2018-06-09 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / tree-eh.c
blob30c6d9e3d02e4ee9d29120b9b0e6332673d90dd8
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "cgraph.h"
31 #include "diagnostic-core.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "except.h"
35 #include "cfganal.h"
36 #include "cfgcleanup.h"
37 #include "tree-eh.h"
38 #include "gimple-iterator.h"
39 #include "tree-cfg.h"
40 #include "tree-into-ssa.h"
41 #include "tree-ssa.h"
42 #include "tree-inline.h"
43 #include "langhooks.h"
44 #include "cfgloop.h"
45 #include "gimple-low.h"
46 #include "stringpool.h"
47 #include "attribs.h"
48 #include "asan.h"
49 #include "gimplify.h"
51 /* In some instances a tree and a gimple need to be stored in a same table,
52 i.e. in hash tables. This is a structure to do this. */
53 typedef union {tree *tp; tree t; gimple *g;} treemple;
55 /* Misc functions used in this file. */
57 /* Remember and lookup EH landing pad data for arbitrary statements.
58 Really this means any statement that could_throw_p. We could
59 stuff this information into the stmt_ann data structure, but:
61 (1) We absolutely rely on this information being kept until
62 we get to rtl. Once we're done with lowering here, if we lose
63 the information there's no way to recover it!
65 (2) There are many more statements that *cannot* throw as
66 compared to those that can. We should be saving some amount
67 of space by only allocating memory for those that can throw. */
69 /* Add statement T in function IFUN to landing pad NUM. */
71 static void
72 add_stmt_to_eh_lp_fn (struct function *ifun, gimple *t, int num)
74 gcc_assert (num != 0);
76 if (!get_eh_throw_stmt_table (ifun))
77 set_eh_throw_stmt_table (ifun, hash_map<gimple *, int>::create_ggc (31));
79 gcc_assert (!get_eh_throw_stmt_table (ifun)->put (t, num));
82 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
84 void
85 add_stmt_to_eh_lp (gimple *t, int num)
87 add_stmt_to_eh_lp_fn (cfun, t, num);
90 /* Add statement T to the single EH landing pad in REGION. */
92 static void
93 record_stmt_eh_region (eh_region region, gimple *t)
95 if (region == NULL)
96 return;
97 if (region->type == ERT_MUST_NOT_THROW)
98 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
99 else
101 eh_landing_pad lp = region->landing_pads;
102 if (lp == NULL)
103 lp = gen_eh_landing_pad (region);
104 else
105 gcc_assert (lp->next_lp == NULL);
106 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
111 /* Remove statement T in function IFUN from its EH landing pad. */
113 bool
114 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple *t)
116 if (!get_eh_throw_stmt_table (ifun))
117 return false;
119 if (!get_eh_throw_stmt_table (ifun)->get (t))
120 return false;
122 get_eh_throw_stmt_table (ifun)->remove (t);
123 return true;
127 /* Remove statement T in the current function (cfun) from its
128 EH landing pad. */
130 bool
131 remove_stmt_from_eh_lp (gimple *t)
133 return remove_stmt_from_eh_lp_fn (cfun, t);
136 /* Determine if statement T is inside an EH region in function IFUN.
137 Positive numbers indicate a landing pad index; negative numbers
138 indicate a MUST_NOT_THROW region index; zero indicates that the
139 statement is not recorded in the region table. */
142 lookup_stmt_eh_lp_fn (struct function *ifun, gimple *t)
144 if (ifun->eh->throw_stmt_table == NULL)
145 return 0;
147 int *lp_nr = ifun->eh->throw_stmt_table->get (t);
148 return lp_nr ? *lp_nr : 0;
151 /* Likewise, but always use the current function. */
154 lookup_stmt_eh_lp (gimple *t)
156 /* We can get called from initialized data when -fnon-call-exceptions
157 is on; prevent crash. */
158 if (!cfun)
159 return 0;
160 return lookup_stmt_eh_lp_fn (cfun, t);
163 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
164 nodes and LABEL_DECL nodes. We will use this during the second phase to
165 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
167 struct finally_tree_node
169 /* When storing a GIMPLE_TRY, we have to record a gimple. However
170 when deciding whether a GOTO to a certain LABEL_DECL (which is a
171 tree) leaves the TRY block, its necessary to record a tree in
172 this field. Thus a treemple is used. */
173 treemple child;
174 gtry *parent;
177 /* Hashtable helpers. */
179 struct finally_tree_hasher : free_ptr_hash <finally_tree_node>
181 static inline hashval_t hash (const finally_tree_node *);
182 static inline bool equal (const finally_tree_node *,
183 const finally_tree_node *);
186 inline hashval_t
187 finally_tree_hasher::hash (const finally_tree_node *v)
189 return (intptr_t)v->child.t >> 4;
192 inline bool
193 finally_tree_hasher::equal (const finally_tree_node *v,
194 const finally_tree_node *c)
196 return v->child.t == c->child.t;
199 /* Note that this table is *not* marked GTY. It is short-lived. */
200 static hash_table<finally_tree_hasher> *finally_tree;
202 static void
203 record_in_finally_tree (treemple child, gtry *parent)
205 struct finally_tree_node *n;
206 finally_tree_node **slot;
208 n = XNEW (struct finally_tree_node);
209 n->child = child;
210 n->parent = parent;
212 slot = finally_tree->find_slot (n, INSERT);
213 gcc_assert (!*slot);
214 *slot = n;
217 static void
218 collect_finally_tree (gimple *stmt, gtry *region);
220 /* Go through the gimple sequence. Works with collect_finally_tree to
221 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
223 static void
224 collect_finally_tree_1 (gimple_seq seq, gtry *region)
226 gimple_stmt_iterator gsi;
228 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
229 collect_finally_tree (gsi_stmt (gsi), region);
232 static void
233 collect_finally_tree (gimple *stmt, gtry *region)
235 treemple temp;
237 switch (gimple_code (stmt))
239 case GIMPLE_LABEL:
240 temp.t = gimple_label_label (as_a <glabel *> (stmt));
241 record_in_finally_tree (temp, region);
242 break;
244 case GIMPLE_TRY:
245 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
247 temp.g = stmt;
248 record_in_finally_tree (temp, region);
249 collect_finally_tree_1 (gimple_try_eval (stmt),
250 as_a <gtry *> (stmt));
251 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
253 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
255 collect_finally_tree_1 (gimple_try_eval (stmt), region);
256 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
258 break;
260 case GIMPLE_CATCH:
261 collect_finally_tree_1 (gimple_catch_handler (
262 as_a <gcatch *> (stmt)),
263 region);
264 break;
266 case GIMPLE_EH_FILTER:
267 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
268 break;
270 case GIMPLE_EH_ELSE:
272 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
273 collect_finally_tree_1 (gimple_eh_else_n_body (eh_else_stmt), region);
274 collect_finally_tree_1 (gimple_eh_else_e_body (eh_else_stmt), region);
276 break;
278 default:
279 /* A type, a decl, or some kind of statement that we're not
280 interested in. Don't walk them. */
281 break;
286 /* Use the finally tree to determine if a jump from START to TARGET
287 would leave the try_finally node that START lives in. */
289 static bool
290 outside_finally_tree (treemple start, gimple *target)
292 struct finally_tree_node n, *p;
296 n.child = start;
297 p = finally_tree->find (&n);
298 if (!p)
299 return true;
300 start.g = p->parent;
302 while (start.g != target);
304 return false;
307 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
308 nodes into a set of gotos, magic labels, and eh regions.
309 The eh region creation is straight-forward, but frobbing all the gotos
310 and such into shape isn't. */
312 /* The sequence into which we record all EH stuff. This will be
313 placed at the end of the function when we're all done. */
314 static gimple_seq eh_seq;
316 /* Record whether an EH region contains something that can throw,
317 indexed by EH region number. */
318 static bitmap eh_region_may_contain_throw_map;
320 /* The GOTO_QUEUE is an array of GIMPLE_GOTO and GIMPLE_RETURN
321 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
322 The idea is to record a gimple statement for everything except for
323 the conditionals, which get their labels recorded. Since labels are
324 of type 'tree', we need this node to store both gimple and tree
325 objects. REPL_STMT is the sequence used to replace the goto/return
326 statement. CONT_STMT is used to store the statement that allows
327 the return/goto to jump to the original destination. */
329 struct goto_queue_node
331 treemple stmt;
332 location_t location;
333 gimple_seq repl_stmt;
334 gimple *cont_stmt;
335 int index;
336 /* This is used when index >= 0 to indicate that stmt is a label (as
337 opposed to a goto stmt). */
338 int is_label;
341 /* State of the world while lowering. */
343 struct leh_state
345 /* What's "current" while constructing the eh region tree. These
346 correspond to variables of the same name in cfun->eh, which we
347 don't have easy access to. */
348 eh_region cur_region;
350 /* What's "current" for the purposes of __builtin_eh_pointer. For
351 a CATCH, this is the associated TRY. For an EH_FILTER, this is
352 the associated ALLOWED_EXCEPTIONS, etc. */
353 eh_region ehp_region;
355 /* Processing of TRY_FINALLY requires a bit more state. This is
356 split out into a separate structure so that we don't have to
357 copy so much when processing other nodes. */
358 struct leh_tf_state *tf;
361 struct leh_tf_state
363 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
364 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
365 this so that outside_finally_tree can reliably reference the tree used
366 in the collect_finally_tree data structures. */
367 gtry *try_finally_expr;
368 gtry *top_p;
370 /* While lowering a top_p usually it is expanded into multiple statements,
371 thus we need the following field to store them. */
372 gimple_seq top_p_seq;
374 /* The state outside this try_finally node. */
375 struct leh_state *outer;
377 /* The exception region created for it. */
378 eh_region region;
380 /* The goto queue. */
381 struct goto_queue_node *goto_queue;
382 size_t goto_queue_size;
383 size_t goto_queue_active;
385 /* Pointer map to help in searching goto_queue when it is large. */
386 hash_map<gimple *, goto_queue_node *> *goto_queue_map;
388 /* The set of unique labels seen as entries in the goto queue. */
389 vec<tree> dest_array;
391 /* A label to be added at the end of the completed transformed
392 sequence. It will be set if may_fallthru was true *at one time*,
393 though subsequent transformations may have cleared that flag. */
394 tree fallthru_label;
396 /* True if it is possible to fall out the bottom of the try block.
397 Cleared if the fallthru is converted to a goto. */
398 bool may_fallthru;
400 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
401 bool may_return;
403 /* True if the finally block can receive an exception edge.
404 Cleared if the exception case is handled by code duplication. */
405 bool may_throw;
408 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gtry *);
410 /* Search for STMT in the goto queue. Return the replacement,
411 or null if the statement isn't in the queue. */
413 #define LARGE_GOTO_QUEUE 20
415 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
417 static gimple_seq
418 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
420 unsigned int i;
422 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
424 for (i = 0; i < tf->goto_queue_active; i++)
425 if ( tf->goto_queue[i].stmt.g == stmt.g)
426 return tf->goto_queue[i].repl_stmt;
427 return NULL;
430 /* If we have a large number of entries in the goto_queue, create a
431 pointer map and use that for searching. */
433 if (!tf->goto_queue_map)
435 tf->goto_queue_map = new hash_map<gimple *, goto_queue_node *>;
436 for (i = 0; i < tf->goto_queue_active; i++)
438 bool existed = tf->goto_queue_map->put (tf->goto_queue[i].stmt.g,
439 &tf->goto_queue[i]);
440 gcc_assert (!existed);
444 goto_queue_node **slot = tf->goto_queue_map->get (stmt.g);
445 if (slot != NULL)
446 return ((*slot)->repl_stmt);
448 return NULL;
451 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
452 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
453 then we can just splat it in, otherwise we add the new stmts immediately
454 after the GIMPLE_COND and redirect. */
456 static void
457 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
458 gimple_stmt_iterator *gsi)
460 tree label;
461 gimple_seq new_seq;
462 treemple temp;
463 location_t loc = gimple_location (gsi_stmt (*gsi));
465 temp.tp = tp;
466 new_seq = find_goto_replacement (tf, temp);
467 if (!new_seq)
468 return;
470 if (gimple_seq_singleton_p (new_seq)
471 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
473 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
474 return;
477 label = create_artificial_label (loc);
478 /* Set the new label for the GIMPLE_COND */
479 *tp = label;
481 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
482 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
485 /* The real work of replace_goto_queue. Returns with TSI updated to
486 point to the next statement. */
488 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
490 static void
491 replace_goto_queue_1 (gimple *stmt, struct leh_tf_state *tf,
492 gimple_stmt_iterator *gsi)
494 gimple_seq seq;
495 treemple temp;
496 temp.g = NULL;
498 switch (gimple_code (stmt))
500 case GIMPLE_GOTO:
501 case GIMPLE_RETURN:
502 temp.g = stmt;
503 seq = find_goto_replacement (tf, temp);
504 if (seq)
506 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
507 gsi_remove (gsi, false);
508 return;
510 break;
512 case GIMPLE_COND:
513 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
514 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
515 break;
517 case GIMPLE_TRY:
518 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
519 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
520 break;
521 case GIMPLE_CATCH:
522 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (
523 as_a <gcatch *> (stmt)),
524 tf);
525 break;
526 case GIMPLE_EH_FILTER:
527 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
528 break;
529 case GIMPLE_EH_ELSE:
531 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
532 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (eh_else_stmt),
533 tf);
534 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (eh_else_stmt),
535 tf);
537 break;
539 default:
540 /* These won't have gotos in them. */
541 break;
544 gsi_next (gsi);
547 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
549 static void
550 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
552 gimple_stmt_iterator gsi = gsi_start (*seq);
554 while (!gsi_end_p (gsi))
555 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
558 /* Replace all goto queue members. */
560 static void
561 replace_goto_queue (struct leh_tf_state *tf)
563 if (tf->goto_queue_active == 0)
564 return;
565 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
566 replace_goto_queue_stmt_list (&eh_seq, tf);
569 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
570 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
571 a gimple return. */
573 static void
574 record_in_goto_queue (struct leh_tf_state *tf,
575 treemple new_stmt,
576 int index,
577 bool is_label,
578 location_t location)
580 size_t active, size;
581 struct goto_queue_node *q;
583 gcc_assert (!tf->goto_queue_map);
585 active = tf->goto_queue_active;
586 size = tf->goto_queue_size;
587 if (active >= size)
589 size = (size ? size * 2 : 32);
590 tf->goto_queue_size = size;
591 tf->goto_queue
592 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
595 q = &tf->goto_queue[active];
596 tf->goto_queue_active = active + 1;
598 memset (q, 0, sizeof (*q));
599 q->stmt = new_stmt;
600 q->index = index;
601 q->location = location;
602 q->is_label = is_label;
605 /* Record the LABEL label in the goto queue contained in TF.
