* gcc.dg/atomic-compare-exchange-1.c,
[official-gcc.git] / gcc / cfgloopmanip.c
blobbe876db354f524970fdcdce4afac182b219d45f7
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "basic-block.h"
26 #include "cfgloop.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "tree-ssa-loop-manip.h"
30 #include "dumpfile.h"
32 static void copy_loops_to (struct loop **, int,
33 struct loop *);
34 static void loop_redirect_edge (edge, basic_block);
35 static void remove_bbs (basic_block *, int);
36 static bool rpe_enum_p (const_basic_block, const void *);
37 static int find_path (edge, basic_block **);
38 static void fix_loop_placements (struct loop *, bool *);
39 static bool fix_bb_placement (basic_block);
40 static void fix_bb_placements (basic_block, bool *, bitmap);
42 /* Checks whether basic block BB is dominated by DATA. */
43 static bool
44 rpe_enum_p (const_basic_block bb, const void *data)
46 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
49 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
51 static void
52 remove_bbs (basic_block *bbs, int nbbs)
54 int i;
56 for (i = 0; i < nbbs; i++)
57 delete_basic_block (bbs[i]);
60 /* Find path -- i.e. the basic blocks dominated by edge E and put them
61 into array BBS, that will be allocated large enough to contain them.
62 E->dest must have exactly one predecessor for this to work (it is
63 easy to achieve and we do not put it here because we do not want to
64 alter anything by this function). The number of basic blocks in the
65 path is returned. */
66 static int
67 find_path (edge e, basic_block **bbs)
69 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
71 /* Find bbs in the path. */
72 *bbs = XNEWVEC (basic_block, n_basic_blocks);
73 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
74 n_basic_blocks, e->dest);
77 /* Fix placement of basic block BB inside loop hierarchy --
78 Let L be a loop to that BB belongs. Then every successor of BB must either
79 1) belong to some superloop of loop L, or
80 2) be a header of loop K such that K->outer is superloop of L
81 Returns true if we had to move BB into other loop to enforce this condition,
82 false if the placement of BB was already correct (provided that placements
83 of its successors are correct). */
84 static bool
85 fix_bb_placement (basic_block bb)
87 edge e;
88 edge_iterator ei;
89 struct loop *loop = current_loops->tree_root, *act;
91 FOR_EACH_EDGE (e, ei, bb->succs)
93 if (e->dest == EXIT_BLOCK_PTR)
94 continue;
96 act = e->dest->loop_father;
97 if (act->header == e->dest)
98 act = loop_outer (act);
100 if (flow_loop_nested_p (loop, act))
101 loop = act;
104 if (loop == bb->loop_father)
105 return false;
107 remove_bb_from_loops (bb);
108 add_bb_to_loop (bb, loop);
110 return true;
113 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
114 of LOOP to that leads at least one exit edge of LOOP, and set it
115 as the immediate superloop of LOOP. Return true if the immediate superloop
116 of LOOP changed.
118 IRRED_INVALIDATED is set to true if a change in the loop structures might
119 invalidate the information about irreducible regions. */
121 static bool
122 fix_loop_placement (struct loop *loop, bool *irred_invalidated)
124 unsigned i;
125 edge e;
126 vec<edge> exits = get_loop_exit_edges (loop);
127 struct loop *father = current_loops->tree_root, *act;
128 bool ret = false;
130 FOR_EACH_VEC_ELT (exits, i, e)
132 act = find_common_loop (loop, e->dest->loop_father);
133 if (flow_loop_nested_p (father, act))
134 father = act;
137 if (father != loop_outer (loop))
139 for (act = loop_outer (loop); act != father; act = loop_outer (act))
140 act->num_nodes -= loop->num_nodes;
141 flow_loop_tree_node_remove (loop);
142 flow_loop_tree_node_add (father, loop);
144 /* The exit edges of LOOP no longer exits its original immediate
145 superloops; remove them from the appropriate exit lists. */
146 FOR_EACH_VEC_ELT (exits, i, e)
148 /* We may need to recompute irreducible loops. */
149 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
150 *irred_invalidated = true;
151 rescan_loop_exit (e, false, false);
154 ret = true;
157 exits.release ();
158 return ret;
161 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
162 enforce condition condition stated in description of fix_bb_placement. We
163 start from basic block FROM that had some of its successors removed, so that
164 his placement no longer has to be correct, and iteratively fix placement of
165 its predecessors that may change if placement of FROM changed. Also fix
166 placement of subloops of FROM->loop_father, that might also be altered due
167 to this change; the condition for them is similar, except that instead of
168 successors we consider edges coming out of the loops.
