2018-06-09 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / tree-vectorizer.h
blobf4b4dec64f0ac2522d92947f9faeafb1912739ec
1 /* Vectorizer
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 #include "tree-data-ref.h"
25 #include "tree-hash-traits.h"
26 #include "target.h"
28 /* Used for naming of new temporaries. */
29 enum vect_var_kind {
30 vect_simple_var,
31 vect_pointer_var,
32 vect_scalar_var,
33 vect_mask_var
36 /* Defines type of operation. */
37 enum operation_type {
38 unary_op = 1,
39 binary_op,
40 ternary_op
43 /* Define type of available alignment support. */
44 enum dr_alignment_support {
45 dr_unaligned_unsupported,
46 dr_unaligned_supported,
47 dr_explicit_realign,
48 dr_explicit_realign_optimized,
49 dr_aligned
52 /* Define type of def-use cross-iteration cycle. */
53 enum vect_def_type {
54 vect_uninitialized_def = 0,
55 vect_constant_def = 1,
56 vect_external_def,
57 vect_internal_def,
58 vect_induction_def,
59 vect_reduction_def,
60 vect_double_reduction_def,
61 vect_nested_cycle,
62 vect_unknown_def_type
65 /* Define type of reduction. */
66 enum vect_reduction_type {
67 TREE_CODE_REDUCTION,
68 COND_REDUCTION,
69 INTEGER_INDUC_COND_REDUCTION,
70 CONST_COND_REDUCTION,
72 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
73 to implement:
75 for (int i = 0; i < VF; ++i)
76 res = cond[i] ? val[i] : res; */
77 EXTRACT_LAST_REDUCTION,
79 /* Use a folding reduction within the loop to implement:
81 for (int i = 0; i < VF; ++i)
82 res = res OP val[i];
84 (with no reassocation). */
85 FOLD_LEFT_REDUCTION
88 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
89 || ((D) == vect_double_reduction_def) \
90 || ((D) == vect_nested_cycle))
92 /* Structure to encapsulate information about a group of like
93 instructions to be presented to the target cost model. */
94 struct stmt_info_for_cost {
95 int count;
96 enum vect_cost_for_stmt kind;
97 enum vect_cost_model_location where;
98 gimple *stmt;
99 int misalign;
102 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
104 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
105 known alignment for that base. */
106 typedef hash_map<tree_operand_hash,
107 innermost_loop_behavior *> vec_base_alignments;
109 /************************************************************************
111 ************************************************************************/
112 typedef struct _slp_tree *slp_tree;
114 /* A computation tree of an SLP instance. Each node corresponds to a group of
115 stmts to be packed in a SIMD stmt. */
116 struct _slp_tree {
117 /* Nodes that contain def-stmts of this node statements operands. */
118 vec<slp_tree> children;
119 /* A group of scalar stmts to be vectorized together. */
120 vec<gimple *> stmts;
121 /* Load permutation relative to the stores, NULL if there is no
122 permutation. */
123 vec<unsigned> load_permutation;
124 /* Vectorized stmt/s. */
125 vec<gimple *> vec_stmts;
126 /* Number of vector stmts that are created to replace the group of scalar
127 stmts. It is calculated during the transformation phase as the number of
128 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
129 divided by vector size. */
130 unsigned int vec_stmts_size;
131 /* Whether the scalar computations use two different operators. */
132 bool two_operators;
133 /* The DEF type of this node. */
134 enum vect_def_type def_type;
138 /* SLP instance is a sequence of stmts in a loop that can be packed into
139 SIMD stmts. */
140 typedef struct _slp_instance {
141 /* The root of SLP tree. */
142 slp_tree root;
144 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
145 unsigned int group_size;
147 /* The unrolling factor required to vectorized this SLP instance. */
148 poly_uint64 unrolling_factor;
150 /* The group of nodes that contain loads of this SLP instance. */
151 vec<slp_tree> loads;
153 /* The SLP node containing the reduction PHIs. */
154 slp_tree reduc_phis;
155 } *slp_instance;
158 /* Access Functions. */
159 #define SLP_INSTANCE_TREE(S) (S)->root
160 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
161 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
162 #define SLP_INSTANCE_LOADS(S) (S)->loads
164 #define SLP_TREE_CHILDREN(S) (S)->children
165 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
166 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
167 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
168 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
169 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
170 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
174 /* Describes two objects whose addresses must be unequal for the vectorized
175 loop to be valid. */
176 typedef std::pair<tree, tree> vec_object_pair;
178 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
179 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
180 struct vec_lower_bound {
181 vec_lower_bound () {}
182 vec_lower_bound (tree e, bool u, poly_uint64 m)
183 : expr (e), unsigned_p (u), min_value (m) {}
185 tree expr;
186 bool unsigned_p;
187 poly_uint64 min_value;
190 /* Vectorizer state common between loop and basic-block vectorization. */
191 struct vec_info {
192 enum vec_kind { bb, loop };
194 vec_info (vec_kind, void *);
195 ~vec_info ();
197 /* The type of vectorization. */
198 vec_kind kind;
200 /* The mapping of GIMPLE UID to stmt_vec_info. */
201 vec<struct _stmt_vec_info *> stmt_vec_infos;
203 /* All SLP instances. */
204 auto_vec<slp_instance> slp_instances;
206 /* All data references. Freed by free_data_refs, so not an auto_vec. */
207 vec<data_reference_p> datarefs;
209 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
210 known alignment for that base. */
211 vec_base_alignments base_alignments;
213 /* All data dependences. Freed by free_dependence_relations, so not
214 an auto_vec. */
215 vec<ddr_p> ddrs;
217 /* All interleaving chains of stores, represented by the first
218 stmt in the chain. */
219 auto_vec<gimple *> grouped_stores;
221 /* Cost data used by the target cost model. */
222 void *target_cost_data;
225 struct _loop_vec_info;
226 struct _bb_vec_info;
228 template<>
229 template<>
230 inline bool
231 is_a_helper <_loop_vec_info *>::test (vec_info *i)
233 return i->kind == vec_info::loop;
236 template<>
237 template<>
238 inline bool
239 is_a_helper <_bb_vec_info *>::test (vec_info *i)
241 return i->kind == vec_info::bb;
245 /* In general, we can divide the vector statements in a vectorized loop
246 into related groups ("rgroups") and say that for each rgroup there is
247 some nS such that the rgroup operates on nS values from one scalar
248 iteration followed by nS values from the next. That is, if VF is the
249 vectorization factor of the loop, the rgroup operates on a sequence:
251 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
253 where (i,j) represents a scalar value with index j in a scalar
254 iteration with index i.