606 TF is not null. */
608 static void
609 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
610 location_t location)
612 int index;
613 treemple temp, new_stmt;
615 if (!label)
616 return;
618 /* Computed and non-local gotos do not get processed. Given
619 their nature we can neither tell whether we've escaped the
620 finally block nor redirect them if we knew. */
621 if (TREE_CODE (label) != LABEL_DECL)
622 return;
624 /* No need to record gotos that don't leave the try block. */
625 temp.t = label;
626 if (!outside_finally_tree (temp, tf->try_finally_expr))
627 return;
629 if (! tf->dest_array.exists ())
631 tf->dest_array.create (10);
632 tf->dest_array.quick_push (label);
633 index = 0;
635 else
637 int n = tf->dest_array.length ();
638 for (index = 0; index < n; ++index)
639 if (tf->dest_array[index] == label)
640 break;
641 if (index == n)
642 tf->dest_array.safe_push (label);
645 /* In the case of a GOTO we want to record the destination label,
646 since with a GIMPLE_COND we have an easy access to the then/else
647 labels. */
648 new_stmt = stmt;
649 record_in_goto_queue (tf, new_stmt, index, true, location);
652 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
653 node, and if so record that fact in the goto queue associated with that
654 try_finally node. */
656 static void
657 maybe_record_in_goto_queue (struct leh_state *state, gimple *stmt)
659 struct leh_tf_state *tf = state->tf;
660 treemple new_stmt;
662 if (!tf)
663 return;
665 switch (gimple_code (stmt))
667 case GIMPLE_COND:
669 gcond *cond_stmt = as_a <gcond *> (stmt);
670 new_stmt.tp = gimple_op_ptr (cond_stmt, 2);
671 record_in_goto_queue_label (tf, new_stmt,
672 gimple_cond_true_label (cond_stmt),
673 EXPR_LOCATION (*new_stmt.tp));
674 new_stmt.tp = gimple_op_ptr (cond_stmt, 3);
675 record_in_goto_queue_label (tf, new_stmt,
676 gimple_cond_false_label (cond_stmt),
677 EXPR_LOCATION (*new_stmt.tp));
679 break;
680 case GIMPLE_GOTO:
681 new_stmt.g = stmt;
682 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
683 gimple_location (stmt));
684 break;
686 case GIMPLE_RETURN:
687 tf->may_return = true;
688 new_stmt.g = stmt;
689 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
690 break;
692 default:
693 gcc_unreachable ();
698 #if CHECKING_P
699 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
700 was in fact structured, and we've not yet done jump threading, then none
701 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
703 static void
704 verify_norecord_switch_expr (struct leh_state *state,
705 gswitch *switch_expr)
707 struct leh_tf_state *tf = state->tf;
708 size_t i, n;
710 if (!tf)
711 return;
713 n = gimple_switch_num_labels (switch_expr);
715 for (i = 0; i < n; ++i)
717 treemple temp;
718 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
719 temp.t = lab;
720 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
723 #else
724 #define verify_norecord_switch_expr(state, switch_expr)
725 #endif
727 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
728 non-null, insert it before the new branch. */
730 static void
731 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
733 gimple *x;
735 /* In the case of a return, the queue node must be a gimple statement. */
736 gcc_assert (!q->is_label);
738 /* Note that the return value may have already been computed, e.g.,
740 int x;
741 int foo (void)
743 x = 0;
744 try {
745 return x;
746 } finally {
747 x++;
751 should return 0, not 1. We don't have to do anything to make
752 this happens because the return value has been placed in the
753 RESULT_DECL already. */
755 q->cont_stmt = q->stmt.g;
757 if (mod)
758 gimple_seq_add_seq (&q->repl_stmt, mod);
760 x = gimple_build_goto (finlab);
761 gimple_set_location (x, q->location);
762 gimple_seq_add_stmt (&q->repl_stmt, x);
765 /* Similar, but easier, for GIMPLE_GOTO. */
767 static void
768 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
769 struct leh_tf_state *tf)
771 ggoto *x;
773 gcc_assert (q->is_label);
775 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
777 if (mod)
778 gimple_seq_add_seq (&q->repl_stmt, mod);
780 x = gimple_build_goto (finlab);
781 gimple_set_location (x, q->location);
782 gimple_seq_add_stmt (&q->repl_stmt, x);
785 /* Emit a standard landing pad sequence into SEQ for REGION. */
787 static void
788 emit_post_landing_pad (gimple_seq *seq, eh_region region)
790 eh_landing_pad lp = region->landing_pads;
791 glabel *x;
793 if (lp == NULL)
794 lp = gen_eh_landing_pad (region);
796 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
797 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
799 x = gimple_build_label (lp->post_landing_pad);
800 gimple_seq_add_stmt (seq, x);
803 /* Emit a RESX statement into SEQ for REGION. */
805 static void
806 emit_resx (gimple_seq *seq, eh_region region)
808 gresx *x = gimple_build_resx (region->index);
809 gimple_seq_add_stmt (seq, x);
810 if (region->outer)
811 record_stmt_eh_region (region->outer, x);
814 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
816 static void
817 emit_eh_dispatch (gimple_seq *seq, eh_region region)
819 geh_dispatch *x = gimple_build_eh_dispatch (region->index);
820 gimple_seq_add_stmt (seq, x);
823 /* Note that the current EH region may contain a throw, or a
824 call to a function which itself may contain a throw. */
826 static void
827 note_eh_region_may_contain_throw (eh_region region)
829 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
831 if (region->type == ERT_MUST_NOT_THROW)
832 break;
833 region = region->outer;
834 if (region == NULL)
835 break;
839 /* Check if REGION has been marked as containing a throw. If REGION is
840 NULL, this predicate is false. */
842 static inline bool
843 eh_region_may_contain_throw (eh_region r)
845 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
848 /* We want to transform
849 try { body; } catch { stuff; }
851 normal_sequence:
852 body;
853 over:
854 eh_sequence:
855 landing_pad:
856 stuff;
857 goto over;
859 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
860 should be placed before the second operand, or NULL. OVER is
861 an existing label that should be put at the exit, or NULL. */
863 static gimple_seq
864 frob_into_branch_around (gtry *tp, eh_region region, tree over)
866 gimple *x;
867 gimple_seq cleanup, result;
868 location_t loc = gimple_location (tp);
870 cleanup = gimple_try_cleanup (tp);
871 result = gimple_try_eval (tp);
873 if (region)
874 emit_post_landing_pad (&eh_seq, region);
876 if (gimple_seq_may_fallthru (cleanup))
878 if (!over)
879 over = create_artificial_label (loc);
880 x = gimple_build_goto (over);
881 gimple_set_location (x, loc);
882 gimple_seq_add_stmt (&cleanup, x);
884 gimple_seq_add_seq (&eh_seq, cleanup);
886 if (over)
888 x = gimple_build_label (over);
889 gimple_seq_add_stmt (&result, x);
891 return result;
894 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
895 Make sure to record all new labels found. */
897 static gimple_seq
898 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
899 location_t loc)
901 gtry *region = NULL;
902 gimple_seq new_seq;
903 gimple_stmt_iterator gsi;
905 new_seq = copy_gimple_seq_and_replace_locals (seq);
907 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
909 gimple *stmt = gsi_stmt (gsi);
910 /* We duplicate __builtin_stack_restore at -O0 in the hope of eliminating
911 it on the EH paths. When it is not eliminated, make it transparent in
912 the debug info. */
913 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
914 gimple_set_location (stmt, UNKNOWN_LOCATION);
915 else if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
917 tree block = gimple_block (stmt);
918 gimple_set_location (stmt, loc);
919 gimple_set_block (stmt, block);
923 if (outer_state->tf)
924 region = outer_state->tf->try_finally_expr;
925 collect_finally_tree_1 (new_seq, region);
927 return new_seq;
930 /* A subroutine of lower_try_finally. Create a fallthru label for
931 the given try_finally state. The only tricky bit here is that
932 we have to make sure to record the label in our outer context. */
934 static tree
935 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
937 tree label = tf->fallthru_label;
938 treemple temp;
940 if (!label)
942 label = create_artificial_label (gimple_location (tf->try_finally_expr));
943 tf->fallthru_label = label;
944 if (tf->outer->tf)
946 temp.t = label;
947 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
950 return label;
953 /* A subroutine of lower_try_finally. If FINALLY consits of a
954 GIMPLE_EH_ELSE node, return it. */
956 static inline geh_else *
957 get_eh_else (gimple_seq finally)
959 gimple *x = gimple_seq_first_stmt (finally);
960 if (gimple_code (x) == GIMPLE_EH_ELSE)
962 gcc_assert (gimple_seq_singleton_p (finally));
963 return as_a <geh_else *> (x);
965 return NULL;
968 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
969 langhook returns non-null, then the language requires that the exception
970 path out of a try_finally be treated specially. To wit: the code within
971 the finally block may not itself throw an exception. We have two choices
972 here. First we can duplicate the finally block and wrap it in a
973 must_not_throw region. Second, we can generate code like
975 try {
976 finally_block;
977 } catch {
978 if (fintmp == eh_edge)
979 protect_cleanup_actions;
982 where "fintmp" is the temporary used in the switch statement generation
983 alternative considered below. For the nonce, we always choose the first
984 option.
986 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
988 static void
989 honor_protect_cleanup_actions (struct leh_state *outer_state,
990 struct leh_state *this_state,
991 struct leh_tf_state *tf)
993 gimple_seq finally = gimple_try_cleanup (tf->top_p);
995 /* EH_ELSE doesn't come from user code; only compiler generated stuff.
996 It does need to be handled here, so as to separate the (different)
997 EH path from the normal path. But we should not attempt to wrap
998 it with a must-not-throw node (which indeed gets in the way). */
999 if (geh_else *eh_else = get_eh_else (finally))
1001 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
1002 finally = gimple_eh_else_e_body (eh_else);
1004 /* Let the ELSE see the exception that's being processed. */
1005 eh_region save_ehp = this_state->ehp_region;
1006 this_state->ehp_region = this_state->cur_region;
1007 lower_eh_constructs_1 (this_state, &finally);
1008 this_state->ehp_region = save_ehp;
1010 else
1012 /* First check for nothing to do. */
1013 if (lang_hooks.eh_protect_cleanup_actions == NULL)
1014 return;
1015 tree actions = lang_hooks.eh_protect_cleanup_actions ();
1016 if (actions == NULL)
1017 return;
1019 if (this_state)
1020 finally = lower_try_finally_dup_block (finally, outer_state,
1021 gimple_location (tf->try_finally_expr));
1023 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1024 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1025 to be in an enclosing scope, but needs to be implemented at this level
1026 to avoid a nesting violation (see wrap_temporary_cleanups in
1027 cp/decl.c). Since it's logically at an outer level, we should call
1028 terminate before we get to it, so strip it away before adding the
1029 MUST_NOT_THROW filter. */
1030 gimple_stmt_iterator gsi = gsi_start (finally);
1031 gimple *x = gsi_stmt (gsi);
1032 if (gimple_code (x) == GIMPLE_TRY
1033 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1034 && gimple_try_catch_is_cleanup (x))
1036 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1037 gsi_remove (&gsi, false);
1040 /* Wrap the block with protect_cleanup_actions as the action. */
1041 geh_mnt *eh_mnt = gimple_build_eh_must_not_throw (actions);
1042 gtry *try_stmt = gimple_build_try (finally,
1043 gimple_seq_alloc_with_stmt (eh_mnt),
1044 GIMPLE_TRY_CATCH);
1045 finally = lower_eh_must_not_throw (outer_state, try_stmt);
1048 /* Drop all of this into the exception sequence. */
1049 emit_post_landing_pad (&eh_seq, tf->region);
1050 gimple_seq_add_seq (&eh_seq, finally);
1051 if (gimple_seq_may_fallthru (finally))
1052 emit_resx (&eh_seq, tf->region);
1054 /* Having now been handled, EH isn't to be considered with
1055 the rest of the outgoing edges. */
1056 tf->may_throw = false;
1059 /* A subroutine of lower_try_finally. We have determined that there is
1060 no fallthru edge out of the finally block. This means that there is
1061 no outgoing edge corresponding to any incoming edge. Restructure the
1062 try_finally node for this special case. */
1064 static void
1065 lower_try_finally_nofallthru (struct leh_state *state,
1066 struct leh_tf_state *tf)
1068 tree lab;
1069 gimple *x;
1070 geh_else *eh_else;
1071 gimple_seq finally;
1072 struct goto_queue_node *q, *qe;
1074 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1076 /* We expect that tf->top_p is a GIMPLE_TRY. */
1077 finally = gimple_try_cleanup (tf->top_p);
1078 tf->top_p_seq = gimple_try_eval (tf->top_p);
1080 x = gimple_build_label (lab);
1081 gimple_seq_add_stmt (&tf->top_p_seq, x);
1083 q = tf->goto_queue;
1084 qe = q + tf->goto_queue_active;
1085 for (; q < qe; ++q)
1086 if (q->index < 0)
1087 do_return_redirection (q, lab, NULL);
1088 else
1089 do_goto_redirection (q, lab, NULL, tf);
1091 replace_goto_queue (tf);
1093 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1094 eh_else = get_eh_else (finally);
1095 if (eh_else)
1097 finally = gimple_eh_else_n_body (eh_else);
1098 lower_eh_constructs_1 (state, &finally);
1099 gimple_seq_add_seq (&tf->top_p_seq, finally);
1101 if (tf->may_throw)
1103 finally = gimple_eh_else_e_body (eh_else);
1104 lower_eh_constructs_1 (state, &finally);
1106 emit_post_landing_pad (&eh_seq, tf->region);
1107 gimple_seq_add_seq (&eh_seq, finally);
1110 else
1112 lower_eh_constructs_1 (state, &finally);
1113 gimple_seq_add_seq (&tf->top_p_seq, finally);
1115 if (tf->may_throw)
1117 emit_post_landing_pad (&eh_seq, tf->region);
1119 x = gimple_build_goto (lab);
1120 gimple_set_location (x, gimple_location (tf->try_finally_expr));
1121 gimple_seq_add_stmt (&eh_seq, x);
1126 /* A subroutine of lower_try_finally. We have determined that there is
1127 exactly one destination of the finally block. Restructure the
1128 try_finally node for this special case. */
1130 static void
1131 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1133 struct goto_queue_node *q, *qe;
1134 geh_else *eh_else;
1135 glabel *label_stmt;
1136 gimple *x;
1137 gimple_seq finally;
1138 gimple_stmt_iterator gsi;
1139 tree finally_label;
1140 location_t loc = gimple_location (tf->try_finally_expr);
1142 finally = gimple_try_cleanup (tf->top_p);
1143 tf->top_p_seq = gimple_try_eval (tf->top_p);
1145 /* Since there's only one destination, and the destination edge can only
1146 either be EH or non-EH, that implies that all of our incoming edges
1147 are of the same type. Therefore we can lower EH_ELSE immediately. */
1148 eh_else = get_eh_else (finally);
1149 if (eh_else)
1151 if (tf->may_throw)
1152 finally = gimple_eh_else_e_body (eh_else);
1153 else
1154 finally = gimple_eh_else_n_body (eh_else);
1157 lower_eh_constructs_1 (state, &finally);
1159 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1161 gimple *stmt = gsi_stmt (gsi);
1162 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1164 tree block = gimple_block (stmt);
1165 gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1166 gimple_set_block (stmt, block);
1170 if (tf->may_throw)
1172 /* Only reachable via the exception edge. Add the given label to
1173 the head of the FINALLY block. Append a RESX at the end. */
1174 emit_post_landing_pad (&eh_seq, tf->region);
1175 gimple_seq_add_seq (&eh_seq, finally);
1176 emit_resx (&eh_seq, tf->region);
1177 return;
1180 if (tf->may_fallthru)
1182 /* Only reachable via the fallthru edge. Do nothing but let
1183 the two blocks run together; we'll fall out the bottom. */
1184 gimple_seq_add_seq (&tf->top_p_seq, finally);
1185 return;
1188 finally_label = create_artificial_label (loc);
1189 label_stmt = gimple_build_label (finally_label);
1190 gimple_seq_add_stmt (&tf->top_p_seq, label_stmt);
1192 gimple_seq_add_seq (&tf->top_p_seq, finally);
1194 q = tf->goto_queue;
1195 qe = q + tf->goto_queue_active;
1197 if (tf->may_return)
1199 /* Reachable by return expressions only. Redirect them. */
1200 for (; q < qe; ++q)
1201 do_return_redirection (q, finally_label, NULL);
1202 replace_goto_queue (tf);
1204 else
1206 /* Reachable by goto expressions only. Redirect them. */
1207 for (; q < qe; ++q)
1208 do_goto_redirection (q, finally_label, NULL, tf);
1209 replace_goto_queue (tf);
1211 if (tf->dest_array[0] == tf->fallthru_label)
1213 /* Reachable by goto to fallthru label only. Redirect it
1214 to the new label (already created, sadly), and do not
