1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
43 CONSTANT -> V_i has been found to hold a constant
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
80 a_11 = PHI (a_9, a_10)
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
103 Constant propagation with conditional branches,
104 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
106 Building an Optimizing Compiler,
107 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
109 Advanced Compiler Design and Implementation,
110 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
114 #include "coretypes.h"
119 #include "basic-block.h"
120 #include "function.h"
121 #include "gimple-pretty-print.h"
122 #include "tree-flow.h"
123 #include "tree-pass.h"
124 #include "tree-ssa-propagate.h"
125 #include "value-prof.h"
126 #include "langhooks.h"
128 #include "diagnostic-core.h"
130 #include "gimple-fold.h"
132 #include "hash-table.h"
135 /* Possible lattice values. */
144 struct prop_value_d
{
146 ccp_lattice_t lattice_val
;
148 /* Propagated value. */
151 /* Mask that applies to the propagated value during CCP. For
152 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
156 typedef struct prop_value_d prop_value_t
;
158 /* Array of propagated constant values. After propagation,
159 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
160 the constant is held in an SSA name representing a memory store
161 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
162 memory reference used to store (i.e., the LHS of the assignment
164 static prop_value_t
*const_val
;
165 static unsigned n_const_val
;
167 static void canonicalize_float_value (prop_value_t
*);
168 static bool ccp_fold_stmt (gimple_stmt_iterator
*);
170 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
173 dump_lattice_value (FILE *outf
, const char *prefix
, prop_value_t val
)
175 switch (val
.lattice_val
)
178 fprintf (outf
, "%sUNINITIALIZED", prefix
);
181 fprintf (outf
, "%sUNDEFINED", prefix
);
184 fprintf (outf
, "%sVARYING", prefix
);
187 if (TREE_CODE (val
.value
) != INTEGER_CST
188 || val
.mask
.is_zero ())
190 fprintf (outf
, "%sCONSTANT ", prefix
);
191 print_generic_expr (outf
, val
.value
, dump_flags
);
195 double_int cval
= tree_to_double_int (val
.value
).and_not (val
.mask
);
196 fprintf (outf
, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
197 prefix
, cval
.high
, cval
.low
);
198 fprintf (outf
, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX
")",
199 val
.mask
.high
, val
.mask
.low
);
208 /* Print lattice value VAL to stderr. */
210 void debug_lattice_value (prop_value_t val
);
213 debug_lattice_value (prop_value_t val
)
215 dump_lattice_value (stderr
, "", val
);
216 fprintf (stderr
, "\n");
220 /* Compute a default value for variable VAR and store it in the
221 CONST_VAL array. The following rules are used to get default
224 1- Global and static variables that are declared constant are
227 2- Any other value is considered UNDEFINED. This is useful when
228 considering PHI nodes. PHI arguments that are undefined do not
229 change the constant value of the PHI node, which allows for more
230 constants to be propagated.
232 3- Variables defined by statements other than assignments and PHI
233 nodes are considered VARYING.
235 4- Initial values of variables that are not GIMPLE registers are
236 considered VARYING. */
239 get_default_value (tree var
)
241 prop_value_t val
= { UNINITIALIZED
, NULL_TREE
, { 0, 0 } };
244 stmt
= SSA_NAME_DEF_STMT (var
);
246 if (gimple_nop_p (stmt
))
248 /* Variables defined by an empty statement are those used
249 before being initialized. If VAR is a local variable, we
250 can assume initially that it is UNDEFINED, otherwise we must
251 consider it VARYING. */
252 if (!virtual_operand_p (var
)
253 && TREE_CODE (SSA_NAME_VAR (var
)) == VAR_DECL
)
254 val
.lattice_val
= UNDEFINED
;
257 val
.lattice_val
= VARYING
;
258 val
.mask
= double_int_minus_one
;
261 else if (is_gimple_assign (stmt
)
262 /* Value-returning GIMPLE_CALL statements assign to
263 a variable, and are treated similarly to GIMPLE_ASSIGN. */
264 || (is_gimple_call (stmt
)
265 && gimple_call_lhs (stmt
) != NULL_TREE
)
266 || gimple_code (stmt
) == GIMPLE_PHI
)
269 if (gimple_assign_single_p (stmt
)
270 && DECL_P (gimple_assign_rhs1 (stmt
))
271 && (cst
= get_symbol_constant_value (gimple_assign_rhs1 (stmt
))))
273 val
.lattice_val
= CONSTANT
;
277 /* Any other variable defined by an assignment or a PHI node
278 is considered UNDEFINED. */
279 val
.lattice_val
= UNDEFINED
;
283 /* Otherwise, VAR will never take on a constant value. */
284 val
.lattice_val
= VARYING
;
285 val
.mask
= double_int_minus_one
;
292 /* Get the constant value associated with variable VAR. */
294 static inline prop_value_t
*
299 if (const_val
== NULL
300 || SSA_NAME_VERSION (var
) >= n_const_val
)
303 val
= &const_val
[SSA_NAME_VERSION (var
)];
304 if (val
->lattice_val
== UNINITIALIZED
)
305 *val
= get_default_value (var
);
307 canonicalize_float_value (val
);
312 /* Return the constant tree value associated with VAR. */
315 get_constant_value (tree var
)
318 if (TREE_CODE (var
) != SSA_NAME
)
320 if (is_gimple_min_invariant (var
))
324 val
= get_value (var
);
326 && val
->lattice_val
== CONSTANT
327 && (TREE_CODE (val
->value
) != INTEGER_CST
328 || val
->mask
.is_zero ()))
333 /* Sets the value associated with VAR to VARYING. */
336 set_value_varying (tree var
)
338 prop_value_t
*val
= &const_val
[SSA_NAME_VERSION (var
)];
340 val
->lattice_val
= VARYING
;
341 val
->value
= NULL_TREE
;
342 val
->mask
= double_int_minus_one
;
345 /* For float types, modify the value of VAL to make ccp work correctly
346 for non-standard values (-0, NaN):
348 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
349 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
350 This is to fix the following problem (see PR 29921): Suppose we have
354 and we set value of y to NaN. This causes value of x to be set to NaN.
355 When we later determine that y is in fact VARYING, fold uses the fact
356 that HONOR_NANS is false, and we try to change the value of x to 0,
357 causing an ICE. With HONOR_NANS being false, the real appearance of
358 NaN would cause undefined behavior, though, so claiming that y (and x)
359 are UNDEFINED initially is correct. */
362 canonicalize_float_value (prop_value_t
*val
)
364 enum machine_mode mode
;
368 if (val
->lattice_val
!= CONSTANT
369 || TREE_CODE (val
->value
) != REAL_CST
)
372 d
= TREE_REAL_CST (val
->value
);
373 type
= TREE_TYPE (val
->value
);
374 mode
= TYPE_MODE (type
);
376 if (!HONOR_SIGNED_ZEROS (mode
)
377 && REAL_VALUE_MINUS_ZERO (d
))
379 val
->value
= build_real (type
, dconst0
);
383 if (!HONOR_NANS (mode
)
384 && REAL_VALUE_ISNAN (d
))
386 val
->lattice_val
= UNDEFINED
;
392 /* Return whether the lattice transition is valid. */
395 valid_lattice_transition (prop_value_t old_val
, prop_value_t new_val
)
397 /* Lattice transitions must always be monotonically increasing in
399 if (old_val
.lattice_val
< new_val
.lattice_val
)
402 if (old_val
.lattice_val
!= new_val
.lattice_val
)
405 if (!old_val
.value
&& !new_val
.value
)
408 /* Now both lattice values are CONSTANT. */
410 /* Allow transitioning from PHI <&x, not executable> == &x
411 to PHI <&x, &y> == common alignment. */
412 if (TREE_CODE (old_val
.value
) != INTEGER_CST
413 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
416 /* Bit-lattices have to agree in the still valid bits. */
417 if (TREE_CODE (old_val
.value
) == INTEGER_CST
418 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
419 return tree_to_double_int (old_val
.value
).and_not (new_val
.mask
)
420 == tree_to_double_int (new_val
.value
).and_not (new_val
.mask
);
422 /* Otherwise constant values have to agree. */
423 return operand_equal_p (old_val
.value
, new_val
.value
, 0);
426 /* Set the value for variable VAR to NEW_VAL. Return true if the new
427 value is different from VAR's previous value. */
430 set_lattice_value (tree var
, prop_value_t new_val
)
432 /* We can deal with old UNINITIALIZED values just fine here. */
433 prop_value_t
*old_val
= &const_val
[SSA_NAME_VERSION (var
)];
435 canonicalize_float_value (&new_val
);
437 /* We have to be careful to not go up the bitwise lattice
438 represented by the mask.