256 [ We use the term "rgroup" to emphasise that this grouping isn't
257 necessarily the same as the grouping of statements used elsewhere.
258 For example, if we implement a group of scalar loads using gather
259 loads, we'll use a separate gather load for each scalar load, and
260 thus each gather load will belong to its own rgroup. ]
262 In general this sequence will occupy nV vectors concatenated
263 together. If these vectors have nL lanes each, the total number
264 of scalar values N is given by:
266 N = nS * VF = nV * nL
268 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
269 are compile-time constants but VF and nL can be variable (if the target
270 supports variable-length vectors).
272 In classical vectorization, each iteration of the vector loop would
273 handle exactly VF iterations of the original scalar loop. However,
274 in a fully-masked loop, a particular iteration of the vector loop
275 might handle fewer than VF iterations of the scalar loop. The vector
276 lanes that correspond to iterations of the scalar loop are said to be
277 "active" and the other lanes are said to be "inactive".
279 In a fully-masked loop, many rgroups need to be masked to ensure that
280 they have no effect for the inactive lanes. Each such rgroup needs a
281 sequence of booleans in the same order as above, but with each (i,j)
282 replaced by a boolean that indicates whether iteration i is active.
283 This sequence occupies nV vector masks that again have nL lanes each.
284 Thus the mask sequence as a whole consists of VF independent booleans
285 that are each repeated nS times.
287 We make the simplifying assumption that if a sequence of nV masks is
288 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
289 VIEW_CONVERTing it. This holds for all current targets that support
290 fully-masked loops. For example, suppose the scalar loop is:
292 float *f;
293 double *d;
294 for (int i = 0; i < n; ++i)
296 f[i * 2 + 0] += 1.0f;
297 f[i * 2 + 1] += 2.0f;
298 d[i] += 3.0;
301 and suppose that vectors have 256 bits. The vectorized f accesses
302 will belong to one rgroup and the vectorized d access to another:
304 f rgroup: nS = 2, nV = 1, nL = 8
305 d rgroup: nS = 1, nV = 1, nL = 4
306 VF = 4
308 [ In this simple example the rgroups do correspond to the normal
309 SLP grouping scheme. ]
311 If only the first three lanes are active, the masks we need are:
313 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
314 d rgroup: 1 | 1 | 1 | 0
316 Here we can use a mask calculated for f's rgroup for d's, but not
317 vice versa.
319 Thus for each value of nV, it is enough to provide nV masks, with the
320 mask being calculated based on the highest nL (or, equivalently, based
321 on the highest nS) required by any rgroup with that nV. We therefore
322 represent the entire collection of masks as a two-level table, with the
323 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
324 the second being indexed by the mask index 0 <= i < nV. */
326 /* The masks needed by rgroups with nV vectors, according to the
327 description above. */
328 struct rgroup_masks {
329 /* The largest nS for all rgroups that use these masks. */
330 unsigned int max_nscalars_per_iter;
332 /* The type of mask to use, based on the highest nS recorded above. */
333 tree mask_type;
335 /* A vector of nV masks, in iteration order. */
336 vec<tree> masks;
339 typedef auto_vec<rgroup_masks> vec_loop_masks;
341 /*-----------------------------------------------------------------*/
342 /* Info on vectorized loops. */
343 /*-----------------------------------------------------------------*/
344 typedef struct _loop_vec_info : public vec_info {
345 _loop_vec_info (struct loop *);
346 ~_loop_vec_info ();
348 /* The loop to which this info struct refers to. */
349 struct loop *loop;
351 /* The loop basic blocks. */
352 basic_block *bbs;
354 /* Number of latch executions. */
355 tree num_itersm1;
356 /* Number of iterations. */
357 tree num_iters;
358 /* Number of iterations of the original loop. */
359 tree num_iters_unchanged;
360 /* Condition under which this loop is analyzed and versioned. */
361 tree num_iters_assumptions;
363 /* Threshold of number of iterations below which vectorzation will not be
364 performed. It is calculated from MIN_PROFITABLE_ITERS and
365 PARAM_MIN_VECT_LOOP_BOUND. */
366 unsigned int th;
368 /* When applying loop versioning, the vector form should only be used
369 if the number of scalar iterations is >= this value, on top of all
370 the other requirements. Ignored when loop versioning is not being
371 used. */
372 poly_uint64 versioning_threshold;
374 /* Unrolling factor */
375 poly_uint64 vectorization_factor;
377 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
378 if there is no particular limit. */
379 unsigned HOST_WIDE_INT max_vectorization_factor;
381 /* The masks that a fully-masked loop should use to avoid operating
382 on inactive scalars. */
383 vec_loop_masks masks;
385 /* If we are using a loop mask to align memory addresses, this variable
386 contains the number of vector elements that we should skip in the
387 first iteration of the vector loop (i.e. the number of leading
388 elements that should be false in the first mask). */
389 tree mask_skip_niters;
391 /* Type of the variables to use in the WHILE_ULT call for fully-masked
392 loops. */
393 tree mask_compare_type;
395 /* Unknown DRs according to which loop was peeled. */
396 struct data_reference *unaligned_dr;
398 /* peeling_for_alignment indicates whether peeling for alignment will take
399 place, and what the peeling factor should be:
400 peeling_for_alignment = X means:
