strict_aliasing)
612 return ++last_alias_set;
613 else
614 return 0;
617 /* Indicate that things in SUBSET can alias things in SUPERSET, but
618 not vice versa. For example, in C, a store to an `int' can alias a
619 structure containing an `int', but not vice versa. Here, the
620 structure would be the SUPERSET and `int' the SUBSET. This
621 function should be called only once per SUPERSET/SUBSET pair.
623 It is illegal for SUPERSET to be zero; everything is implicitly a
624 subset of alias set zero. */
626 void
627 record_alias_subset (superset, subset)
628 HOST_WIDE_INT superset;
629 HOST_WIDE_INT subset;
631 alias_set_entry superset_entry;
632 alias_set_entry subset_entry;
634 /* It is possible in complex type situations for both sets to be the same,
635 in which case we can ignore this operation. */
636 if (superset == subset)
637 return;
639 if (superset == 0)
640 abort ();
642 superset_entry = get_alias_set_entry (superset);
643 if (superset_entry == 0)
645 /* Create an entry for the SUPERSET, so that we have a place to
646 attach the SUBSET. */
647 superset_entry
648 = (alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
649 superset_entry->alias_set = superset;
650 superset_entry->children
651 = splay_tree_new (splay_tree_compare_ints, 0, 0);
652 superset_entry->has_zero_child = 0;
653 splay_tree_insert (alias_sets, (splay_tree_key) superset,
654 (splay_tree_value) superset_entry);
657 if (subset == 0)
658 superset_entry->has_zero_child = 1;
659 else
661 subset_entry = get_alias_set_entry (subset);
662 /* If there is an entry for the subset, enter all of its children
663 (if they are not already present) as children of the SUPERSET. */
664 if (subset_entry)
666 if (subset_entry->has_zero_child)
667 superset_entry->has_zero_child = 1;
669 splay_tree_foreach (subset_entry->children, insert_subset_children,
670 superset_entry->children);
673 /* Enter the SUBSET itself as a child of the SUPERSET. */
674 splay_tree_insert (superset_entry->children,
675 (splay_tree_key) subset, 0);
679 /* Record that component types of TYPE, if any, are part of that type for
680 aliasing purposes. For record types, we only record component types
681 for fields that are marked addressable. For array types, we always
682 record the component types, so the front end should not call this
683 function if the individual component aren't addressable. */
685 void
686 record_component_aliases (type)
687 tree type;
689 HOST_WIDE_INT superset = get_alias_set (type);
690 tree field;
692 if (superset == 0)
693 return;
695 switch (TREE_CODE (type))
697 case ARRAY_TYPE:
698 if (! TYPE_NONALIASED_COMPONENT (type))
699 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
700 break;
702 case RECORD_TYPE:
703 case UNION_TYPE:
704 case QUAL_UNION_TYPE:
705 /* Recursively record aliases for the base classes, if there are any */
706 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
708 int i;
709 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
711 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
712 record_alias_subset (superset,
713 get_alias_set (BINFO_TYPE (binfo)));
716 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
717 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
718 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
719 break;
721 case COMPLEX_TYPE:
722 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
723 break;
725 default:
726 break;
730 /* Allocate an alias set for use in storing and reading from the varargs
731 spill area. */
733 HOST_WIDE_INT
734 get_varargs_alias_set ()
736 static HOST_WIDE_INT set = -1;
738 if (set == -1)
739 set = new_alias_set ();
741 return set;
744 /* Likewise, but used for the fixed portions of the frame, e.g., register
745 save areas. */
747 HOST_WIDE_INT
748 get_frame_alias_set ()
750 static HOST_WIDE_INT set = -1;
752 if (set == -1)
753 set = new_alias_set ();
755 return set;
758 /* Inside SRC, the source of a SET, find a base address. */
760 static rtx
761 find_base_value (src)
762 rtx src;
764 unsigned int regno;
766 switch (GET_CODE (src))
768 case SYMBOL_REF:
769 case LABEL_REF:
770 return src;
772 case REG:
773 regno = REGNO (src);
774 /* At the start of a function, argument registers have known base
775 values which may be lost later. Returning an ADDRESS
776 expression here allows optimization based on argument values
777 even when the argument registers are used for other purposes. */
778 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
779 return new_reg_base_value[regno];
781 /* If a pseudo has a known base value, return it. Do not do this
782 for non-fixed hard regs since it can result in a circular
783 dependency chain for registers which have values at function entry.
785 The test above is not sufficient because the scheduler may move
786 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
787 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
788 && regno < reg_base_value_size)
790 /* If we're inside init_alias_analysis, use new_reg_base_value
791 to reduce the number of relaxation iterations. */
792 if (new_reg_base_value && new_reg_base_value[regno]
793 && REG_N_SETS (regno) == 1)
794 return new_reg_base_value[regno];
796 if (reg_base_value[regno])
797 return reg_base_value[regno];
800 return src;
802 case MEM:
803 /* Check for an argument passed in memory. Only record in the
804 copying-arguments block; it is too hard to track changes
805 otherwise. */
806 if (copying_arguments
807 && (XEXP (src, 0) == arg_pointer_rtx
808 || (GET_CODE (XEXP (src, 0)) == PLUS
809 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
810 return gen_rtx_ADDRESS (VOIDmode, src);
811 return 0;
813 case CONST:
814 src = XEXP (src, 0);
815 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
816 break;
818 /* ... fall through ... */
820 case PLUS:
821 case MINUS:
823 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
825 /* If either operand is a REG that is a known pointer, then it
826 is the base. */
827 if (REG_P (src_0) && REG_POINTER (src_0))
828 return find_base_value (src_0);
829 if (REG_P (src_1) && REG_POINTER (src_1))
830 return find_base_value (src_1);
832 /* If either operand is a REG, then see if we already have
833 a known value for it. */
834 if (REG_P (src_0))
836 temp = find_base_value (src_0);
837 if (temp != 0)
838 src_0 = temp;
841 if (REG_P (src_1))
843 temp = find_base_value (src_1);
844 if (temp!= 0)
845 src_1 = temp;
848 /* If either base is named object or a special address
849 (like an argument or stack reference), then use it for the
850 base term. */
851 if (src_0 != 0
852 && (GET_CODE (src_0) == SYMBOL_REF
853 || GET_CODE (src_0) == LABEL_REF
854 || (GET_CODE (src_0) == ADDRESS
855 && GET_MODE (src_0) != VOIDmode)))
856 return src_0;
858 if (src_1 != 0
859 && (GET_CODE (src_1) == SYMBOL_REF
860 || GET_CODE (src_1) == LABEL_REF
861 || (GET_CODE (src_1) == ADDRESS
862 && GET_MODE (src_1) != VOIDmode)))
863 return src_1;
865 /* Guess which operand is the base address:
866 If either operand is a symbol, then it is the base. If
867 either operand is a CONST_INT, then the other is the base. */
868 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
869 return find_base_value (src_0);
870 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
871 return find_base_value (src_1);
873 return 0;
876 case LO_SUM:
877 /* The standard form is (lo_sum reg sym) so look only at the
878 second operand. */
879 return find_base_value (XEXP (src, 1));
881 case AND:
882 /* If the second operand is constant set the base
883 address to the first operand. */
884 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
885 return find_base_value (XEXP (src, 0));
886 return 0;
888 case TRUNCATE:
889 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
890 break;
891 /* Fall through. */
892 case HIGH:
893 case PRE_INC:
894 case PRE_DEC:
895 case POST_INC:
896 case POST_DEC:
897 case PRE_MODIFY:
898 case POST_MODIFY:
899 return find_base_value (XEXP (src, 0));
901 case ZERO_EXTEND:
