1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
39 #include "splay-tree.h"
41 #include "langhooks.h"
44 /* The alias sets assigned to MEMs assist the back-end in determining
45 which MEMs can alias which other MEMs. In general, two MEMs in
46 different alias sets cannot alias each other, with one important
47 exception. Consider something like:
49 struct S {int i; double d; };
51 a store to an `S' can alias something of either type `int' or type
52 `double'. (However, a store to an `int' cannot alias a `double'
53 and vice versa.) We indicate this via a tree structure that looks
61 (The arrows are directed and point downwards.)
62 In this situation we say the alias set for `struct S' is the
63 `superset' and that those for `int' and `double' are `subsets'.
65 To see whether two alias sets can point to the same memory, we must
66 see if either alias set is a subset of the other. We need not trace
67 past immediate descendents, however, since we propagate all
68 grandchildren up one level.
70 Alias set zero is implicitly a superset of all other alias sets.
71 However, this is no actual entry for alias set zero. It is an
72 error to attempt to explicitly construct a subset of zero. */
74 typedef struct alias_set_entry
76 /* The alias set number, as stored in MEM_ALIAS_SET. */
77 HOST_WIDE_INT alias_set
;
79 /* The children of the alias set. These are not just the immediate
80 children, but, in fact, all descendents. So, if we have:
82 struct T { struct S s; float f; }
84 continuing our example above, the children here will be all of
85 `int', `double', `float', and `struct S'. */
88 /* Nonzero if would have a child of zero: this effectively makes this
89 alias set the same as alias set zero. */
93 static int rtx_equal_for_memref_p
PARAMS ((rtx
, rtx
));
94 static rtx find_symbolic_term
PARAMS ((rtx
));
95 rtx get_addr
PARAMS ((rtx
));
96 static int memrefs_conflict_p
PARAMS ((int, rtx
, int, rtx
,
98 static void record_set
PARAMS ((rtx
, rtx
, void *));
99 static rtx find_base_term
PARAMS ((rtx
));
100 static int base_alias_check
PARAMS ((rtx
, rtx
, enum machine_mode
,
102 static rtx find_base_value
PARAMS ((rtx
));
103 static int mems_in_disjoint_alias_sets_p
PARAMS ((rtx
, rtx
));
104 static int insert_subset_children
PARAMS ((splay_tree_node
, void*));
105 static tree find_base_decl
PARAMS ((tree
));
106 static alias_set_entry get_alias_set_entry
PARAMS ((HOST_WIDE_INT
));
107 static rtx fixed_scalar_and_varying_struct_p
PARAMS ((rtx
, rtx
, rtx
, rtx
,
108 int (*) (rtx
, int)));
109 static int aliases_everything_p
PARAMS ((rtx
));
110 static bool nonoverlapping_component_refs_p
PARAMS ((tree
, tree
));
111 static tree decl_for_component_ref
PARAMS ((tree
));
112 static rtx adjust_offset_for_component_ref
PARAMS ((tree
, rtx
));
113 static int nonoverlapping_memrefs_p
PARAMS ((rtx
, rtx
));
114 static int write_dependence_p
PARAMS ((rtx
, rtx
, int));
116 static int nonlocal_mentioned_p_1
PARAMS ((rtx
*, void *));
117 static int nonlocal_mentioned_p
PARAMS ((rtx
));
118 static int nonlocal_referenced_p_1
PARAMS ((rtx
*, void *));
119 static int nonlocal_referenced_p
PARAMS ((rtx
));
120 static int nonlocal_set_p_1
PARAMS ((rtx
*, void *));
121 static int nonlocal_set_p
PARAMS ((rtx
));
122 static void memory_modified_1
PARAMS ((rtx
, rtx
, void *));
124 /* Set up all info needed to perform alias analysis on memory references. */
126 /* Returns the size in bytes of the mode of X. */
127 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
129 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
130 different alias sets. We ignore alias sets in functions making use
131 of variable arguments because the va_arg macros on some systems are
133 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
134 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
136 /* Cap the number of passes we make over the insns propagating alias
137 information through set chains. 10 is a completely arbitrary choice. */
138 #define MAX_ALIAS_LOOP_PASSES 10
140 /* reg_base_value[N] gives an address to which register N is related.
141 If all sets after the first add or subtract to the current value
142 or otherwise modify it so it does not point to a different top level
143 object, reg_base_value[N] is equal to the address part of the source
146 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
147 expressions represent certain special values: function arguments and
148 the stack, frame, and argument pointers.
150 The contents of an ADDRESS is not normally used, the mode of the
151 ADDRESS determines whether the ADDRESS is a function argument or some
152 other special value. Pointer equality, not rtx_equal_p, determines whether
153 two ADDRESS expressions refer to the same base address.
155 The only use of the contents of an ADDRESS is for determining if the
156 current function performs nonlocal memory memory references for the
157 purposes of marking the function as a constant function. */
159 static GTY((length ("reg_base_value_size"))) rtx
*reg_base_value
;
160 static rtx
*new_reg_base_value
;
161 static unsigned int reg_base_value_size
; /* size of reg_base_value array */
163 /* Static hunks of RTL used by the aliasing code; these are initialized
164 once per function to avoid unnecessary RTL allocations. */
165 static GTY (()) rtx static_reg_base_value
[FIRST_PSEUDO_REGISTER
];
167 #define REG_BASE_VALUE(X) \
168 (REGNO (X) < reg_base_value_size \
169 ? reg_base_value[REGNO (X)] : 0)
171 /* Vector of known invariant relationships between registers. Set in
172 loop unrolling. Indexed by register number, if nonzero the value
173 is an expression describing this register in terms of another.
175 The length of this array is REG_BASE_VALUE_SIZE.
177 Because this array contains only pseudo registers it has no effect
179 static rtx
*alias_invariant
;
181 /* Vector indexed by N giving the initial (unchanging) value known for
182 pseudo-register N. This array is initialized in
183 init_alias_analysis, and does not change until end_alias_analysis
185 rtx
*reg_known_value
;
187 /* Indicates number of valid entries in reg_known_value. */
188 static unsigned int reg_known_value_size
;
190 /* Vector recording for each reg_known_value whether it is due to a
191 REG_EQUIV note. Future passes (viz., reload) may replace the
192 pseudo with the equivalent expression and so we account for the
193 dependences that would be introduced if that happens.
195 The REG_EQUIV notes created in assign_parms may mention the arg
196 pointer, and there are explicit insns in the RTL that modify the
197 arg pointer. Thus we must ensure that such insns don't get
198 scheduled across each other because that would invalidate the
199 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
200 wrong, but solving the problem in the scheduler will likely give
201 better code, so we do it here. */
202 char *reg_known_equiv_p
;
204 /* True when scanning insns from the start of the rtl to the
205 NOTE_INSN_FUNCTION_BEG note. */
206 static bool copying_arguments
;
208 /* The splay-tree used to store the various alias set entries. */
209 static splay_tree alias_sets
;
211 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
212 such an entry, or NULL otherwise. */
214 static alias_set_entry
215 get_alias_set_entry (alias_set
)
216 HOST_WIDE_INT alias_set
;
219 = splay_tree_lookup (alias_sets
, (splay_tree_key
) alias_set
);
221 return sn
!= 0 ? ((alias_set_entry
) sn
->value
) : 0;
224 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
225 the two MEMs cannot alias each other. */
228 mems_in_disjoint_alias_sets_p (mem1
, mem2
)
232 #ifdef ENABLE_CHECKING
233 /* Perform a basic sanity check. Namely, that there are no alias sets
234 if we're not using strict aliasing. This helps to catch bugs
235 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
236 where a MEM is allocated in some way other than by the use of
237 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
238 use alias sets to indicate that spilled registers cannot alias each
239 other, we might need to remove this check. */
240 if (! flag_strict_aliasing
241 && (MEM_ALIAS_SET (mem1
) != 0 || MEM_ALIAS_SET (mem2
) != 0))
245 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
), MEM_ALIAS_SET (mem2
));
248 /* Insert the NODE into the splay tree given by DATA. Used by
249 record_alias_subset via splay_tree_foreach. */
252 insert_subset_children (node
, data
)
253 splay_tree_node node
;
256 splay_tree_insert ((splay_tree
) data
, node
->key
, node
->value
);
261 /* Return 1 if the two specified alias sets may conflict. */
264 alias_sets_conflict_p (set1
, set2
)
265 HOST_WIDE_INT set1
, set2
;
269 /* If have no alias set information for one of the operands, we have
270 to assume it can alias anything. */
271 if (set1
== 0 || set2
== 0
272 /* If the two alias sets are the same, they may alias. */
276 /* See if the first alias set is a subset of the second. */
277 ase
= get_alias_set_entry (set1
);
279 && (ase
->has_zero_child
280 || splay_tree_lookup (ase
->children
,
281 (splay_tree_key
) set2
)))
284 /* Now do the same, but with the alias sets reversed. */
285 ase
= get_alias_set_entry (set2
);
287 && (ase
->has_zero_child
288 || splay_tree_lookup (ase
->children
,
289 (splay_tree_key
) set1
)))
292 /* The two alias sets are distinct and neither one is the
293 child of the other. Therefore, they cannot alias. */
297 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
298 has any readonly fields. If any of the fields have types that
299 contain readonly fields, return true as well. */
302 readonly_fields_p (type
)
307 if (TREE_CODE (type
) != RECORD_TYPE
&& TREE_CODE (type
) != UNION_TYPE
308 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
311 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
312 if (TREE_CODE (field
) == FIELD_DECL
313 && (TREE_READONLY (field
)
314 || readonly_fields_p (TREE_TYPE (field
))))
320 /* Return 1 if any MEM object of type T1 will always conflict (using the
321 dependency routines in this file) with any MEM object of type T2.