439 ??? This doesn't seem to be the best place to enforce this. */
440 if (new_val
.lattice_val
== CONSTANT
441 && old_val
->lattice_val
== CONSTANT
442 && TREE_CODE (new_val
.value
) == INTEGER_CST
443 && TREE_CODE (old_val
->value
) == INTEGER_CST
)
446 diff
= tree_to_double_int (new_val
.value
)
447 ^ tree_to_double_int (old_val
->value
);
448 new_val
.mask
= new_val
.mask
| old_val
->mask
| diff
;
451 gcc_assert (valid_lattice_transition (*old_val
, new_val
));
453 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
454 caller that this was a non-transition. */
455 if (old_val
->lattice_val
!= new_val
.lattice_val
456 || (new_val
.lattice_val
== CONSTANT
457 && TREE_CODE (new_val
.value
) == INTEGER_CST
458 && (TREE_CODE (old_val
->value
) != INTEGER_CST
459 || new_val
.mask
!= old_val
->mask
)))
461 /* ??? We would like to delay creation of INTEGER_CSTs from
462 partially constants here. */
464 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
466 dump_lattice_value (dump_file
, "Lattice value changed to ", new_val
);
467 fprintf (dump_file
, ". Adding SSA edges to worklist.\n");
472 gcc_assert (new_val
.lattice_val
!= UNINITIALIZED
);
479 static prop_value_t
get_value_for_expr (tree
, bool);
480 static prop_value_t
bit_value_binop (enum tree_code
, tree
, tree
, tree
);
481 static void bit_value_binop_1 (enum tree_code
, tree
, double_int
*, double_int
*,
482 tree
, double_int
, double_int
,
483 tree
, double_int
, double_int
);
485 /* Return a double_int that can be used for bitwise simplifications
489 value_to_double_int (prop_value_t val
)
492 && TREE_CODE (val
.value
) == INTEGER_CST
)
493 return tree_to_double_int (val
.value
);
495 return double_int_zero
;
498 /* Return the value for the address expression EXPR based on alignment
502 get_value_from_alignment (tree expr
)
504 tree type
= TREE_TYPE (expr
);
506 unsigned HOST_WIDE_INT bitpos
;
509 gcc_assert (TREE_CODE (expr
) == ADDR_EXPR
);
511 get_pointer_alignment_1 (expr
, &align
, &bitpos
);
512 val
.mask
= (POINTER_TYPE_P (type
) || TYPE_UNSIGNED (type
)
513 ? double_int::mask (TYPE_PRECISION (type
))
514 : double_int_minus_one
)
515 .and_not (double_int::from_uhwi (align
/ BITS_PER_UNIT
- 1));
516 val
.lattice_val
= val
.mask
.is_minus_one () ? VARYING
: CONSTANT
;
517 if (val
.lattice_val
== CONSTANT
)
519 = double_int_to_tree (type
,
520 double_int::from_uhwi (bitpos
/ BITS_PER_UNIT
));
522 val
.value
= NULL_TREE
;
527 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
528 return constant bits extracted from alignment information for
529 invariant addresses. */
532 get_value_for_expr (tree expr
, bool for_bits_p
)
536 if (TREE_CODE (expr
) == SSA_NAME
)
538 val
= *get_value (expr
);
540 && val
.lattice_val
== CONSTANT
541 && TREE_CODE (val
.value
) == ADDR_EXPR
)
542 val
= get_value_from_alignment (val
.value
);
544 else if (is_gimple_min_invariant (expr
)
545 && (!for_bits_p
|| TREE_CODE (expr
) != ADDR_EXPR
))
547 val
.lattice_val
= CONSTANT
;
549 val
.mask
= double_int_zero
;
550 canonicalize_float_value (&val
);
552 else if (TREE_CODE (expr
) == ADDR_EXPR
)
553 val
= get_value_from_alignment (expr
);
556 val
.lattice_val
= VARYING
;
557 val
.mask
= double_int_minus_one
;
558 val
.value
= NULL_TREE
;
563 /* Return the likely CCP lattice value for STMT.
565 If STMT has no operands, then return CONSTANT.
567 Else if undefinedness of operands of STMT cause its value to be
568 undefined, then return UNDEFINED.
570 Else if any operands of STMT are constants, then return CONSTANT.
572 Else return VARYING. */
575 likely_value (gimple stmt
)
577 bool has_constant_operand
, has_undefined_operand
, all_undefined_operands
;
582 enum gimple_code code
= gimple_code (stmt
);
584 /* This function appears to be called only for assignments, calls,
585 conditionals, and switches, due to the logic in visit_stmt. */
586 gcc_assert (code
== GIMPLE_ASSIGN
587 || code
== GIMPLE_CALL
588 || code
== GIMPLE_COND
589 || code
== GIMPLE_SWITCH
);
591 /* If the statement has volatile operands, it won't fold to a
593 if (gimple_has_volatile_ops (stmt
))
596 /* Arrive here for more complex cases. */
597 has_constant_operand
= false;
598 has_undefined_operand
= false;
599 all_undefined_operands
= true;
600 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
602 prop_value_t
*val
= get_value (use
);
604 if (val
->lattice_val
== UNDEFINED
)
605 has_undefined_operand
= true;
607 all_undefined_operands
= false;
609 if (val
->lattice_val
== CONSTANT
)
610 has_constant_operand
= true;
613 /* There may be constants in regular rhs operands. For calls we
614 have to ignore lhs, fndecl and static chain, otherwise only
616 for (i
= (is_gimple_call (stmt
) ? 2 : 0) + gimple_has_lhs (stmt
);
617 i
< gimple_num_ops (stmt
); ++i
)
619 tree op
= gimple_op (stmt
, i
);
620 if (!op
|| TREE_CODE (op
) == SSA_NAME
)
622 if (is_gimple_min_invariant (op
))
623 has_constant_operand
= true;
626 if (has_constant_operand
)
627 all_undefined_operands
= false;
629 /* If the operation combines operands like COMPLEX_EXPR make sure to
630 not mark the result UNDEFINED if only one part of the result is
632 if (has_undefined_operand
&& all_undefined_operands
)
634 else if (code
== GIMPLE_ASSIGN
&& has_undefined_operand
)
636 switch (gimple_assign_rhs_code (stmt
))
638 /* Unary operators are handled with all_undefined_operands. */
641 case POINTER_PLUS_EXPR
:
642 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
643 Not bitwise operators, one VARYING operand may specify the
644 result completely. Not logical operators for the same reason.
645 Not COMPLEX_EXPR as one VARYING operand makes the result partly
646 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
647 the undefined operand may be promoted. */
651 /* If any part of an address is UNDEFINED, like the index
652 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
659 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
660 fall back to CONSTANT. During iteration UNDEFINED may still drop
662 if (has_undefined_operand
)
665 /* We do not consider virtual operands here -- load from read-only
666 memory may have only VARYING virtual operands, but still be
668 if (has_constant_operand
669 || gimple_references_memory_p (stmt
))
675 /* Returns true if STMT cannot be constant. */
678 surely_varying_stmt_p (gimple stmt
)
680 /* If the statement has operands that we cannot handle, it cannot be
682 if (gimple_has_volatile_ops (stmt
))
685 /* If it is a call and does not return a value or is not a
686 builtin and not an indirect call, it is varying. */
687 if (is_gimple_call (stmt
))
690 if (!gimple_call_lhs (stmt
)
691 || ((fndecl
= gimple_call_fndecl (stmt
)) != NULL_TREE
692 && !DECL_BUILT_IN (fndecl
)))
696 /* Any other store operation is not interesting. */
697 else if (gimple_vdef (stmt
))
700 /* Anything other than assignments and conditional jumps are not
701 interesting for CCP. */
702 if (gimple_code (stmt
) != GIMPLE_ASSIGN
703 && gimple_code (stmt
) != GIMPLE_COND
704 && gimple_code (stmt
) != GIMPLE_SWITCH
705 && gimple_code (stmt
) != GIMPLE_CALL
)
711 /* Initialize local data structures for CCP. */
714 ccp_initialize (void)
718 n_const_val
= num_ssa_names
;
719 const_val
= XCNEWVEC (prop_value_t
, n_const_val
);
721 /* Initialize simulation flags for PHI nodes and statements. */
724 gimple_stmt_iterator i
;
726 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
728 gimple stmt
= gsi_stmt (i
);
731 /* If the statement is a control insn, then we do not
732 want to avoid simulating the statement once. Failure
733 to do so means that those edges will never get added. */
734 if (stmt_ends_bb_p (stmt
))
737 is_varying
= surely_varying_stmt_p (stmt
);
744 /* If the statement will not produce a constant, mark
745 all its outputs VARYING. */
746 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
747 set_value_varying (def
);
749 prop_set_simulate_again (stmt
, !is_varying
);
753 /* Now process PHI nodes. We never clear the simulate_again flag on
754 phi nodes, since we do not know which edges are executable yet,
755 except for phi nodes for virtual operands when we do not do store ccp. */
758 gimple_stmt_iterator i
;
760 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
762 gimple phi
= gsi_stmt (i
);
764 if (virtual_operand_p (gimple_phi_result (phi
)))
765 prop_set_simulate_again (phi
, false);
767 prop_set_simulate_again (phi
, true);
772 /* Debug count support. Reset the values of ssa names
773 VARYING when the total number ssa names analyzed is
774 beyond the debug count specified. */
780 for (i
= 0; i
< num_ssa_names
; i
++)
784 const_val
[i
].lattice_val
= VARYING
;
785 const_val
[i
].mask
= double_int_minus_one
;
786 const_val
[i
].value
= NULL_TREE
;
792 /* Do final substitution of propagated values, cleanup the flowgraph and
793 free allocated storage.