401 If X=0: Peeling for alignment will not be applied.
402 If X>0: Peel first X iterations.
403 If X=-1: Generate a runtime test to calculate the number of iterations
404 to be peeled, using the dataref recorded in the field
405 unaligned_dr. */
406 int peeling_for_alignment;
408 /* The mask used to check the alignment of pointers or arrays. */
409 int ptr_mask;
411 /* The loop nest in which the data dependences are computed. */
412 auto_vec<loop_p> loop_nest;
414 /* Data Dependence Relations defining address ranges that are candidates
415 for a run-time aliasing check. */
416 auto_vec<ddr_p> may_alias_ddrs;
418 /* Data Dependence Relations defining address ranges together with segment
419 lengths from which the run-time aliasing check is built. */
420 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
422 /* Check that the addresses of each pair of objects is unequal. */
423 auto_vec<vec_object_pair> check_unequal_addrs;
425 /* List of values that are required to be nonzero. This is used to check
426 whether things like "x[i * n] += 1;" are safe and eventually gets added
427 to the checks for lower bounds below. */
428 auto_vec<tree> check_nonzero;
430 /* List of values that need to be checked for a minimum value. */
431 auto_vec<vec_lower_bound> lower_bounds;
433 /* Statements in the loop that have data references that are candidates for a
434 runtime (loop versioning) misalignment check. */
435 auto_vec<gimple *> may_misalign_stmts;
437 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
438 auto_vec<gimple *> reductions;
440 /* All reduction chains in the loop, represented by the first
441 stmt in the chain. */
442 auto_vec<gimple *> reduction_chains;
444 /* Cost vector for a single scalar iteration. */
445 auto_vec<stmt_info_for_cost> scalar_cost_vec;
447 /* Map of IV base/step expressions to inserted name in the preheader. */
448 hash_map<tree_operand_hash, tree> *ivexpr_map;
450 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
451 applied to the loop, i.e., no unrolling is needed, this is 1. */
452 poly_uint64 slp_unrolling_factor;
454 /* Cost of a single scalar iteration. */
455 int single_scalar_iteration_cost;
457 /* Is the loop vectorizable? */
458 bool vectorizable;
460 /* Records whether we still have the option of using a fully-masked loop. */
461 bool can_fully_mask_p;
463 /* True if have decided to use a fully-masked loop. */
464 bool fully_masked_p;
466 /* When we have grouped data accesses with gaps, we may introduce invalid
467 memory accesses. We peel the last iteration of the loop to prevent
468 this. */
469 bool peeling_for_gaps;
471 /* When the number of iterations is not a multiple of the vector size
472 we need to peel off iterations at the end to form an epilogue loop. */
473 bool peeling_for_niter;
475 /* Reductions are canonicalized so that the last operand is the reduction
476 operand. If this places a constant into RHS1, this decanonicalizes
477 GIMPLE for other phases, so we must track when this has occurred and
478 fix it up. */
479 bool operands_swapped;
481 /* True if there are no loop carried data dependencies in the loop.
482 If loop->safelen <= 1, then this is always true, either the loop
483 didn't have any loop carried data dependencies, or the loop is being
484 vectorized guarded with some runtime alias checks, or couldn't
485 be vectorized at all, but then this field shouldn't be used.
486 For loop->safelen >= 2, the user has asserted that there are no
487 backward dependencies, but there still could be loop carried forward
488 dependencies in such loops. This flag will be false if normal
489 vectorizer data dependency analysis would fail or require versioning
490 for alias, but because of loop->safelen >= 2 it has been vectorized
491 even without versioning for alias. E.g. in:
492 #pragma omp simd
493 for (int i = 0; i < m; i++)
494 a[i] = a[i + k] * c;
495 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
496 DTRT even for k > 0 && k < m, but without safelen we would not
497 vectorize this, so this field would be false. */
498 bool no_data_dependencies;
500 /* Mark loops having masked stores. */
501 bool has_mask_store;
503 /* If if-conversion versioned this loop before conversion, this is the
504 loop version without if-conversion. */
505 struct loop *scalar_loop;
507 /* For loops being epilogues of already vectorized loops
508 this points to the original vectorized loop. Otherwise NULL. */
509 _loop_vec_info *orig_loop_info;
511 } *loop_vec_info;
513 /* Access Functions. */
514 #define LOOP_VINFO_LOOP(L) (L)->loop
515 #define LOOP_VINFO_BBS(L) (L)->bbs
516 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
517 #define LOOP_VINFO_NITERS(L) (L)->num_iters
518 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
519 prologue peeling retain total unchanged scalar loop iterations for
520 cost model. */
521 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
522 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
523 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
524 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
525 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
526 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
527 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
528 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
529 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
530 #define LOOP_VINFO_MASKS(L) (L)->masks
531 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
532 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
533 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
534 #define LOOP_VINFO_LOOP_NEST(L) (L)->loop_nest
535 #define LOOP_VINFO_DATAREFS(L) (L)->datarefs
536 #define LOOP_VINFO_DDRS(L) (L)->ddrs
537 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
538 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
539 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
540 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
541 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
542 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
543 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
544 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
545 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
546 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
547 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
548 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
549 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
550 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
551 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
552 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
553 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
554 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
555 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
556 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
557 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
558 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
559 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
560 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
562 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
563 ((L)->may_misalign_stmts.length () > 0)
564 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
565 ((L)->comp_alias_ddrs.length () > 0 \
566 || (L)->check_unequal_addrs.length () > 0 \
567 || (L)->lower_bounds.length () > 0)
568 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
569 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
570 #define LOOP_REQUIRES_VERSIONING(L) \
571 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
572 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
573 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
575 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
576 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
578 #define LOOP_VINFO_EPILOGUE_P(L) \
579 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
581 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
582 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
584 static inline loop_vec_info
585 loop_vec_info_for_loop (struct loop *loop)
587 return (loop_vec_info) loop->aux;
590 static inline bool
591 nested_in_vect_loop_p (struct loop *loop, gimple *stmt)
593 return (loop->inner
594 && (loop->inner == (gimple_bb (stmt))->loop_father));
597 typedef struct _bb_vec_info : public vec_info
599 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator);
600 ~_bb_vec_info ();
602 basic_block bb;
603 gimple_stmt_iterator region_begin;
604 gimple_stmt_iterator region_end;
605 } *bb_vec_info;
607 #define BB_VINFO_BB(B) (B)->bb
608 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
609 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
610 #define BB_VINFO_DATAREFS(B) (B)->datarefs
611 #define BB_VINFO_DDRS(B) (B)->ddrs
612 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
614 static inline bb_vec_info
615 vec_info_for_bb (basic_block bb)
617 return (bb_vec_info) bb->aux;
620 /*-----------------------------------------------------------------*/
621 /* Info on vectorized defs. */
622 /*-----------------------------------------------------------------*/
623 enum stmt_vec_info_type {
624 undef_vec_info_type = 0,
625 load_vec_info_type,
626 store_vec_info_type,
627 shift_vec_info_type,
628 op_vec_info_type,
629 call_vec_info_type,
630 call_simd_clone_vec_info_type,
631 assignment_vec_info_type,
632 condition_vec_info_type,
633 comparison_vec_info_type,
634 reduc_vec_info_type,
635 induc_vec_info_type,
636 type_promotion_vec_info_type,
637 type_demotion_vec_info_type,
638 type_conversion_vec_info_type,
639 loop_exit_ctrl_vec_info_type
642 /* Indicates whether/how a variable is used in the scope of loop/basic
643 block. */
644 enum vect_relevant {
645 vect_unused_in_scope = 0,
647 /* The def is only used outside the loop. */
648 vect_used_only_live,
649 /* The def is in the inner loop, and the use is in the outer loop, and the
650 use is a reduction stmt. */
651 vect_used_in_outer_by_reduction,
652 /* The def is in the inner loop, and the use is in the outer loop (and is
653 not part of reduction). */
654 vect_used_in_outer,
656 /* defs that feed computations that end up (only) in a reduction. These
657 defs may be used by non-reduction stmts, but eventually, any
658 computations/values that are affected by these defs are used to compute
659 a reduction (i.e. don't get stored to memory, for example). We use this
660 to identify computations that we can change the order in which they are
661 computed. */
662 vect_used_by_reduction,
664 vect_used_in_scope
667 /* The type of vectorization that can be applied to the stmt: regular loop-based
668 vectorization; pure SLP - the stmt is a part of SLP instances and does not
669 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
670 a part of SLP instance and also must be loop-based vectorized, since it has
671 uses outside SLP sequences.