902 case SIGN_EXTEND: /* used for NT/Alpha pointers */
904 rtx temp = find_base_value (XEXP (src, 0));
906 #ifdef POINTERS_EXTEND_UNSIGNED
907 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
908 temp = convert_memory_address (Pmode, temp);
909 #endif
911 return temp;
914 default:
915 break;
918 return 0;
921 /* Called from init_alias_analysis indirectly through note_stores. */
923 /* While scanning insns to find base values, reg_seen[N] is nonzero if
924 register N has been set in this function. */
925 static char *reg_seen;
927 /* Addresses which are known not to alias anything else are identified
928 by a unique integer. */
929 static int unique_id;
931 static void
932 record_set (dest, set, data)
933 rtx dest, set;
934 void *data ATTRIBUTE_UNUSED;
936 unsigned regno;
937 rtx src;
938 int n;
940 if (GET_CODE (dest) != REG)
941 return;
943 regno = REGNO (dest);
945 if (regno >= reg_base_value_size)
946 abort ();
948 /* If this spans multiple hard registers, then we must indicate that every
949 register has an unusable value. */
950 if (regno < FIRST_PSEUDO_REGISTER)
951 n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
952 else
953 n = 1;
954 if (n != 1)
956 while (--n >= 0)
958 reg_seen[regno + n] = 1;
959 new_reg_base_value[regno + n] = 0;
961 return;
964 if (set)
966 /* A CLOBBER wipes out any old value but does not prevent a previously
967 unset register from acquiring a base address (i.e. reg_seen is not
968 set). */
969 if (GET_CODE (set) == CLOBBER)
971 new_reg_base_value[regno] = 0;
972 return;
974 src = SET_SRC (set);
976 else
978 if (reg_seen[regno])
980 new_reg_base_value[regno] = 0;
981 return;
983 reg_seen[regno] = 1;
984 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
985 GEN_INT (unique_id++));
986 return;
989 /* This is not the first set. If the new value is not related to the
990 old value, forget the base value. Note that the following code is
991 not detected:
992 extern int x, y; int *p = &x; p += (&y-&x);
993 ANSI C does not allow computing the difference of addresses
994 of distinct top level objects. */
995 if (new_reg_base_value[regno])
996 switch (GET_CODE (src))
998 case LO_SUM:
999 case MINUS:
1000 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1001 new_reg_base_value[regno] = 0;
1002 break;
1003 case PLUS:
1004 /* If the value we add in the PLUS is also a valid base value,
1005 this might be the actual base value, and the original value
1006 an index. */
1008 rtx other = NULL_RTX;
1010 if (XEXP (src, 0) == dest)
1011 other = XEXP (src, 1);
1012 else if (XEXP (src, 1) == dest)
1013 other = XEXP (src, 0);
1015 if (! other || find_base_value (other))
1016 new_reg_base_value[regno] = 0;
1017 break;
1019 case AND:
1020 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1021 new_reg_base_value[regno] = 0;
1022 break;
1023 default:
1024 new_reg_base_value[regno] = 0;
1025 break;
1027 /* If this is the first set of a register, record the value. */
1028 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1029 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1030 new_reg_base_value[regno] = find_base_value (src);
1032 reg_seen[regno] = 1;
1035 /* Called from loop optimization when a new pseudo-register is
1036 created. It indicates that REGNO is being set to VAL. f INVARIANT
1037 is true then this value also describes an invariant relationship
1038 which can be used to deduce that two registers with unknown values
1039 are different. */
1041 void
1042 record_base_value (regno, val, invariant)
1043 unsigned int regno;
1044 rtx val;
1045 int invariant;
1047 if (regno >= reg_base_value_size)
1048 return;
1050 if (invariant && alias_invariant)
1051 alias_invariant[regno] = val;
1053 if (GET_CODE (val) == REG)
1055 if (REGNO (val) < reg_base_value_size)
1056 reg_base_value[regno] = reg_base_value[REGNO (val)];
1058 return;
1061 reg_base_value[regno] = find_base_value (val);
1064 /* Clear alias info for a register. This is used if an RTL transformation
1065 changes the value of a register. This is used in flow by AUTO_INC_DEC
1066 optimizations. We don't need to clear reg_base_value, since flow only
1067 changes the offset. */
1069 void
1070 clear_reg_alias_info (reg)
1071 rtx reg;
1073 unsigned int regno = REGNO (reg);
1075 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1076 reg_known_value[regno] = reg;
1079 /* Returns a canonical version of X, from the point of view alias
1080 analysis. (For example, if X is a MEM whose address is a register,
1081 and the register has a known value (say a SYMBOL_REF), then a MEM
1082 whose address is the SYMBOL_REF is returned.) */
1085 canon_rtx (x)
1086 rtx x;
1088 /* Recursively look for equivalences. */
1089 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1090 && REGNO (x) < reg_known_value_size)
1091 return reg_known_value[REGNO (x)] == x
1092 ? x : canon_rtx (reg_known_value[REGNO (x)]);
1093 else if (GET_CODE (x) == PLUS)
1095 rtx x0 = canon_rtx (XEXP (x, 0));
1096 rtx x1 = canon_rtx (XEXP (x, 1));
1098 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1100 if (GET_CODE (x0) == CONST_INT)
1101 return plus_constant (x1, INTVAL (x0));
1102 else if (GET_CODE (x1) == CONST_INT)
1103 return plus_constant (x0, INTVAL (x1));
1104 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1108 /* This gives us much better alias analysis when called from
1109 the loop optimizer. Note we want to leave the original
1110 MEM alone, but need to return the canonicalized MEM with
1111 all the flags with their original values. */
1112 else if (GET_CODE (x) == MEM)
1113 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1115 return x;
1118 /* Return 1 if X and Y are identical-looking rtx's.
1120 We use the data in reg_known_value above to see if two registers with
1121 different numbers are, in fact, equivalent. */
1123 static int
1124 rtx_equal_for_memref_p (x, y)
1125 rtx x, y;
1127 int i;
1128 int j;
1129 enum rtx_code code;
1130 const char *fmt;
1132 if (x == 0 && y == 0)
1133 return 1;
1134 if (x == 0 || y == 0)
1135 return 0;
1137 x = canon_rtx (x);
1138 y = canon_rtx (y);
1140 if (x == y)
1141 return 1;
1143 code = GET_CODE (x);
1144 /* Rtx's of different codes cannot be equal. */
1145 if (code != GET_CODE (y))
1146 return 0;
1148 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1149 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1151 if (GET_MODE (x) != GET_MODE (y))
1152 return 0;
1154 /* Some RTL can be compared without a recursive examination. */
1155 switch (code)
1157 case VALUE:
1158 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1160 case REG:
1161 return REGNO (x) == REGNO (y);
1163 case LABEL_REF:
1164 return XEXP (x, 0) == XEXP (y, 0);
1166 case SYMBOL_REF:
1167 return XSTR (x, 0) == XSTR (y, 0);
1169 case CONST_INT:
1170 case CONST_DOUBLE:
1171 /* There's no need to compare the contents of CONST_DOUBLEs or
1172 CONST_INTs because pointer equality is a good enough
1173 comparison for these nodes. */
1174 return 0;
1176 case ADDRESSOF:
1177 return (XINT (x, 1) == XINT (y, 1)
1178 && rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0)));
1180 default:
1181 break;
1184 /* For commutative operations, the RTX match if the operand match in any
1185 order. Also handle the simple binary and unary cases without a loop. */
1186 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1187 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1188 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1189 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1190 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1191 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
1192 return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1193 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)));
1194 else if (GET_RTX_CLASS (code) == '1')
1195 return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0));
1197 /* Compare the elements. If any pair of corresponding elements
1198 fail to match, return 0 for the whole things.