795 Return TRUE when something was optimized. */
800 bool something_changed
;
805 /* Derive alignment and misalignment information from partially
806 constant pointers in the lattice. */
807 for (i
= 1; i
< num_ssa_names
; ++i
)
809 tree name
= ssa_name (i
);
811 unsigned int tem
, align
;
814 || !POINTER_TYPE_P (TREE_TYPE (name
)))
817 val
= get_value (name
);
818 if (val
->lattice_val
!= CONSTANT
819 || TREE_CODE (val
->value
) != INTEGER_CST
)
822 /* Trailing constant bits specify the alignment, trailing value
823 bits the misalignment. */
825 align
= (tem
& -tem
);
827 set_ptr_info_alignment (get_ptr_info (name
), align
,
828 TREE_INT_CST_LOW (val
->value
) & (align
- 1));
831 /* Perform substitutions based on the known constant values. */
832 something_changed
= substitute_and_fold (get_constant_value
,
833 ccp_fold_stmt
, true);
837 return something_changed
;;
841 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
844 any M UNDEFINED = any
845 any M VARYING = VARYING
846 Ci M Cj = Ci if (i == j)
847 Ci M Cj = VARYING if (i != j)
851 ccp_lattice_meet (prop_value_t
*val1
, prop_value_t
*val2
)
853 if (val1
->lattice_val
== UNDEFINED
)
855 /* UNDEFINED M any = any */
858 else if (val2
->lattice_val
== UNDEFINED
)
860 /* any M UNDEFINED = any
861 Nothing to do. VAL1 already contains the value we want. */
864 else if (val1
->lattice_val
== VARYING
865 || val2
->lattice_val
== VARYING
)
867 /* any M VARYING = VARYING. */
868 val1
->lattice_val
= VARYING
;
869 val1
->mask
= double_int_minus_one
;
870 val1
->value
= NULL_TREE
;
872 else if (val1
->lattice_val
== CONSTANT
873 && val2
->lattice_val
== CONSTANT
874 && TREE_CODE (val1
->value
) == INTEGER_CST
875 && TREE_CODE (val2
->value
) == INTEGER_CST
)
877 /* Ci M Cj = Ci if (i == j)
878 Ci M Cj = VARYING if (i != j)
880 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
882 val1
->mask
= val1
->mask
| val2
->mask
883 | (tree_to_double_int (val1
->value
)
884 ^ tree_to_double_int (val2
->value
));
885 if (val1
->mask
.is_minus_one ())
887 val1
->lattice_val
= VARYING
;
888 val1
->value
= NULL_TREE
;
891 else if (val1
->lattice_val
== CONSTANT
892 && val2
->lattice_val
== CONSTANT
893 && simple_cst_equal (val1
->value
, val2
->value
) == 1)
895 /* Ci M Cj = Ci if (i == j)
896 Ci M Cj = VARYING if (i != j)
898 VAL1 already contains the value we want for equivalent values. */
900 else if (val1
->lattice_val
== CONSTANT
901 && val2
->lattice_val
== CONSTANT
902 && (TREE_CODE (val1
->value
) == ADDR_EXPR
903 || TREE_CODE (val2
->value
) == ADDR_EXPR
))
905 /* When not equal addresses are involved try meeting for
907 prop_value_t tem
= *val2
;
908 if (TREE_CODE (val1
->value
) == ADDR_EXPR
)
909 *val1
= get_value_for_expr (val1
->value
, true);
910 if (TREE_CODE (val2
->value
) == ADDR_EXPR
)
911 tem
= get_value_for_expr (val2
->value
, true);
912 ccp_lattice_meet (val1
, &tem
);
916 /* Any other combination is VARYING. */
917 val1
->lattice_val
= VARYING
;
918 val1
->mask
= double_int_minus_one
;
919 val1
->value
= NULL_TREE
;
924 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
925 lattice values to determine PHI_NODE's lattice value. The value of a
926 PHI node is determined calling ccp_lattice_meet with all the arguments
927 of the PHI node that are incoming via executable edges. */
929 static enum ssa_prop_result
930 ccp_visit_phi_node (gimple phi
)
933 prop_value_t
*old_val
, new_val
;
935 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
937 fprintf (dump_file
, "\nVisiting PHI node: ");
938 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
941 old_val
= get_value (gimple_phi_result (phi
));
942 switch (old_val
->lattice_val
)
945 return SSA_PROP_VARYING
;
952 new_val
.lattice_val
= UNDEFINED
;
953 new_val
.value
= NULL_TREE
;
960 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
962 /* Compute the meet operator over all the PHI arguments flowing
963 through executable edges. */
964 edge e
= gimple_phi_arg_edge (phi
, i
);
966 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
969 "\n Argument #%d (%d -> %d %sexecutable)\n",
970 i
, e
->src
->index
, e
->dest
->index
,
971 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
974 /* If the incoming edge is executable, Compute the meet operator for
975 the existing value of the PHI node and the current PHI argument. */
976 if (e
->flags
& EDGE_EXECUTABLE
)
978 tree arg
= gimple_phi_arg (phi
, i
)->def
;
979 prop_value_t arg_val
= get_value_for_expr (arg
, false);
981 ccp_lattice_meet (&new_val
, &arg_val
);
983 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
985 fprintf (dump_file
, "\t");
986 print_generic_expr (dump_file
, arg
, dump_flags
);
987 dump_lattice_value (dump_file
, "\tValue: ", arg_val
);
988 fprintf (dump_file
, "\n");
991 if (new_val
.lattice_val
== VARYING
)
996 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
998 dump_lattice_value (dump_file
, "\n PHI node value: ", new_val
);
999 fprintf (dump_file
, "\n\n");
1002 /* Make the transition to the new value. */
1003 if (set_lattice_value (gimple_phi_result (phi
), new_val
))
1005 if (new_val
.lattice_val
== VARYING
)
1006 return SSA_PROP_VARYING
;
1008 return SSA_PROP_INTERESTING
;
1011 return SSA_PROP_NOT_INTERESTING
;
1014 /* Return the constant value for OP or OP otherwise. */
1017 valueize_op (tree op
)
1019 if (TREE_CODE (op
) == SSA_NAME
)
1021 tree tem
= get_constant_value (op
);
1028 /* CCP specific front-end to the non-destructive constant folding
1031 Attempt to simplify the RHS of STMT knowing that one or more
1032 operands are constants.