322 This is used when allocating temporary storage. If T1 and/or T2 are
323 NULL_TREE, it means we know nothing about the storage. */
326 objects_must_conflict_p (t1
, t2
)
329 /* If neither has a type specified, we don't know if they'll conflict
330 because we may be using them to store objects of various types, for
331 example the argument and local variables areas of inlined functions. */
332 if (t1
== 0 && t2
== 0)
335 /* If one or the other has readonly fields or is readonly,
336 then they may not conflict. */
337 if ((t1
!= 0 && readonly_fields_p (t1
))
338 || (t2
!= 0 && readonly_fields_p (t2
))
339 || (t1
!= 0 && lang_hooks
.honor_readonly
&& TYPE_READONLY (t1
))
340 || (t2
!= 0 && lang_hooks
.honor_readonly
&& TYPE_READONLY (t2
)))
343 /* If they are the same type, they must conflict. */
345 /* Likewise if both are volatile. */
346 || (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
)))
349 /* If one is aggregate and the other is scalar then they may not
351 if ((t1
!= 0 && AGGREGATE_TYPE_P (t1
))
352 != (t2
!= 0 && AGGREGATE_TYPE_P (t2
)))
355 /* Otherwise they conflict only if the alias sets conflict. */
356 return alias_sets_conflict_p (t1
? get_alias_set (t1
) : 0,
357 t2
? get_alias_set (t2
) : 0);
360 /* T is an expression with pointer type. Find the DECL on which this
361 expression is based. (For example, in `a[i]' this would be `a'.)
362 If there is no such DECL, or a unique decl cannot be determined,
363 NULL_TREE is returned. */
371 if (t
== 0 || t
== error_mark_node
|| ! POINTER_TYPE_P (TREE_TYPE (t
)))
374 /* If this is a declaration, return it. */
375 if (TREE_CODE_CLASS (TREE_CODE (t
)) == 'd')
378 /* Handle general expressions. It would be nice to deal with
379 COMPONENT_REFs here. If we could tell that `a' and `b' were the
380 same, then `a->f' and `b->f' are also the same. */
381 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
384 return find_base_decl (TREE_OPERAND (t
, 0));
387 /* Return 0 if found in neither or both are the same. */
388 d0
= find_base_decl (TREE_OPERAND (t
, 0));
389 d1
= find_base_decl (TREE_OPERAND (t
, 1));
400 d0
= find_base_decl (TREE_OPERAND (t
, 0));
401 d1
= find_base_decl (TREE_OPERAND (t
, 1));
402 d2
= find_base_decl (TREE_OPERAND (t
, 2));
404 /* Set any nonzero values from the last, then from the first. */
405 if (d1
== 0) d1
= d2
;
406 if (d0
== 0) d0
= d1
;
407 if (d1
== 0) d1
= d0
;
408 if (d2
== 0) d2
= d1
;
410 /* At this point all are nonzero or all are zero. If all three are the
411 same, return it. Otherwise, return zero. */
412 return (d0
== d1
&& d1
== d2
) ? d0
: 0;
419 /* Return 1 if all the nested component references handled by
420 get_inner_reference in T are such that we can address the object in T. */
426 /* If we're at the end, it is vacuously addressable. */
427 if (! handled_component_p (t
))
430 /* Bitfields are never addressable. */
431 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
434 /* Fields are addressable unless they are marked as nonaddressable or
435 the containing type has alias set 0. */
436 else if (TREE_CODE (t
) == COMPONENT_REF
437 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1))
438 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
439 && can_address_p (TREE_OPERAND (t
, 0)))
442 /* Likewise for arrays. */
443 else if ((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
444 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0)))
445 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
446 && can_address_p (TREE_OPERAND (t
, 0)))
452 /* Return the alias set for T, which may be either a type or an
453 expression. Call language-specific routine for help, if needed. */
461 /* If we're not doing any alias analysis, just assume everything
462 aliases everything else. Also return 0 if this or its type is
464 if (! flag_strict_aliasing
|| t
== error_mark_node
466 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
469 /* We can be passed either an expression or a type. This and the
470 language-specific routine may make mutually-recursive calls to each other
471 to figure out what to do. At each juncture, we see if this is a tree
472 that the language may need to handle specially. First handle things that
477 tree placeholder_ptr
= 0;
479 /* Remove any nops, then give the language a chance to do
480 something with this tree before we look at it. */
482 set
= (*lang_hooks
.get_alias_set
) (t
);
486 /* First see if the actual object referenced is an INDIRECT_REF from a
487 restrict-qualified pointer or a "void *". Replace
488 PLACEHOLDER_EXPRs. */
489 while (TREE_CODE (inner
) == PLACEHOLDER_EXPR
490 || handled_component_p (inner
))
492 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
493 inner
= find_placeholder (inner
, &placeholder_ptr
);
495 inner
= TREE_OPERAND (inner
, 0);
500 /* Check for accesses through restrict-qualified pointers. */
501 if (TREE_CODE (inner
) == INDIRECT_REF
)
503 tree decl
= find_base_decl (TREE_OPERAND (inner
, 0));
505 if (decl
&& DECL_POINTER_ALIAS_SET_KNOWN_P (decl
))
507 /* If we haven't computed the actual alias set, do it now. */
508 if (DECL_POINTER_ALIAS_SET (decl
) == -2)
510 /* No two restricted pointers can point at the same thing.
511 However, a restricted pointer can point at the same thing
512 as an unrestricted pointer, if that unrestricted pointer
513 is based on the restricted pointer. So, we make the
514 alias set for the restricted pointer a subset of the
515 alias set for the type pointed to by the type of the
517 HOST_WIDE_INT pointed_to_alias_set
518 = get_alias_set (TREE_TYPE (TREE_TYPE (decl
)));
520 if (pointed_to_alias_set
== 0)
521 /* It's not legal to make a subset of alias set zero. */
525 DECL_POINTER_ALIAS_SET (decl
) = new_alias_set ();
526 record_alias_subset (pointed_to_alias_set
,
527 DECL_POINTER_ALIAS_SET (decl
));
531 /* We use the alias set indicated in the declaration. */
532 return DECL_POINTER_ALIAS_SET (decl
);
535 /* If we have an INDIRECT_REF via a void pointer, we don't
536 know anything about what that might alias. */
537 else if (TREE_CODE (TREE_TYPE (inner
)) == VOID_TYPE
)
541 /* Otherwise, pick up the outermost object that we could have a pointer
542 to, processing conversion and PLACEHOLDER_EXPR as above. */
544 while (TREE_CODE (t
) == PLACEHOLDER_EXPR
545 || (handled_component_p (t
) && ! can_address_p (t
)))
547 if (TREE_CODE (t
) == PLACEHOLDER_EXPR
)
548 t
= find_placeholder (t
, &placeholder_ptr
);
550 t
= TREE_OPERAND (t
, 0);
555 /* If we've already determined the alias set for a decl, just return
556 it. This is necessary for C++ anonymous unions, whose component
557 variables don't look like union members (boo!). */
558 if (TREE_CODE (t
) == VAR_DECL
559 && DECL_RTL_SET_P (t
) && GET_CODE (DECL_RTL (t
)) == MEM
)
560 return MEM_ALIAS_SET (DECL_RTL (t
));
562 /* Now all we care about is the type. */
566 /* Variant qualifiers don't affect the alias set, so get the main
567 variant. If this is a type with a known alias set, return it. */
568 t
= TYPE_MAIN_VARIANT (t
);
569 if (TYPE_ALIAS_SET_KNOWN_P (t
))
570 return TYPE_ALIAS_SET (t
);
572 /* See if the language has special handling for this type. */
573 set
= (*lang_hooks
.get_alias_set
) (t
);
577 /* There are no objects of FUNCTION_TYPE, so there's no point in
578 using up an alias set for them. (There are, of course, pointers
579 and references to functions, but that's different.) */
580 else if (TREE_CODE (t
) == FUNCTION_TYPE
)
583 /* Unless the language specifies otherwise, let vector types alias
584 their components. This avoids some nasty type punning issues in
585 normal usage. And indeed lets vectors be treated more like an
587 else if (TREE_CODE (t
) == VECTOR_TYPE
)
588 set
= get_alias_set (TREE_TYPE (t
));
591 /* Otherwise make a new alias set for this type. */
592 set
= new_alias_set ();
594 TYPE_ALIAS_SET (t
) = set
;
596 /* If this is an aggregate type, we must record any component aliasing
598 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
599 record_component_aliases (t
);
604 /* Return a brand-new alias set. */
609 static HOST_WIDE_INT last_alias_set
;
611 if (flag_strict_aliasing
)
612 return ++last_alias_set
;
617 /* Indicate that things in SUBSET can alias things in SUPERSET, but
618 not vice versa. For example, in C, a store to an `int' can alias a
619 structure containing an `int', but not vice versa. Here, the
620 structure would be the SUPERSET and `int' the SUBSET. This
621 function should be called only once per SUPERSET/SUBSET pair.