1200 Limit cases to types which actually appear in addresses. */
1202 fmt = GET_RTX_FORMAT (code);
1203 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1205 switch (fmt[i])
1207 case 'i':
1208 if (XINT (x, i) != XINT (y, i))
1209 return 0;
1210 break;
1212 case 'E':
1213 /* Two vectors must have the same length. */
1214 if (XVECLEN (x, i) != XVECLEN (y, i))
1215 return 0;
1217 /* And the corresponding elements must match. */
1218 for (j = 0; j < XVECLEN (x, i); j++)
1219 if (rtx_equal_for_memref_p (XVECEXP (x, i, j),
1220 XVECEXP (y, i, j)) == 0)
1221 return 0;
1222 break;
1224 case 'e':
1225 if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
1226 return 0;
1227 break;
1229 /* This can happen for asm operands. */
1230 case 's':
1231 if (strcmp (XSTR (x, i), XSTR (y, i)))
1232 return 0;
1233 break;
1235 /* This can happen for an asm which clobbers memory. */
1236 case '0':
1237 break;
1239 /* It is believed that rtx's at this level will never
1240 contain anything but integers and other rtx's,
1241 except for within LABEL_REFs and SYMBOL_REFs. */
1242 default:
1243 abort ();
1246 return 1;
1249 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1250 X and return it, or return 0 if none found. */
1252 static rtx
1253 find_symbolic_term (x)
1254 rtx x;
1256 int i;
1257 enum rtx_code code;
1258 const char *fmt;
1260 code = GET_CODE (x);
1261 if (code == SYMBOL_REF || code == LABEL_REF)
1262 return x;
1263 if (GET_RTX_CLASS (code) == 'o')
1264 return 0;
1266 fmt = GET_RTX_FORMAT (code);
1267 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1269 rtx t;
1271 if (fmt[i] == 'e')
1273 t = find_symbolic_term (XEXP (x, i));
1274 if (t != 0)
1275 return t;
1277 else if (fmt[i] == 'E')
1278 break;
1280 return 0;
1283 static rtx
1284 find_base_term (x)
1285 rtx x;
1287 cselib_val *val;
1288 struct elt_loc_list *l;
1290 #if defined (FIND_BASE_TERM)
1291 /* Try machine-dependent ways to find the base term. */
1292 x = FIND_BASE_TERM (x);
1293 #endif
1295 switch (GET_CODE (x))
1297 case REG:
1298 return REG_BASE_VALUE (x);
1300 case TRUNCATE:
1301 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1302 return 0;
1303 /* Fall through. */
1304 case HIGH:
1305 case PRE_INC:
1306 case PRE_DEC:
1307 case POST_INC:
1308 case POST_DEC:
1309 case PRE_MODIFY:
1310 case POST_MODIFY:
1311 return find_base_term (XEXP (x, 0));
1313 case ZERO_EXTEND:
1314 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1316 rtx temp = find_base_term (XEXP (x, 0));
1318 #ifdef POINTERS_EXTEND_UNSIGNED
1319 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
1320 temp = convert_memory_address (Pmode, temp);
1321 #endif
1323 return temp;
1326 case VALUE:
1327 val = CSELIB_VAL_PTR (x);
1328 for (l = val->locs; l; l = l->next)
1329 if ((x = find_base_term (l->loc)) != 0)
1330 return x;
1331 return 0;
1333 case CONST:
1334 x = XEXP (x, 0);
1335 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1336 return 0;
1337 /* fall through */
1338 case LO_SUM:
1339 case PLUS:
1340 case MINUS:
1342 rtx tmp1 = XEXP (x, 0);
1343 rtx tmp2 = XEXP (x, 1);
1345 /* This is a little bit tricky since we have to determine which of
1346 the two operands represents the real base address. Otherwise this
1347 routine may return the index register instead of the base register.
1349 That may cause us to believe no aliasing was possible, when in
1350 fact aliasing is possible.
1352 We use a few simple tests to guess the base register. Additional
1353 tests can certainly be added. For example, if one of the operands
1354 is a shift or multiply, then it must be the index register and the
1355 other operand is the base register. */
1357 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1358 return find_base_term (tmp2);
1360 /* If either operand is known to be a pointer, then use it
1361 to determine the base term. */
1362 if (REG_P (tmp1) && REG_POINTER (tmp1))
1363 return find_base_term (tmp1);
1365 if (REG_P (tmp2) && REG_POINTER (tmp2))
1366 return find_base_term (tmp2);
1368 /* Neither operand was known to be a pointer. Go ahead and find the
1369 base term for both operands. */
1370 tmp1 = find_base_term (tmp1);
1371 tmp2 = find_base_term (tmp2);
1373 /* If either base term is named object or a special address
1374 (like an argument or stack reference), then use it for the
1375 base term. */
1376 if (tmp1 != 0
1377 && (GET_CODE (tmp1) == SYMBOL_REF
1378 || GET_CODE (tmp1) == LABEL_REF
1379 || (GET_CODE (tmp1) == ADDRESS
1380 && GET_MODE (tmp1) != VOIDmode)))
1381 return tmp1;
1383 if (tmp2 != 0
1384 && (GET_CODE (tmp2) == SYMBOL_REF
1385 || GET_CODE (tmp2) == LABEL_REF
1386 || (GET_CODE (tmp2) == ADDRESS
1387 && GET_MODE (tmp2) != VOIDmode)))
1388 return tmp2;
1390 /* We could not determine which of the two operands was the
1391 base register and which was the index. So we can determine
1392 nothing from the base alias check. */
1393 return 0;
1396 case AND:
1397 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1398 return find_base_term (XEXP (x, 0));
1399 return 0;
1401 case SYMBOL_REF:
1402 case LABEL_REF:
1403 return x;
1405 case ADDRESSOF:
1406 return REG_BASE_VALUE (frame_pointer_rtx);
1408 default:
1409 return 0;
1413 /* Return 0 if the addresses X and Y are known to point to different
1414 objects, 1 if they might be pointers to the same object. */
1416 static int
1417 base_alias_check (x, y, x_mode, y_mode)
1418 rtx x, y;
1419 enum machine_mode x_mode, y_mode;
1421 rtx x_base = find_base_term (x);
1422 rtx y_base = find_base_term (y);
1424 /* If the address itself has no known base see if a known equivalent
1425 value has one. If either address still has no known base, nothing
1426 is known about aliasing. */
1427 if (x_base == 0)
1429 rtx x_c;
1431 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1432 return 1;
1434 x_base = find_base_term (x_c);
1435 if (x_base == 0)
1436 return 1;
1439 if (y_base == 0)
1441 rtx y_c;
1442 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1443 return 1;
1445 y_base = find_base_term (y_c);
1446 if (y_base == 0)
1447 return 1;
1450 /* If the base addresses are equal nothing is known about aliasing. */
1451 if (rtx_equal_p (x_base, y_base))
1452 return 1;
1454 /* The base addresses of the read and write are different expressions.
1455 If they are both symbols and they are not accessed via AND, there is
1456 no conflict. We can bring knowledge of object alignment into play
1457 here. For example, on alpha, "char a, b;" can alias one another,
1458 though "char a; long b;" cannot. */
1459 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1461 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1462 return 1;
1463 if (GET_CODE (x) == AND
1464 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1465 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1466 return 1;
1467 if (GET_CODE (y) == AND
1468 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1469 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1470 return 1;
1471 /* Differing symbols never alias. */
1472 return 0;
1475 /* If one address is a stack reference there can be no alias:
1476 stack references using different base registers do not alias,
1477 a stack reference can not alias a parameter, and a stack reference
1478 can not alias a global. */
1479 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1480 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1481 return 0;
1483 if (! flag_argument_noalias)
1484 return 1;
1486 if (flag_argument_noalias > 1)
1487 return 0;
1489 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1490 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1493 /* Convert the address X into something we can use. This is done by returning
1494 it unchanged unless it is a value; in the latter case we call cselib to get
1495 a more useful rtx. */
1498 get_addr (x)
1499 rtx x;
1501 cselib_val *v;
1502 struct elt_loc_list *l;
1504 if (GET_CODE (x) != VALUE)
1505 return x;
1506 v = CSELIB_VAL_PTR (x);
1507 for (l = v->locs; l; l = l->next)
1508 if (CONSTANT_P (l->loc))
1509 return l->loc;
1510 for (l = v->locs; l; l = l->next)
1511 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1512 return l->loc;
1513 if (v->locs)
1514 return v->locs->loc;
1515 return x;
1518 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1519 where SIZE is the size in bytes of the memory reference. If ADDR
1520 is not modified by the memory reference then ADDR is returned. */
1523 addr_side_effect_eval (addr, size, n_refs)
1524 rtx addr;
1525 int size;
1526 int n_refs;
1528 int offset = 0;
1530 switch (GET_CODE (addr))
1532 case PRE_INC:
1533 offset = (n_refs + 1) * size;
1534 break;
1535 case PRE_DEC:
1536 offset = -(n_refs + 1) * size;
1537 break;
1538 case POST_INC:
1539 offset = n_refs * size;
1540 break;
1541 case POST_DEC:
1542 offset = -n_refs * size;
1543 break;
1545 default:
1546 return addr;
1549 if (offset)
1550 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0), GEN_INT (offset));
1551 else
1552 addr = XEXP (addr, 0);
1554 return addr;
1557 /* Return nonzero if X and Y (memory addresses) could reference the
1558 same location in memory. C is an offset accumulator. When
1559 C is nonzero, we are testing aliases between X and Y + C.
1560 XSIZE is the size in bytes of the X reference,
1561 similarly YSIZE is the size in bytes for Y.