1034 If simplification is possible, return the simplified RHS,
1035 otherwise return the original RHS or NULL_TREE. */
1038 ccp_fold (gimple stmt
)
1040 location_t loc
= gimple_location (stmt
);
1041 switch (gimple_code (stmt
))
1045 /* Handle comparison operators that can appear in GIMPLE form. */
1046 tree op0
= valueize_op (gimple_cond_lhs (stmt
));
1047 tree op1
= valueize_op (gimple_cond_rhs (stmt
));
1048 enum tree_code code
= gimple_cond_code (stmt
);
1049 return fold_binary_loc (loc
, code
, boolean_type_node
, op0
, op1
);
1054 /* Return the constant switch index. */
1055 return valueize_op (gimple_switch_index (stmt
));
1060 return gimple_fold_stmt_to_constant_1 (stmt
, valueize_op
);
1067 /* Apply the operation CODE in type TYPE to the value, mask pair
1068 RVAL and RMASK representing a value of type RTYPE and set
1069 the value, mask pair *VAL and *MASK to the result. */
1072 bit_value_unop_1 (enum tree_code code
, tree type
,
1073 double_int
*val
, double_int
*mask
,
1074 tree rtype
, double_int rval
, double_int rmask
)
1085 double_int temv
, temm
;
1086 /* Return ~rval + 1. */
1087 bit_value_unop_1 (BIT_NOT_EXPR
, type
, &temv
, &temm
, type
, rval
, rmask
);
1088 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1090 type
, double_int_one
, double_int_zero
);
1098 /* First extend mask and value according to the original type. */
1099 uns
= TYPE_UNSIGNED (rtype
);
1100 *mask
= rmask
.ext (TYPE_PRECISION (rtype
), uns
);
1101 *val
= rval
.ext (TYPE_PRECISION (rtype
), uns
);
1103 /* Then extend mask and value according to the target type. */
1104 uns
= TYPE_UNSIGNED (type
);
1105 *mask
= (*mask
).ext (TYPE_PRECISION (type
), uns
);
1106 *val
= (*val
).ext (TYPE_PRECISION (type
), uns
);
1111 *mask
= double_int_minus_one
;
1116 /* Apply the operation CODE in type TYPE to the value, mask pairs
1117 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1118 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1121 bit_value_binop_1 (enum tree_code code
, tree type
,
1122 double_int
*val
, double_int
*mask
,
1123 tree r1type
, double_int r1val
, double_int r1mask
,
1124 tree r2type
, double_int r2val
, double_int r2mask
)
1126 bool uns
= TYPE_UNSIGNED (type
);
1127 /* Assume we'll get a constant result. Use an initial varying value,
1128 we fall back to varying in the end if necessary. */
1129 *mask
= double_int_minus_one
;
1133 /* The mask is constant where there is a known not
1134 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1135 *mask
= (r1mask
| r2mask
) & (r1val
| r1mask
) & (r2val
| r2mask
);
1136 *val
= r1val
& r2val
;
1140 /* The mask is constant where there is a known
1141 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1142 *mask
= (r1mask
| r2mask
)
1143 .and_not (r1val
.and_not (r1mask
) | r2val
.and_not (r2mask
));
1144 *val
= r1val
| r2val
;
1149 *mask
= r1mask
| r2mask
;
1150 *val
= r1val
^ r2val
;
1155 if (r2mask
.is_zero ())
1157 HOST_WIDE_INT shift
= r2val
.low
;
1158 if (code
== RROTATE_EXPR
)
1160 *mask
= r1mask
.lrotate (shift
, TYPE_PRECISION (type
));
1161 *val
= r1val
.lrotate (shift
, TYPE_PRECISION (type
));
1167 /* ??? We can handle partially known shift counts if we know
1168 its sign. That way we can tell that (x << (y | 8)) & 255
1170 if (r2mask
.is_zero ())
1172 HOST_WIDE_INT shift
= r2val
.low
;
1173 if (code
== RSHIFT_EXPR
)
1175 /* We need to know if we are doing a left or a right shift
1176 to properly shift in zeros for left shift and unsigned
1177 right shifts and the sign bit for signed right shifts.
1178 For signed right shifts we shift in varying in case
1179 the sign bit was varying. */
1182 *mask
= r1mask
.llshift (shift
, TYPE_PRECISION (type
));
1183 *val
= r1val
.llshift (shift
, TYPE_PRECISION (type
));
1188 *mask
= r1mask
.rshift (shift
, TYPE_PRECISION (type
), !uns
);
1189 *val
= r1val
.rshift (shift
, TYPE_PRECISION (type
), !uns
);
1200 case POINTER_PLUS_EXPR
:
1203 /* Do the addition with unknown bits set to zero, to give carry-ins of
1204 zero wherever possible. */
1205 lo
= r1val
.and_not (r1mask
) + r2val
.and_not (r2mask
);
1206 lo
= lo
.ext (TYPE_PRECISION (type
), uns
);
1207 /* Do the addition with unknown bits set to one, to give carry-ins of
1208 one wherever possible. */
1209 hi
= (r1val
| r1mask
) + (r2val
| r2mask
);
1210 hi
= hi
.ext (TYPE_PRECISION (type
), uns
);
1211 /* Each bit in the result is known if (a) the corresponding bits in
1212 both inputs are known, and (b) the carry-in to that bit position
1213 is known. We can check condition (b) by seeing if we got the same
1214 result with minimised carries as with maximised carries. */
1215 *mask
= r1mask
| r2mask
| (lo
^ hi
);
1216 *mask
= (*mask
).ext (TYPE_PRECISION (type
), uns
);
1217 /* It shouldn't matter whether we choose lo or hi here. */
1224 double_int temv
, temm
;
1225 bit_value_unop_1 (NEGATE_EXPR
, r2type
, &temv
, &temm
,
1226 r2type
, r2val
, r2mask
);
1227 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1228 r1type
, r1val
, r1mask
,
1229 r2type
, temv
, temm
);
1235 /* Just track trailing zeros in both operands and transfer
1236 them to the other. */
1237 int r1tz
= (r1val
| r1mask
).trailing_zeros ();
1238 int r2tz
= (r2val
| r2mask
).trailing_zeros ();
1239 if (r1tz
+ r2tz
>= HOST_BITS_PER_DOUBLE_INT
)
1241 *mask
= double_int_zero
;
1242 *val
= double_int_zero
;
1244 else if (r1tz
+ r2tz
> 0)
1246 *mask
= ~double_int::mask (r1tz
+ r2tz
);
1247 *mask
= (*mask
).ext (TYPE_PRECISION (type
), uns
);
1248 *val
= double_int_zero
;
1256 double_int m
= r1mask
| r2mask
;
1257 if (r1val
.and_not (m
) != r2val
.and_not (m
))
1259 *mask
= double_int_zero
;
1260 *val
= ((code
== EQ_EXPR
) ? double_int_zero
: double_int_one
);
1264 /* We know the result of a comparison is always one or zero. */
1265 *mask
= double_int_one
;
1266 *val
= double_int_zero
;
1274 double_int tem
= r1val
;
1280 code
= swap_tree_comparison (code
);
1287 /* If the most significant bits are not known we know nothing. */
1288 if (r1mask
.is_negative () || r2mask
.is_negative ())
1291 /* For comparisons the signedness is in the comparison operands. */
1292 uns
= TYPE_UNSIGNED (r1type
);
1294 /* If we know the most significant bits we know the values
1295 value ranges by means of treating varying bits as zero
1296 or one. Do a cross comparison of the max/min pairs. */
1297 maxmin
= (r1val
| r1mask
).cmp (r2val
.and_not (r2mask
), uns
);
1298 minmax
= r1val
.and_not (r1mask
).cmp (r2val
| r2mask
, uns
);
1299 if (maxmin
< 0) /* r1 is less than r2. */
1301 *mask
= double_int_zero
;
1302 *val
= double_int_one
;
1304 else if (minmax
> 0) /* r1 is not less or equal to r2. */
1306 *mask
= double_int_zero
;
1307 *val
= double_int_zero
;
1309 else if (maxmin
== minmax
) /* r1 and r2 are equal. */
1311 /* This probably should never happen as we'd have
1312 folded the thing during fully constant value folding. */
1313 *mask
= double_int_zero
;
1314 *val
= (code
== LE_EXPR
? double_int_one
: double_int_zero
);
1318 /* We know the result of a comparison is always one or zero. */
1319 *mask
= double_int_one
;
1320 *val
= double_int_zero
;
1329 /* Return the propagation value when applying the operation CODE to
1330 the value RHS yielding type TYPE. */
1333 bit_value_unop (enum tree_code code
, tree type
, tree rhs
)
1335 prop_value_t rval
= get_value_for_expr (rhs
, true);
1336 double_int value
, mask
;
1339 if (rval
.lattice_val
== UNDEFINED
)
1342 gcc_assert ((rval
.lattice_val
== CONSTANT
1343 && TREE_CODE (rval
.value
) == INTEGER_CST
)
1344 || rval
.mask
.is_minus_one ());
1345 bit_value_unop_1 (code
, type
, &value
, &mask
,
1346 TREE_TYPE (rhs
), value_to_double_int (rval
), rval
.mask
);
1347 if (!mask
.is_minus_one ())
1349 val
.lattice_val
= CONSTANT
;
1351 /* ??? Delay building trees here. */
1352 val
.value
= double_int_to_tree (type
, value
);
1356 val
.lattice_val
= VARYING
;
1357 val
.value
= NULL_TREE
;
1358 val
.mask
= double_int_minus_one
;
1363 /* Return the propagation value when applying the operation CODE to
1364 the values RHS1 and RHS2 yielding type TYPE. */
