PR target/66563
[official-gcc.git] / gcc / emit-rtl.c
blobbab02fe76c58f5661fe5f56c2fe1e60285bf66e3
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "alias.h"
41 #include "symtab.h"
42 #include "tree.h"
43 #include "fold-const.h"
44 #include "varasm.h"
45 #include "predict.h"
46 #include "hard-reg-set.h"
47 #include "function.h"
48 #include "cfgrtl.h"
49 #include "basic-block.h"
50 #include "tree-eh.h"
51 #include "tm_p.h"
52 #include "flags.h"
53 #include "stringpool.h"
54 #include "insn-config.h"
55 #include "expmed.h"
56 #include "dojump.h"
57 #include "explow.h"
58 #include "calls.h"
59 #include "emit-rtl.h"
60 #include "stmt.h"
61 #include "expr.h"
62 #include "regs.h"
63 #include "recog.h"
64 #include "bitmap.h"
65 #include "debug.h"
66 #include "langhooks.h"
67 #include "df.h"
68 #include "params.h"
69 #include "target.h"
70 #include "builtins.h"
71 #include "rtl-iter.h"
73 struct target_rtl default_target_rtl;
74 #if SWITCHABLE_TARGET
75 struct target_rtl *this_target_rtl = &default_target_rtl;
76 #endif
78 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
80 /* Commonly used modes. */
82 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
83 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
84 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
85 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
87 /* Datastructures maintained for currently processed function in RTL form. */
89 struct rtl_data x_rtl;
91 /* Indexed by pseudo register number, gives the rtx for that pseudo.
92 Allocated in parallel with regno_pointer_align.
93 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
94 with length attribute nested in top level structures. */
96 rtx * regno_reg_rtx;
98 /* This is *not* reset after each function. It gives each CODE_LABEL
99 in the entire compilation a unique label number. */
101 static GTY(()) int label_num = 1;
103 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
104 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
105 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
106 is set only for MODE_INT and MODE_VECTOR_INT modes. */
108 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
110 rtx const_true_rtx;
112 REAL_VALUE_TYPE dconst0;
113 REAL_VALUE_TYPE dconst1;
114 REAL_VALUE_TYPE dconst2;
115 REAL_VALUE_TYPE dconstm1;
116 REAL_VALUE_TYPE dconsthalf;
118 /* Record fixed-point constant 0 and 1. */
119 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
120 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
122 /* We make one copy of (const_int C) where C is in
123 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
124 to save space during the compilation and simplify comparisons of
125 integers. */
127 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
129 /* Standard pieces of rtx, to be substituted directly into things. */
130 rtx pc_rtx;
131 rtx ret_rtx;
132 rtx simple_return_rtx;
133 rtx cc0_rtx;
135 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
136 this pointer should normally never be dereferenced), but is required to be
137 distinct from NULL_RTX. Currently used by peephole2 pass. */
138 rtx_insn *invalid_insn_rtx;
140 /* A hash table storing CONST_INTs whose absolute value is greater
141 than MAX_SAVED_CONST_INT. */
143 struct const_int_hasher : ggc_cache_hasher<rtx>
145 typedef HOST_WIDE_INT compare_type;
147 static hashval_t hash (rtx i);
148 static bool equal (rtx i, HOST_WIDE_INT h);
151 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
153 struct const_wide_int_hasher : ggc_cache_hasher<rtx>
155 static hashval_t hash (rtx x);
156 static bool equal (rtx x, rtx y);
159 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
161 /* A hash table storing register attribute structures. */
162 struct reg_attr_hasher : ggc_cache_hasher<reg_attrs *>
164 static hashval_t hash (reg_attrs *x);
165 static bool equal (reg_attrs *a, reg_attrs *b);
168 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
170 /* A hash table storing all CONST_DOUBLEs. */
171 struct const_double_hasher : ggc_cache_hasher<rtx>
173 static hashval_t hash (rtx x);
174 static bool equal (rtx x, rtx y);
177 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
179 /* A hash table storing all CONST_FIXEDs. */
180 struct const_fixed_hasher : ggc_cache_hasher<rtx>
182 static hashval_t hash (rtx x);
183 static bool equal (rtx x, rtx y);
186 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
188 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
189 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
190 #define first_label_num (crtl->emit.x_first_label_num)
192 static void set_used_decls (tree);
193 static void mark_label_nuses (rtx);
194 #if TARGET_SUPPORTS_WIDE_INT
195 static rtx lookup_const_wide_int (rtx);
196 #endif
197 static rtx lookup_const_double (rtx);
198 static rtx lookup_const_fixed (rtx);
199 static reg_attrs *get_reg_attrs (tree, int);
200 static rtx gen_const_vector (machine_mode, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
207 /* Returns a hash code for X (which is a really a CONST_INT). */
209 hashval_t
210 const_int_hasher::hash (rtx x)
212 return (hashval_t) INTVAL (x);
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
219 bool
220 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
222 return (INTVAL (x) == y);
225 #if TARGET_SUPPORTS_WIDE_INT
226 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
228 hashval_t
229 const_wide_int_hasher::hash (rtx x)
231 int i;
232 unsigned HOST_WIDE_INT hash = 0;
233 const_rtx xr = x;
235 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
236 hash += CONST_WIDE_INT_ELT (xr, i);
238 return (hashval_t) hash;
241 /* Returns nonzero if the value represented by X (which is really a
242 CONST_WIDE_INT) is the same as that given by Y (which is really a
243 CONST_WIDE_INT). */
245 bool
246 const_wide_int_hasher::equal (rtx x, rtx y)
248 int i;
249 const_rtx xr = x;
250 const_rtx yr = y;
251 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
252 return false;
254 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
255 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
256 return false;
258 return true;
260 #endif
262 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
263 hashval_t
264 const_double_hasher::hash (rtx x)
266 const_rtx const value = x;
267 hashval_t h;
269 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
270 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
271 else
273 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
274 /* MODE is used in the comparison, so it should be in the hash. */
275 h ^= GET_MODE (value);
277 return h;
280 /* Returns nonzero if the value represented by X (really a ...)
281 is the same as that represented by Y (really a ...) */
282 bool
283 const_double_hasher::equal (rtx x, rtx y)
285 const_rtx const a = x, b = y;
287 if (GET_MODE (a) != GET_MODE (b))
288 return 0;
289 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
290 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
291 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
292 else
293 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
294 CONST_DOUBLE_REAL_VALUE (b));
297 /* Returns a hash code for X (which is really a CONST_FIXED). */
299 hashval_t
300 const_fixed_hasher::hash (rtx x)
302 const_rtx const value = x;
303 hashval_t h;
305 h = fixed_hash (CONST_FIXED_VALUE (value));
306 /* MODE is used in the comparison, so it should be in the hash. */
307 h ^= GET_MODE (value);
308 return h;
311 /* Returns nonzero if the value represented by X is the same as that
312 represented by Y. */
314 bool
315 const_fixed_hasher::equal (rtx x, rtx y)
317 const_rtx const a = x, b = y;
319 if (GET_MODE (a) != GET_MODE (b))
320 return 0;
321 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
324 /* Return true if the given memory attributes are equal. */
326 bool
327 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
329 if (p == q)
330 return true;
331 if (!p || !q)
332 return false;
333 return (p->alias == q->alias
334 && p->offset_known_p == q->offset_known_p
335 && (!p->offset_known_p || p->offset == q->offset)
336 && p->size_known_p == q->size_known_p
337 && (!p->size_known_p || p->size == q->size)
338 && p->align == q->align
339 && p->addrspace == q->addrspace
340 && (p->expr == q->expr
341 || (p->expr != NULL_TREE && q->expr != NULL_TREE
342 && operand_equal_p (p->expr, q->expr, 0))));
345 /* Set MEM's memory attributes so that they are the same as ATTRS. */
347 static void
348 set_mem_attrs (rtx mem, mem_attrs *attrs)
350 /* If everything is the default, we can just clear the attributes. */
351 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
353 MEM_ATTRS (mem) = 0;
354 return;
357 if (!MEM_ATTRS (mem)
358 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
360 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
361 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
365 /* Returns a hash code for X (which is a really a reg_attrs *). */
367 hashval_t
368 reg_attr_hasher::hash (reg_attrs *x)
370 const reg_attrs *const p = x;
372 return ((p->offset * 1000) ^ (intptr_t) p->decl);
375 /* Returns nonzero if the value represented by X is the same as that given by
376 Y. */
378 bool
379 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
381 const reg_attrs *const p = x;
382 const reg_attrs *const q = y;
384 return (p->decl == q->decl && p->offset == q->offset);
386 /* Allocate a new reg_attrs structure and insert it into the hash table if
387 one identical to it is not already in the table. We are doing this for
388 MEM of mode MODE. */
390 static reg_attrs *
391 get_reg_attrs (tree decl, int offset)
393 reg_attrs attrs;
395 /* If everything is the default, we can just return zero. */
396 if (decl == 0 && offset == 0)
397 return 0;
399 attrs.decl = decl;
400 attrs.offset = offset;
402 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
403 if (*slot == 0)
405 *slot = ggc_alloc<reg_attrs> ();
406 memcpy (*slot, &attrs, sizeof (reg_attrs));
409 return *slot;
413 #if !HAVE_blockage
414 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
415 and to block register equivalences to be seen across this insn. */
418 gen_blockage (void)
420 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
421 MEM_VOLATILE_P (x) = true;
422 return x;
424 #endif
427 /* Set the mode and register number of X to MODE and REGNO. */
429 void
430 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
432 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
433 ? hard_regno_nregs[regno][mode]
434 : 1);
435 PUT_MODE_RAW (x, mode);
436 set_regno_raw (x, regno, nregs);
439 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
440 don't attempt to share with the various global pieces of rtl (such as
441 frame_pointer_rtx). */
444 gen_raw_REG (machine_mode mode, unsigned int regno)
446 rtx x = rtx_alloc_stat (REG MEM_STAT_INFO);
447 set_mode_and_regno (x, mode, regno);
448 REG_ATTRS (x) = NULL;
449 ORIGINAL_REGNO (x) = regno;
450 return x;
453 /* There are some RTL codes that require special attention; the generation
454 functions do the raw handling. If you add to this list, modify
455 special_rtx in gengenrtl.c as well. */
457 rtx_expr_list *
458 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
460 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
461 expr_list));
464 rtx_insn_list *
465 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
467 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
468 insn_list));
471 rtx_insn *
472 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
473 basic_block bb, rtx pattern, int location, int code,
474 rtx reg_notes)
476 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
477 prev_insn, next_insn,
478 bb, pattern, location, code,
479 reg_notes));
483 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
485 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
486 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
488 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
489 if (const_true_rtx && arg == STORE_FLAG_VALUE)
490 return const_true_rtx;
491 #endif
493 /* Look up the CONST_INT in the hash table. */
494 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
495 INSERT);
496 if (*slot == 0)
497 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
499 return *slot;
503 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
505 return GEN_INT (trunc_int_for_mode (c, mode));
508 /* CONST_DOUBLEs might be created from pairs of integers, or from
509 REAL_VALUE_TYPEs. Also, their length is known only at run time,
510 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
512 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
513 hash table. If so, return its counterpart; otherwise add it
514 to the hash table and return it. */
515 static rtx
516 lookup_const_double (rtx real)
518 rtx *slot = const_double_htab->find_slot (real, INSERT);
519 if (*slot == 0)
520 *slot = real;
522 return *slot;
525 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
526 VALUE in mode MODE. */
528 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
530 rtx real = rtx_alloc (CONST_DOUBLE);
531 PUT_MODE (real, mode);
533 real->u.rv = value;
535 return lookup_const_double (real);
538 /* Determine whether FIXED, a CONST_FIXED, already exists in the
539 hash table. If so, return its counterpart; otherwise add it
540 to the hash table and return it. */
542 static rtx
543 lookup_const_fixed (rtx fixed)
545 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
546 if (*slot == 0)
547 *slot = fixed;
549 return *slot;
552 /* Return a CONST_FIXED rtx for a fixed-point value specified by
553 VALUE in mode MODE. */
556 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
558 rtx fixed = rtx_alloc (CONST_FIXED);
559 PUT_MODE (fixed, mode);
561 fixed->u.fv = value;
563 return lookup_const_fixed (fixed);
566 #if TARGET_SUPPORTS_WIDE_INT == 0
567 /* Constructs double_int from rtx CST. */
569 double_int
570 rtx_to_double_int (const_rtx cst)
572 double_int r;
574 if (CONST_INT_P (cst))
575 r = double_int::from_shwi (INTVAL (cst));
576 else if (CONST_DOUBLE_AS_INT_P (cst))
578 r.low = CONST_DOUBLE_LOW (cst);
579 r.high = CONST_DOUBLE_HIGH (cst);
581 else
582 gcc_unreachable ();
584 return r;
586 #endif
588 #if TARGET_SUPPORTS_WIDE_INT
589 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
590 If so, return its counterpart; otherwise add it to the hash table and
591 return it. */
593 static rtx
594 lookup_const_wide_int (rtx wint)
596 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
597 if (*slot == 0)
598 *slot = wint;
600 return *slot;
602 #endif
604 /* Return an rtx constant for V, given that the constant has mode MODE.
605 The returned rtx will be a CONST_INT if V fits, otherwise it will be
606 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
607 (if TARGET_SUPPORTS_WIDE_INT). */
610 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
612 unsigned int len = v.get_len ();
613 unsigned int prec = GET_MODE_PRECISION (mode);
615 /* Allow truncation but not extension since we do not know if the
616 number is signed or unsigned. */
617 gcc_assert (prec <= v.get_precision ());
619 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
620 return gen_int_mode (v.elt (0), mode);
622 #if TARGET_SUPPORTS_WIDE_INT
624 unsigned int i;
625 rtx value;
626 unsigned int blocks_needed
627 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
629 if (len > blocks_needed)
630 len = blocks_needed;
632 value = const_wide_int_alloc (len);
634 /* It is so tempting to just put the mode in here. Must control
635 myself ... */
636 PUT_MODE (value, VOIDmode);
637 CWI_PUT_NUM_ELEM (value, len);
639 for (i = 0; i < len; i++)
640 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
642 return lookup_const_wide_int (value);
644 #else
645 return immed_double_const (v.elt (0), v.elt (1), mode);
646 #endif
649 #if TARGET_SUPPORTS_WIDE_INT == 0
650 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
651 of ints: I0 is the low-order word and I1 is the high-order word.
652 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
653 implied upper bits are copies of the high bit of i1. The value
654 itself is neither signed nor unsigned. Do not use this routine for
655 non-integer modes; convert to REAL_VALUE_TYPE and use
656 CONST_DOUBLE_FROM_REAL_VALUE. */
659 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
661 rtx value;
662 unsigned int i;
664 /* There are the following cases (note that there are no modes with
665 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
667 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
668 gen_int_mode.
669 2) If the value of the integer fits into HOST_WIDE_INT anyway
670 (i.e., i1 consists only from copies of the sign bit, and sign
671 of i0 and i1 are the same), then we return a CONST_INT for i0.
672 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
673 if (mode != VOIDmode)
675 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
676 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
677 /* We can get a 0 for an error mark. */
678 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
679 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
680 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
682 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
683 return gen_int_mode (i0, mode);
686 /* If this integer fits in one word, return a CONST_INT. */
687 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
688 return GEN_INT (i0);
690 /* We use VOIDmode for integers. */
691 value = rtx_alloc (CONST_DOUBLE);
692 PUT_MODE (value, VOIDmode);
694 CONST_DOUBLE_LOW (value) = i0;
695 CONST_DOUBLE_HIGH (value) = i1;
697 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
698 XWINT (value, i) = 0;
700 return lookup_const_double (value);
702 #endif
705 gen_rtx_REG (machine_mode mode, unsigned int regno)
707 /* In case the MD file explicitly references the frame pointer, have
708 all such references point to the same frame pointer. This is
709 used during frame pointer elimination to distinguish the explicit
710 references to these registers from pseudos that happened to be
711 assigned to them.
713 If we have eliminated the frame pointer or arg pointer, we will
714 be using it as a normal register, for example as a spill
715 register. In such cases, we might be accessing it in a mode that
716 is not Pmode and therefore cannot use the pre-allocated rtx.
718 Also don't do this when we are making new REGs in reload, since
719 we don't want to get confused with the real pointers. */
721 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
723 if (regno == FRAME_POINTER_REGNUM
724 && (!reload_completed || frame_pointer_needed))
725 return frame_pointer_rtx;
727 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
728 && regno == HARD_FRAME_POINTER_REGNUM
729 && (!reload_completed || frame_pointer_needed))
730 return hard_frame_pointer_rtx;
731 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
732 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
733 && regno == ARG_POINTER_REGNUM)
734 return arg_pointer_rtx;
735 #endif
736 #ifdef RETURN_ADDRESS_POINTER_REGNUM
737 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
738 return return_address_pointer_rtx;
739 #endif
740 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
741 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
742 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
743 return pic_offset_table_rtx;
744 if (regno == STACK_POINTER_REGNUM)
745 return stack_pointer_rtx;
748 #if 0
749 /* If the per-function register table has been set up, try to re-use
750 an existing entry in that table to avoid useless generation of RTL.
752 This code is disabled for now until we can fix the various backends
753 which depend on having non-shared hard registers in some cases. Long
754 term we want to re-enable this code as it can significantly cut down
755 on the amount of useless RTL that gets generated.