623 It is illegal for SUPERSET to be zero; everything is implicitly a
624 subset of alias set zero. */
627 record_alias_subset (superset
, subset
)
628 HOST_WIDE_INT superset
;
629 HOST_WIDE_INT subset
;
631 alias_set_entry superset_entry
;
632 alias_set_entry subset_entry
;
634 /* It is possible in complex type situations for both sets to be the same,
635 in which case we can ignore this operation. */
636 if (superset
== subset
)
642 superset_entry
= get_alias_set_entry (superset
);
643 if (superset_entry
== 0)
645 /* Create an entry for the SUPERSET, so that we have a place to
646 attach the SUBSET. */
648 = (alias_set_entry
) xmalloc (sizeof (struct alias_set_entry
));
649 superset_entry
->alias_set
= superset
;
650 superset_entry
->children
651 = splay_tree_new (splay_tree_compare_ints
, 0, 0);
652 superset_entry
->has_zero_child
= 0;
653 splay_tree_insert (alias_sets
, (splay_tree_key
) superset
,
654 (splay_tree_value
) superset_entry
);
658 superset_entry
->has_zero_child
= 1;
661 subset_entry
= get_alias_set_entry (subset
);
662 /* If there is an entry for the subset, enter all of its children
663 (if they are not already present) as children of the SUPERSET. */
666 if (subset_entry
->has_zero_child
)
667 superset_entry
->has_zero_child
= 1;
669 splay_tree_foreach (subset_entry
->children
, insert_subset_children
,
670 superset_entry
->children
);
673 /* Enter the SUBSET itself as a child of the SUPERSET. */
674 splay_tree_insert (superset_entry
->children
,
675 (splay_tree_key
) subset
, 0);
679 /* Record that component types of TYPE, if any, are part of that type for
680 aliasing purposes. For record types, we only record component types
681 for fields that are marked addressable. For array types, we always
682 record the component types, so the front end should not call this
683 function if the individual component aren't addressable. */
686 record_component_aliases (type
)
689 HOST_WIDE_INT superset
= get_alias_set (type
);
695 switch (TREE_CODE (type
))
698 if (! TYPE_NONALIASED_COMPONENT (type
))
699 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
704 case QUAL_UNION_TYPE
:
705 /* Recursively record aliases for the base classes, if there are any */
706 if (TYPE_BINFO (type
) != NULL
&& TYPE_BINFO_BASETYPES (type
) != NULL
)
709 for (i
= 0; i
< TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type
)); i
++)
711 tree binfo
= TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type
), i
);
712 record_alias_subset (superset
,
713 get_alias_set (BINFO_TYPE (binfo
)));
716 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
717 if (TREE_CODE (field
) == FIELD_DECL
&& ! DECL_NONADDRESSABLE_P (field
))
718 record_alias_subset (superset
, get_alias_set (TREE_TYPE (field
)));
722 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
730 /* Allocate an alias set for use in storing and reading from the varargs
734 get_varargs_alias_set ()
736 static HOST_WIDE_INT set
= -1;
739 set
= new_alias_set ();
744 /* Likewise, but used for the fixed portions of the frame, e.g., register
748 get_frame_alias_set ()
750 static HOST_WIDE_INT set
= -1;
753 set
= new_alias_set ();
758 /* Inside SRC, the source of a SET, find a base address. */
761 find_base_value (src
)
766 switch (GET_CODE (src
))
774 /* At the start of a function, argument registers have known base
775 values which may be lost later. Returning an ADDRESS
776 expression here allows optimization based on argument values
777 even when the argument registers are used for other purposes. */
778 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
779 return new_reg_base_value
[regno
];
781 /* If a pseudo has a known base value, return it. Do not do this
782 for non-fixed hard regs since it can result in a circular
783 dependency chain for registers which have values at function entry.
785 The test above is not sufficient because the scheduler may move
786 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
787 if ((regno
>= FIRST_PSEUDO_REGISTER
|| fixed_regs
[regno
])
788 && regno
< reg_base_value_size
)
790 /* If we're inside init_alias_analysis, use new_reg_base_value
791 to reduce the number of relaxation iterations. */
792 if (new_reg_base_value
&& new_reg_base_value
[regno
]
793 && REG_N_SETS (regno
) == 1)
794 return new_reg_base_value
[regno
];
796 if (reg_base_value
[regno
])
797 return reg_base_value
[regno
];
803 /* Check for an argument passed in memory. Only record in the
804 copying-arguments block; it is too hard to track changes
806 if (copying_arguments
807 && (XEXP (src
, 0) == arg_pointer_rtx
808 || (GET_CODE (XEXP (src
, 0)) == PLUS
809 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
810 return gen_rtx_ADDRESS (VOIDmode
, src
);
815 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
818 /* ... fall through ... */
823 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
825 /* If either operand is a REG that is a known pointer, then it
827 if (REG_P (src_0
) && REG_POINTER (src_0
))
828 return find_base_value (src_0
);
829 if (REG_P (src_1
) && REG_POINTER (src_1
))
830 return find_base_value (src_1
);
832 /* If either operand is a REG, then see if we already have
833 a known value for it. */
836 temp
= find_base_value (src_0
);
843 temp
= find_base_value (src_1
);
848 /* If either base is named object or a special address
849 (like an argument or stack reference), then use it for the
852 && (GET_CODE (src_0
) == SYMBOL_REF
853 || GET_CODE (src_0
) == LABEL_REF
854 || (GET_CODE (src_0
) == ADDRESS
855 && GET_MODE (src_0
) != VOIDmode
)))
859 && (GET_CODE (src_1
) == SYMBOL_REF
860 || GET_CODE (src_1
) == LABEL_REF
861 || (GET_CODE (src_1
) == ADDRESS
862 && GET_MODE (src_1
) != VOIDmode
)))
865 /* Guess which operand is the base address:
866 If either operand is a symbol, then it is the base. If
867 either operand is a CONST_INT, then the other is the base. */
868 if (GET_CODE (src_1
) == CONST_INT
|| CONSTANT_P (src_0
))
869 return find_base_value (src_0
);
870 else if (GET_CODE (src_0
) == CONST_INT
|| CONSTANT_P (src_1
))
871 return find_base_value (src_1
);
877 /* The standard form is (lo_sum reg sym) so look only at the
879 return find_base_value (XEXP (src
, 1));
882 /* If the second operand is constant set the base
883 address to the first operand. */
884 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
&& INTVAL (XEXP (src
, 1)) != 0)
885 return find_base_value (XEXP (src
, 0));
889 if (GET_MODE_SIZE (GET_MODE (src
)) < GET_MODE_SIZE (Pmode
))
899 return find_base_value (XEXP (src
, 0));
902 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
904 rtx temp
= find_base_value (XEXP (src
, 0));
906 #ifdef POINTERS_EXTEND_UNSIGNED
907 if (temp
!= 0 && CONSTANT_P (temp
) && GET_MODE (temp
) != Pmode
)
908 temp
= convert_memory_address (Pmode
, temp
);
921 /* Called from init_alias_analysis indirectly through note_stores. */
923 /* While scanning insns to find base values, reg_seen[N] is nonzero if
924 register N has been set in this function. */
925 static char *reg_seen
;
927 /* Addresses which are known not to alias anything else are identified
928 by a unique integer. */
929 static int unique_id
;
932 record_set (dest
, set
, data
)
934 void *data ATTRIBUTE_UNUSED
;
940 if (GET_CODE (dest
) != REG
)
943 regno
= REGNO (dest
);
945 if (regno
>= reg_base_value_size
)
948 /* If this spans multiple hard registers, then we must indicate that every
949 register has an unusable value. */
950 if (regno
< FIRST_PSEUDO_REGISTER
)
951 n
= HARD_REGNO_NREGS (regno
, GET_MODE (dest
));
958 reg_seen
[regno
+ n
] = 1;
959 new_reg_base_value
[regno
+ n
] = 0;
966 /* A CLOBBER wipes out any old value but does not prevent a previously
967 unset register from acquiring a base address (i.e. reg_seen is not
969 if (GET_CODE (set
) == CLOBBER
)
971 new_reg_base_value
[regno
] = 0;
980 new_reg_base_value
[regno
] = 0;
984 new_reg_base_value
[regno
] = gen_rtx_ADDRESS (Pmode
,
985 GEN_INT (unique_id
++));
989 /* This is not the first set. If the new value is not related to the
990 old value, forget the base value. Note that the following code is
992 extern int x, y; int *p = &x; p += (&y-&x);
993 ANSI C does not allow computing the difference of addresses
994 of distinct top level objects. */
995 if (new_reg_base_value
[regno
])
996 switch (GET_CODE (src
))
1000 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
1001 new_reg_base_value
[regno
] = 0;
1004 /* If the value we add in the PLUS is also a valid base value,
1005 this might be the actual base value, and the original value
1008 rtx other
= NULL_RTX
;
1010 if (XEXP (src
, 0) == dest
)
1011 other
= XEXP (src
, 1);
1012 else if (XEXP (src
, 1) == dest
)
1013 other
= XEXP (src
, 0);
1015 if (! other
|| find_base_value (other
))
1016 new_reg_base_value
[regno
] = 0;
1020 if (XEXP (src
, 0) != dest
|| GET_CODE (XEXP (src
, 1)) != CONST_INT
)
1021 new_reg_base_value
[regno
] = 0;
1024 new_reg_base_value
[regno
] = 0;
1027 /* If this is the first set of a register, record the value. */
1028 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
1029 && ! reg_seen
[regno
] && new_reg_base_value
[regno
] == 0)
1030 new_reg_base_value
[regno
] = find_base_value (src
);
1032 reg_seen
[regno
] = 1;
1035 /* Called from loop optimization when a new pseudo-register is
1036 created. It indicates that REGNO is being set to VAL. f INVARIANT
1037 is true then this value also describes an invariant relationship
1038 which can be used to deduce that two registers with unknown values
1042 record_base_value (regno
, val
, invariant
)
1047 if (regno
>= reg_base_value_size
)
1050 if (invariant
&& alias_invariant
)
1051 alias_invariant
[regno
] = val
;
1053 if (GET_CODE (val
) == REG
)
1055 if (REGNO (val
) < reg_base_value_size
)
1056 reg_base_value
[regno
] = reg_base_value
[REGNO (val
)];
1061 reg_base_value
[regno
] = find_base_value (val
);
1064 /* Clear alias info for a register. This is used if an RTL transformation
1065 changes the value of a register. This is used in flow by AUTO_INC_DEC
1066 optimizations. We don't need to clear reg_base_value, since flow only
1067 changes the offset. */
1070 clear_reg_alias_info (reg
)
1073 unsigned int regno
= REGNO (reg
);
1075 if (regno
< reg_known_value_size
&& regno
>= FIRST_PSEUDO_REGISTER
)
1076 reg_known_value
[regno
] = reg
;
1079 /* Returns a canonical version of X, from the point of view alias
1080 analysis. (For example, if X is a MEM whose address is a register,
1081 and the register has a known value (say a SYMBOL_REF), then a MEM
1082 whose address is the SYMBOL_REF is returned.) */
1088 /* Recursively look for equivalences. */
1089 if (GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
1090 && REGNO (x
) < reg_known_value_size
)
1091 return reg_known_value
[REGNO (x
)] == x
1092 ? x
: canon_rtx (reg_known_value
[REGNO (x
)]);
1093 else if (GET_CODE (x
) == PLUS
)
1095 rtx x0
= canon_rtx (XEXP (x
, 0));
1096 rtx x1
= canon_rtx (XEXP (x
, 1));
1098 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1100 if (GET_CODE (x0
) == CONST_INT
)
1101 return plus_constant (x1
, INTVAL (x0
));
1102 else if (GET_CODE (x1
) == CONST_INT
)
1103 return plus_constant (x0
, INTVAL (x1
));
1104 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
1108 /* This gives us much better alias analysis when called from
1109 the loop optimizer. Note we want to leave the original
1110 MEM alone, but need to return the canonicalized MEM with
1111 all the flags with their original values. */
1112 else if (GET_CODE (x
) == MEM
)
1113 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1118 /* Return 1 if X and Y are identical-looking rtx's.