1367 bit_value_binop (enum tree_code code
, tree type
, tree rhs1
, tree rhs2
)
1369 prop_value_t r1val
= get_value_for_expr (rhs1
, true);
1370 prop_value_t r2val
= get_value_for_expr (rhs2
, true);
1371 double_int value
, mask
;
1374 if (r1val
.lattice_val
== UNDEFINED
1375 || r2val
.lattice_val
== UNDEFINED
)
1377 val
.lattice_val
= VARYING
;
1378 val
.value
= NULL_TREE
;
1379 val
.mask
= double_int_minus_one
;
1383 gcc_assert ((r1val
.lattice_val
== CONSTANT
1384 && TREE_CODE (r1val
.value
) == INTEGER_CST
)
1385 || r1val
.mask
.is_minus_one ());
1386 gcc_assert ((r2val
.lattice_val
== CONSTANT
1387 && TREE_CODE (r2val
.value
) == INTEGER_CST
)
1388 || r2val
.mask
.is_minus_one ());
1389 bit_value_binop_1 (code
, type
, &value
, &mask
,
1390 TREE_TYPE (rhs1
), value_to_double_int (r1val
), r1val
.mask
,
1391 TREE_TYPE (rhs2
), value_to_double_int (r2val
), r2val
.mask
);
1392 if (!mask
.is_minus_one ())
1394 val
.lattice_val
= CONSTANT
;
1396 /* ??? Delay building trees here. */
1397 val
.value
= double_int_to_tree (type
, value
);
1401 val
.lattice_val
= VARYING
;
1402 val
.value
= NULL_TREE
;
1403 val
.mask
= double_int_minus_one
;
1408 /* Return the propagation value when applying __builtin_assume_aligned to
1412 bit_value_assume_aligned (gimple stmt
)
1414 tree ptr
= gimple_call_arg (stmt
, 0), align
, misalign
= NULL_TREE
;
1415 tree type
= TREE_TYPE (ptr
);
1416 unsigned HOST_WIDE_INT aligni
, misaligni
= 0;
1417 prop_value_t ptrval
= get_value_for_expr (ptr
, true);
1418 prop_value_t alignval
;
1419 double_int value
, mask
;
1421 if (ptrval
.lattice_val
== UNDEFINED
)
1423 gcc_assert ((ptrval
.lattice_val
== CONSTANT
1424 && TREE_CODE (ptrval
.value
) == INTEGER_CST
)
1425 || ptrval
.mask
.is_minus_one ());
1426 align
= gimple_call_arg (stmt
, 1);
1427 if (!host_integerp (align
, 1))
1429 aligni
= tree_low_cst (align
, 1);
1431 || (aligni
& (aligni
- 1)) != 0)
1433 if (gimple_call_num_args (stmt
) > 2)
1435 misalign
= gimple_call_arg (stmt
, 2);
1436 if (!host_integerp (misalign
, 1))
1438 misaligni
= tree_low_cst (misalign
, 1);
1439 if (misaligni
>= aligni
)
1442 align
= build_int_cst_type (type
, -aligni
);
1443 alignval
= get_value_for_expr (align
, true);
1444 bit_value_binop_1 (BIT_AND_EXPR
, type
, &value
, &mask
,
1445 type
, value_to_double_int (ptrval
), ptrval
.mask
,
1446 type
, value_to_double_int (alignval
), alignval
.mask
);
1447 if (!mask
.is_minus_one ())
1449 val
.lattice_val
= CONSTANT
;
1451 gcc_assert ((mask
.low
& (aligni
- 1)) == 0);
1452 gcc_assert ((value
.low
& (aligni
- 1)) == 0);
1453 value
.low
|= misaligni
;
1454 /* ??? Delay building trees here. */
1455 val
.value
= double_int_to_tree (type
, value
);
1459 val
.lattice_val
= VARYING
;
1460 val
.value
= NULL_TREE
;
1461 val
.mask
= double_int_minus_one
;
1466 /* Evaluate statement STMT.
1467 Valid only for assignments, calls, conditionals, and switches. */
1470 evaluate_stmt (gimple stmt
)
1473 tree simplified
= NULL_TREE
;
1474 ccp_lattice_t likelyvalue
= likely_value (stmt
);
1475 bool is_constant
= false;
1478 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1480 fprintf (dump_file
, "which is likely ");
1481 switch (likelyvalue
)
1484 fprintf (dump_file
, "CONSTANT");
1487 fprintf (dump_file
, "UNDEFINED");
1490 fprintf (dump_file
, "VARYING");
1494 fprintf (dump_file
, "\n");
1497 /* If the statement is likely to have a CONSTANT result, then try
1498 to fold the statement to determine the constant value. */
1499 /* FIXME. This is the only place that we call ccp_fold.
1500 Since likely_value never returns CONSTANT for calls, we will
1501 not attempt to fold them, including builtins that may profit. */
1502 if (likelyvalue
== CONSTANT
)
1504 fold_defer_overflow_warnings ();
1505 simplified
= ccp_fold (stmt
);
1506 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1507 fold_undefer_overflow_warnings (is_constant
, stmt
, 0);
1510 /* The statement produced a constant value. */
1511 val
.lattice_val
= CONSTANT
;
1512 val
.value
= simplified
;
1513 val
.mask
= double_int_zero
;
1516 /* If the statement is likely to have a VARYING result, then do not
1517 bother folding the statement. */
1518 else if (likelyvalue
== VARYING
)
1520 enum gimple_code code
= gimple_code (stmt
);
1521 if (code
== GIMPLE_ASSIGN
)
1523 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1525 /* Other cases cannot satisfy is_gimple_min_invariant
1527 if (get_gimple_rhs_class (subcode
) == GIMPLE_SINGLE_RHS
)
1528 simplified
= gimple_assign_rhs1 (stmt
);
1530 else if (code
== GIMPLE_SWITCH
)
1531 simplified
= gimple_switch_index (stmt
);
1533 /* These cannot satisfy is_gimple_min_invariant without folding. */
1534 gcc_assert (code
== GIMPLE_CALL
|| code
== GIMPLE_COND
);
1535 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1538 /* The statement produced a constant value. */
1539 val
.lattice_val
= CONSTANT
;
1540 val
.value
= simplified
;
1541 val
.mask
= double_int_zero
;
1545 /* Resort to simplification for bitwise tracking. */
1546 if (flag_tree_bit_ccp
1547 && (likelyvalue
== CONSTANT
|| is_gimple_call (stmt
))
1550 enum gimple_code code
= gimple_code (stmt
);
1551 val
.lattice_val
= VARYING
;
1552 val
.value
= NULL_TREE
;
1553 val
.mask
= double_int_minus_one
;
1554 if (code
== GIMPLE_ASSIGN
)
1556 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1557 tree rhs1
= gimple_assign_rhs1 (stmt
);
1558 switch (get_gimple_rhs_class (subcode
))
1560 case GIMPLE_SINGLE_RHS
:
1561 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1562 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1563 val
= get_value_for_expr (rhs1
, true);
1566 case GIMPLE_UNARY_RHS
:
1567 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1568 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1569 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt
))
1570 || POINTER_TYPE_P (gimple_expr_type (stmt
))))
1571 val
= bit_value_unop (subcode
, gimple_expr_type (stmt
), rhs1
);
1574 case GIMPLE_BINARY_RHS
:
1575 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1576 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1578 tree lhs
= gimple_assign_lhs (stmt
);
1579 tree rhs2
= gimple_assign_rhs2 (stmt
);
1580 val
= bit_value_binop (subcode
,
1581 TREE_TYPE (lhs
), rhs1
, rhs2
);
1588 else if (code
== GIMPLE_COND
)
1590 enum tree_code code
= gimple_cond_code (stmt
);
1591 tree rhs1
= gimple_cond_lhs (stmt
);
1592 tree rhs2
= gimple_cond_rhs (stmt
);
1593 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1594 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1595 val
= bit_value_binop (code
, TREE_TYPE (rhs1
), rhs1
, rhs2
);
1597 else if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
1599 tree fndecl
= gimple_call_fndecl (stmt
);
1600 switch (DECL_FUNCTION_CODE (fndecl
))
1602 case BUILT_IN_MALLOC
:
1603 case BUILT_IN_REALLOC
:
1604 case BUILT_IN_CALLOC
:
1605 case BUILT_IN_STRDUP
:
1606 case BUILT_IN_STRNDUP
:
1607 val
.lattice_val
= CONSTANT
;
1608 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1609 val
.mask
= double_int::from_shwi
1610 (~(((HOST_WIDE_INT
) MALLOC_ABI_ALIGNMENT
)
1611 / BITS_PER_UNIT
- 1));
1614 case BUILT_IN_ALLOCA
:
1615 case BUILT_IN_ALLOCA_WITH_ALIGN
:
1616 align
= (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_ALLOCA_WITH_ALIGN
1617 ? TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1))
1618 : BIGGEST_ALIGNMENT
);
1619 val
.lattice_val
= CONSTANT
;
1620 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1621 val
.mask
= double_int::from_shwi (~(((HOST_WIDE_INT
) align
)
1622 / BITS_PER_UNIT
- 1));
1625 /* These builtins return their first argument, unmodified. */
1626 case BUILT_IN_MEMCPY
:
1627 case BUILT_IN_MEMMOVE
:
1628 case BUILT_IN_MEMSET
:
1629 case BUILT_IN_STRCPY
:
1630 case BUILT_IN_STRNCPY
:
1631 case BUILT_IN_MEMCPY_CHK
:
1632 case BUILT_IN_MEMMOVE_CHK
:
1633 case BUILT_IN_MEMSET_CHK
:
1634 case BUILT_IN_STRCPY_CHK
:
1635 case BUILT_IN_STRNCPY_CHK
:
1636 val
= get_value_for_expr (gimple_call_arg (stmt
, 0), true);
1639 case BUILT_IN_ASSUME_ALIGNED
:
1640 val
= bit_value_assume_aligned (stmt