757 We'll also need to fix some code that runs after reload that wants to
758 set ORIGINAL_REGNO. */
760 if (cfun
761 && cfun->emit
762 && regno_reg_rtx
763 && regno < FIRST_PSEUDO_REGISTER
764 && reg_raw_mode[regno] == mode)
765 return regno_reg_rtx[regno];
766 #endif
768 return gen_raw_REG (mode, regno);
772 gen_rtx_MEM (machine_mode mode, rtx addr)
774 rtx rt = gen_rtx_raw_MEM (mode, addr);
776 /* This field is not cleared by the mere allocation of the rtx, so
777 we clear it here. */
778 MEM_ATTRS (rt) = 0;
780 return rt;
783 /* Generate a memory referring to non-trapping constant memory. */
786 gen_const_mem (machine_mode mode, rtx addr)
788 rtx mem = gen_rtx_MEM (mode, addr);
789 MEM_READONLY_P (mem) = 1;
790 MEM_NOTRAP_P (mem) = 1;
791 return mem;
794 /* Generate a MEM referring to fixed portions of the frame, e.g., register
795 save areas. */
798 gen_frame_mem (machine_mode mode, rtx addr)
800 rtx mem = gen_rtx_MEM (mode, addr);
801 MEM_NOTRAP_P (mem) = 1;
802 set_mem_alias_set (mem, get_frame_alias_set ());
803 return mem;
806 /* Generate a MEM referring to a temporary use of the stack, not part
807 of the fixed stack frame. For example, something which is pushed
808 by a target splitter. */
810 gen_tmp_stack_mem (machine_mode mode, rtx addr)
812 rtx mem = gen_rtx_MEM (mode, addr);
813 MEM_NOTRAP_P (mem) = 1;
814 if (!cfun->calls_alloca)
815 set_mem_alias_set (mem, get_frame_alias_set ());
816 return mem;
819 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
820 this construct would be valid, and false otherwise. */
822 bool
823 validate_subreg (machine_mode omode, machine_mode imode,
824 const_rtx reg, unsigned int offset)
826 unsigned int isize = GET_MODE_SIZE (imode);
827 unsigned int osize = GET_MODE_SIZE (omode);
829 /* All subregs must be aligned. */
830 if (offset % osize != 0)
831 return false;
833 /* The subreg offset cannot be outside the inner object. */
834 if (offset >= isize)
835 return false;
837 /* ??? This should not be here. Temporarily continue to allow word_mode
838 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
839 Generally, backends are doing something sketchy but it'll take time to
840 fix them all. */
841 if (omode == word_mode)
843 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
844 is the culprit here, and not the backends. */
845 else if (osize >= UNITS_PER_WORD && isize >= osize)
847 /* Allow component subregs of complex and vector. Though given the below
848 extraction rules, it's not always clear what that means. */
849 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
850 && GET_MODE_INNER (imode) == omode)
852 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
853 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
854 represent this. It's questionable if this ought to be represented at
855 all -- why can't this all be hidden in post-reload splitters that make
856 arbitrarily mode changes to the registers themselves. */
857 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
859 /* Subregs involving floating point modes are not allowed to
860 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
861 (subreg:SI (reg:DF) 0) isn't. */
862 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
864 if (! (isize == osize
865 /* LRA can use subreg to store a floating point value in
866 an integer mode. Although the floating point and the
867 integer modes need the same number of hard registers,
868 the size of floating point mode can be less than the
869 integer mode. LRA also uses subregs for a register
870 should be used in different mode in on insn. */
871 || lra_in_progress))
872 return false;
875 /* Paradoxical subregs must have offset zero. */
876 if (osize > isize)
877 return offset == 0;
879 /* This is a normal subreg. Verify that the offset is representable. */
881 /* For hard registers, we already have most of these rules collected in
882 subreg_offset_representable_p. */
883 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
885 unsigned int regno = REGNO (reg);
887 #ifdef CANNOT_CHANGE_MODE_CLASS
888 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
889 && GET_MODE_INNER (imode) == omode)
891 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
892 return false;
893 #endif
895 return subreg_offset_representable_p (regno, imode, offset, omode);
898 /* For pseudo registers, we want most of the same checks. Namely:
899 If the register no larger than a word, the subreg must be lowpart.
900 If the register is larger than a word, the subreg must be the lowpart
901 of a subword. A subreg does *not* perform arbitrary bit extraction.
902 Given that we've already checked mode/offset alignment, we only have
903 to check subword subregs here. */
904 if (osize < UNITS_PER_WORD
905 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
907 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
908 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
909 if (offset % UNITS_PER_WORD != low_off)
910 return false;
912 return true;
916 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
918 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
919 return gen_rtx_raw_SUBREG (mode, reg, offset);
922 /* Generate a SUBREG representing the least-significant part of REG if MODE
923 is smaller than mode of REG, otherwise paradoxical SUBREG. */
926 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
928 machine_mode inmode;
930 inmode = GET_MODE (reg);
931 if (inmode == VOIDmode)
932 inmode = mode;
933 return gen_rtx_SUBREG (mode, reg,
934 subreg_lowpart_offset (mode, inmode));
938 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
939 enum var_init_status status)
941 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
942 PAT_VAR_LOCATION_STATUS (x) = status;
943 return x;
947 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
949 rtvec
950 gen_rtvec (int n, ...)
952 int i;
953 rtvec rt_val;
954 va_list p;
956 va_start (p, n);
958 /* Don't allocate an empty rtvec... */
959 if (n == 0)
961 va_end (p);
962 return NULL_RTVEC;
965 rt_val = rtvec_alloc (n);
967 for (i = 0; i < n; i++)
968 rt_val->elem[i] = va_arg (p, rtx);
970 va_end (p);
971 return rt_val;
974 rtvec
975 gen_rtvec_v (int n, rtx *argp)
977 int i;
978 rtvec rt_val;
980 /* Don't allocate an empty rtvec... */
981 if (n == 0)
982 return NULL_RTVEC;
984 rt_val = rtvec_alloc (n);
986 for (i = 0; i < n; i++)
987 rt_val->elem[i] = *argp++;
989 return rt_val;
992 rtvec
993 gen_rtvec_v (int n, rtx_insn **argp)
995 int i;
996 rtvec rt_val;
998 /* Don't allocate an empty rtvec... */
999 if (n == 0)
1000 return NULL_RTVEC;
1002 rt_val = rtvec_alloc (n);
1004 for (i = 0; i < n; i++)
1005 rt_val->elem[i] = *argp++;
1007 return rt_val;
1011 /* Return the number of bytes between the start of an OUTER_MODE
1012 in-memory value and the start of an INNER_MODE in-memory value,
1013 given that the former is a lowpart of the latter. It may be a
1014 paradoxical lowpart, in which case the offset will be negative
1015 on big-endian targets. */
1018 byte_lowpart_offset (machine_mode outer_mode,
1019 machine_mode inner_mode)
1021 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1022 return subreg_lowpart_offset (outer_mode, inner_mode);
1023 else
1024 return -subreg_lowpart_offset (inner_mode, outer_mode);
1027 /* Generate a REG rtx for a new pseudo register of mode MODE.
1028 This pseudo is assigned the next sequential register number. */
1031 gen_reg_rtx (machine_mode mode)
1033 rtx val;
1034 unsigned int align = GET_MODE_ALIGNMENT (mode);
1036 gcc_assert (can_create_pseudo_p ());
1038 /* If a virtual register with bigger mode alignment is generated,
1039 increase stack alignment estimation because it might be spilled
1040 to stack later. */
1041 if (SUPPORTS_STACK_ALIGNMENT
1042 && crtl->stack_alignment_estimated < align
1043 && !crtl->stack_realign_processed)
1045 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1046 if (crtl->stack_alignment_estimated < min_align)
1047 crtl->stack_alignment_estimated = min_align;
1050 if (generating_concat_p
1051 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1052 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1054 /* For complex modes, don't make a single pseudo.
1055 Instead, make a CONCAT of two pseudos.
1056 This allows noncontiguous allocation of the real and imaginary parts,
1057 which makes much better code. Besides, allocating DCmode
1058 pseudos overstrains reload on some machines like the 386. */
1059 rtx realpart, imagpart;
1060 machine_mode partmode = GET_MODE_INNER (mode);
1062 realpart = gen_reg_rtx (partmode);
1063 imagpart = gen_reg_rtx (partmode);
1064 return gen_rtx_CONCAT (mode, realpart, imagpart);
1067 /* Do not call gen_reg_rtx with uninitialized crtl. */
1068 gcc_assert (crtl->emit.regno_pointer_align_length);
1070 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1071 enough to have an element for this pseudo reg number. */
1073 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1075 int old_size = crtl->emit.regno_pointer_align_length;
1076 char *tmp;
1077 rtx *new1;
1079 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1080 memset (tmp + old_size, 0, old_size);
1081 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1083 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1084 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1085 regno_reg_rtx = new1;
1087 crtl->emit.regno_pointer_align_length = old_size * 2;
1090 val = gen_raw_REG (mode, reg_rtx_no);
1091 regno_reg_rtx[reg_rtx_no++] = val;
1092 return val;
1095 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1097 bool
1098 reg_is_parm_p (rtx reg)
1100 tree decl;
1102 gcc_assert (REG_P (reg));
1103 decl = REG_EXPR (reg);
1104 return (decl && TREE_CODE (decl) == PARM_DECL);
1107 /* Update NEW with the same attributes as REG, but with OFFSET added
1108 to the REG_OFFSET. */
1110 static void
1111 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1113 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1114 REG_OFFSET (reg) + offset);
1117 /* Generate a register with same attributes as REG, but with OFFSET
1118 added to the REG_OFFSET. */
1121 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1122 int offset)
1124 rtx new_rtx = gen_rtx_REG (mode, regno);
1126 update_reg_offset (new_rtx, reg, offset);
1127 return new_rtx;
1130 /* Generate a new pseudo-register with the same attributes as REG, but
1131 with OFFSET added to the REG_OFFSET. */
1134 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1136 rtx new_rtx = gen_reg_rtx (mode);
1138 update_reg_offset (new_rtx, reg, offset);
1139 return new_rtx;
1142 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1143 new register is a (possibly paradoxical) lowpart of the old one. */
1145 void
1146 adjust_reg_mode (rtx reg, machine_mode mode)
1148 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1149 PUT_MODE (reg, mode);
1152 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1153 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1155 void
1156 set_reg_attrs_from_value (rtx reg, rtx x)
1158 int offset;
1159 bool can_be_reg_pointer = true;
1161 /* Don't call mark_reg_pointer for incompatible pointer sign
1162 extension. */
1163 while (GET_CODE (x) == SIGN_EXTEND
1164 || GET_CODE (x) == ZERO_EXTEND
1165 || GET_CODE (x) == TRUNCATE
1166 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1168 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1169 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1170 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1171 can_be_reg_pointer = false;
1172 #endif
1173 x = XEXP (x, 0);
1176 /* Hard registers can be reused for multiple purposes within the same
1177 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1178 on them is wrong. */
1179 if (HARD_REGISTER_P (reg))
1180 return;
1182 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1183 if (MEM_P (x))
1185 if (MEM_OFFSET_KNOWN_P (x))
1186 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1187 MEM_OFFSET (x) + offset);
1188 if (can_be_reg_pointer && MEM_POINTER (x))
1189 mark_reg_pointer (reg, 0);
1191 else if (REG_P (x))
1193 if (REG_ATTRS (x))
1194 update_reg_offset (reg, x, offset);
1195 if (can_be_reg_pointer && REG_POINTER (x))
1196 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1200 /* Generate a REG rtx for a new pseudo register, copying the mode
1201 and attributes from X. */
1204 gen_reg_rtx_and_attrs (rtx x)
1206 rtx reg = gen_reg_rtx (GET_MODE (x));
1207 set_reg_attrs_from_value (reg, x);
1208 return reg;
1211 /* Set the register attributes for registers contained in PARM_RTX.
1212 Use needed values from memory attributes of MEM. */
1214 void
1215 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1217 if (REG_P (parm_rtx))
1218 set_reg_attrs_from_value (parm_rtx, mem);
1219 else if (GET_CODE (parm_rtx) == PARALLEL)
1221 /* Check for a NULL entry in the first slot, used to indicate that the
1222 parameter goes both on the stack and in registers. */
1223 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1224 for (; i < XVECLEN (parm_rtx, 0); i++)
1226 rtx x = XVECEXP (parm_rtx, 0, i);
1227 if (REG_P (XEXP (x, 0)))
1228 REG_ATTRS (XEXP (x, 0))
1229 = get_reg_attrs (MEM_EXPR (mem),
1230 INTVAL (XEXP (x, 1)));
1235 /* Set the REG_ATTRS for registers in value X, given that X represents
1236 decl T. */
1238 void
1239 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1241 if (GET_CODE (x) == SUBREG)
1243 gcc_assert (subreg_lowpart_p (x));
1244 x = SUBREG_REG (x);
1246 if (REG_P (x))
1247 REG_ATTRS (x)
1248 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1249 DECL_MODE (t)));
1250 if (GET_CODE (x) == CONCAT)
1252 if (REG_P (XEXP (x, 0)))
1253 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1254 if (REG_P (XEXP (x, 1)))
1255 REG_ATTRS (XEXP (x, 1))
1256 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1258 if (GET_CODE (x) == PARALLEL)
1260 int i, start;
1262 /* Check for a NULL entry, used to indicate that the parameter goes
1263 both on the stack and in registers. */
1264 if (XEXP (XVECEXP (x, 0, 0), 0))
1265 start = 0;
1266 else
1267 start = 1;
1269 for (i = start; i < XVECLEN (x, 0); i++)
1271 rtx y = XVECEXP (x, 0, i);
1272 if (REG_P (XEXP (y, 0)))
1273 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1278 /* Assign the RTX X to declaration T. */
1280 void
1281 set_decl_rtl (tree t, rtx x)
1283 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1284 if (x)
1285 set_reg_attrs_for_decl_rtl (t, x);
1288 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1289 if the ABI requires the parameter to be passed by reference. */
1291 void
1292 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1294 DECL_INCOMING_RTL (t) = x;
1295 if (x && !by_reference_p)
1296 set_reg_attrs_for_decl_rtl (t, x);
1299 /* Identify REG (which may be a CONCAT) as a user register. */
1301 void
1302 mark_user_reg (rtx reg)
1304 if (GET_CODE (reg) == CONCAT)
1306 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1307 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1309 else
1311 gcc_assert (REG_P (reg));
1312 REG_USERVAR_P (reg) = 1;
1316 /* Identify REG as a probable pointer register and show its alignment
1317 as ALIGN, if nonzero. */
1319 void
1320 mark_reg_pointer (rtx reg, int align)
1322 if (! REG_POINTER (reg))
1324 REG_POINTER (reg) = 1;
1326 if (align)
1327 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1329 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1330 /* We can no-longer be sure just how aligned this pointer is. */
1331 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1334 /* Return 1 plus largest pseudo reg number used in the current function. */
1337 max_reg_num (void)
1339 return reg_rtx_no;
1342 /* Return 1 + the largest label number used so far in the current function. */
1345 max_label_num (void)
1347 return label_num;
1350 /* Return first label number used in this function (if any were used). */
1353 get_first_label_num (void)
1355 return first_label_num;
1358 /* If the rtx for label was created during the expansion of a nested
1359 function, then first_label_num won't include this label number.
1360 Fix this now so that array indices work later. */
1362 void
1363 maybe_set_first_label_num (rtx x)
1365 if (CODE_LABEL_NUMBER (x) < first_label_num)
1366 first_label_num = CODE_LABEL_NUMBER (x);
1369 /* Return a value representing some low-order bits of X, where the number
1370 of low-order bits is given by MODE. Note that no conversion is done
1371 between floating-point and fixed-point values, rather, the bit
1372 representation is returned.
1374 This function handles the cases in common between gen_lowpart, below,
1375 and two variants in cse.c and combine.c. These are the cases that can
1376 be safely handled at all points in the compilation.
1378 If this is not a case we can handle, return 0. */
1381 gen_lowpart_common (machine_mode mode, rtx x)
1383 int msize = GET_MODE_SIZE (mode);
1384 int xsize;
1385 int offset = 0;
1386 machine_mode innermode;
1388 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1389 so we have to make one up. Yuk. */
1390 innermode = GET_MODE (x);
1391 if (CONST_INT_P (x)
1392 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1393 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1394 else if (innermode == VOIDmode)
1395 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1397 xsize = GET_MODE_SIZE (innermode);
1399 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1401 if (innermode == mode)
1402 return x;
1404 /* MODE must occupy no more words than the mode of X. */
1405 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1406 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1407 return 0;
1409 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1410 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1411 return 0;
1413 offset = subreg_lowpart_offset (mode, innermode);
1415 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1416 && (GET_MODE_CLASS (mode) == MODE_INT
1417 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1419 /* If we are getting the low-order part of something that has been
1420 sign- or zero-extended, we can either just use the object being
1421 extended or make a narrower extension. If we want an even smaller
1422 piece than the size of the object being extended, call ourselves
1423 recursively.
1425 This case is used mostly by combine and cse. */
1427 if (GET_MODE (XEXP (x, 0)) == mode)
1428 return XEXP (x, 0);
1429 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1430 return gen_lowpart_common (mode, XEXP (x, 0));
1431 else if (msize < xsize)
1432 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1434 else if (GET_CODE (x) == SUBREG || REG_P (x)
1435 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1436 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1437 return simplify_gen_subreg (mode, x, innermode, offset);
1439 /* Otherwise, we can't do this. */
1440 return 0;
1444 gen_highpart (machine_mode mode, rtx x)
1446 unsigned int msize = GET_MODE_SIZE (mode);
1447 rtx result;
1449 /* This case loses if X is a subreg. To catch bugs early,
1450 complain if an invalid MODE is used even in other cases. */
1451 gcc_assert (msize <= UNITS_PER_WORD
1452 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1454 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1455 subreg_highpart_offset (mode, GET_MODE (x)));
1456 gcc_assert (result);
1458 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1459 the target if we have a MEM. gen_highpart must return a valid operand,
1460 emitting code if necessary to do so. */
1461 if (MEM_P (result))
1463 result = validize_mem (result);
1464 gcc_assert (result);
1467 return result;
1470 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1471 be VOIDmode constant. */
1473 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1475 if (GET_MODE (exp) != VOIDmode)
1477 gcc_assert (GET_MODE (exp) == innermode);
1478 return gen_highpart (outermode, exp);
1480 return simplify_gen_subreg (outermode, exp, innermode,
1481 subreg_highpart_offset (outermode, innermode));
1484 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1486 unsigned int
1487 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
1489 unsigned int offset = 0;
1490 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1492 if (difference > 0)
1494 if (WORDS_BIG_ENDIAN)
1495 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1496 if (BYTES_BIG_ENDIAN)
1497 offset += difference % UNITS_PER_WORD;
1500 return offset;
1503 /* Return offset in bytes to get OUTERMODE high part
1504 of the value in mode INNERMODE stored in memory in target format. */
1505 unsigned int
1506 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
1508 unsigned int offset = 0;
1509 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1511 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1513 if (difference > 0)
1515 if (! WORDS_BIG_ENDIAN)
1516 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1517 if (! BYTES_BIG_ENDIAN)
1518 offset += difference % UNITS_PER_WORD;
1521 return offset;
1524 /* Return 1 iff X, assumed to be a SUBREG,
1525 refers to the least significant part of its containing reg.
1526 If X is not a SUBREG, always return 1 (it is its own low part!). */
1529 subreg_lowpart_p (const_rtx x)
1531 if (GET_CODE (x) != SUBREG)
1532 return 1;
1533 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1534 return 0;
1536 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1537 == SUBREG_BYTE (x));
1540 /* Return true if X is a paradoxical subreg, false otherwise. */
1541 bool
1542 paradoxical_subreg_p (const_rtx x)
1544 if (GET_CODE (x) != SUBREG)
1545 return false;
1546 return (GET_MODE_PRECISION (GET_MODE (x))
1547 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1550 /* Return subword OFFSET of operand OP.
1551 The word number, OFFSET, is interpreted as the word number starting
1552 at the low-order address. OFFSET 0 is the low-order word if not
1553 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1555 If we cannot extract the required word, we return zero. Otherwise,
1556 an rtx corresponding to the requested word will be returned.
1558 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1559 reload has completed, a valid address will always be returned. After
1560 reload, if a valid address cannot be returned, we return zero.
1562 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1563 it is the responsibility of the caller.
1565 MODE is the mode of OP in case it is a CONST_INT.
1567 ??? This is still rather broken for some cases. The problem for the
1568 moment is that all callers of this thing provide no 'goal mode' to
1569 tell us to work with. This exists because all callers were written
1570 in a word based SUBREG world.
1571 Now use of this function can be deprecated by simplify_subreg in most
1572 cases.