170 If the changes may invalidate the information about irreducible regions,
171 IRRED_INVALIDATED is set to true.
173 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
174 changed loop_father are collected there. */
176 static void
177 fix_bb_placements (basic_block from,
178 bool *irred_invalidated,
179 bitmap loop_closed_ssa_invalidated)
181 sbitmap in_queue;
182 basic_block *queue, *qtop, *qbeg, *qend;
183 struct loop *base_loop, *target_loop;
184 edge e;
186 /* We pass through blocks back-reachable from FROM, testing whether some
187 of their successors moved to outer loop. It may be necessary to
188 iterate several times, but it is finite, as we stop unless we move
189 the basic block up the loop structure. The whole story is a bit
190 more complicated due to presence of subloops, those are moved using
191 fix_loop_placement. */
193 base_loop = from->loop_father;
194 /* If we are already in the outermost loop, the basic blocks cannot be moved
195 outside of it. If FROM is the header of the base loop, it cannot be moved
196 outside of it, either. In both cases, we can end now. */
197 if (base_loop == current_loops->tree_root
198 || from == base_loop->header)
199 return;
201 in_queue = sbitmap_alloc (last_basic_block);
202 bitmap_clear (in_queue);
203 bitmap_set_bit (in_queue, from->index);
204 /* Prevent us from going out of the base_loop. */
205 bitmap_set_bit (in_queue, base_loop->header->index);
207 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
208 qtop = queue + base_loop->num_nodes + 1;
209 qbeg = queue;
210 qend = queue + 1;
211 *qbeg = from;
213 while (qbeg != qend)
215 edge_iterator ei;
216 from = *qbeg;
217 qbeg++;
218 if (qbeg == qtop)
219 qbeg = queue;
220 bitmap_clear_bit (in_queue, from->index);
222 if (from->loop_father->header == from)
224 /* Subloop header, maybe move the loop upward. */
225 if (!fix_loop_placement (from->loop_father, irred_invalidated))
226 continue;
227 target_loop = loop_outer (from->loop_father);
228 if (loop_closed_ssa_invalidated)
230 basic_block *bbs = get_loop_body (from->loop_father);
231 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
232 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
233 free (bbs);
236 else
238 /* Ordinary basic block. */
239 if (!fix_bb_placement (from))
240 continue;
241 target_loop = from->loop_father;
242 if (loop_closed_ssa_invalidated)
243 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
246 FOR_EACH_EDGE (e, ei, from->succs)
248 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
249 *irred_invalidated = true;
252 /* Something has changed, insert predecessors into queue. */
253 FOR_EACH_EDGE (e, ei, from->preds)
255 basic_block pred = e->src;
256 struct loop *nca;
258 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
259 *irred_invalidated = true;
261 if (bitmap_bit_p (in_queue, pred->index))
262 continue;
264 /* If it is subloop, then it either was not moved, or
265 the path up the loop tree from base_loop do not contain
266 it. */
267 nca = find_common_loop (pred->loop_father, base_loop);
268 if (pred->loop_father != base_loop
269 && (nca == base_loop
270 || nca != pred->loop_father))
271 pred = pred->loop_father->header;
272 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
274 /* If PRED is already higher in the loop hierarchy than the
275 TARGET_LOOP to that we moved FROM, the change of the position
276 of FROM does not affect the position of PRED, so there is no
277 point in processing it. */
278 continue;
281 if (bitmap_bit_p (in_queue, pred->index))
282 continue;
284 /* Schedule the basic block. */
285 *qend = pred;
286 qend++;
287 if (qend == qtop)
288 qend = queue;
289 bitmap_set_bit (in_queue, pred->index);
292 free (in_queue);
293 free (queue);
296 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
297 and update loop structures and dominators. Return true if we were able
298 to remove the path, false otherwise (and nothing is affected then). */
299 bool
300 remove_path (edge e)
302 edge ae;
303 basic_block *rem_bbs, *bord_bbs, from, bb;
304 vec<basic_block> dom_bbs;
305 int i, nrem, n_bord_bbs;
306 sbitmap seen;
307 bool irred_invalidated = false;
308 edge_iterator ei;
309 struct loop *l, *f;
311 if (!can_remove_branch_p (e))
312 return false;
314 /* Keep track of whether we need to update information about irreducible
315 regions. This is the case if the removed area is a part of the
316 irreducible region, or if the set of basic blocks that belong to a loop
317 that is inside an irreducible region is changed, or if such a loop is
318 removed. */
319 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
320 irred_invalidated = true;
322 /* We need to check whether basic blocks are dominated by the edge
323 e, but we only have basic block dominators. This is easy to
324 fix -- when e->dest has exactly one predecessor, this corresponds
325 to blocks dominated by e->dest, if not, split the edge. */
326 if (!single_pred_p (e->dest))
327 e = single_pred_edge (split_edge (e));
329 /* It may happen that by removing path we remove one or more loops
330 we belong to. In this case first unloop the loops, then proceed
331 normally. We may assume that e->dest is not a header of any loop,
332 as it now has exactly one predecessor. */
333 for (l = e->src->loop_father; loop_outer (l); l = f)
335 f = loop_outer (l);
336 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
337 unloop (l, &irred_invalidated, NULL);
340 /* Identify the path. */
341 nrem = find_path (e, &rem_bbs);
343 n_bord_bbs = 0;
344 bord_bbs = XNEWVEC (basic_block, n_basic_blocks);
345 seen = sbitmap_alloc (last_basic_block);
346 bitmap_clear (seen);
348 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
349 for (i = 0; i < nrem; i++)
350 bitmap_set_bit (seen, rem_bbs[i]->index);
351 if (!irred_invalidated)
352 FOR_EACH_EDGE (ae, ei, e->src->succs)
353 if (ae != e && ae->dest != EXIT_BLOCK_PTR && !bitmap_bit_p (seen, ae->dest->index)
354 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
356 irred_invalidated = true;
357 break;
360 for (i = 0; i < nrem; i++)
362 bb = rem_bbs[i];
363 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
364 if (ae->dest != EXIT_BLOCK_PTR && !bitmap_bit_p (seen, ae->dest->index))
366 bitmap_set_bit (seen, ae->dest->index);
367 bord_bbs[n_bord_bbs++] = ae->dest;
369 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
370 irred_invalidated = true;
374 /* Remove the path. */
375 from = e->src;
376 remove_branch (e);
377 dom_bbs.create (0);
379 /* Cancel loops contained in the path. */
380 for (i = 0; i < nrem; i++)
381 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
382 cancel_loop_tree (rem_bbs[i]->loop_father);
384 remove_bbs (rem_bbs, nrem);
385 free (rem_bbs);
387 /* Find blocks whose dominators may be affected. */
388 bitmap_clear (seen);
389 for (i = 0; i < n_bord_bbs; i++)
391 basic_block ldom;
393 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
394 if (bitmap_bit_p (seen, bb->index))
395 continue;
396 bitmap_set_bit (seen, bb->index);
398 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
399 ldom;
400 ldom = next_dom_son (CDI_DOMINATORS, ldom))
401 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
402 dom_bbs.safe_push (ldom);
405 free (seen);
407 /* Recount dominators. */
408 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
409 dom_bbs.release ();
410 free (bord_bbs);
412 /* Fix placements of basic blocks inside loops and the placement of
413 loops in the loop tree. */
414 fix_bb_placements (from, &irred_invalidated, NULL);
415 fix_loop_placements (from->loop_father, &irred_invalidated);
417 if (irred_invalidated
418 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
419 mark_irreducible_loops ();
421 return true;
424 /* Creates place for a new LOOP in loops structure of FN. */
426 void
427 place_new_loop (struct function *fn, struct loop *loop)
429 loop->num = number_of_loops (fn);
430 vec_safe_push (loops_for_fn (fn)->larray, loop);
433 /* Given LOOP structure with filled header and latch, find the body of the
434 corresponding loop and add it to loops tree. Insert the LOOP as a son of
435 outer. */
437 void
438 add_loop (struct loop *loop, struct loop *outer)
440 basic_block *bbs;
441 int i, n;
442 struct loop *subloop;
443 edge e;
444 edge_iterator ei;
446 /* Add it to loop structure. */
447 place_new_loop (cfun, loop);
448 flow_loop_tree_node_add (outer, loop);
450 /* Find its nodes. */
451 bbs = XNEWVEC (basic_block, n_basic_blocks);
452 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
454 for (i = 0; i < n; i++)
456 if (bbs[i]->loop_father == outer)
458 remove_bb_from_loops (bbs[i]);
459 add_bb_to_loop (bbs[i], loop);
460 continue;
463 loop->num_nodes++;
465 /* If we find a direct subloop of OUTER, move it to LOOP. */
466 subloop = bbs[i]->loop_father;
467 if (loop_outer (subloop) == outer
468 && subloop->header == bbs[i])
470 flow_loop_tree_node_remove (subloop);
471 flow_loop_tree_node_add (loop, subloop);
475 /* Update the information about loop exit edges. */
476 for (i = 0; i < n; i++)
478 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
480 rescan_loop_exit (e, false, false);
484 free (bbs);
487 /* Multiply all frequencies in LOOP by NUM/DEN. */
489 void
490 scale_loop_frequencies (struct loop *loop, int num, int den)
492 basic_block *bbs;
494 bbs = get_loop_body (loop);
495 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
496 free (bbs);
499 /* Multiply all frequencies in LOOP by SCALE/REG_BR_PROB_BASE.