);
1646 is_constant
= (val
.lattice_val
== CONSTANT
);
1651 /* The statement produced a nonconstant value. If the statement
1652 had UNDEFINED operands, then the result of the statement
1653 should be UNDEFINED. Otherwise, the statement is VARYING. */
1654 if (likelyvalue
== UNDEFINED
)
1656 val
.lattice_val
= likelyvalue
;
1657 val
.mask
= double_int_zero
;
1661 val
.lattice_val
= VARYING
;
1662 val
.mask
= double_int_minus_one
;
1665 val
.value
= NULL_TREE
;
1671 typedef hash_table
<pointer_hash
<gimple_statement_d
> > gimple_htab
;
1673 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1674 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1677 insert_clobber_before_stack_restore (tree saved_val
, tree var
,
1678 gimple_htab
*visited
)
1680 gimple stmt
, clobber_stmt
;
1682 imm_use_iterator iter
;
1683 gimple_stmt_iterator i
;
1686 FOR_EACH_IMM_USE_STMT (stmt
, iter
, saved_val
)
1687 if (gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
1689 clobber
= build_constructor (TREE_TYPE (var
),
1691 TREE_THIS_VOLATILE (clobber
) = 1;
1692 clobber_stmt
= gimple_build_assign (var
, clobber
);
1694 i
= gsi_for_stmt (stmt
);
1695 gsi_insert_before (&i
, clobber_stmt
, GSI_SAME_STMT
);
1697 else if (gimple_code (stmt
) == GIMPLE_PHI
)
1699 if (!visited
->is_created ())
1700 visited
->create (10);
1702 slot
= visited
->find_slot (stmt
, INSERT
);
1707 insert_clobber_before_stack_restore (gimple_phi_result (stmt
), var
,
1711 gcc_assert (is_gimple_debug (stmt
));
1714 /* Advance the iterator to the previous non-debug gimple statement in the same
1715 or dominating basic block. */
1718 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator
*i
)
1722 gsi_prev_nondebug (i
);
1723 while (gsi_end_p (*i
))
1725 dom
= get_immediate_dominator (CDI_DOMINATORS
, i
->bb
);
1726 if (dom
== NULL
|| dom
== ENTRY_BLOCK_PTR
)
1729 *i
= gsi_last_bb (dom
);
1733 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1734 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1736 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1737 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1738 that case the function gives up without inserting the clobbers. */
1741 insert_clobbers_for_var (gimple_stmt_iterator i
, tree var
)
1745 gimple_htab visited
;
1747 for (; !gsi_end_p (i
); gsi_prev_dom_bb_nondebug (&i
))
1749 stmt
= gsi_stmt (i
);
1751 if (!gimple_call_builtin_p (stmt
, BUILT_IN_STACK_SAVE
))
1754 saved_val
= gimple_call_lhs (stmt
);
1755 if (saved_val
== NULL_TREE
)
1758 insert_clobber_before_stack_restore (saved_val
, var
, &visited
);
1762 if (visited
.is_created ())
1766 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1767 fixed-size array and returns the address, if found, otherwise returns
1771 fold_builtin_alloca_with_align (gimple stmt
)
1773 unsigned HOST_WIDE_INT size
, threshold
, n_elem
;
1774 tree lhs
, arg
, block
, var
, elem_type
, array_type
;
1777 lhs
= gimple_call_lhs (stmt
);
1778 if (lhs
== NULL_TREE
)
1781 /* Detect constant argument. */
1782 arg
= get_constant_value (gimple_call_arg (stmt
, 0));
1783 if (arg
== NULL_TREE
1784 || TREE_CODE (arg
) != INTEGER_CST
1785 || !host_integerp (arg
, 1))
1788 size
= TREE_INT_CST_LOW (arg
);
1790 /* Heuristic: don't fold large allocas. */
1791 threshold
= (unsigned HOST_WIDE_INT
)PARAM_VALUE (PARAM_LARGE_STACK_FRAME
);
1792 /* In case the alloca is located at function entry, it has the same lifetime
1793 as a declared array, so we allow a larger size. */
1794 block
= gimple_block (stmt
);
1795 if (!(cfun
->after_inlining
1796 && TREE_CODE (BLOCK_SUPERCONTEXT (block
)) == FUNCTION_DECL
))
1798 if (size
> threshold
)
1801 /* Declare array. */
1802 elem_type
= build_nonstandard_integer_type (BITS_PER_UNIT
, 1);
1803 n_elem
= size
* 8 / BITS_PER_UNIT
;
1804 array_type
= build_array_type_nelts (elem_type
, n_elem
);
1805 var
= create_tmp_var (array_type
, NULL
);
1806 DECL_ALIGN (var
) = TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1));
1808 struct ptr_info_def
*pi
= SSA_NAME_PTR_INFO (lhs
);
1809 if (pi
!= NULL
&& !pi
->pt
.anything
)
1813 singleton_p
= pt_solution_singleton_p (&pi
->pt
, &uid
);
1814 gcc_assert (singleton_p
);
1815 SET_DECL_PT_UID (var
, uid
);
1819 /* Fold alloca to the address of the array. */
1820 return fold_convert (TREE_TYPE (lhs
), build_fold_addr_expr (var
));
1823 /* Fold the stmt at *GSI with CCP specific information that propagating
1824 and regular folding does not catch. */
1827 ccp_fold_stmt (gimple_stmt_iterator
*gsi
)
1829 gimple stmt
= gsi_stmt (*gsi
);
1831 switch (gimple_code (stmt
))
1836 /* Statement evaluation will handle type mismatches in constants
1837 more gracefully than the final propagation. This allows us to
1838 fold more conditionals here. */
1839 val
= evaluate_stmt (stmt
);
1840 if (val
.lattice_val
!= CONSTANT
1841 || !val
.mask
.is_zero ())
1846 fprintf (dump_file
, "Folding predicate ");
1847 print_gimple_expr (dump_file
, stmt
, 0, 0);
1848 fprintf (dump_file
, " to ");
1849 print_generic_expr (dump_file
, val
.value
, 0);
1850 fprintf (dump_file
, "\n");
1853 if (integer_zerop (val
.value
))
1854 gimple_cond_make_false (stmt
);
1856 gimple_cond_make_true (stmt
);
1863 tree lhs
= gimple_call_lhs (stmt
);
1864 int flags
= gimple_call_flags (stmt
);
1867 bool changed
= false;
1870 /* If the call was folded into a constant make sure it goes
1871 away even if we cannot propagate into all uses because of
1874 && TREE_CODE (lhs
) == SSA_NAME
1875 && (val
= get_constant_value (lhs
))
1876 /* Don't optimize away calls that have side-effects. */
1877 && (flags
& (ECF_CONST
|ECF_PURE
)) != 0
1878 && (flags
& ECF_LOOPING_CONST_OR_PURE
) == 0)
1880 tree new_rhs
= unshare_expr (val
);
1882 if (!useless_type_conversion_p (TREE_TYPE (lhs
),
1883 TREE_TYPE (new_rhs
)))
1884 new_rhs
= fold_convert (TREE_TYPE (lhs
), new_rhs
);
1885 res
= update_call_from_tree (gsi
, new_rhs
);
1890 /* Internal calls provide no argument types, so the extra laxity
1891 for normal calls does not apply. */
1892 if (gimple_call_internal_p (stmt
))
1895 /* The heuristic of fold_builtin_alloca_with_align differs before and
1896 after inlining, so we don't require the arg to be changed into a
1897 constant for folding, but just to be constant. */
1898 if (gimple_call_builtin_p (stmt
, BUILT_IN_ALLOCA_WITH_ALIGN
))
1900 tree new_rhs
= fold_builtin_alloca_with_align (stmt
);
1903 bool res
= update_call_from_tree (gsi
, new_rhs
);
1904 tree var
= TREE_OPERAND (TREE_OPERAND (new_rhs
, 0),0);
1906 insert_clobbers_for_var (*gsi
, var
);
1911 /* Propagate into the call arguments. Compared to replace_uses_in
1912 this can use the argument slot types for type verification
1913 instead of the current argument type. We also can safely
1914 drop qualifiers here as we are dealing with constants anyway. */
1915 argt
= TYPE_ARG_TYPES (gimple_call_fntype (stmt
));
1916 for (i
= 0; i
< gimple_call_num_args (stmt
) && argt
;
1917 ++i
, argt
= TREE_CHAIN (argt
))
1919 tree arg
= gimple_call_arg (stmt
, i
);
1920 if (TREE_CODE (arg
) == SSA_NAME
1921 && (val
= get_constant_value (arg
))
1922 && useless_type_conversion_p
1923 (TYPE_MAIN_VARIANT (TREE_VALUE (argt
)),
1924 TYPE_MAIN_VARIANT (TREE_TYPE (val
))))
1926 gimple_call_set_arg (stmt
, i
, unshare_expr (val
));
1936 tree lhs
= gimple_assign_lhs (stmt
);
1939 /* If we have a load that turned out to be constant replace it
1940 as we cannot propagate into all uses in all cases. */
1941 if (gimple_assign_single_p (stmt
)
1942 && TREE_CODE (lhs
) == SSA_NAME
1943 && (val
= get_constant_value (lhs
)))
1945 tree rhs
= unshare_expr (val
);
1946 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
1947 rhs
= fold_build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (lhs
), rhs
);
1948 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1960 /* Visit the assignment statement STMT. Set the value of its LHS to the
1961 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1962 creates virtual definitions, set the value of each new name to that
1963 of the RHS (if we can derive a constant out of the RHS).
