PR target/54640
[official-gcc.git] / gcc / expmed.c
blobd66c6e667fbeaaff3bca7c3d353850d9cc1f8e2e
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2013 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "expr.h"
33 #include "optabs.h"
34 #include "recog.h"
35 #include "langhooks.h"
36 #include "df.h"
37 #include "target.h"
38 #include "expmed.h"
40 struct target_expmed default_target_expmed;
41 #if SWITCHABLE_TARGET
42 struct target_expmed *this_target_expmed = &default_target_expmed;
43 #endif
45 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
46 unsigned HOST_WIDE_INT,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT,
49 rtx);
50 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
51 unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT,
53 unsigned HOST_WIDE_INT,
54 rtx);
55 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
56 unsigned HOST_WIDE_INT,
57 unsigned HOST_WIDE_INT, rtx, int, bool);
58 static rtx mask_rtx (enum machine_mode, int, int, int);
59 static rtx lshift_value (enum machine_mode, rtx, int, int);
60 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
61 unsigned HOST_WIDE_INT, int);
62 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
63 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
64 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
66 /* Test whether a value is zero of a power of two. */
67 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
68 (((x) & ((x) - (unsigned HOST_WIDE_INT) 1)) == 0)
70 struct init_expmed_rtl
72 struct rtx_def reg; rtunion reg_fld[2];
73 struct rtx_def plus; rtunion plus_fld1;
74 struct rtx_def neg;
75 struct rtx_def mult; rtunion mult_fld1;
76 struct rtx_def sdiv; rtunion sdiv_fld1;
77 struct rtx_def udiv; rtunion udiv_fld1;
78 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
79 struct rtx_def smod_32; rtunion smod_32_fld1;
80 struct rtx_def wide_mult; rtunion wide_mult_fld1;
81 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
82 struct rtx_def wide_trunc;
83 struct rtx_def shift; rtunion shift_fld1;
84 struct rtx_def shift_mult; rtunion shift_mult_fld1;
85 struct rtx_def shift_add; rtunion shift_add_fld1;
86 struct rtx_def shift_sub0; rtunion shift_sub0_fld1;
87 struct rtx_def shift_sub1; rtunion shift_sub1_fld1;
88 struct rtx_def zext;
89 struct rtx_def trunc;
91 rtx pow2[MAX_BITS_PER_WORD];
92 rtx cint[MAX_BITS_PER_WORD];
95 static void
96 init_expmed_one_conv (struct init_expmed_rtl *all, enum machine_mode to_mode,
97 enum machine_mode from_mode, bool speed)
99 int to_size, from_size;
100 rtx which;
102 /* We're given no information about the true size of a partial integer,
103 only the size of the "full" integer it requires for storage. For
104 comparison purposes here, reduce the bit size by one in that case. */
105 to_size = (GET_MODE_BITSIZE (to_mode)
106 - (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT));
107 from_size = (GET_MODE_BITSIZE (from_mode)
108 - (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT));
110 /* Assume cost of zero-extend and sign-extend is the same. */
111 which = (to_size < from_size ? &all->trunc : &all->zext);
113 PUT_MODE (&all->reg, from_mode);
114 set_convert_cost (to_mode, from_mode, speed, set_src_cost (which, speed));
117 static void
118 init_expmed_one_mode (struct init_expmed_rtl *all,
119 enum machine_mode mode, int speed)
121 int m, n, mode_bitsize;
122 enum machine_mode mode_from;
124 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
126 PUT_MODE (&all->reg, mode);
127 PUT_MODE (&all->plus, mode);
128 PUT_MODE (&all->neg, mode);
129 PUT_MODE (&all->mult, mode);
130 PUT_MODE (&all->sdiv, mode);
131 PUT_MODE (&all->udiv, mode);
132 PUT_MODE (&all->sdiv_32, mode);
133 PUT_MODE (&all->smod_32, mode);
134 PUT_MODE (&all->wide_trunc, mode);
135 PUT_MODE (&all->shift, mode);
136 PUT_MODE (&all->shift_mult, mode);
137 PUT_MODE (&all->shift_add, mode);
138 PUT_MODE (&all->shift_sub0, mode);
139 PUT_MODE (&all->shift_sub1, mode);
140 PUT_MODE (&all->zext, mode);
141 PUT_MODE (&all->trunc, mode);
143 set_add_cost (speed, mode, set_src_cost (&all->plus, speed));
144 set_neg_cost (speed, mode, set_src_cost (&all->neg, speed));
145 set_mul_cost (speed, mode, set_src_cost (&all->mult, speed));
146 set_sdiv_cost (speed, mode, set_src_cost (&all->sdiv, speed));
147 set_udiv_cost (speed, mode, set_src_cost (&all->udiv, speed));
149 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (&all->sdiv_32, speed)
150 <= 2 * add_cost (speed, mode)));
151 set_smod_pow2_cheap (speed, mode, (set_src_cost (&all->smod_32, speed)