673 In the loop context the meanings of pure and hybrid SLP are slightly
674 different. By saying that pure SLP is applied to the loop, we mean that we
675 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
676 vectorized without doing any conceptual unrolling, cause we don't pack
677 together stmts from different iterations, only within a single iteration.
678 Loop hybrid SLP means that we exploit both intra-iteration and
679 inter-iteration parallelism (e.g., number of elements in the vector is 4
680 and the slp-group-size is 2, in which case we don't have enough parallelism
681 within an iteration, so we obtain the rest of the parallelism from subsequent
682 iterations by unrolling the loop by 2). */
683 enum slp_vect_type {
684 loop_vect = 0,
685 pure_slp,
686 hybrid
689 /* Says whether a statement is a load, a store of a vectorized statement
690 result, or a store of an invariant value. */
691 enum vec_load_store_type {
692 VLS_LOAD,
693 VLS_STORE,
694 VLS_STORE_INVARIANT
697 /* Describes how we're going to vectorize an individual load or store,
698 or a group of loads or stores. */
699 enum vect_memory_access_type {
700 /* An access to an invariant address. This is used only for loads. */
701 VMAT_INVARIANT,
703 /* A simple contiguous access. */
704 VMAT_CONTIGUOUS,
706 /* A contiguous access that goes down in memory rather than up,
707 with no additional permutation. This is used only for stores
708 of invariants. */
709 VMAT_CONTIGUOUS_DOWN,
711 /* A simple contiguous access in which the elements need to be permuted
712 after loading or before storing. Only used for loop vectorization;
713 SLP uses separate permutes. */
714 VMAT_CONTIGUOUS_PERMUTE,
716 /* A simple contiguous access in which the elements need to be reversed
717 after loading or before storing. */
718 VMAT_CONTIGUOUS_REVERSE,
720 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
721 VMAT_LOAD_STORE_LANES,
723 /* An access in which each scalar element is loaded or stored
724 individually. */
725 VMAT_ELEMENTWISE,
727 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
728 SLP accesses. Each unrolled iteration uses a contiguous load
729 or store for the whole group, but the groups from separate iterations
730 are combined in the same way as for VMAT_ELEMENTWISE. */
731 VMAT_STRIDED_SLP,
733 /* The access uses gather loads or scatter stores. */
734 VMAT_GATHER_SCATTER
737 typedef struct data_reference *dr_p;
739 typedef struct _stmt_vec_info {
741 enum stmt_vec_info_type type;
743 /* Indicates whether this stmts is part of a computation whose result is
744 used outside the loop. */
745 bool live;
747 /* Stmt is part of some pattern (computation idiom) */
748 bool in_pattern_p;
750 /* Is this statement vectorizable or should it be skipped in (partial)
751 vectorization. */
752 bool vectorizable;
754 /* The stmt to which this info struct refers to. */
755 gimple *stmt;
757 /* The vec_info with respect to which STMT is vectorized. */
758 vec_info *vinfo;
760 /* The vector type to be used for the LHS of this statement. */
761 tree vectype;
763 /* The vectorized version of the stmt. */
764 gimple *vectorized_stmt;
767 /* The following is relevant only for stmts that contain a non-scalar
768 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
769 at most one such data-ref. */
771 /* Information about the data-ref (access function, etc),
772 relative to the inner-most containing loop. */
773 struct data_reference *data_ref_info;
775 /* Information about the data-ref relative to this loop
776 nest (the loop that is being considered for vectorization). */
777 innermost_loop_behavior dr_wrt_vec_loop;
779 /* For loop PHI nodes, the base and evolution part of it. This makes sure
780 this information is still available in vect_update_ivs_after_vectorizer
781 where we may not be able to re-analyze the PHI nodes evolution as
782 peeling for the prologue loop can make it unanalyzable. The evolution
783 part is still correct after peeling, but the base may have changed from
784 the version here. */
785 tree loop_phi_evolution_base_unchanged;
786 tree loop_phi_evolution_part;
788 /* Used for various bookkeeping purposes, generally holding a pointer to
789 some other stmt S that is in some way "related" to this stmt.
790 Current use of this field is:
791 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
792 true): S is the "pattern stmt" that represents (and replaces) the
793 sequence of stmts that constitutes the pattern. Similarly, the
794 related_stmt of the "pattern stmt" points back to this stmt (which is
795 the last stmt in the original sequence of stmts that constitutes the
796 pattern). */
797 gimple *related_stmt;
799 /* Used to keep a sequence of def stmts of a pattern stmt if such exists. */
800 gimple_seq pattern_def_seq;
802 /* List of datarefs that are known to have the same alignment as the dataref
803 of this stmt. */
804 vec<dr_p> same_align_refs;
806 /* Selected SIMD clone's function info. First vector element
807 is SIMD clone's function decl, followed by a pair of trees (base + step)
808 for linear arguments (pair of NULLs for other arguments). */
809 vec<tree> simd_clone_info;
811 /* Classify the def of this stmt. */
812 enum vect_def_type def_type;
814 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
815 enum slp_vect_type slp_type;
817 /* Interleaving and reduction chains info. */
818 /* First element in the group. */
819 gimple *first_element;
820 /* Pointer to the next element in the group. */
821 gimple *next_element;
822 /* For data-refs, in case that two or more stmts share data-ref, this is the
823 pointer to the previously detected stmt with the same dr. */
824 gimple *same_dr_stmt;
825 /* The size of the group. */
826 unsigned int size;
827 /* For stores, number of stores from this group seen. We vectorize the last
828 one. */
829 unsigned int store_count;
830 /* For loads only, the gap from the previous load. For consecutive loads, GAP
831 is 1. */
832 unsigned int gap;
834 /* The minimum negative dependence distance this stmt participates in
835 or zero if none. */
836 unsigned int min_neg_dist;
838 /* Not all stmts in the loop need to be vectorized. e.g, the increment
839 of the loop induction variable and computation of array indexes. relevant
840 indicates whether the stmt needs to be vectorized. */
841 enum vect_relevant relevant;
843 /* For loads if this is a gather, for stores if this is a scatter. */
844 bool gather_scatter_p;
846 /* True if this is an access with loop-invariant stride. */
847 bool strided_p;
849 /* For both loads and stores. */
850 bool simd_lane_access_p;
852 /* Classifies how the load or store is going to be implemented
853 for loop vectorization. */
854 vect_memory_access_type memory_access_type;
856 /* For reduction loops, this is the type of reduction. */
857 enum vect_reduction_type v_reduc_type;
859 /* For CONST_COND_REDUCTION, record the reduc code. */
860 enum tree_code const_cond_reduc_code;
862 /* On a reduction PHI the reduction type as detected by
863 vect_force_simple_reduction. */
864 enum vect_reduction_type reduc_type;
866 /* On a reduction PHI the def returned by vect_force_simple_reduction.