1563 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1564 referenced (the reference was BLKmode), so make the most pessimistic
1565 assumptions.
1567 If XSIZE or YSIZE is negative, we may access memory outside the object
1568 being referenced as a side effect. This can happen when using AND to
1569 align memory references, as is done on the Alpha.
1571 Nice to notice that varying addresses cannot conflict with fp if no
1572 local variables had their addresses taken, but that's too hard now. */
1574 static int
1575 memrefs_conflict_p (xsize, x, ysize, y, c)
1576 rtx x, y;
1577 int xsize, ysize;
1578 HOST_WIDE_INT c;
1580 if (GET_CODE (x) == VALUE)
1581 x = get_addr (x);
1582 if (GET_CODE (y) == VALUE)
1583 y = get_addr (y);
1584 if (GET_CODE (x) == HIGH)
1585 x = XEXP (x, 0);
1586 else if (GET_CODE (x) == LO_SUM)
1587 x = XEXP (x, 1);
1588 else
1589 x = canon_rtx (addr_side_effect_eval (x, xsize, 0));
1590 if (GET_CODE (y) == HIGH)
1591 y = XEXP (y, 0);
1592 else if (GET_CODE (y) == LO_SUM)
1593 y = XEXP (y, 1);
1594 else
1595 y = canon_rtx (addr_side_effect_eval (y, ysize, 0));
1597 if (rtx_equal_for_memref_p (x, y))
1599 if (xsize <= 0 || ysize <= 0)
1600 return 1;
1601 if (c >= 0 && xsize > c)
1602 return 1;
1603 if (c < 0 && ysize+c > 0)
1604 return 1;
1605 return 0;
1608 /* This code used to check for conflicts involving stack references and
1609 globals but the base address alias code now handles these cases. */
1611 if (GET_CODE (x) == PLUS)
1613 /* The fact that X is canonicalized means that this
1614 PLUS rtx is canonicalized. */
1615 rtx x0 = XEXP (x, 0);
1616 rtx x1 = XEXP (x, 1);
1618 if (GET_CODE (y) == PLUS)
1620 /* The fact that Y is canonicalized means that this
1621 PLUS rtx is canonicalized. */
1622 rtx y0 = XEXP (y, 0);
1623 rtx y1 = XEXP (y, 1);
1625 if (rtx_equal_for_memref_p (x1, y1))
1626 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1627 if (rtx_equal_for_memref_p (x0, y0))
1628 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1629 if (GET_CODE (x1) == CONST_INT)
1631 if (GET_CODE (y1) == CONST_INT)
1632 return memrefs_conflict_p (xsize, x0, ysize, y0,
1633 c - INTVAL (x1) + INTVAL (y1));
1634 else
1635 return memrefs_conflict_p (xsize, x0, ysize, y,
1636 c - INTVAL (x1));
1638 else if (GET_CODE (y1) == CONST_INT)
1639 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1641 return 1;
1643 else if (GET_CODE (x1) == CONST_INT)
1644 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1646 else if (GET_CODE (y) == PLUS)
1648 /* The fact that Y is canonicalized means that this
1649 PLUS rtx is canonicalized. */
1650 rtx y0 = XEXP (y, 0);
1651 rtx y1 = XEXP (y, 1);
1653 if (GET_CODE (y1) == CONST_INT)
1654 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1655 else
1656 return 1;
1659 if (GET_CODE (x) == GET_CODE (y))
1660 switch (GET_CODE (x))
1662 case MULT:
1664 /* Handle cases where we expect the second operands to be the
1665 same, and check only whether the first operand would conflict
1666 or not. */
1667 rtx x0, y0;
1668 rtx x1 = canon_rtx (XEXP (x, 1));
1669 rtx y1 = canon_rtx (XEXP (y, 1));
1670 if (! rtx_equal_for_memref_p (x1, y1))
1671 return 1;
1672 x0 = canon_rtx (XEXP (x, 0));
1673 y0 = canon_rtx (XEXP (y, 0));
1674 if (rtx_equal_for_memref_p (x0, y0))
1675 return (xsize == 0 || ysize == 0
1676 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1678 /* Can't properly adjust our sizes. */
1679 if (GET_CODE (x1) != CONST_INT)
1680 return 1;
1681 xsize /= INTVAL (x1);
1682 ysize /= INTVAL (x1);
1683 c /= INTVAL (x1);
1684 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1687 case REG:
1688 /* Are these registers known not to be equal? */
1689 if (alias_invariant)
1691 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1692 rtx i_x, i_y; /* invariant relationships of X and Y */
1694 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1695 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1697 if (i_x == 0 && i_y == 0)
1698 break;
1700 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1701 ysize, i_y ? i_y : y, c))
1702 return 0;
1704 break;
1706 default:
1707 break;
1710 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1711 as an access with indeterminate size. Assume that references
1712 besides AND are aligned, so if the size of the other reference is
1713 at least as large as the alignment, assume no other overlap. */
1714 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1716 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1717 xsize = -1;
1718 return memrefs_conflict_p (xsize, XEXP (x, 0), ysize, y, c);
1720 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1722 /* ??? If we are indexing far enough into the array/structure, we
1723 may yet be able to determine that we can not overlap. But we
1724 also need to that we are far enough from the end not to overlap
1725 a following reference, so we do nothing with that for now. */
1726 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1727 ysize = -1;
1728 return memrefs_conflict_p (xsize, x, ysize, XEXP (y, 0), c);
1731 if (GET_CODE (x) == ADDRESSOF)
1733 if (y == frame_pointer_rtx
1734 || GET_CODE (y) == ADDRESSOF)
1735 return xsize <= 0 || ysize <= 0;
1737 if (GET_CODE (y) == ADDRESSOF)
1739 if (x == frame_pointer_rtx)
1740 return xsize <= 0 || ysize <= 0;
1743 if (CONSTANT_P (x))
1745 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1747 c += (INTVAL (y) - INTVAL (x));
1748 return (xsize <= 0 || ysize <= 0
1749 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1752 if (GET_CODE (x) == CONST)
1754 if (GET_CODE (y) == CONST)
1755 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1756 ysize, canon_rtx (XEXP (y, 0)), c);
1757 else
1758 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1759 ysize, y, c);
1761 if (GET_CODE (y) == CONST)
1762 return memrefs_conflict_p (xsize, x, ysize,
1763 canon_rtx (XEXP (y, 0)), c);
1765 if (CONSTANT_P (y))
1766 return (xsize <= 0 || ysize <= 0
1767 || (rtx_equal_for_memref_p (x, y)
1768 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1770 return 1;
1772 return 1;
1775 /* Functions to compute memory dependencies.
1777 Since we process the insns in execution order, we can build tables
1778 to keep track of what registers are fixed (and not aliased), what registers
1779 are varying in known ways, and what registers are varying in unknown
1780 ways.
1782 If both memory references are volatile, then there must always be a
1783 dependence between the two references, since their order can not be
1784 changed. A volatile and non-volatile reference can be interchanged
1785 though.