152 <= 4 * add_cost (speed, mode)));
154 set_shift_cost (speed, mode, 0, 0);
156 int cost = add_cost (speed, mode);
157 set_shiftadd_cost (speed, mode, 0, cost);
158 set_shiftsub0_cost (speed, mode, 0, cost);
159 set_shiftsub1_cost (speed, mode, 0, cost);
162 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
163 for (m = 1; m < n; m++)
165 XEXP (&all->shift, 1) = all->cint[m];
166 XEXP (&all->shift_mult, 1) = all->pow2[m];
168 set_shift_cost (speed, mode, m, set_src_cost (&all->shift, speed));
169 set_shiftadd_cost (speed, mode, m, set_src_cost (&all->shift_add, speed));
170 set_shiftsub0_cost (speed, mode, m, set_src_cost (&all->shift_sub0, speed));
171 set_shiftsub1_cost (speed, mode, m, set_src_cost (&all->shift_sub1, speed));
174 if (SCALAR_INT_MODE_P (mode))
176 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
177 mode_from = (enum machine_mode)(mode_from + 1))
178 init_expmed_one_conv (all, mode, mode_from, speed);
180 if (GET_MODE_CLASS (mode) == MODE_INT)
182 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
183 if (wider_mode != VOIDmode)
185 PUT_MODE (&all->zext, wider_mode);
186 PUT_MODE (&all->wide_mult, wider_mode);
187 PUT_MODE (&all->wide_lshr, wider_mode);
188 XEXP (&all->wide_lshr, 1) = GEN_INT (mode_bitsize);
190 set_mul_widen_cost (speed, wider_mode,
191 set_src_cost (&all->wide_mult, speed));
192 set_mul_highpart_cost (speed, mode,
193 set_src_cost (&all->wide_trunc, speed));
198 void
199 init_expmed (void)
201 struct init_expmed_rtl all;
202 enum machine_mode mode;
203 int m, speed;
205 memset (&all, 0, sizeof all);
206 for (m = 1; m < MAX_BITS_PER_WORD; m++)
208 all.pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
209 all.cint[m] = GEN_INT (m);
212 PUT_CODE (&all.reg, REG);
213 /* Avoid using hard regs in ways which may be unsupported. */
214 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
216 PUT_CODE (&all.plus, PLUS);
217 XEXP (&all.plus, 0) = &all.reg;
218 XEXP (&all.plus, 1) = &all.reg;
220 PUT_CODE (&all.neg, NEG);
221 XEXP (&all.neg, 0) = &all.reg;
223 PUT_CODE (&all.mult, MULT);
224 XEXP (&all.mult, 0) = &all.reg;
225 XEXP (&all.mult, 1) = &all.reg;
227 PUT_CODE (&all.sdiv, DIV);
228 XEXP (&all.sdiv, 0) = &all.reg;
229 XEXP (&all.sdiv, 1) = &all.reg;
231 PUT_CODE (&all.udiv, UDIV);
232 XEXP (&all.udiv, 0) = &all.reg;
233 XEXP (&all.udiv, 1) = &all.reg;
235 PUT_CODE (&all.sdiv_32, DIV);
236 XEXP (&all.sdiv_32, 0) = &all.reg;
237 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? all.cint[32] : GEN_INT (32);
239 PUT_CODE (&all.smod_32, MOD);
240 XEXP (&all.smod_32, 0) = &all.reg;
241 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
243 PUT_CODE (&all.zext, ZERO_EXTEND);
244 XEXP (&all.zext, 0) = &all.reg;
246 PUT_CODE (&all.wide_mult, MULT);
247 XEXP (&all.wide_mult, 0) = &all.zext;
248 XEXP (&all.wide_mult, 1) = &all.zext;
250 PUT_CODE (&all.wide_lshr, LSHIFTRT);
251 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
253 PUT_CODE (&all.wide_trunc, TRUNCATE);
254 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
256 PUT_CODE (&all.shift, ASHIFT);
257 XEXP (&all.shift, 0) = &all.reg;
259 PUT_CODE (&all.shift_mult, MULT);
260 XEXP (&all.shift_mult, 0) = &all.reg;
262 PUT_CODE (&all.shift_add, PLUS);
263 XEXP (&all.shift_add, 0) = &all.shift_mult;
264 XEXP (&all.shift_add, 1) = &all.reg;
266 PUT_CODE (&all.shift_sub0, MINUS);
267 XEXP (&all.shift_sub0, 0) = &all.shift_mult;
268 XEXP (&all.shift_sub0, 1) = &all.reg;
270 PUT_CODE (&all.shift_sub1, MINUS);
271 XEXP (&all.shift_sub1, 0) = &all.reg;
272 XEXP (&all.shift_sub1, 1) = &all.shift_mult;
274 PUT_CODE (&all.trunc, TRUNCATE);
275 XEXP (&all.trunc, 0) = &all.reg;
277 for (speed = 0; speed < 2; speed++)
279 crtl->maybe_hot_insn_p = speed;
280 set_zero_cost (speed, set_src_cost (const0_rtx, speed));
282 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
283 mode = (enum machine_mode)(mode + 1))
284 init_expmed_one_mode (&all, mode, speed);
286 if (MIN_MODE_PARTIAL_INT != VOIDmode)
287 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
288 mode = (enum machine_mode)(mode + 1))
289 init_expmed_one_mode (&all, mode, speed);
291 if (MIN_MODE_VECTOR_INT != VOIDmode)
292 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
293 mode = (enum machine_mode)(mode + 1))
294 init_expmed_one_mode (&all, mode, speed);
297 if (alg_hash_used_p ())
299 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
300 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
302 else
303 set_alg_hash_used_p (true);
304 default_rtl_profile ();
307 /* Return an rtx representing minus the value of X.