867 On the def returned by vect_force_simple_reduction the
868 corresponding PHI. */
869 gimple *reduc_def;
871 /* The number of scalar stmt references from active SLP instances. */
872 unsigned int num_slp_uses;
873 } *stmt_vec_info;
875 /* Information about a gather/scatter call. */
876 struct gather_scatter_info {
877 /* The internal function to use for the gather/scatter operation,
878 or IFN_LAST if a built-in function should be used instead. */
879 internal_fn ifn;
881 /* The FUNCTION_DECL for the built-in gather/scatter function,
882 or null if an internal function should be used instead. */
883 tree decl;
885 /* The loop-invariant base value. */
886 tree base;
888 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
889 tree offset;
891 /* Each offset element should be multiplied by this amount before
892 being added to the base. */
893 int scale;
895 /* The definition type for the vectorized offset. */
896 enum vect_def_type offset_dt;
898 /* The type of the vectorized offset. */
899 tree offset_vectype;
901 /* The type of the scalar elements after loading or before storing. */
902 tree element_type;
904 /* The type of the scalar elements being loaded or stored. */
905 tree memory_type;
908 /* Access Functions. */
909 #define STMT_VINFO_TYPE(S) (S)->type
910 #define STMT_VINFO_STMT(S) (S)->stmt
911 inline loop_vec_info
912 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
914 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
915 return loop_vinfo;
916 return NULL;
918 inline bb_vec_info
919 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
921 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
922 return bb_vinfo;
923 return NULL;
925 #define STMT_VINFO_RELEVANT(S) (S)->relevant
926 #define STMT_VINFO_LIVE_P(S) (S)->live
927 #define STMT_VINFO_VECTYPE(S) (S)->vectype
928 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
929 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
930 #define STMT_VINFO_DATA_REF(S) (S)->data_ref_info
931 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
932 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
933 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
934 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
935 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
936 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
938 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
939 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
940 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
941 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
942 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
943 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
944 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
945 (S)->dr_wrt_vec_loop.base_misalignment
946 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
947 (S)->dr_wrt_vec_loop.offset_alignment
948 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
949 (S)->dr_wrt_vec_loop.step_alignment
951 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
952 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
953 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
954 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
955 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
956 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
957 #define STMT_VINFO_GROUPED_ACCESS(S) ((S)->data_ref_info && DR_GROUP_FIRST_ELEMENT(S))
958 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
959 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
960 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
961 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
962 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
963 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
965 #define DR_GROUP_FIRST_ELEMENT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->first_element)
966 #define DR_GROUP_NEXT_ELEMENT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->next_element)
967 #define DR_GROUP_SIZE(S) (gcc_checking_assert ((S)->data_ref_info), (S)->size)
968 #define DR_GROUP_STORE_COUNT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->store_count)
969 #define DR_GROUP_GAP(S) (gcc_checking_assert ((S)->data_ref_info), (S)->gap)
970 #define DR_GROUP_SAME_DR_STMT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->same_dr_stmt)
972 #define REDUC_GROUP_FIRST_ELEMENT(S) (gcc_checking_assert (!(S)->data_ref_info), (S)->first_element)
973 #define REDUC_GROUP_NEXT_ELEMENT(S) (gcc_checking_assert (!(S)->data_ref_info), (S)->next_element)
974 #define REDUC_GROUP_SIZE(S) (gcc_checking_assert (!(S)->data_ref_info), (S)->size)
976 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
978 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
979 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
980 #define STMT_SLP_TYPE(S) (S)->slp_type
982 struct dataref_aux {
983 /* The misalignment in bytes of the reference, or -1 if not known. */
984 int misalignment;
985 /* The byte alignment that we'd ideally like the reference to have,
986 and the value that misalignment is measured against. */
987 int target_alignment;
988 /* If true the alignment of base_decl needs to be increased. */
989 bool base_misaligned;
990 tree base_decl;
993 #define DR_VECT_AUX(dr) ((dataref_aux *)(dr)->aux)
995 #define VECT_MAX_COST 1000
997 /* The maximum number of intermediate steps required in multi-step type
998 conversion. */
999 #define MAX_INTERM_CVT_STEPS 3
1001 #define MAX_VECTORIZATION_FACTOR INT_MAX
1003 /* Nonzero if TYPE represents a (scalar) boolean type or type
1004 in the middle-end compatible with it (unsigned precision 1 integral
1005 types). Used to determine which types should be vectorized as
1006 VECTOR_BOOLEAN_TYPE_P. */
1008 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1009 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1010 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1011 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1012 && TYPE_PRECISION (TYPE) == 1 \
1013 && TYPE_UNSIGNED (TYPE)))
1015 extern vec<stmt_vec_info> *stmt_vec_info_vec;
1017 void set_stmt_vec_info_vec (vec<stmt_vec_info> *);
1018 void free_stmt_vec_infos (vec<stmt_vec_info> *);
1020 /* Return a stmt_vec_info corresponding to STMT. */
1022 static inline stmt_vec_info
1023 vinfo_for_stmt (gimple *stmt)
1025 int uid = gimple_uid (stmt);
1026 if (uid <= 0)
1027 return NULL;
1029 return (*stmt_vec_info_vec)[uid - 1];
1032 /* Set vectorizer information INFO for STMT. */
1034 static inline void
1035 set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info)
1037 unsigned int uid = gimple_uid (stmt);
1038 if (uid == 0)
1040 gcc_checking_assert (info);
1041 uid = stmt_vec_info_vec->length () + 1;
1042 gimple_set_uid (stmt, uid);
1043 stmt_vec_info_vec->safe_push (info);
1045 else
1047 gcc_checking_assert (info == NULL);
1048 (*stmt_vec_info_vec)[uid - 1] = info;
1052 /* Return the earlier statement between STMT1 and STMT2. */