1120 We use the data in reg_known_value above to see if two registers with
1121 different numbers are, in fact, equivalent. */
1124 rtx_equal_for_memref_p (x
, y
)
1132 if (x
== 0 && y
== 0)
1134 if (x
== 0 || y
== 0)
1143 code
= GET_CODE (x
);
1144 /* Rtx's of different codes cannot be equal. */
1145 if (code
!= GET_CODE (y
))
1148 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1149 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1151 if (GET_MODE (x
) != GET_MODE (y
))
1154 /* Some RTL can be compared without a recursive examination. */
1158 return CSELIB_VAL_PTR (x
) == CSELIB_VAL_PTR (y
);
1161 return REGNO (x
) == REGNO (y
);
1164 return XEXP (x
, 0) == XEXP (y
, 0);
1167 return XSTR (x
, 0) == XSTR (y
, 0);
1171 /* There's no need to compare the contents of CONST_DOUBLEs or
1172 CONST_INTs because pointer equality is a good enough
1173 comparison for these nodes. */
1177 return (XINT (x
, 1) == XINT (y
, 1)
1178 && rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0)));
1184 /* For commutative operations, the RTX match if the operand match in any
1185 order. Also handle the simple binary and unary cases without a loop. */
1186 if (code
== EQ
|| code
== NE
|| GET_RTX_CLASS (code
) == 'c')
1187 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1188 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1189 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1190 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1191 else if (GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == '2')
1192 return (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1193 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)));
1194 else if (GET_RTX_CLASS (code
) == '1')
1195 return rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0));
1197 /* Compare the elements. If any pair of corresponding elements
1198 fail to match, return 0 for the whole things.
1200 Limit cases to types which actually appear in addresses. */
1202 fmt
= GET_RTX_FORMAT (code
);
1203 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1208 if (XINT (x
, i
) != XINT (y
, i
))
1213 /* Two vectors must have the same length. */
1214 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1217 /* And the corresponding elements must match. */
1218 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1219 if (rtx_equal_for_memref_p (XVECEXP (x
, i
, j
),
1220 XVECEXP (y
, i
, j
)) == 0)
1225 if (rtx_equal_for_memref_p (XEXP (x
, i
), XEXP (y
, i
)) == 0)
1229 /* This can happen for asm operands. */
1231 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1235 /* This can happen for an asm which clobbers memory. */
1239 /* It is believed that rtx's at this level will never
1240 contain anything but integers and other rtx's,
1241 except for within LABEL_REFs and SYMBOL_REFs. */
1249 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1250 X and return it, or return 0 if none found. */
1253 find_symbolic_term (x
)
1260 code
= GET_CODE (x
);
1261 if (code
== SYMBOL_REF
|| code
== LABEL_REF
)
1263 if (GET_RTX_CLASS (code
) == 'o')
1266 fmt
= GET_RTX_FORMAT (code
);
1267 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1273 t
= find_symbolic_term (XEXP (x
, i
));
1277 else if (fmt
[i
] == 'E')
1288 struct elt_loc_list
*l
;
1290 #if defined (FIND_BASE_TERM)
1291 /* Try machine-dependent ways to find the base term. */
1292 x
= FIND_BASE_TERM (x
);
1295 switch (GET_CODE (x
))
1298 return REG_BASE_VALUE (x
);
1301 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (Pmode
))
1311 return find_base_term (XEXP (x
, 0));
1314 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1316 rtx temp
= find_base_term (XEXP (x
, 0));
1318 #ifdef POINTERS_EXTEND_UNSIGNED
1319 if (temp
!= 0 && CONSTANT_P (temp
) && GET_MODE (temp
) != Pmode
)
1320 temp
= convert_memory_address (Pmode
, temp
);
1327 val
= CSELIB_VAL_PTR (x
);
1328 for (l
= val
->locs
; l
; l
= l
->next
)
1329 if ((x
= find_base_term (l
->loc
)) != 0)
1335 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1342 rtx tmp1
= XEXP (x
, 0);
1343 rtx tmp2
= XEXP (x
, 1);
1345 /* This is a little bit tricky since we have to determine which of
1346 the two operands represents the real base address. Otherwise this
1347 routine may return the index register instead of the base register.
1349 That may cause us to believe no aliasing was possible, when in
1350 fact aliasing is possible.
1352 We use a few simple tests to guess the base register. Additional
1353 tests can certainly be added. For example, if one of the operands
1354 is a shift or multiply, then it must be the index register and the
1355 other operand is the base register. */
1357 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1358 return find_base_term (tmp2
);
1360 /* If either operand is known to be a pointer, then use it
1361 to determine the base term. */
1362 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1363 return find_base_term (tmp1
);
1365 if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1366 return find_base_term (tmp2
);
1368 /* Neither operand was known to be a pointer. Go ahead and find the
1369 base term for both operands. */
1370 tmp1
= find_base_term (tmp1
);
1371 tmp2
= find_base_term (tmp2
);
1373 /* If either base term is named object or a special address
1374 (like an argument or stack reference), then use it for the
1377 && (GET_CODE (tmp1
) == SYMBOL_REF
1378 || GET_CODE (tmp1
) == LABEL_REF
1379 || (GET_CODE (tmp1
) == ADDRESS
1380 && GET_MODE (tmp1
) != VOIDmode
)))
1384 && (GET_CODE (tmp2
) == SYMBOL_REF
1385 || GET_CODE (tmp2
) == LABEL_REF
1386 || (GET_CODE (tmp2
) == ADDRESS
1387 && GET_MODE (tmp2
) != VOIDmode
)))
1390 /* We could not determine which of the two operands was the
1391 base register and which was the index. So we can determine
1392 nothing from the base alias check. */
1397 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) != 0)
1398 return find_base_term (XEXP (x
, 0));
1406 return REG_BASE_VALUE (frame_pointer_rtx
);
1413 /* Return 0 if the addresses X and Y are known to point to different
1414 objects, 1 if they might be pointers to the same object. */
1417 base_alias_check (x
, y
, x_mode
, y_mode
)
1419 enum machine_mode x_mode
, y_mode
;
1421 rtx x_base
= find_base_term (x
);
1422 rtx y_base
= find_base_term (y
);
1424 /* If the address itself has no known base see if a known equivalent
1425 value has one. If either address still has no known base, nothing
1426 is known about aliasing. */
1431 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
1434 x_base
= find_base_term (x_c
);
1442 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
1445 y_base
= find_base_term (y_c
);
1450 /* If the base addresses are equal nothing is known about aliasing. */
1451 if (rtx_equal_p (x_base
, y_base
))
1454 /* The base addresses of the read and write are different expressions.
1455 If they are both symbols and they are not accessed via AND, there is
1456 no conflict. We can bring knowledge of object alignment into play
1457 here. For example, on alpha, "char a, b;" can alias one another,
1458 though "char a; long b;" cannot. */
1459 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
1461 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
1463 if (GET_CODE (x
) == AND
1464 && (GET_CODE (XEXP (x
, 1)) != CONST_INT
1465 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
1467 if (GET_CODE (y
) == AND
1468 && (GET_CODE (XEXP (y
, 1)) != CONST_INT
1469 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
1471 /* Differing symbols never alias. */
1475 /* If one address is a stack reference there can be no alias:
1476 stack references using different base registers do not alias,
1477 a stack reference can not alias a parameter, and a stack reference
1478 can not alias a global. */
1479 if ((GET_CODE (x_base
) == ADDRESS
&& GET_MODE (x_base
) == Pmode
)
1480 || (GET_CODE (y_base
) == ADDRESS
&& GET_MODE (y_base
) == Pmode
))
1483 if (! flag_argument_noalias
)
1486 if (flag_argument_noalias
> 1)
1489 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1490 return ! (GET_MODE (x_base
) == VOIDmode
&& GET_MODE (y_base
) == VOIDmode
);
1493 /* Convert the address X into something we can use. This is done by returning
1494 it unchanged unless it is a value; in the latter case we call cselib to get
1495 a more useful rtx. */
1502 struct elt_loc_list
*l
;
1504 if (GET_CODE (x
) != VALUE
)
1506 v
= CSELIB_VAL_PTR (x
);
1507 for (l
= v
->locs
; l
; l
= l
->next
)
1508 if (CONSTANT_P (l
->loc
))
1510 for (l
= v
->locs
; l
; l
= l
->next
)
1511 if (GET_CODE (l
->loc
) != REG
&& GET_CODE (l
->loc
) != MEM
)
1514 return v
->locs
->loc
;
1518 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1519 where SIZE is the size in bytes of the memory reference. If ADDR
1520 is not modified by the memory reference then ADDR is returned. */
1523 addr_side_effect_eval (addr
, size
, n_refs
)
1530 switch (GET_CODE (addr
))
1533 offset
= (n_refs
+ 1) * size
;
1536 offset
= -(n_refs
+ 1) * size
;
1539 offset
= n_refs
* size
;
1542 offset
= -n_refs
* size
;
1550 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0), GEN_INT (offset
));
1552 addr
= XEXP (addr
, 0);
1557 /* Return nonzero if X and Y (memory addresses) could reference the
1558 same location in memory. C is an offset accumulator. When
1559 C is nonzero, we are testing aliases between X and Y + C.
1560 XSIZE is the size in bytes of the X reference,
1561 similarly YSIZE is the size in bytes for Y.