500 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
501 to iterate too many times. */
503 void
504 scale_loop_profile (struct loop *loop, int scale, gcov_type iteration_bound)
506 gcov_type iterations = expected_loop_iterations_unbounded (loop);
507 edge e;
508 edge_iterator ei;
510 if (dump_file && (dump_flags & TDF_DETAILS))
511 fprintf (dump_file, ";; Scaling loop %i with scale %f, "
512 "bounding iterations to %i from guessed %i\n",
513 loop->num, (double)scale / REG_BR_PROB_BASE,
514 (int)iteration_bound, (int)iterations);
516 /* See if loop is predicted to iterate too many times. */
517 if (iteration_bound && iterations > 0
518 && apply_probability (iterations, scale) > iteration_bound)
520 /* Fixing loop profile for different trip count is not trivial; the exit
521 probabilities has to be updated to match and frequencies propagated down
522 to the loop body.
524 We fully update only the simple case of loop with single exit that is
525 either from the latch or BB just before latch and leads from BB with
526 simple conditional jump. This is OK for use in vectorizer. */
527 e = single_exit (loop);
528 if (e)
530 edge other_e;
531 int freq_delta;
532 gcov_type count_delta;
534 FOR_EACH_EDGE (other_e, ei, e->src->succs)
535 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
536 && e != other_e)
537 break;
539 /* Probability of exit must be 1/iterations. */
540 freq_delta = EDGE_FREQUENCY (e);
541 e->probability = REG_BR_PROB_BASE / iteration_bound;
542 other_e->probability = inverse_probability (e->probability);
543 freq_delta -= EDGE_FREQUENCY (e);
545 /* Adjust counts accordingly. */
546 count_delta = e->count;
547 e->count = apply_probability (e->src->count, e->probability);
548 other_e->count = apply_probability (e->src->count, other_e->probability);
549 count_delta -= e->count;
551 /* If latch exists, change its frequency and count, since we changed
552 probability of exit. Theoretically we should update everything from
553 source of exit edge to latch, but for vectorizer this is enough. */
554 if (loop->latch
555 && loop->latch != e->src)
557 loop->latch->frequency += freq_delta;
558 if (loop->latch->frequency < 0)
559 loop->latch->frequency = 0;
560 loop->latch->count += count_delta;
561 if (loop->latch->count < 0)
562 loop->latch->count = 0;
566 /* Roughly speaking we want to reduce the loop body profile by the
567 the difference of loop iterations. We however can do better if
568 we look at the actual profile, if it is available. */
569 scale = RDIV (iteration_bound * scale, iterations);
570 if (loop->header->count)
572 gcov_type count_in = 0;
574 FOR_EACH_EDGE (e, ei, loop->header->preds)
575 if (e->src != loop->latch)
576 count_in += e->count;
578 if (count_in != 0)
579 scale = GCOV_COMPUTE_SCALE (count_in * iteration_bound,
580 loop->header->count);
582 else if (loop->header->frequency)
584 int freq_in = 0;
586 FOR_EACH_EDGE (e, ei, loop->header->preds)
587 if (e->src != loop->latch)
588 freq_in += EDGE_FREQUENCY (e);
590 if (freq_in != 0)
591 scale = GCOV_COMPUTE_SCALE (freq_in * iteration_bound,
592 loop->header->frequency);
594 if (!scale)
595 scale = 1;
598 if (scale == REG_BR_PROB_BASE)
599 return;
601 /* Scale the actual probabilities. */
602 scale_loop_frequencies (loop, scale, REG_BR_PROB_BASE);
603 if (dump_file && (dump_flags & TDF_DETAILS))
604 fprintf (dump_file, ";; guessed iterations are now %i\n",
605 (int)expected_loop_iterations_unbounded (loop));
608 /* Recompute dominance information for basic blocks outside LOOP. */
610 static void
611 update_dominators_in_loop (struct loop *loop)
613 vec<basic_block> dom_bbs = vNULL;
614 sbitmap seen;
615 basic_block *body;
616 unsigned i;
618 seen = sbitmap_alloc (last_basic_block);
619 bitmap_clear (seen);
620 body = get_loop_body (loop);
622 for (i = 0; i < loop->num_nodes; i++)
623 bitmap_set_bit (seen, body[i]->index);
625 for (i = 0; i < loop->num_nodes; i++)
627 basic_block ldom;
629 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
630 ldom;
631 ldom = next_dom_son (CDI_DOMINATORS, ldom))
632 if (!bitmap_bit_p (seen, ldom->index))
634 bitmap_set_bit (seen, ldom->index);
635 dom_bbs.safe_push (ldom);
639 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
640 free (body);
641 free (seen);
642 dom_bbs.release ();
645 /* Creates an if region as shown above. CONDITION is used to create
646 the test for the if.