308 MODE is the intended mode of the result,
309 useful if X is a CONST_INT. */
312 negate_rtx (enum machine_mode mode, rtx x)
314 rtx result = simplify_unary_operation (NEG, mode, x, mode);
316 if (result == 0)
317 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
319 return result;
322 /* Adjust bitfield memory MEM so that it points to the first unit of mode
323 MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
324 If MODE is BLKmode, return a reference to every byte in the bitfield.
325 Set *NEW_BITNUM to the bit position of the field within the new memory. */
327 static rtx
328 narrow_bit_field_mem (rtx mem, enum machine_mode mode,
329 unsigned HOST_WIDE_INT bitsize,
330 unsigned HOST_WIDE_INT bitnum,
331 unsigned HOST_WIDE_INT *new_bitnum)
333 if (mode == BLKmode)
335 *new_bitnum = bitnum % BITS_PER_UNIT;
336 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
337 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
338 / BITS_PER_UNIT);
339 return adjust_bitfield_address_size (mem, mode, offset, size);
341 else
343 unsigned int unit = GET_MODE_BITSIZE (mode);
344 *new_bitnum = bitnum % unit;
345 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
346 return adjust_bitfield_address (mem, mode, offset);
350 /* The caller wants to perform insertion or extraction PATTERN on a
351 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
352 BITREGION_START and BITREGION_END are as for store_bit_field
353 and FIELDMODE is the natural mode of the field.
355 Search for a mode that is compatible with the memory access
356 restrictions and (where applicable) with a register insertion or
357 extraction. Return the new memory on success, storing the adjusted
358 bit position in *NEW_BITNUM. Return null otherwise. */
360 static rtx
361 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
362 rtx op0, HOST_WIDE_INT bitsize,
363 HOST_WIDE_INT bitnum,
364 unsigned HOST_WIDE_INT bitregion_start,
365 unsigned HOST_WIDE_INT bitregion_end,
366 enum machine_mode fieldmode,
367 unsigned HOST_WIDE_INT *new_bitnum)
369 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
370 bitregion_end, MEM_ALIGN (op0),
371 MEM_VOLATILE_P (op0));
372 enum machine_mode best_mode;
373 if (iter.next_mode (&best_mode))
375 /* We can use a memory in BEST_MODE. See whether this is true for
376 any wider modes. All other things being equal, we prefer to
377 use the widest mode possible because it tends to expose more
378 CSE opportunities. */
379 if (!iter.prefer_smaller_modes ())
381 /* Limit the search to the mode required by the corresponding
382 register insertion or extraction instruction, if any. */
383 enum machine_mode limit_mode = word_mode;
384 extraction_insn insn;
385 if (get_best_reg_extraction_insn (&insn, pattern,
386 GET_MODE_BITSIZE (best_mode),
387 fieldmode))
388 limit_mode = insn.field_mode;
390 enum machine_mode wider_mode;
391 while (iter.next_mode (&wider_mode)
392 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
393 best_mode = wider_mode;
395 return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
396 new_bitnum);
398 return NULL_RTX;
401 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
402 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
403 offset is then BITNUM / BITS_PER_UNIT. */
405 static bool
406 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum,
407 unsigned HOST_WIDE_INT bitsize,
408 enum machine_mode struct_mode)
410 if (BYTES_BIG_ENDIAN)
411 return (bitnum % BITS_PER_UNIT == 0
412 && (bitnum + bitsize == GET_MODE_BITSIZE (struct_mode)
413 || (bitnum + bitsize) % BITS_PER_WORD == 0));
414 else
415 return bitnum % BITS_PER_WORD == 0;
418 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
419 bit number BITNUM can be treated as a simple value of mode MODE. */
421 static bool
422 simple_mem_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
423 unsigned HOST_WIDE_INT bitnum, enum machine_mode mode)
425 return (MEM_P (op0)
426 && bitnum % BITS_PER_UNIT == 0
427 && bitsize == GET_MODE_BITSIZE (mode)
428 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
429 || (bitnum % GET_MODE_ALIGNMENT (mode) == 0
430 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
433 /* Try to use instruction INSV to store VALUE into a field of OP0.