1563 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1564 referenced (the reference was BLKmode), so make the most pessimistic
1567 If XSIZE or YSIZE is negative, we may access memory outside the object
1568 being referenced as a side effect. This can happen when using AND to
1569 align memory references, as is done on the Alpha.
1571 Nice to notice that varying addresses cannot conflict with fp if no
1572 local variables had their addresses taken, but that's too hard now. */
1575 memrefs_conflict_p (xsize
, x
, ysize
, y
, c
)
1580 if (GET_CODE (x
) == VALUE
)
1582 if (GET_CODE (y
) == VALUE
)
1584 if (GET_CODE (x
) == HIGH
)
1586 else if (GET_CODE (x
) == LO_SUM
)
1589 x
= canon_rtx (addr_side_effect_eval (x
, xsize
, 0));
1590 if (GET_CODE (y
) == HIGH
)
1592 else if (GET_CODE (y
) == LO_SUM
)
1595 y
= canon_rtx (addr_side_effect_eval (y
, ysize
, 0));
1597 if (rtx_equal_for_memref_p (x
, y
))
1599 if (xsize
<= 0 || ysize
<= 0)
1601 if (c
>= 0 && xsize
> c
)
1603 if (c
< 0 && ysize
+c
> 0)
1608 /* This code used to check for conflicts involving stack references and
1609 globals but the base address alias code now handles these cases. */
1611 if (GET_CODE (x
) == PLUS
)
1613 /* The fact that X is canonicalized means that this
1614 PLUS rtx is canonicalized. */
1615 rtx x0
= XEXP (x
, 0);
1616 rtx x1
= XEXP (x
, 1);
1618 if (GET_CODE (y
) == PLUS
)
1620 /* The fact that Y is canonicalized means that this
1621 PLUS rtx is canonicalized. */
1622 rtx y0
= XEXP (y
, 0);
1623 rtx y1
= XEXP (y
, 1);
1625 if (rtx_equal_for_memref_p (x1
, y1
))
1626 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1627 if (rtx_equal_for_memref_p (x0
, y0
))
1628 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
1629 if (GET_CODE (x1
) == CONST_INT
)
1631 if (GET_CODE (y1
) == CONST_INT
)
1632 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
1633 c
- INTVAL (x1
) + INTVAL (y1
));
1635 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
1638 else if (GET_CODE (y1
) == CONST_INT
)
1639 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1643 else if (GET_CODE (x1
) == CONST_INT
)
1644 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
1646 else if (GET_CODE (y
) == PLUS
)
1648 /* The fact that Y is canonicalized means that this
1649 PLUS rtx is canonicalized. */
1650 rtx y0
= XEXP (y
, 0);
1651 rtx y1
= XEXP (y
, 1);
1653 if (GET_CODE (y1
) == CONST_INT
)
1654 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1659 if (GET_CODE (x
) == GET_CODE (y
))
1660 switch (GET_CODE (x
))
1664 /* Handle cases where we expect the second operands to be the
1665 same, and check only whether the first operand would conflict
1668 rtx x1
= canon_rtx (XEXP (x
, 1));
1669 rtx y1
= canon_rtx (XEXP (y
, 1));
1670 if (! rtx_equal_for_memref_p (x1
, y1
))
1672 x0
= canon_rtx (XEXP (x
, 0));
1673 y0
= canon_rtx (XEXP (y
, 0));
1674 if (rtx_equal_for_memref_p (x0
, y0
))
1675 return (xsize
== 0 || ysize
== 0
1676 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1678 /* Can't properly adjust our sizes. */
1679 if (GET_CODE (x1
) != CONST_INT
)
1681 xsize
/= INTVAL (x1
);
1682 ysize
/= INTVAL (x1
);
1684 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1688 /* Are these registers known not to be equal? */
1689 if (alias_invariant
)
1691 unsigned int r_x
= REGNO (x
), r_y
= REGNO (y
);
1692 rtx i_x
, i_y
; /* invariant relationships of X and Y */
1694 i_x
= r_x
>= reg_base_value_size
? 0 : alias_invariant
[r_x
];
1695 i_y
= r_y
>= reg_base_value_size
? 0 : alias_invariant
[r_y
];
1697 if (i_x
== 0 && i_y
== 0)
1700 if (! memrefs_conflict_p (xsize
, i_x
? i_x
: x
,
1701 ysize
, i_y
? i_y
: y
, c
))
1710 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1711 as an access with indeterminate size. Assume that references
1712 besides AND are aligned, so if the size of the other reference is
1713 at least as large as the alignment, assume no other overlap. */
1714 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1716 if (GET_CODE (y
) == AND
|| ysize
< -INTVAL (XEXP (x
, 1)))
1718 return memrefs_conflict_p (xsize
, XEXP (x
, 0), ysize
, y
, c
);
1720 if (GET_CODE (y
) == AND
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
1722 /* ??? If we are indexing far enough into the array/structure, we
1723 may yet be able to determine that we can not overlap. But we
1724 also need to that we are far enough from the end not to overlap
1725 a following reference, so we do nothing with that for now. */
1726 if (GET_CODE (x
) == AND
|| xsize
< -INTVAL (XEXP (y
, 1)))
1728 return memrefs_conflict_p (xsize
, x
, ysize
, XEXP (y
, 0), c
);
1731 if (GET_CODE (x
) == ADDRESSOF
)
1733 if (y
== frame_pointer_rtx
1734 || GET_CODE (y
) == ADDRESSOF
)
1735 return xsize
<= 0 || ysize
<= 0;
1737 if (GET_CODE (y
) == ADDRESSOF
)
1739 if (x
== frame_pointer_rtx
)
1740 return xsize
<= 0 || ysize
<= 0;
1745 if (GET_CODE (x
) == CONST_INT
&& GET_CODE (y
) == CONST_INT
)
1747 c
+= (INTVAL (y
) - INTVAL (x
));
1748 return (xsize
<= 0 || ysize
<= 0
1749 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1752 if (GET_CODE (x
) == CONST
)
1754 if (GET_CODE (y
) == CONST
)
1755 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1756 ysize
, canon_rtx (XEXP (y
, 0)), c
);
1758 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1761 if (GET_CODE (y
) == CONST
)
1762 return memrefs_conflict_p (xsize
, x
, ysize
,
1763 canon_rtx (XEXP (y
, 0)), c
);
1766 return (xsize
<= 0 || ysize
<= 0
1767 || (rtx_equal_for_memref_p (x
, y
)
1768 && ((c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0))));
1775 /* Functions to compute memory dependencies.
1777 Since we process the insns in execution order, we can build tables
1778 to keep track of what registers are fixed (and not aliased), what registers
1779 are varying in known ways, and what registers are varying in unknown
1782 If both memory references are volatile, then there must always be a
1783 dependence between the two references, since their order can not be
1784 changed. A volatile and non-volatile reference can be interchanged
1787 A MEM_IN_STRUCT reference at a non-AND varying address can never
1788 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1789 also must allow AND addresses, because they may generate accesses
1790 outside the object being referenced. This is used to generate
1791 aligned addresses from unaligned addresses, for instance, the alpha
1792 storeqi_unaligned pattern. */
1794 /* Read dependence: X is read after read in MEM takes place. There can
1795 only be a dependence here if both reads are volatile. */
1798 read_dependence (mem
, x
)
1802 return MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
);
1805 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1806 MEM2 is a reference to a structure at a varying address, or returns
1807 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1808 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1809 to decide whether or not an address may vary; it should return
1810 nonzero whenever variation is possible.