1054 static inline gimple *
1055 get_earlier_stmt (gimple *stmt1, gimple *stmt2)
1057 unsigned int uid1, uid2;
1059 if (stmt1 == NULL)
1060 return stmt2;
1062 if (stmt2 == NULL)
1063 return stmt1;
1065 uid1 = gimple_uid (stmt1);
1066 uid2 = gimple_uid (stmt2);
1068 if (uid1 == 0 || uid2 == 0)
1069 return NULL;
1071 gcc_assert (uid1 <= stmt_vec_info_vec->length ()
1072 && uid2 <= stmt_vec_info_vec->length ());
1073 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt1))
1074 || !STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt1)))
1075 && (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt2))
1076 || !STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt2))));
1078 if (uid1 < uid2)
1079 return stmt1;
1080 else
1081 return stmt2;
1084 /* Return the later statement between STMT1 and STMT2. */
1086 static inline gimple *
1087 get_later_stmt (gimple *stmt1, gimple *stmt2)
1089 unsigned int uid1, uid2;
1091 if (stmt1 == NULL)
1092 return stmt2;
1094 if (stmt2 == NULL)
1095 return stmt1;
1097 uid1 = gimple_uid (stmt1);
1098 uid2 = gimple_uid (stmt2);
1100 if (uid1 == 0 || uid2 == 0)
1101 return NULL;
1103 gcc_assert (uid1 <= stmt_vec_info_vec->length ()
1104 && uid2 <= stmt_vec_info_vec->length ());
1105 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt1))
1106 || !STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt1)))
1107 && (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt2))
1108 || !STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt2))));
1110 if (uid1 > uid2)
1111 return stmt1;
1112 else
1113 return stmt2;
1116 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1117 pattern. */
1119 static inline bool
1120 is_pattern_stmt_p (stmt_vec_info stmt_info)
1122 gimple *related_stmt;
1123 stmt_vec_info related_stmt_info;
1125 related_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1126 if (related_stmt
1127 && (related_stmt_info = vinfo_for_stmt (related_stmt))
1128 && STMT_VINFO_IN_PATTERN_P (related_stmt_info))
1129 return true;
1131 return false;
1134 /* Return true if BB is a loop header. */
1136 static inline bool
1137 is_loop_header_bb_p (basic_block bb)
1139 if (bb == (bb->loop_father)->header)
1140 return true;
1141 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1142 return false;
1145 /* Return pow2 (X). */
1147 static inline int
1148 vect_pow2 (int x)
1150 int i, res = 1;
1152 for (i = 0; i < x; i++)
1153 res *= 2;
1155 return res;
1158 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1160 static inline int
1161 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1162 tree vectype, int misalign)
1164 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1165 vectype, misalign);
1168 /* Get cost by calling cost target builtin. */
1170 static inline
1171 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1173 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1176 /* Alias targetm.vectorize.init_cost. */
1178 static inline void *
1179 init_cost (struct loop *loop_info)
1181 return targetm.vectorize.init_cost (loop_info);
1184 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1185 stmt_vec_info, int, enum vect_cost_model_location);
1187 /* Alias targetm.vectorize.add_stmt_cost. */
1189 static inline unsigned
1190 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1191 stmt_vec_info stmt_info, int misalign,
1192 enum vect_cost_model_location where)
1194 if (dump_file && (dump_flags & TDF_DETAILS))
1195 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign, where);
1196 return targetm.vectorize.add_stmt_cost (data, count, kind,
1197 stmt_info, misalign, where);
1200 /* Alias targetm.vectorize.finish_cost. */
1202 static inline void
1203 finish_cost (void *data, unsigned *prologue_cost,
1204 unsigned *body_cost, unsigned *epilogue_cost)
1206 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1209 /* Alias targetm.vectorize.destroy_cost_data. */
1211 static inline void
1212 destroy_cost_data (void *data)
1214 targetm.vectorize.destroy_cost_data (data);
1217 inline void
1218 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1220 stmt_info_for_cost *cost;
1221 unsigned i;
1222 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1223 add_stmt_cost (data, cost->count, cost->kind,
1224 cost->stmt ? vinfo_for_stmt (cost->stmt) : NULL,
1225 cost->misalign, cost->where);
1228 /*-----------------------------------------------------------------*/
1229 /* Info on data references alignment. */
1230 /*-----------------------------------------------------------------*/
1231 inline void
1232 set_dr_misalignment (struct data_reference *dr, int val)
1234 dataref_aux *data_aux = DR_VECT_AUX (dr);
1236 if (!data_aux)
1238 data_aux = XCNEW (dataref_aux);
1239 dr->aux = data_aux;
1242 data_aux->misalignment = val;
1245 inline int
1246 dr_misalignment (struct data_reference *dr)
1248 return DR_VECT_AUX (dr)->misalignment;
1251 /* Reflects actual alignment of first access in the vectorized loop,
1252 taking into account peeling/versioning if applied. */
1253 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1254 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1255 #define DR_MISALIGNMENT_UNKNOWN (-1)
1257 /* Only defined once DR_MISALIGNMENT is defined. */
1258 #define DR_TARGET_ALIGNMENT(DR) DR_VECT_AUX (DR)->target_alignment
1260 /* Return true if data access DR is aligned to its target alignment
1261 (which may be less than a full vector). */
1263 static inline bool
1264 aligned_access_p (struct data_reference *data_ref_info)
1266 return (DR_MISALIGNMENT (data_ref_info) == 0);
1269 /* Return TRUE if the alignment of the data access is known, and FALSE
1270 otherwise. */
1272 static inline bool
1273 known_alignment_for_access_p (struct data_reference *data_ref_info)
1275 return (DR_MISALIGNMENT (data_ref_info) != DR_MISALIGNMENT_UNKNOWN);
1278 /* Return the minimum alignment in bytes that the vectorized version
1279 of DR is guaranteed to have. */
1281 static inline unsigned int
1282 vect_known_alignment_in_bytes (struct data_reference *dr)
1284 if (DR_MISALIGNMENT (dr) == DR_MISALIGNMENT_UNKNOWN)
1285 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr)));
1286 if (DR_MISALIGNMENT (dr) == 0)
1287 return DR_TARGET_ALIGNMENT (dr);
1288 return DR_MISALIGNMENT (dr) & -DR_MISALIGNMENT (dr);
1291 /* Return the behavior of DR with respect to the vectorization context
1292 (which for outer loop vectorization might not be the behavior recorded
1293 in DR itself). */
1295 static inline innermost_loop_behavior *
1296 vect_dr_behavior (data_reference *dr)
1298 gimple *stmt = DR_STMT (dr);
1299 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1300 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1301 if (loop_vinfo == NULL
1302 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt))
1303 return &DR_INNERMOST (dr);
1304 else
1305 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1308 /* Return the stmt DR is in. For DR_STMT that have been replaced by
