PR target/66563
[official-gcc.git] / gcc / postreload-gcse.c
blob39c8c3959d1d4d46ab1ee7460e55193eb35329da
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "alias.h"
28 #include "symtab.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "predict.h"
37 #include "function.h"
38 #include "dominance.h"
39 #include "cfg.h"
40 #include "cfgrtl.h"
41 #include "basic-block.h"
42 #include "profile.h"
43 #include "expmed.h"
44 #include "dojump.h"
45 #include "explow.h"
46 #include "calls.h"
47 #include "emit-rtl.h"
48 #include "varasm.h"
49 #include "stmt.h"
50 #include "expr.h"
51 #include "except.h"
52 #include "intl.h"
53 #include "obstack.h"
54 #include "params.h"
55 #include "target.h"
56 #include "tree-pass.h"
57 #include "dbgcnt.h"
58 #include "df.h"
59 #include "gcse-common.h"
61 /* The following code implements gcse after reload, the purpose of this
62 pass is to cleanup redundant loads generated by reload and other
63 optimizations that come after gcse. It searches for simple inter-block
64 redundancies and tries to eliminate them by adding moves and loads
65 in cold places.
67 Perform partially redundant load elimination, try to eliminate redundant
68 loads created by the reload pass. We try to look for full or partial
69 redundant loads fed by one or more loads/stores in predecessor BBs,
70 and try adding loads to make them fully redundant. We also check if
71 it's worth adding loads to be able to delete the redundant load.
73 Algorithm:
74 1. Build available expressions hash table:
75 For each load/store instruction, if the loaded/stored memory didn't
76 change until the end of the basic block add this memory expression to
77 the hash table.
78 2. Perform Redundancy elimination:
79 For each load instruction do the following:
80 perform partial redundancy elimination, check if it's worth adding
81 loads to make the load fully redundant. If so add loads and
82 register copies and delete the load.
83 3. Delete instructions made redundant in step 2.
85 Future enhancement:
86 If the loaded register is used/defined between load and some store,
87 look for some other free register between load and all its stores,
88 and replace the load with a copy from this register to the loaded
89 register.
93 /* Keep statistics of this pass. */
94 static struct
96 int moves_inserted;
97 int copies_inserted;
98 int insns_deleted;
99 } stats;
101 /* We need to keep a hash table of expressions. The table entries are of
102 type 'struct expr', and for each expression there is a single linked
103 list of occurrences. */
105 /* Expression elements in the hash table. */
106 struct expr
108 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
109 rtx expr;
111 /* The same hash for this entry. */
112 hashval_t hash;
114 /* Index in the transparent bitmaps. */
115 unsigned int bitmap_index;
117 /* List of available occurrence in basic blocks in the function. */
118 struct occr *avail_occr;
121 /* Hashtable helpers. */
123 struct expr_hasher : typed_noop_remove <expr>
125 typedef expr *value_type;
126 typedef expr *compare_type;
127 static inline hashval_t hash (const expr *);
128 static inline bool equal (const expr *, const expr *);
132 /* Hash expression X.
133 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
134 or if the expression contains something we don't want to insert in the
135 table. */
137 static hashval_t
138 hash_expr (rtx x, int *do_not_record_p)
140 *do_not_record_p = 0;
141 return hash_rtx (x, GET_MODE (x), do_not_record_p,
142 NULL, /*have_reg_qty=*/false);
145 /* Callback for hashtab.
146 Return the hash value for expression EXP. We don't actually hash
147 here, we just return the cached hash value. */
149 inline hashval_t
150 expr_hasher::hash (const expr *exp)
152 return exp->hash;
155 /* Callback for hashtab.
156 Return nonzero if exp1 is equivalent to exp2. */
158 inline bool
159 expr_hasher::equal (const expr *exp1, const expr *exp2)
161 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
163 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
164 return equiv_p;
167 /* The table itself. */
168 static hash_table<expr_hasher> *expr_table;
171 static struct obstack expr_obstack;
173 /* Occurrence of an expression.
174 There is at most one occurrence per basic block. If a pattern appears
175 more than once, the last appearance is used. */
177 struct occr
179 /* Next occurrence of this expression. */
180 struct occr *next;
181 /* The insn that computes the expression. */
182 rtx_insn *insn;
183 /* Nonzero if this [anticipatable] occurrence has been deleted. */
184 char deleted_p;
187 static struct obstack occr_obstack;
189 /* The following structure holds the information about the occurrences of
190 the redundant instructions. */
191 struct unoccr
193 struct unoccr *next;
194 edge pred;
195 rtx_insn *insn;
198 static struct obstack unoccr_obstack;
200 /* Array where each element is the CUID if the insn that last set the hard
201 register with the number of the element, since the start of the current
202 basic block.
204 This array is used during the building of the hash table (step 1) to
205 determine if a reg is killed before the end of a basic block.
207 It is also used when eliminating partial redundancies (step 2) to see
208 if a reg was modified since the start of a basic block. */
209 static int *reg_avail_info;
211 /* A list of insns that may modify memory within the current basic block. */
212 struct modifies_mem
214 rtx_insn *insn;
215 struct modifies_mem *next;
217 static struct modifies_mem *modifies_mem_list;
219 /* The modifies_mem structs also go on an obstack, only this obstack is
220 freed each time after completing the analysis or transformations on
221 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
222 object on the obstack to keep track of the bottom of the obstack. */
223 static struct obstack modifies_mem_obstack;
224 static struct modifies_mem *modifies_mem_obstack_bottom;
226 /* Mapping of insn UIDs to CUIDs.