1811 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1814 fixed_scalar_and_varying_struct_p (mem1
, mem2
, mem1_addr
, mem2_addr
, varies_p
)
1816 rtx mem1_addr
, mem2_addr
;
1817 int (*varies_p
) PARAMS ((rtx
, int));
1819 if (! flag_strict_aliasing
)
1822 if (MEM_SCALAR_P (mem1
) && MEM_IN_STRUCT_P (mem2
)
1823 && !varies_p (mem1_addr
, 1) && varies_p (mem2_addr
, 1))
1824 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1828 if (MEM_IN_STRUCT_P (mem1
) && MEM_SCALAR_P (mem2
)
1829 && varies_p (mem1_addr
, 1) && !varies_p (mem2_addr
, 1))
1830 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1837 /* Returns nonzero if something about the mode or address format MEM1
1838 indicates that it might well alias *anything*. */
1841 aliases_everything_p (mem
)
1844 if (GET_CODE (XEXP (mem
, 0)) == AND
)
1845 /* If the address is an AND, its very hard to know at what it is
1846 actually pointing. */
1852 /* Return true if we can determine that the fields referenced cannot
1853 overlap for any pair of objects. */
1856 nonoverlapping_component_refs_p (x
, y
)
1859 tree fieldx
, fieldy
, typex
, typey
, orig_y
;
1863 /* The comparison has to be done at a common type, since we don't
1864 know how the inheritance hierarchy works. */
1868 fieldx
= TREE_OPERAND (x
, 1);
1869 typex
= DECL_FIELD_CONTEXT (fieldx
);
1874 fieldy
= TREE_OPERAND (y
, 1);
1875 typey
= DECL_FIELD_CONTEXT (fieldy
);
1880 y
= TREE_OPERAND (y
, 0);
1882 while (y
&& TREE_CODE (y
) == COMPONENT_REF
);
1884 x
= TREE_OPERAND (x
, 0);
1886 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1888 /* Never found a common type. */
1892 /* If we're left with accessing different fields of a structure,
1894 if (TREE_CODE (typex
) == RECORD_TYPE
1895 && fieldx
!= fieldy
)
1898 /* The comparison on the current field failed. If we're accessing
1899 a very nested structure, look at the next outer level. */
1900 x
= TREE_OPERAND (x
, 0);
1901 y
= TREE_OPERAND (y
, 0);
1904 && TREE_CODE (x
) == COMPONENT_REF
1905 && TREE_CODE (y
) == COMPONENT_REF
);
1910 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1913 decl_for_component_ref (x
)
1918 x
= TREE_OPERAND (x
, 0);
1920 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1922 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
1925 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1926 offset of the field reference. */
1929 adjust_offset_for_component_ref (x
, offset
)
1933 HOST_WIDE_INT ioffset
;
1938 ioffset
= INTVAL (offset
);
1941 tree field
= TREE_OPERAND (x
, 1);
1943 if (! host_integerp (DECL_FIELD_OFFSET (field
), 1))
1945 ioffset
+= (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
1946 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
1949 x
= TREE_OPERAND (x
, 0);
1951 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1953 return GEN_INT (ioffset
);
1956 /* Return nonzero if we can deterimine the exprs corresponding to memrefs
1957 X and Y and they do not overlap. */
1960 nonoverlapping_memrefs_p (x
, y
)
1963 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
1966 rtx moffsetx
, moffsety
;
1967 HOST_WIDE_INT offsetx
= 0, offsety
= 0, sizex
, sizey
, tem
;
1969 /* Unless both have exprs, we can't tell anything. */
1970 if (exprx
== 0 || expry
== 0)
1973 /* If both are field references, we may be able to determine something. */
1974 if (TREE_CODE (exprx
) == COMPONENT_REF
1975 && TREE_CODE (expry
) == COMPONENT_REF
1976 && nonoverlapping_component_refs_p (exprx
, expry
))
1979 /* If the field reference test failed, look at the DECLs involved. */
1980 moffsetx
= MEM_OFFSET (x
);
1981 if (TREE_CODE (exprx
) == COMPONENT_REF
)
1983 tree t
= decl_for_component_ref (exprx
);
1986 moffsetx
= adjust_offset_for_component_ref (exprx
, moffsetx
);
1989 else if (TREE_CODE (exprx
) == INDIRECT_REF
)
1991 exprx
= TREE_OPERAND (exprx
, 0);
1992 if (flag_argument_noalias
< 2
1993 || TREE_CODE (exprx
) != PARM_DECL
)
1997 moffsety
= MEM_OFFSET (y
);
1998 if (TREE_CODE (expry
) == COMPONENT_REF
)
2000 tree t
= decl_for_component_ref (expry
);
2003 moffsety
= adjust_offset_for_component_ref (expry
, moffsety
);
2006 else if (TREE_CODE (expry
) == INDIRECT_REF
)
2008 expry
= TREE_OPERAND (expry
, 0);
2009 if (flag_argument_noalias
< 2
2010 || TREE_CODE (expry
) != PARM_DECL
)
2014 if (! DECL_P (exprx
) || ! DECL_P (expry
))
2017 rtlx
= DECL_RTL (exprx
);
2018 rtly
= DECL_RTL (expry
);
2020 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2021 can't overlap unless they are the same because we never reuse that part
2022 of the stack frame used for locals for spilled pseudos. */
2023 if ((GET_CODE (rtlx
) != MEM
|| GET_CODE (rtly
) != MEM
)
2024 && ! rtx_equal_p (rtlx
, rtly
))
2027 /* Get the base and offsets of both decls. If either is a register, we
2028 know both are and are the same, so use that as the base. The only
2029 we can avoid overlap is if we can deduce that they are nonoverlapping
2030 pieces of that decl, which is very rare. */
2031 basex
= GET_CODE (rtlx
) == MEM
? XEXP (rtlx
, 0) : rtlx
;
2032 if (GET_CODE (basex
) == PLUS
&& GET_CODE (XEXP (basex
, 1)) == CONST_INT
)
2033 offsetx
= INTVAL (XEXP (basex
, 1)), basex
= XEXP (basex
, 0);
2035 basey
= GET_CODE (rtly
) == MEM
? XEXP (rtly
, 0) : rtly
;
2036 if (GET_CODE (basey
) == PLUS
&& GET_CODE (XEXP (basey
, 1)) == CONST_INT
)
2037 offsety
= INTVAL (XEXP (basey
, 1)), basey
= XEXP (basey
, 0);
2039 /* If the bases are different, we know they do not overlap if both
2040 are constants or if one is a constant and the other a pointer into the
2041 stack frame. Otherwise a different base means we can't tell if they
2043 if (! rtx_equal_p (basex
, basey
))
2044 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
2045 || (CONSTANT_P (basex
) && REG_P (basey
)
2046 && REGNO_PTR_FRAME_P (REGNO (basey
)))
2047 || (CONSTANT_P (basey
) && REG_P (basex
)
2048 && REGNO_PTR_FRAME_P (REGNO (basex
))));
2050 sizex
= (GET_CODE (rtlx
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtlx
))
2051 : MEM_SIZE (rtlx
) ? INTVAL (MEM_SIZE (rtlx
))
2053 sizey
= (GET_CODE (rtly
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtly
))
2054 : MEM_SIZE (rtly
) ? INTVAL (MEM_SIZE (rtly
)) :
2057 /* If we have an offset for either memref, it can update the values computed
2060 offsetx
+= INTVAL (moffsetx
), sizex
-= INTVAL (moffsetx
);
2062 offsety
+= INTVAL (moffsety
), sizey
-= INTVAL (moffsety
);
2064 /* If a memref has both a size and an offset, we can use the smaller size.
2065 We can't do this if the offset isn't known because we must view this
2066 memref as being anywhere inside the DECL's MEM. */
2067 if (MEM_SIZE (x
) && moffsetx
)
2068 sizex
= INTVAL (MEM_SIZE (x
));
2069 if (MEM_SIZE (y
) && moffsety
)
2070 sizey
= INTVAL (MEM_SIZE (y
));
2072 /* Put the values of the memref with the lower offset in X's values. */
2073 if (offsetx
> offsety
)
2075 tem
= offsetx
, offsetx
= offsety
, offsety
= tem
;
2076 tem
= sizex
, sizex
= sizey
, sizey
= tem
;
2079 /* If we don't know the size of the lower-offset value, we can't tell
2080 if they conflict. Otherwise, we do the test. */
2081 return sizex
>= 0 && offsety
>= offsetx
+ sizex
;
2084 /* True dependence: X is read after store in MEM takes place. */
2087 true_dependence (mem
, mem_mode
, x
, varies
)
2089 enum machine_mode mem_mode
;
2091 int (*varies
) PARAMS ((rtx
, int));
2093 rtx x_addr
, mem_addr
;
2096 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2099 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2100 This is used in epilogue deallocation functions. */
2101 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2103 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2106 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2109 /* Unchanging memory can't conflict with non-unchanging memory.
2110 A non-unchanging read can conflict with a non-unchanging write.
2111 An unchanging read can conflict with an unchanging write since
2112 there may be a single store to this address to initialize it.
2113 Note that an unchanging store can conflict with a non-unchanging read
2114 since we have to make conservative assumptions when we have a
2115 record with readonly fields and we are copying the whole thing.
2116 Just fall through to the code below to resolve potential conflicts.
2117 This won't handle all cases optimally, but the possible performance
2118 loss should be negligible. */
2119 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
2122 if (nonoverlapping_memrefs_p (mem
, x
))
2125 if (mem_mode
== VOIDmode
)
2126 mem_mode
= GET_MODE (mem
);
2128 x_addr
= get_addr (XEXP (x
, 0));
2129 mem_addr
= get_addr (XEXP (mem
, 0));
2131 base
= find_base_term (x_addr
);
2132 if (base
&& (GET_CODE (base
) == LABEL_REF
2133 || (GET_CODE (base
) == SYMBOL_REF
2134 && CONSTANT_POOL_ADDRESS_P (base
))))
2137 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2140 x_addr
= canon_rtx (x_addr
);
2141 mem_addr
= canon_rtx (mem_addr
);
2143 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2144 SIZE_FOR_MODE (x
), x_addr
, 0))
2147 if (aliases_everything_p (x
))
2150 /* We cannot use aliases_everything_p to test MEM, since we must look
2151 at MEM_MODE, rather than GET_MODE (MEM). */
2152 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2155 /* In true_dependence we also allow BLKmode to alias anything. Why
2156 don't we do this in anti_dependence and output_dependence? */
2157 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2160 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2164 /* Canonical true dependence: X is read after store in MEM takes place.
2165 Variant of true_dependence which assumes MEM has already been
2166 canonicalized (hence we no longer do that here).