1309 a pattern this returns the corresponding pattern stmt. Otherwise
1310 DR_STMT is returned. */
1312 inline gimple *
1313 vect_dr_stmt (data_reference *dr)
1315 gimple *stmt = DR_STMT (dr);
1316 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1317 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1318 return STMT_VINFO_RELATED_STMT (stmt_info);
1319 /* DR_STMT should never refer to a stmt in a pattern replacement. */
1320 gcc_checking_assert (!STMT_VINFO_RELATED_STMT (stmt_info));
1321 return stmt;
1324 /* Return true if the vect cost model is unlimited. */
1325 static inline bool
1326 unlimited_cost_model (loop_p loop)
1328 if (loop != NULL && loop->force_vectorize
1329 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1330 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1331 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1334 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1335 if the first iteration should use a partial mask in order to achieve
1336 alignment. */
1338 static inline bool
1339 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1341 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1342 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1345 /* Return the number of vectors of type VECTYPE that are needed to get
1346 NUNITS elements. NUNITS should be based on the vectorization factor,
1347 so it is always a known multiple of the number of elements in VECTYPE. */
1349 static inline unsigned int
1350 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1352 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1355 /* Return the number of copies needed for loop vectorization when
1356 a statement operates on vectors of type VECTYPE. This is the
1357 vectorization factor divided by the number of elements in
1358 VECTYPE and is always known at compile time. */
1360 static inline unsigned int
1361 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1363 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1366 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1367 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1368 if we haven't yet recorded any vector types. */
1370 static inline void
1371 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1373 /* All unit counts have the form current_vector_size * X for some
1374 rational X, so two unit sizes must have a common multiple.
1375 Everything is a multiple of the initial value of 1. */
1376 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1377 *max_nunits = force_common_multiple (*max_nunits, nunits);
1380 /* Return the vectorization factor that should be used for costing
1381 purposes while vectorizing the loop described by LOOP_VINFO.
1382 Pick a reasonable estimate if the vectorization factor isn't
1383 known at compile time. */
1385 static inline unsigned int
1386 vect_vf_for_cost (loop_vec_info loop_vinfo)
1388 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1391 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1392 Pick a reasonable estimate if the exact number isn't known at
1393 compile time. */
1395 static inline unsigned int
1396 vect_nunits_for_cost (tree vec_type)
1398 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1401 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1403 static inline unsigned HOST_WIDE_INT
1404 vect_max_vf (loop_vec_info loop_vinfo)
1406 unsigned HOST_WIDE_INT vf;
1407 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1408 return vf;
1409 return MAX_VECTORIZATION_FACTOR;
1412 /* Return the size of the value accessed by unvectorized data reference DR.
1413 This is only valid once STMT_VINFO_VECTYPE has been calculated for the
1414 associated gimple statement, since that guarantees that DR accesses
1415 either a scalar or a scalar equivalent. ("Scalar equivalent" here
1416 includes things like V1SI, which can be vectorized in the same way
1417 as a plain SI.) */
1419 inline unsigned int
1420 vect_get_scalar_dr_size (struct data_reference *dr)
1422 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
1425 /* Source location */
1426 extern source_location vect_location;
1428 /*-----------------------------------------------------------------*/
1429 /* Function prototypes. */
1430 /*-----------------------------------------------------------------*/
1432 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1433 in tree-vect-loop-manip.c. */
1434 extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1435 tree, tree, tree, bool);
1436 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1437 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1438 struct loop *, edge);
1439 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool,
1440 poly_uint64);
1441 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1442 tree *, tree *, tree *, int, bool, bool);
1443 extern void vect_prepare_for_masked_peels (loop_vec_info);
1444 extern source_location find_loop_location (struct loop *);
1445 extern bool vect_can_advance_ivs_p (loop_vec_info);
1447 /* In tree-vect-stmts.c. */
1448 extern poly_uint64 current_vector_size;
1449 extern tree get_vectype_for_scalar_type (tree);
1450 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1451 extern tree get_mask_type_for_scalar_type (tree);
1452 extern tree get_same_sized_vectype (tree, tree);
1453 extern bool vect_get_loop_mask_type (loop_vec_info);
1454 extern bool vect_is_simple_use (tree, vec_info *, gimple **,
1455 enum vect_def_type *);
1456 extern bool vect_is_simple_use (tree, vec_info *, gimple **,
1457 enum vect_def_type *, tree *);
1458 extern bool supportable_widening_operation (enum tree_code, gimple *, tree,
1459 tree, enum tree_code *,
1460 enum tree_code *, int *,
1461 vec<tree> *);
1462 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1463 enum tree_code *,
1464 int *, vec<tree> *);
1465 extern stmt_vec_info new_stmt_vec_info (gimple *stmt, vec_info *);
1466 extern void free_stmt_vec_info (gimple *stmt);
1467 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1468 enum vect_cost_for_stmt, stmt_vec_info,
1469 int, enum vect_cost_model_location);
1470 extern void vect_finish_replace_stmt (gimple *, gimple *);
1471 extern void vect_finish_stmt_generation (gimple *, gimple *,
1472 gimple_stmt_iterator *);
1473 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
1474 extern tree vect_get_store_rhs (gimple *);
1475 extern tree vect_get_vec_def_for_operand_1 (gimple *, enum vect_def_type);
1476 extern tree vect_get_vec_def_for_operand (tree, gimple *, tree = NULL);
1477 extern void vect_get_vec_defs (tree, tree, gimple *, vec<tree> *,
1478 vec<tree> *, slp_tree);
1479 extern void vect_get_vec_defs_for_stmt_copy (enum vect_def_type *,
1480 vec<tree> *, vec<tree> *);
1481 extern tree vect_init_vector (gimple *, tree, tree,
1482 gimple_stmt_iterator *);
1483 extern tree vect_get_vec_def_for_stmt_copy (enum vect_def_type, tree);
1484 extern bool vect_transform_stmt (gimple *, gimple_stmt_iterator *,
1485 bool *, slp_tree, slp_instance);