434 BITSIZE and BITNUM are as for store_bit_field. */
436 static bool
437 store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
438 unsigned HOST_WIDE_INT bitsize,
439 unsigned HOST_WIDE_INT bitnum, rtx value)
441 struct expand_operand ops[4];
442 rtx value1;
443 rtx xop0 = op0;
444 rtx last = get_last_insn ();
445 bool copy_back = false;
447 enum machine_mode op_mode = insv->field_mode;
448 unsigned int unit = GET_MODE_BITSIZE (op_mode);
449 if (bitsize == 0 || bitsize > unit)
450 return false;
452 if (MEM_P (xop0))
453 /* Get a reference to the first byte of the field. */
454 xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
455 &bitnum);
456 else
458 /* Convert from counting within OP0 to counting in OP_MODE. */
459 if (BYTES_BIG_ENDIAN)
460 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
462 /* If xop0 is a register, we need it in OP_MODE
463 to make it acceptable to the format of insv. */
464 if (GET_CODE (xop0) == SUBREG)
465 /* We can't just change the mode, because this might clobber op0,
466 and we will need the original value of op0 if insv fails. */
467 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
468 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
469 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
472 /* If the destination is a paradoxical subreg such that we need a
473 truncate to the inner mode, perform the insertion on a temporary and
474 truncate the result to the original destination. Note that we can't
475 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
476 X) 0)) is (reg:N X). */
477 if (GET_CODE (xop0) == SUBREG
478 && REG_P (SUBREG_REG (xop0))
479 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
480 op_mode))
482 rtx tem = gen_reg_rtx (op_mode);
483 emit_move_insn (tem, xop0);
484 xop0 = tem;
485 copy_back = true;
488 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
489 "backwards" from the size of the unit we are inserting into.
490 Otherwise, we count bits from the most significant on a
491 BYTES/BITS_BIG_ENDIAN machine. */
493 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
494 bitnum = unit - bitsize - bitnum;
496 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
497 value1 = value;
498 if (GET_MODE (value) != op_mode)
500 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
502 /* Optimization: Don't bother really extending VALUE
503 if it has all the bits we will actually use. However,
504 if we must narrow it, be sure we do it correctly. */
506 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
508 rtx tmp;
510 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
511 if (! tmp)
512 tmp = simplify_gen_subreg (op_mode,
513 force_reg (GET_MODE (value),
514 value1),
515 GET_MODE (value), 0);
516 value1 = tmp;
518 else
519 value1 = gen_lowpart (op_mode, value1);
521 else if (CONST_INT_P (value))
522 value1 = gen_int_mode (INTVAL (value), op_mode);
523 else
524 /* Parse phase is supposed to make VALUE's data type
525 match that of the component reference, which is a type
526 at least as wide as the field; so VALUE should have
527 a mode that corresponds to that type. */
528 gcc_assert (CONSTANT_P (value));
531 create_fixed_operand (&ops[0], xop0);
532 create_integer_operand (&ops[1], bitsize);
533 create_integer_operand (&ops[2], bitnum);
534 create_input_operand (&ops[3], value1, op_mode);
535 if (maybe_expand_insn (insv->icode, 4, ops))
537 if (copy_back)
538 convert_move (op0, xop0, true);
539 return true;
541 delete_insns_since (last);
542 return false;
545 /* A subroutine of store_bit_field, with the same arguments. Return true
546 if the operation could be implemented.