1576 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1578 if (mode == VOIDmode)
1579 mode = GET_MODE (op);
1581 gcc_assert (mode != VOIDmode);
1583 /* If OP is narrower than a word, fail. */
1584 if (mode != BLKmode
1585 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1586 return 0;
1588 /* If we want a word outside OP, return zero. */
1589 if (mode != BLKmode
1590 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1591 return const0_rtx;
1593 /* Form a new MEM at the requested address. */
1594 if (MEM_P (op))
1596 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1598 if (! validate_address)
1599 return new_rtx;
1601 else if (reload_completed)
1603 if (! strict_memory_address_addr_space_p (word_mode,
1604 XEXP (new_rtx, 0),
1605 MEM_ADDR_SPACE (op)))
1606 return 0;
1608 else
1609 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1612 /* Rest can be handled by simplify_subreg. */
1613 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1616 /* Similar to `operand_subword', but never return 0. If we can't
1617 extract the required subword, put OP into a register and try again.
1618 The second attempt must succeed. We always validate the address in
1619 this case.
1621 MODE is the mode of OP, in case it is CONST_INT. */
1624 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1626 rtx result = operand_subword (op, offset, 1, mode);
1628 if (result)
1629 return result;
1631 if (mode != BLKmode && mode != VOIDmode)
1633 /* If this is a register which can not be accessed by words, copy it
1634 to a pseudo register. */
1635 if (REG_P (op))
1636 op = copy_to_reg (op);
1637 else
1638 op = force_reg (mode, op);
1641 result = operand_subword (op, offset, 1, mode);
1642 gcc_assert (result);
1644 return result;
1647 /* Returns 1 if both MEM_EXPR can be considered equal
1648 and 0 otherwise. */
1651 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1653 if (expr1 == expr2)
1654 return 1;
1656 if (! expr1 || ! expr2)
1657 return 0;
1659 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1660 return 0;
1662 return operand_equal_p (expr1, expr2, 0);
1665 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1666 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1667 -1 if not known. */
1670 get_mem_align_offset (rtx mem, unsigned int align)
1672 tree expr;
1673 unsigned HOST_WIDE_INT offset;
1675 /* This function can't use
1676 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1677 || (MAX (MEM_ALIGN (mem),
1678 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1679 < align))
1680 return -1;
1681 else
1682 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1683 for two reasons:
1684 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1685 for <variable>. get_inner_reference doesn't handle it and
1686 even if it did, the alignment in that case needs to be determined
1687 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1688 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1689 isn't sufficiently aligned, the object it is in might be. */
1690 gcc_assert (MEM_P (mem));
1691 expr = MEM_EXPR (mem);
1692 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1693 return -1;
1695 offset = MEM_OFFSET (mem);
1696 if (DECL_P (expr))
1698 if (DECL_ALIGN (expr) < align)
1699 return -1;
1701 else if (INDIRECT_REF_P (expr))
1703 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1704 return -1;
1706 else if (TREE_CODE (expr) == COMPONENT_REF)
1708 while (1)
1710 tree inner = TREE_OPERAND (expr, 0);
1711 tree field = TREE_OPERAND (expr, 1);
1712 tree byte_offset = component_ref_field_offset (expr);
1713 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1715 if (!byte_offset
1716 || !tree_fits_uhwi_p (byte_offset)
1717 || !tree_fits_uhwi_p (bit_offset))
1718 return -1;
1720 offset += tree_to_uhwi (byte_offset);
1721 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1723 if (inner == NULL_TREE)
1725 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1726 < (unsigned int) align)
1727 return -1;
1728 break;
1730 else if (DECL_P (inner))
1732 if (DECL_ALIGN (inner) < align)
1733 return -1;
1734 break;
1736 else if (TREE_CODE (inner) != COMPONENT_REF)
1737 return -1;
1738 expr = inner;
1741 else
1742 return -1;
1744 return offset & ((align / BITS_PER_UNIT) - 1);
1747 /* Given REF (a MEM) and T, either the type of X or the expression
1748 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1749 if we are making a new object of this type. BITPOS is nonzero if
1750 there is an offset outstanding on T that will be applied later. */
1752 void
1753 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1754 HOST_WIDE_INT bitpos)
1756 HOST_WIDE_INT apply_bitpos = 0;
1757 tree type;
1758 struct mem_attrs attrs, *defattrs, *refattrs;
1759 addr_space_t as;
1761 /* It can happen that type_for_mode was given a mode for which there
1762 is no language-level type. In which case it returns NULL, which
1763 we can see here. */
1764 if (t == NULL_TREE)
1765 return;
1767 type = TYPE_P (t) ? t : TREE_TYPE (t);
1768 if (type == error_mark_node)
1769 return;
1771 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1772 wrong answer, as it assumes that DECL_RTL already has the right alias
1773 info. Callers should not set DECL_RTL until after the call to
1774 set_mem_attributes. */
1775 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1777 memset (&attrs, 0, sizeof (attrs));
1779 /* Get the alias set from the expression or type (perhaps using a
1780 front-end routine) and use it. */
1781 attrs.alias = get_alias_set (t);
1783 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1784 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1786 /* Default values from pre-existing memory attributes if present. */
1787 refattrs = MEM_ATTRS (ref);
1788 if (refattrs)
1790 /* ??? Can this ever happen? Calling this routine on a MEM that
1791 already carries memory attributes should probably be invalid. */
1792 attrs.expr = refattrs->expr;
1793 attrs.offset_known_p = refattrs->offset_known_p;
1794 attrs.offset = refattrs->offset;
1795 attrs.size_known_p = refattrs->size_known_p;
1796 attrs.size = refattrs->size;
1797 attrs.align = refattrs->align;
1800 /* Otherwise, default values from the mode of the MEM reference. */
1801 else
1803 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1804 gcc_assert (!defattrs->expr);
1805 gcc_assert (!defattrs->offset_known_p);
1807 /* Respect mode size. */
1808 attrs.size_known_p = defattrs->size_known_p;
1809 attrs.size = defattrs->size;
1810 /* ??? Is this really necessary? We probably should always get
1811 the size from the type below. */
1813 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1814 if T is an object, always compute the object alignment below. */
1815 if (TYPE_P (t))
1816 attrs.align = defattrs->align;
1817 else
1818 attrs.align = BITS_PER_UNIT;
1819 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1820 e.g. if the type carries an alignment attribute. Should we be
1821 able to simply always use TYPE_ALIGN? */
1824 /* We can set the alignment from the type if we are making an object,
1825 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1826 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1827 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1829 /* If the size is known, we can set that. */
1830 tree new_size = TYPE_SIZE_UNIT (type);
1832 /* The address-space is that of the type. */
1833 as = TYPE_ADDR_SPACE (type);
1835 /* If T is not a type, we may be able to deduce some more information about
1836 the expression. */
1837 if (! TYPE_P (t))
1839 tree base;
1841 if (TREE_THIS_VOLATILE (t))
1842 MEM_VOLATILE_P (ref) = 1;
1844 /* Now remove any conversions: they don't change what the underlying
1845 object is. Likewise for SAVE_EXPR. */
1846 while (CONVERT_EXPR_P (t)
1847 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1848 || TREE_CODE (t) == SAVE_EXPR)
1849 t = TREE_OPERAND (t, 0);
1851 /* Note whether this expression can trap. */
1852 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1854 base = get_base_address (t);
1855 if (base)
1857 if (DECL_P (base)
1858 && TREE_READONLY (base)
1859 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1860 && !TREE_THIS_VOLATILE (base))
1861 MEM_READONLY_P (ref) = 1;
1863 /* Mark static const strings readonly as well. */
1864 if (TREE_CODE (base) == STRING_CST
1865 && TREE_READONLY (base)
1866 && TREE_STATIC (base))
1867 MEM_READONLY_P (ref) = 1;
1869 /* Address-space information is on the base object. */
1870 if (TREE_CODE (base) == MEM_REF
1871 || TREE_CODE (base) == TARGET_MEM_REF)
1872 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1873 0))));
1874 else
1875 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1878 /* If this expression uses it's parent's alias set, mark it such
1879 that we won't change it. */
1880 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1881 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1883 /* If this is a decl, set the attributes of the MEM from it. */
1884 if (DECL_P (t))
1886 attrs.expr = t;
1887 attrs.offset_known_p = true;
1888 attrs.offset = 0;
1889 apply_bitpos = bitpos;
1890 new_size = DECL_SIZE_UNIT (t);
1893 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1894 else if (CONSTANT_CLASS_P (t))
1897 /* If this is a field reference, record it. */
1898 else if (TREE_CODE (t) == COMPONENT_REF)
1900 attrs.expr = t;
1901 attrs.offset_known_p = true;
1902 attrs.offset = 0;
1903 apply_bitpos = bitpos;
1904 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1905 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1908 /* If this is an array reference, look for an outer field reference. */
1909 else if (TREE_CODE (t) == ARRAY_REF)
1911 tree off_tree = size_zero_node;
1912 /* We can't modify t, because we use it at the end of the
1913 function. */
1914 tree t2 = t;
1918 tree index = TREE_OPERAND (t2, 1);
1919 tree low_bound = array_ref_low_bound (t2);
1920 tree unit_size = array_ref_element_size (t2);
1922 /* We assume all arrays have sizes that are a multiple of a byte.
1923 First subtract the lower bound, if any, in the type of the
1924 index, then convert to sizetype and multiply by the size of
1925 the array element. */
1926 if (! integer_zerop (low_bound))
1927 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1928 index, low_bound);
1930 off_tree = size_binop (PLUS_EXPR,
1931 size_binop (MULT_EXPR,
1932 fold_convert (sizetype,
1933 index),
1934 unit_size),
1935 off_tree);
1936 t2 = TREE_OPERAND (t2, 0);
1938 while (TREE_CODE (t2) == ARRAY_REF);
1940 if (DECL_P (t2)
1941 || TREE_CODE (t2) == COMPONENT_REF)
1943 attrs.expr = t2;
1944 attrs.offset_known_p = false;
1945 if (tree_fits_uhwi_p (off_tree))
1947 attrs.offset_known_p = true;
1948 attrs.offset = tree_to_uhwi (off_tree);
1949 apply_bitpos = bitpos;
1952 /* Else do not record a MEM_EXPR. */
1955 /* If this is an indirect reference, record it. */
1956 else if (TREE_CODE (t) == MEM_REF
1957 || TREE_CODE (t) == TARGET_MEM_REF)
1959 attrs.expr = t;
1960 attrs.offset_known_p = true;
1961 attrs.offset = 0;
1962 apply_bitpos = bitpos;
1965 /* Compute the alignment. */
1966 unsigned int obj_align;
1967 unsigned HOST_WIDE_INT obj_bitpos;
1968 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1969 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1970 if (obj_bitpos != 0)
1971 obj_align = (obj_bitpos & -obj_bitpos);
1972 attrs.align = MAX (attrs.align, obj_align);
1975 if (tree_fits_uhwi_p (new_size))
1977 attrs.size_known_p = true;
1978 attrs.size = tree_to_uhwi (new_size);
1981 /* If we modified OFFSET based on T, then subtract the outstanding
1982 bit position offset. Similarly, increase the size of the accessed
1983 object to contain the negative offset. */
1984 if (apply_bitpos)
1986 gcc_assert (attrs.offset_known_p);
1987 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1988 if (attrs.size_known_p)
1989 attrs.size += apply_bitpos / BITS_PER_UNIT;
1992 /* Now set the attributes we computed above. */
1993 attrs.addrspace = as;
1994 set_mem_attrs (ref, &attrs);
1997 void
1998 set_mem_attributes (rtx ref, tree t, int objectp)
2000 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2003 /* Set the alias set of MEM to SET. */
2005 void
2006 set_mem_alias_set (rtx mem, alias_set_type set)
2008 struct mem_attrs attrs;
2010 /* If the new and old alias sets don't conflict, something is wrong. */
2011 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2012 attrs = *get_mem_attrs (mem);
2013 attrs.alias = set;
2014 set_mem_attrs (mem, &attrs);
2017 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2019 void
2020 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2022 struct mem_attrs attrs;
2024 attrs = *get_mem_attrs (mem);
2025 attrs.addrspace = addrspace;
2026 set_mem_attrs (mem, &attrs);
2029 /* Set the alignment of MEM to ALIGN bits. */
2031 void
2032 set_mem_align (rtx mem, unsigned int align)
2034 struct mem_attrs attrs;
2036 attrs = *get_mem_attrs (mem);
2037 attrs.align = align;
2038 set_mem_attrs (mem, &attrs);
2041 /* Set the expr for MEM to EXPR. */
2043 void
2044 set_mem_expr (rtx mem, tree expr)
2046 struct mem_attrs attrs;
2048 attrs = *get_mem_attrs (mem);
2049 attrs.expr = expr;
2050 set_mem_attrs (mem, &attrs);
2053 /* Set the offset of MEM to OFFSET. */
2055 void
2056 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2058 struct mem_attrs attrs;
2060 attrs = *get_mem_attrs (mem);
2061 attrs.offset_known_p = true;
2062 attrs.offset = offset;
2063 set_mem_attrs (mem, &attrs);
2066 /* Clear the offset of MEM. */
2068 void
2069 clear_mem_offset (rtx mem)
2071 struct mem_attrs attrs;
2073 attrs = *get_mem_attrs (mem);
2074 attrs.offset_known_p = false;
2075 set_mem_attrs (mem, &attrs);
2078 /* Set the size of MEM to SIZE. */
2080 void
2081 set_mem_size (rtx mem, HOST_WIDE_INT size)
2083 struct mem_attrs attrs;
2085 attrs = *get_mem_attrs (mem);
2086 attrs.size_known_p = true;
2087 attrs.size = size;
2088 set_mem_attrs (mem, &attrs);
2091 /* Clear the size of MEM. */
2093 void
2094 clear_mem_size (rtx mem)
2096 struct mem_attrs attrs;
2098 attrs = *get_mem_attrs (mem);
2099 attrs.size_known_p = false;
2100 set_mem_attrs (mem, &attrs);
2103 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2104 and its address changed to ADDR. (VOIDmode means don't change the mode.
2105 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2106 returned memory location is required to be valid. INPLACE is true if any
2107 changes can be made directly to MEMREF or false if MEMREF must be treated
2108 as immutable.
2110 The memory attributes are not changed. */
2112 static rtx
2113 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2114 bool inplace)
2116 addr_space_t as;
2117 rtx new_rtx;
2119 gcc_assert (MEM_P (memref));
2120 as = MEM_ADDR_SPACE (memref);
2121 if (mode == VOIDmode)
2122 mode = GET_MODE (memref);
2123 if (addr == 0)
2124 addr = XEXP (memref, 0);
2125 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2126 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2127 return memref;
2129 /* Don't validate address for LRA. LRA can make the address valid
2130 by itself in most efficient way. */
2131 if (validate && !lra_in_progress)
2133 if (reload_in_progress || reload_completed)
2134 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2135 else
2136 addr = memory_address_addr_space (mode, addr, as);
2139 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2140 return memref;
2142 if (inplace)
2144 XEXP (memref, 0) = addr;
2145 return memref;
2148 new_rtx = gen_rtx_MEM (mode, addr);
2149 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2150 return new_rtx;
2153 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2154 way we are changing MEMREF, so we only preserve the alias set. */
2157 change_address (rtx memref, machine_mode mode, rtx addr)
2159 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2160 machine_mode mmode = GET_MODE (new_rtx);
2161 struct mem_attrs attrs, *defattrs;
2163 attrs = *get_mem_attrs (memref);
2164 defattrs = mode_mem_attrs[(int) mmode];
2165 attrs.expr = NULL_TREE;
2166 attrs.offset_known_p = false;
2167 attrs.size_known_p = defattrs->size_known_p;
2168 attrs.size = defattrs->size;
2169 attrs.align = defattrs->align;
2171 /* If there are no changes, just return the original memory reference. */
2172 if (new_rtx == memref)
2174 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2175 return new_rtx;
2177 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2178 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2181 set_mem_attrs (new_rtx, &attrs);
2182 return new_rtx;
2185 /* Return a memory reference like MEMREF, but with its mode changed
2186 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2187 nonzero, the memory address is forced to be valid.
2188 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2189 and the caller is responsible for adjusting MEMREF base register.
2190 If ADJUST_OBJECT is zero, the underlying object associated with the
2191 memory reference is left unchanged and the caller is responsible for
2192 dealing with it. Otherwise, if the new memory reference is outside
2193 the underlying object, even partially, then the object is dropped.
2194 SIZE, if nonzero, is the size of an access in cases where MODE
2195 has no inherent size. */
2198 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2199 int validate, int adjust_address, int adjust_object,
2200 HOST_WIDE_INT size)
2202 rtx addr = XEXP (memref, 0);
2203 rtx new_rtx;
2204 machine_mode address_mode;
2205 int pbits;
2206 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2207 unsigned HOST_WIDE_INT max_align;
2208 #ifdef POINTERS_EXTEND_UNSIGNED
2209 machine_mode pointer_mode
2210 = targetm.addr_space.pointer_mode (attrs.addrspace);
2211 #endif
2213 /* VOIDmode means no mode change for change_address_1. */
2214 if (mode == VOIDmode)
2215 mode = GET_MODE (memref);
2217 /* Take the size of non-BLKmode accesses from the mode. */
2218 defattrs = mode_mem_attrs[(int) mode];
2219 if (defattrs->size_known_p)
2220 size = defattrs->size;
2222 /* If there are no changes, just return the original memory reference. */
2223 if (mode == GET_MODE (memref) && !offset
2224 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2225 && (!validate || memory_address_addr_space_p (mode, addr,
2226 attrs.addrspace)))
2227 return memref;
2229 /* ??? Prefer to create garbage instead of creating shared rtl.
2230 This may happen even if offset is nonzero -- consider
2231 (plus (plus reg reg) const_int) -- so do this always. */
2232 addr = copy_rtx (addr);
2234 /* Convert a possibly large offset to a signed value within the
2235 range of the target address space. */
2236 address_mode = get_address_mode (memref);
2237 pbits = GET_MODE_BITSIZE (address_mode);
2238 if (HOST_BITS_PER_WIDE_INT > pbits)
2240 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2241 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2242 >> shift);
2245 if (adjust_address)
2247 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2248 object, we can merge it into the LO_SUM. */
2249 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2250 && offset >= 0
2251 && (unsigned HOST_WIDE_INT) offset
2252 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2253 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2254 plus_constant (address_mode,
2255 XEXP (addr, 1), offset));
2256 #ifdef POINTERS_EXTEND_UNSIGNED
2257 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2258 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2259 the fact that pointers are not allowed to overflow. */
2260 else if (POINTERS_EXTEND_UNSIGNED > 0
2261 && GET_CODE (addr) == ZERO_EXTEND
2262 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2263 && trunc_int_for_mode (offset, pointer_mode) == offset)
2264 addr = gen_rtx_ZERO_EXTEND (address_mode,
2265 plus_constant (pointer_mode,
2266 XEXP (addr, 0), offset));
2267 #endif
2268 else
2269 addr = plus_constant (address_mode, addr, offset);
2272 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2274 /* If the address is a REG, change_address_1 rightfully returns memref,
2275 but this would destroy memref's MEM_ATTRS. */
2276 if (new_rtx == memref && offset != 0)
2277 new_rtx = copy_rtx (new_rtx);
2279 /* Conservatively drop the object if we don't know where we start from. */
2280 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2282 attrs.expr = NULL_TREE;
2283 attrs.alias = 0;
2286 /* Compute the new values of the memory attributes due to this adjustment.