2167 The mem_addr argument has been added, since true_dependence computed
2168 this value prior to canonicalizing. */
2171 canon_true_dependence (mem
, mem_mode
, mem_addr
, x
, varies
)
2172 rtx mem
, mem_addr
, x
;
2173 enum machine_mode mem_mode
;
2174 int (*varies
) PARAMS ((rtx
, int));
2178 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2181 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2182 This is used in epilogue deallocation functions. */
2183 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2185 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2188 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2191 /* If X is an unchanging read, then it can't possibly conflict with any
2192 non-unchanging store. It may conflict with an unchanging write though,
2193 because there may be a single store to this address to initialize it.
2194 Just fall through to the code below to resolve the case where we have
2195 both an unchanging read and an unchanging write. This won't handle all
2196 cases optimally, but the possible performance loss should be
2198 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
2201 if (nonoverlapping_memrefs_p (x
, mem
))
2204 x_addr
= get_addr (XEXP (x
, 0));
2206 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2209 x_addr
= canon_rtx (x_addr
);
2210 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2211 SIZE_FOR_MODE (x
), x_addr
, 0))
2214 if (aliases_everything_p (x
))
2217 /* We cannot use aliases_everything_p to test MEM, since we must look
2218 at MEM_MODE, rather than GET_MODE (MEM). */
2219 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2222 /* In true_dependence we also allow BLKmode to alias anything. Why
2223 don't we do this in anti_dependence and output_dependence? */
2224 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2227 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2231 /* Returns nonzero if a write to X might alias a previous read from
2232 (or, if WRITEP is nonzero, a write to) MEM. */
2235 write_dependence_p (mem
, x
, writep
)
2240 rtx x_addr
, mem_addr
;
2244 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2247 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2248 This is used in epilogue deallocation functions. */
2249 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2251 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2254 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2257 /* Unchanging memory can't conflict with non-unchanging memory. */
2258 if (RTX_UNCHANGING_P (x
) != RTX_UNCHANGING_P (mem
))
2261 /* If MEM is an unchanging read, then it can't possibly conflict with
2262 the store to X, because there is at most one store to MEM, and it must
2263 have occurred somewhere before MEM. */
2264 if (! writep
&& RTX_UNCHANGING_P (mem
))
2267 if (nonoverlapping_memrefs_p (x
, mem
))
2270 x_addr
= get_addr (XEXP (x
, 0));
2271 mem_addr
= get_addr (XEXP (mem
, 0));
2275 base
= find_base_term (mem_addr
);
2276 if (base
&& (GET_CODE (base
) == LABEL_REF
2277 || (GET_CODE (base
) == SYMBOL_REF
2278 && CONSTANT_POOL_ADDRESS_P (base
))))
2282 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
),
2286 x_addr
= canon_rtx (x_addr
);
2287 mem_addr
= canon_rtx (mem_addr
);
2289 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
2290 SIZE_FOR_MODE (x
), x_addr
, 0))
2294 = fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2297 return (!(fixed_scalar
== mem
&& !aliases_everything_p (x
))
2298 && !(fixed_scalar
== x
&& !aliases_everything_p (mem
)));
2301 /* Anti dependence: X is written after read in MEM takes place. */
2304 anti_dependence (mem
, x
)
2308 return write_dependence_p (mem
, x
, /*writep=*/0);
2311 /* Output dependence: X is written after store in MEM takes place. */
2314 output_dependence (mem
, x
)
2318 return write_dependence_p (mem
, x
, /*writep=*/1);
2321 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2322 something which is not local to the function and is not constant. */
2325 nonlocal_mentioned_p_1 (loc
, data
)
2327 void *data ATTRIBUTE_UNUSED
;
2336 switch (GET_CODE (x
))
2339 if (GET_CODE (SUBREG_REG (x
)) == REG
)
2341 /* Global registers are not local. */
2342 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
2343 && global_regs
[subreg_regno (x
)])
2351 /* Global registers are not local. */
2352 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2367 /* Constants in the function's constants pool are constant. */
2368 if (CONSTANT_POOL_ADDRESS_P (x
))
2373 /* Non-constant calls and recursion are not local. */
2377 /* Be overly conservative and consider any volatile memory
2378 reference as not local. */
2379 if (MEM_VOLATILE_P (x
))
2381 base
= find_base_term (XEXP (x
, 0));
2384 /* A Pmode ADDRESS could be a reference via the structure value
2385 address or static chain. Such memory references are nonlocal.
2387 Thus, we have to examine the contents of the ADDRESS to find
2388 out if this is a local reference or not. */
2389 if (GET_CODE (base
) == ADDRESS
2390 && GET_MODE (base
) == Pmode
2391 && (XEXP (base
, 0) == stack_pointer_rtx
2392 || XEXP (base
, 0) == arg_pointer_rtx
2393 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2394 || XEXP (base
, 0) == hard_frame_pointer_rtx
2396 || XEXP (base
, 0) == frame_pointer_rtx
))
2398 /* Constants in the function's constant pool are constant. */
2399 if (GET_CODE (base
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (base
))
2404 case UNSPEC_VOLATILE
:
2409 if (MEM_VOLATILE_P (x
))
2421 /* Returns nonzero if X might mention something which is not
2422 local to the function and is not constant. */
2425 nonlocal_mentioned_p (x
)
2431 if (GET_CODE (x
) == CALL_INSN
)
2433 if (! CONST_OR_PURE_CALL_P (x
))
2435 x
= CALL_INSN_FUNCTION_USAGE (x
);
2443 return for_each_rtx (&x
, nonlocal_mentioned_p_1
, NULL
);
2446 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2447 something which is not local to the function and is not constant. */
2450 nonlocal_referenced_p_1 (loc
, data
)
2452 void *data ATTRIBUTE_UNUSED
;
2459 switch (GET_CODE (x
))
2465 return nonlocal_mentioned_p (x
);
2468 /* Non-constant calls and recursion are not local. */
2472 if (nonlocal_mentioned_p (SET_SRC (x
)))
2475 if (GET_CODE (SET_DEST (x
)) == MEM
)
2476 return nonlocal_mentioned_p (XEXP (SET_DEST (x
), 0));
2478 /* If the destination is anything other than a CC0, PC,
2479 MEM, REG, or a SUBREG of a REG that occupies all of
2480 the REG, then X references nonlocal memory if it is
2481 mentioned in the destination. */
2482 if (GET_CODE (SET_DEST (x
)) != CC0
2483 && GET_CODE (SET_DEST (x
)) != PC
2484 && GET_CODE (SET_DEST (x
)) != REG
2485 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
2486 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
2487 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
2488 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
2489 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
2490 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
2491 return nonlocal_mentioned_p (SET_DEST (x
));
2495 if (GET_CODE (XEXP (x
, 0)) == MEM
)
2496 return nonlocal_mentioned_p (XEXP (XEXP (x
, 0), 0));
2500 return nonlocal_mentioned_p (XEXP (x
, 0));
2503 case UNSPEC_VOLATILE
:
2507 if (MEM_VOLATILE_P (x
))
2519 /* Returns nonzero if X might reference something which is not
2520 local to the function and is not constant. */
2523 nonlocal_referenced_p (x
)
2529 if (GET_CODE (x
) == CALL_INSN
)
2531 if (! CONST_OR_PURE_CALL_P (x
))
2533 x
= CALL_INSN_FUNCTION_USAGE (x
);
2541 return for_each_rtx (&x
, nonlocal_referenced_p_1
, NULL
);
2544 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2545 something which is not local to the function and is not constant. */
2548 nonlocal_set_p_1 (loc
, data
)
2550 void *data ATTRIBUTE_UNUSED
;
2557 switch (GET_CODE (x
))
2560 /* Non-constant calls and recursion are not local. */
2569 return nonlocal_mentioned_p (XEXP (x
, 0));
2572 if (nonlocal_mentioned_p (SET_DEST (x
)))
2574 return nonlocal_set_p (SET_SRC (x
));
2577 return nonlocal_mentioned_p (XEXP (x
, 0));
2583 case UNSPEC_VOLATILE
:
2587 if (MEM_VOLATILE_P (x
))
2599 /* Returns nonzero if X might set something which is not
2600 local to the function and is not constant. */
2609 if (GET_CODE (x
) == CALL_INSN
)
2611 if (! CONST_OR_PURE_CALL_P (x
))
2613 x
= CALL_INSN_FUNCTION_USAGE (x
);
2621 return for_each_rtx (&x
, nonlocal_set_p_1
, NULL
);
2624 /* Mark the function if it is constant. */
2627 mark_constant_function ()
2630 int nonlocal_memory_referenced
;
2632 if (TREE_READONLY (current_function_decl
)
2633 || DECL_IS_PURE (current_function_decl
)
2634 || TREE_THIS_VOLATILE (current_function_decl
)
2635 || TYPE_MODE (TREE_TYPE (current_function_decl
)) == VOIDmode
2636 || current_function_has_nonlocal_goto
2637 || !(*targetm
.binds_local_p
) (current_function_decl
))
2640 /* A loop might not return which counts as a side effect. */
2641 if (mark_dfs_back_edges ())
2644 nonlocal_memory_referenced
= 0;
2646 init_alias_analysis ();
2648 /* Determine if this is a constant or pure function. */
2650 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2652 if (! INSN_P (insn
))
2655 if (nonlocal_set_p (insn
) || global_reg_mentioned_p (insn
)