227 CUIDs are like UIDs except they increase monotonically in each basic
228 block, have no gaps, and only apply to real insns. */
229 static int *uid_cuid;
230 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
232 /* Bitmap of blocks which have memory stores. */
233 static bitmap modify_mem_list_set;
235 /* Bitmap of blocks which have calls. */
236 static bitmap blocks_with_calls;
238 /* Vector indexed by block # with a list of all the insns that
239 modify memory within the block. */
240 static vec<rtx_insn *> *modify_mem_list;
242 /* Vector indexed by block # with a canonicalized list of insns
243 that modify memory in the block. */
244 static vec<modify_pair> *canon_modify_mem_list;
246 /* Vector of simple bitmaps indexed by block number. Each component sbitmap
247 indicates which expressions are transparent through the block. */
248 static sbitmap *transp;
251 /* Helpers for memory allocation/freeing. */
252 static void alloc_mem (void);
253 static void free_mem (void);
255 /* Support for hash table construction and transformations. */
256 static bool oprs_unchanged_p (rtx, rtx_insn *, bool);
257 static void record_last_reg_set_info (rtx_insn *, rtx);
258 static void record_last_reg_set_info_regno (rtx_insn *, int);
259 static void record_last_mem_set_info (rtx_insn *);
260 static void record_last_set_info (rtx, const_rtx, void *);
261 static void record_opr_changes (rtx_insn *);
263 static void find_mem_conflicts (rtx, const_rtx, void *);
264 static int load_killed_in_block_p (int, rtx, bool);
265 static void reset_opr_set_tables (void);
267 /* Hash table support. */
268 static hashval_t hash_expr (rtx, int *);
269 static void insert_expr_in_table (rtx, rtx_insn *);
270 static struct expr *lookup_expr_in_table (rtx);
271 static void dump_hash_table (FILE *);
273 /* Helpers for eliminate_partially_redundant_load. */
274 static bool reg_killed_on_edge (rtx, edge);
275 static bool reg_used_on_edge (rtx, edge);
277 static rtx get_avail_load_store_reg (rtx_insn *);
279 static bool bb_has_well_behaved_predecessors (basic_block);
280 static struct occr* get_bb_avail_insn (basic_block, struct occr *, int);
281 static void hash_scan_set (rtx_insn *);
282 static void compute_hash_table (void);
284 /* The work horses of this pass. */
285 static void eliminate_partially_redundant_load (basic_block,
286 rtx_insn *,
287 struct expr *);
288 static void eliminate_partially_redundant_loads (void);
291 /* Allocate memory for the CUID mapping array and register/memory
292 tracking tables. */
294 static void
295 alloc_mem (void)
297 int i;
298 basic_block bb;
299 rtx_insn *insn;
301 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
302 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
303 i = 1;
304 FOR_EACH_BB_FN (bb, cfun)
305 FOR_BB_INSNS (bb, insn)
307 if (INSN_P (insn))
308 uid_cuid[INSN_UID (insn)] = i++;
309 else
310 uid_cuid[INSN_UID (insn)] = i;
313 /* Allocate the available expressions hash table. We don't want to
314 make the hash table too small, but unnecessarily making it too large
315 also doesn't help. The i/4 is a gcse.c relic, and seems like a
316 reasonable choice. */
317 expr_table = new hash_table<expr_hasher> (MAX (i / 4, 13));
319 /* We allocate everything on obstacks because we often can roll back
320 the whole obstack to some point. Freeing obstacks is very fast. */
321 gcc_obstack_init (&expr_obstack);
322 gcc_obstack_init (&occr_obstack);
323 gcc_obstack_init (&unoccr_obstack);
324 gcc_obstack_init (&modifies_mem_obstack);
326 /* Working array used to track the last set for each register
327 in the current block. */
328 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
330 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
331 can roll it back in reset_opr_set_tables. */
332 modifies_mem_obstack_bottom =
333 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
334 sizeof (struct modifies_mem));
336 blocks_with_calls = BITMAP_ALLOC (NULL);
337 modify_mem_list_set = BITMAP_ALLOC (NULL);
339 modify_mem_list = (vec_rtx_heap *) xcalloc (last_basic_block_for_fn (cfun),
340 sizeof (vec_rtx_heap));
341 canon_modify_mem_list
342 = (vec_modify_pair_heap *) xcalloc (last_basic_block_for_fn (cfun),
343 sizeof (vec_modify_pair_heap));
346 /* Free memory allocated by alloc_mem. */
348 static void
349 free_mem (void)
351 free (uid_cuid);
353 delete expr_table;
354 expr_table = NULL;
356 obstack_free (&expr_obstack, NULL);
357 obstack_free (&occr_obstack, NULL);
358 obstack_free (&unoccr_obstack, NULL);
359 obstack_free (&modifies_mem_obstack, NULL);
361 unsigned i;
362 bitmap_iterator bi;
363 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
365 modify_mem_list[i].release ();
366 canon_modify_mem_list[i].release ();
369 BITMAP_FREE (blocks_with_calls);
370 BITMAP_FREE (modify_mem_list_set);
371 free (reg_avail_info);
375 /* Insert expression X in INSN in the hash TABLE.