548 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
549 no other way of implementing the operation. If FALLBACK_P is false,
550 return false instead. */
552 static bool
553 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
554 unsigned HOST_WIDE_INT bitnum,
555 unsigned HOST_WIDE_INT bitregion_start,
556 unsigned HOST_WIDE_INT bitregion_end,
557 enum machine_mode fieldmode,
558 rtx value, bool fallback_p)
560 rtx op0 = str_rtx;
561 rtx orig_value;
563 while (GET_CODE (op0) == SUBREG)
565 /* The following line once was done only if WORDS_BIG_ENDIAN,
566 but I think that is a mistake. WORDS_BIG_ENDIAN is
567 meaningful at a much higher level; when structures are copied
568 between memory and regs, the higher-numbered regs
569 always get higher addresses. */
570 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
571 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
572 int byte_offset = 0;
574 /* Paradoxical subregs need special handling on big endian machines. */
575 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
577 int difference = inner_mode_size - outer_mode_size;
579 if (WORDS_BIG_ENDIAN)
580 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
581 if (BYTES_BIG_ENDIAN)
582 byte_offset += difference % UNITS_PER_WORD;
584 else
585 byte_offset = SUBREG_BYTE (op0);
587 bitnum += byte_offset * BITS_PER_UNIT;
588 op0 = SUBREG_REG (op0);
591 /* No action is needed if the target is a register and if the field
592 lies completely outside that register. This can occur if the source
593 code contains an out-of-bounds access to a small array. */
594 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
595 return true;
597 /* Use vec_set patterns for inserting parts of vectors whenever
598 available. */
599 if (VECTOR_MODE_P (GET_MODE (op0))
600 && !MEM_P (op0)
601 && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
602 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
603 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
604 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
606 struct expand_operand ops[3];
607 enum machine_mode outermode = GET_MODE (op0);
608 enum machine_mode innermode = GET_MODE_INNER (outermode);
609 enum insn_code icode = optab_handler (vec_set_optab, outermode);
610 int pos = bitnum / GET_MODE_BITSIZE (innermode);
612 create_fixed_operand (&ops[0], op0);
613 create_input_operand (&ops[1], value, innermode);
614 create_integer_operand (&ops[2], pos);
615 if (maybe_expand_insn (icode, 3, ops))
616 return true;
619 /* If the target is a register, overwriting the entire object, or storing
620 a full-word or multi-word field can be done with just a SUBREG. */
621 if (!MEM_P (op0)
622 && bitsize == GET_MODE_BITSIZE (fieldmode)
623 && ((bitsize == GET_MODE_BITSIZE (GET_MODE (op0)) && bitnum == 0)
624 || (bitsize % BITS_PER_WORD == 0 && bitnum % BITS_PER_WORD == 0)))
626 /* Use the subreg machinery either to narrow OP0 to the required
627 words or to cope with mode punning between equal-sized modes. */
628 rtx sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
629 bitnum / BITS_PER_UNIT);
630 if (sub)
632 emit_move_insn (sub, value);
633 return true;
637 /* If the target is memory, storing any naturally aligned field can be
638 done with a simple store. For targets that support fast unaligned
639 memory, any naturally sized, unit aligned field can be done directly. */
640 if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode))
642 op0 = adjust_bitfield_address (op0, fieldmode, bitnum / BITS_PER_UNIT);
643 emit_move_insn (op0, value);
644 return true;
647 /* Make sure we are playing with integral modes. Pun with subregs
648 if we aren't. This must come after the entire register case above,
649 since that case is valid for any mode. The following cases are only
650 valid for integral modes. */
652 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
653 if (imode != GET_MODE (op0))
655 if (MEM_P (op0))
656 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
657 else
659 gcc_assert (imode != BLKmode);
660 op0 = gen_lowpart (imode, op0);
665 /* Storing an lsb-aligned field in a register
666 can be done with a movstrict instruction. */
668 if (!MEM_P (op0)
669 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
670 && bitsize == GET_MODE_BITSIZE (fieldmode)
671 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
673 struct expand_operand ops[2];
674 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
675 rtx arg0 = op0;
676 unsigned HOST_WIDE_INT subreg_off;
678 if (GET_CODE (arg0) == SUBREG)
680 /* Else we've got some float mode source being extracted into
681 a different float mode destination -- this combination of
682 subregs results in Severe Tire Damage. */
683 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
684 || GET_MODE_CLASS (fieldmode) == MODE_INT
685 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
686 arg0 = SUBREG_REG (arg0);
689 subreg_off = bitnum / BITS_PER_UNIT;
690 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
692 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
694 create_fixed_operand (&ops[0], arg0);
695 /* Shrink the source operand to FIELDMODE. */
696 create_convert_operand_to (&ops[1], value, fieldmode, false);
697 if (maybe_expand_insn (icode, 2, ops))
698 return true;
702 /* Handle fields bigger than a word. */
704 if (bitsize > BITS_PER_WORD)
706 /* Here we transfer the words of the field
707 in the order least significant first.
708 This is because the most significant word is the one which may
709 be less than full.