1215 emit the final branch out, or the fallthru label. */
1216 tf->fallthru_label = NULL;
1217 return;
1221 /* Place the original return/goto to the original destination
1222 immediately after the finally block. */
1223 x = tf->goto_queue[0].cont_stmt;
1224 gimple_seq_add_stmt (&tf->top_p_seq, x);
1225 maybe_record_in_goto_queue (state, x);
1228 /* A subroutine of lower_try_finally. There are multiple edges incoming
1229 and outgoing from the finally block. Implement this by duplicating the
1230 finally block for every destination. */
1232 static void
1233 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1235 gimple_seq finally;
1236 gimple_seq new_stmt;
1237 gimple_seq seq;
1238 gimple *x;
1239 geh_else *eh_else;
1240 tree tmp;
1241 location_t tf_loc = gimple_location (tf->try_finally_expr);
1243 finally = gimple_try_cleanup (tf->top_p);
1245 /* Notice EH_ELSE, and simplify some of the remaining code
1246 by considering FINALLY to be the normal return path only. */
1247 eh_else = get_eh_else (finally);
1248 if (eh_else)
1249 finally = gimple_eh_else_n_body (eh_else);
1251 tf->top_p_seq = gimple_try_eval (tf->top_p);
1252 new_stmt = NULL;
1254 if (tf->may_fallthru)
1256 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1257 lower_eh_constructs_1 (state, &seq);
1258 gimple_seq_add_seq (&new_stmt, seq);
1260 tmp = lower_try_finally_fallthru_label (tf);
1261 x = gimple_build_goto (tmp);
1262 gimple_set_location (x, tf_loc);
1263 gimple_seq_add_stmt (&new_stmt, x);
1266 if (tf->may_throw)
1268 /* We don't need to copy the EH path of EH_ELSE,
1269 since it is only emitted once. */
1270 if (eh_else)
1271 seq = gimple_eh_else_e_body (eh_else);
1272 else
1273 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1274 lower_eh_constructs_1 (state, &seq);
1276 emit_post_landing_pad (&eh_seq, tf->region);
1277 gimple_seq_add_seq (&eh_seq, seq);
1278 emit_resx (&eh_seq, tf->region);
1281 if (tf->goto_queue)
1283 struct goto_queue_node *q, *qe;
1284 int return_index, index;
1285 struct labels_s
1287 struct goto_queue_node *q;
1288 tree label;
1289 } *labels;
1291 return_index = tf->dest_array.length ();
1292 labels = XCNEWVEC (struct labels_s, return_index + 1);
1294 q = tf->goto_queue;
1295 qe = q + tf->goto_queue_active;
1296 for (; q < qe; q++)
1298 index = q->index < 0 ? return_index : q->index;
1300 if (!labels[index].q)
1301 labels[index].q = q;
1304 for (index = 0; index < return_index + 1; index++)
1306 tree lab;
1308 q = labels[index].q;
1309 if (! q)
1310 continue;
1312 lab = labels[index].label
1313 = create_artificial_label (tf_loc);
1315 if (index == return_index)
1316 do_return_redirection (q, lab, NULL);
1317 else
1318 do_goto_redirection (q, lab, NULL, tf);
1320 x = gimple_build_label (lab);
1321 gimple_seq_add_stmt (&new_stmt, x);
1323 seq = lower_try_finally_dup_block (finally, state, q->location);
1324 lower_eh_constructs_1 (state, &seq);
1325 gimple_seq_add_seq (&new_stmt, seq);
1327 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1328 maybe_record_in_goto_queue (state, q->cont_stmt);
1331 for (q = tf->goto_queue; q < qe; q++)
1333 tree lab;
1335 index = q->index < 0 ? return_index : q->index;
1337 if (labels[index].q == q)
1338 continue;
1340 lab = labels[index].label;
1342 if (index == return_index)
1343 do_return_redirection (q, lab, NULL);
1344 else
1345 do_goto_redirection (q, lab, NULL, tf);
1348 replace_goto_queue (tf);
1349 free (labels);
1352 /* Need to link new stmts after running replace_goto_queue due
1353 to not wanting to process the same goto stmts twice. */
1354 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1357 /* A subroutine of lower_try_finally. There are multiple edges incoming
1358 and outgoing from the finally block. Implement this by instrumenting
1359 each incoming edge and creating a switch statement at the end of the
1360 finally block that branches to the appropriate destination. */
1362 static void
1363 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1365 struct goto_queue_node *q, *qe;
1366 tree finally_tmp, finally_label;
1367 int return_index, eh_index, fallthru_index;
1368 int nlabels, ndests, j, last_case_index;
1369 tree last_case;
1370 auto_vec<tree> case_label_vec;
1371 gimple_seq switch_body = NULL;
1372 gimple *x;
1373 geh_else *eh_else;
1374 tree tmp;
1375 gimple *switch_stmt;
1376 gimple_seq finally;
1377 hash_map<tree, gimple *> *cont_map = NULL;
1378 /* The location of the TRY_FINALLY stmt. */
1379 location_t tf_loc = gimple_location (tf->try_finally_expr);
1380 /* The location of the finally block. */
1381 location_t finally_loc;
1383 finally = gimple_try_cleanup (tf->top_p);
1384 eh_else = get_eh_else (finally);
1386 /* Mash the TRY block to the head of the chain. */
1387 tf->top_p_seq = gimple_try_eval (tf->top_p);
1389 /* The location of the finally is either the last stmt in the finally
1390 block or the location of the TRY_FINALLY itself. */
1391 x = gimple_seq_last_stmt (finally);
1392 finally_loc = x ? gimple_location (x) : tf_loc;
1394 /* Prepare for switch statement generation. */
1395 nlabels = tf->dest_array.length ();
1396 return_index = nlabels;
1397 eh_index = return_index + tf->may_return;
1398 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1399 ndests = fallthru_index + tf->may_fallthru;
1401 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1402 finally_label = create_artificial_label (finally_loc);
1404 /* We use vec::quick_push on case_label_vec throughout this function,
1405 since we know the size in advance and allocate precisely as muce
1406 space as needed. */
1407 case_label_vec.create (ndests);
1408 last_case = NULL;
1409 last_case_index = 0;
1411 /* Begin inserting code for getting to the finally block. Things
1412 are done in this order to correspond to the sequence the code is
1413 laid out. */
1415 if (tf->may_fallthru)
1417 x = gimple_build_assign (finally_tmp,
1418 build_int_cst (integer_type_node,
1419 fallthru_index));
1420 gimple_set_location (x, finally_loc);
1421 gimple_seq_add_stmt (&tf->top_p_seq, x);
1423 tmp = build_int_cst (integer_type_node, fallthru_index);
1424 last_case = build_case_label (tmp, NULL,
1425 create_artificial_label (finally_loc));
1426 case_label_vec.quick_push (last_case);
1427 last_case_index++;
1429 x = gimple_build_label (CASE_LABEL (last_case));
1430 gimple_seq_add_stmt (&switch_body, x);
1432 tmp = lower_try_finally_fallthru_label (tf);
1433 x = gimple_build_goto (tmp);
1434 gimple_set_location (x, finally_loc);
1435 gimple_seq_add_stmt (&switch_body, x);
1438 /* For EH_ELSE, emit the exception path (plus resx) now, then
1439 subsequently we only need consider the normal path. */
1440 if (eh_else)
1442 if (tf->may_throw)
1444 finally = gimple_eh_else_e_body (eh_else);
1445 lower_eh_constructs_1 (state, &finally);
1447 emit_post_landing_pad (&eh_seq, tf->region);
1448 gimple_seq_add_seq (&eh_seq, finally);
1449 emit_resx (&eh_seq, tf->region);
1452 finally = gimple_eh_else_n_body (eh_else);
1454 else if (tf->may_throw)
1456 emit_post_landing_pad (&eh_seq, tf->region);
1458 x = gimple_build_assign (finally_tmp,
1459 build_int_cst (integer_type_node, eh_index));
1460 gimple_seq_add_stmt (&eh_seq, x);
1462 x = gimple_build_goto (finally_label);
1463 gimple_set_location (x, tf_loc);
1464 gimple_seq_add_stmt (&eh_seq, x);
1466 tmp = build_int_cst (integer_type_node, eh_index);
1467 last_case = build_case_label (tmp, NULL,
1468 create_artificial_label (tf_loc));
1469 case_label_vec.quick_push (last_case);
1470 last_case_index++;
1472 x = gimple_build_label (CASE_LABEL (last_case));
1473 gimple_seq_add_stmt (&eh_seq, x);
1474 emit_resx (&eh_seq, tf->region);
1477 x = gimple_build_label (finally_label);
1478 gimple_seq_add_stmt (&tf->top_p_seq, x);
1480 lower_eh_constructs_1 (state, &finally);
1481 gimple_seq_add_seq (&tf->top_p_seq, finally);
1483 /* Redirect each incoming goto edge. */
1484 q = tf->goto_queue;
1485 qe = q + tf->goto_queue_active;
1486 j = last_case_index + tf->may_return;
1487 /* Prepare the assignments to finally_tmp that are executed upon the
1488 entrance through a particular edge. */
1489 for (; q < qe; ++q)
1491 gimple_seq mod = NULL;
1492 int switch_id;
1493 unsigned int case_index;
1495 if (q->index < 0)
1497 x = gimple_build_assign (finally_tmp,
1498 build_int_cst (integer_type_node,
1499 return_index));
1500 gimple_seq_add_stmt (&mod, x);
1501 do_return_redirection (q, finally_label, mod);
1502 switch_id = return_index;
1504 else
1506 x = gimple_build_assign (finally_tmp,
1507 build_int_cst (integer_type_node, q->index));
1508 gimple_seq_add_stmt (&mod, x);
1509 do_goto_redirection (q, finally_label, mod, tf);
1510 switch_id = q->index;
1513 case_index = j + q->index;
1514 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1516 tree case_lab;
1517 tmp = build_int_cst (integer_type_node, switch_id);
1518 case_lab = build_case_label (tmp, NULL,
1519 create_artificial_label (tf_loc));
1520 /* We store the cont_stmt in the pointer map, so that we can recover
1521 it in the loop below. */
1522 if (!cont_map)
1523 cont_map = new hash_map<tree, gimple *>;
1524 cont_map->put (case_lab, q->cont_stmt);
1525 case_label_vec.quick_push (case_lab);
1528 for (j = last_case_index; j < last_case_index + nlabels; j++)
1530 gimple *cont_stmt;
1532 last_case = case_label_vec[j];
1534 gcc_assert (last_case);
1535 gcc_assert (cont_map);
1537 cont_stmt = *cont_map->get (last_case);
1539 x = gimple_build_label (CASE_LABEL (last_case));
1540 gimple_seq_add_stmt (&switch_body, x);
1541 gimple_seq_add_stmt (&switch_body, cont_stmt);
1542 maybe_record_in_goto_queue (state, cont_stmt);
1544 if (cont_map)
1545 delete cont_map;
1547 replace_goto_queue (tf);
1549 /* Make sure that the last case is the default label, as one is required.
1550 Then sort the labels, which is also required in GIMPLE. */
1551 CASE_LOW (last_case) = NULL;
1552 tree tem = case_label_vec.pop ();
1553 gcc_assert (tem == last_case);
1554 sort_case_labels (case_label_vec);
1556 /* Build the switch statement, setting last_case to be the default
1557 label. */
1558 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1559 case_label_vec);
1560 gimple_set_location (switch_stmt, finally_loc);
1562 /* Need to link SWITCH_STMT after running replace_goto_queue
1563 due to not wanting to process the same goto stmts twice. */
1564 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1565 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1568 /* Decide whether or not we are going to duplicate the finally block.
1569 There are several considerations.
1571 Second, we'd like to prevent egregious code growth. One way to
1572 do this is to estimate the size of the finally block, multiply
1573 that by the number of copies we'd need to make, and compare against
1574 the estimate of the size of the switch machinery we'd have to add. */
1576 static bool
1577 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1579 int f_estimate, sw_estimate;
1580 geh_else *eh_else;
1582 /* If there's an EH_ELSE involved, the exception path is separate
1583 and really doesn't come into play for this computation. */
1584 eh_else = get_eh_else (finally);
1585 if (eh_else)
1587 ndests -= may_throw;
1588 finally = gimple_eh_else_n_body (eh_else);
1591 if (!optimize)
1593 gimple_stmt_iterator gsi;
1595 if (ndests == 1)
1596 return true;
1598 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1600 /* Duplicate __builtin_stack_restore in the hope of eliminating it
1601 on the EH paths and, consequently, useless cleanups. */
1602 gimple *stmt = gsi_stmt (gsi);
1603 if (!is_gimple_debug (stmt)
1604 && !gimple_clobber_p (stmt)
1605 && !gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1606 return false;
1608 return true;
1611 /* Finally estimate N times, plus N gotos. */
1612 f_estimate = estimate_num_insns_seq (finally, &eni_size_weights);
1613 f_estimate = (f_estimate + 1) * ndests;
1615 /* Switch statement (cost 10), N variable assignments, N gotos. */
1616 sw_estimate = 10 + 2 * ndests;
1618 /* Optimize for size clearly wants our best guess. */
1619 if (optimize_function_for_size_p (cfun))
1620 return f_estimate < sw_estimate;
1622 /* ??? These numbers are completely made up so far. */
1623 if (optimize > 1)
1624 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1625 else
1626 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1629 /* REG is the enclosing region for a possible cleanup region, or the region
1630 itself. Returns TRUE if such a region would be unreachable.
1632 Cleanup regions within a must-not-throw region aren't actually reachable
1633 even if there are throwing stmts within them, because the personality
1634 routine will call terminate before unwinding. */
1636 static bool
1637 cleanup_is_dead_in (eh_region reg)
1639 while (reg && reg->type == ERT_CLEANUP)
1640 reg = reg->outer;
1641 return (reg && reg->type == ERT_MUST_NOT_THROW);
1644 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1645 to a sequence of labels and blocks, plus the exception region trees
1646 that record all the magic. This is complicated by the need to
1647 arrange for the FINALLY block to be executed on all exits. */
1649 static gimple_seq
1650 lower_try_finally (struct leh_state *state, gtry *tp)
1652 struct leh_tf_state this_tf;
1653 struct leh_state this_state;
1654 int ndests;
1655 gimple_seq old_eh_seq;
1657 /* Process the try block. */
1659 memset (&this_tf, 0, sizeof (this_tf));
1660 this_tf.try_finally_expr = tp;
1661 this_tf.top_p = tp;
1662 this_tf.outer = state;
1663 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state->cur_region))
1665 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1666 this_state.cur_region = this_tf.region;
1668 else
1670 this_tf.region = NULL;
1671 this_state.cur_region = state->cur_region;
1674 this_state.ehp_region = state->ehp_region;
1675 this_state.tf = &this_tf;
1677 old_eh_seq = eh_seq;
1678 eh_seq = NULL;
1680 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1682 /* Determine if the try block is escaped through the bottom. */
1683 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1685 /* Determine if any exceptions are possible within the try block. */
1686 if (this_tf.region)
1687 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1688 if (this_tf.may_throw)
1689 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1691 /* Determine how many edges (still) reach the finally block. Or rather,
1692 how many destinations are reached by the finally block. Use this to
1693 determine how we process the finally block itself. */
1695 ndests = this_tf.dest_array.length ();
1696 ndests += this_tf.may_fallthru;
1697 ndests += this_tf.may_return;
1698 ndests += this_tf.may_throw;
1700 /* If the FINALLY block is not reachable, dike it out. */
1701 if (ndests == 0)
1703 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1704 gimple_try_set_cleanup (tp, NULL);
1706 /* If the finally block doesn't fall through, then any destination
1707 we might try to impose there isn't reached either. There may be
1708 some minor amount of cleanup and redirection still needed. */
1709 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1710 lower_try_finally_nofallthru (state, &this_tf);
1712 /* We can easily special-case redirection to a single destination. */
1713 else if (ndests == 1)
1714 lower_try_finally_onedest (state, &this_tf);
1715 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1716 gimple_try_cleanup (tp)))
1717 lower_try_finally_copy (state, &this_tf);
1718 else
1719 lower_try_finally_switch (state, &this_tf);
1721 /* If someone requested we add a label at the end of the transformed
1722 block, do so. */
1723 if (this_tf.fallthru_label)
1725 /* This must be reached only if ndests == 0. */
1726 gimple *x = gimple_build_label (this_tf.fallthru_label);
1727 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1730 this_tf.dest_array.release ();
1731 free (this_tf.goto_queue);
1732 if (this_tf.goto_queue_map)
1733 delete this_tf.goto_queue_map;
1735 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1736 If there was no old eh_seq, then the append is trivially already done. */
1737 if (old_eh_seq)
1739 if (eh_seq == NULL)
1740 eh_seq = old_eh_seq;
1741 else
1743 gimple_seq new_eh_seq = eh_seq;
1744 eh_seq = old_eh_seq;
1745 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1749 return this_tf.top_p_seq;
1752 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1753 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1754 exception region trees that records all the magic. */
1756 static gimple_seq
1757 lower_catch (struct leh_state *state, gtry *tp)
1759 eh_region try_region = NULL;
1760 struct leh_state this_state = *state;
1761 gimple_stmt_iterator gsi;
1762 tree out_label;