1964 Value-returning call statements also perform an assignment, and
1965 are handled here. */
1967 static enum ssa_prop_result
1968 visit_assignment (gimple stmt
, tree
*output_p
)
1971 enum ssa_prop_result retval
;
1973 tree lhs
= gimple_get_lhs (stmt
);
1975 gcc_assert (gimple_code (stmt
) != GIMPLE_CALL
1976 || gimple_call_lhs (stmt
) != NULL_TREE
);
1978 if (gimple_assign_single_p (stmt
)
1979 && gimple_assign_rhs_code (stmt
) == SSA_NAME
)
1980 /* For a simple copy operation, we copy the lattice values. */
1981 val
= *get_value (gimple_assign_rhs1 (stmt
));
1983 /* Evaluate the statement, which could be
1984 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1985 val
= evaluate_stmt (stmt
);
1987 retval
= SSA_PROP_NOT_INTERESTING
;
1989 /* Set the lattice value of the statement's output. */
1990 if (TREE_CODE (lhs
) == SSA_NAME
)
1992 /* If STMT is an assignment to an SSA_NAME, we only have one
1994 if (set_lattice_value (lhs
, val
))
1997 if (val
.lattice_val
== VARYING
)
1998 retval
= SSA_PROP_VARYING
;
2000 retval
= SSA_PROP_INTERESTING
;
2008 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2009 if it can determine which edge will be taken. Otherwise, return
2010 SSA_PROP_VARYING. */
2012 static enum ssa_prop_result
2013 visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
2018 block
= gimple_bb (stmt
);
2019 val
= evaluate_stmt (stmt
);
2020 if (val
.lattice_val
!= CONSTANT
2021 || !val
.mask
.is_zero ())
2022 return SSA_PROP_VARYING
;
2024 /* Find which edge out of the conditional block will be taken and add it
2025 to the worklist. If no single edge can be determined statically,
2026 return SSA_PROP_VARYING to feed all the outgoing edges to the
2027 propagation engine. */
2028 *taken_edge_p
= find_taken_edge (block
, val
.value
);
2030 return SSA_PROP_INTERESTING
;
2032 return SSA_PROP_VARYING
;
2036 /* Evaluate statement STMT. If the statement produces an output value and
2037 its evaluation changes the lattice value of its output, return
2038 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2041 If STMT is a conditional branch and we can determine its truth
2042 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2043 value, return SSA_PROP_VARYING. */
2045 static enum ssa_prop_result
2046 ccp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
2051 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2053 fprintf (dump_file
, "\nVisiting statement:\n");
2054 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2057 switch (gimple_code (stmt
))
2060 /* If the statement is an assignment that produces a single
2061 output value, evaluate its RHS to see if the lattice value of
2062 its output has changed. */
2063 return visit_assignment (stmt
, output_p
);
2066 /* A value-returning call also performs an assignment. */
2067 if (gimple_call_lhs (stmt
) != NULL_TREE
)
2068 return visit_assignment (stmt
, output_p
);
2073 /* If STMT is a conditional branch, see if we can determine
2074 which branch will be taken. */
2075 /* FIXME. It appears that we should be able to optimize
2076 computed GOTOs here as well. */
2077 return visit_cond_stmt (stmt
, taken_edge_p
);
2083 /* Any other kind of statement is not interesting for constant
2084 propagation and, therefore, not worth simulating. */
2085 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2086 fprintf (dump_file
, "No interesting values produced. Marked VARYING.\n");
2088 /* Definitions made by statements other than assignments to
2089 SSA_NAMEs represent unknown modifications to their outputs.
2090 Mark them VARYING. */
2091 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
2093 prop_value_t v
= { VARYING
, NULL_TREE
, { -1, (HOST_WIDE_INT
) -1 } };
2094 set_lattice_value (def
, v
);
2097 return SSA_PROP_VARYING
;
2101 /* Main entry point for SSA Conditional Constant Propagation. */
2106 unsigned int todo
= 0;
2107 calculate_dominance_info (CDI_DOMINATORS
);
2109 ssa_propagate (ccp_visit_stmt
, ccp_visit_phi_node
);
2110 if (ccp_finalize ())
2111 todo
= (TODO_cleanup_cfg
| TODO_update_ssa
);
2112 free_dominance_info (CDI_DOMINATORS
);
2120 return flag_tree_ccp
!= 0;
2124 struct gimple_opt_pass pass_ccp
=
2129 OPTGROUP_NONE
, /* optinfo_flags */
2130 gate_ccp
, /* gate */
2131 do_ssa_ccp
, /* execute */
2134 0, /* static_pass_number */
2135 TV_TREE_CCP
, /* tv_id */
2136 PROP_cfg
| PROP_ssa
, /* properties_required */
2137 0, /* properties_provided */
2138 0, /* properties_destroyed */
2139 0, /* todo_flags_start */
2141 | TODO_update_address_taken
2142 | TODO_verify_stmts
/* todo_flags_finish */
2148 /* Try to optimize out __builtin_stack_restore. Optimize it out
2149 if there is another __builtin_stack_restore in the same basic
2150 block and no calls or ASM_EXPRs are in between, or if this block's
2151 only outgoing edge is to EXIT_BLOCK and there are no calls or
2152 ASM_EXPRs after this __builtin_stack_restore. */
2155 optimize_stack_restore (gimple_stmt_iterator i
)
2160 basic_block bb
= gsi_bb (i
);
2161 gimple call
= gsi_stmt (i
);
2163 if (gimple_code (call
) != GIMPLE_CALL
2164 || gimple_call_num_args (call
) != 1
2165 || TREE_CODE (gimple_call_arg (call
, 0)) != SSA_NAME
2166 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call
, 0))))
2169 for (gsi_next (&i
); !gsi_end_p (i
); gsi_next (&i
))
2171 stmt
= gsi_stmt (i
);
2172 if (gimple_code (stmt
) == GIMPLE_ASM
)
2174 if (gimple_code (stmt
) != GIMPLE_CALL
)
2177 callee
= gimple_call_fndecl (stmt
);
2179 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2180 /* All regular builtins are ok, just obviously not alloca. */
2181 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA
2182 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA_WITH_ALIGN
)
2185 if (DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_RESTORE
)
2186 goto second_stack_restore
;
2192 /* Allow one successor of the exit block, or zero successors. */
2193 switch (EDGE_COUNT (bb
->succs
))
2198 if (single_succ_edge (bb
)->dest
!= EXIT_BLOCK_PTR
)
2204 second_stack_restore
:
2206 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2207 If there are multiple uses, then the last one should remove the call.