649 | ------------- -------------
650 | | pred_bb | | pred_bb |
651 | ------------- -------------
652 | | |
653 | | | ENTRY_EDGE
654 | | ENTRY_EDGE V
655 | | ====> -------------
656 | | | cond_bb |
657 | | | CONDITION |
658 | | -------------
659 | V / \
660 | ------------- e_false / \ e_true
661 | | succ_bb | V V
662 | ------------- ----------- -----------
663 | | false_bb | | true_bb |
664 | ----------- -----------
665 | \ /
666 | \ /
667 | V V
668 | -------------
669 | | join_bb |
670 | -------------
671 | | exit_edge (result)
673 | -----------
674 | | succ_bb |
675 | -----------
679 edge
680 create_empty_if_region_on_edge (edge entry_edge, tree condition)
683 basic_block cond_bb, true_bb, false_bb, join_bb;
684 edge e_true, e_false, exit_edge;
685 gimple cond_stmt;
686 tree simple_cond;
687 gimple_stmt_iterator gsi;
689 cond_bb = split_edge (entry_edge);
691 /* Insert condition in cond_bb. */
692 gsi = gsi_last_bb (cond_bb);
693 simple_cond =
694 force_gimple_operand_gsi (&gsi, condition, true, NULL,
695 false, GSI_NEW_STMT);
696 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
697 gsi = gsi_last_bb (cond_bb);
698 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
700 join_bb = split_edge (single_succ_edge (cond_bb));
702 e_true = single_succ_edge (cond_bb);
703 true_bb = split_edge (e_true);
705 e_false = make_edge (cond_bb, join_bb, 0);
706 false_bb = split_edge (e_false);
708 e_true->flags &= ~EDGE_FALLTHRU;
709 e_true->flags |= EDGE_TRUE_VALUE;
710 e_false->flags &= ~EDGE_FALLTHRU;
711 e_false->flags |= EDGE_FALSE_VALUE;
713 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
714 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
715 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
716 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
718 exit_edge = single_succ_edge (join_bb);
720 if (single_pred_p (exit_edge->dest))
721 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
723 return exit_edge;
726 /* create_empty_loop_on_edge
728 | - pred_bb - ------ pred_bb ------
729 | | | | iv0 = initial_value |
730 | -----|----- ---------|-----------
731 | | ______ | entry_edge
732 | | entry_edge / | |
733 | | ====> | -V---V- loop_header -------------
734 | V | | iv_before = phi (iv0, iv_after) |
735 | - succ_bb - | ---|-----------------------------
736 | | | | |
737 | ----------- | ---V--- loop_body ---------------
738 | | | iv_after = iv_before + stride |
739 | | | if (iv_before < upper_bound) |
740 | | ---|--------------\--------------
741 | | | \ exit_e
742 | | V \
743 | | - loop_latch - V- succ_bb -
744 | | | | | |
745 | | /------------- -----------
746 | \ ___ /
748 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
749 that is used before the increment of IV. IV_BEFORE should be used for
750 adding code to the body that uses the IV. OUTER is the outer loop in
751 which the new loop should be inserted.
753 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
754 inserted on the loop entry edge. This implies that this function
755 should be used only when the UPPER_BOUND expression is a loop
756 invariant. */
758 struct loop *
759 create_empty_loop_on_edge (edge entry_edge,
760 tree initial_value,
761 tree stride, tree upper_bound,
762 tree iv,
763 tree *iv_before,
764 tree *iv_after,
765 struct loop *outer)
767 basic_block loop_header, loop_latch, succ_bb, pred_bb;
768 struct loop *loop;
769 gimple_stmt_iterator gsi;
770 gimple_seq stmts;
771 gimple cond_expr;
772 tree exit_test;
773 edge exit_e;
774 int prob;
776 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
778 /* Create header, latch and wire up the loop. */
779 pred_bb = entry_edge->src;
780 loop_header = split_edge (entry_edge);
781 loop_latch = split_edge (single_succ_edge (loop_header));
782 succ_bb = single_succ (loop_latch);
783 make_edge (loop_header, succ_bb, 0);
784 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
786 /* Set immediate dominator information. */
787 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
788 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
789 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
791 /* Initialize a loop structure and put it in a loop hierarchy. */
792 loop = alloc_loop ();
793 loop->header = loop_header;
794 loop->latch = loop_latch;
795 add_loop (loop, outer);
797 /* TODO: Fix frequencies and counts. */
798 prob = REG_BR_PROB_BASE / 2;
800 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
802 /* Update dominators. */
803 update_dominators_in_loop (loop);
805 /* Modify edge flags. */
806 exit_e = single_exit (loop);
807 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
808 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
810 /* Construct IV code in loop. */
811 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
812 if (stmts)
814 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
815 gsi_commit_edge_inserts ();
818 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
819 if (stmts)
821 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
822 gsi_commit_edge_inserts ();
825 gsi = gsi_last_bb (loop_header);
826 create_iv (initial_value, stride, iv, loop, &gsi, false,
827 iv_before, iv_after);
829 /* Insert loop exit condition. */
830 cond_expr = gimple_build_cond
831 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
833 exit_test = gimple_cond_lhs (cond_expr);
834 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
835 false, GSI_NEW_STMT);
836 gimple_cond_set_lhs (cond_expr, exit_test);
837 gsi = gsi_last_bb (exit_e->src);
838 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
840 split_block_after_labels (loop_header);
842 return loop;
845 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
846 latch to header and update loop tree and dominators
847 accordingly. Everything between them plus LATCH_EDGE destination must
848 be dominated by HEADER_EDGE destination, and back-reachable from
849 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
850 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
851 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
852 Returns the newly created loop. Frequencies and counts in the new loop
853 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
855 struct loop *
856 loopify (edge latch_edge, edge header_edge,
857 basic_block switch_bb, edge true_edge, edge false_edge,
858 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
860 basic_block succ_bb = latch_edge->dest;
861 basic_block pred_bb = header_edge->src;
862 struct loop *loop = alloc_loop ();
863 struct loop *outer = loop_outer (succ_bb->loop_father);
864 int freq;
865 gcov_type cnt;
866 edge e;
867 edge_iterator ei;
869 loop->header = header_edge->dest;
870 loop->latch = latch_edge->src;
872 freq = EDGE_FREQUENCY (header_edge);
873 cnt = header_edge->count;
875 /* Redirect edges. */
876 loop_redirect_edge (latch_edge, loop->header);
877 loop_redirect_edge (true_edge, succ_bb);
879 /* During loop versioning, one of the switch_bb edge is already properly
880 set. Do not redirect it again unless redirect_all_edges is true. */
881 if (redirect_all_edges)
883 loop_redirect_edge (header_edge, switch_bb);
884 loop_redirect_edge (false_edge, loop->header);
886 /* Update dominators. */
887 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
888 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
891 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
893 /* Compute new loop. */
894 add_loop (loop, outer);
896 /* Add switch_bb to appropriate loop. */
897 if (switch_bb->loop_father)
898 remove_bb_from_loops (switch_bb);
899 add_bb_to_loop (switch_bb, outer);
901 /* Fix frequencies. */
902 if (redirect_all_edges)
904 switch_bb->frequency = freq;
905 switch_bb->count = cnt;
906 FOR_EACH_EDGE (e, ei, switch_bb->succs)
908 e->count = apply_probability (switch_bb->count, e->probability);
911 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
912 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
913 update_dominators_in_loop (loop);
915 return loop;
918 /* Remove the latch edge of a LOOP and update loops to indicate that
919 the LOOP was removed. After this function, original loop latch will
920 have no successor, which caller is expected to fix somehow.