1763 gimple_seq new_seq, cleanup;
1764 gimple *x;
1765 location_t try_catch_loc = gimple_location (tp);
1767 if (flag_exceptions)
1769 try_region = gen_eh_region_try (state->cur_region);
1770 this_state.cur_region = try_region;
1773 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1775 if (!eh_region_may_contain_throw (try_region))
1776 return gimple_try_eval (tp);
1778 new_seq = NULL;
1779 emit_eh_dispatch (&new_seq, try_region);
1780 emit_resx (&new_seq, try_region);
1782 this_state.cur_region = state->cur_region;
1783 this_state.ehp_region = try_region;
1785 /* Add eh_seq from lowering EH in the cleanup sequence after the cleanup
1786 itself, so that e.g. for coverage purposes the nested cleanups don't
1787 appear before the cleanup body. See PR64634 for details. */
1788 gimple_seq old_eh_seq = eh_seq;
1789 eh_seq = NULL;
1791 out_label = NULL;
1792 cleanup = gimple_try_cleanup (tp);
1793 for (gsi = gsi_start (cleanup);
1794 !gsi_end_p (gsi);
1795 gsi_next (&gsi))
1797 eh_catch c;
1798 gcatch *catch_stmt;
1799 gimple_seq handler;
1801 catch_stmt = as_a <gcatch *> (gsi_stmt (gsi));
1802 c = gen_eh_region_catch (try_region, gimple_catch_types (catch_stmt));
1804 handler = gimple_catch_handler (catch_stmt);
1805 lower_eh_constructs_1 (&this_state, &handler);
1807 c->label = create_artificial_label (UNKNOWN_LOCATION);
1808 x = gimple_build_label (c->label);
1809 gimple_seq_add_stmt (&new_seq, x);
1811 gimple_seq_add_seq (&new_seq, handler);
1813 if (gimple_seq_may_fallthru (new_seq))
1815 if (!out_label)
1816 out_label = create_artificial_label (try_catch_loc);
1818 x = gimple_build_goto (out_label);
1819 gimple_seq_add_stmt (&new_seq, x);
1821 if (!c->type_list)
1822 break;
1825 gimple_try_set_cleanup (tp, new_seq);
1827 gimple_seq new_eh_seq = eh_seq;
1828 eh_seq = old_eh_seq;
1829 gimple_seq ret_seq = frob_into_branch_around (tp, try_region, out_label);
1830 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1831 return ret_seq;
1834 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1835 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1836 region trees that record all the magic. */
1838 static gimple_seq
1839 lower_eh_filter (struct leh_state *state, gtry *tp)
1841 struct leh_state this_state = *state;
1842 eh_region this_region = NULL;
1843 gimple *inner, *x;
1844 gimple_seq new_seq;
1846 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1848 if (flag_exceptions)
1850 this_region = gen_eh_region_allowed (state->cur_region,
1851 gimple_eh_filter_types (inner));
1852 this_state.cur_region = this_region;
1855 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1857 if (!eh_region_may_contain_throw (this_region))
1858 return gimple_try_eval (tp);
1860 new_seq = NULL;
1861 this_state.cur_region = state->cur_region;
1862 this_state.ehp_region = this_region;
1864 emit_eh_dispatch (&new_seq, this_region);
1865 emit_resx (&new_seq, this_region);
1867 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1868 x = gimple_build_label (this_region->u.allowed.label);
1869 gimple_seq_add_stmt (&new_seq, x);
1871 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1872 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1874 gimple_try_set_cleanup (tp, new_seq);
1876 return frob_into_branch_around (tp, this_region, NULL);
1879 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1880 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1881 plus the exception region trees that record all the magic. */
1883 static gimple_seq
1884 lower_eh_must_not_throw (struct leh_state *state, gtry *tp)
1886 struct leh_state this_state = *state;
1888 if (flag_exceptions)
1890 gimple *inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1891 eh_region this_region;
1893 this_region = gen_eh_region_must_not_throw (state->cur_region);
1894 this_region->u.must_not_throw.failure_decl
1895 = gimple_eh_must_not_throw_fndecl (
1896 as_a <geh_mnt *> (inner));
1897 this_region->u.must_not_throw.failure_loc
1898 = LOCATION_LOCUS (gimple_location (tp));
1900 /* In order to get mangling applied to this decl, we must mark it
1901 used now. Otherwise, pass_ipa_free_lang_data won't think it
1902 needs to happen. */
1903 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1905 this_state.cur_region = this_region;
1908 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1910 return gimple_try_eval (tp);
1913 /* Implement a cleanup expression. This is similar to try-finally,
1914 except that we only execute the cleanup block for exception edges. */
1916 static gimple_seq
1917 lower_cleanup (struct leh_state *state, gtry *tp)
1919 struct leh_state this_state = *state;
1920 eh_region this_region = NULL;
1921 struct leh_tf_state fake_tf;
1922 gimple_seq result;
1923 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1925 if (flag_exceptions && !cleanup_dead)
1927 this_region = gen_eh_region_cleanup (state->cur_region);
1928 this_state.cur_region = this_region;
1931 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1933 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1934 return gimple_try_eval (tp);
1936 /* Build enough of a try-finally state so that we can reuse
1937 honor_protect_cleanup_actions. */
1938 memset (&fake_tf, 0, sizeof (fake_tf));
1939 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1940 fake_tf.outer = state;
1941 fake_tf.region = this_region;
1942 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1943 fake_tf.may_throw = true;
1945 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1947 if (fake_tf.may_throw)
1949 /* In this case honor_protect_cleanup_actions had nothing to do,
1950 and we should process this normally. */
1951 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1952 result = frob_into_branch_around (tp, this_region,
1953 fake_tf.fallthru_label);
1955 else
1957 /* In this case honor_protect_cleanup_actions did nearly all of
1958 the work. All we have left is to append the fallthru_label. */
1960 result = gimple_try_eval (tp);
1961 if (fake_tf.fallthru_label)
1963 gimple *x = gimple_build_label (fake_tf.fallthru_label);
1964 gimple_seq_add_stmt (&result, x);
1967 return result;
1970 /* Main loop for lowering eh constructs. Also moves gsi to the next
1971 statement. */
1973 static void
1974 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1976 gimple_seq replace;
1977 gimple *x;
1978 gimple *stmt = gsi_stmt (*gsi);
1980 switch (gimple_code (stmt))
1982 case GIMPLE_CALL:
1984 tree fndecl = gimple_call_fndecl (stmt);
1985 tree rhs, lhs;
1987 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1988 switch (DECL_FUNCTION_CODE (fndecl))
1990 case BUILT_IN_EH_POINTER:
1991 /* The front end may have generated a call to
1992 __builtin_eh_pointer (0) within a catch region. Replace
1993 this zero argument with the current catch region number. */
1994 if (state->ehp_region)
1996 tree nr = build_int_cst (integer_type_node,
1997 state->ehp_region->index);
1998 gimple_call_set_arg (stmt, 0, nr);
2000 else
2002 /* The user has dome something silly. Remove it. */
2003 rhs = null_pointer_node;
2004 goto do_replace;
2006 break;
2008 case BUILT_IN_EH_FILTER:
2009 /* ??? This should never appear, but since it's a builtin it
2010 is accessible to abuse by users. Just remove it and
2011 replace the use with the arbitrary value zero. */
2012 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
2013 do_replace:
2014 lhs = gimple_call_lhs (stmt);
2015 x = gimple_build_assign (lhs, rhs);
2016 gsi_insert_before (gsi, x, GSI_SAME_STMT);
2017 /* FALLTHRU */
2019 case BUILT_IN_EH_COPY_VALUES:
2020 /* Likewise this should not appear. Remove it. */
2021 gsi_remove (gsi, true);
2022 return;
2024 default:
2025 break;
2028 /* FALLTHRU */
2030 case GIMPLE_ASSIGN:
2031 /* If the stmt can throw use a new temporary for the assignment
2032 to a LHS. This makes sure the old value of the LHS is
2033 available on the EH edge. Only do so for statements that
2034 potentially fall through (no noreturn calls e.g.), otherwise
2035 this new assignment might create fake fallthru regions. */
2036 if (stmt_could_throw_p (stmt)
2037 && gimple_has_lhs (stmt)
2038 && gimple_stmt_may_fallthru (stmt)
2039 && !tree_could_throw_p (gimple_get_lhs (stmt))
2040 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2042 tree lhs = gimple_get_lhs (stmt);
2043 tree tmp = create_tmp_var (TREE_TYPE (lhs));
2044 gimple *s = gimple_build_assign (lhs, tmp);
2045 gimple_set_location (s, gimple_location (stmt));
2046 gimple_set_block (s, gimple_block (stmt));
2047 gimple_set_lhs (stmt, tmp);
2048 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2049 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2050 DECL_GIMPLE_REG_P (tmp) = 1;
2051 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2053 /* Look for things that can throw exceptions, and record them. */
2054 if (state->cur_region && stmt_could_throw_p (stmt))
2056 record_stmt_eh_region (state->cur_region, stmt);
2057 note_eh_region_may_contain_throw (state->cur_region);
2059 break;
2061 case GIMPLE_COND:
2062 case GIMPLE_GOTO:
2063 case GIMPLE_RETURN:
2064 maybe_record_in_goto_queue (state, stmt);
2065 break;
2067 case GIMPLE_SWITCH:
2068 verify_norecord_switch_expr (state, as_a <gswitch *> (stmt));
2069 break;
2071 case GIMPLE_TRY:
2073 gtry *try_stmt = as_a <gtry *> (stmt);
2074 if (gimple_try_kind (try_stmt) == GIMPLE_TRY_FINALLY)
2075 replace = lower_try_finally (state, try_stmt);
2076 else
2078 x = gimple_seq_first_stmt (gimple_try_cleanup (try_stmt));
2079 if (!x)
2081 replace = gimple_try_eval (try_stmt);
2082 lower_eh_constructs_1 (state, &replace);
2084 else
2085 switch (gimple_code (x))
2087 case GIMPLE_CATCH:
2088 replace = lower_catch (state, try_stmt);
2089 break;
2090 case GIMPLE_EH_FILTER:
2091 replace = lower_eh_filter (state, try_stmt);
2092 break;
2093 case GIMPLE_EH_MUST_NOT_THROW:
2094 replace = lower_eh_must_not_throw (state, try_stmt);
2095 break;
2096 case GIMPLE_EH_ELSE:
2097 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2098 gcc_unreachable ();
2099 default:
2100 replace = lower_cleanup (state, try_stmt);
2101 break;
2106 /* Remove the old stmt and insert the transformed sequence
2107 instead. */
2108 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2109 gsi_remove (gsi, true);
2111 /* Return since we don't want gsi_next () */
2112 return;
2114 case GIMPLE_EH_ELSE:
2115 /* We should be eliminating this in lower_try_finally et al. */
2116 gcc_unreachable ();
2118 default:
2119 /* A type, a decl, or some kind of statement that we're not
2120 interested in. Don't walk them. */
2121 break;
2124 gsi_next (gsi);
2127 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2129 static void
2130 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2132 gimple_stmt_iterator gsi;
2133 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2134 lower_eh_constructs_2 (state, &gsi);
2137 namespace {
2139 const pass_data pass_data_lower_eh =
2141 GIMPLE_PASS, /* type */
2142 "eh", /* name */
2143 OPTGROUP_NONE, /* optinfo_flags */
2144 TV_TREE_EH, /* tv_id */
2145 PROP_gimple_lcf, /* properties_required */
2146 PROP_gimple_leh, /* properties_provided */
2147 0, /* properties_destroyed */
2148 0, /* todo_flags_start */
2149 0, /* todo_flags_finish */
2152 class pass_lower_eh : public gimple_opt_pass
2154 public:
2155 pass_lower_eh (gcc::context *ctxt)
2156 : gimple_opt_pass (pass_data_lower_eh, ctxt)
2159 /* opt_pass methods: */
2160 virtual unsigned int execute (function *);
2162 }; // class pass_lower_eh
2164 unsigned int
2165 pass_lower_eh::execute (function *fun)
2167 struct leh_state null_state;
2168 gimple_seq bodyp;
2170 bodyp = gimple_body (current_function_decl);
2171 if (bodyp == NULL)
2172 return 0;
2174 finally_tree = new hash_table<finally_tree_hasher> (31);
2175 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2176 memset (&null_state, 0, sizeof (null_state));
2178 collect_finally_tree_1 (bodyp, NULL);
2179 lower_eh_constructs_1 (&null_state, &bodyp);
2180 gimple_set_body (current_function_decl, bodyp);
2182 /* We assume there's a return statement, or something, at the end of
2183 the function, and thus ploping the EH sequence afterward won't
2184 change anything. */
2185 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2186 gimple_seq_add_seq (&bodyp, eh_seq);
2188 /* We assume that since BODYP already existed, adding EH_SEQ to it
2189 didn't change its value, and we don't have to re-set the function. */
2190 gcc_assert (bodyp == gimple_body (current_function_decl));
2192 delete finally_tree;
2193 finally_tree = NULL;
2194 BITMAP_FREE (eh_region_may_contain_throw_map);
2195 eh_seq = NULL;
2197 /* If this function needs a language specific EH personality routine
2198 and the frontend didn't already set one do so now. */
2199 if (function_needs_eh_personality (fun) == eh_personality_lang
2200 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2201 DECL_FUNCTION_PERSONALITY (current_function_decl)
2202 = lang_hooks.eh_personality ();
2204 return 0;
2207 } // anon namespace
2209 gimple_opt_pass *
2210 make_pass_lower_eh (gcc::context *ctxt)
2212 return new pass_lower_eh (ctxt);
2215 /* Create the multiple edges from an EH_DISPATCH statement to all of
2216 the possible handlers for its EH region. Return true if there's
2217 no fallthru edge; false if there is. */
2219 bool
2220 make_eh_dispatch_edges (geh_dispatch *stmt)
2222 eh_region r;
2223 eh_catch c;
2224 basic_block src, dst;
2226 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2227 src = gimple_bb (stmt);
2229 switch (r->type)
2231 case ERT_TRY:
2232 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2234 dst = label_to_block (c->label);
2235 make_edge (src, dst, 0);
2237 /* A catch-all handler doesn't have a fallthru. */
2238 if (c->type_list == NULL)
2239 return false;
2241 break;
2243 case ERT_ALLOWED_EXCEPTIONS:
2244 dst = label_to_block (r->u.allowed.label);
2245 make_edge (src, dst, 0);
2246 break;
2248 default:
2249 gcc_unreachable ();
2252 return true;
2255 /* Create the single EH edge from STMT to its nearest landing pad,
2256 if there is such a landing pad within the current function. */
2258 void
2259 make_eh_edges (gimple *stmt)
2261 basic_block src, dst;
2262 eh_landing_pad lp;
2263 int lp_nr;
2265 lp_nr = lookup_stmt_eh_lp (stmt);
2266 if (lp_nr <= 0)
2267 return;
2269 lp = get_eh_landing_pad_from_number (lp_nr);
2270 gcc_assert (lp != NULL);
2272 src = gimple_bb (stmt);
2273 dst = label_to_block (lp->post_landing_pad);
2274 make_edge (src, dst, EDGE_EH);
2277 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2278 do not actually perform the final edge redirection.
2280 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2281 we intend to change the destination EH region as well; this means
2282 EH_LANDING_PAD_NR must already be set on the destination block label.
2283 If false, we're being called from generic cfg manipulation code and we
2284 should preserve our place within the region tree. */
2286 static void
2287 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2289 eh_landing_pad old_lp, new_lp;
2290 basic_block old_bb;
2291 gimple *throw_stmt;
2292 int old_lp_nr, new_lp_nr;
2293 tree old_label, new_label;
2294 edge_iterator ei;
2295 edge e;
2297 old_bb = edge_in->dest;
2298 old_label = gimple_block_label (old_bb);
2299 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2300 gcc_assert (old_lp_nr > 0);
2301 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2303 throw_stmt = last_stmt (edge_in->src);
2304 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2306 new_label = gimple_block_label (new_bb);
2308 /* Look for an existing region that might be using NEW_BB already. */
2309 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2310 if (new_lp_nr)
2312 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2313 gcc_assert (new_lp);
2315 /* Unless CHANGE_REGION is true, the new and old landing pad
2316 had better be associated with the same EH region. */
2317 gcc_assert (change_region || new_lp->region == old_lp->region);
2319 else
2321 new_lp = NULL;
2322 gcc_assert (!change_region);
2325 /* Notice when we redirect the last EH edge away from OLD_BB. */
2326 FOR_EACH_EDGE (e, ei, old_bb->preds)
2327 if (e != edge_in && (e->flags & EDGE_EH))
2328 break;
2330 if (new_lp)
2332 /* NEW_LP already exists. If there are still edges into OLD_LP,
2333 there's nothing to do with the EH tree. If there are no more
2334 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2335 If CHANGE_REGION is true, then our caller is expecting to remove
2336 the landing pad. */
2337 if (e == NULL && !change_region)
2338 remove_eh_landing_pad (old_lp);
2340 else
2342 /* No correct landing pad exists. If there are no more edges
2343 into OLD_LP, then we can simply re-use the existing landing pad.