1787 A MEM_IN_STRUCT reference at a non-AND varying address can never
1788 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1789 also must allow AND addresses, because they may generate accesses
1790 outside the object being referenced. This is used to generate
1791 aligned addresses from unaligned addresses, for instance, the alpha
1792 storeqi_unaligned pattern. */
1794 /* Read dependence: X is read after read in MEM takes place. There can
1795 only be a dependence here if both reads are volatile. */
1798 read_dependence (mem, x)
1799 rtx mem;
1800 rtx x;
1802 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1805 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1806 MEM2 is a reference to a structure at a varying address, or returns
1807 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1808 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1809 to decide whether or not an address may vary; it should return
1810 nonzero whenever variation is possible.
1811 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1813 static rtx
1814 fixed_scalar_and_varying_struct_p (mem1, mem2, mem1_addr, mem2_addr, varies_p)
1815 rtx mem1, mem2;
1816 rtx mem1_addr, mem2_addr;
1817 int (*varies_p) PARAMS ((rtx, int));
1819 if (! flag_strict_aliasing)
1820 return NULL_RTX;
1822 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1823 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1824 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1825 varying address. */
1826 return mem1;
1828 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1829 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1830 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1831 varying address. */
1832 return mem2;
1834 return NULL_RTX;
1837 /* Returns nonzero if something about the mode or address format MEM1
1838 indicates that it might well alias *anything*. */
1840 static int
1841 aliases_everything_p (mem)
1842 rtx mem;
1844 if (GET_CODE (XEXP (mem, 0)) == AND)
1845 /* If the address is an AND, its very hard to know at what it is
1846 actually pointing. */
1847 return 1;
1849 return 0;
1852 /* Return true if we can determine that the fields referenced cannot
1853 overlap for any pair of objects. */
1855 static bool
1856 nonoverlapping_component_refs_p (x, y)
1857 tree x, y;
1859 tree fieldx, fieldy, typex, typey, orig_y;
1863 /* The comparison has to be done at a common type, since we don't
1864 know how the inheritance hierarchy works. */
1865 orig_y = y;
1868 fieldx = TREE_OPERAND (x, 1);
1869 typex = DECL_FIELD_CONTEXT (fieldx);
1871 y = orig_y;
1874 fieldy = TREE_OPERAND (y, 1);
1875 typey = DECL_FIELD_CONTEXT (fieldy);
1877 if (typex == typey)
1878 goto found;
1880 y = TREE_OPERAND (y, 0);
1882 while (y && TREE_CODE (y) == COMPONENT_REF);
1884 x = TREE_OPERAND (x, 0);
1886 while (x && TREE_CODE (x) == COMPONENT_REF);
1888 /* Never found a common type. */
1889 return false;
1891 found:
1892 /* If we're left with accessing different fields of a structure,
1893 then no overlap. */
1894 if (TREE_CODE (typex) == RECORD_TYPE
1895 && fieldx != fieldy)
1896 return true;
1898 /* The comparison on the current field failed. If we're accessing
1899 a very nested structure, look at the next outer level. */
1900 x = TREE_OPERAND (x, 0);
1901 y = TREE_OPERAND (y, 0);
1903 while (x && y
1904 && TREE_CODE (x) == COMPONENT_REF
1905 && TREE_CODE (y) == COMPONENT_REF);
1907 return false;
1910 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1912 static tree
1913 decl_for_component_ref (x)
1914 tree x;
1918 x = TREE_OPERAND (x, 0);
1920 while (x && TREE_CODE (x) == COMPONENT_REF);
1922 return x && DECL_P (x) ? x : NULL_TREE;
1925 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1926 offset of the field reference. */
1928 static rtx
1929 adjust_offset_for_component_ref (x, offset)
1930 tree x;
1931 rtx offset;
1933 HOST_WIDE_INT ioffset;
1935 if (! offset)
1936 return NULL_RTX;
1938 ioffset = INTVAL (offset);
1941 tree field = TREE_OPERAND (x, 1);
1943 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1944 return NULL_RTX;
1945 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1946 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1947 / BITS_PER_UNIT));
1949 x = TREE_OPERAND (x, 0);
1951 while (x && TREE_CODE (x) == COMPONENT_REF);
1953 return GEN_INT (ioffset);
1956 /* Return nonzero if we can deterimine the exprs corresponding to memrefs
1957 X and Y and they do not overlap. */
1959 static int
1960 nonoverlapping_memrefs_p (x, y)
1961 rtx x, y;
1963 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1964 rtx rtlx, rtly;
1965 rtx basex, basey;
1966 rtx moffsetx, moffsety;
1967 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1969 /* Unless both have exprs, we can't tell anything. */
1970 if (exprx == 0 || expry == 0)
1971 return 0;
1973 /* If both are field references, we may be able to determine something. */
1974 if (TREE_CODE (exprx) == COMPONENT_REF
1975 && TREE_CODE (expry) == COMPONENT_REF
1976 && nonoverlapping_component_refs_p (exprx, expry))
1977 return 1;
1979 /* If the field reference test failed, look at the DECLs involved. */
1980 moffsetx = MEM_OFFSET (x);
1981 if (TREE_CODE (exprx) == COMPONENT_REF)
1983 tree t = decl_for_component_ref (exprx);
1984 if (! t)
1985 return 0;
1986 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1987 exprx = t;
1989 else if (TREE_CODE (exprx) == INDIRECT_REF)
1991 exprx = TREE_OPERAND (exprx, 0);
1992 if (flag_argument_noalias < 2
1993 || TREE_CODE (exprx) != PARM_DECL)
1994 return 0;
1997 moffsety = MEM_OFFSET (y);
1998 if (TREE_CODE (expry) == COMPONENT_REF)
2000 tree t = decl_for_component_ref (expry);
2001 if (! t)
2002 return 0;
2003 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2004 expry = t;
2006 else if (TREE_CODE (expry) == INDIRECT_REF)
2008 expry = TREE_OPERAND (expry, 0);
2009 if (flag_argument_noalias < 2
2010 || TREE_CODE (expry) != PARM_DECL)
2011 return 0;
2014 if (! DECL_P (exprx) || ! DECL_P (expry))
2015 return 0;
2017 rtlx = DECL_RTL (exprx);
2018 rtly = DECL_RTL (expry);
2020 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2021 can't overlap unless they are the same because we never reuse that part
2022 of the stack frame used for locals for spilled pseudos. */
2023 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2024 && ! rtx_equal_p (rtlx, rtly))
2025 return 1;
2027 /* Get the base and offsets of both decls. If either is a register, we
2028 know both are and are the same, so use that as the base. The only
2029 we can avoid overlap is if we can deduce that they are nonoverlapping
2030 pieces of that decl, which is very rare. */
2031 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
2032 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2033 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2035 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
2036 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2037 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2039 /* If the bases are different, we know they do not overlap if both
2040 are constants or if one is a constant and the other a pointer into the
2041 stack frame. Otherwise a different base means we can't tell if they
2042 overlap or not. */
2043 if (! rtx_equal_p (basex, basey))
2044 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2045 || (CONSTANT_P (basex) && REG_P (basey)
2046 && REGNO_PTR_FRAME_P (REGNO (basey)))
2047 || (CONSTANT_P (basey) && REG_P (basex)
2048 && REGNO_PTR_FRAME_P (REGNO (basex))));
2050 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2051 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2052 : -1);
2053 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2054 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2055 -1);
2057 /* If we have an offset for either memref, it can update the values computed
2058 above. */
2059 if (moffsetx)
2060 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2061 if (moffsety)
2062 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2064 /* If a memref has both a size and an offset, we can use the smaller size.