922 If this may cause the information about irreducible regions to become
923 invalid, IRRED_INVALIDATED is set to true.
925 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
926 basic blocks that had non-trivial update on their loop_father.*/
928 void
929 unloop (struct loop *loop, bool *irred_invalidated,
930 bitmap loop_closed_ssa_invalidated)
932 basic_block *body;
933 struct loop *ploop;
934 unsigned i, n;
935 basic_block latch = loop->latch;
936 bool dummy = false;
938 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
939 *irred_invalidated = true;
941 /* This is relatively straightforward. The dominators are unchanged, as
942 loop header dominates loop latch, so the only thing we have to care of
943 is the placement of loops and basic blocks inside the loop tree. We
944 move them all to the loop->outer, and then let fix_bb_placements do
945 its work. */
947 body = get_loop_body (loop);
948 n = loop->num_nodes;
949 for (i = 0; i < n; i++)
950 if (body[i]->loop_father == loop)
952 remove_bb_from_loops (body[i]);
953 add_bb_to_loop (body[i], loop_outer (loop));
955 free (body);
957 while (loop->inner)
959 ploop = loop->inner;
960 flow_loop_tree_node_remove (ploop);
961 flow_loop_tree_node_add (loop_outer (loop), ploop);
964 /* Remove the loop and free its data. */
965 delete_loop (loop);
967 remove_edge (single_succ_edge (latch));
969 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
970 there is an irreducible region inside the cancelled loop, the flags will
971 be still correct. */
972 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
975 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
976 condition stated in description of fix_loop_placement holds for them.
977 It is used in case when we removed some edges coming out of LOOP, which
978 may cause the right placement of LOOP inside loop tree to change.
980 IRRED_INVALIDATED is set to true if a change in the loop structures might
981 invalidate the information about irreducible regions. */
983 static void
984 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
986 struct loop *outer;
988 while (loop_outer (loop))
990 outer = loop_outer (loop);
991 if (!fix_loop_placement (loop, irred_invalidated))
992 break;
994 /* Changing the placement of a loop in the loop tree may alter the
995 validity of condition 2) of the description of fix_bb_placement
996 for its preheader, because the successor is the header and belongs
997 to the loop. So call fix_bb_placements to fix up the placement
998 of the preheader and (possibly) of its predecessors. */
999 fix_bb_placements (loop_preheader_edge (loop)->src,
1000 irred_invalidated, NULL);
1001 loop = outer;
1005 /* Duplicate loop bounds and other information we store about
1006 the loop into its duplicate. */
1008 void
1009 copy_loop_info (struct loop *loop, struct loop *target)
1011 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1012 target->any_upper_bound = loop->any_upper_bound;
1013 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1014 target->any_estimate = loop->any_estimate;
1015 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1016 target->estimate_state = loop->estimate_state;
1019 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1020 created loop into loops structure. */
1021 struct loop *
1022 duplicate_loop (struct loop *loop, struct loop *target)
1024 struct loop *cloop;
1025 cloop = alloc_loop ();
1026 place_new_loop (cfun, cloop);
1028 copy_loop_info (loop, cloop);
1030 /* Mark the new loop as copy of LOOP. */
1031 set_loop_copy (loop, cloop);
1033 /* Add it to target. */
1034 flow_loop_tree_node_add (target, cloop);
1036 return cloop;
1039 /* Copies structure of subloops of LOOP into TARGET loop, placing
1040 newly created loops into loop tree. */
1041 void
1042 duplicate_subloops (struct loop *loop, struct loop *target)
1044 struct loop *aloop, *cloop;
1046 for (aloop = loop->inner; aloop; aloop = aloop->next)
1048 cloop = duplicate_loop (aloop, target);
1049 duplicate_subloops (aloop, cloop);
1053 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1054 into TARGET loop, placing newly created loops into loop tree. */
1055 static void
1056 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
1058 struct loop *aloop;
1059 int i;
1061 for (i = 0; i < n; i++)
1063 aloop = duplicate_loop (copied_loops[i], target);
1064 duplicate_subloops (copied_loops[i], aloop);
1068 /* Redirects edge E to basic block DEST. */
1069 static void
1070 loop_redirect_edge (edge e, basic_block dest)
1072 if (e->dest == dest)
1073 return;
1075 redirect_edge_and_branch_force (e, dest);
1078 /* Check whether LOOP's body can be duplicated. */
1079 bool
1080 can_duplicate_loop_p (const struct loop *loop)
1082 int ret;
1083 basic_block *bbs = get_loop_body (loop);
1085 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1086 free (bbs);
1088 return ret;
1091 /* Sets probability and count of edge E to zero. The probability and count
1092 is redistributed evenly to the remaining edges coming from E->src. */
1094 static void
1095 set_zero_probability (edge e)
1097 basic_block bb = e->src;
1098 edge_iterator ei;
1099 edge ae, last = NULL;
1100 unsigned n = EDGE_COUNT (bb->succs);
1101 gcov_type cnt = e->count, cnt1;
1102 unsigned prob = e->probability, prob1;
1104 gcc_assert (n > 1);
1105 cnt1 = cnt / (n - 1);
1106 prob1 = prob / (n - 1);
1108 FOR_EACH_EDGE (ae, ei, bb->succs)
1110 if (ae == e)
1111 continue;
1113 ae->probability += prob1;
1114 ae->count += cnt1;
1115 last = ae;
1118 /* Move the rest to one of the edges. */
1119 last->probability += prob % (n - 1);
1120 last->count += cnt % (n - 1);
1122 e->probability = 0;
1123 e->count = 0;
1126 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1127 loop structure and dominators. E's destination must be LOOP header for
1128 this to work, i.e. it must be entry or latch edge of this loop; these are
1129 unique, as the loops must have preheaders for this function to work
1130 correctly (in case E is latch, the function unrolls the loop, if E is entry
1131 edge, it peels the loop). Store edges created by copying ORIG edge from
1132 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