2344 Otherwise, we have to create a new landing pad. */
2345 if (e == NULL)
2347 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2348 new_lp = old_lp;
2350 else
2351 new_lp = gen_eh_landing_pad (old_lp->region);
2352 new_lp->post_landing_pad = new_label;
2353 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2356 /* Maybe move the throwing statement to the new region. */
2357 if (old_lp != new_lp)
2359 remove_stmt_from_eh_lp (throw_stmt);
2360 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2364 /* Redirect EH edge E to NEW_BB. */
2366 edge
2367 redirect_eh_edge (edge edge_in, basic_block new_bb)
2369 redirect_eh_edge_1 (edge_in, new_bb, false);
2370 return ssa_redirect_edge (edge_in, new_bb);
2373 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2374 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2375 The actual edge update will happen in the caller. */
2377 void
2378 redirect_eh_dispatch_edge (geh_dispatch *stmt, edge e, basic_block new_bb)
2380 tree new_lab = gimple_block_label (new_bb);
2381 bool any_changed = false;
2382 basic_block old_bb;
2383 eh_region r;
2384 eh_catch c;
2386 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2387 switch (r->type)
2389 case ERT_TRY:
2390 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2392 old_bb = label_to_block (c->label);
2393 if (old_bb == e->dest)
2395 c->label = new_lab;
2396 any_changed = true;
2399 break;
2401 case ERT_ALLOWED_EXCEPTIONS:
2402 old_bb = label_to_block (r->u.allowed.label);
2403 gcc_assert (old_bb == e->dest);
2404 r->u.allowed.label = new_lab;
2405 any_changed = true;
2406 break;
2408 default:
2409 gcc_unreachable ();
2412 gcc_assert (any_changed);
2415 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2417 bool
2418 operation_could_trap_helper_p (enum tree_code op,
2419 bool fp_operation,
2420 bool honor_trapv,
2421 bool honor_nans,
2422 bool honor_snans,
2423 tree divisor,
2424 bool *handled)
2426 *handled = true;
2427 switch (op)
2429 case TRUNC_DIV_EXPR:
2430 case CEIL_DIV_EXPR:
2431 case FLOOR_DIV_EXPR:
2432 case ROUND_DIV_EXPR:
2433 case EXACT_DIV_EXPR:
2434 case CEIL_MOD_EXPR:
2435 case FLOOR_MOD_EXPR:
2436 case ROUND_MOD_EXPR:
2437 case TRUNC_MOD_EXPR:
2438 case RDIV_EXPR:
2439 if (honor_snans)
2440 return true;
2441 if (fp_operation)
2442 return flag_trapping_math;
2443 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2444 return true;
2445 return false;
2447 case LT_EXPR:
2448 case LE_EXPR:
2449 case GT_EXPR:
2450 case GE_EXPR:
2451 case LTGT_EXPR:
2452 /* Some floating point comparisons may trap. */
2453 return honor_nans;
2455 case EQ_EXPR:
2456 case NE_EXPR:
2457 case UNORDERED_EXPR:
2458 case ORDERED_EXPR:
2459 case UNLT_EXPR:
2460 case UNLE_EXPR:
2461 case UNGT_EXPR:
2462 case UNGE_EXPR:
2463 case UNEQ_EXPR:
2464 return honor_snans;
2466 case NEGATE_EXPR:
2467 case ABS_EXPR:
2468 case CONJ_EXPR:
2469 /* These operations don't trap with floating point. */
2470 if (honor_trapv)
2471 return true;
2472 return false;
2474 case PLUS_EXPR:
2475 case MINUS_EXPR:
2476 case MULT_EXPR:
2477 /* Any floating arithmetic may trap. */
2478 if (fp_operation && flag_trapping_math)
2479 return true;
2480 if (honor_trapv)
2481 return true;
2482 return false;
2484 case COMPLEX_EXPR:
2485 case CONSTRUCTOR:
2486 /* Constructing an object cannot trap. */
2487 return false;
2489 default:
2490 /* Any floating arithmetic may trap. */
2491 if (fp_operation && flag_trapping_math)
2492 return true;
2494 *handled = false;
2495 return false;
2499 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2500 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2501 type operands that may trap. If OP is a division operator, DIVISOR contains
2502 the value of the divisor. */
2504 bool
2505 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2506 tree divisor)
2508 bool honor_nans = (fp_operation && flag_trapping_math
2509 && !flag_finite_math_only);
2510 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2511 bool handled;
2513 if (TREE_CODE_CLASS (op) != tcc_comparison
2514 && TREE_CODE_CLASS (op) != tcc_unary
2515 && TREE_CODE_CLASS (op) != tcc_binary)
2516 return false;
2518 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2519 honor_nans, honor_snans, divisor,
2520 &handled);
2524 /* Returns true if it is possible to prove that the index of
2525 an array access REF (an ARRAY_REF expression) falls into the
2526 array bounds. */
2528 static bool
2529 in_array_bounds_p (tree ref)
2531 tree idx = TREE_OPERAND (ref, 1);
2532 tree min, max;
2534 if (TREE_CODE (idx) != INTEGER_CST)
2535 return false;
2537 min = array_ref_low_bound (ref);
2538 max = array_ref_up_bound (ref);
2539 if (!min
2540 || !max
2541 || TREE_CODE (min) != INTEGER_CST
2542 || TREE_CODE (max) != INTEGER_CST)
2543 return false;
2545 if (tree_int_cst_lt (idx, min)
2546 || tree_int_cst_lt (max, idx))
2547 return false;
2549 return true;
2552 /* Returns true if it is possible to prove that the range of
2553 an array access REF (an ARRAY_RANGE_REF expression) falls
2554 into the array bounds. */
2556 static bool
2557 range_in_array_bounds_p (tree ref)
2559 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
2560 tree range_min, range_max, min, max;
2562 range_min = TYPE_MIN_VALUE (domain_type);
2563 range_max = TYPE_MAX_VALUE (domain_type);
2564 if (!range_min
2565 || !range_max
2566 || TREE_CODE (range_min) != INTEGER_CST
2567 || TREE_CODE (range_max) != INTEGER_CST)
2568 return false;
2570 min = array_ref_low_bound (ref);
2571 max = array_ref_up_bound (ref);
2572 if (!min
2573 || !max
2574 || TREE_CODE (min) != INTEGER_CST
2575 || TREE_CODE (max) != INTEGER_CST)
2576 return false;
2578 if (tree_int_cst_lt (range_min, min)
2579 || tree_int_cst_lt (max, range_max))
2580 return false;
2582 return true;
2585 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2586 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2587 This routine expects only GIMPLE lhs or rhs input. */
2589 bool
2590 tree_could_trap_p (tree expr)
2592 enum tree_code code;
2593 bool fp_operation = false;
2594 bool honor_trapv = false;
2595 tree t, base, div = NULL_TREE;
2597 if (!expr)
2598 return false;
2600 code = TREE_CODE (expr);
2601 t = TREE_TYPE (expr);
2603 if (t)
2605 if (COMPARISON_CLASS_P (expr))
2606 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2607 else
2608 fp_operation = FLOAT_TYPE_P (t);
2609 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2612 if (TREE_CODE_CLASS (code) == tcc_binary)
2613 div = TREE_OPERAND (expr, 1);
2614 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2615 return true;
2617 restart:
2618 switch (code)
2620 case COMPONENT_REF:
2621 case REALPART_EXPR:
2622 case IMAGPART_EXPR:
2623 case BIT_FIELD_REF:
2624 case VIEW_CONVERT_EXPR:
2625 case WITH_SIZE_EXPR:
2626 expr = TREE_OPERAND (expr, 0);
2627 code = TREE_CODE (expr);
2628 goto restart;
2630 case ARRAY_RANGE_REF:
2631 base = TREE_OPERAND (expr, 0);
2632 if (tree_could_trap_p (base))
2633 return true;
2634 if (TREE_THIS_NOTRAP (expr))
2635 return false;
2636 return !range_in_array_bounds_p (expr);
2638 case ARRAY_REF:
2639 base = TREE_OPERAND (expr, 0);
2640 if (tree_could_trap_p (base))
2641 return true;
2642 if (TREE_THIS_NOTRAP (expr))
2643 return false;
2644 return !in_array_bounds_p (expr);
2646 case TARGET_MEM_REF:
2647 case MEM_REF:
2648 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
2649 && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
2650 return true;
2651 if (TREE_THIS_NOTRAP (expr))
2652 return false;
2653 /* We cannot prove that the access is in-bounds when we have
2654 variable-index TARGET_MEM_REFs. */
2655 if (code == TARGET_MEM_REF
2656 && (TMR_INDEX (expr) || TMR_INDEX2 (expr)))
2657 return true;
2658 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2660 tree base = TREE_OPERAND (TREE_OPERAND (expr, 0), 0);
2661 poly_offset_int off = mem_ref_offset (expr);
2662 if (maybe_lt (off, 0))
2663 return true;
2664 if (TREE_CODE (base) == STRING_CST)
2665 return maybe_le (TREE_STRING_LENGTH (base), off);
2666 tree size = DECL_SIZE_UNIT (base);
2667 if (size == NULL_TREE
2668 || !poly_int_tree_p (size)
2669 || maybe_le (wi::to_poly_offset (size), off))
2670 return true;
2671 /* Now we are sure the first byte of the access is inside
2672 the object. */
2673 return false;
2675 return true;
2677 case INDIRECT_REF:
2678 return !TREE_THIS_NOTRAP (expr);
2680 case ASM_EXPR:
2681 return TREE_THIS_VOLATILE (expr);
2683 case CALL_EXPR:
2684 t = get_callee_fndecl (expr);
2685 /* Assume that calls to weak functions may trap. */
2686 if (!t || !DECL_P (t))
2687 return true;
2688 if (DECL_WEAK (t))
2689 return tree_could_trap_p (t);
2690 return false;
2692 case FUNCTION_DECL:
2693 /* Assume that accesses to weak functions may trap, unless we know
2694 they are certainly defined in current TU or in some other
2695 LTO partition. */
2696 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2698 cgraph_node *node = cgraph_node::get (expr);
2699 if (node)
2700 node = node->function_symbol ();
2701 return !(node && node->in_other_partition);
2703 return false;
2705 case VAR_DECL:
2706 /* Assume that accesses to weak vars may trap, unless we know
2707 they are certainly defined in current TU or in some other
2708 LTO partition. */
2709 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2711 varpool_node *node = varpool_node::get (expr);
2712 if (node)
2713 node = node->ultimate_alias_target ();
2714 return !(node && node->in_other_partition);
2716 return false;
2718 default:
2719 return false;
2723 /* Return non-NULL if there is an integer operation with trapping overflow
2724 we can rewrite into non-trapping. Called via walk_tree from
2725 rewrite_to_non_trapping_overflow. */
2727 static tree
2728 find_trapping_overflow (tree *tp, int *walk_subtrees, void *data)
2730 if (EXPR_P (*tp)
2731 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (*tp))
2732 && !operation_no_trapping_overflow (TREE_TYPE (*tp), TREE_CODE (*tp)))
2733 return *tp;
2734 if (IS_TYPE_OR_DECL_P (*tp)
2735 || (TREE_CODE (*tp) == SAVE_EXPR && data == NULL))
2736 *walk_subtrees = 0;
2737 return NULL_TREE;
2740 /* Rewrite selected operations into unsigned arithmetics, so that they
2741 don't trap on overflow. */
2743 static tree
2744 replace_trapping_overflow (tree *tp, int *walk_subtrees, void *data)
2746 if (find_trapping_overflow (tp, walk_subtrees, data))
2748 tree type = TREE_TYPE (*tp);
2749 tree utype = unsigned_type_for (type);
2750 *walk_subtrees = 0;
2751 int len = TREE_OPERAND_LENGTH (*tp);
2752 for (int i = 0; i < len; ++i)
2753 walk_tree (&TREE_OPERAND (*tp, i), replace_trapping_overflow,
2754 data, (hash_set<tree> *) data);
2756 if (TREE_CODE (*tp) == ABS_EXPR)
2758 tree op = TREE_OPERAND (*tp, 0);
2759 op = save_expr (op);
2760 /* save_expr skips simple arithmetics, which is undesirable
2761 here, if it might trap due to flag_trapv. We need to
2762 force a SAVE_EXPR in the COND_EXPR condition, to evaluate
2763 it before the comparison. */
2764 if (EXPR_P (op)
2765 && TREE_CODE (op) != SAVE_EXPR
2766 && walk_tree (&op, find_trapping_overflow, NULL, NULL))
2768 op = build1_loc (EXPR_LOCATION (op), SAVE_EXPR, type, op);
2769 TREE_SIDE_EFFECTS (op) = 1;
2771 /* Change abs (op) to op < 0 ? -op : op and handle the NEGATE_EXPR
2772 like other signed integer trapping operations. */
2773 tree cond = fold_build2 (LT_EXPR, boolean_type_node,
2774 op, build_int_cst (type, 0));
2775 tree neg = fold_build1 (NEGATE_EXPR, utype,
2776 fold_convert (utype, op));
2777 *tp = fold_build3 (COND_EXPR, type, cond,
2778 fold_convert (type, neg), op);
2780 else
2782 TREE_TYPE (*tp) = utype;
2783 len = TREE_OPERAND_LENGTH (*tp);
2784 for (int i = 0; i < len; ++i)
2785 TREE_OPERAND (*tp, i)
2786 = fold_convert (utype, TREE_OPERAND (*tp, i));
2787 *tp = fold_convert (type, *tp);
2790 return NULL_TREE;
2793 /* If any subexpression of EXPR can trap due to -ftrapv, rewrite it
2794 using unsigned arithmetics to avoid traps in it. */
2796 tree
2797 rewrite_to_non_trapping_overflow (tree expr)
2799 if (!flag_trapv)
2800 return expr;
2801 hash_set<tree> pset;
2802 if (!walk_tree (&expr, find_trapping_overflow, &pset, &pset))
2803 return expr;
2804 expr = unshare_expr (expr);
2805 pset.empty ();
2806 walk_tree (&expr, replace_trapping_overflow, &pset, &pset);
2807 return expr;
2810 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2811 an assignment or a conditional) may throw. */
2813 static bool
2814 stmt_could_throw_1_p (gassign *stmt)
2816 enum tree_code code = gimple_assign_rhs_code (stmt);
2817 bool honor_nans = false;
2818 bool honor_snans = false;
2819 bool fp_operation = false;
2820 bool honor_trapv = false;
2821 tree t;
2822 size_t i;
2823 bool handled, ret;
2825 if (TREE_CODE_CLASS (code) == tcc_comparison
2826 || TREE_CODE_CLASS (code) == tcc_unary
2827 || TREE_CODE_CLASS (code) == tcc_binary)
2829 if (TREE_CODE_CLASS (code) == tcc_comparison)
2830 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2831 else
2832 t = gimple_expr_type (stmt);
2833 fp_operation = FLOAT_TYPE_P (t);
2834 if (fp_operation)
2836 honor_nans = flag_trapping_math && !flag_finite_math_only;
2837 honor_snans = flag_signaling_nans != 0;
2839 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2840 honor_trapv = true;
2843 /* First check the LHS. */
2844 if (tree_could_trap_p (gimple_assign_lhs (stmt)))
2845 return true;
2847 /* Check if the main expression may trap. */
2848 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2849 honor_nans, honor_snans,
2850 gimple_assign_rhs2 (stmt),
2851 &handled);
2852 if (handled)
2853 return ret;
2855 /* If the expression does not trap, see if any of the individual operands may
2856 trap. */
2857 for (i = 1; i < gimple_num_ops (stmt); i++)
2858 if (tree_could_trap_p (gimple_op (stmt, i)))
2859 return true;
2861 return false;
2865 /* Return true if statement STMT could throw an exception. */
2867 bool
2868 stmt_could_throw_p (gimple *stmt)
2870 if (!flag_exceptions)
2871 return false;
2873 /* The only statements that can throw an exception are assignments,
2874 conditionals, calls, resx, and asms. */
2875 switch (gimple_code (stmt))
2877 case GIMPLE_RESX:
2878 return true;
2880 case GIMPLE_CALL:
2881 return !gimple_call_nothrow_p (as_a <gcall *> (stmt));
2883 case GIMPLE_COND:
2885 if (!cfun->can_throw_non_call_exceptions)
2886 return false;
2887 gcond *cond = as_a <gcond *> (stmt);
2888 tree lhs = gimple_cond_lhs (cond);
2889 return operation_could_trap_p (gimple_cond_code (cond),
2890 FLOAT_TYPE_P (TREE_TYPE (lhs)),
2891 false, NULL_TREE);
2894 case GIMPLE_ASSIGN:
2895 if (!cfun->can_throw_non_call_exceptions
2896 || gimple_clobber_p (stmt))
2897 return false;
2898 return stmt_could_throw_1_p (as_a <gassign *> (stmt));
2900 case GIMPLE_ASM:
2901 if (!cfun->can_throw_non_call_exceptions)
2902 return false;
2903 return gimple_asm_volatile_p (as_a <gasm *> (stmt));
2905 default:
2906 return false;
2911 /* Return true if expression T could throw an exception. */
2913 bool
2914 tree_could_throw_p (tree t)
2916 if (!flag_exceptions)
2917 return false;
2918 if (TREE_CODE (t) == MODIFY_EXPR)
2920 if (cfun->can_throw_non_call_exceptions
2921 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2922 return true;
2923 t = TREE_OPERAND (t, 1);
2926 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2927 t = TREE_OPERAND (t, 0);
2928 if (TREE_CODE (t) == CALL_EXPR)
2929 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2930 if (cfun->can_throw_non_call_exceptions)
2931 return tree_could_trap_p (t);
2932 return false;
2935 /* Return true if STMT can throw an exception that is not caught within
2936 the current function (CFUN). */
2938 bool
2939 stmt_can_throw_external (gimple *stmt)
2941 int lp_nr;
2943 if (!stmt_could_throw_p (stmt))
2944 return false;
2946 lp_nr = lookup_stmt_eh_lp (stmt);
2947 return lp_nr == 0;
2950 /* Return true if STMT can throw an exception that is caught within
2951 the current function (CFUN). */
2953 bool
2954 stmt_can_throw_internal (gimple *stmt)
2956 int lp_nr;
2958 if (!stmt_could_throw_p (stmt))
2959 return false;
2961 lp_nr = lookup_stmt_eh_lp (stmt);
2962 return lp_nr > 0;
2965 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2966 remove any entry it might have from the EH table. Return true if
2967 any change was made. */
2969 bool
2970 maybe_clean_eh_stmt_fn (struct function *ifun, gimple *stmt)
2972 if (stmt_could_throw_p (stmt))
2973 return false;
2974 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2977 /* Likewise, but always use the current function. */
2979 bool
2980 maybe_clean_eh_stmt (gimple *stmt)
2982 return maybe_clean_eh_stmt_fn (cfun, stmt);
2985 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2986 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2987 in the table if it should be in there. Return TRUE if a replacement was
2988 done that my require an EH edge purge. */
2990 bool
2991 maybe_clean_or_replace_eh_stmt (gimple *old_stmt, gimple *new_stmt)
2993 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2995 if (lp_nr != 0)
2997 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2999 if (new_stmt == old_stmt && new_stmt_could_throw)
3000 return false;
3002 remove_stmt_from_eh_lp (old_stmt);
3003 if (new_stmt_could_throw)
3005 add_stmt_to_eh_lp (new_stmt, lp_nr);