2287 We add the offsets and update the alignment. */
2288 if (attrs.offset_known_p)
2290 attrs.offset += offset;
2292 /* Drop the object if the new left end is not within its bounds. */
2293 if (adjust_object && attrs.offset < 0)
2295 attrs.expr = NULL_TREE;
2296 attrs.alias = 0;
2300 /* Compute the new alignment by taking the MIN of the alignment and the
2301 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2302 if zero. */
2303 if (offset != 0)
2305 max_align = (offset & -offset) * BITS_PER_UNIT;
2306 attrs.align = MIN (attrs.align, max_align);
2309 if (size)
2311 /* Drop the object if the new right end is not within its bounds. */
2312 if (adjust_object && (offset + size) > attrs.size)
2314 attrs.expr = NULL_TREE;
2315 attrs.alias = 0;
2317 attrs.size_known_p = true;
2318 attrs.size = size;
2320 else if (attrs.size_known_p)
2322 gcc_assert (!adjust_object);
2323 attrs.size -= offset;
2324 /* ??? The store_by_pieces machinery generates negative sizes,
2325 so don't assert for that here. */
2328 set_mem_attrs (new_rtx, &attrs);
2330 return new_rtx;
2333 /* Return a memory reference like MEMREF, but with its mode changed
2334 to MODE and its address changed to ADDR, which is assumed to be
2335 MEMREF offset by OFFSET bytes. If VALIDATE is
2336 nonzero, the memory address is forced to be valid. */
2339 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2340 HOST_WIDE_INT offset, int validate)
2342 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2343 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2346 /* Return a memory reference like MEMREF, but whose address is changed by
2347 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2348 known to be in OFFSET (possibly 1). */
2351 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2353 rtx new_rtx, addr = XEXP (memref, 0);
2354 machine_mode address_mode;
2355 struct mem_attrs attrs, *defattrs;
2357 attrs = *get_mem_attrs (memref);
2358 address_mode = get_address_mode (memref);
2359 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2361 /* At this point we don't know _why_ the address is invalid. It
2362 could have secondary memory references, multiplies or anything.
2364 However, if we did go and rearrange things, we can wind up not
2365 being able to recognize the magic around pic_offset_table_rtx.
2366 This stuff is fragile, and is yet another example of why it is
2367 bad to expose PIC machinery too early. */
2368 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2369 attrs.addrspace)
2370 && GET_CODE (addr) == PLUS
2371 && XEXP (addr, 0) == pic_offset_table_rtx)
2373 addr = force_reg (GET_MODE (addr), addr);
2374 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2377 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2378 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2380 /* If there are no changes, just return the original memory reference. */
2381 if (new_rtx == memref)
2382 return new_rtx;
2384 /* Update the alignment to reflect the offset. Reset the offset, which
2385 we don't know. */
2386 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2387 attrs.offset_known_p = false;
2388 attrs.size_known_p = defattrs->size_known_p;
2389 attrs.size = defattrs->size;
2390 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2391 set_mem_attrs (new_rtx, &attrs);
2392 return new_rtx;
2395 /* Return a memory reference like MEMREF, but with its address changed to
2396 ADDR. The caller is asserting that the actual piece of memory pointed
2397 to is the same, just the form of the address is being changed, such as
2398 by putting something into a register. INPLACE is true if any changes
2399 can be made directly to MEMREF or false if MEMREF must be treated as
2400 immutable. */
2403 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2405 /* change_address_1 copies the memory attribute structure without change
2406 and that's exactly what we want here. */
2407 update_temp_slot_address (XEXP (memref, 0), addr);
2408 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2411 /* Likewise, but the reference is not required to be valid. */
2414 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2416 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2419 /* Return a memory reference like MEMREF, but with its mode widened to
2420 MODE and offset by OFFSET. This would be used by targets that e.g.
2421 cannot issue QImode memory operations and have to use SImode memory
2422 operations plus masking logic. */
2425 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2427 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2428 struct mem_attrs attrs;
2429 unsigned int size = GET_MODE_SIZE (mode);
2431 /* If there are no changes, just return the original memory reference. */
2432 if (new_rtx == memref)
2433 return new_rtx;
2435 attrs = *get_mem_attrs (new_rtx);
2437 /* If we don't know what offset we were at within the expression, then
2438 we can't know if we've overstepped the bounds. */
2439 if (! attrs.offset_known_p)
2440 attrs.expr = NULL_TREE;
2442 while (attrs.expr)
2444 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2446 tree field = TREE_OPERAND (attrs.expr, 1);
2447 tree offset = component_ref_field_offset (attrs.expr);
2449 if (! DECL_SIZE_UNIT (field))
2451 attrs.expr = NULL_TREE;
2452 break;
2455 /* Is the field at least as large as the access? If so, ok,
2456 otherwise strip back to the containing structure. */
2457 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2458 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2459 && attrs.offset >= 0)
2460 break;
2462 if (! tree_fits_uhwi_p (offset))
2464 attrs.expr = NULL_TREE;
2465 break;
2468 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2469 attrs.offset += tree_to_uhwi (offset);
2470 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2471 / BITS_PER_UNIT);
2473 /* Similarly for the decl. */
2474 else if (DECL_P (attrs.expr)
2475 && DECL_SIZE_UNIT (attrs.expr)
2476 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2477 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2478 && (! attrs.offset_known_p || attrs.offset >= 0))
2479 break;
2480 else
2482 /* The widened memory access overflows the expression, which means
2483 that it could alias another expression. Zap it. */
2484 attrs.expr = NULL_TREE;
2485 break;
2489 if (! attrs.expr)
2490 attrs.offset_known_p = false;
2492 /* The widened memory may alias other stuff, so zap the alias set. */
2493 /* ??? Maybe use get_alias_set on any remaining expression. */
2494 attrs.alias = 0;
2495 attrs.size_known_p = true;
2496 attrs.size = size;
2497 set_mem_attrs (new_rtx, &attrs);
2498 return new_rtx;
2501 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2502 static GTY(()) tree spill_slot_decl;
2504 tree
2505 get_spill_slot_decl (bool force_build_p)
2507 tree d = spill_slot_decl;
2508 rtx rd;
2509 struct mem_attrs attrs;
2511 if (d || !force_build_p)
2512 return d;
2514 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2515 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2516 DECL_ARTIFICIAL (d) = 1;
2517 DECL_IGNORED_P (d) = 1;
2518 TREE_USED (d) = 1;
2519 spill_slot_decl = d;
2521 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2522 MEM_NOTRAP_P (rd) = 1;
2523 attrs = *mode_mem_attrs[(int) BLKmode];
2524 attrs.alias = new_alias_set ();
2525 attrs.expr = d;
2526 set_mem_attrs (rd, &attrs);
2527 SET_DECL_RTL (d, rd);
2529 return d;
2532 /* Given MEM, a result from assign_stack_local, fill in the memory
2533 attributes as appropriate for a register allocator spill slot.
2534 These slots are not aliasable by other memory. We arrange for
2535 them all to use a single MEM_EXPR, so that the aliasing code can
2536 work properly in the case of shared spill slots. */
2538 void
2539 set_mem_attrs_for_spill (rtx mem)
2541 struct mem_attrs attrs;
2542 rtx addr;
2544 attrs = *get_mem_attrs (mem);
2545 attrs.expr = get_spill_slot_decl (true);
2546 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2547 attrs.addrspace = ADDR_SPACE_GENERIC;
2549 /* We expect the incoming memory to be of the form:
2550 (mem:MODE (plus (reg sfp) (const_int offset)))
2551 with perhaps the plus missing for offset = 0. */
2552 addr = XEXP (mem, 0);
2553 attrs.offset_known_p = true;
2554 attrs.offset = 0;
2555 if (GET_CODE (addr) == PLUS
2556 && CONST_INT_P (XEXP (addr, 1)))
2557 attrs.offset = INTVAL (XEXP (addr, 1));
2559 set_mem_attrs (mem, &attrs);
2560 MEM_NOTRAP_P (mem) = 1;
2563 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2565 rtx_code_label *
2566 gen_label_rtx (void)
2568 return as_a <rtx_code_label *> (
2569 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2570 NULL, label_num++, NULL));
2573 /* For procedure integration. */
2575 /* Install new pointers to the first and last insns in the chain.
2576 Also, set cur_insn_uid to one higher than the last in use.
2577 Used for an inline-procedure after copying the insn chain. */
2579 void
2580 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2582 rtx_insn *insn;
2584 set_first_insn (first);
2585 set_last_insn (last);
2586 cur_insn_uid = 0;
2588 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2590 int debug_count = 0;
2592 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2593 cur_debug_insn_uid = 0;
2595 for (insn = first; insn; insn = NEXT_INSN (insn))
2596 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2597 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2598 else
2600 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2601 if (DEBUG_INSN_P (insn))
2602 debug_count++;
2605 if (debug_count)
2606 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2607 else
2608 cur_debug_insn_uid++;
2610 else
2611 for (insn = first; insn; insn = NEXT_INSN (insn))
2612 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2614 cur_insn_uid++;
2617 /* Go through all the RTL insn bodies and copy any invalid shared
2618 structure. This routine should only be called once. */
2620 static void
2621 unshare_all_rtl_1 (rtx_insn *insn)
2623 /* Unshare just about everything else. */
2624 unshare_all_rtl_in_chain (insn);
2626 /* Make sure the addresses of stack slots found outside the insn chain
2627 (such as, in DECL_RTL of a variable) are not shared
2628 with the insn chain.
2630 This special care is necessary when the stack slot MEM does not
2631 actually appear in the insn chain. If it does appear, its address
2632 is unshared from all else at that point. */
2633 stack_slot_list = safe_as_a <rtx_expr_list *> (
2634 copy_rtx_if_shared (stack_slot_list));
2637 /* Go through all the RTL insn bodies and copy any invalid shared
2638 structure, again. This is a fairly expensive thing to do so it
2639 should be done sparingly. */
2641 void
2642 unshare_all_rtl_again (rtx_insn *insn)
2644 rtx_insn *p;
2645 tree decl;
2647 for (p = insn; p; p = NEXT_INSN (p))
2648 if (INSN_P (p))
2650 reset_used_flags (PATTERN (p));
2651 reset_used_flags (REG_NOTES (p));
2652 if (CALL_P (p))
2653 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2656 /* Make sure that virtual stack slots are not shared. */
2657 set_used_decls (DECL_INITIAL (cfun->decl));
2659 /* Make sure that virtual parameters are not shared. */
2660 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2661 set_used_flags (DECL_RTL (decl));
2663 reset_used_flags (stack_slot_list);
2665 unshare_all_rtl_1 (insn);
2668 unsigned int
2669 unshare_all_rtl (void)
2671 unshare_all_rtl_1 (get_insns ());
2672 return 0;
2676 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2677 Recursively does the same for subexpressions. */
2679 static void
2680 verify_rtx_sharing (rtx orig, rtx insn)
2682 rtx x = orig;
2683 int i;
2684 enum rtx_code code;
2685 const char *format_ptr;
2687 if (x == 0)
2688 return;
2690 code = GET_CODE (x);
2692 /* These types may be freely shared. */
2694 switch (code)
2696 case REG:
2697 case DEBUG_EXPR:
2698 case VALUE:
2699 CASE_CONST_ANY:
2700 case SYMBOL_REF:
2701 case LABEL_REF:
2702 case CODE_LABEL:
2703 case PC:
2704 case CC0:
2705 case RETURN:
2706 case SIMPLE_RETURN:
2707 case SCRATCH:
2708 /* SCRATCH must be shared because they represent distinct values. */
2709 return;
2710 case CLOBBER:
2711 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2712 clobbers or clobbers of hard registers that originated as pseudos.
2713 This is needed to allow safe register renaming. */
2714 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2715 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2716 return;
2717 break;
2719 case CONST:
2720 if (shared_const_p (orig))
2721 return;
2722 break;
2724 case MEM:
2725 /* A MEM is allowed to be shared if its address is constant. */
2726 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2727 || reload_completed || reload_in_progress)
2728 return;
2730 break;
2732 default:
2733 break;
2736 /* This rtx may not be shared. If it has already been seen,
2737 replace it with a copy of itself. */
2738 #ifdef ENABLE_CHECKING
2739 if (RTX_FLAG (x, used))
2741 error ("invalid rtl sharing found in the insn");
2742 debug_rtx (insn);
2743 error ("shared rtx");
2744 debug_rtx (x);
2745 internal_error ("internal consistency failure");
2747 #endif
2748 gcc_assert (!RTX_FLAG (x, used));
2750 RTX_FLAG (x, used) = 1;
2752 /* Now scan the subexpressions recursively. */
2754 format_ptr = GET_RTX_FORMAT (code);
2756 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2758 switch (*format_ptr++)
2760 case 'e':
2761 verify_rtx_sharing (XEXP (x, i), insn);
2762 break;
2764 case 'E':
2765 if (XVEC (x, i) != NULL)
2767 int j;
2768 int len = XVECLEN (x, i);
2770 for (j = 0; j < len; j++)
2772 /* We allow sharing of ASM_OPERANDS inside single
2773 instruction. */
2774 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2775 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2776 == ASM_OPERANDS))
2777 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2778 else
2779 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2782 break;
2785 return;
2788 /* Reset used-flags for INSN. */
2790 static void
2791 reset_insn_used_flags (rtx insn)
2793 gcc_assert (INSN_P (insn));
2794 reset_used_flags (PATTERN (insn));
2795 reset_used_flags (REG_NOTES (insn));
2796 if (CALL_P (insn))
2797 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2800 /* Go through all the RTL insn bodies and clear all the USED bits. */
2802 static void
2803 reset_all_used_flags (void)
2805 rtx_insn *p;
2807 for (p = get_insns (); p; p = NEXT_INSN (p))
2808 if (INSN_P (p))
2810 rtx pat = PATTERN (p);
2811 if (GET_CODE (pat) != SEQUENCE)
2812 reset_insn_used_flags (p);
2813 else
2815 gcc_assert (REG_NOTES (p) == NULL);
2816 for (int i = 0; i < XVECLEN (pat, 0); i++)
2818 rtx insn = XVECEXP (pat, 0, i);
2819 if (INSN_P (insn))
2820 reset_insn_used_flags (insn);
2826 /* Verify sharing in INSN. */
2828 static void
2829 verify_insn_sharing (rtx insn)
2831 gcc_assert (INSN_P (insn));
2832 reset_used_flags (PATTERN (insn));
2833 reset_used_flags (REG_NOTES (insn));
2834 if (CALL_P (insn))
2835 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2838 /* Go through all the RTL insn bodies and check that there is no unexpected
2839 sharing in between the subexpressions. */
2841 DEBUG_FUNCTION void
2842 verify_rtl_sharing (void)
2844 rtx_insn *p;
2846 timevar_push (TV_VERIFY_RTL_SHARING);
2848 reset_all_used_flags ();
2850 for (p = get_insns (); p; p = NEXT_INSN (p))
2851 if (INSN_P (p))
2853 rtx pat = PATTERN (p);
2854 if (GET_CODE (pat) != SEQUENCE)
2855 verify_insn_sharing (p);
2856 else
2857 for (int i = 0; i < XVECLEN (pat, 0); i++)
2859 rtx insn = XVECEXP (pat, 0, i);
2860 if (INSN_P (insn))
2861 verify_insn_sharing (insn);
2865 reset_all_used_flags ();
2867 timevar_pop (TV_VERIFY_RTL_SHARING);
2870 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2871 Assumes the mark bits are cleared at entry. */
2873 void
2874 unshare_all_rtl_in_chain (rtx_insn *insn)
2876 for (; insn; insn = NEXT_INSN (insn))
2877 if (INSN_P (insn))
2879 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2880 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2881 if (CALL_P (insn))
2882 CALL_INSN_FUNCTION_USAGE (insn)
2883 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2887 /* Go through all virtual stack slots of a function and mark them as
2888 shared. We never replace the DECL_RTLs themselves with a copy,
2889 but expressions mentioned into a DECL_RTL cannot be shared with
2890 expressions in the instruction stream.
2892 Note that reload may convert pseudo registers into memories in-place.
2893 Pseudo registers are always shared, but MEMs never are. Thus if we
2894 reset the used flags on MEMs in the instruction stream, we must set
2895 them again on MEMs that appear in DECL_RTLs. */
2897 static void
2898 set_used_decls (tree blk)
2900 tree t;
2902 /* Mark decls. */
2903 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2904 if (DECL_RTL_SET_P (t))
2905 set_used_flags (DECL_RTL (t));
2907 /* Now process sub-blocks. */
2908 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2909 set_used_decls (t);
2912 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2913 Recursively does the same for subexpressions. Uses
2914 copy_rtx_if_shared_1 to reduce stack space. */
2917 copy_rtx_if_shared (rtx orig)
2919 copy_rtx_if_shared_1 (&orig);
2920 return orig;
2923 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2924 use. Recursively does the same for subexpressions. */
2926 static void
2927 copy_rtx_if_shared_1 (rtx *orig1)
2929 rtx x;
2930 int i;
2931 enum rtx_code code;
2932 rtx *last_ptr;
2933 const char *format_ptr;
2934 int copied = 0;
2935 int length;
2937 /* Repeat is used to turn tail-recursion into iteration. */
2938 repeat:
2939 x = *orig1;
2941 if (x == 0)
2942 return;
2944 code = GET_CODE (x);
2946 /* These types may be freely shared. */
2948 switch (code)
2950 case REG:
2951 case DEBUG_EXPR:
2952 case VALUE:
2953 CASE_CONST_ANY:
2954 case SYMBOL_REF:
2955 case LABEL_REF:
2956 case CODE_LABEL:
2957 case PC:
2958 case CC0:
2959 case RETURN:
2960 case SIMPLE_RETURN:
2961 case SCRATCH:
2962 /* SCRATCH must be shared because they represent distinct values. */
2963 return;
2964 case CLOBBER:
2965 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2966 clobbers or clobbers of hard registers that originated as pseudos.
2967 This is needed to allow safe register renaming. */
2968 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2969 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2970 return;
2971 break;
2973 case CONST:
2974 if (shared_const_p (x))
2975 return;
2976 break;
2978 case DEBUG_INSN:
2979 case INSN:
2980 case JUMP_INSN:
2981 case CALL_INSN:
2982 case NOTE:
2983 case BARRIER:
2984 /* The chain of insns is not being copied. */
2985 return;
2987 default:
2988 break;
2991 /* This rtx may not be shared. If it has already been seen,
2992 replace it with a copy of itself. */
2994 if (RTX_FLAG (x, used))
2996 x = shallow_copy_rtx (x);
2997 copied = 1;
2999 RTX_FLAG (x, used) = 1;
3001 /* Now scan the subexpressions recursively.