376 If it is already present, record it as the last occurrence in INSN's
377 basic block. */
379 static void
380 insert_expr_in_table (rtx x, rtx_insn *insn)
382 int do_not_record_p;
383 hashval_t hash;
384 struct expr *cur_expr, **slot;
385 struct occr *avail_occr, *last_occr = NULL;
387 hash = hash_expr (x, &do_not_record_p);
389 /* Do not insert expression in the table if it contains volatile operands,
390 or if hash_expr determines the expression is something we don't want
391 to or can't handle. */
392 if (do_not_record_p)
393 return;
395 /* We anticipate that redundant expressions are rare, so for convenience
396 allocate a new hash table element here already and set its fields.
397 If we don't do this, we need a hack with a static struct expr. Anyway,
398 obstack_free is really fast and one more obstack_alloc doesn't hurt if
399 we're going to see more expressions later on. */
400 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
401 sizeof (struct expr));
402 cur_expr->expr = x;
403 cur_expr->hash = hash;
404 cur_expr->avail_occr = NULL;
406 slot = expr_table->find_slot_with_hash (cur_expr, hash, INSERT);
408 if (! (*slot))
410 /* The expression isn't found, so insert it. */
411 *slot = cur_expr;
413 /* Anytime we add an entry to the table, record the index
414 of the new entry. The bitmap index starts counting
415 at zero. */
416 cur_expr->bitmap_index = expr_table->elements () - 1;
418 else
420 /* The expression is already in the table, so roll back the
421 obstack and use the existing table entry. */
422 obstack_free (&expr_obstack, cur_expr);
423 cur_expr = *slot;
426 /* Search for another occurrence in the same basic block. */
427 avail_occr = cur_expr->avail_occr;
428 while (avail_occr
429 && BLOCK_FOR_INSN (avail_occr->insn) != BLOCK_FOR_INSN (insn))
431 /* If an occurrence isn't found, save a pointer to the end of
432 the list. */
433 last_occr = avail_occr;
434 avail_occr = avail_occr->next;
437 if (avail_occr)
438 /* Found another instance of the expression in the same basic block.
439 Prefer this occurrence to the currently recorded one. We want
440 the last one in the block and the block is scanned from start
441 to end. */
442 avail_occr->insn = insn;
443 else
445 /* First occurrence of this expression in this basic block. */
446 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
447 sizeof (struct occr));
449 /* First occurrence of this expression in any block? */
450 if (cur_expr->avail_occr == NULL)
451 cur_expr->avail_occr = avail_occr;
452 else
453 last_occr->next = avail_occr;
455 avail_occr->insn = insn;
456 avail_occr->next = NULL;
457 avail_occr->deleted_p = 0;
462 /* Lookup pattern PAT in the expression hash table.
463 The result is a pointer to the table entry, or NULL if not found. */
465 static struct expr *
466 lookup_expr_in_table (rtx pat)
468 int do_not_record_p;
469 struct expr **slot, *tmp_expr;
470 hashval_t hash = hash_expr (pat, &do_not_record_p);
472 if (do_not_record_p)
473 return NULL;
475 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
476 sizeof (struct expr));
477 tmp_expr->expr = pat;
478 tmp_expr->hash = hash;
479 tmp_expr->avail_occr = NULL;
481 slot = expr_table->find_slot_with_hash (tmp_expr, hash, INSERT);
482 obstack_free (&expr_obstack, tmp_expr);
484 if (!slot)
485 return NULL;
486 else
487 return (*slot);
491 /* Dump all expressions and occurrences that are currently in the
492 expression hash table to FILE. */
494 /* This helper is called via htab_traverse. */
496 dump_expr_hash_table_entry (expr **slot, FILE *file)
498 struct expr *exprs = *slot;
499 struct occr *occr;
501 fprintf (file, "expr: ");
502 print_rtl (file, exprs->expr);
503 fprintf (file,"\nhashcode: %u\n", exprs->hash);
504 fprintf (file,"list of occurrences:\n");
505 occr = exprs->avail_occr;
506 while (occr)
508 rtx_insn *insn = occr->insn;
509 print_rtl_single (file, insn);
510 fprintf (file, "\n");
511 occr = occr->next;
513 fprintf (file, "\n");
514 return 1;
517 static void
518 dump_hash_table (FILE *file)
520 fprintf (file, "\n\nexpression hash table\n");
521 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
522 (long) expr_table->size (),
523 (long) expr_table->elements (),
524 expr_table->collisions ());
525 if (expr_table->elements () > 0)
527 fprintf (file, "\n\ntable entries:\n");
528 expr_table->traverse <FILE *, dump_expr_hash_table_entry> (file);
530 fprintf (file, "\n");
533 /* Return true if register X is recorded as being set by an instruction
534 whose CUID is greater than the one given. */
536 static bool
537 reg_changed_after_insn_p (rtx x, int cuid)
539 unsigned int regno, end_regno;
541 regno = REGNO (x);
542 end_regno = END_REGNO (x);
544 if (reg_avail_info[regno] > cuid)
545 return true;
546 while (++regno < end_regno);
547 return false;
550 /* Return nonzero if the operands of expression X are unchanged
551 1) from the start of INSN's basic block up to but not including INSN
552 if AFTER_INSN is false, or
553 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
555 static bool
556 oprs_unchanged_p (rtx x, rtx_insn *insn, bool after_insn)
558 int i, j;
559 enum rtx_code code;
560 const char *fmt;
562 if (x == 0)
563 return 1;
565 code = GET_CODE (x);
566 switch (code)
568 case REG:
569 /* We are called after register allocation. */
570 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
571 if (after_insn)
572 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
573 else
574 return !reg_changed_after_insn_p (x, 0);
576 case MEM:
577 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
578 return 0;
579 else
580 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
582 case PC:
583 case CC0: /*FIXME*/
584 case CONST:
585 CASE_CONST_ANY:
586 case SYMBOL_REF:
587 case LABEL_REF:
588 case ADDR_VEC:
589 case ADDR_DIFF_VEC:
590 return 1;
592 case PRE_DEC:
593 case PRE_INC:
594 case POST_DEC:
595 case POST_INC:
596 case PRE_MODIFY:
597 case POST_MODIFY:
598 if (after_insn)
599 return 0;
600 break;
602 default:
603 break;
606 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
608 if (fmt[i] == 'e')
610 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
611 return 0;
613 else if (fmt[i] == 'E')
614 for (j = 0; j < XVECLEN (x, i); j++)
615 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
616 return 0;
619 return 1;
623 /* Used for communication between find_mem_conflicts and
624 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
625 conflict between two memory references.