710 However, only do that if the value is not BLKmode. */
712 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
713 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
714 unsigned int i;
715 rtx last;
717 /* This is the mode we must force value to, so that there will be enough
718 subwords to extract. Note that fieldmode will often (always?) be
719 VOIDmode, because that is what store_field uses to indicate that this
720 is a bit field, but passing VOIDmode to operand_subword_force
721 is not allowed. */
722 fieldmode = GET_MODE (value);
723 if (fieldmode == VOIDmode)
724 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
726 last = get_last_insn ();
727 for (i = 0; i < nwords; i++)
729 /* If I is 0, use the low-order word in both field and target;
730 if I is 1, use the next to lowest word; and so on. */
731 unsigned int wordnum = (backwards
732 ? GET_MODE_SIZE (fieldmode) / UNITS_PER_WORD
733 - i - 1
734 : i);
735 unsigned int bit_offset = (backwards
736 ? MAX ((int) bitsize - ((int) i + 1)
737 * BITS_PER_WORD,
739 : (int) i * BITS_PER_WORD);
740 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
741 unsigned HOST_WIDE_INT new_bitsize =
742 MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
744 /* If the remaining chunk doesn't have full wordsize we have
745 to make sure that for big endian machines the higher order
746 bits are used. */
747 if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
748 value_word = simplify_expand_binop (word_mode, lshr_optab,
749 value_word,
750 GEN_INT (BITS_PER_WORD
751 - new_bitsize),
752 NULL_RTX, true,
753 OPTAB_LIB_WIDEN);
755 if (!store_bit_field_1 (op0, new_bitsize,
756 bitnum + bit_offset,
757 bitregion_start, bitregion_end,
758 word_mode,
759 value_word, fallback_p))
761 delete_insns_since (last);
762 return false;
765 return true;
768 /* If VALUE has a floating-point or complex mode, access it as an
769 integer of the corresponding size. This can occur on a machine
770 with 64 bit registers that uses SFmode for float. It can also
771 occur for unaligned float or complex fields. */
772 orig_value = value;
773 if (GET_MODE (value) != VOIDmode
774 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
775 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
777 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
778 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
781 /* If OP0 is a multi-word register, narrow it to the affected word.
782 If the region spans two words, defer to store_split_bit_field. */
783 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
785 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
786 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
787 gcc_assert (op0);
788 bitnum %= BITS_PER_WORD;
789 if (bitnum + bitsize > BITS_PER_WORD)
791 if (!fallback_p)
792 return false;
794 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
795 bitregion_end, value);
796 return true;
800 /* From here on we can assume that the field to be stored in fits
801 within a word. If the destination is a register, it too fits
802 in a word. */
804 extraction_insn insv;
805 if (!MEM_P (op0)
806 && get_best_reg_extraction_insn (&insv, EP_insv,
807 GET_MODE_BITSIZE (GET_MODE (op0)),
808 fieldmode)
809 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
810 return true;
812 /* If OP0 is a memory, try copying it to a register and seeing if a
813 cheap register alternative is available. */
814 if (MEM_P (op0))
816 /* Do not use unaligned memory insvs for volatile bitfields when
817 -fstrict-volatile-bitfields is in effect. */
818 if (!(MEM_VOLATILE_P (op0)
819 && flag_strict_volatile_bitfields > 0)
820 && get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
821 fieldmode)
822 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
823 return true;
825 rtx last = get_last_insn ();
827 /* Try loading part of OP0 into a register, inserting the bitfield
828 into that, and then copying the result back to OP0. */
829 unsigned HOST_WIDE_INT bitpos;
830 rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
831 bitregion_start, bitregion_end,
832 fieldmode, &bitpos);
833 if (xop0)
835 rtx tempreg = copy_to_reg (xop0);
836 if (store_bit_field_1 (tempreg, bitsize, bitpos,
837 bitregion_start, bitregion_end,
838 fieldmode, orig_value, false))
840 emit_move_insn (xop0, tempreg);
841 return true;
843 delete_insns_since (last);
847 if (!fallback_p)
848 return false;
850 store_fixed_bit_field (op0, bitsize, bitnum, bitregion_start,
851 bitregion_end, value);
852 return true;
855 /* Generate code to store value from rtx VALUE
856 into a bit-field within structure STR_RTX
857 containing BITSIZE bits starting at bit BITNUM.
859 BITREGION_START is bitpos of the first bitfield in this region.
860 BITREGION_END is the bitpos of the ending bitfield in this region.
861 These two fields are 0, if the C++ memory model does not apply,
862 or we are not interested in keeping track of bitfield regions.