2065 We can't do this if the offset isn't known because we must view this
2066 memref as being anywhere inside the DECL's MEM. */
2067 if (MEM_SIZE (x) && moffsetx)
2068 sizex = INTVAL (MEM_SIZE (x));
2069 if (MEM_SIZE (y) && moffsety)
2070 sizey = INTVAL (MEM_SIZE (y));
2072 /* Put the values of the memref with the lower offset in X's values. */
2073 if (offsetx > offsety)
2075 tem = offsetx, offsetx = offsety, offsety = tem;
2076 tem = sizex, sizex = sizey, sizey = tem;
2079 /* If we don't know the size of the lower-offset value, we can't tell
2080 if they conflict. Otherwise, we do the test. */
2081 return sizex >= 0 && offsety >= offsetx + sizex;
2084 /* True dependence: X is read after store in MEM takes place. */
2087 true_dependence (mem, mem_mode, x, varies)
2088 rtx mem;
2089 enum machine_mode mem_mode;
2090 rtx x;
2091 int (*varies) PARAMS ((rtx, int));
2093 rtx x_addr, mem_addr;
2094 rtx base;
2096 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2097 return 1;
2099 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2100 This is used in epilogue deallocation functions. */
2101 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2102 return 1;
2103 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2104 return 1;
2106 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2107 return 0;
2109 /* Unchanging memory can't conflict with non-unchanging memory.
2110 A non-unchanging read can conflict with a non-unchanging write.
2111 An unchanging read can conflict with an unchanging write since
2112 there may be a single store to this address to initialize it.
2113 Note that an unchanging store can conflict with a non-unchanging read
2114 since we have to make conservative assumptions when we have a
2115 record with readonly fields and we are copying the whole thing.
2116 Just fall through to the code below to resolve potential conflicts.
2117 This won't handle all cases optimally, but the possible performance
2118 loss should be negligible. */
2119 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2120 return 0;
2122 if (nonoverlapping_memrefs_p (mem, x))
2123 return 0;
2125 if (mem_mode == VOIDmode)
2126 mem_mode = GET_MODE (mem);
2128 x_addr = get_addr (XEXP (x, 0));
2129 mem_addr = get_addr (XEXP (mem, 0));
2131 base = find_base_term (x_addr);
2132 if (base && (GET_CODE (base) == LABEL_REF
2133 || (GET_CODE (base) == SYMBOL_REF
2134 && CONSTANT_POOL_ADDRESS_P (base))))
2135 return 0;
2137 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2138 return 0;
2140 x_addr = canon_rtx (x_addr);
2141 mem_addr = canon_rtx (mem_addr);
2143 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2144 SIZE_FOR_MODE (x), x_addr, 0))
2145 return 0;
2147 if (aliases_everything_p (x))
2148 return 1;
2150 /* We cannot use aliases_everything_p to test MEM, since we must look
2151 at MEM_MODE, rather than GET_MODE (MEM). */
2152 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2153 return 1;
2155 /* In true_dependence we also allow BLKmode to alias anything. Why
2156 don't we do this in anti_dependence and output_dependence? */
2157 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2158 return 1;
2160 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2161 varies);
2164 /* Canonical true dependence: X is read after store in MEM takes place.
2165 Variant of true_dependence which assumes MEM has already been
2166 canonicalized (hence we no longer do that here).
2167 The mem_addr argument has been added, since true_dependence computed
2168 this value prior to canonicalizing. */
2171 canon_true_dependence (mem, mem_mode, mem_addr, x, varies)
2172 rtx mem, mem_addr, x;
2173 enum machine_mode mem_mode;
2174 int (*varies) PARAMS ((rtx, int));
2176 rtx x_addr;
2178 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2179 return 1;
2181 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2182 This is used in epilogue deallocation functions. */
2183 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2184 return 1;
2185 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2186 return 1;
2188 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2189 return 0;
2191 /* If X is an unchanging read, then it can't possibly conflict with any
2192 non-unchanging store. It may conflict with an unchanging write though,
2193 because there may be a single store to this address to initialize it.
2194 Just fall through to the code below to resolve the case where we have
2195 both an unchanging read and an unchanging write. This won't handle all
2196 cases optimally, but the possible performance loss should be
2197 negligible. */
2198 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2199 return 0;
2201 if (nonoverlapping_memrefs_p (x, mem))
2202 return 0;
2204 x_addr = get_addr (XEXP (x, 0));
2206 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2207 return 0;
2209 x_addr = canon_rtx (x_addr);
2210 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2211 SIZE_FOR_MODE (x), x_addr, 0))
2212 return 0;
2214 if (aliases_everything_p (x))
2215 return 1;
2217 /* We cannot use aliases_everything_p to test MEM, since we must look
2218 at MEM_MODE, rather than GET_MODE (MEM). */
2219 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2220 return 1;
2222 /* In true_dependence we also allow BLKmode to alias anything. Why
2223 don't we do this in anti_dependence and output_dependence? */
2224 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2225 return 1;
2227 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2228 varies);
2231 /* Returns nonzero if a write to X might alias a previous read from
2232 (or, if WRITEP is nonzero, a write to) MEM. */
2234 static int
2235 write_dependence_p (mem, x, writep)
2236 rtx mem;
2237 rtx x;
2238 int writep;
2240 rtx x_addr, mem_addr;
2241 rtx fixed_scalar;
2242 rtx base;
2244 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2245 return 1;
2247 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2248 This is used in epilogue deallocation functions. */
2249 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2250 return 1;
2251 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2252 return 1;
2254 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2255 return 0;
2257 /* Unchanging memory can't conflict with non-unchanging memory. */
2258 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2259 return 0;
2261 /* If MEM is an unchanging read, then it can't possibly conflict with
2262 the store to X, because there is at most one store to MEM, and it must
2263 have occurred somewhere before MEM. */
2264 if (! writep && RTX_UNCHANGING_P (mem))
2265 return 0;
2267 if (nonoverlapping_memrefs_p (x, mem))
2268 return 0;
2270 x_addr = get_addr (XEXP (x, 0));
2271 mem_addr = get_addr (XEXP (mem, 0));
2273 if (! writep)
2275 base = find_base_term (mem_addr);
2276 if (base && (GET_CODE (base) == LABEL_REF
2277 || (GET_CODE (base) == SYMBOL_REF
2278 && CONSTANT_POOL_ADDRESS_P (base))))
2279 return 0;
2282 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2283 GET_MODE (mem)))
2284 return 0;
2286 x_addr = canon_rtx (x_addr);
2287 mem_addr = canon_rtx (mem_addr);
2289 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2290 SIZE_FOR_MODE (x), x_addr, 0))
2291 return 0;
2293 fixed_scalar
2294 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2295 rtx_addr_varies_p);
2297 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2298 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2301 /* Anti dependence: X is written after read in MEM takes place. */
2304 anti_dependence (mem, x)
2305 rtx mem;
2306 rtx x;
2308 return write_dependence_p (mem, x, /*writep=*/0);
2311 /* Output dependence: X is written after store in MEM takes place. */
2314 output_dependence (mem, x)
2315 rtx mem;
2316 rtx x;
2318 return write_dependence_p (mem, x, /*writep=*/1);
2321 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2322 something which is not local to the function and is not constant. */
2324 static int
2325 nonlocal_mentioned_p_1 (loc, data)
2326 rtx *loc;
2327 void *data ATTRIBUTE_UNUSED;
2329 rtx x = *loc;
2330 rtx base;
2331 int regno;
2333 if (! x)
2334 return 0;
2336 switch (GET_CODE (x))
2338 case SUBREG:
2339 if (GET_CODE (SUBREG_REG (x)) == REG)
2341 /* Global registers are not local. */
2342 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2343 && global_regs[subreg_regno (x)])
2344 return 1;
2345 return 0;
2347 break;
2349 case REG:
2350 regno = REGNO (x);
2351 /* Global registers are not local. */
2352 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2353 return 1;
2354 return 0;
2356 case SCRATCH:
2357 case PC:
2358 case CC0:
2359 case CONST_INT:
2360 case CONST_DOUBLE:
2361 case CONST_VECTOR:
2362 case CONST:
2363 case LABEL_REF:
2364 return 0;
2366 case SYMBOL_REF:
2367 /* Constants in the function's constants pool are constant. */
2368 if (CONSTANT_POOL_ADDRESS_P (x))
2369 return 0;
2370 return 1;
2372 case CALL:
2373 /* Non-constant calls and recursion are not local. */
2374 return 1;
2376 case MEM:
2377 /* Be overly conservative and consider any volatile memory
2378 reference as not local. */
2379 if (MEM_VOLATILE_P (x))
2380 return 1;
2381 base = find_base_term (XEXP (x, 0));
2382 if (base)
2384 /* A Pmode ADDRESS could be a reference via the structure value
2385 address or static chain. Such memory references are nonlocal.