3002 We can store any replaced subexpressions directly into X
3003 since we know X is not shared! Any vectors in X
3004 must be copied if X was copied. */
3006 format_ptr = GET_RTX_FORMAT (code);
3007 length = GET_RTX_LENGTH (code);
3008 last_ptr = NULL;
3010 for (i = 0; i < length; i++)
3012 switch (*format_ptr++)
3014 case 'e':
3015 if (last_ptr)
3016 copy_rtx_if_shared_1 (last_ptr);
3017 last_ptr = &XEXP (x, i);
3018 break;
3020 case 'E':
3021 if (XVEC (x, i) != NULL)
3023 int j;
3024 int len = XVECLEN (x, i);
3026 /* Copy the vector iff I copied the rtx and the length
3027 is nonzero. */
3028 if (copied && len > 0)
3029 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3031 /* Call recursively on all inside the vector. */
3032 for (j = 0; j < len; j++)
3034 if (last_ptr)
3035 copy_rtx_if_shared_1 (last_ptr);
3036 last_ptr = &XVECEXP (x, i, j);
3039 break;
3042 *orig1 = x;
3043 if (last_ptr)
3045 orig1 = last_ptr;
3046 goto repeat;
3048 return;
3051 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3053 static void
3054 mark_used_flags (rtx x, int flag)
3056 int i, j;
3057 enum rtx_code code;
3058 const char *format_ptr;
3059 int length;
3061 /* Repeat is used to turn tail-recursion into iteration. */
3062 repeat:
3063 if (x == 0)
3064 return;
3066 code = GET_CODE (x);
3068 /* These types may be freely shared so we needn't do any resetting
3069 for them. */
3071 switch (code)
3073 case REG:
3074 case DEBUG_EXPR:
3075 case VALUE:
3076 CASE_CONST_ANY:
3077 case SYMBOL_REF:
3078 case CODE_LABEL:
3079 case PC:
3080 case CC0:
3081 case RETURN:
3082 case SIMPLE_RETURN:
3083 return;
3085 case DEBUG_INSN:
3086 case INSN:
3087 case JUMP_INSN:
3088 case CALL_INSN:
3089 case NOTE:
3090 case LABEL_REF:
3091 case BARRIER:
3092 /* The chain of insns is not being copied. */
3093 return;
3095 default:
3096 break;
3099 RTX_FLAG (x, used) = flag;
3101 format_ptr = GET_RTX_FORMAT (code);
3102 length = GET_RTX_LENGTH (code);
3104 for (i = 0; i < length; i++)
3106 switch (*format_ptr++)
3108 case 'e':
3109 if (i == length-1)
3111 x = XEXP (x, i);
3112 goto repeat;
3114 mark_used_flags (XEXP (x, i), flag);
3115 break;
3117 case 'E':
3118 for (j = 0; j < XVECLEN (x, i); j++)
3119 mark_used_flags (XVECEXP (x, i, j), flag);
3120 break;
3125 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3126 to look for shared sub-parts. */
3128 void
3129 reset_used_flags (rtx x)
3131 mark_used_flags (x, 0);
3134 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3135 to look for shared sub-parts. */
3137 void
3138 set_used_flags (rtx x)
3140 mark_used_flags (x, 1);
3143 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3144 Return X or the rtx for the pseudo reg the value of X was copied into.
3145 OTHER must be valid as a SET_DEST. */
3148 make_safe_from (rtx x, rtx other)
3150 while (1)
3151 switch (GET_CODE (other))
3153 case SUBREG:
3154 other = SUBREG_REG (other);
3155 break;
3156 case STRICT_LOW_PART:
3157 case SIGN_EXTEND:
3158 case ZERO_EXTEND:
3159 other = XEXP (other, 0);
3160 break;
3161 default:
3162 goto done;
3164 done:
3165 if ((MEM_P (other)
3166 && ! CONSTANT_P (x)
3167 && !REG_P (x)
3168 && GET_CODE (x) != SUBREG)
3169 || (REG_P (other)
3170 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3171 || reg_mentioned_p (other, x))))
3173 rtx temp = gen_reg_rtx (GET_MODE (x));
3174 emit_move_insn (temp, x);
3175 return temp;
3177 return x;
3180 /* Emission of insns (adding them to the doubly-linked list). */
3182 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3184 rtx_insn *
3185 get_last_insn_anywhere (void)
3187 struct sequence_stack *seq;
3188 for (seq = get_current_sequence (); seq; seq = seq->next)
3189 if (seq->last != 0)
3190 return seq->last;
3191 return 0;
3194 /* Return the first nonnote insn emitted in current sequence or current
3195 function. This routine looks inside SEQUENCEs. */
3197 rtx_insn *
3198 get_first_nonnote_insn (void)
3200 rtx_insn *insn = get_insns ();
3202 if (insn)
3204 if (NOTE_P (insn))
3205 for (insn = next_insn (insn);
3206 insn && NOTE_P (insn);
3207 insn = next_insn (insn))
3208 continue;
3209 else
3211 if (NONJUMP_INSN_P (insn)
3212 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3213 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3217 return insn;
3220 /* Return the last nonnote insn emitted in current sequence or current
3221 function. This routine looks inside SEQUENCEs. */
3223 rtx_insn *
3224 get_last_nonnote_insn (void)
3226 rtx_insn *insn = get_last_insn ();
3228 if (insn)
3230 if (NOTE_P (insn))
3231 for (insn = previous_insn (insn);
3232 insn && NOTE_P (insn);
3233 insn = previous_insn (insn))
3234 continue;
3235 else
3237 if (NONJUMP_INSN_P (insn))
3238 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3239 insn = seq->insn (seq->len () - 1);
3243 return insn;
3246 /* Return the number of actual (non-debug) insns emitted in this
3247 function. */
3250 get_max_insn_count (void)
3252 int n = cur_insn_uid;
3254 /* The table size must be stable across -g, to avoid codegen
3255 differences due to debug insns, and not be affected by
3256 -fmin-insn-uid, to avoid excessive table size and to simplify
3257 debugging of -fcompare-debug failures. */
3258 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3259 n -= cur_debug_insn_uid;
3260 else
3261 n -= MIN_NONDEBUG_INSN_UID;
3263 return n;
3267 /* Return the next insn. If it is a SEQUENCE, return the first insn
3268 of the sequence. */
3270 rtx_insn *
3271 next_insn (rtx_insn *insn)
3273 if (insn)
3275 insn = NEXT_INSN (insn);
3276 if (insn && NONJUMP_INSN_P (insn)
3277 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3278 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3281 return insn;
3284 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3285 of the sequence. */
3287 rtx_insn *
3288 previous_insn (rtx_insn *insn)
3290 if (insn)
3292 insn = PREV_INSN (insn);
3293 if (insn && NONJUMP_INSN_P (insn))
3294 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3295 insn = seq->insn (seq->len () - 1);
3298 return insn;
3301 /* Return the next insn after INSN that is not a NOTE. This routine does not
3302 look inside SEQUENCEs. */
3304 rtx_insn *
3305 next_nonnote_insn (rtx uncast_insn)
3307 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3308 while (insn)
3310 insn = NEXT_INSN (insn);
3311 if (insn == 0 || !NOTE_P (insn))
3312 break;
3315 return insn;
3318 /* Return the next insn after INSN that is not a NOTE, but stop the
3319 search before we enter another basic block. This routine does not
3320 look inside SEQUENCEs. */
3322 rtx_insn *
3323 next_nonnote_insn_bb (rtx_insn *insn)
3325 while (insn)
3327 insn = NEXT_INSN (insn);
3328 if (insn == 0 || !NOTE_P (insn))
3329 break;
3330 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3331 return NULL;
3334 return insn;
3337 /* Return the previous insn before INSN that is not a NOTE. This routine does
3338 not look inside SEQUENCEs. */
3340 rtx_insn *
3341 prev_nonnote_insn (rtx uncast_insn)
3343 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3345 while (insn)
3347 insn = PREV_INSN (insn);
3348 if (insn == 0 || !NOTE_P (insn))
3349 break;
3352 return insn;
3355 /* Return the previous insn before INSN that is not a NOTE, but stop
3356 the search before we enter another basic block. This routine does
3357 not look inside SEQUENCEs. */
3359 rtx_insn *
3360 prev_nonnote_insn_bb (rtx uncast_insn)
3362 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3364 while (insn)
3366 insn = PREV_INSN (insn);
3367 if (insn == 0 || !NOTE_P (insn))
3368 break;
3369 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3370 return NULL;
3373 return insn;
3376 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3377 routine does not look inside SEQUENCEs. */
3379 rtx_insn *
3380 next_nondebug_insn (rtx uncast_insn)
3382 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3384 while (insn)
3386 insn = NEXT_INSN (insn);
3387 if (insn == 0 || !DEBUG_INSN_P (insn))
3388 break;
3391 return insn;
3394 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3395 This routine does not look inside SEQUENCEs. */
3397 rtx_insn *
3398 prev_nondebug_insn (rtx uncast_insn)
3400 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3402 while (insn)
3404 insn = PREV_INSN (insn);
3405 if (insn == 0 || !DEBUG_INSN_P (insn))
3406 break;
3409 return insn;
3412 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3413 This routine does not look inside SEQUENCEs. */
3415 rtx_insn *
3416 next_nonnote_nondebug_insn (rtx uncast_insn)
3418 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3420 while (insn)
3422 insn = NEXT_INSN (insn);
3423 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3424 break;
3427 return insn;
3430 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3431 This routine does not look inside SEQUENCEs. */
3433 rtx_insn *
3434 prev_nonnote_nondebug_insn (rtx uncast_insn)
3436 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3438 while (insn)
3440 insn = PREV_INSN (insn);
3441 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3442 break;
3445 return insn;
3448 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3449 or 0, if there is none. This routine does not look inside
3450 SEQUENCEs. */
3452 rtx_insn *
3453 next_real_insn (rtx uncast_insn)
3455 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3457 while (insn)
3459 insn = NEXT_INSN (insn);
3460 if (insn == 0 || INSN_P (insn))
3461 break;
3464 return insn;
3467 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3468 or 0, if there is none. This routine does not look inside
3469 SEQUENCEs. */
3471 rtx_insn *
3472 prev_real_insn (rtx uncast_insn)
3474 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3476 while (insn)
3478 insn = PREV_INSN (insn);
3479 if (insn == 0 || INSN_P (insn))
3480 break;
3483 return insn;
3486 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3487 This routine does not look inside SEQUENCEs. */
3489 rtx_call_insn *
3490 last_call_insn (void)
3492 rtx_insn *insn;
3494 for (insn = get_last_insn ();
3495 insn && !CALL_P (insn);
3496 insn = PREV_INSN (insn))
3499 return safe_as_a <rtx_call_insn *> (insn);
3502 /* Find the next insn after INSN that really does something. This routine
3503 does not look inside SEQUENCEs. After reload this also skips over
3504 standalone USE and CLOBBER insn. */
3507 active_insn_p (const_rtx insn)
3509 return (CALL_P (insn) || JUMP_P (insn)
3510 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3511 || (NONJUMP_INSN_P (insn)
3512 && (! reload_completed
3513 || (GET_CODE (PATTERN (insn)) != USE
3514 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3517 rtx_insn *
3518 next_active_insn (rtx uncast_insn)
3520 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3522 while (insn)
3524 insn = NEXT_INSN (insn);
3525 if (insn == 0 || active_insn_p (insn))
3526 break;
3529 return insn;
3532 /* Find the last insn before INSN that really does something. This routine
3533 does not look inside SEQUENCEs. After reload this also skips over
3534 standalone USE and CLOBBER insn. */
3536 rtx_insn *
3537 prev_active_insn (rtx uncast_insn)
3539 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3541 while (insn)
3543 insn = PREV_INSN (insn);
3544 if (insn == 0 || active_insn_p (insn))
3545 break;
3548 return insn;
3551 /* Return the next insn that uses CC0 after INSN, which is assumed to
3552 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3553 applied to the result of this function should yield INSN).
3555 Normally, this is simply the next insn. However, if a REG_CC_USER note
3556 is present, it contains the insn that uses CC0.
3558 Return 0 if we can't find the insn. */
3560 rtx_insn *
3561 next_cc0_user (rtx uncast_insn)
3563 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3565 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3567 if (note)
3568 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3570 insn = next_nonnote_insn (insn);
3571 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3572 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3574 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3575 return insn;
3577 return 0;
3580 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3581 note, it is the previous insn. */
3583 rtx_insn *
3584 prev_cc0_setter (rtx_insn *insn)
3586 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3588 if (note)
3589 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3591 insn = prev_nonnote_insn (insn);
3592 gcc_assert (sets_cc0_p (PATTERN (insn)));
3594 return insn;
3597 #ifdef AUTO_INC_DEC
3598 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3600 static int
3601 find_auto_inc (const_rtx x, const_rtx reg)
3603 subrtx_iterator::array_type array;
3604 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3606 const_rtx x = *iter;
3607 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3608 && rtx_equal_p (reg, XEXP (x, 0)))
3609 return true;
3611 return false;
3613 #endif
3615 /* Increment the label uses for all labels present in rtx. */
3617 static void
3618 mark_label_nuses (rtx x)
3620 enum rtx_code code;
3621 int i, j;
3622 const char *fmt;
3624 code = GET_CODE (x);
3625 if (code == LABEL_REF && LABEL_P (LABEL_REF_LABEL (x)))
3626 LABEL_NUSES (LABEL_REF_LABEL (x))++;
3628 fmt = GET_RTX_FORMAT (code);
3629 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3631 if (fmt[i] == 'e')
3632 mark_label_nuses (XEXP (x, i));
3633 else if (fmt[i] == 'E')
3634 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3635 mark_label_nuses (XVECEXP (x, i, j));
3640 /* Try splitting insns that can be split for better scheduling.
3641 PAT is the pattern which might split.
3642 TRIAL is the insn providing PAT.
3643 LAST is nonzero if we should return the last insn of the sequence produced.
3645 If this routine succeeds in splitting, it returns the first or last
3646 replacement insn depending on the value of LAST. Otherwise, it
3647 returns TRIAL. If the insn to be returned can be split, it will be. */
3649 rtx_insn *
3650 try_split (rtx pat, rtx_insn *trial, int last)
3652 rtx_insn *before = PREV_INSN (trial);
3653 rtx_insn *after = NEXT_INSN (trial);
3654 rtx note;
3655 rtx_insn *seq, *tem;
3656 int probability;
3657 rtx_insn *insn_last, *insn;
3658 int njumps = 0;
3659 rtx_insn *call_insn = NULL;
3661 /* We're not good at redistributing frame information. */
3662 if (RTX_FRAME_RELATED_P (trial))
3663 return trial;
3665 if (any_condjump_p (trial)
3666 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3667 split_branch_probability = XINT (note, 0);
3668 probability = split_branch_probability;
3670 seq = split_insns (pat, trial);
3672 split_branch_probability = -1;
3674 if (!seq)
3675 return trial;
3677 /* Avoid infinite loop if any insn of the result matches
3678 the original pattern. */
3679 insn_last = seq;
3680 while (1)
3682 if (INSN_P (insn_last)
3683 && rtx_equal_p (PATTERN (insn_last), pat))
3684 return trial;
3685 if (!NEXT_INSN (insn_last))
3686 break;
3687 insn_last = NEXT_INSN (insn_last);
3690 /* We will be adding the new sequence to the function. The splitters
3691 may have introduced invalid RTL sharing, so unshare the sequence now. */
3692 unshare_all_rtl_in_chain (seq);
3694 /* Mark labels and copy flags. */
3695 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3697 if (JUMP_P (insn))
3699 if (JUMP_P (trial))
3700 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3701 mark_jump_label (PATTERN (insn), insn, 0);
3702 njumps++;
3703 if (probability != -1
3704 && any_condjump_p (insn)
3705 && !find_reg_note (insn, REG_BR_PROB, 0))
3707 /* We can preserve the REG_BR_PROB notes only if exactly
3708 one jump is created, otherwise the machine description
3709 is responsible for this step using
3710 split_branch_probability variable. */
3711 gcc_assert (njumps == 1);
3712 add_int_reg_note (insn, REG_BR_PROB, probability);
3717 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3718 in SEQ and copy any additional information across. */
3719 if (CALL_P (trial))
3721 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3722 if (CALL_P (insn))
3724 rtx_insn *next;
3725 rtx *p;
3727 gcc_assert (call_insn == NULL_RTX);
3728 call_insn = insn;
3730 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3731 target may have explicitly specified. */
3732 p = &CALL_INSN_FUNCTION_USAGE (insn);
3733 while (*p)
3734 p = &XEXP (*p, 1);
3735 *p = CALL_INSN_FUNCTION_USAGE (trial);
3737 /* If the old call was a sibling call, the new one must
3738 be too. */
3739 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3741 /* If the new call is the last instruction in the sequence,
3742 it will effectively replace the old call in-situ. Otherwise
3743 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3744 so that it comes immediately after the new call. */
3745 if (NEXT_INSN (insn))
3746 for (next = NEXT_INSN (trial);
3747 next && NOTE_P (next);
3748 next = NEXT_INSN (next))
3749 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3751 remove_insn (next);
3752 add_insn_after (next, insn, NULL);
3753 break;
3758 /* Copy notes, particularly those related to the CFG. */
3759 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3761 switch (REG_NOTE_KIND (note))
3763 case REG_EH_REGION:
3764 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3765 break;
3767 case REG_NORETURN:
3768 case REG_SETJMP:
3769 case REG_TM:
3770 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3772 if (CALL_P (insn))
3773 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3775 break;
3777 case REG_NON_LOCAL_GOTO:
3778 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3780 if (JUMP_P (insn))
3781 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3783 break;
3785 #ifdef AUTO_INC_DEC
3786 case REG_INC:
3787 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3789 rtx reg = XEXP (note, 0);
3790 if (!FIND_REG_INC_NOTE (insn, reg)
3791 && find_auto_inc (PATTERN (insn), reg))
3792 add_reg_note (insn, REG_INC, reg);
3794 break;
3795 #endif
3797 case REG_ARGS_SIZE:
3798 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3799 break;
3801 case REG_CALL_DECL:
3802 gcc_assert (call_insn != NULL_RTX);
3803 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3804 break;
3806 default:
3807 break;
3811 /* If there are LABELS inside the split insns increment the
3812 usage count so we don't delete the label. */
3813 if (INSN_P (trial))
3815 insn = insn_last;
3816 while (insn != NULL_RTX)
3818 /* JUMP_P insns have already been "marked" above. */
3819 if (NONJUMP_INSN_P (insn))
3820 mark_label_nuses (PATTERN (insn));
3822 insn = PREV_INSN (insn);
3826 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3828 delete_insn (trial);
3830 /* Recursively call try_split for each new insn created; by the
3831 time control returns here that insn will be fully split, so
3832 set LAST and continue from the insn after the one returned.
3833 We can't use next_active_insn here since AFTER may be a note.
3834 Ignore deleted insns, which can be occur if not optimizing. */
3835 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3836 if (! tem->deleted () && INSN_P (tem))
3837 tem = try_split (PATTERN (tem), tem, 1);
3839 /* Return either the first or the last insn, depending on which was
3840 requested. */
3841 return last
3842 ? (after ? PREV_INSN (after) : get_last_insn ())
3843 : NEXT_INSN (before);
3846 /* Make and return an INSN rtx, initializing all its slots.