1133 original LOOP body, the other copies are numbered in order given by control
1134 flow through them) into TO_REMOVE array. Returns false if duplication is
1135 impossible. */
1137 bool
1138 duplicate_loop_to_header_edge (struct loop *loop, edge e,
1139 unsigned int ndupl, sbitmap wont_exit,
1140 edge orig, vec<edge> *to_remove,
1141 int flags)
1143 struct loop *target, *aloop;
1144 struct loop **orig_loops;
1145 unsigned n_orig_loops;
1146 basic_block header = loop->header, latch = loop->latch;
1147 basic_block *new_bbs, *bbs, *first_active;
1148 basic_block new_bb, bb, first_active_latch = NULL;
1149 edge ae, latch_edge;
1150 edge spec_edges[2], new_spec_edges[2];
1151 #define SE_LATCH 0
1152 #define SE_ORIG 1
1153 unsigned i, j, n;
1154 int is_latch = (latch == e->src);
1155 int scale_act = 0, *scale_step = NULL, scale_main = 0;
1156 int scale_after_exit = 0;
1157 int p, freq_in, freq_le, freq_out_orig;
1158 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1159 int add_irreducible_flag;
1160 basic_block place_after;
1161 bitmap bbs_to_scale = NULL;
1162 bitmap_iterator bi;
1164 gcc_assert (e->dest == loop->header);
1165 gcc_assert (ndupl > 0);
1167 if (orig)
1169 /* Orig must be edge out of the loop. */
1170 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1171 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1174 n = loop->num_nodes;
1175 bbs = get_loop_body_in_dom_order (loop);
1176 gcc_assert (bbs[0] == loop->header);
1177 gcc_assert (bbs[n - 1] == loop->latch);
1179 /* Check whether duplication is possible. */
1180 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1182 free (bbs);
1183 return false;
1185 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1187 /* In case we are doing loop peeling and the loop is in the middle of
1188 irreducible region, the peeled copies will be inside it too. */
1189 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1190 gcc_assert (!is_latch || !add_irreducible_flag);
1192 /* Find edge from latch. */
1193 latch_edge = loop_latch_edge (loop);
1195 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1197 /* Calculate coefficients by that we have to scale frequencies
1198 of duplicated loop bodies. */
1199 freq_in = header->frequency;
1200 freq_le = EDGE_FREQUENCY (latch_edge);
1201 if (freq_in == 0)
1202 freq_in = 1;
1203 if (freq_in < freq_le)
1204 freq_in = freq_le;
1205 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1206 if (freq_out_orig > freq_in - freq_le)
1207 freq_out_orig = freq_in - freq_le;
1208 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1209 prob_pass_wont_exit =
1210 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1212 if (orig
1213 && REG_BR_PROB_BASE - orig->probability != 0)
1215 /* The blocks that are dominated by a removed exit edge ORIG have
1216 frequencies scaled by this. */
1217 scale_after_exit
1218 = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE,
1219 REG_BR_PROB_BASE - orig->probability);
1220 bbs_to_scale = BITMAP_ALLOC (NULL);
1221 for (i = 0; i < n; i++)
1223 if (bbs[i] != orig->src
1224 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1225 bitmap_set_bit (bbs_to_scale, i);
1229 scale_step = XNEWVEC (int, ndupl);
1231 for (i = 1; i <= ndupl; i++)
1232 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1233 ? prob_pass_wont_exit
1234 : prob_pass_thru;
1236 /* Complete peeling is special as the probability of exit in last
1237 copy becomes 1. */
1238 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1240 int wanted_freq = EDGE_FREQUENCY (e);
1242 if (wanted_freq > freq_in)
1243 wanted_freq = freq_in;
1245 gcc_assert (!is_latch);
1246 /* First copy has frequency of incoming edge. Each subsequent
1247 frequency should be reduced by prob_pass_wont_exit. Caller
1248 should've managed the flags so all except for original loop
1249 has won't exist set. */
1250 scale_act = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1251 /* Now simulate the duplication adjustments and compute header
1252 frequency of the last copy. */
1253 for (i = 0; i < ndupl; i++)
1254 wanted_freq = combine_probabilities (wanted_freq, scale_step[i]);
1255 scale_main = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1257 else if (is_latch)
1259 prob_pass_main = bitmap_bit_p (wont_exit, 0)
1260 ? prob_pass_wont_exit
1261 : prob_pass_thru;
1262 p = prob_pass_main;
1263 scale_main = REG_BR_PROB_BASE;
1264 for (i = 0; i < ndupl; i++)
1266 scale_main += p;
1267 p = combine_probabilities (p, scale_step[i]);
1269 scale_main = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE, scale_main);
1270 scale_act = combine_probabilities (scale_main, prob_pass_main);
1272 else
1274 scale_main = REG_BR_PROB_BASE;
1275 for (i = 0; i < ndupl; i++)
1276 scale_main = combine_probabilities (scale_main, scale_step[i]);
1277 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1279 for (i = 0; i < ndupl; i++)
1280 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1281 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1282 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
1285 /* Loop the new bbs will belong to. */
1286 target = e->src->loop_father;
1288 /* Original loops. */
1289 n_orig_loops = 0;
1290 for (aloop = loop->inner; aloop; aloop = aloop->next)
1291 n_orig_loops++;
1292 orig_loops = XNEWVEC (struct loop *, n_orig_loops);
1293 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1294 orig_loops[i] = aloop;
1296 set_loop_copy (loop, target);
1298 first_active = XNEWVEC (basic_block, n);
1299 if (is_latch)
1301 memcpy (first_active, bbs, n * sizeof (basic_block));
1302 first_active_latch = latch;
1305 spec_edges[SE_ORIG] = orig;
1306 spec_edges[SE_LATCH] = latch_edge;
1308 place_after = e->src;
1309 for (j = 0; j < ndupl; j++)
1311 /* Copy loops. */
1312 copy_loops_to (orig_loops, n_orig_loops, target);
1314 /* Copy bbs. */
1315 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1316 place_after, true);
1317 place_after = new_spec_edges[SE_LATCH]->src;
1319 if (flags & DLTHE_RECORD_COPY_NUMBER)
1320 for (i = 0; i < n; i++)
1322 gcc_assert (!new_bbs[i]->aux);
1323 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1326 /* Note whether the blocks and edges belong to an irreducible loop. */
1327 if (add_irreducible_flag)