2656 || volatile_refs_p (PATTERN (insn
)))
2659 if (! nonlocal_memory_referenced
)
2660 nonlocal_memory_referenced
= nonlocal_referenced_p (insn
);
2663 end_alias_analysis ();
2665 /* Mark the function. */
2669 else if (nonlocal_memory_referenced
)
2670 DECL_IS_PURE (current_function_decl
) = 1;
2672 TREE_READONLY (current_function_decl
) = 1;
2681 #ifndef OUTGOING_REGNO
2682 #define OUTGOING_REGNO(N) N
2684 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2685 /* Check whether this register can hold an incoming pointer
2686 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2687 numbers, so translate if necessary due to register windows. */
2688 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
2689 && HARD_REGNO_MODE_OK (i
, Pmode
))
2690 static_reg_base_value
[i
]
2691 = gen_rtx_ADDRESS (VOIDmode
, gen_rtx_REG (Pmode
, i
));
2693 static_reg_base_value
[STACK_POINTER_REGNUM
]
2694 = gen_rtx_ADDRESS (Pmode
, stack_pointer_rtx
);
2695 static_reg_base_value
[ARG_POINTER_REGNUM
]
2696 = gen_rtx_ADDRESS (Pmode
, arg_pointer_rtx
);
2697 static_reg_base_value
[FRAME_POINTER_REGNUM
]
2698 = gen_rtx_ADDRESS (Pmode
, frame_pointer_rtx
);
2699 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2700 static_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
2701 = gen_rtx_ADDRESS (Pmode
, hard_frame_pointer_rtx
);
2704 alias_sets
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
2707 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2708 to be memory reference. */
2709 static bool memory_modified
;
2711 memory_modified_1 (x
, pat
, data
)
2712 rtx x
, pat ATTRIBUTE_UNUSED
;
2715 if (GET_CODE (x
) == MEM
)
2717 if (anti_dependence (x
, (rtx
)data
) || output_dependence (x
, (rtx
)data
))
2718 memory_modified
= true;
2723 /* Return true when INSN possibly modify memory contents of MEM
2724 (ie address can be modified). */
2726 memory_modified_in_insn_p (mem
, insn
)
2731 memory_modified
= false;
2732 note_stores (PATTERN (insn
), memory_modified_1
, mem
);
2733 return memory_modified
;
2736 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2740 init_alias_analysis ()
2742 int maxreg
= max_reg_num ();
2748 reg_known_value_size
= maxreg
;
2751 = (rtx
*) xcalloc ((maxreg
- FIRST_PSEUDO_REGISTER
), sizeof (rtx
))
2752 - FIRST_PSEUDO_REGISTER
;
2754 = (char*) xcalloc ((maxreg
- FIRST_PSEUDO_REGISTER
), sizeof (char))
2755 - FIRST_PSEUDO_REGISTER
;
2757 /* Overallocate reg_base_value to allow some growth during loop
2758 optimization. Loop unrolling can create a large number of
2760 reg_base_value_size
= maxreg
* 2;
2761 reg_base_value
= (rtx
*) ggc_alloc_cleared (reg_base_value_size
2764 new_reg_base_value
= (rtx
*) xmalloc (reg_base_value_size
* sizeof (rtx
));
2765 reg_seen
= (char *) xmalloc (reg_base_value_size
);
2766 if (! reload_completed
&& flag_unroll_loops
)
2768 /* ??? Why are we realloc'ing if we're just going to zero it? */
2769 alias_invariant
= (rtx
*)xrealloc (alias_invariant
,
2770 reg_base_value_size
* sizeof (rtx
));
2771 memset ((char *)alias_invariant
, 0, reg_base_value_size
* sizeof (rtx
));
2774 /* The basic idea is that each pass through this loop will use the
2775 "constant" information from the previous pass to propagate alias
2776 information through another level of assignments.
2778 This could get expensive if the assignment chains are long. Maybe
2779 we should throttle the number of iterations, possibly based on
2780 the optimization level or flag_expensive_optimizations.
2782 We could propagate more information in the first pass by making use
2783 of REG_N_SETS to determine immediately that the alias information
2784 for a pseudo is "constant".
2786 A program with an uninitialized variable can cause an infinite loop
2787 here. Instead of doing a full dataflow analysis to detect such problems
2788 we just cap the number of iterations for the loop.
2790 The state of the arrays for the set chain in question does not matter
2791 since the program has undefined behavior. */
2796 /* Assume nothing will change this iteration of the loop. */
2799 /* We want to assign the same IDs each iteration of this loop, so
2800 start counting from zero each iteration of the loop. */
2803 /* We're at the start of the function each iteration through the
2804 loop, so we're copying arguments. */
2805 copying_arguments
= true;
2807 /* Wipe the potential alias information clean for this pass. */
2808 memset ((char *) new_reg_base_value
, 0, reg_base_value_size
* sizeof (rtx
));
2810 /* Wipe the reg_seen array clean. */
2811 memset ((char *) reg_seen
, 0, reg_base_value_size
);
2813 /* Mark all hard registers which may contain an address.
2814 The stack, frame and argument pointers may contain an address.
2815 An argument register which can hold a Pmode value may contain
2816 an address even if it is not in BASE_REGS.
2818 The address expression is VOIDmode for an argument and
2819 Pmode for other registers. */
2821 memcpy (new_reg_base_value
, static_reg_base_value
,
2822 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
2824 /* Walk the insns adding values to the new_reg_base_value array. */
2825 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2831 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2832 /* The prologue/epilogue insns are not threaded onto the
2833 insn chain until after reload has completed. Thus,
2834 there is no sense wasting time checking if INSN is in
2835 the prologue/epilogue until after reload has completed. */
2836 if (reload_completed
2837 && prologue_epilogue_contains (insn
))
2841 /* If this insn has a noalias note, process it, Otherwise,
2842 scan for sets. A simple set will have no side effects
2843 which could change the base value of any other register. */
2845 if (GET_CODE (PATTERN (insn
)) == SET
2846 && REG_NOTES (insn
) != 0
2847 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
2848 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
2850 note_stores (PATTERN (insn
), record_set
, NULL
);
2852 set
= single_set (insn
);
2855 && GET_CODE (SET_DEST (set
)) == REG
2856 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
2858 unsigned int regno
= REGNO (SET_DEST (set
));
2859 rtx src
= SET_SRC (set
);
2861 if (REG_NOTES (insn
) != 0
2862 && (((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
2863 && REG_N_SETS (regno
) == 1)
2864 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != 0)
2865 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
2866 && ! rtx_varies_p (XEXP (note
, 0), 1)
2867 && ! reg_overlap_mentioned_p (SET_DEST (set
), XEXP (note
, 0)))
2869 reg_known_value
[regno
] = XEXP (note
, 0);
2870 reg_known_equiv_p
[regno
] = REG_NOTE_KIND (note
) == REG_EQUIV
;
2872 else if (REG_N_SETS (regno
) == 1
2873 && GET_CODE (src
) == PLUS
2874 && GET_CODE (XEXP (src
, 0)) == REG
2875 && REGNO (XEXP (src
, 0)) >= FIRST_PSEUDO_REGISTER
2876 && (reg_known_value
[REGNO (XEXP (src
, 0))])
2877 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
2879 rtx op0
= XEXP (src
, 0);
2880 op0
= reg_known_value
[REGNO (op0
)];
2881 reg_known_value
[regno
]
2882 = plus_constant (op0
, INTVAL (XEXP (src
, 1)));
2883 reg_known_equiv_p
[regno
] = 0;
2885 else if (REG_N_SETS (regno
) == 1
2886 && ! rtx_varies_p (src
, 1))
2888 reg_known_value
[regno
] = src
;
2889 reg_known_equiv_p
[regno
] = 0;
2893 else if (GET_CODE (insn
) == NOTE
2894 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
2895 copying_arguments
= false;
2898 /* Now propagate values from new_reg_base_value to reg_base_value. */
2899 for (ui
= 0; ui
< reg_base_value_size
; ui
++)
2901 if (new_reg_base_value
[ui
]
2902 && new_reg_base_value
[ui
] != reg_base_value
[ui
]
2903 && ! rtx_equal_p (new_reg_base_value
[ui
], reg_base_value
[ui
]))
2905 reg_base_value
[ui
] = new_reg_base_value
[ui
];
2910 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
2912 /* Fill in the remaining entries. */
2913 for (i
= FIRST_PSEUDO_REGISTER
; i
< maxreg
; i
++)
2914 if (reg_known_value
[i
] == 0)
2915 reg_known_value
[i
] = regno_reg_rtx
[i
];
2917 /* Simplify the reg_base_value array so that no register refers to
2918 another register, except to special registers indirectly through
2919 ADDRESS expressions.
2921 In theory this loop can take as long as O(registers^2), but unless
2922 there are very long dependency chains it will run in close to linear
2925 This loop may not be needed any longer now that the main loop does
2926 a better job at propagating alias information. */
2932 for (ui
= 0; ui
< reg_base_value_size
; ui
++)
2934 rtx base
= reg_base_value
[ui
];
2935 if (base
&& GET_CODE (base
) == REG
)
2937 unsigned int base_regno
= REGNO (base
);
2938 if (base_regno
== ui
) /* register set from itself */
2939 reg_base_value
[ui
] = 0;
2941 reg_base_value
[ui
] = reg_base_value
[base_regno
];
2946 while (changed
&& pass
< MAX_ALIAS_LOOP_PASSES
);
2949 free (new_reg_base_value
);
2950 new_reg_base_value
= 0;
2956 end_alias_analysis ()
2958 free (reg_known_value
+ FIRST_PSEUDO_REGISTER
);
2959 reg_known_value
= 0;
2960 reg_known_value_size
= 0;
2961 free (reg_known_equiv_p
+ FIRST_PSEUDO_REGISTER
);
2962 reg_known_equiv_p
= 0;
2964 reg_base_value_size
= 0;
2965 if (alias_invariant
)
2967 free (alias_invariant
);
2968 alias_invariant
= 0;
2972 #include "gt-alias.h"