626 This is a bit of a hack to work around the limitations of note_stores. */
627 static int mems_conflict_p;
629 /* DEST is the output of an instruction. If it is a memory reference, and
630 possibly conflicts with the load found in DATA, then set mems_conflict_p
631 to a nonzero value. */
633 static void
634 find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
635 void *data)
637 rtx mem_op = (rtx) data;
639 while (GET_CODE (dest) == SUBREG
640 || GET_CODE (dest) == ZERO_EXTRACT
641 || GET_CODE (dest) == STRICT_LOW_PART)
642 dest = XEXP (dest, 0);
644 /* If DEST is not a MEM, then it will not conflict with the load. Note
645 that function calls are assumed to clobber memory, but are handled
646 elsewhere. */
647 if (! MEM_P (dest))
648 return;
650 if (true_dependence (dest, GET_MODE (dest), mem_op))
651 mems_conflict_p = 1;
655 /* Return nonzero if the expression in X (a memory reference) is killed
656 in the current basic block before (if AFTER_INSN is false) or after
657 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
659 This function assumes that the modifies_mem table is flushed when
660 the hash table construction or redundancy elimination phases start
661 processing a new basic block. */
663 static int
664 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
666 struct modifies_mem *list_entry = modifies_mem_list;
668 while (list_entry)
670 rtx_insn *setter = list_entry->insn;
672 /* Ignore entries in the list that do not apply. */
673 if ((after_insn
674 && INSN_CUID (setter) < uid_limit)
675 || (! after_insn
676 && INSN_CUID (setter) > uid_limit))
678 list_entry = list_entry->next;
679 continue;
682 /* If SETTER is a call everything is clobbered. Note that calls
683 to pure functions are never put on the list, so we need not
684 worry about them. */
685 if (CALL_P (setter))
686 return 1;
688 /* SETTER must be an insn of some kind that sets memory. Call
689 note_stores to examine each hunk of memory that is modified.
690 It will set mems_conflict_p to nonzero if there may be a
691 conflict between X and SETTER. */
692 mems_conflict_p = 0;
693 note_stores (PATTERN (setter), find_mem_conflicts, x);
694 if (mems_conflict_p)
695 return 1;
697 list_entry = list_entry->next;
699 return 0;
703 /* Record register first/last/block set information for REGNO in INSN. */
705 static inline void
706 record_last_reg_set_info (rtx_insn *insn, rtx reg)
708 unsigned int regno, end_regno;
710 regno = REGNO (reg);
711 end_regno = END_REGNO (reg);
713 reg_avail_info[regno] = INSN_CUID (insn);
714 while (++regno < end_regno);
717 static inline void
718 record_last_reg_set_info_regno (rtx_insn *insn, int regno)
720 reg_avail_info[regno] = INSN_CUID (insn);
724 /* Record memory modification information for INSN. We do not actually care
725 about the memory location(s) that are set, or even how they are set (consider
726 a CALL_INSN). We merely need to record which insns modify memory. */
728 static void
729 record_last_mem_set_info (rtx_insn *insn)
731 struct modifies_mem *list_entry;
733 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
734 sizeof (struct modifies_mem));
735 list_entry->insn = insn;
736 list_entry->next = modifies_mem_list;
737 modifies_mem_list = list_entry;
739 record_last_mem_set_info_common (insn, modify_mem_list,
740 canon_modify_mem_list,
741 modify_mem_list_set,
742 blocks_with_calls);
745 /* Called from compute_hash_table via note_stores to handle one
746 SET or CLOBBER in an insn. DATA is really the instruction in which
747 the SET is taking place. */
749 static void
750 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
752 rtx_insn *last_set_insn = (rtx_insn *) data;
754 if (GET_CODE (dest) == SUBREG)
755 dest = SUBREG_REG (dest);
757 if (REG_P (dest))
758 record_last_reg_set_info (last_set_insn, dest);
759 else if (MEM_P (dest))
761 /* Ignore pushes, they don't clobber memory. They may still
762 clobber the stack pointer though. Some targets do argument
763 pushes without adding REG_INC notes. See e.g. PR25196,
764 where a pushsi2 on i386 doesn't have REG_INC notes. Note
765 such changes here too. */
766 if (! push_operand (dest, GET_MODE (dest)))
767 record_last_mem_set_info (last_set_insn);
768 else
769 record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
774 /* Reset tables used to keep track of what's still available since the
775 start of the block. */
777 static void
778 reset_opr_set_tables (void)
780 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
781 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
782 modifies_mem_list = NULL;
786 /* Record things set by INSN.