1329 for (i = 0; i < n; i++)
1330 new_bbs[i]->flags |= BB_DUPLICATED;
1331 for (i = 0; i < n; i++)
1333 edge_iterator ei;
1334 new_bb = new_bbs[i];
1335 if (new_bb->loop_father == target)
1336 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1338 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1339 if ((ae->dest->flags & BB_DUPLICATED)
1340 && (ae->src->loop_father == target
1341 || ae->dest->loop_father == target))
1342 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1344 for (i = 0; i < n; i++)
1345 new_bbs[i]->flags &= ~BB_DUPLICATED;
1348 /* Redirect the special edges. */
1349 if (is_latch)
1351 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1352 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1353 loop->header);
1354 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1355 latch = loop->latch = new_bbs[n - 1];
1356 e = latch_edge = new_spec_edges[SE_LATCH];
1358 else
1360 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1361 loop->header);
1362 redirect_edge_and_branch_force (e, new_bbs[0]);
1363 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1364 e = new_spec_edges[SE_LATCH];
1367 /* Record exit edge in this copy. */
1368 if (orig && bitmap_bit_p (wont_exit, j + 1))
1370 if (to_remove)
1371 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1372 set_zero_probability (new_spec_edges[SE_ORIG]);
1374 /* Scale the frequencies of the blocks dominated by the exit. */
1375 if (bbs_to_scale)
1377 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1379 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1380 REG_BR_PROB_BASE);
1385 /* Record the first copy in the control flow order if it is not
1386 the original loop (i.e. in case of peeling). */
1387 if (!first_active_latch)
1389 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1390 first_active_latch = new_bbs[n - 1];
1393 /* Set counts and frequencies. */
1394 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1396 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1397 scale_act = combine_probabilities (scale_act, scale_step[j]);
1400 free (new_bbs);
1401 free (orig_loops);
1403 /* Record the exit edge in the original loop body, and update the frequencies. */
1404 if (orig && bitmap_bit_p (wont_exit, 0))
1406 if (to_remove)
1407 to_remove->safe_push (orig);
1408 set_zero_probability (orig);
1410 /* Scale the frequencies of the blocks dominated by the exit. */
1411 if (bbs_to_scale)
1413 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1415 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1416 REG_BR_PROB_BASE);
1421 /* Update the original loop. */
1422 if (!is_latch)
1423 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1424 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1426 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1427 free (scale_step);
1430 /* Update dominators of outer blocks if affected. */
1431 for (i = 0; i < n; i++)
1433 basic_block dominated, dom_bb;
1434 vec<basic_block> dom_bbs;
1435 unsigned j;
1437 bb = bbs[i];
1438 bb->aux = 0;
1440 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1441 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1443 if (flow_bb_inside_loop_p (loop, dominated))
1444 continue;
1445 dom_bb = nearest_common_dominator (
1446 CDI_DOMINATORS, first_active[i], first_active_latch);
1447 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1449 dom_bbs.release ();
1451 free (first_active);
1453 free (bbs);
1454 BITMAP_FREE (bbs_to_scale);
1456 return true;
1459 /* A callback for make_forwarder block, to redirect all edges except for
1460 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1461 whether to redirect it. */
1463 edge mfb_kj_edge;
1464 bool
1465 mfb_keep_just (edge e)
1467 return e != mfb_kj_edge;
1470 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1472 static bool
1473 has_preds_from_loop (basic_block block, struct loop *loop)
1475 edge e;
1476 edge_iterator ei;
1478 FOR_EACH_EDGE (e, ei, block->preds)
1479 if (e->src->loop_father == loop)
1480 return true;
1481 return false;
1484 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1485 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1486 entry; otherwise we also force preheader block to have only one successor.
1487 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1488 to be a fallthru predecessor to the loop header and to have only
1489 predecessors from outside of the loop.
1490 The function also updates dominators. */
1492 basic_block
1493 create_preheader (struct loop *loop, int flags)
1495 edge e, fallthru;
1496 basic_block dummy;
1497 int nentry = 0;
1498 bool irred = false;
1499 bool latch_edge_was_fallthru;
1500 edge one_succ_pred = NULL, single_entry = NULL;
1501 edge_iterator ei;
1503 FOR_EACH_EDGE (e, ei, loop->header->preds)
1505 if (e->src == loop->latch)
1506 continue;
1507 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1508 nentry++;
1509 single_entry = e;
1510 if (single_succ_p (e->src))
1511 one_succ_pred = e;
1513 gcc_assert (nentry);
1514 if (nentry == 1)
1516 bool need_forwarder_block = false;
1518 /* We do not allow entry block to be the loop preheader, since we
1519 cannot emit code there. */
1520 if (single_entry->src == ENTRY_BLOCK_PTR)
1521 need_forwarder_block = true;
1522 else
1524 /* If we want simple preheaders, also force the preheader to have
1525 just a single successor. */
1526 if ((flags & CP_SIMPLE_PREHEADERS)
1527 && !single_succ_p (single_entry->src))
1528 need_forwarder_block = true;
1529 /* If we want fallthru preheaders, also create forwarder block when
1530 preheader ends with a jump or has predecessors from loop. */
1531 else if ((flags & CP_FALLTHRU_PREHEADERS)
1532 && (JUMP_P (BB_END (single_entry->src))
1533 || has_preds_from_loop (single_entry->src, loop)))
1534 need_forwarder_block = true;
1536 if (! need_forwarder_block)
1537 return NULL;
1540 mfb_kj_edge = loop_latch_edge (loop);
1541 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1542 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1543 dummy = fallthru->src;
1544 loop->header = fallthru->dest;
1546 /* Try to be clever in placing the newly created preheader. The idea is to
1547 avoid breaking any "fallthruness" relationship between blocks.