3847 Store PATTERN in the pattern slots. */
3849 rtx_insn *
3850 make_insn_raw (rtx pattern)
3852 rtx_insn *insn;
3854 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3856 INSN_UID (insn) = cur_insn_uid++;
3857 PATTERN (insn) = pattern;
3858 INSN_CODE (insn) = -1;
3859 REG_NOTES (insn) = NULL;
3860 INSN_LOCATION (insn) = curr_insn_location ();
3861 BLOCK_FOR_INSN (insn) = NULL;
3863 #ifdef ENABLE_RTL_CHECKING
3864 if (insn
3865 && INSN_P (insn)
3866 && (returnjump_p (insn)
3867 || (GET_CODE (insn) == SET
3868 && SET_DEST (insn) == pc_rtx)))
3870 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3871 debug_rtx (insn);
3873 #endif
3875 return insn;
3878 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3880 static rtx_insn *
3881 make_debug_insn_raw (rtx pattern)
3883 rtx_debug_insn *insn;
3885 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3886 INSN_UID (insn) = cur_debug_insn_uid++;
3887 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3888 INSN_UID (insn) = cur_insn_uid++;
3890 PATTERN (insn) = pattern;
3891 INSN_CODE (insn) = -1;
3892 REG_NOTES (insn) = NULL;
3893 INSN_LOCATION (insn) = curr_insn_location ();
3894 BLOCK_FOR_INSN (insn) = NULL;
3896 return insn;
3899 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3901 static rtx_insn *
3902 make_jump_insn_raw (rtx pattern)
3904 rtx_jump_insn *insn;
3906 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3907 INSN_UID (insn) = cur_insn_uid++;
3909 PATTERN (insn) = pattern;
3910 INSN_CODE (insn) = -1;
3911 REG_NOTES (insn) = NULL;
3912 JUMP_LABEL (insn) = NULL;
3913 INSN_LOCATION (insn) = curr_insn_location ();
3914 BLOCK_FOR_INSN (insn) = NULL;
3916 return insn;
3919 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3921 static rtx_insn *
3922 make_call_insn_raw (rtx pattern)
3924 rtx_call_insn *insn;
3926 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3927 INSN_UID (insn) = cur_insn_uid++;
3929 PATTERN (insn) = pattern;
3930 INSN_CODE (insn) = -1;
3931 REG_NOTES (insn) = NULL;
3932 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3933 INSN_LOCATION (insn) = curr_insn_location ();
3934 BLOCK_FOR_INSN (insn) = NULL;
3936 return insn;
3939 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3941 static rtx_note *
3942 make_note_raw (enum insn_note subtype)
3944 /* Some notes are never created this way at all. These notes are
3945 only created by patching out insns. */
3946 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3947 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3949 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3950 INSN_UID (note) = cur_insn_uid++;
3951 NOTE_KIND (note) = subtype;
3952 BLOCK_FOR_INSN (note) = NULL;
3953 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3954 return note;
3957 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3958 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3959 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3961 static inline void
3962 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3964 SET_PREV_INSN (insn) = prev;
3965 SET_NEXT_INSN (insn) = next;
3966 if (prev != NULL)
3968 SET_NEXT_INSN (prev) = insn;
3969 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3971 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3972 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3975 if (next != NULL)
3977 SET_PREV_INSN (next) = insn;
3978 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3980 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3981 SET_PREV_INSN (sequence->insn (0)) = insn;
3985 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3987 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3988 SET_PREV_INSN (sequence->insn (0)) = prev;
3989 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3993 /* Add INSN to the end of the doubly-linked list.
3994 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3996 void
3997 add_insn (rtx_insn *insn)
3999 rtx_insn *prev = get_last_insn ();
4000 link_insn_into_chain (insn, prev, NULL);
4001 if (NULL == get_insns ())
4002 set_first_insn (insn);
4003 set_last_insn (insn);
4006 /* Add INSN into the doubly-linked list after insn AFTER. */
4008 static void
4009 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4011 rtx_insn *next = NEXT_INSN (after);
4013 gcc_assert (!optimize || !after->deleted ());
4015 link_insn_into_chain (insn, after, next);
4017 if (next == NULL)
4019 struct sequence_stack *seq;
4021 for (seq = get_current_sequence (); seq; seq = seq->next)
4022 if (after == seq->last)
4024 seq->last = insn;
4025 break;
4030 /* Add INSN into the doubly-linked list before insn BEFORE. */
4032 static void
4033 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4035 rtx_insn *prev = PREV_INSN (before);
4037 gcc_assert (!optimize || !before->deleted ());
4039 link_insn_into_chain (insn, prev, before);
4041 if (prev == NULL)
4043 struct sequence_stack *seq;
4045 for (seq = get_current_sequence (); seq; seq = seq->next)
4046 if (before == seq->first)
4048 seq->first = insn;
4049 break;
4052 gcc_assert (seq);
4056 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4057 If BB is NULL, an attempt is made to infer the bb from before.
4059 This and the next function should be the only functions called
4060 to insert an insn once delay slots have been filled since only
4061 they know how to update a SEQUENCE. */
4063 void
4064 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4066 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4067 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4068 add_insn_after_nobb (insn, after);
4069 if (!BARRIER_P (after)
4070 && !BARRIER_P (insn)
4071 && (bb = BLOCK_FOR_INSN (after)))
4073 set_block_for_insn (insn, bb);
4074 if (INSN_P (insn))
4075 df_insn_rescan (insn);
4076 /* Should not happen as first in the BB is always
4077 either NOTE or LABEL. */
4078 if (BB_END (bb) == after
4079 /* Avoid clobbering of structure when creating new BB. */
4080 && !BARRIER_P (insn)
4081 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4082 BB_END (bb) = insn;
4086 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4087 If BB is NULL, an attempt is made to infer the bb from before.
4089 This and the previous function should be the only functions called
4090 to insert an insn once delay slots have been filled since only
4091 they know how to update a SEQUENCE. */
4093 void
4094 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4096 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4097 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4098 add_insn_before_nobb (insn, before);
4100 if (!bb
4101 && !BARRIER_P (before)
4102 && !BARRIER_P (insn))
4103 bb = BLOCK_FOR_INSN (before);
4105 if (bb)
4107 set_block_for_insn (insn, bb);
4108 if (INSN_P (insn))
4109 df_insn_rescan (insn);
4110 /* Should not happen as first in the BB is always either NOTE or
4111 LABEL. */
4112 gcc_assert (BB_HEAD (bb) != insn
4113 /* Avoid clobbering of structure when creating new BB. */
4114 || BARRIER_P (insn)
4115 || NOTE_INSN_BASIC_BLOCK_P (insn));
4119 /* Replace insn with an deleted instruction note. */
4121 void
4122 set_insn_deleted (rtx insn)
4124 if (INSN_P (insn))
4125 df_insn_delete (as_a <rtx_insn *> (insn));
4126 PUT_CODE (insn, NOTE);
4127 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4131 /* Unlink INSN from the insn chain.
4133 This function knows how to handle sequences.
4135 This function does not invalidate data flow information associated with
4136 INSN (i.e. does not call df_insn_delete). That makes this function
4137 usable for only disconnecting an insn from the chain, and re-emit it
4138 elsewhere later.
4140 To later insert INSN elsewhere in the insn chain via add_insn and
4141 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4142 the caller. Nullifying them here breaks many insn chain walks.
4144 To really delete an insn and related DF information, use delete_insn. */
4146 void
4147 remove_insn (rtx uncast_insn)
4149 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4150 rtx_insn *next = NEXT_INSN (insn);
4151 rtx_insn *prev = PREV_INSN (insn);
4152 basic_block bb;
4154 if (prev)
4156 SET_NEXT_INSN (prev) = next;
4157 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4159 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4160 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4163 else
4165 struct sequence_stack *seq;
4167 for (seq = get_current_sequence (); seq; seq = seq->next)
4168 if (insn == seq->first)
4170 seq->first = next;
4171 break;
4174 gcc_assert (seq);
4177 if (next)
4179 SET_PREV_INSN (next) = prev;
4180 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4182 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4183 SET_PREV_INSN (sequence->insn (0)) = prev;
4186 else
4188 struct sequence_stack *seq;
4190 for (seq = get_current_sequence (); seq; seq = seq->next)
4191 if (insn == seq->last)
4193 seq->last = prev;
4194 break;
4197 gcc_assert (seq);
4200 /* Fix up basic block boundaries, if necessary. */
4201 if (!BARRIER_P (insn)
4202 && (bb = BLOCK_FOR_INSN (insn)))
4204 if (BB_HEAD (bb) == insn)
4206 /* Never ever delete the basic block note without deleting whole
4207 basic block. */
4208 gcc_assert (!NOTE_P (insn));
4209 BB_HEAD (bb) = next;
4211 if (BB_END (bb) == insn)
4212 BB_END (bb) = prev;
4216 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4218 void
4219 add_function_usage_to (rtx call_insn, rtx call_fusage)
4221 gcc_assert (call_insn && CALL_P (call_insn));
4223 /* Put the register usage information on the CALL. If there is already
4224 some usage information, put ours at the end. */
4225 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4227 rtx link;
4229 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4230 link = XEXP (link, 1))
4233 XEXP (link, 1) = call_fusage;
4235 else
4236 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4239 /* Delete all insns made since FROM.
4240 FROM becomes the new last instruction. */
4242 void
4243 delete_insns_since (rtx_insn *from)
4245 if (from == 0)
4246 set_first_insn (0);
4247 else
4248 SET_NEXT_INSN (from) = 0;
4249 set_last_insn (from);
4252 /* This function is deprecated, please use sequences instead.
4254 Move a consecutive bunch of insns to a different place in the chain.
4255 The insns to be moved are those between FROM and TO.
4256 They are moved to a new position after the insn AFTER.
4257 AFTER must not be FROM or TO or any insn in between.
4259 This function does not know about SEQUENCEs and hence should not be
4260 called after delay-slot filling has been done. */
4262 void
4263 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4265 #ifdef ENABLE_CHECKING
4266 rtx_insn *x;
4267 for (x = from; x != to; x = NEXT_INSN (x))
4268 gcc_assert (after != x);
4269 gcc_assert (after != to);
4270 #endif
4272 /* Splice this bunch out of where it is now. */
4273 if (PREV_INSN (from))
4274 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4275 if (NEXT_INSN (to))
4276 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4277 if (get_last_insn () == to)
4278 set_last_insn (PREV_INSN (from));
4279 if (get_insns () == from)
4280 set_first_insn (NEXT_INSN (to));
4282 /* Make the new neighbors point to it and it to them. */
4283 if (NEXT_INSN (after))
4284 SET_PREV_INSN (NEXT_INSN (after)) = to;
4286 SET_NEXT_INSN (to) = NEXT_INSN (after);
4287 SET_PREV_INSN (from) = after;
4288 SET_NEXT_INSN (after) = from;
4289 if (after == get_last_insn ())
4290 set_last_insn (to);
4293 /* Same as function above, but take care to update BB boundaries. */
4294 void
4295 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4297 rtx_insn *prev = PREV_INSN (from);
4298 basic_block bb, bb2;
4300 reorder_insns_nobb (from, to, after);
4302 if (!BARRIER_P (after)
4303 && (bb = BLOCK_FOR_INSN (after)))
4305 rtx_insn *x;
4306 df_set_bb_dirty (bb);
4308 if (!BARRIER_P (from)
4309 && (bb2 = BLOCK_FOR_INSN (from)))
4311 if (BB_END (bb2) == to)
4312 BB_END (bb2) = prev;
4313 df_set_bb_dirty (bb2);
4316 if (BB_END (bb) == after)
4317 BB_END (bb) = to;
4319 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4320 if (!BARRIER_P (x))
4321 df_insn_change_bb (x, bb);
4326 /* Emit insn(s) of given code and pattern
4327 at a specified place within the doubly-linked list.
4329 All of the emit_foo global entry points accept an object
4330 X which is either an insn list or a PATTERN of a single
4331 instruction.
4333 There are thus a few canonical ways to generate code and
4334 emit it at a specific place in the instruction stream. For
4335 example, consider the instruction named SPOT and the fact that
4336 we would like to emit some instructions before SPOT. We might
4337 do it like this:
4339 start_sequence ();
4340 ... emit the new instructions ...
4341 insns_head = get_insns ();
4342 end_sequence ();
4344 emit_insn_before (insns_head, SPOT);
4346 It used to be common to generate SEQUENCE rtl instead, but that
4347 is a relic of the past which no longer occurs. The reason is that
4348 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4349 generated would almost certainly die right after it was created. */
4351 static rtx_insn *
4352 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4353 rtx_insn *(*make_raw) (rtx))
4355 rtx_insn *insn;
4357 gcc_assert (before);
4359 if (x == NULL_RTX)
4360 return safe_as_a <rtx_insn *> (last);
4362 switch (GET_CODE (x))
4364 case DEBUG_INSN:
4365 case INSN:
4366 case JUMP_INSN:
4367 case CALL_INSN:
4368 case CODE_LABEL:
4369 case BARRIER:
4370 case NOTE:
4371 insn = as_a <rtx_insn *> (x);
4372 while (insn)
4374 rtx_insn *next = NEXT_INSN (insn);
4375 add_insn_before (insn, before, bb);
4376 last = insn;
4377 insn = next;
4379 break;
4381 #ifdef ENABLE_RTL_CHECKING
4382 case SEQUENCE:
4383 gcc_unreachable ();
4384 break;
4385 #endif
4387 default:
4388 last = (*make_raw) (x);
4389 add_insn_before (last, before, bb);
4390 break;
4393 return safe_as_a <rtx_insn *> (last);
4396 /* Make X be output before the instruction BEFORE. */
4398 rtx_insn *
4399 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4401 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4404 /* Make an instruction with body X and code JUMP_INSN
4405 and output it before the instruction BEFORE. */
4407 rtx_jump_insn *
4408 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4410 return as_a <rtx_jump_insn *> (
4411 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4412 make_jump_insn_raw));
4415 /* Make an instruction with body X and code CALL_INSN
4416 and output it before the instruction BEFORE. */
4418 rtx_insn *
4419 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4421 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4422 make_call_insn_raw);
4425 /* Make an instruction with body X and code DEBUG_INSN
4426 and output it before the instruction BEFORE. */
4428 rtx_insn *
4429 emit_debug_insn_before_noloc (rtx x, rtx before)
4431 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4432 make_debug_insn_raw);
4435 /* Make an insn of code BARRIER
4436 and output it before the insn BEFORE. */
4438 rtx_barrier *
4439 emit_barrier_before (rtx before)
4441 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4443 INSN_UID (insn) = cur_insn_uid++;
4445 add_insn_before (insn, before, NULL);
4446 return insn;
4449 /* Emit the label LABEL before the insn BEFORE. */
4451 rtx_code_label *
4452 emit_label_before (rtx label, rtx_insn *before)
4454 gcc_checking_assert (INSN_UID (label) == 0);
4455 INSN_UID (label) = cur_insn_uid++;
4456 add_insn_before (label, before, NULL);
4457 return as_a <rtx_code_label *> (label);
4460 /* Helper for emit_insn_after, handles lists of instructions
4461 efficiently. */
4463 static rtx_insn *
4464 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4466 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4467 rtx_insn *last;
4468 rtx_insn *after_after;
4469 if (!bb && !BARRIER_P (after))
4470 bb = BLOCK_FOR_INSN (after);
4472 if (bb)
4474 df_set_bb_dirty (bb);
4475 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4476 if (!BARRIER_P (last))
4478 set_block_for_insn (last, bb);
4479 df_insn_rescan (last);
4481 if (!BARRIER_P (last))
4483 set_block_for_insn (last, bb);
4484 df_insn_rescan (last);
4486 if (BB_END (bb) == after)
4487 BB_END (bb) = last;
4489 else
4490 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4491 continue;
4493 after_after = NEXT_INSN (after);
4495 SET_NEXT_INSN (after) = first;
4496 SET_PREV_INSN (first) = after;
4497 SET_NEXT_INSN (last) = after_after;
4498 if (after_after)
4499 SET_PREV_INSN (after_after) = last;
4501 if (after == get_last_insn ())
4502 set_last_insn (last);
4504 return last;
4507 static rtx_insn *
4508 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4509 rtx_insn *(*make_raw)(rtx))
4511 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4512 rtx_insn *last = after;
4514 gcc_assert (after);
4516 if (x == NULL_RTX)
4517 return last;
4519 switch (GET_CODE (x))
4521 case DEBUG_INSN:
4522 case INSN:
4523 case JUMP_INSN:
4524 case CALL_INSN:
4525 case CODE_LABEL:
4526 case BARRIER:
4527 case NOTE:
4528 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4529 break;
4531 #ifdef ENABLE_RTL_CHECKING
4532 case SEQUENCE:
4533 gcc_unreachable ();
4534 break;
4535 #endif
4537 default:
4538 last = (*make_raw) (x);
4539 add_insn_after (last, after, bb);
4540 break;
4543 return last;
4546 /* Make X be output after the insn AFTER and set the BB of insn. If
4547 BB is NULL, an attempt is made to infer the BB from AFTER. */
4549 rtx_insn *
4550 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4552 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4556 /* Make an insn of code JUMP_INSN with body X
4557 and output it after the insn AFTER. */
4559 rtx_jump_insn *
4560 emit_jump_insn_after_noloc (rtx x, rtx after)
4562 return as_a <rtx_jump_insn *> (
4563 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4566 /* Make an instruction with body X and code CALL_INSN
4567 and output it after the instruction AFTER. */
4569 rtx_insn *
4570 emit_call_insn_after_noloc (rtx x, rtx after)
4572 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4575 /* Make an instruction with body X and code CALL_INSN
4576 and output it after the instruction AFTER. */
4578 rtx_insn *
4579 emit_debug_insn_after_noloc (rtx x, rtx after)
4581 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4584 /* Make an insn of code BARRIER
4585 and output it after the insn AFTER. */
4587 rtx_barrier *
4588 emit_barrier_after (rtx after)
4590 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4592 INSN_UID (insn) = cur_insn_uid++;
4594 add_insn_after (insn, after, NULL);
4595 return insn;
4598 /* Emit the label LABEL after the insn AFTER. */
4600 rtx_insn *
4601 emit_label_after (rtx label, rtx_insn *after)
4603 gcc_checking_assert (INSN_UID (label) == 0);
4604 INSN_UID (label) = cur_insn_uid++;
4605 add_insn_after (label, after, NULL);
4606 return as_a <rtx_insn *> (label);
4609 /* Notes require a bit of special handling: Some notes need to have their
4610 BLOCK_FOR_INSN set, others should never have it set, and some should
4611 have it set or clear depending on the context. */
4613 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4614 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4615 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4617 static bool
4618 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4620 switch (subtype)
4622 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4623 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4624 return true;
4626 /* Notes for var tracking and EH region markers can appear between or
4627 inside basic blocks. If the caller is emitting on the basic block
4628 boundary, do not set BLOCK_FOR_INSN on the new note. */
4629 case NOTE_INSN_VAR_LOCATION:
4630 case NOTE_INSN_CALL_ARG_LOCATION:
4631 case NOTE_INSN_EH_REGION_BEG:
4632 case NOTE_INSN_EH_REGION_END:
4633 return on_bb_boundary_p;
4635 /* Otherwise, BLOCK_FOR_INSN must be set. */
4636 default:
4637 return false;
4641 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4643 rtx_note *
4644 emit_note_after (enum insn_note subtype, rtx_insn *after)
4646 rtx_note *note = make_note_raw (subtype);
4647 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4648 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4650 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4651 add_insn_after_nobb (note, after);
4652 else
4653 add_insn_after (note, after, bb);
4654 return note;
4657 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4659 rtx_note *
4660 emit_note_before (enum insn_note subtype, rtx_insn *before)
4662 rtx_note *note = make_note_raw (subtype);
4663 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4664 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4666 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4667 add_insn_before_nobb (note, before);
4668 else
4669 add_insn_before (note, before, bb);
4670 return note;
4673 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4674 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4676 static rtx_insn *
4677 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4678 rtx_insn *(*make_raw) (rtx))
4680 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4681 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4683 if (pattern == NULL_RTX || !loc)
4684 return last;
4686 after = NEXT_INSN (after);
4687 while (1)
4689 if (active_insn_p (after)
4690 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4691 && !INSN_LOCATION (after))
4692 INSN_LOCATION (after) = loc;
4693 if (after == last)
4694 break;
4695 after = NEXT_INSN (after);
4697 return last;
4700 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4701 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4702 any DEBUG_INSNs. */
4704 static rtx_insn *
4705 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4706 rtx_insn *(*make_raw) (rtx))
4708 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4709 rtx_insn *prev = after;
4711 if (skip_debug_insns)
4712 while (DEBUG_INSN_P (prev))
4713 prev = PREV_INSN (prev);
4715 if (INSN_P (prev))
4716 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4717 make_raw);
4718 else
4719 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4722 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4723 rtx_insn *
4724 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4726 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4729 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4730 rtx_insn *
4731 emit_insn_after (rtx pattern, rtx after)
4733 return emit_pattern_after (pattern, after, true, make_insn_raw);
4736 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4737 rtx_jump_insn *
4738 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4740 return as_a <rtx_jump_insn *> (
4741 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4744 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4745 rtx_jump_insn *
4746 emit_jump_insn_after (rtx pattern, rtx after)
4748 return as_a <rtx_jump_insn *> (
4749 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4752 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4753 rtx_insn *
4754 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4756 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4759 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4760 rtx_insn *
4761 emit_call_insn_after (rtx pattern, rtx after)
4763 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4766 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4767 rtx_insn *
4768 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4770 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4773 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4774 rtx_insn *
4775 emit_debug_insn_after (rtx pattern, rtx after)
4777 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4780 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4781 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4782 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4783 CALL_INSN, etc. */
4785 static rtx_insn *
4786 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4787 rtx_insn *(*make_raw) (rtx))
4789 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4790 rtx_insn *first = PREV_INSN (before);
4791 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4792 insnp ? before : NULL_RTX,
4793 NULL, make_raw);
4795 if (pattern == NULL_RTX || !loc)
4796 return last;
4798 if (!first)
4799 first = get_insns ();
4800 else
4801 first = NEXT_INSN (first);
4802 while (1)
4804 if (active_insn_p (first)
4805 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4806 && !INSN_LOCATION (first))
4807 INSN_LOCATION (first) = loc;
4808 if (first == last)
4809 break;
4810 first = NEXT_INSN (first);
4812 return last;
4815 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4816 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4817 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4818 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4820 static rtx_insn *
4821 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4822 bool insnp, rtx_insn *(*make_raw) (rtx))
4824 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4825 rtx_insn *next = before;
4827 if (skip_debug_insns)
4828 while (DEBUG_INSN_P (next))
4829 next = PREV_INSN (next);
4831 if (INSN_P (next))
4832 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4833 insnp, make_raw);
4834 else
4835 return emit_pattern_before_noloc (pattern, before,
4836 insnp ? before : NULL_RTX,
4837 NULL, make_raw);
4840 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4841 rtx_insn *
4842 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4844 return emit_pattern_before_setloc (pattern, before, loc, true,
4845 make_insn_raw);
4848 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4849 rtx_insn *
4850 emit_insn_before (rtx pattern, rtx before)
4852 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4855 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4856 rtx_jump_insn *
4857 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4859 return as_a <rtx_jump_insn *> (
4860 emit_pattern_before_setloc (pattern, before, loc, false,
4861 make_jump_insn_raw));
4864 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4865 rtx_jump_insn *
4866 emit_jump_insn_before (rtx pattern, rtx before)
4868 return as_a <rtx_jump_insn *> (
4869 emit_pattern_before (pattern, before, true, false,
4870 make_jump_insn_raw));
4873 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4874 rtx_insn *
4875 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4877 return emit_pattern_before_setloc (pattern, before, loc, false,
4878 make_call_insn_raw);
4881 /* Like emit_call_insn_before_noloc,
4882 but set insn_location according to BEFORE. */
4883 rtx_insn *
4884 emit_call_insn_before (rtx pattern, rtx_insn *before)
4886 return emit_pattern_before (pattern, before, true, false,
4887 make_call_insn_raw);
4890 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4891 rtx_insn *
4892 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4894 return emit_pattern_before_setloc (pattern, before, loc, false,
4895 make_debug_insn_raw);
4898 /* Like emit_debug_insn_before_noloc,
4899 but set insn_location according to BEFORE. */
4900 rtx_insn *
4901 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4903 return emit_pattern_before (pattern, before, false, false,
4904 make_debug_insn_raw);