787 This data is used by oprs_unchanged_p. */
789 static void
790 record_opr_changes (rtx_insn *insn)
792 rtx note;
794 /* Find all stores and record them. */
795 note_stores (PATTERN (insn), record_last_set_info, insn);
797 /* Also record autoincremented REGs for this insn as changed. */
798 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
799 if (REG_NOTE_KIND (note) == REG_INC)
800 record_last_reg_set_info (insn, XEXP (note, 0));
802 /* Finally, if this is a call, record all call clobbers. */
803 if (CALL_P (insn))
805 unsigned int regno;
806 rtx link, x;
807 hard_reg_set_iterator hrsi;
808 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
809 record_last_reg_set_info_regno (insn, regno);
811 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
812 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
814 x = XEXP (XEXP (link, 0), 0);
815 if (REG_P (x))
817 gcc_assert (HARD_REGISTER_P (x));
818 record_last_reg_set_info (insn, x);
822 if (! RTL_CONST_OR_PURE_CALL_P (insn))
823 record_last_mem_set_info (insn);
828 /* Scan the pattern of INSN and add an entry to the hash TABLE.
829 After reload we are interested in loads/stores only. */
831 static void
832 hash_scan_set (rtx_insn *insn)
834 rtx pat = PATTERN (insn);
835 rtx src = SET_SRC (pat);
836 rtx dest = SET_DEST (pat);
838 /* We are only interested in loads and stores. */
839 if (! MEM_P (src) && ! MEM_P (dest))
840 return;
842 /* Don't mess with jumps and nops. */
843 if (JUMP_P (insn) || set_noop_p (pat))
844 return;
846 if (REG_P (dest))
848 if (/* Don't CSE something if we can't do a reg/reg copy. */
849 can_copy_p (GET_MODE (dest))
850 /* Is SET_SRC something we want to gcse? */
851 && general_operand (src, GET_MODE (src))
852 #ifdef STACK_REGS
853 /* Never consider insns touching the register stack. It may
854 create situations that reg-stack cannot handle (e.g. a stack
855 register live across an abnormal edge). */
856 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
857 #endif
858 /* An expression is not available if its operands are
859 subsequently modified, including this insn. */
860 && oprs_unchanged_p (src, insn, true))
862 insert_expr_in_table (src, insn);
865 else if (REG_P (src))
867 /* Only record sets of pseudo-regs in the hash table. */
868 if (/* Don't CSE something if we can't do a reg/reg copy. */
869 can_copy_p (GET_MODE (src))
870 /* Is SET_DEST something we want to gcse? */
871 && general_operand (dest, GET_MODE (dest))
872 #ifdef STACK_REGS
873 /* As above for STACK_REGS. */
874 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
875 #endif
876 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
877 /* Check if the memory expression is killed after insn. */
878 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
879 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
881 insert_expr_in_table (dest, insn);
887 /* Create hash table of memory expressions available at end of basic
888 blocks. Basically you should think of this hash table as the
889 representation of AVAIL_OUT. This is the set of expressions that
890 is generated in a basic block and not killed before the end of the
891 same basic block. Notice that this is really a local computation. */
893 static void
894 compute_hash_table (void)
896 basic_block bb;
898 FOR_EACH_BB_FN (bb, cfun)
900 rtx_insn *insn;
902 /* First pass over the instructions records information used to
903 determine when registers and memory are last set.
904 Since we compute a "local" AVAIL_OUT, reset the tables that
905 help us keep track of what has been modified since the start
906 of the block. */
907 reset_opr_set_tables ();
908 FOR_BB_INSNS (bb, insn)
910 if (INSN_P (insn))
911 record_opr_changes (insn);
914 /* The next pass actually builds the hash table. */
915 FOR_BB_INSNS (bb, insn)
916 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
917 hash_scan_set (insn);
922 /* Check if register REG is killed in any insn waiting to be inserted on
923 edge E. This function is required to check that our data flow analysis
924 is still valid prior to commit_edge_insertions. */
926 static bool
927 reg_killed_on_edge (rtx reg, edge e)
929 rtx_insn *insn;
931 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
932 if (INSN_P (insn) && reg_set_p (reg, insn))
933 return true;
935 return false;
938 /* Similar to above - check if register REG is used in any insn waiting
939 to be inserted on edge E.