1486 extern void vect_remove_stores (gimple *);
1487 extern bool vect_analyze_stmt (gimple *, bool *, slp_tree, slp_instance,
1488 stmt_vector_for_cost *);
1489 extern bool vectorizable_condition (gimple *, gimple_stmt_iterator *,
1490 gimple **, tree, int, slp_tree,
1491 stmt_vector_for_cost *);
1492 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1493 unsigned int *, unsigned int *,
1494 stmt_vector_for_cost *,
1495 stmt_vector_for_cost *, bool);
1496 extern void vect_get_store_cost (stmt_vec_info, int,
1497 unsigned int *, stmt_vector_for_cost *);
1498 extern bool vect_supportable_shift (enum tree_code, tree);
1499 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1500 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1501 extern void optimize_mask_stores (struct loop*);
1502 extern gcall *vect_gen_while (tree, tree, tree);
1503 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1504 extern bool vect_get_vector_types_for_stmt (stmt_vec_info, tree *, tree *);
1505 extern tree vect_get_mask_type_for_stmt (stmt_vec_info);
1507 /* In tree-vect-data-refs.c. */
1508 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
1509 extern enum dr_alignment_support vect_supportable_dr_alignment
1510 (struct data_reference *, bool);
1511 extern tree vect_get_smallest_scalar_type (gimple *, HOST_WIDE_INT *,
1512 HOST_WIDE_INT *);
1513 extern bool vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1514 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1515 extern bool vect_enhance_data_refs_alignment (loop_vec_info);
1516 extern bool vect_analyze_data_refs_alignment (loop_vec_info);
1517 extern bool vect_verify_datarefs_alignment (loop_vec_info);
1518 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1519 extern bool vect_analyze_data_ref_accesses (vec_info *);
1520 extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
1521 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1522 signop, int, internal_fn *, tree *);
1523 extern bool vect_check_gather_scatter (gimple *, loop_vec_info,
1524 gather_scatter_info *);
1525 extern bool vect_find_stmt_data_reference (loop_p, gimple *,
1526 vec<data_reference_p> *);
1527 extern bool vect_analyze_data_refs (vec_info *, poly_uint64 *);
1528 extern void vect_record_base_alignments (vec_info *);
1529 extern tree vect_create_data_ref_ptr (gimple *, tree, struct loop *, tree,
1530 tree *, gimple_stmt_iterator *,
1531 gimple **, bool, bool *,
1532 tree = NULL_TREE, tree = NULL_TREE);
1533 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *, gimple *,
1534 tree);
1535 extern void vect_copy_ref_info (tree, tree);
1536 extern tree vect_create_destination_var (tree, tree);
1537 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1538 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1539 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1540 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1541 extern void vect_permute_store_chain (vec<tree> ,unsigned int, gimple *,
1542 gimple_stmt_iterator *, vec<tree> *);
1543 extern tree vect_setup_realignment (gimple *, gimple_stmt_iterator *, tree *,
1544 enum dr_alignment_support, tree,
1545 struct loop **);
1546 extern void vect_transform_grouped_load (gimple *, vec<tree> , int,
1547 gimple_stmt_iterator *);
1548 extern void vect_record_grouped_load_vectors (gimple *, vec<tree> );
1549 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1550 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1551 const char * = NULL);
1552 extern tree vect_create_addr_base_for_vector_ref (gimple *, gimple_seq *,
1553 tree, tree = NULL_TREE);
1555 /* In tree-vect-loop.c. */
1556 /* FORNOW: Used in tree-parloops.c. */
1557 extern gimple *vect_force_simple_reduction (loop_vec_info, gimple *,
1558 bool *, bool);
1559 /* Used in gimple-loop-interchange.c. */
1560 extern bool check_reduction_path (location_t, loop_p, gphi *, tree,
1561 enum tree_code);
1562 /* Drive for loop analysis stage. */
1563 extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info);
1564 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1565 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1566 tree *, bool);
1567 extern tree vect_halve_mask_nunits (tree);
1568 extern tree vect_double_mask_nunits (tree);
1569 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1570 unsigned int, tree);
1571 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1572 unsigned int, tree, unsigned int);
1574 /* Drive for loop transformation stage. */
1575 extern struct loop *vect_transform_loop (loop_vec_info);
1576 extern loop_vec_info vect_analyze_loop_form (struct loop *);
1577 extern bool vectorizable_live_operation (gimple *, gimple_stmt_iterator *,
1578 slp_tree, int, gimple **,
1579 stmt_vector_for_cost *);
1580 extern bool vectorizable_reduction (gimple *, gimple_stmt_iterator *,
1581 gimple **, slp_tree, slp_instance,
1582 stmt_vector_for_cost *);
1583 extern bool vectorizable_induction (gimple *, gimple_stmt_iterator *,
1584 gimple **, slp_tree,
1585 stmt_vector_for_cost *);
1586 extern tree get_initial_def_for_reduction (gimple *, tree, tree *);
1587 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1588 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1589 stmt_vector_for_cost *,
1590 stmt_vector_for_cost *,
1591 stmt_vector_for_cost *);
1592 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1594 /* In tree-vect-slp.c. */
1595 extern void vect_free_slp_instance (slp_instance);
1596 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1597 gimple_stmt_iterator *, poly_uint64,
1598 slp_instance, bool, unsigned *);
1599 extern bool vect_slp_analyze_operations (vec_info *);
1600 extern bool vect_schedule_slp (vec_info *);
1601 extern bool vect_analyze_slp (vec_info *, unsigned);
1602 extern bool vect_make_slp_decision (loop_vec_info);
1603 extern void vect_detect_hybrid_slp (loop_vec_info);
1604 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1605 extern bool vect_slp_bb (basic_block);
1606 extern gimple *vect_find_last_scalar_stmt_in_slp (slp_tree);
1607 extern bool is_simple_and_all_uses_invariant (gimple *, loop_vec_info);
1608 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1609 unsigned int * = NULL,
1610 tree * = NULL, tree * = NULL);
1611 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1612 unsigned int, vec<tree> &);
1613 extern int vect_get_place_in_interleaving_chain (gimple *, gimple *);
1615 /* In tree-vect-patterns.c. */
1616 /* Pattern recognition functions.
1617 Additional pattern recognition functions can (and will) be added
1618 in the future. */
1619 typedef gimple *(* vect_recog_func_ptr) (vec<gimple *> *, tree *, tree *);
1620 #define NUM_PATTERNS 15
1621 void vect_pattern_recog (vec_info *);
1623 /* In tree-vectorizer.c. */
1624 unsigned vectorize_loops (void);
1625 bool vect_stmt_in_region_p (vec_info *, gimple *);
1626 void vect_free_loop_info_assumptions (struct loop *);
1628 #endif /* GCC_TREE_VECTORIZER_H */