2387 Thus, we have to examine the contents of the ADDRESS to find
2388 out if this is a local reference or not. */
2389 if (GET_CODE (base) == ADDRESS
2390 && GET_MODE (base) == Pmode
2391 && (XEXP (base, 0) == stack_pointer_rtx
2392 || XEXP (base, 0) == arg_pointer_rtx
2393 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2394 || XEXP (base, 0) == hard_frame_pointer_rtx
2395 #endif
2396 || XEXP (base, 0) == frame_pointer_rtx))
2397 return 0;
2398 /* Constants in the function's constant pool are constant. */
2399 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2400 return 0;
2402 return 1;
2404 case UNSPEC_VOLATILE:
2405 case ASM_INPUT:
2406 return 1;
2408 case ASM_OPERANDS:
2409 if (MEM_VOLATILE_P (x))
2410 return 1;
2412 /* FALLTHROUGH */
2414 default:
2415 break;
2418 return 0;
2421 /* Returns nonzero if X might mention something which is not
2422 local to the function and is not constant. */
2424 static int
2425 nonlocal_mentioned_p (x)
2426 rtx x;
2429 if (INSN_P (x))
2431 if (GET_CODE (x) == CALL_INSN)
2433 if (! CONST_OR_PURE_CALL_P (x))
2434 return 1;
2435 x = CALL_INSN_FUNCTION_USAGE (x);
2436 if (x == 0)
2437 return 0;
2439 else
2440 x = PATTERN (x);
2443 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2446 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2447 something which is not local to the function and is not constant. */
2449 static int
2450 nonlocal_referenced_p_1 (loc, data)
2451 rtx *loc;
2452 void *data ATTRIBUTE_UNUSED;
2454 rtx x = *loc;
2456 if (! x)
2457 return 0;
2459 switch (GET_CODE (x))
2461 case MEM:
2462 case REG:
2463 case SYMBOL_REF:
2464 case SUBREG:
2465 return nonlocal_mentioned_p (x);
2467 case CALL:
2468 /* Non-constant calls and recursion are not local. */
2469 return 1;
2471 case SET:
2472 if (nonlocal_mentioned_p (SET_SRC (x)))
2473 return 1;
2475 if (GET_CODE (SET_DEST (x)) == MEM)
2476 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2478 /* If the destination is anything other than a CC0, PC,
2479 MEM, REG, or a SUBREG of a REG that occupies all of
2480 the REG, then X references nonlocal memory if it is
2481 mentioned in the destination. */
2482 if (GET_CODE (SET_DEST (x)) != CC0
2483 && GET_CODE (SET_DEST (x)) != PC
2484 && GET_CODE (SET_DEST (x)) != REG
2485 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2486 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2487 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2488 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2489 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2490 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2491 return nonlocal_mentioned_p (SET_DEST (x));
2492 return 0;
2494 case CLOBBER:
2495 if (GET_CODE (XEXP (x, 0)) == MEM)
2496 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2497 return 0;
2499 case USE:
2500 return nonlocal_mentioned_p (XEXP (x, 0));
2502 case ASM_INPUT:
2503 case UNSPEC_VOLATILE:
2504 return 1;
2506 case ASM_OPERANDS:
2507 if (MEM_VOLATILE_P (x))
2508 return 1;
2510 /* FALLTHROUGH */
2512 default:
2513 break;
2516 return 0;
2519 /* Returns nonzero if X might reference something which is not
2520 local to the function and is not constant. */
2522 static int
2523 nonlocal_referenced_p (x)
2524 rtx x;
2527 if (INSN_P (x))
2529 if (GET_CODE (x) == CALL_INSN)
2531 if (! CONST_OR_PURE_CALL_P (x))
2532 return 1;
2533 x = CALL_INSN_FUNCTION_USAGE (x);
2534 if (x == 0)
2535 return 0;
2537 else
2538 x = PATTERN (x);
2541 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2544 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2545 something which is not local to the function and is not constant. */
2547 static int
2548 nonlocal_set_p_1 (loc, data)
2549 rtx *loc;
2550 void *data ATTRIBUTE_UNUSED;
2552 rtx x = *loc;
2554 if (! x)
2555 return 0;
2557 switch (GET_CODE (x))
2559 case CALL:
2560 /* Non-constant calls and recursion are not local. */
2561 return 1;
2563 case PRE_INC:
2564 case PRE_DEC:
2565 case POST_INC:
2566 case POST_DEC:
2567 case PRE_MODIFY:
2568 case POST_MODIFY:
2569 return nonlocal_mentioned_p (XEXP (x, 0));
2571 case SET:
2572 if (nonlocal_mentioned_p (SET_DEST (x)))
2573 return 1;
2574 return nonlocal_set_p (SET_SRC (x));
2576 case CLOBBER:
2577 return nonlocal_mentioned_p (XEXP (x, 0));
2579 case USE:
2580 return 0;
2582 case ASM_INPUT:
2583 case UNSPEC_VOLATILE:
2584 return 1;
2586 case ASM_OPERANDS:
2587 if (MEM_VOLATILE_P (x))
2588 return 1;
2590 /* FALLTHROUGH */
2592 default:
2593 break;
2596 return 0;
2599 /* Returns nonzero if X might set something which is not
2600 local to the function and is not constant. */
2602 static int
2603 nonlocal_set_p (x)
2604 rtx x;
2607 if (INSN_P (x))
2609 if (GET_CODE (x) == CALL_INSN)
2611 if (! CONST_OR_PURE_CALL_P (x))
2612 return 1;
2613 x = CALL_INSN_FUNCTION_USAGE (x);
2614 if (x == 0)
2615 return 0;
2617 else
2618 x = PATTERN (x);
2621 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2624 /* Mark the function if it is constant. */
2626 void
2627 mark_constant_function ()
2629 rtx insn;
2630 int nonlocal_memory_referenced;
2632 if (TREE_READONLY (current_function_decl)
2633 || DECL_IS_PURE (current_function_decl)
2634 || TREE_THIS_VOLATILE (current_function_decl)
2635 || TYPE_MODE (TREE_TYPE (current_function_decl)) == VOIDmode
2636 || current_function_has_nonlocal_goto
2637 || !(*targetm.binds_local_p) (current_function_decl))
2638 return;
2640 /* A loop might not return which counts as a side effect. */
2641 if (mark_dfs_back_edges ())
2642 return;
2644 nonlocal_memory_referenced = 0;
2646 init_alias_analysis ();
2648 /* Determine if this is a constant or pure function. */
2650 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2652 if (! INSN_P (insn))
2653 continue;
2655 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2656 || volatile_refs_p (PATTERN (insn)))
2657 break;
2659 if (! nonlocal_memory_referenced)
2660 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2663 end_alias_analysis ();
2665 /* Mark the function. */
2667 if (insn)
2669 else if (nonlocal_memory_referenced)
2670 DECL_IS_PURE (current_function_decl) = 1;
2671 else
2672 TREE_READONLY (current_function_decl) = 1;
2676 void
2677 init_alias_once ()
2679 int i;
2681 #ifndef OUTGOING_REGNO
2682 #define OUTGOING_REGNO(N) N
2683 #endif
2684 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2685 /* Check whether this register can hold an incoming pointer
2686 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2687 numbers, so translate if necessary due to register windows. */
2688 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2689 && HARD_REGNO_MODE_OK (i, Pmode))
2690 static_reg_base_value[i]
2691 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2693 static_reg_base_value[STACK_POINTER_REGNUM]
2694 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2695 static_reg_base_value[ARG_POINTER_REGNUM]
2696 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2697 static_reg_base_value[FRAME_POINTER_REGNUM]
2698 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2699 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2700 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2701 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2702 #endif
2704 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
2707 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2708 to be memory reference. */
2709 static bool memory_modified;
2710 static void
2711 memory_modified_1 (x, pat, data)
2712 rtx x, pat ATTRIBUTE_UNUSED;
2713 void *data;
2715 if (GET_CODE (x) == MEM)
2717 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2718 memory_modified = true;
2723 /* Return true when INSN possibly modify memory contents of MEM
2724 (ie address can be modified). */
2725 bool
2726 memory_modified_in_insn_p (mem, insn)
2727 rtx mem, insn;
2729 if (!INSN_P (insn))
2730 return false;
2731 memory_modified = false;
2732 note_stores (PATTERN (insn), memory_modified_1, mem);
2733 return memory_modified;
2736 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2737 array. */
2739 void
2740 init_alias_analysis ()
2742 int maxreg = max_reg_num ();
2743 int changed, pass;
2744 int i;
2745 unsigned int ui;
2746 rtx insn;
2748 reg_known_value_size = maxreg;
2750 reg_known_value
2751 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2752 - FIRST_PSEUDO_REGISTER;
2753 reg_known_equiv_p
2754 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
2755 - FIRST_PSEUDO_REGISTER;
2757 /* Overallocate reg_base_value to allow some growth during loop
2758 optimization. Loop unrolling can create a large number of
2759 registers. */
2760 reg_base_value_size = maxreg * 2;
2761 reg_base_value = (rtx *) ggc_alloc_cleared (reg_base_value_size
2762 * sizeof (rtx));
2764 new_reg_base_value = (rtx *) xmalloc (reg_base_value_size * sizeof (rtx));
2765 reg_seen = (char *) xmalloc (reg_base_value_size);
2766 if (! reload_completed && flag_unroll_loops)
2768 /* ??? Why are we realloc'ing if we're just going to zero it? */
2769 alias_invariant = (rtx *)xrealloc (alias_invariant,
2770 reg_base_value_size * sizeof (rtx));
2771 memset ((char *)alias_invariant, 0, reg_base_value_size * sizeof (rtx));
2774 /* The basic idea is that each pass through this loop will use the
2775 "constant" information from the previous pass to propagate alias
2776 information through another level of assignments.