940 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
941 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
943 static bool
944 reg_used_on_edge (rtx reg, edge e)
946 rtx_insn *insn;
948 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
949 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
950 return true;
952 return false;
955 /* Return the loaded/stored register of a load/store instruction. */
957 static rtx
958 get_avail_load_store_reg (rtx_insn *insn)
960 if (REG_P (SET_DEST (PATTERN (insn))))
961 /* A load. */
962 return SET_DEST (PATTERN (insn));
963 else
965 /* A store. */
966 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
967 return SET_SRC (PATTERN (insn));
971 /* Return nonzero if the predecessors of BB are "well behaved". */
973 static bool
974 bb_has_well_behaved_predecessors (basic_block bb)
976 edge pred;
977 edge_iterator ei;
979 if (EDGE_COUNT (bb->preds) == 0)
980 return false;
982 FOR_EACH_EDGE (pred, ei, bb->preds)
984 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
985 return false;
987 if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
988 return false;
990 if (tablejump_p (BB_END (pred->src), NULL, NULL))
991 return false;
993 return true;
997 /* Search for the occurrences of expression in BB. */
999 static struct occr*
1000 get_bb_avail_insn (basic_block bb, struct occr *orig_occr, int bitmap_index)
1002 struct occr *occr = orig_occr;
1004 for (; occr != NULL; occr = occr->next)
1005 if (BLOCK_FOR_INSN (occr->insn) == bb)
1006 return occr;
1008 /* If we could not find an occurrence in BB, see if BB
1009 has a single predecessor with an occurrence that is
1010 transparent through BB. */
1011 if (single_pred_p (bb)
1012 && bitmap_bit_p (transp[bb->index], bitmap_index)
1013 && (occr = get_bb_avail_insn (single_pred (bb), orig_occr, bitmap_index)))
1015 rtx avail_reg = get_avail_load_store_reg (occr->insn);
1016 if (!reg_set_between_p (avail_reg,
1017 PREV_INSN (BB_HEAD (bb)),
1018 NEXT_INSN (BB_END (bb)))
1019 && !reg_killed_on_edge (avail_reg, single_pred_edge (bb)))
1020 return occr;
1023 return NULL;
1027 /* This helper is called via htab_traverse. */
1029 compute_expr_transp (expr **slot, FILE *dump_file ATTRIBUTE_UNUSED)
1031 struct expr *expr = *slot;
1033 compute_transp (expr->expr, expr->bitmap_index, transp,
1034 blocks_with_calls, modify_mem_list_set,
1035 canon_modify_mem_list);
1036 return 1;
1039 /* This handles the case where several stores feed a partially redundant
1040 load. It checks if the redundancy elimination is possible and if it's
1041 worth it.
1043 Redundancy elimination is possible if,
1044 1) None of the operands of an insn have been modified since the start
1045 of the current basic block.
1046 2) In any predecessor of the current basic block, the same expression
1047 is generated.
1049 See the function body for the heuristics that determine if eliminating
1050 a redundancy is also worth doing, assuming it is possible. */
1052 static void
1053 eliminate_partially_redundant_load (basic_block bb, rtx_insn *insn,
1054 struct expr *expr)
1056 edge pred;
1057 rtx_insn *avail_insn = NULL;
1058 rtx avail_reg;
1059 rtx dest, pat;
1060 struct occr *a_occr;
1061 struct unoccr *occr, *avail_occrs = NULL;
1062 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
1063 int npred_ok = 0;
1064 gcov_type ok_count = 0; /* Redundant load execution count. */
1065 gcov_type critical_count = 0; /* Execution count of critical edges. */
1066 edge_iterator ei;
1067 bool critical_edge_split = false;
1069 /* The execution count of the loads to be added to make the
1070 load fully redundant. */
1071 gcov_type not_ok_count = 0;
1072 basic_block pred_bb;
1074 pat = PATTERN (insn);
1075 dest = SET_DEST (pat);
1077 /* Check that the loaded register is not used, set, or killed from the
1078 beginning of the block. */
1079 if (reg_changed_after_insn_p (dest, 0)
1080 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
1081 return;
1083 /* Check potential for replacing load with copy for predecessors. */
1084 FOR_EACH_EDGE (pred, ei, bb->preds)
1086 rtx_insn *next_pred_bb_end;
1088 avail_insn = NULL;
1089 avail_reg = NULL_RTX;
1090 pred_bb = pred->src;
1091 for (a_occr = get_bb_avail_insn (pred_bb,
1092 expr->avail_occr,
1093 expr->bitmap_index);
1094 a_occr;
1095 a_occr = get_bb_avail_insn (pred_bb,
1096 a_occr->next,
1097 expr->bitmap_index))
1099 /* Check if the loaded register is not used. */
1100 avail_insn = a_occr->insn;
1101 avail_reg = get_avail_load_store_reg (avail_insn);
1102 gcc_assert (avail_reg);
1104 /* Make sure we can generate a move from register avail_reg to
1105 dest. */
1106 rtx_insn *move = gen_move_insn (copy_rtx (dest),
1107 copy_rtx (avail_reg));
1108 extract_insn (move);
1109 if (! constrain_operands (1, get_preferred_alternatives (insn,
1110 pred_bb))
1111 || reg_killed_on_edge (avail_reg, pred)