3006 return false;
3008 else
3009 return true;
3012 return false;
3015 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
3016 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
3017 operand is the return value of duplicate_eh_regions. */
3019 bool
3020 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple *new_stmt,
3021 struct function *old_fun, gimple *old_stmt,
3022 hash_map<void *, void *> *map,
3023 int default_lp_nr)
3025 int old_lp_nr, new_lp_nr;
3027 if (!stmt_could_throw_p (new_stmt))
3028 return false;
3030 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
3031 if (old_lp_nr == 0)
3033 if (default_lp_nr == 0)
3034 return false;
3035 new_lp_nr = default_lp_nr;
3037 else if (old_lp_nr > 0)
3039 eh_landing_pad old_lp, new_lp;
3041 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
3042 new_lp = static_cast<eh_landing_pad> (*map->get (old_lp));
3043 new_lp_nr = new_lp->index;
3045 else
3047 eh_region old_r, new_r;
3049 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
3050 new_r = static_cast<eh_region> (*map->get (old_r));
3051 new_lp_nr = -new_r->index;
3054 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
3055 return true;
3058 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
3059 and thus no remapping is required. */
3061 bool
3062 maybe_duplicate_eh_stmt (gimple *new_stmt, gimple *old_stmt)
3064 int lp_nr;
3066 if (!stmt_could_throw_p (new_stmt))
3067 return false;
3069 lp_nr = lookup_stmt_eh_lp (old_stmt);
3070 if (lp_nr == 0)
3071 return false;
3073 add_stmt_to_eh_lp (new_stmt, lp_nr);
3074 return true;
3077 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
3078 GIMPLE_TRY) that are similar enough to be considered the same. Currently
3079 this only handles handlers consisting of a single call, as that's the
3080 important case for C++: a destructor call for a particular object showing
3081 up in multiple handlers. */
3083 static bool
3084 same_handler_p (gimple_seq oneh, gimple_seq twoh)
3086 gimple_stmt_iterator gsi;
3087 gimple *ones, *twos;
3088 unsigned int ai;
3090 gsi = gsi_start (oneh);
3091 if (!gsi_one_before_end_p (gsi))
3092 return false;
3093 ones = gsi_stmt (gsi);
3095 gsi = gsi_start (twoh);
3096 if (!gsi_one_before_end_p (gsi))
3097 return false;
3098 twos = gsi_stmt (gsi);
3100 if (!is_gimple_call (ones)
3101 || !is_gimple_call (twos)
3102 || gimple_call_lhs (ones)
3103 || gimple_call_lhs (twos)
3104 || gimple_call_chain (ones)
3105 || gimple_call_chain (twos)
3106 || !gimple_call_same_target_p (ones, twos)
3107 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
3108 return false;
3110 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
3111 if (!operand_equal_p (gimple_call_arg (ones, ai),
3112 gimple_call_arg (twos, ai), 0))
3113 return false;
3115 return true;
3118 /* Optimize
3119 try { A() } finally { try { ~B() } catch { ~A() } }
3120 try { ... } finally { ~A() }
3121 into
3122 try { A() } catch { ~B() }
3123 try { ~B() ... } finally { ~A() }
3125 This occurs frequently in C++, where A is a local variable and B is a
3126 temporary used in the initializer for A. */
3128 static void
3129 optimize_double_finally (gtry *one, gtry *two)
3131 gimple *oneh;
3132 gimple_stmt_iterator gsi;
3133 gimple_seq cleanup;
3135 cleanup = gimple_try_cleanup (one);
3136 gsi = gsi_start (cleanup);
3137 if (!gsi_one_before_end_p (gsi))
3138 return;
3140 oneh = gsi_stmt (gsi);
3141 if (gimple_code (oneh) != GIMPLE_TRY
3142 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
3143 return;
3145 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
3147 gimple_seq seq = gimple_try_eval (oneh);
3149 gimple_try_set_cleanup (one, seq);
3150 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
3151 seq = copy_gimple_seq_and_replace_locals (seq);
3152 gimple_seq_add_seq (&seq, gimple_try_eval (two));
3153 gimple_try_set_eval (two, seq);
3157 /* Perform EH refactoring optimizations that are simpler to do when code
3158 flow has been lowered but EH structures haven't. */
3160 static void
3161 refactor_eh_r (gimple_seq seq)
3163 gimple_stmt_iterator gsi;
3164 gimple *one, *two;
3166 one = NULL;
3167 two = NULL;
3168 gsi = gsi_start (seq);
3169 while (1)
3171 one = two;
3172 if (gsi_end_p (gsi))
3173 two = NULL;
3174 else
3175 two = gsi_stmt (gsi);
3176 if (one && two)
3177 if (gtry *try_one = dyn_cast <gtry *> (one))
3178 if (gtry *try_two = dyn_cast <gtry *> (two))
3179 if (gimple_try_kind (try_one) == GIMPLE_TRY_FINALLY
3180 && gimple_try_kind (try_two) == GIMPLE_TRY_FINALLY)
3181 optimize_double_finally (try_one, try_two);
3182 if (one)
3183 switch (gimple_code (one))
3185 case GIMPLE_TRY:
3186 refactor_eh_r (gimple_try_eval (one));
3187 refactor_eh_r (gimple_try_cleanup (one));
3188 break;
3189 case GIMPLE_CATCH:
3190 refactor_eh_r (gimple_catch_handler (as_a <gcatch *> (one)));
3191 break;
3192 case GIMPLE_EH_FILTER:
3193 refactor_eh_r (gimple_eh_filter_failure (one));
3194 break;
3195 case GIMPLE_EH_ELSE:
3197 geh_else *eh_else_stmt = as_a <geh_else *> (one);
3198 refactor_eh_r (gimple_eh_else_n_body (eh_else_stmt));
3199 refactor_eh_r (gimple_eh_else_e_body (eh_else_stmt));
3201 break;
3202 default:
3203 break;
3205 if (two)
3206 gsi_next (&gsi);
3207 else
3208 break;
3212 namespace {
3214 const pass_data pass_data_refactor_eh =
3216 GIMPLE_PASS, /* type */
3217 "ehopt", /* name */
3218 OPTGROUP_NONE, /* optinfo_flags */
3219 TV_TREE_EH, /* tv_id */
3220 PROP_gimple_lcf, /* properties_required */
3221 0, /* properties_provided */
3222 0, /* properties_destroyed */
3223 0, /* todo_flags_start */
3224 0, /* todo_flags_finish */
3227 class pass_refactor_eh : public gimple_opt_pass
3229 public:
3230 pass_refactor_eh (gcc::context *ctxt)
3231 : gimple_opt_pass (pass_data_refactor_eh, ctxt)
3234 /* opt_pass methods: */
3235 virtual bool gate (function *) { return flag_exceptions != 0; }
3236 virtual unsigned int execute (function *)
3238 refactor_eh_r (gimple_body (current_function_decl));
3239 return 0;
3242 }; // class pass_refactor_eh
3244 } // anon namespace
3246 gimple_opt_pass *
3247 make_pass_refactor_eh (gcc::context *ctxt)
3249 return new pass_refactor_eh (ctxt);
3252 /* At the end of gimple optimization, we can lower RESX. */
3254 static bool
3255 lower_resx (basic_block bb, gresx *stmt,
3256 hash_map<eh_region, tree> *mnt_map)
3258 int lp_nr;
3259 eh_region src_r, dst_r;
3260 gimple_stmt_iterator gsi;
3261 gimple *x;
3262 tree fn, src_nr;
3263 bool ret = false;
3265 lp_nr = lookup_stmt_eh_lp (stmt);
3266 if (lp_nr != 0)
3267 dst_r = get_eh_region_from_lp_number (lp_nr);
3268 else
3269 dst_r = NULL;
3271 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3272 gsi = gsi_last_bb (bb);
3274 if (src_r == NULL)
3276 /* We can wind up with no source region when pass_cleanup_eh shows
3277 that there are no entries into an eh region and deletes it, but
3278 then the block that contains the resx isn't removed. This can
3279 happen without optimization when the switch statement created by
3280 lower_try_finally_switch isn't simplified to remove the eh case.
3282 Resolve this by expanding the resx node to an abort. */
3284 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3285 x = gimple_build_call (fn, 0);
3286 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3288 while (EDGE_COUNT (bb->succs) > 0)
3289 remove_edge (EDGE_SUCC (bb, 0));
3291 else if (dst_r)
3293 /* When we have a destination region, we resolve this by copying
3294 the excptr and filter values into place, and changing the edge
3295 to immediately after the landing pad. */
3296 edge e;
3298 if (lp_nr < 0)
3300 basic_block new_bb;
3301 tree lab;
3303 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3304 the failure decl into a new block, if needed. */
3305 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3307 tree *slot = mnt_map->get (dst_r);
3308 if (slot == NULL)
3310 gimple_stmt_iterator gsi2;
3312 new_bb = create_empty_bb (bb);
3313 new_bb->count = bb->count;
3314 add_bb_to_loop (new_bb, bb->loop_father);
3315 lab = gimple_block_label (new_bb);
3316 gsi2 = gsi_start_bb (new_bb);
3318 fn = dst_r->u.must_not_throw.failure_decl;
3319 x = gimple_build_call (fn, 0);
3320 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3321 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3323 mnt_map->put (dst_r, lab);
3325 else
3327 lab = *slot;
3328 new_bb = label_to_block (lab);
3331 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3332 e = make_single_succ_edge (bb, new_bb, EDGE_FALLTHRU);
3334 else
3336 edge_iterator ei;
3337 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3339 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3340 src_nr = build_int_cst (integer_type_node, src_r->index);
3341 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3342 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3344 /* Update the flags for the outgoing edge. */
3345 e = single_succ_edge (bb);
3346 gcc_assert (e->flags & EDGE_EH);
3347 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3348 e->probability = profile_probability::always ();
3350 /* If there are no more EH users of the landing pad, delete it. */
3351 FOR_EACH_EDGE (e, ei, e->dest->preds)
3352 if (e->flags & EDGE_EH)
3353 break;
3354 if (e == NULL)
3356 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3357 remove_eh_landing_pad (lp);
3361 ret = true;
3363 else
3365 tree var;
3367 /* When we don't have a destination region, this exception escapes
3368 up the call chain. We resolve this by generating a call to the
3369 _Unwind_Resume library function. */
3371 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3372 with no arguments for C++. Check for that. */
3373 if (src_r->use_cxa_end_cleanup)
3375 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3376 x = gimple_build_call (fn, 0);
3377 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3379 else
3381 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3382 src_nr = build_int_cst (integer_type_node, src_r->index);
3383 x = gimple_build_call (fn, 1, src_nr);
3384 var = create_tmp_var (ptr_type_node);
3385 var = make_ssa_name (var, x);
3386 gimple_call_set_lhs (x, var);
3387 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3389 /* When exception handling is delegated to a caller function, we
3390 have to guarantee that shadow memory variables living on stack
3391 will be cleaner before control is given to a parent function. */
3392 if (sanitize_flags_p (SANITIZE_ADDRESS))
3394 tree decl
3395 = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
3396 gimple *g = gimple_build_call (decl, 0);
3397 gimple_set_location (g, gimple_location (stmt));
3398 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3401 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3402 x = gimple_build_call (fn, 1, var);
3403 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3406 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3409 gsi_remove (&gsi, true);
3411 return ret;
3414 namespace {
3416 const pass_data pass_data_lower_resx =
3418 GIMPLE_PASS, /* type */
3419 "resx", /* name */
3420 OPTGROUP_NONE, /* optinfo_flags */
3421 TV_TREE_EH, /* tv_id */
3422 PROP_gimple_lcf, /* properties_required */
3423 0, /* properties_provided */
3424 0, /* properties_destroyed */
3425 0, /* todo_flags_start */
3426 0, /* todo_flags_finish */
3429 class pass_lower_resx : public gimple_opt_pass
3431 public:
3432 pass_lower_resx (gcc::context *ctxt)
3433 : gimple_opt_pass (pass_data_lower_resx, ctxt)
3436 /* opt_pass methods: */
3437 virtual bool gate (function *) { return flag_exceptions != 0; }
3438 virtual unsigned int execute (function *);
3440 }; // class pass_lower_resx
3442 unsigned
3443 pass_lower_resx::execute (function *fun)
3445 basic_block bb;
3446 bool dominance_invalidated = false;
3447 bool any_rewritten = false;
3449 hash_map<eh_region, tree> mnt_map;
3451 FOR_EACH_BB_FN (bb, fun)
3453 gimple *last = last_stmt (bb);
3454 if (last && is_gimple_resx (last))
3456 dominance_invalidated |=
3457 lower_resx (bb, as_a <gresx *> (last), &mnt_map);
3458 any_rewritten = true;
3462 if (dominance_invalidated)
3464 free_dominance_info (CDI_DOMINATORS);
3465 free_dominance_info (CDI_POST_DOMINATORS);
3468 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3471 } // anon namespace
3473 gimple_opt_pass *
3474 make_pass_lower_resx (gcc::context *ctxt)
3476 return new pass_lower_resx (ctxt);
3479 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3480 external throw. */
3482 static void
3483 optimize_clobbers (basic_block bb)
3485 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3486 bool any_clobbers = false;
3487 bool seen_stack_restore = false;
3488 edge_iterator ei;
3489 edge e;
3491 /* Only optimize anything if the bb contains at least one clobber,
3492 ends with resx (checked by caller), optionally contains some
3493 debug stmts or labels, or at most one __builtin_stack_restore
3494 call, and has an incoming EH edge. */
3495 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3497 gimple *stmt = gsi_stmt (gsi);
3498 if (is_gimple_debug (stmt))
3499 continue;
3500 if (gimple_clobber_p (stmt))
3502 any_clobbers = true;
3503 continue;
3505 if (!seen_stack_restore
3506 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
3508 seen_stack_restore = true;
3509 continue;
3511 if (gimple_code (stmt) == GIMPLE_LABEL)
3512 break;
3513 return;
3515 if (!any_clobbers)
3516 return;
3517 FOR_EACH_EDGE (e, ei, bb->preds)
3518 if (e->flags & EDGE_EH)
3519 break;
3520 if (e == NULL)
3521 return;
3522 gsi = gsi_last_bb (bb);
3523 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3525 gimple *stmt = gsi_stmt (gsi);
3526 if (!gimple_clobber_p (stmt))
3527 continue;
3528 unlink_stmt_vdef (stmt);
3529 gsi_remove (&gsi, true);
3530 release_defs (stmt);
3534 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3535 internal throw to successor BB. */
3537 static int
3538 sink_clobbers (basic_block bb)
3540 edge e;
3541 edge_iterator ei;
3542 gimple_stmt_iterator gsi, dgsi;
3543 basic_block succbb;
3544 bool any_clobbers = false;
3545 unsigned todo = 0;
3547 /* Only optimize if BB has a single EH successor and
3548 all predecessor edges are EH too. */
3549 if (!single_succ_p (bb)
3550 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3551 return 0;
3553 FOR_EACH_EDGE (e, ei, bb->preds)
3555 if ((e->flags & EDGE_EH) == 0)
3556 return 0;
3559 /* And BB contains only CLOBBER stmts before the final
3560 RESX. */
3561 gsi = gsi_last_bb (bb);
3562 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3564 gimple *stmt = gsi_stmt (gsi);
3565 if (is_gimple_debug (stmt))
3566 continue;
3567 if (gimple_code (stmt) == GIMPLE_LABEL)
3568 break;
3569 if (!gimple_clobber_p (stmt))
3570 return 0;
3571 any_clobbers = true;
3573 if (!any_clobbers)
3574 return 0;
3576 edge succe = single_succ_edge (bb);
3577 succbb = succe->dest;
3579 /* See if there is a virtual PHI node to take an updated virtual
3580 operand from. */
3581 gphi *vphi = NULL;
3582 tree vuse = NULL_TREE;
3583 for (gphi_iterator gpi = gsi_start_phis (succbb);
3584 !gsi_end_p (gpi); gsi_next (&gpi))
3586 tree res = gimple_phi_result (gpi.phi ());
3587 if (virtual_operand_p (res))
3589 vphi = gpi.phi ();
3590 vuse = res;
3591 break;
3595 dgsi = gsi_after_labels (succbb);
3596 gsi = gsi_last_bb (bb);
3597 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3599 gimple *stmt = gsi_stmt (gsi);
3600 tree lhs;
3601 if (is_gimple_debug (stmt))
3602 continue;
3603 if (gimple_code (stmt) == GIMPLE_LABEL)
3604 break;
3605 lhs = gimple_assign_lhs (stmt);
3606 /* Unfortunately we don't have dominance info updated at this
3607 point, so checking if
3608 dominated_by_p (CDI_DOMINATORS, succbb,
3609 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3610 would be too costly. Thus, avoid sinking any clobbers that
3611 refer to non-(D) SSA_NAMEs. */
3612 if (TREE_CODE (lhs) == MEM_REF
3613 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
3614 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
3616 unlink_stmt_vdef (stmt);
3617 gsi_remove (&gsi, true);
3618 release_defs (stmt);
3619 continue;
3622 /* As we do not change stmt order when sinking across a
3623 forwarder edge we can keep virtual operands in place. */
3624 gsi_remove (&gsi, false);
3625 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
3627 /* But adjust virtual operands if we sunk across a PHI node. */
3628 if (vuse)
3630 gimple *use_stmt;
3631 imm_use_iterator iter;
3632 use_operand_p use_p;
3633 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vuse)
3634 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3635 SET_USE (use_p, gimple_vdef (stmt));
3636 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse))
3638 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (stmt)) = 1;
3639 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 0;
3641 /* Adjust the incoming virtual operand. */
3642 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe), gimple_vuse (stmt));
3643 SET_USE (gimple_vuse_op (stmt), vuse);
3645 /* If there isn't a single predecessor but no virtual PHI node
3646 arrange for virtual operands to be renamed. */
3647 else if (gimple_vuse_op (stmt) != NULL_USE_OPERAND_P
3648 && !single_pred_p (succbb))
3650 /* In this case there will be no use of the VDEF of this stmt.