2778 This could get expensive if the assignment chains are long. Maybe
2779 we should throttle the number of iterations, possibly based on
2780 the optimization level or flag_expensive_optimizations.
2782 We could propagate more information in the first pass by making use
2783 of REG_N_SETS to determine immediately that the alias information
2784 for a pseudo is "constant".
2786 A program with an uninitialized variable can cause an infinite loop
2787 here. Instead of doing a full dataflow analysis to detect such problems
2788 we just cap the number of iterations for the loop.
2790 The state of the arrays for the set chain in question does not matter
2791 since the program has undefined behavior. */
2793 pass = 0;
2796 /* Assume nothing will change this iteration of the loop. */
2797 changed = 0;
2799 /* We want to assign the same IDs each iteration of this loop, so
2800 start counting from zero each iteration of the loop. */
2801 unique_id = 0;
2803 /* We're at the start of the function each iteration through the
2804 loop, so we're copying arguments. */
2805 copying_arguments = true;
2807 /* Wipe the potential alias information clean for this pass. */
2808 memset ((char *) new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
2810 /* Wipe the reg_seen array clean. */
2811 memset ((char *) reg_seen, 0, reg_base_value_size);
2813 /* Mark all hard registers which may contain an address.
2814 The stack, frame and argument pointers may contain an address.
2815 An argument register which can hold a Pmode value may contain
2816 an address even if it is not in BASE_REGS.
2818 The address expression is VOIDmode for an argument and
2819 Pmode for other registers. */
2821 memcpy (new_reg_base_value, static_reg_base_value,
2822 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2824 /* Walk the insns adding values to the new_reg_base_value array. */
2825 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2827 if (INSN_P (insn))
2829 rtx note, set;
2831 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2832 /* The prologue/epilogue insns are not threaded onto the
2833 insn chain until after reload has completed. Thus,
2834 there is no sense wasting time checking if INSN is in
2835 the prologue/epilogue until after reload has completed. */
2836 if (reload_completed
2837 && prologue_epilogue_contains (insn))
2838 continue;
2839 #endif
2841 /* If this insn has a noalias note, process it, Otherwise,
2842 scan for sets. A simple set will have no side effects
2843 which could change the base value of any other register. */
2845 if (GET_CODE (PATTERN (insn)) == SET
2846 && REG_NOTES (insn) != 0
2847 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2848 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2849 else
2850 note_stores (PATTERN (insn), record_set, NULL);
2852 set = single_set (insn);
2854 if (set != 0
2855 && GET_CODE (SET_DEST (set)) == REG
2856 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2858 unsigned int regno = REGNO (SET_DEST (set));
2859 rtx src = SET_SRC (set);
2861 if (REG_NOTES (insn) != 0
2862 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2863 && REG_N_SETS (regno) == 1)
2864 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2865 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2866 && ! rtx_varies_p (XEXP (note, 0), 1)
2867 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2869 reg_known_value[regno] = XEXP (note, 0);
2870 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2872 else if (REG_N_SETS (regno) == 1
2873 && GET_CODE (src) == PLUS
2874 && GET_CODE (XEXP (src, 0)) == REG
2875 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2876 && (reg_known_value[REGNO (XEXP (src, 0))])
2877 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2879 rtx op0 = XEXP (src, 0);
2880 op0 = reg_known_value[REGNO (op0)];
2881 reg_known_value[regno]
2882 = plus_constant (op0, INTVAL (XEXP (src, 1)));
2883 reg_known_equiv_p[regno] = 0;
2885 else if (REG_N_SETS (regno) == 1
2886 && ! rtx_varies_p (src, 1))
2888 reg_known_value[regno] = src;
2889 reg_known_equiv_p[regno] = 0;
2893 else if (GET_CODE (insn) == NOTE
2894 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2895 copying_arguments = false;
2898 /* Now propagate values from new_reg_base_value to reg_base_value. */
2899 for (ui = 0; ui < reg_base_value_size; ui++)
2901 if (new_reg_base_value[ui]
2902 && new_reg_base_value[ui] != reg_base_value[ui]
2903 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
2905 reg_base_value[ui] = new_reg_base_value[ui];
2906 changed = 1;
2910 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2912 /* Fill in the remaining entries. */
2913 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2914 if (reg_known_value[i] == 0)
2915 reg_known_value[i] = regno_reg_rtx[i];
2917 /* Simplify the reg_base_value array so that no register refers to
2918 another register, except to special registers indirectly through
2919 ADDRESS expressions.
2921 In theory this loop can take as long as O(registers^2), but unless
2922 there are very long dependency chains it will run in close to linear
2923 time.
2925 This loop may not be needed any longer now that the main loop does
2926 a better job at propagating alias information. */
2927 pass = 0;
2930 changed = 0;
2931 pass++;
2932 for (ui = 0; ui < reg_base_value_size; ui++)
2934 rtx base = reg_base_value[ui];
2935 if (base && GET_CODE (base) == REG)
2937 unsigned int base_regno = REGNO (base);
2938 if (base_regno == ui) /* register set from itself */
2939 reg_base_value[ui] = 0;
2940 else
2941 reg_base_value[ui] = reg_base_value[base_regno];
2942 changed = 1;
2946 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2948 /* Clean up. */
2949 free (new_reg_base_value);
2950 new_reg_base_value = 0;
2951 free (reg_seen);
2952 reg_seen = 0;
2955 void
2956 end_alias_analysis ()
2958 free (reg_known_value + FIRST_PSEUDO_REGISTER);
2959 reg_known_value = 0;
2960 reg_known_value_size = 0;
2961 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2962 reg_known_equiv_p = 0;
2963 reg_base_value = 0;
2964 reg_base_value_size = 0;
2965 if (alias_invariant)
2967 free (alias_invariant);
2968 alias_invariant = 0;
2972 #include "gt-alias.h"