1112 || reg_used_on_edge (dest, pred))
1114 avail_insn = NULL;
1115 continue;
1117 next_pred_bb_end = NEXT_INSN (BB_END (BLOCK_FOR_INSN (avail_insn)));
1118 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
1119 /* AVAIL_INSN remains non-null. */
1120 break;
1121 else
1122 avail_insn = NULL;
1125 if (EDGE_CRITICAL_P (pred))
1126 critical_count += pred->count;
1128 if (avail_insn != NULL_RTX)
1130 npred_ok++;
1131 ok_count += pred->count;
1132 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1133 copy_rtx (avail_reg)))))
1135 /* Check if there is going to be a split. */
1136 if (EDGE_CRITICAL_P (pred))
1137 critical_edge_split = true;
1139 else /* Its a dead move no need to generate. */
1140 continue;
1141 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1142 sizeof (struct unoccr));
1143 occr->insn = avail_insn;
1144 occr->pred = pred;
1145 occr->next = avail_occrs;
1146 avail_occrs = occr;
1147 if (! rollback_unoccr)
1148 rollback_unoccr = occr;
1150 else
1152 /* Adding a load on a critical edge will cause a split. */
1153 if (EDGE_CRITICAL_P (pred))
1154 critical_edge_split = true;
1155 not_ok_count += pred->count;
1156 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1157 sizeof (struct unoccr));
1158 unoccr->insn = NULL;
1159 unoccr->pred = pred;
1160 unoccr->next = unavail_occrs;
1161 unavail_occrs = unoccr;
1162 if (! rollback_unoccr)
1163 rollback_unoccr = unoccr;
1167 if (/* No load can be replaced by copy. */
1168 npred_ok == 0
1169 /* Prevent exploding the code. */
1170 || (optimize_bb_for_size_p (bb) && npred_ok > 1)
1171 /* If we don't have profile information we cannot tell if splitting
1172 a critical edge is profitable or not so don't do it. */
1173 || ((! profile_info || ! flag_branch_probabilities
1174 || targetm.cannot_modify_jumps_p ())
1175 && critical_edge_split))
1176 goto cleanup;
1178 /* Check if it's worth applying the partial redundancy elimination. */
1179 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1180 goto cleanup;
1181 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1182 goto cleanup;
1184 /* Generate moves to the loaded register from where
1185 the memory is available. */
1186 for (occr = avail_occrs; occr; occr = occr->next)
1188 avail_insn = occr->insn;
1189 pred = occr->pred;
1190 /* Set avail_reg to be the register having the value of the
1191 memory. */
1192 avail_reg = get_avail_load_store_reg (avail_insn);
1193 gcc_assert (avail_reg);
1195 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1196 copy_rtx (avail_reg)),
1197 pred);
1198 stats.moves_inserted++;
1200 if (dump_file)
1201 fprintf (dump_file,
1202 "generating move from %d to %d on edge from %d to %d\n",
1203 REGNO (avail_reg),
1204 REGNO (dest),
1205 pred->src->index,
1206 pred->dest->index);
1209 /* Regenerate loads where the memory is unavailable. */
1210 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1212 pred = unoccr->pred;
1213 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1214 stats.copies_inserted++;
1216 if (dump_file)
1218 fprintf (dump_file,
1219 "generating on edge from %d to %d a copy of load: ",
1220 pred->src->index,
1221 pred->dest->index);
1222 print_rtl (dump_file, PATTERN (insn));
1223 fprintf (dump_file, "\n");
1227 /* Delete the insn if it is not available in this block and mark it
1228 for deletion if it is available. If insn is available it may help
1229 discover additional redundancies, so mark it for later deletion. */
1230 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr, expr->bitmap_index);
1231 a_occr && (a_occr->insn != insn);
1232 a_occr = get_bb_avail_insn (bb, a_occr->next, expr->bitmap_index))
1235 if (!a_occr)
1237 stats.insns_deleted++;
1239 if (dump_file)
1241 fprintf (dump_file, "deleting insn:\n");
1242 print_rtl_single (dump_file, insn);
1243 fprintf (dump_file, "\n");
1245 delete_insn (insn);
1247 else
1248 a_occr->deleted_p = 1;
1250 cleanup:
1251 if (rollback_unoccr)
1252 obstack_free (&unoccr_obstack, rollback_unoccr);
1255 /* Performing the redundancy elimination as described before. */
1257 static void
1258 eliminate_partially_redundant_loads (void)
1260 rtx_insn *insn;
1261 basic_block bb;
1263 /* Note we start at block 1. */
1265 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1266 return;
1268 FOR_BB_BETWEEN (bb,
1269 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->next_bb,
1270 EXIT_BLOCK_PTR_FOR_FN (cfun),
1271 next_bb)
1273 /* Don't try anything on basic blocks with strange predecessors. */
1274 if (! bb_has_well_behaved_predecessors (bb))
1275 continue;
1277 /* Do not try anything on cold basic blocks. */
1278 if (optimize_bb_for_size_p (bb))
1279 continue;
1281 /* Reset the table of things changed since the start of the current
1282 basic block. */
1283 reset_opr_set_tables ();
1285 /* Look at all insns in the current basic block and see if there are
1286 any loads in it that we can record. */