3651 ??? Unless this is a secondary opportunity and we have not
3652 removed unreachable blocks yet, so we cannot assert this.
3653 Which also means we will end up renaming too many times. */
3654 SET_USE (gimple_vuse_op (stmt), gimple_vop (cfun));
3655 mark_virtual_operands_for_renaming (cfun);
3656 todo |= TODO_update_ssa_only_virtuals;
3660 return todo;
3663 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3664 we have found some duplicate labels and removed some edges. */
3666 static bool
3667 lower_eh_dispatch (basic_block src, geh_dispatch *stmt)
3669 gimple_stmt_iterator gsi;
3670 int region_nr;
3671 eh_region r;
3672 tree filter, fn;
3673 gimple *x;
3674 bool redirected = false;
3676 region_nr = gimple_eh_dispatch_region (stmt);
3677 r = get_eh_region_from_number (region_nr);
3679 gsi = gsi_last_bb (src);
3681 switch (r->type)
3683 case ERT_TRY:
3685 auto_vec<tree> labels;
3686 tree default_label = NULL;
3687 eh_catch c;
3688 edge_iterator ei;
3689 edge e;
3690 hash_set<tree> seen_values;
3692 /* Collect the labels for a switch. Zero the post_landing_pad
3693 field becase we'll no longer have anything keeping these labels
3694 in existence and the optimizer will be free to merge these
3695 blocks at will. */
3696 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3698 tree tp_node, flt_node, lab = c->label;
3699 bool have_label = false;
3701 c->label = NULL;
3702 tp_node = c->type_list;
3703 flt_node = c->filter_list;
3705 if (tp_node == NULL)
3707 default_label = lab;
3708 break;
3712 /* Filter out duplicate labels that arise when this handler
3713 is shadowed by an earlier one. When no labels are
3714 attached to the handler anymore, we remove
3715 the corresponding edge and then we delete unreachable
3716 blocks at the end of this pass. */
3717 if (! seen_values.contains (TREE_VALUE (flt_node)))
3719 tree t = build_case_label (TREE_VALUE (flt_node),
3720 NULL, lab);
3721 labels.safe_push (t);
3722 seen_values.add (TREE_VALUE (flt_node));
3723 have_label = true;
3726 tp_node = TREE_CHAIN (tp_node);
3727 flt_node = TREE_CHAIN (flt_node);
3729 while (tp_node);
3730 if (! have_label)
3732 remove_edge (find_edge (src, label_to_block (lab)));
3733 redirected = true;
3737 /* Clean up the edge flags. */
3738 FOR_EACH_EDGE (e, ei, src->succs)
3740 if (e->flags & EDGE_FALLTHRU)
3742 /* If there was no catch-all, use the fallthru edge. */
3743 if (default_label == NULL)
3744 default_label = gimple_block_label (e->dest);
3745 e->flags &= ~EDGE_FALLTHRU;
3748 gcc_assert (default_label != NULL);
3750 /* Don't generate a switch if there's only a default case.
3751 This is common in the form of try { A; } catch (...) { B; }. */
3752 if (!labels.exists ())
3754 e = single_succ_edge (src);
3755 e->flags |= EDGE_FALLTHRU;
3757 else
3759 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3760 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3761 region_nr));
3762 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3763 filter = make_ssa_name (filter, x);
3764 gimple_call_set_lhs (x, filter);
3765 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3767 /* Turn the default label into a default case. */
3768 default_label = build_case_label (NULL, NULL, default_label);
3769 sort_case_labels (labels);
3771 x = gimple_build_switch (filter, default_label, labels);
3772 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3775 break;
3777 case ERT_ALLOWED_EXCEPTIONS:
3779 edge b_e = BRANCH_EDGE (src);
3780 edge f_e = FALLTHRU_EDGE (src);
3782 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3783 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3784 region_nr));
3785 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3786 filter = make_ssa_name (filter, x);
3787 gimple_call_set_lhs (x, filter);
3788 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3790 r->u.allowed.label = NULL;
3791 x = gimple_build_cond (EQ_EXPR, filter,
3792 build_int_cst (TREE_TYPE (filter),
3793 r->u.allowed.filter),
3794 NULL_TREE, NULL_TREE);
3795 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3797 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3798 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3800 break;
3802 default:
3803 gcc_unreachable ();
3806 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3807 gsi_remove (&gsi, true);
3808 return redirected;
3811 namespace {
3813 const pass_data pass_data_lower_eh_dispatch =
3815 GIMPLE_PASS, /* type */
3816 "ehdisp", /* name */
3817 OPTGROUP_NONE, /* optinfo_flags */
3818 TV_TREE_EH, /* tv_id */
3819 PROP_gimple_lcf, /* properties_required */
3820 0, /* properties_provided */
3821 0, /* properties_destroyed */
3822 0, /* todo_flags_start */
3823 0, /* todo_flags_finish */
3826 class pass_lower_eh_dispatch : public gimple_opt_pass
3828 public:
3829 pass_lower_eh_dispatch (gcc::context *ctxt)
3830 : gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt)
3833 /* opt_pass methods: */
3834 virtual bool gate (function *fun) { return fun->eh->region_tree != NULL; }
3835 virtual unsigned int execute (function *);
3837 }; // class pass_lower_eh_dispatch
3839 unsigned
3840 pass_lower_eh_dispatch::execute (function *fun)
3842 basic_block bb;
3843 int flags = 0;
3844 bool redirected = false;
3846 assign_filter_values ();
3848 FOR_EACH_BB_FN (bb, fun)
3850 gimple *last = last_stmt (bb);
3851 if (last == NULL)
3852 continue;
3853 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3855 redirected |= lower_eh_dispatch (bb,
3856 as_a <geh_dispatch *> (last));
3857 flags |= TODO_update_ssa_only_virtuals;
3859 else if (gimple_code (last) == GIMPLE_RESX)
3861 if (stmt_can_throw_external (last))
3862 optimize_clobbers (bb);
3863 else
3864 flags |= sink_clobbers (bb);
3868 if (redirected)
3870 free_dominance_info (CDI_DOMINATORS);
3871 delete_unreachable_blocks ();
3873 return flags;
3876 } // anon namespace
3878 gimple_opt_pass *
3879 make_pass_lower_eh_dispatch (gcc::context *ctxt)
3881 return new pass_lower_eh_dispatch (ctxt);
3884 /* Walk statements, see what regions and, optionally, landing pads
3885 are really referenced.
3887 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3888 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3890 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3891 regions are marked.
3893 The caller is responsible for freeing the returned sbitmaps. */
3895 static void
3896 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3898 sbitmap r_reachable, lp_reachable;
3899 basic_block bb;
3900 bool mark_landing_pads = (lp_reachablep != NULL);
3901 gcc_checking_assert (r_reachablep != NULL);
3903 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
3904 bitmap_clear (r_reachable);
3905 *r_reachablep = r_reachable;
3907 if (mark_landing_pads)
3909 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
3910 bitmap_clear (lp_reachable);
3911 *lp_reachablep = lp_reachable;
3913 else
3914 lp_reachable = NULL;
3916 FOR_EACH_BB_FN (bb, cfun)
3918 gimple_stmt_iterator gsi;
3920 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3922 gimple *stmt = gsi_stmt (gsi);
3924 if (mark_landing_pads)
3926 int lp_nr = lookup_stmt_eh_lp (stmt);
3928 /* Negative LP numbers are MUST_NOT_THROW regions which
3929 are not considered BB enders. */
3930 if (lp_nr < 0)
3931 bitmap_set_bit (r_reachable, -lp_nr);
3933 /* Positive LP numbers are real landing pads, and BB enders. */
3934 else if (lp_nr > 0)
3936 gcc_assert (gsi_one_before_end_p (gsi));
3937 eh_region region = get_eh_region_from_lp_number (lp_nr);
3938 bitmap_set_bit (r_reachable, region->index);
3939 bitmap_set_bit (lp_reachable, lp_nr);
3943 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3944 switch (gimple_code (stmt))
3946 case GIMPLE_RESX:
3947 bitmap_set_bit (r_reachable,
3948 gimple_resx_region (as_a <gresx *> (stmt)));
3949 break;
3950 case GIMPLE_EH_DISPATCH:
3951 bitmap_set_bit (r_reachable,
3952 gimple_eh_dispatch_region (
3953 as_a <geh_dispatch *> (stmt)));
3954 break;
3955 case GIMPLE_CALL:
3956 if (gimple_call_builtin_p (stmt, BUILT_IN_EH_COPY_VALUES))
3957 for (int i = 0; i < 2; ++i)
3959 tree rt = gimple_call_arg (stmt, i);
3960 HOST_WIDE_INT ri = tree_to_shwi (rt);
3962 gcc_assert (ri == (int)ri);
3963 bitmap_set_bit (r_reachable, ri);
3965 break;
3966 default:
3967 break;
3973 /* Remove unreachable handlers and unreachable landing pads. */
3975 static void
3976 remove_unreachable_handlers (void)
3978 sbitmap r_reachable, lp_reachable;
3979 eh_region region;
3980 eh_landing_pad lp;
3981 unsigned i;
3983 mark_reachable_handlers (&r_reachable, &lp_reachable);
3985 if (dump_file)
3987 fprintf (dump_file, "Before removal of unreachable regions:\n");
3988 dump_eh_tree (dump_file, cfun);
3989 fprintf (dump_file, "Reachable regions: ");
3990 dump_bitmap_file (dump_file, r_reachable);
3991 fprintf (dump_file, "Reachable landing pads: ");
3992 dump_bitmap_file (dump_file, lp_reachable);
3995 if (dump_file)
3997 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3998 if (region && !bitmap_bit_p (r_reachable, region->index))
3999 fprintf (dump_file,
4000 "Removing unreachable region %d\n",
4001 region->index);
4004 remove_unreachable_eh_regions (r_reachable);
4006 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
4007 if (lp && !bitmap_bit_p (lp_reachable, lp->index))
4009 if (dump_file)
4010 fprintf (dump_file,
4011 "Removing unreachable landing pad %d\n",
4012 lp->index);
4013 remove_eh_landing_pad (lp);
4016 if (dump_file)
4018 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
4019 dump_eh_tree (dump_file, cfun);
4020 fprintf (dump_file, "\n\n");
4023 sbitmap_free (r_reachable);
4024 sbitmap_free (lp_reachable);
4026 if (flag_checking)
4027 verify_eh_tree (cfun);
4030 /* Remove unreachable handlers if any landing pads have been removed after
4031 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
4033 void
4034 maybe_remove_unreachable_handlers (void)
4036 eh_landing_pad lp;
4037 unsigned i;
4039 if (cfun->eh == NULL)
4040 return;
4042 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
4043 if (lp && lp->post_landing_pad)
4045 if (label_to_block (lp->post_landing_pad) == NULL)
4047 remove_unreachable_handlers ();
4048 return;
4053 /* Remove regions that do not have landing pads. This assumes
4054 that remove_unreachable_handlers has already been run, and
4055 that we've just manipulated the landing pads since then.
4057 Preserve regions with landing pads and regions that prevent
4058 exceptions from propagating further, even if these regions
4059 are not reachable. */
4061 static void
4062 remove_unreachable_handlers_no_lp (void)
4064 eh_region region;
4065 sbitmap r_reachable;
4066 unsigned i;
4068 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
4070 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
4072 if (! region)
4073 continue;
4075 if (region->landing_pads != NULL
4076 || region->type == ERT_MUST_NOT_THROW)
4077 bitmap_set_bit (r_reachable, region->index);
4079 if (dump_file
4080 && !bitmap_bit_p (r_reachable, region->index))
4081 fprintf (dump_file,
4082 "Removing unreachable region %d\n",
4083 region->index);
4086 remove_unreachable_eh_regions (r_reachable);
4088 sbitmap_free (r_reachable);
4091 /* Undo critical edge splitting on an EH landing pad. Earlier, we
4092 optimisticaly split all sorts of edges, including EH edges. The
4093 optimization passes in between may not have needed them; if not,
4094 we should undo the split.
4096 Recognize this case by having one EH edge incoming to the BB and
4097 one normal edge outgoing; BB should be empty apart from the
4098 post_landing_pad label.
4100 Note that this is slightly different from the empty handler case
4101 handled by cleanup_empty_eh, in that the actual handler may yet
4102 have actual code but the landing pad has been separated from the
4103 handler. As such, cleanup_empty_eh relies on this transformation
4104 having been done first. */
4106 static bool
4107 unsplit_eh (eh_landing_pad lp)
4109 basic_block bb = label_to_block (lp->post_landing_pad);
4110 gimple_stmt_iterator gsi;
4111 edge e_in, e_out;
4113 /* Quickly check the edge counts on BB for singularity. */
4114 if (!single_pred_p (bb) || !single_succ_p (bb))
4115 return false;
4116 e_in = single_pred_edge (bb);
4117 e_out = single_succ_edge (bb);
4119 /* Input edge must be EH and output edge must be normal. */
4120 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
4121 return false;
4123 /* The block must be empty except for the labels and debug insns. */
4124 gsi = gsi_after_labels (bb);
4125 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4126 gsi_next_nondebug (&gsi);
4127 if (!gsi_end_p (gsi))
4128 return false;
4130 /* The destination block must not already have a landing pad
4131 for a different region. */
4132 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4134 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
4135 tree lab;
4136 int lp_nr;
4138 if (!label_stmt)
4139 break;
4140 lab = gimple_label_label (label_stmt);
4141 lp_nr = EH_LANDING_PAD_NR (lab);
4142 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4143 return false;
4146 /* The new destination block must not already be a destination of
4147 the source block, lest we merge fallthru and eh edges and get
4148 all sorts of confused. */
4149 if (find_edge (e_in->src, e_out->dest))
4150 return false;
4152 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4153 thought this should have been cleaned up by a phicprop pass, but
4154 that doesn't appear to handle virtuals. Propagate by hand. */
4155 if (!gimple_seq_empty_p (phi_nodes (bb)))
4157 for (gphi_iterator gpi = gsi_start_phis (bb); !gsi_end_p (gpi); )
4159 gimple *use_stmt;
4160 gphi *phi = gpi.phi ();
4161 tree lhs = gimple_phi_result (phi);
4162 tree rhs = gimple_phi_arg_def (phi, 0);
4163 use_operand_p use_p;
4164 imm_use_iterator iter;
4166 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
4168 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4169 SET_USE (use_p, rhs);
4172 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
4173 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
4175 remove_phi_node (&gpi, true);
4179 if (dump_file && (dump_flags & TDF_DETAILS))
4180 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
4181 lp->index, e_out->dest->index);
4183 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4184 a successor edge, humor it. But do the real CFG change with the
4185 predecessor of E_OUT in order to preserve the ordering of arguments
4186 to the PHI nodes in E_OUT->DEST. */
4187 redirect_eh_edge_1 (e_in, e_out->dest, false);
4188 redirect_edge_pred (e_out, e_in->src);
4189 e_out->flags = e_in->flags;
4190 e_out->probability = e_in->probability;
4191 remove_edge (e_in);
4193 return true;
4196 /* Examine each landing pad block and see if it matches unsplit_eh. */
4198 static bool
4199 unsplit_all_eh (void)
4201 bool changed = false;
4202 eh_landing_pad lp;
4203 int i;
4205 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4206 if (lp)
4207 changed |= unsplit_eh (lp);
4209 return changed;
4212 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4213 to OLD_BB to NEW_BB; return true on success, false on failure.