864 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
866 void
867 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
868 unsigned HOST_WIDE_INT bitnum,
869 unsigned HOST_WIDE_INT bitregion_start,
870 unsigned HOST_WIDE_INT bitregion_end,
871 enum machine_mode fieldmode,
872 rtx value)
874 /* Under the C++0x memory model, we must not touch bits outside the
875 bit region. Adjust the address to start at the beginning of the
876 bit region. */
877 if (MEM_P (str_rtx) && bitregion_start > 0)
879 enum machine_mode bestmode;
880 HOST_WIDE_INT offset, size;
882 gcc_assert ((bitregion_start % BITS_PER_UNIT) == 0);
884 offset = bitregion_start / BITS_PER_UNIT;
885 bitnum -= bitregion_start;
886 size = (bitnum + bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
887 bitregion_end -= bitregion_start;
888 bitregion_start = 0;
889 bestmode = get_best_mode (bitsize, bitnum,
890 bitregion_start, bitregion_end,
891 MEM_ALIGN (str_rtx), VOIDmode,
892 MEM_VOLATILE_P (str_rtx));
893 str_rtx = adjust_bitfield_address_size (str_rtx, bestmode, offset, size);
896 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
897 bitregion_start, bitregion_end,
898 fieldmode, value, true))
899 gcc_unreachable ();
902 /* Use shifts and boolean operations to store VALUE into a bit field of
903 width BITSIZE in OP0, starting at bit BITNUM. */
905 static void
906 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
907 unsigned HOST_WIDE_INT bitnum,
908 unsigned HOST_WIDE_INT bitregion_start,
909 unsigned HOST_WIDE_INT bitregion_end,
910 rtx value)
912 enum machine_mode mode;
913 rtx temp;
914 int all_zero = 0;
915 int all_one = 0;
917 /* There is a case not handled here:
918 a structure with a known alignment of just a halfword
919 and a field split across two aligned halfwords within the structure.
920 Or likewise a structure with a known alignment of just a byte
921 and a field split across two bytes.
922 Such cases are not supposed to be able to occur. */
924 if (MEM_P (op0))
926 unsigned HOST_WIDE_INT maxbits = MAX_FIXED_MODE_SIZE;
928 if (bitregion_end)
929 maxbits = bitregion_end - bitregion_start + 1;
931 /* Get the proper mode to use for this field. We want a mode that
932 includes the entire field. If such a mode would be larger than
933 a word, we won't be doing the extraction the normal way.
934 We don't want a mode bigger than the destination. */
936 mode = GET_MODE (op0);
937 if (GET_MODE_BITSIZE (mode) == 0
938 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
939 mode = word_mode;
941 if (MEM_VOLATILE_P (op0)
942 && GET_MODE_BITSIZE (GET_MODE (op0)) > 0
943 && GET_MODE_BITSIZE (GET_MODE (op0)) <= maxbits
944 && flag_strict_volatile_bitfields > 0)
945 mode = GET_MODE (op0);
946 else
947 mode = get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
948 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
950 if (mode == VOIDmode)
952 /* The only way this should occur is if the field spans word
953 boundaries. */
954 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
955 bitregion_end, value);
956 return;
959 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
962 mode = GET_MODE (op0);
963 gcc_assert (SCALAR_INT_MODE_P (mode));
965 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
966 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
968 if (BYTES_BIG_ENDIAN)
969 /* BITNUM is the distance between our msb
970 and that of the containing datum.
971 Convert it to the distance from the lsb. */
972 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
974 /* Now BITNUM is always the distance between our lsb
975 and that of OP0. */
977 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
978 we must first convert its mode to MODE. */
980 if (CONST_INT_P (value))
982 HOST_WIDE_INT v = INTVAL (value);
984 if (bitsize < HOST_BITS_PER_WIDE_INT)
985 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
987 if (v == 0)
988 all_zero = 1;
989 else if ((bitsize < HOST_BITS_PER_WIDE_INT
990 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
991 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
992 all_one = 1;
994 value = lshift_value (mode, value, bitnum, bitsize);
996 else
998 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
999 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1001 if (GET_MODE (value) != mode)
1002 value = convert_to_mode (mode, value, 1);
1004 if (must_and)
1005 value = expand_binop (mode, and_optab, value,
1006 mask_rtx (mode, 0, bitsize, 0),
1007 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1008 if (bitnum > 0)
1009 value = expand_shift (LSHIFT_EXPR, mode, value,
1010 bitnum, NULL_RTX, 1);
1013 /* Now clear the chosen bits in OP0,
1014 except that if VALUE is -1 we need not bother. */
1015 /* We keep the intermediates in registers to allow CSE to combine
1016 consecutive bitfield assignments. */
1018 temp = force_reg (mode, op0);
1020 if (! all_one)
1022 temp = expand_binop (mode, and_optab, temp,
1023 mask_rtx (mode, bitnum, bitsize, 1),
1024 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1025 temp = force_reg (mode, temp);
1028 /* Now logical-or VALUE into OP0, unless it is zero. */
1030 if (! all_zero)
1032 temp = expand_binop (mode, ior_optab, temp, value,
1033 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1034 temp = force_reg (mode, temp);
1037 if (op0 != temp)
1039 op0 = copy_rtx (op0);
1040 emit_move_insn (op0, temp);
1044 /* Store a bit field that is split across multiple accessible memory objects.
1046 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1047 BITSIZE is the field width; BITPOS the position of its first bit
1048 (within the word).