1549 The preheader was created just before the header and all incoming edges
1550 to the header were redirected to the preheader, except the latch edge.
1551 So the only problematic case is when this latch edge was a fallthru
1552 edge: it is not anymore after the preheader creation so we have broken
1553 the fallthruness. We're therefore going to look for a better place. */
1554 if (latch_edge_was_fallthru)
1556 if (one_succ_pred)
1557 e = one_succ_pred;
1558 else
1559 e = EDGE_PRED (dummy, 0);
1561 move_block_after (dummy, e->src);
1564 if (irred)
1566 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1567 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1570 if (dump_file)
1571 fprintf (dump_file, "Created preheader block for loop %i\n",
1572 loop->num);
1574 if (flags & CP_FALLTHRU_PREHEADERS)
1575 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1576 && !JUMP_P (BB_END (dummy)));
1578 return dummy;
1581 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1583 void
1584 create_preheaders (int flags)
1586 loop_iterator li;
1587 struct loop *loop;
1589 if (!current_loops)
1590 return;
1592 FOR_EACH_LOOP (li, loop, 0)
1593 create_preheader (loop, flags);
1594 loops_state_set (LOOPS_HAVE_PREHEADERS);
1597 /* Forces all loop latches to have only single successor. */
1599 void
1600 force_single_succ_latches (void)
1602 loop_iterator li;
1603 struct loop *loop;
1604 edge e;
1606 FOR_EACH_LOOP (li, loop, 0)
1608 if (loop->latch != loop->header && single_succ_p (loop->latch))
1609 continue;
1611 e = find_edge (loop->latch, loop->header);
1612 gcc_checking_assert (e != NULL);
1614 split_edge (e);
1616 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1619 /* This function is called from loop_version. It splits the entry edge
1620 of the loop we want to version, adds the versioning condition, and
1621 adjust the edges to the two versions of the loop appropriately.
1622 e is an incoming edge. Returns the basic block containing the
1623 condition.
1625 --- edge e ---- > [second_head]
1627 Split it and insert new conditional expression and adjust edges.
1629 --- edge e ---> [cond expr] ---> [first_head]
1631 +---------> [second_head]
1633 THEN_PROB is the probability of then branch of the condition. */
1635 static basic_block
1636 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1637 edge e, void *cond_expr, unsigned then_prob)
1639 basic_block new_head = NULL;
1640 edge e1;
1642 gcc_assert (e->dest == second_head);
1644 /* Split edge 'e'. This will create a new basic block, where we can
1645 insert conditional expr. */
1646 new_head = split_edge (e);
1648 lv_add_condition_to_bb (first_head, second_head, new_head,
1649 cond_expr);
1651 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1652 e = single_succ_edge (new_head);
1653 e1 = make_edge (new_head, first_head,
1654 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1655 e1->probability = then_prob;
1656 e->probability = REG_BR_PROB_BASE - then_prob;
1657 e1->count = apply_probability (e->count, e1->probability);
1658 e->count = apply_probability (e->count, e->probability);
1660 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1661 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1663 /* Adjust loop header phi nodes. */
1664 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1666 return new_head;
1669 /* Main entry point for Loop Versioning transformation.
1671 This transformation given a condition and a loop, creates
1672 -if (condition) { loop_copy1 } else { loop_copy2 },
1673 where loop_copy1 is the loop transformed in one way, and loop_copy2
1674 is the loop transformed in another way (or unchanged). 'condition'
1675 may be a run time test for things that were not resolved by static
1676 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1678 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1679 is the ratio by that the frequencies in the original loop should
1680 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1681 new loop should be scaled.
1683 If PLACE_AFTER is true, we place the new loop after LOOP in the
1684 instruction stream, otherwise it is placed before LOOP. */
1686 struct loop *
1687 loop_version (struct loop *loop,
1688 void *cond_expr, basic_block *condition_bb,
1689 unsigned then_prob, unsigned then_scale, unsigned else_scale,
1690 bool place_after)
1692 basic_block first_head, second_head;
1693 edge entry, latch_edge, true_edge, false_edge;
1694 int irred_flag;
1695 struct loop *nloop;
1696 basic_block cond_bb;
1698 /* Record entry and latch edges for the loop */
1699 entry = loop_preheader_edge (loop);
1700 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1701 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1703 /* Note down head of loop as first_head. */
1704 first_head = entry->dest;
1706 /* Duplicate loop. */
1707 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1708 NULL, NULL, NULL, 0))
1710 entry->flags |= irred_flag;
1711 return NULL;
1714 /* After duplication entry edge now points to new loop head block.
1715 Note down new head as second_head. */
1716 second_head = entry->dest;
1718 /* Split loop entry edge and insert new block with cond expr. */
1719 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1720 entry, cond_expr, then_prob);
1721 if (condition_bb)
1722 *condition_bb = cond_bb;
1724 if (!cond_bb)
1726 entry->flags |= irred_flag;
1727 return NULL;
1730 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1732 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1733 nloop = loopify (latch_edge,
1734 single_pred_edge (get_bb_copy (loop->header)),
1735 cond_bb, true_edge, false_edge,
1736 false /* Do not redirect all edges. */,
1737 then_scale, else_scale);
1739 copy_loop_info (loop, nloop);
1741 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1742 lv_flush_pending_stmts (latch_edge);
1744 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1745 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1746 lv_flush_pending_stmts (false_edge);
1747 /* Adjust irreducible flag. */
1748 if (irred_flag)
1750 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1751 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1752 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1753 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1756 if (place_after)
1758 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1759 unsigned i;
1761 after = loop->latch;
1763 for (i = 0; i < nloop->num_nodes; i++)
1765 move_block_after (bbs[i], after);
1766 after = bbs[i];
1768 free (bbs);
1771 /* At this point condition_bb is loop preheader with two successors,
1772 first_head and second_head. Make sure that loop preheader has only
1773 one successor. */
1774 split_edge (loop_preheader_edge (loop));
1775 split_edge (loop_preheader_edge (nloop));
1777 return nloop;