4215 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4216 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4217 Virtual PHIs may be deleted and marked for renaming. */
4219 static bool
4220 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
4221 edge old_bb_out, bool change_region)
4223 gphi_iterator ngsi, ogsi;
4224 edge_iterator ei;
4225 edge e;
4226 bitmap ophi_handled;
4228 /* The destination block must not be a regular successor for any
4229 of the preds of the landing pad. Thus, avoid turning
4230 <..>
4231 | \ EH
4232 | <..>
4234 <..>
4235 into
4236 <..>
4237 | | EH
4238 <..>
4239 which CFG verification would choke on. See PR45172 and PR51089. */
4240 FOR_EACH_EDGE (e, ei, old_bb->preds)
4241 if (find_edge (e->src, new_bb))
4242 return false;
4244 FOR_EACH_EDGE (e, ei, old_bb->preds)
4245 redirect_edge_var_map_clear (e);
4247 ophi_handled = BITMAP_ALLOC (NULL);
4249 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4250 for the edges we're going to move. */
4251 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
4253 gphi *ophi, *nphi = ngsi.phi ();
4254 tree nresult, nop;
4256 nresult = gimple_phi_result (nphi);
4257 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
4259 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4260 the source ssa_name. */
4261 ophi = NULL;
4262 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4264 ophi = ogsi.phi ();
4265 if (gimple_phi_result (ophi) == nop)
4266 break;
4267 ophi = NULL;
4270 /* If we did find the corresponding PHI, copy those inputs. */
4271 if (ophi)
4273 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4274 if (!has_single_use (nop))
4276 imm_use_iterator imm_iter;
4277 use_operand_p use_p;
4279 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
4281 if (!gimple_debug_bind_p (USE_STMT (use_p))
4282 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
4283 || gimple_bb (USE_STMT (use_p)) != new_bb))
4284 goto fail;
4287 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
4288 FOR_EACH_EDGE (e, ei, old_bb->preds)
4290 location_t oloc;
4291 tree oop;
4293 if ((e->flags & EDGE_EH) == 0)
4294 continue;
4295 oop = gimple_phi_arg_def (ophi, e->dest_idx);
4296 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
4297 redirect_edge_var_map_add (e, nresult, oop, oloc);
4300 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4301 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4302 variable is unchanged from input to the block and we can simply
4303 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4304 else
4306 location_t nloc
4307 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
4308 FOR_EACH_EDGE (e, ei, old_bb->preds)
4309 redirect_edge_var_map_add (e, nresult, nop, nloc);
4313 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4314 we don't know what values from the other edges into NEW_BB to use. */
4315 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4317 gphi *ophi = ogsi.phi ();
4318 tree oresult = gimple_phi_result (ophi);
4319 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
4320 goto fail;
4323 /* Finally, move the edges and update the PHIs. */
4324 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
4325 if (e->flags & EDGE_EH)
4327 /* ??? CFG manipluation routines do not try to update loop
4328 form on edge redirection. Do so manually here for now. */
4329 /* If we redirect a loop entry or latch edge that will either create
4330 a multiple entry loop or rotate the loop. If the loops merge
4331 we may have created a loop with multiple latches.
4332 All of this isn't easily fixed thus cancel the affected loop
4333 and mark the other loop as possibly having multiple latches. */
4334 if (e->dest == e->dest->loop_father->header)
4336 mark_loop_for_removal (e->dest->loop_father);
4337 new_bb->loop_father->latch = NULL;
4338 loops_state_set (LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4340 redirect_eh_edge_1 (e, new_bb, change_region);
4341 redirect_edge_succ (e, new_bb);
4342 flush_pending_stmts (e);
4344 else
4345 ei_next (&ei);
4347 BITMAP_FREE (ophi_handled);
4348 return true;
4350 fail:
4351 FOR_EACH_EDGE (e, ei, old_bb->preds)
4352 redirect_edge_var_map_clear (e);
4353 BITMAP_FREE (ophi_handled);
4354 return false;
4357 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4358 old region to NEW_REGION at BB. */
4360 static void
4361 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4362 eh_landing_pad lp, eh_region new_region)
4364 gimple_stmt_iterator gsi;
4365 eh_landing_pad *pp;
4367 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4368 continue;
4369 *pp = lp->next_lp;
4371 lp->region = new_region;
4372 lp->next_lp = new_region->landing_pads;
4373 new_region->landing_pads = lp;
4375 /* Delete the RESX that was matched within the empty handler block. */
4376 gsi = gsi_last_bb (bb);
4377 unlink_stmt_vdef (gsi_stmt (gsi));
4378 gsi_remove (&gsi, true);
4380 /* Clean up E_OUT for the fallthru. */
4381 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4382 e_out->probability = profile_probability::always ();
4385 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4386 unsplitting than unsplit_eh was prepared to handle, e.g. when
4387 multiple incoming edges and phis are involved. */
4389 static bool
4390 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4392 gimple_stmt_iterator gsi;
4393 tree lab;
4395 /* We really ought not have totally lost everything following
4396 a landing pad label. Given that BB is empty, there had better
4397 be a successor. */
4398 gcc_assert (e_out != NULL);
4400 /* The destination block must not already have a landing pad
4401 for a different region. */
4402 lab = NULL;
4403 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4405 glabel *stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
4406 int lp_nr;
4408 if (!stmt)
4409 break;
4410 lab = gimple_label_label (stmt);
4411 lp_nr = EH_LANDING_PAD_NR (lab);
4412 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4413 return false;
4416 /* Attempt to move the PHIs into the successor block. */
4417 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4419 if (dump_file && (dump_flags & TDF_DETAILS))
4420 fprintf (dump_file,
4421 "Unsplit EH landing pad %d to block %i "
4422 "(via cleanup_empty_eh).\n",
4423 lp->index, e_out->dest->index);
4424 return true;
4427 return false;
4430 /* Return true if edge E_FIRST is part of an empty infinite loop
4431 or leads to such a loop through a series of single successor
4432 empty bbs. */
4434 static bool
4435 infinite_empty_loop_p (edge e_first)
4437 bool inf_loop = false;
4438 edge e;
4440 if (e_first->dest == e_first->src)
4441 return true;
4443 e_first->src->aux = (void *) 1;
4444 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4446 gimple_stmt_iterator gsi;
4447 if (e->dest->aux)
4449 inf_loop = true;
4450 break;
4452 e->dest->aux = (void *) 1;
4453 gsi = gsi_after_labels (e->dest);
4454 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4455 gsi_next_nondebug (&gsi);
4456 if (!gsi_end_p (gsi))
4457 break;
4459 e_first->src->aux = NULL;
4460 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4461 e->dest->aux = NULL;
4463 return inf_loop;
4466 /* Examine the block associated with LP to determine if it's an empty
4467 handler for its EH region. If so, attempt to redirect EH edges to
4468 an outer region. Return true the CFG was updated in any way. This
4469 is similar to jump forwarding, just across EH edges. */
4471 static bool
4472 cleanup_empty_eh (eh_landing_pad lp)
4474 basic_block bb = label_to_block (lp->post_landing_pad);
4475 gimple_stmt_iterator gsi;
4476 gimple *resx;
4477 eh_region new_region;
4478 edge_iterator ei;
4479 edge e, e_out;
4480 bool has_non_eh_pred;
4481 bool ret = false;
4482 int new_lp_nr;
4484 /* There can be zero or one edges out of BB. This is the quickest test. */
4485 switch (EDGE_COUNT (bb->succs))
4487 case 0:
4488 e_out = NULL;
4489 break;
4490 case 1:
4491 e_out = single_succ_edge (bb);
4492 break;
4493 default:
4494 return false;
4497 gsi = gsi_last_nondebug_bb (bb);
4498 resx = gsi_stmt (gsi);
4499 if (resx && is_gimple_resx (resx))
4501 if (stmt_can_throw_external (resx))
4502 optimize_clobbers (bb);
4503 else if (sink_clobbers (bb))
4504 ret = true;
4507 gsi = gsi_after_labels (bb);
4509 /* Make sure to skip debug statements. */
4510 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4511 gsi_next_nondebug (&gsi);
4513 /* If the block is totally empty, look for more unsplitting cases. */
4514 if (gsi_end_p (gsi))
4516 /* For the degenerate case of an infinite loop bail out.
4517 If bb has no successors and is totally empty, which can happen e.g.
4518 because of incorrect noreturn attribute, bail out too. */
4519 if (e_out == NULL
4520 || infinite_empty_loop_p (e_out))
4521 return ret;
4523 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4526 /* The block should consist only of a single RESX statement, modulo a
4527 preceding call to __builtin_stack_restore if there is no outgoing
4528 edge, since the call can be eliminated in this case. */
4529 resx = gsi_stmt (gsi);
4530 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4532 gsi_next_nondebug (&gsi);
4533 resx = gsi_stmt (gsi);
4535 if (!is_gimple_resx (resx))
4536 return ret;
4537 gcc_assert (gsi_one_nondebug_before_end_p (gsi));
4539 /* Determine if there are non-EH edges, or resx edges into the handler. */
4540 has_non_eh_pred = false;
4541 FOR_EACH_EDGE (e, ei, bb->preds)
4542 if (!(e->flags & EDGE_EH))
4543 has_non_eh_pred = true;
4545 /* Find the handler that's outer of the empty handler by looking at
4546 where the RESX instruction was vectored. */
4547 new_lp_nr = lookup_stmt_eh_lp (resx);
4548 new_region = get_eh_region_from_lp_number (new_lp_nr);
4550 /* If there's no destination region within the current function,
4551 redirection is trivial via removing the throwing statements from
4552 the EH region, removing the EH edges, and allowing the block
4553 to go unreachable. */
4554 if (new_region == NULL)
4556 gcc_assert (e_out == NULL);
4557 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4558 if (e->flags & EDGE_EH)
4560 gimple *stmt = last_stmt (e->src);
4561 remove_stmt_from_eh_lp (stmt);
4562 remove_edge (e);
4564 else
4565 ei_next (&ei);
4566 goto succeed;
4569 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4570 to handle the abort and allow the blocks to go unreachable. */
4571 if (new_region->type == ERT_MUST_NOT_THROW)
4573 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4574 if (e->flags & EDGE_EH)
4576 gimple *stmt = last_stmt (e->src);
4577 remove_stmt_from_eh_lp (stmt);
4578 add_stmt_to_eh_lp (stmt, new_lp_nr);
4579 remove_edge (e);
4581 else
4582 ei_next (&ei);
4583 goto succeed;
4586 /* Try to redirect the EH edges and merge the PHIs into the destination
4587 landing pad block. If the merge succeeds, we'll already have redirected
4588 all the EH edges. The handler itself will go unreachable if there were
4589 no normal edges. */
4590 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4591 goto succeed;
4593 /* Finally, if all input edges are EH edges, then we can (potentially)
4594 reduce the number of transfers from the runtime by moving the landing
4595 pad from the original region to the new region. This is a win when
4596 we remove the last CLEANUP region along a particular exception
4597 propagation path. Since nothing changes except for the region with
4598 which the landing pad is associated, the PHI nodes do not need to be
4599 adjusted at all. */
4600 if (!has_non_eh_pred)
4602 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4603 if (dump_file && (dump_flags & TDF_DETAILS))
4604 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4605 lp->index, new_region->index);
4607 /* ??? The CFG didn't change, but we may have rendered the
4608 old EH region unreachable. Trigger a cleanup there. */
4609 return true;
4612 return ret;
4614 succeed:
4615 if (dump_file && (dump_flags & TDF_DETAILS))
4616 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4617 remove_eh_landing_pad (lp);
4618 return true;
4621 /* Do a post-order traversal of the EH region tree. Examine each
4622 post_landing_pad block and see if we can eliminate it as empty. */
4624 static bool
4625 cleanup_all_empty_eh (void)
4627 bool changed = false;
4628 eh_landing_pad lp;
4629 int i;
4631 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4632 if (lp)
4633 changed |= cleanup_empty_eh (lp);
4635 return changed;
4638 /* Perform cleanups and lowering of exception handling
4639 1) cleanups regions with handlers doing nothing are optimized out
4640 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4641 3) Info about regions that are containing instructions, and regions
4642 reachable via local EH edges is collected
4643 4) Eh tree is pruned for regions no longer necessary.
4645 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4646 Unify those that have the same failure decl and locus.
4649 static unsigned int
4650 execute_cleanup_eh_1 (void)
4652 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4653 looking up unreachable landing pads. */
4654 remove_unreachable_handlers ();
4656 /* Watch out for the region tree vanishing due to all unreachable. */
4657 if (cfun->eh->region_tree)
4659 bool changed = false;
4661 if (optimize)
4662 changed |= unsplit_all_eh ();
4663 changed |= cleanup_all_empty_eh ();
4665 if (changed)
4667 free_dominance_info (CDI_DOMINATORS);
4668 free_dominance_info (CDI_POST_DOMINATORS);
4670 /* We delayed all basic block deletion, as we may have performed
4671 cleanups on EH edges while non-EH edges were still present. */
4672 delete_unreachable_blocks ();
4674 /* We manipulated the landing pads. Remove any region that no
4675 longer has a landing pad. */
4676 remove_unreachable_handlers_no_lp ();
4678 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4682 return 0;
4685 namespace {
4687 const pass_data pass_data_cleanup_eh =
4689 GIMPLE_PASS, /* type */
4690 "ehcleanup", /* name */
4691 OPTGROUP_NONE, /* optinfo_flags */
4692 TV_TREE_EH, /* tv_id */
4693 PROP_gimple_lcf, /* properties_required */
4694 0, /* properties_provided */
4695 0, /* properties_destroyed */
4696 0, /* todo_flags_start */
4697 0, /* todo_flags_finish */
4700 class pass_cleanup_eh : public gimple_opt_pass
4702 public:
4703 pass_cleanup_eh (gcc::context *ctxt)
4704 : gimple_opt_pass (pass_data_cleanup_eh, ctxt)
4707 /* opt_pass methods: */
4708 opt_pass * clone () { return new pass_cleanup_eh (m_ctxt); }
4709 virtual bool gate (function *fun)
4711 return fun->eh != NULL && fun->eh->region_tree != NULL;
4714 virtual unsigned int execute (function *);
4716 }; // class pass_cleanup_eh
4718 unsigned int
4719 pass_cleanup_eh::execute (function *fun)
4721 int ret = execute_cleanup_eh_1 ();
4723 /* If the function no longer needs an EH personality routine
4724 clear it. This exposes cross-language inlining opportunities
4725 and avoids references to a never defined personality routine. */
4726 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4727 && function_needs_eh_personality (fun) != eh_personality_lang)
4728 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4730 return ret;
4733 } // anon namespace
4735 gimple_opt_pass *
4736 make_pass_cleanup_eh (gcc::context *ctxt)
4738 return new pass_cleanup_eh (ctxt);
4741 /* Verify that BB containing STMT as the last statement, has precisely the
4742 edge that make_eh_edges would create. */
4744 DEBUG_FUNCTION bool
4745 verify_eh_edges (gimple *stmt)
4747 basic_block bb = gimple_bb (stmt);
4748 eh_landing_pad lp = NULL;
4749 int lp_nr;
4750 edge_iterator ei;
4751 edge e, eh_edge;
4753 lp_nr = lookup_stmt_eh_lp (stmt);
4754 if (lp_nr > 0)
4755 lp = get_eh_landing_pad_from_number (lp_nr);
4757 eh_edge = NULL;
4758 FOR_EACH_EDGE (e, ei, bb->succs)
4760 if (e->flags & EDGE_EH)
4762 if (eh_edge)
4764 error ("BB %i has multiple EH edges", bb->index);
4765 return true;
4767 else
4768 eh_edge = e;
4772 if (lp == NULL)
4774 if (eh_edge)
4776 error ("BB %i can not throw but has an EH edge", bb->index);
4777 return true;
4779 return false;
4782 if (!stmt_could_throw_p (stmt))
4784 error ("BB %i last statement has incorrectly set lp", bb->index);
4785 return true;
4788 if (eh_edge == NULL)
4790 error ("BB %i is missing an EH edge", bb->index);
4791 return true;
4794 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4796 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4797 return true;
4800 return false;
4803 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4805 DEBUG_FUNCTION bool
4806 verify_eh_dispatch_edge (geh_dispatch *stmt)
4808 eh_region r;
4809 eh_catch c;
4810 basic_block src, dst;
4811 bool want_fallthru = true;
4812 edge_iterator ei;
4813 edge e, fall_edge;
4815 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4816 src = gimple_bb (stmt);
4818 FOR_EACH_EDGE (e, ei, src->succs)
4819 gcc_assert (e->aux == NULL);
4821 switch (r->type)
4823 case ERT_TRY:
4824 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4826 dst = label_to_block (c->label);
4827 e = find_edge (src, dst);
4828 if (e == NULL)
4830 error ("BB %i is missing an edge", src->index);
4831 return true;
4833 e->aux = (void *)e;
4835 /* A catch-all handler doesn't have a fallthru. */
4836 if (c->type_list == NULL)
4838 want_fallthru = false;
4839 break;
4842 break;
4844 case ERT_ALLOWED_EXCEPTIONS:
4845 dst = label_to_block (r->u.allowed.label);
4846 e = find_edge (src, dst);
4847 if (e == NULL)
4849 error ("BB %i is missing an edge", src->index);
4850 return true;
4852 e->aux = (void *)e;
4853 break;
4855 default:
4856 gcc_unreachable ();
4859 fall_edge = NULL;
4860 FOR_EACH_EDGE (e, ei, src->succs)
4862 if (e->flags & EDGE_FALLTHRU)
4864 if (fall_edge != NULL)
4866 error ("BB %i too many fallthru edges", src->index);
4867 return true;
4869 fall_edge = e;
4871 else if (e->aux)
4872 e->aux = NULL;
4873 else
4875 error ("BB %i has incorrect edge", src->index);
4876 return true;
4879 if ((fall_edge != NULL) ^ want_fallthru)
4881 error ("BB %i has incorrect fallthru edge", src->index);
4882 return true;
4885 return false;