2208 In any case, whether the call to __builtin_stack_save can be removed
2209 or not is irrelevant to removing the call to __builtin_stack_restore. */
2210 if (has_single_use (gimple_call_arg (call
, 0)))
2212 gimple stack_save
= SSA_NAME_DEF_STMT (gimple_call_arg (call
, 0));
2213 if (is_gimple_call (stack_save
))
2215 callee
= gimple_call_fndecl (stack_save
);
2217 && DECL_BUILT_IN_CLASS (callee
) == BUILT_IN_NORMAL
2218 && DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_SAVE
)
2220 gimple_stmt_iterator stack_save_gsi
;
2223 stack_save_gsi
= gsi_for_stmt (stack_save
);
2224 rhs
= build_int_cst (TREE_TYPE (gimple_call_arg (call
, 0)), 0);
2225 update_call_from_tree (&stack_save_gsi
, rhs
);
2230 /* No effect, so the statement will be deleted. */
2231 return integer_zero_node
;
2234 /* If va_list type is a simple pointer and nothing special is needed,
2235 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2236 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2237 pointer assignment. */
2240 optimize_stdarg_builtin (gimple call
)
2242 tree callee
, lhs
, rhs
, cfun_va_list
;
2243 bool va_list_simple_ptr
;
2244 location_t loc
= gimple_location (call
);
2246 if (gimple_code (call
) != GIMPLE_CALL
)
2249 callee
= gimple_call_fndecl (call
);
2251 cfun_va_list
= targetm
.fn_abi_va_list (callee
);
2252 va_list_simple_ptr
= POINTER_TYPE_P (cfun_va_list
)
2253 && (TREE_TYPE (cfun_va_list
) == void_type_node
2254 || TREE_TYPE (cfun_va_list
) == char_type_node
);
2256 switch (DECL_FUNCTION_CODE (callee
))
2258 case BUILT_IN_VA_START
:
2259 if (!va_list_simple_ptr
2260 || targetm
.expand_builtin_va_start
!= NULL
2261 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG
))
2264 if (gimple_call_num_args (call
) != 2)
2267 lhs
= gimple_call_arg (call
, 0);
2268 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2269 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2270 != TYPE_MAIN_VARIANT (cfun_va_list
))
2273 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2274 rhs
= build_call_expr_loc (loc
, builtin_decl_explicit (BUILT_IN_NEXT_ARG
),
2275 1, integer_zero_node
);
2276 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2277 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2279 case BUILT_IN_VA_COPY
:
2280 if (!va_list_simple_ptr
)
2283 if (gimple_call_num_args (call
) != 2)
2286 lhs
= gimple_call_arg (call
, 0);
2287 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2288 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2289 != TYPE_MAIN_VARIANT (cfun_va_list
))
2292 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2293 rhs
= gimple_call_arg (call
, 1);
2294 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs
))
2295 != TYPE_MAIN_VARIANT (cfun_va_list
))
2298 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2299 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2301 case BUILT_IN_VA_END
:
2302 /* No effect, so the statement will be deleted. */
2303 return integer_zero_node
;
2310 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2311 the incoming jumps. Return true if at least one jump was changed. */
2314 optimize_unreachable (gimple_stmt_iterator i
)
2316 basic_block bb
= gsi_bb (i
);
2317 gimple_stmt_iterator gsi
;
2323 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2325 stmt
= gsi_stmt (gsi
);
2327 if (is_gimple_debug (stmt
))
2330 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2332 /* Verify we do not need to preserve the label. */
2333 if (FORCED_LABEL (gimple_label_label (stmt
)))
2339 /* Only handle the case that __builtin_unreachable is the first statement
2340 in the block. We rely on DCE to remove stmts without side-effects
2341 before __builtin_unreachable. */
2342 if (gsi_stmt (gsi
) != gsi_stmt (i
))
2347 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2349 gsi
= gsi_last_bb (e
->src
);
2350 if (gsi_end_p (gsi
))
2353 stmt
= gsi_stmt (gsi
);
2354 if (gimple_code (stmt
) == GIMPLE_COND
)
2356 if (e
->flags
& EDGE_TRUE_VALUE
)
2357 gimple_cond_make_false (stmt
);
2358 else if (e
->flags
& EDGE_FALSE_VALUE
)
2359 gimple_cond_make_true (stmt
);
2366 /* Todo: handle other cases, f.i. switch statement. */
2376 /* A simple pass that attempts to fold all builtin functions. This pass
2377 is run after we've propagated as many constants as we can. */
2380 execute_fold_all_builtins (void)
2382 bool cfg_changed
= false;
2384 unsigned int todoflags
= 0;
2388 gimple_stmt_iterator i
;
2389 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
2391 gimple stmt
, old_stmt
;
2392 tree callee
, result
;
2393 enum built_in_function fcode
;
2395 stmt
= gsi_stmt (i
);
2397 if (gimple_code (stmt
) != GIMPLE_CALL
)
2399 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2400 after the last GIMPLE DSE they aren't needed and might
2401 unnecessarily keep the SSA_NAMEs live. */
2402 if (gimple_clobber_p (stmt
))
2404 tree lhs
= gimple_assign_lhs (stmt
);
2405 if (TREE_CODE (lhs
) == MEM_REF
2406 && TREE_CODE (TREE_OPERAND (lhs
, 0)) == SSA_NAME
)
2408 unlink_stmt_vdef (stmt
);
2409 gsi_remove (&i
, true);
2410 release_defs (stmt
);
2417 callee
= gimple_call_fndecl (stmt
);
2418 if (!callee
|| DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
)
2423 fcode
= DECL_FUNCTION_CODE (callee
);
2425 result
= gimple_fold_builtin (stmt
);
2428 gimple_remove_stmt_histograms (cfun
, stmt
);
2431 switch (DECL_FUNCTION_CODE (callee
))
2433 case BUILT_IN_CONSTANT_P
:
2434 /* Resolve __builtin_constant_p. If it hasn't been
2435 folded to integer_one_node by now, it's fairly
2436 certain that the value simply isn't constant. */
2437 result
= integer_zero_node
;
2440 case BUILT_IN_ASSUME_ALIGNED
:
2441 /* Remove __builtin_assume_aligned. */
2442 result
= gimple_call_arg (stmt
, 0);
2445 case BUILT_IN_STACK_RESTORE
:
2446 result
= optimize_stack_restore (i
);
2452 case BUILT_IN_UNREACHABLE
:
2453 if (optimize_unreachable (i
))
2457 case BUILT_IN_VA_START
:
2458 case BUILT_IN_VA_END
:
2459 case BUILT_IN_VA_COPY
:
2460 /* These shouldn't be folded before pass_stdarg. */
2461 result
= optimize_stdarg_builtin (stmt
);
2471 if (result
== NULL_TREE
)
2474 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2476 fprintf (dump_file
, "Simplified\n ");
2477 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2481 if (!update_call_from_tree (&i
, result
))
2483 gimplify_and_update_call_from_tree (&i
, result
);
2484 todoflags
|= TODO_update_address_taken
;
2487 stmt
= gsi_stmt (i
);
2490 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
)
2491 && gimple_purge_dead_eh_edges (bb
))
2494 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2496 fprintf (dump_file
, "to\n ");
2497 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2498 fprintf (dump_file
, "\n");
2501 /* Retry the same statement if it changed into another
2502 builtin, there might be new opportunities now. */
2503 if (gimple_code (stmt
) != GIMPLE_CALL
)
2508 callee
= gimple_call_fndecl (stmt
);
2510 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2511 || DECL_FUNCTION_CODE (callee
) == fcode
)
2516 /* Delete unreachable blocks. */
2518 todoflags
|= TODO_cleanup_cfg
;
2524 struct gimple_opt_pass pass_fold_builtins
=
2529 OPTGROUP_NONE
, /* optinfo_flags */
2531 execute_fold_all_builtins
, /* execute */
2534 0, /* static_pass_number */
2535 TV_NONE
, /* tv_id */
2536 PROP_cfg
| PROP_ssa
, /* properties_required */
2537 0, /* properties_provided */
2538 0, /* properties_destroyed */
2539 0, /* todo_flags_start */
2541 | TODO_update_ssa
/* todo_flags_finish */