4907 /* Take X and emit it at the end of the doubly-linked
4908 INSN list.
4910 Returns the last insn emitted. */
4912 rtx_insn *
4913 emit_insn (rtx x)
4915 rtx_insn *last = get_last_insn ();
4916 rtx_insn *insn;
4918 if (x == NULL_RTX)
4919 return last;
4921 switch (GET_CODE (x))
4923 case DEBUG_INSN:
4924 case INSN:
4925 case JUMP_INSN:
4926 case CALL_INSN:
4927 case CODE_LABEL:
4928 case BARRIER:
4929 case NOTE:
4930 insn = as_a <rtx_insn *> (x);
4931 while (insn)
4933 rtx_insn *next = NEXT_INSN (insn);
4934 add_insn (insn);
4935 last = insn;
4936 insn = next;
4938 break;
4940 #ifdef ENABLE_RTL_CHECKING
4941 case JUMP_TABLE_DATA:
4942 case SEQUENCE:
4943 gcc_unreachable ();
4944 break;
4945 #endif
4947 default:
4948 last = make_insn_raw (x);
4949 add_insn (last);
4950 break;
4953 return last;
4956 /* Make an insn of code DEBUG_INSN with pattern X
4957 and add it to the end of the doubly-linked list. */
4959 rtx_insn *
4960 emit_debug_insn (rtx x)
4962 rtx_insn *last = get_last_insn ();
4963 rtx_insn *insn;
4965 if (x == NULL_RTX)
4966 return last;
4968 switch (GET_CODE (x))
4970 case DEBUG_INSN:
4971 case INSN:
4972 case JUMP_INSN:
4973 case CALL_INSN:
4974 case CODE_LABEL:
4975 case BARRIER:
4976 case NOTE:
4977 insn = as_a <rtx_insn *> (x);
4978 while (insn)
4980 rtx_insn *next = NEXT_INSN (insn);
4981 add_insn (insn);
4982 last = insn;
4983 insn = next;
4985 break;
4987 #ifdef ENABLE_RTL_CHECKING
4988 case JUMP_TABLE_DATA:
4989 case SEQUENCE:
4990 gcc_unreachable ();
4991 break;
4992 #endif
4994 default:
4995 last = make_debug_insn_raw (x);
4996 add_insn (last);
4997 break;
5000 return last;
5003 /* Make an insn of code JUMP_INSN with pattern X
5004 and add it to the end of the doubly-linked list. */
5006 rtx_insn *
5007 emit_jump_insn (rtx x)
5009 rtx_insn *last = NULL;
5010 rtx_insn *insn;
5012 switch (GET_CODE (x))
5014 case DEBUG_INSN:
5015 case INSN:
5016 case JUMP_INSN:
5017 case CALL_INSN:
5018 case CODE_LABEL:
5019 case BARRIER:
5020 case NOTE:
5021 insn = as_a <rtx_insn *> (x);
5022 while (insn)
5024 rtx_insn *next = NEXT_INSN (insn);
5025 add_insn (insn);
5026 last = insn;
5027 insn = next;
5029 break;
5031 #ifdef ENABLE_RTL_CHECKING
5032 case JUMP_TABLE_DATA:
5033 case SEQUENCE:
5034 gcc_unreachable ();
5035 break;
5036 #endif
5038 default:
5039 last = make_jump_insn_raw (x);
5040 add_insn (last);
5041 break;
5044 return last;
5047 /* Make an insn of code CALL_INSN with pattern X
5048 and add it to the end of the doubly-linked list. */
5050 rtx_insn *
5051 emit_call_insn (rtx x)
5053 rtx_insn *insn;
5055 switch (GET_CODE (x))
5057 case DEBUG_INSN:
5058 case INSN:
5059 case JUMP_INSN:
5060 case CALL_INSN:
5061 case CODE_LABEL:
5062 case BARRIER:
5063 case NOTE:
5064 insn = emit_insn (x);
5065 break;
5067 #ifdef ENABLE_RTL_CHECKING
5068 case SEQUENCE:
5069 case JUMP_TABLE_DATA:
5070 gcc_unreachable ();
5071 break;
5072 #endif
5074 default:
5075 insn = make_call_insn_raw (x);
5076 add_insn (insn);
5077 break;
5080 return insn;
5083 /* Add the label LABEL to the end of the doubly-linked list. */
5085 rtx_code_label *
5086 emit_label (rtx uncast_label)
5088 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5090 gcc_checking_assert (INSN_UID (label) == 0);
5091 INSN_UID (label) = cur_insn_uid++;
5092 add_insn (label);
5093 return label;
5096 /* Make an insn of code JUMP_TABLE_DATA
5097 and add it to the end of the doubly-linked list. */
5099 rtx_jump_table_data *
5100 emit_jump_table_data (rtx table)
5102 rtx_jump_table_data *jump_table_data =
5103 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5104 INSN_UID (jump_table_data) = cur_insn_uid++;
5105 PATTERN (jump_table_data) = table;
5106 BLOCK_FOR_INSN (jump_table_data) = NULL;
5107 add_insn (jump_table_data);
5108 return jump_table_data;
5111 /* Make an insn of code BARRIER
5112 and add it to the end of the doubly-linked list. */
5114 rtx_barrier *
5115 emit_barrier (void)
5117 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5118 INSN_UID (barrier) = cur_insn_uid++;
5119 add_insn (barrier);
5120 return barrier;
5123 /* Emit a copy of note ORIG. */
5125 rtx_note *
5126 emit_note_copy (rtx_note *orig)
5128 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5129 rtx_note *note = make_note_raw (kind);
5130 NOTE_DATA (note) = NOTE_DATA (orig);
5131 add_insn (note);
5132 return note;
5135 /* Make an insn of code NOTE or type NOTE_NO
5136 and add it to the end of the doubly-linked list. */
5138 rtx_note *
5139 emit_note (enum insn_note kind)
5141 rtx_note *note = make_note_raw (kind);
5142 add_insn (note);
5143 return note;
5146 /* Emit a clobber of lvalue X. */
5148 rtx_insn *
5149 emit_clobber (rtx x)
5151 /* CONCATs should not appear in the insn stream. */
5152 if (GET_CODE (x) == CONCAT)
5154 emit_clobber (XEXP (x, 0));
5155 return emit_clobber (XEXP (x, 1));
5157 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5160 /* Return a sequence of insns to clobber lvalue X. */
5162 rtx_insn *
5163 gen_clobber (rtx x)
5165 rtx_insn *seq;
5167 start_sequence ();
5168 emit_clobber (x);
5169 seq = get_insns ();
5170 end_sequence ();
5171 return seq;
5174 /* Emit a use of rvalue X. */
5176 rtx_insn *
5177 emit_use (rtx x)
5179 /* CONCATs should not appear in the insn stream. */
5180 if (GET_CODE (x) == CONCAT)
5182 emit_use (XEXP (x, 0));
5183 return emit_use (XEXP (x, 1));
5185 return emit_insn (gen_rtx_USE (VOIDmode, x));
5188 /* Return a sequence of insns to use rvalue X. */
5190 rtx_insn *
5191 gen_use (rtx x)
5193 rtx_insn *seq;
5195 start_sequence ();
5196 emit_use (x);
5197 seq = get_insns ();
5198 end_sequence ();
5199 return seq;
5202 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5203 Return the set in INSN that such notes describe, or NULL if the notes
5204 have no meaning for INSN. */
5207 set_for_reg_notes (rtx insn)
5209 rtx pat, reg;
5211 if (!INSN_P (insn))
5212 return NULL_RTX;
5214 pat = PATTERN (insn);
5215 if (GET_CODE (pat) == PARALLEL)
5217 /* We do not use single_set because that ignores SETs of unused
5218 registers. REG_EQUAL and REG_EQUIV notes really do require the
5219 PARALLEL to have a single SET. */
5220 if (multiple_sets (insn))
5221 return NULL_RTX;
5222 pat = XVECEXP (pat, 0, 0);
5225 if (GET_CODE (pat) != SET)
5226 return NULL_RTX;
5228 reg = SET_DEST (pat);
5230 /* Notes apply to the contents of a STRICT_LOW_PART. */
5231 if (GET_CODE (reg) == STRICT_LOW_PART)
5232 reg = XEXP (reg, 0);
5234 /* Check that we have a register. */
5235 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5236 return NULL_RTX;
5238 return pat;
5241 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5242 note of this type already exists, remove it first. */
5245 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5247 rtx note = find_reg_note (insn, kind, NULL_RTX);
5249 switch (kind)
5251 case REG_EQUAL:
5252 case REG_EQUIV:
5253 if (!set_for_reg_notes (insn))
5254 return NULL_RTX;
5256 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5257 It serves no useful purpose and breaks eliminate_regs. */
5258 if (GET_CODE (datum) == ASM_OPERANDS)
5259 return NULL_RTX;
5261 /* Notes with side effects are dangerous. Even if the side-effect
5262 initially mirrors one in PATTERN (INSN), later optimizations
5263 might alter the way that the final register value is calculated
5264 and so move or alter the side-effect in some way. The note would
5265 then no longer be a valid substitution for SET_SRC. */
5266 if (side_effects_p (datum))
5267 return NULL_RTX;
5268 break;
5270 default:
5271 break;
5274 if (note)
5275 XEXP (note, 0) = datum;
5276 else
5278 add_reg_note (insn, kind, datum);
5279 note = REG_NOTES (insn);
5282 switch (kind)
5284 case REG_EQUAL:
5285 case REG_EQUIV:
5286 df_notes_rescan (as_a <rtx_insn *> (insn));
5287 break;
5288 default:
5289 break;
5292 return note;
5295 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5297 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5299 rtx set = set_for_reg_notes (insn);
5301 if (set && SET_DEST (set) == dst)
5302 return set_unique_reg_note (insn, kind, datum);
5303 return NULL_RTX;
5306 /* Emit the rtl pattern X as an appropriate kind of insn.
5307 If X is a label, it is simply added into the insn chain. */
5309 rtx_insn *
5310 emit (rtx x)
5312 enum rtx_code code = classify_insn (x);
5314 switch (code)
5316 case CODE_LABEL:
5317 return emit_label (x);
5318 case INSN:
5319 return emit_insn (x);
5320 case JUMP_INSN:
5322 rtx_insn *insn = emit_jump_insn (x);
5323 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5324 return emit_barrier ();
5325 return insn;
5327 case CALL_INSN:
5328 return emit_call_insn (x);
5329 case DEBUG_INSN:
5330 return emit_debug_insn (x);
5331 default:
5332 gcc_unreachable ();
5336 /* Space for free sequence stack entries. */
5337 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5339 /* Begin emitting insns to a sequence. If this sequence will contain
5340 something that might cause the compiler to pop arguments to function
5341 calls (because those pops have previously been deferred; see
5342 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5343 before calling this function. That will ensure that the deferred
5344 pops are not accidentally emitted in the middle of this sequence. */
5346 void
5347 start_sequence (void)
5349 struct sequence_stack *tem;
5351 if (free_sequence_stack != NULL)
5353 tem = free_sequence_stack;
5354 free_sequence_stack = tem->next;
5356 else
5357 tem = ggc_alloc<sequence_stack> ();
5359 tem->next = get_current_sequence ()->next;
5360 tem->first = get_insns ();
5361 tem->last = get_last_insn ();
5362 get_current_sequence ()->next = tem;
5364 set_first_insn (0);
5365 set_last_insn (0);
5368 /* Set up the insn chain starting with FIRST as the current sequence,
5369 saving the previously current one. See the documentation for
5370 start_sequence for more information about how to use this function. */
5372 void
5373 push_to_sequence (rtx_insn *first)
5375 rtx_insn *last;
5377 start_sequence ();
5379 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5382 set_first_insn (first);
5383 set_last_insn (last);
5386 /* Like push_to_sequence, but take the last insn as an argument to avoid
5387 looping through the list. */
5389 void
5390 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5392 start_sequence ();
5394 set_first_insn (first);
5395 set_last_insn (last);
5398 /* Set up the outer-level insn chain
5399 as the current sequence, saving the previously current one. */
5401 void
5402 push_topmost_sequence (void)
5404 struct sequence_stack *top;
5406 start_sequence ();
5408 top = get_topmost_sequence ();
5409 set_first_insn (top->first);
5410 set_last_insn (top->last);
5413 /* After emitting to the outer-level insn chain, update the outer-level
5414 insn chain, and restore the previous saved state. */
5416 void
5417 pop_topmost_sequence (void)
5419 struct sequence_stack *top;
5421 top = get_topmost_sequence ();
5422 top->first = get_insns ();
5423 top->last = get_last_insn ();
5425 end_sequence ();
5428 /* After emitting to a sequence, restore previous saved state.
5430 To get the contents of the sequence just made, you must call
5431 `get_insns' *before* calling here.
5433 If the compiler might have deferred popping arguments while
5434 generating this sequence, and this sequence will not be immediately
5435 inserted into the instruction stream, use do_pending_stack_adjust
5436 before calling get_insns. That will ensure that the deferred
5437 pops are inserted into this sequence, and not into some random
5438 location in the instruction stream. See INHIBIT_DEFER_POP for more
5439 information about deferred popping of arguments. */
5441 void
5442 end_sequence (void)
5444 struct sequence_stack *tem = get_current_sequence ()->next;
5446 set_first_insn (tem->first);
5447 set_last_insn (tem->last);
5448 get_current_sequence ()->next = tem->next;
5450 memset (tem, 0, sizeof (*tem));
5451 tem->next = free_sequence_stack;
5452 free_sequence_stack = tem;
5455 /* Return 1 if currently emitting into a sequence. */
5458 in_sequence_p (void)
5460 return get_current_sequence ()->next != 0;
5463 /* Put the various virtual registers into REGNO_REG_RTX. */
5465 static void
5466 init_virtual_regs (void)
5468 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5469 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5470 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5471 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5472 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5473 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5474 = virtual_preferred_stack_boundary_rtx;
5478 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5479 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5480 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5481 static int copy_insn_n_scratches;
5483 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5484 copied an ASM_OPERANDS.
5485 In that case, it is the original input-operand vector. */
5486 static rtvec orig_asm_operands_vector;
5488 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5489 copied an ASM_OPERANDS.
5490 In that case, it is the copied input-operand vector. */
5491 static rtvec copy_asm_operands_vector;
5493 /* Likewise for the constraints vector. */
5494 static rtvec orig_asm_constraints_vector;
5495 static rtvec copy_asm_constraints_vector;
5497 /* Recursively create a new copy of an rtx for copy_insn.