1287 FOR_BB_INSNS (bb, insn)
1289 /* Is it a load - of the form (set (reg) (mem))? */
1290 if (NONJUMP_INSN_P (insn)
1291 && GET_CODE (PATTERN (insn)) == SET
1292 && REG_P (SET_DEST (PATTERN (insn)))
1293 && MEM_P (SET_SRC (PATTERN (insn))))
1295 rtx pat = PATTERN (insn);
1296 rtx src = SET_SRC (pat);
1297 struct expr *expr;
1299 if (!MEM_VOLATILE_P (src)
1300 && GET_MODE (src) != BLKmode
1301 && general_operand (src, GET_MODE (src))
1302 /* Are the operands unchanged since the start of the
1303 block? */
1304 && oprs_unchanged_p (src, insn, false)
1305 && !(cfun->can_throw_non_call_exceptions && may_trap_p (src))
1306 && !side_effects_p (src)
1307 /* Is the expression recorded? */
1308 && (expr = lookup_expr_in_table (src)) != NULL)
1310 /* We now have a load (insn) and an available memory at
1311 its BB start (expr). Try to remove the loads if it is
1312 redundant. */
1313 eliminate_partially_redundant_load (bb, insn, expr);
1317 /* Keep track of everything modified by this insn, so that we
1318 know what has been modified since the start of the current
1319 basic block. */
1320 if (INSN_P (insn))
1321 record_opr_changes (insn);
1325 commit_edge_insertions ();
1328 /* Go over the expression hash table and delete insns that were
1329 marked for later deletion. */
1331 /* This helper is called via htab_traverse. */
1333 delete_redundant_insns_1 (expr **slot, void *data ATTRIBUTE_UNUSED)
1335 struct expr *exprs = *slot;
1336 struct occr *occr;
1338 for (occr = exprs->avail_occr; occr != NULL; occr = occr->next)
1340 if (occr->deleted_p && dbg_cnt (gcse2_delete))
1342 delete_insn (occr->insn);
1343 stats.insns_deleted++;
1345 if (dump_file)
1347 fprintf (dump_file, "deleting insn:\n");
1348 print_rtl_single (dump_file, occr->insn);
1349 fprintf (dump_file, "\n");
1354 return 1;
1357 static void
1358 delete_redundant_insns (void)
1360 expr_table->traverse <void *, delete_redundant_insns_1> (NULL);
1361 if (dump_file)
1362 fprintf (dump_file, "\n");
1365 /* Main entry point of the GCSE after reload - clean some redundant loads
1366 due to spilling. */
1368 static void
1369 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1372 memset (&stats, 0, sizeof (stats));
1374 /* Allocate memory for this pass.
1375 Also computes and initializes the insns' CUIDs. */
1376 alloc_mem ();
1378 /* We need alias analysis. */
1379 init_alias_analysis ();
1381 compute_hash_table ();
1383 if (dump_file)
1384 dump_hash_table (dump_file);
1386 if (expr_table->elements () > 0)
1388 /* Knowing which MEMs are transparent through a block can signifiantly
1389 increase the number of redundant loads found. So compute transparency
1390 information for each memory expression in the hash table. */
1391 df_analyze ();
1392 /* This can not be part of the normal allocation routine because
1393 we have to know the number of elements in the hash table. */
1394 transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
1395 expr_table->elements ());
1396 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
1397 expr_table->traverse <FILE *, compute_expr_transp> (dump_file);
1398 eliminate_partially_redundant_loads ();
1399 delete_redundant_insns ();
1400 sbitmap_vector_free (transp);
1402 if (dump_file)
1404 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1405 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1406 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1407 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1408 fprintf (dump_file, "\n\n");
1411 statistics_counter_event (cfun, "copies inserted",
1412 stats.copies_inserted);
1413 statistics_counter_event (cfun, "moves inserted",
1414 stats.moves_inserted);
1415 statistics_counter_event (cfun, "insns deleted",
1416 stats.insns_deleted);
1419 /* We are finished with alias. */
1420 end_alias_analysis ();
1422 free_mem ();
1427 static unsigned int
1428 rest_of_handle_gcse2 (void)
1430 gcse_after_reload_main (get_insns ());
1431 rebuild_jump_labels (get_insns ());
1432 return 0;
1435 namespace {
1437 const pass_data pass_data_gcse2 =
1439 RTL_PASS, /* type */
1440 "gcse2", /* name */
1441 OPTGROUP_NONE, /* optinfo_flags */
1442 TV_GCSE_AFTER_RELOAD, /* tv_id */
1443 0, /* properties_required */
1444 0, /* properties_provided */
1445 0, /* properties_destroyed */
1446 0, /* todo_flags_start */
1447 0, /* todo_flags_finish */
1450 class pass_gcse2 : public rtl_opt_pass
1452 public:
1453 pass_gcse2 (gcc::context *ctxt)
1454 : rtl_opt_pass (pass_data_gcse2, ctxt)
1457 /* opt_pass methods: */
1458 virtual bool gate (function *fun)
1460 return (optimize > 0 && flag_gcse_after_reload
1461 && optimize_function_for_speed_p (fun));
1464 virtual unsigned int execute (function *) { return rest_of_handle_gcse2 (); }
1466 }; // class pass_gcse2
1468 } // anon namespace
1470 rtl_opt_pass *
1471 make_pass_gcse2 (gcc::context *ctxt)
1473 return new pass_gcse2 (ctxt);