5498 This function differs from copy_rtx in that it handles SCRATCHes and
5499 ASM_OPERANDs properly.
5500 Normally, this function is not used directly; use copy_insn as front end.
5501 However, you could first copy an insn pattern with copy_insn and then use
5502 this function afterwards to properly copy any REG_NOTEs containing
5503 SCRATCHes. */
5506 copy_insn_1 (rtx orig)
5508 rtx copy;
5509 int i, j;
5510 RTX_CODE code;
5511 const char *format_ptr;
5513 if (orig == NULL)
5514 return NULL;
5516 code = GET_CODE (orig);
5518 switch (code)
5520 case REG:
5521 case DEBUG_EXPR:
5522 CASE_CONST_ANY:
5523 case SYMBOL_REF:
5524 case CODE_LABEL:
5525 case PC:
5526 case CC0:
5527 case RETURN:
5528 case SIMPLE_RETURN:
5529 return orig;
5530 case CLOBBER:
5531 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5532 clobbers or clobbers of hard registers that originated as pseudos.
5533 This is needed to allow safe register renaming. */
5534 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5535 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5536 return orig;
5537 break;
5539 case SCRATCH:
5540 for (i = 0; i < copy_insn_n_scratches; i++)
5541 if (copy_insn_scratch_in[i] == orig)
5542 return copy_insn_scratch_out[i];
5543 break;
5545 case CONST:
5546 if (shared_const_p (orig))
5547 return orig;
5548 break;
5550 /* A MEM with a constant address is not sharable. The problem is that
5551 the constant address may need to be reloaded. If the mem is shared,
5552 then reloading one copy of this mem will cause all copies to appear
5553 to have been reloaded. */
5555 default:
5556 break;
5559 /* Copy the various flags, fields, and other information. We assume
5560 that all fields need copying, and then clear the fields that should
5561 not be copied. That is the sensible default behavior, and forces
5562 us to explicitly document why we are *not* copying a flag. */
5563 copy = shallow_copy_rtx (orig);
5565 /* We do not copy the USED flag, which is used as a mark bit during
5566 walks over the RTL. */
5567 RTX_FLAG (copy, used) = 0;
5569 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5570 if (INSN_P (orig))
5572 RTX_FLAG (copy, jump) = 0;
5573 RTX_FLAG (copy, call) = 0;
5574 RTX_FLAG (copy, frame_related) = 0;
5577 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5579 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5580 switch (*format_ptr++)
5582 case 'e':
5583 if (XEXP (orig, i) != NULL)
5584 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5585 break;
5587 case 'E':
5588 case 'V':
5589 if (XVEC (orig, i) == orig_asm_constraints_vector)
5590 XVEC (copy, i) = copy_asm_constraints_vector;
5591 else if (XVEC (orig, i) == orig_asm_operands_vector)
5592 XVEC (copy, i) = copy_asm_operands_vector;
5593 else if (XVEC (orig, i) != NULL)
5595 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5596 for (j = 0; j < XVECLEN (copy, i); j++)
5597 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5599 break;
5601 case 't':
5602 case 'w':
5603 case 'i':
5604 case 's':
5605 case 'S':
5606 case 'u':
5607 case '0':
5608 /* These are left unchanged. */
5609 break;
5611 default:
5612 gcc_unreachable ();
5615 if (code == SCRATCH)
5617 i = copy_insn_n_scratches++;
5618 gcc_assert (i < MAX_RECOG_OPERANDS);
5619 copy_insn_scratch_in[i] = orig;
5620 copy_insn_scratch_out[i] = copy;
5622 else if (code == ASM_OPERANDS)
5624 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5625 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5626 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5627 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5630 return copy;
5633 /* Create a new copy of an rtx.
5634 This function differs from copy_rtx in that it handles SCRATCHes and
5635 ASM_OPERANDs properly.
5636 INSN doesn't really have to be a full INSN; it could be just the
5637 pattern. */
5639 copy_insn (rtx insn)
5641 copy_insn_n_scratches = 0;
5642 orig_asm_operands_vector = 0;
5643 orig_asm_constraints_vector = 0;
5644 copy_asm_operands_vector = 0;
5645 copy_asm_constraints_vector = 0;
5646 return copy_insn_1 (insn);
5649 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5650 on that assumption that INSN itself remains in its original place. */
5652 rtx_insn *
5653 copy_delay_slot_insn (rtx_insn *insn)
5655 /* Copy INSN with its rtx_code, all its notes, location etc. */
5656 insn = as_a <rtx_insn *> (copy_rtx (insn));
5657 INSN_UID (insn) = cur_insn_uid++;
5658 return insn;
5661 /* Initialize data structures and variables in this file
5662 before generating rtl for each function. */
5664 void
5665 init_emit (void)
5667 set_first_insn (NULL);
5668 set_last_insn (NULL);
5669 if (MIN_NONDEBUG_INSN_UID)
5670 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5671 else
5672 cur_insn_uid = 1;
5673 cur_debug_insn_uid = 1;
5674 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5675 first_label_num = label_num;
5676 get_current_sequence ()->next = NULL;
5678 /* Init the tables that describe all the pseudo regs. */
5680 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5682 crtl->emit.regno_pointer_align
5683 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5685 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5687 /* Put copies of all the hard registers into regno_reg_rtx. */
5688 memcpy (regno_reg_rtx,
5689 initial_regno_reg_rtx,
5690 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5692 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5693 init_virtual_regs ();
5695 /* Indicate that the virtual registers and stack locations are
5696 all pointers. */
5697 REG_POINTER (stack_pointer_rtx) = 1;
5698 REG_POINTER (frame_pointer_rtx) = 1;
5699 REG_POINTER (hard_frame_pointer_rtx) = 1;
5700 REG_POINTER (arg_pointer_rtx) = 1;
5702 REG_POINTER (virtual_incoming_args_rtx) = 1;
5703 REG_POINTER (virtual_stack_vars_rtx) = 1;
5704 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5705 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5706 REG_POINTER (virtual_cfa_rtx) = 1;
5708 #ifdef STACK_BOUNDARY
5709 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5710 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5711 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5712 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5714 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5715 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5716 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5717 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5718 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5719 #endif
5721 #ifdef INIT_EXPANDERS
5722 INIT_EXPANDERS;
5723 #endif
5726 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5728 static rtx
5729 gen_const_vector (machine_mode mode, int constant)
5731 rtx tem;
5732 rtvec v;
5733 int units, i;
5734 machine_mode inner;
5736 units = GET_MODE_NUNITS (mode);
5737 inner = GET_MODE_INNER (mode);
5739 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5741 v = rtvec_alloc (units);
5743 /* We need to call this function after we set the scalar const_tiny_rtx
5744 entries. */
5745 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5747 for (i = 0; i < units; ++i)
5748 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5750 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5751 return tem;
5754 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5755 all elements are zero, and the one vector when all elements are one. */
5757 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5759 machine_mode inner = GET_MODE_INNER (mode);
5760 int nunits = GET_MODE_NUNITS (mode);
5761 rtx x;
5762 int i;
5764 /* Check to see if all of the elements have the same value. */
5765 x = RTVEC_ELT (v, nunits - 1);
5766 for (i = nunits - 2; i >= 0; i--)
5767 if (RTVEC_ELT (v, i) != x)
5768 break;
5770 /* If the values are all the same, check to see if we can use one of the
5771 standard constant vectors. */
5772 if (i == -1)
5774 if (x == CONST0_RTX (inner))
5775 return CONST0_RTX (mode);
5776 else if (x == CONST1_RTX (inner))
5777 return CONST1_RTX (mode);
5778 else if (x == CONSTM1_RTX (inner))
5779 return CONSTM1_RTX (mode);
5782 return gen_rtx_raw_CONST_VECTOR (mode, v);
5785 /* Initialise global register information required by all functions. */
5787 void
5788 init_emit_regs (void)
5790 int i;
5791 machine_mode mode;
5792 mem_attrs *attrs;
5794 /* Reset register attributes */
5795 reg_attrs_htab->empty ();
5797 /* We need reg_raw_mode, so initialize the modes now. */
5798 init_reg_modes_target ();
5800 /* Assign register numbers to the globally defined register rtx. */
5801 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5802 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5803 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5804 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5805 virtual_incoming_args_rtx =
5806 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5807 virtual_stack_vars_rtx =
5808 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5809 virtual_stack_dynamic_rtx =
5810 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5811 virtual_outgoing_args_rtx =
5812 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5813 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5814 virtual_preferred_stack_boundary_rtx =
5815 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5817 /* Initialize RTL for commonly used hard registers. These are
5818 copied into regno_reg_rtx as we begin to compile each function. */
5819 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5820 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5822 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5823 return_address_pointer_rtx
5824 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5825 #endif
5827 pic_offset_table_rtx = NULL_RTX;
5828 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5829 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5831 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5833 mode = (machine_mode) i;
5834 attrs = ggc_cleared_alloc<mem_attrs> ();
5835 attrs->align = BITS_PER_UNIT;
5836 attrs->addrspace = ADDR_SPACE_GENERIC;
5837 if (mode != BLKmode)
5839 attrs->size_known_p = true;
5840 attrs->size = GET_MODE_SIZE (mode);
5841 if (STRICT_ALIGNMENT)
5842 attrs->align = GET_MODE_ALIGNMENT (mode);
5844 mode_mem_attrs[i] = attrs;
5848 /* Initialize global machine_mode variables. */
5850 void
5851 init_derived_machine_modes (void)
5853 byte_mode = VOIDmode;
5854 word_mode = VOIDmode;
5856 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5857 mode != VOIDmode;
5858 mode = GET_MODE_WIDER_MODE (mode))
5860 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5861 && byte_mode == VOIDmode)
5862 byte_mode = mode;
5864 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5865 && word_mode == VOIDmode)
5866 word_mode = mode;
5869 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5872 /* Create some permanent unique rtl objects shared between all functions. */
5874 void
5875 init_emit_once (void)
5877 int i;
5878 machine_mode mode;
5879 machine_mode double_mode;
5881 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5882 CONST_FIXED, and memory attribute hash tables. */
5883 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5885 #if TARGET_SUPPORTS_WIDE_INT
5886 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5887 #endif
5888 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5890 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5892 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5894 #ifdef INIT_EXPANDERS
5895 /* This is to initialize {init|mark|free}_machine_status before the first
5896 call to push_function_context_to. This is needed by the Chill front
5897 end which calls push_function_context_to before the first call to
5898 init_function_start. */
5899 INIT_EXPANDERS;
5900 #endif
5902 /* Create the unique rtx's for certain rtx codes and operand values. */
5904 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5905 tries to use these variables. */
5906 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5907 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5908 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5910 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5911 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5912 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5913 else
5914 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5916 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5918 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5919 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5920 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5922 dconstm1 = dconst1;
5923 dconstm1.sign = 1;
5925 dconsthalf = dconst1;
5926 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5928 for (i = 0; i < 3; i++)
5930 const REAL_VALUE_TYPE *const r =
5931 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5933 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5934 mode != VOIDmode;
5935 mode = GET_MODE_WIDER_MODE (mode))
5936 const_tiny_rtx[i][(int) mode] =
5937 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5939 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5940 mode != VOIDmode;
5941 mode = GET_MODE_WIDER_MODE (mode))
5942 const_tiny_rtx[i][(int) mode] =
5943 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5945 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5947 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5948 mode != VOIDmode;
5949 mode = GET_MODE_WIDER_MODE (mode))
5950 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5952 for (mode = MIN_MODE_PARTIAL_INT;
5953 mode <= MAX_MODE_PARTIAL_INT;
5954 mode = (machine_mode)((int)(mode) + 1))
5955 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5958 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5960 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5961 mode != VOIDmode;
5962 mode = GET_MODE_WIDER_MODE (mode))
5963 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5965 for (mode = MIN_MODE_PARTIAL_INT;
5966 mode <= MAX_MODE_PARTIAL_INT;
5967 mode = (machine_mode)((int)(mode) + 1))
5968 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5970 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5971 mode != VOIDmode;
5972 mode = GET_MODE_WIDER_MODE (mode))
5974 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5975 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5978 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5979 mode != VOIDmode;
5980 mode = GET_MODE_WIDER_MODE (mode))
5982 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5983 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5986 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5987 mode != VOIDmode;
5988 mode = GET_MODE_WIDER_MODE (mode))
5990 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5991 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5992 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5995 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5996 mode != VOIDmode;
5997 mode = GET_MODE_WIDER_MODE (mode))
5999 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6000 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6003 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6004 mode != VOIDmode;
6005 mode = GET_MODE_WIDER_MODE (mode))
6007 FCONST0 (mode).data.high = 0;
6008 FCONST0 (mode).data.low = 0;
6009 FCONST0 (mode).mode = mode;
6010 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6011 FCONST0 (mode), mode);
6014 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6015 mode != VOIDmode;
6016 mode = GET_MODE_WIDER_MODE (mode))
6018 FCONST0 (mode).data.high = 0;
6019 FCONST0 (mode).data.low = 0;
6020 FCONST0 (mode).mode = mode;
6021 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6022 FCONST0 (mode), mode);
6025 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6026 mode != VOIDmode;
6027 mode = GET_MODE_WIDER_MODE (mode))
6029 FCONST0 (mode).data.high = 0;
6030 FCONST0 (mode).data.low = 0;
6031 FCONST0 (mode).mode = mode;
6032 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6033 FCONST0 (mode), mode);
6035 /* We store the value 1. */
6036 FCONST1 (mode).data.high = 0;
6037 FCONST1 (mode).data.low = 0;
6038 FCONST1 (mode).mode = mode;
6039 FCONST1 (mode).data
6040 = double_int_one.lshift (GET_MODE_FBIT (mode),
6041 HOST_BITS_PER_DOUBLE_INT,
6042 SIGNED_FIXED_POINT_MODE_P (mode));
6043 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6044 FCONST1 (mode), mode);
6047 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6048 mode != VOIDmode;
6049 mode = GET_MODE_WIDER_MODE (mode))
6051 FCONST0 (mode).data.high = 0;
6052 FCONST0 (mode).data.low = 0;
6053 FCONST0 (mode).mode = mode;
6054 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6055 FCONST0 (mode), mode);
6057 /* We store the value 1. */
6058 FCONST1 (mode).data.high = 0;
6059 FCONST1 (mode).data.low = 0;
6060 FCONST1 (mode).mode = mode;
6061 FCONST1 (mode).data
6062 = double_int_one.lshift (GET_MODE_FBIT (mode),
6063 HOST_BITS_PER_DOUBLE_INT,
6064 SIGNED_FIXED_POINT_MODE_P (mode));
6065 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6066 FCONST1 (mode), mode);
6069 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6070 mode != VOIDmode;
6071 mode = GET_MODE_WIDER_MODE (mode))
6073 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6076 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6077 mode != VOIDmode;
6078 mode = GET_MODE_WIDER_MODE (mode))
6080 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6083 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6084 mode != VOIDmode;
6085 mode = GET_MODE_WIDER_MODE (mode))
6087 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6088 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6091 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6092 mode != VOIDmode;
6093 mode = GET_MODE_WIDER_MODE (mode))
6095 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6096 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6099 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6100 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6101 const_tiny_rtx[0][i] = const0_rtx;
6103 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6104 if (STORE_FLAG_VALUE == 1)
6105 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6107 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6108 mode != VOIDmode;
6109 mode = GET_MODE_WIDER_MODE (mode))
6111 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6112 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6115 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6116 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6117 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6118 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6119 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6120 /*prev_insn=*/NULL,
6121 /*next_insn=*/NULL,
6122 /*bb=*/NULL,
6123 /*pattern=*/NULL_RTX,
6124 /*location=*/-1,
6125 CODE_FOR_nothing,
6126 /*reg_notes=*/NULL_RTX);
6129 /* Produce exact duplicate of insn INSN after AFTER.
6130 Care updating of libcall regions if present. */
6132 rtx_insn *
6133 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6135 rtx_insn *new_rtx;
6136 rtx link;
6138 switch (GET_CODE (insn))
6140 case INSN:
6141 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6142 break;
6144 case JUMP_INSN:
6145 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6146 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6147 break;
6149 case DEBUG_INSN:
6150 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6151 break;
6153 case CALL_INSN:
6154 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6155 if (CALL_INSN_FUNCTION_USAGE (insn))
6156 CALL_INSN_FUNCTION_USAGE (new_rtx)
6157 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6158 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6159 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6160 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6161 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6162 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6163 break;
6165 default:
6166 gcc_unreachable ();
6169 /* Update LABEL_NUSES. */
6170 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6172 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6174 /* If the old insn is frame related, then so is the new one. This is
6175 primarily needed for IA-64 unwind info which marks epilogue insns,
6176 which may be duplicated by the basic block reordering code. */
6177 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6179 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6180 will make them. REG_LABEL_TARGETs are created there too, but are
6181 supposed to be sticky, so we copy them. */
6182 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6183 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6185 if (GET_CODE (link) == EXPR_LIST)
6186 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6187 copy_insn_1 (XEXP (link, 0)));
6188 else
6189 add_shallow_copy_of_reg_note (new_rtx, link);
6192 INSN_CODE (new_rtx) = INSN_CODE (insn);
6193 return new_rtx;
6196 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6198 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6200 if (hard_reg_clobbers[mode][regno])
6201 return hard_reg_clobbers[mode][regno];
6202 else
6203 return (hard_reg_clobbers[mode][regno] =
6204 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6207 location_t prologue_location;
6208 location_t epilogue_location;
6210 /* Hold current location information and last location information, so the
6211 datastructures are built lazily only when some instructions in given
6212 place are needed. */
6213 static location_t curr_location;
6215 /* Allocate insn location datastructure. */
6216 void
6217 insn_locations_init (void)
6219 prologue_location = epilogue_location = 0;
6220 curr_location = UNKNOWN_LOCATION;
6223 /* At the end of emit stage, clear current location. */
6224 void
6225 insn_locations_finalize (void)
6227 epilogue_location = curr_location;
6228 curr_location = UNKNOWN_LOCATION;
6231 /* Set current location. */
6232 void
6233 set_curr_insn_location (location_t location)
6235 curr_location = location;
6238 /* Get current location. */
6239 location_t
6240 curr_insn_location (void)
6242 return curr_location;
6245 /* Return lexical scope block insn belongs to. */
6246 tree
6247 insn_scope (const rtx_insn *insn)
6249 return LOCATION_BLOCK (INSN_LOCATION (insn));
6252 /* Return line number of the statement that produced this insn. */
6254 insn_line (const rtx_insn *insn)
6256 return LOCATION_LINE (INSN_LOCATION (insn));
6259 /* Return source file of the statement that produced this insn. */
6260 const char *
6261 insn_file (const rtx_insn *insn)
6263 return LOCATION_FILE (INSN_LOCATION (insn));
6266 /* Return expanded location of the statement that produced this insn. */
6267 expanded_location
6268 insn_location (const rtx_insn *insn)
6270 return expand_location (INSN_LOCATION (insn));
6273 /* Return true if memory model MODEL requires a pre-operation (release-style)
6274 barrier or a post-operation (acquire-style) barrier. While not universal,
6275 this function matches behavior of several targets. */
6277 bool
6278 need_atomic_barrier_p (enum memmodel model, bool pre)
6280 switch (model & MEMMODEL_BASE_MASK)
6282 case MEMMODEL_RELAXED:
6283 case MEMMODEL_CONSUME:
6284 return false;
6285 case MEMMODEL_RELEASE:
6286 return pre;
6287 case MEMMODEL_ACQUIRE:
6288 return !pre;
6289 case MEMMODEL_ACQ_REL:
6290 case MEMMODEL_SEQ_CST:
6291 return true;
6292 default:
6293 gcc_unreachable ();
6297 #include "gt-emit-rtl.h"