1049 VALUE is the value to store.
1051 This does not yet handle fields wider than BITS_PER_WORD. */
1053 static void
1054 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1055 unsigned HOST_WIDE_INT bitpos,
1056 unsigned HOST_WIDE_INT bitregion_start,
1057 unsigned HOST_WIDE_INT bitregion_end,
1058 rtx value)
1060 unsigned int unit;
1061 unsigned int bitsdone = 0;
1063 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1064 much at a time. */
1065 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1066 unit = BITS_PER_WORD;
1067 else
1068 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1070 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1071 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1072 that VALUE might be a floating-point constant. */
1073 if (CONSTANT_P (value) && !CONST_INT_P (value))
1075 rtx word = gen_lowpart_common (word_mode, value);
1077 if (word && (value != word))
1078 value = word;
1079 else
1080 value = gen_lowpart_common (word_mode,
1081 force_reg (GET_MODE (value) != VOIDmode
1082 ? GET_MODE (value)
1083 : word_mode, value));
1086 while (bitsdone < bitsize)
1088 unsigned HOST_WIDE_INT thissize;
1089 rtx part, word;
1090 unsigned HOST_WIDE_INT thispos;
1091 unsigned HOST_WIDE_INT offset;
1093 offset = (bitpos + bitsdone) / unit;
1094 thispos = (bitpos + bitsdone) % unit;
1096 /* When region of bytes we can touch is restricted, decrease
1097 UNIT close to the end of the region as needed. */
1098 if (bitregion_end
1099 && unit > BITS_PER_UNIT
1100 && bitpos + bitsdone - thispos + unit > bitregion_end + 1)
1102 unit = unit / 2;
1103 continue;
1106 /* THISSIZE must not overrun a word boundary. Otherwise,
1107 store_fixed_bit_field will call us again, and we will mutually
1108 recurse forever. */
1109 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1110 thissize = MIN (thissize, unit - thispos);
1112 if (BYTES_BIG_ENDIAN)
1114 /* Fetch successively less significant portions. */
1115 if (CONST_INT_P (value))
1116 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1117 >> (bitsize - bitsdone - thissize))
1118 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1119 else
1121 int total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1122 /* The args are chosen so that the last part includes the
1123 lsb. Give extract_bit_field the value it needs (with
1124 endianness compensation) to fetch the piece we want. */
1125 part = extract_fixed_bit_field (word_mode, value, thissize,
1126 total_bits - bitsize + bitsdone,
1127 NULL_RTX, 1, false);
1130 else
1132 /* Fetch successively more significant portions. */
1133 if (CONST_INT_P (value))
1134 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1135 >> bitsdone)
1136 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1137 else
1138 part = extract_fixed_bit_field (word_mode, value, thissize,
1139 bitsdone, NULL_RTX, 1, false);
1142 /* If OP0 is a register, then handle OFFSET here.
1144 When handling multiword bitfields, extract_bit_field may pass
1145 down a word_mode SUBREG of a larger REG for a bitfield that actually
1146 crosses a word boundary. Thus, for a SUBREG, we must find
1147 the current word starting from the base register. */
1148 if (GET_CODE (op0) == SUBREG)
1150 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1151 enum machine_mode sub_mode = GET_MODE (SUBREG_REG (op0));
1152 if (sub_mode != BLKmode && GET_MODE_SIZE (sub_mode) < UNITS_PER_WORD)
1153 word = word_offset ? const0_rtx : op0;
1154 else
1155 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1156 GET_MODE (SUBREG_REG (op0)));
1157 offset = 0;
1159 else if (REG_P (op0))
1161 enum machine_mode op0_mode = GET_MODE (op0);
1162 if (op0_mode != BLKmode && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD)
1163 word = offset ? const0_rtx : op0;
1164 else
1165 word = operand_subword_force (op0, offset, GET_MODE (op0));
1166 offset = 0;
1168 else
1169 word = op0;
1171 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1172 it is just an out-of-bounds access. Ignore it. */
1173 if (word != const0_rtx)
1174 store_fixed_bit_field (word, thissize, offset * unit + thispos,
1175 bitregion_start, bitregion_end, part);
1176 bitsdone += thissize;
1180 /* A subroutine of extract_bit_field_1 that converts return value X
1181 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1182 to extract_bit_field. */
1184 static rtx
1185 convert_extracted_bit_field (rtx x, enum machine_mode mode,
1186 enum machine_mode tmode, bool unsignedp)
1188 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1189 return x;
1191 /* If the x mode is not a scalar integral, first convert to the
1192 integer mode of that size and then access it as a floating-point
1193 value via a SUBREG. */
1194 if (!SCALAR_INT_MODE_P (tmode))
1196 enum machine_mode smode;
1198 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1199 x = convert_to_mode (smode, x, unsignedp);
1200 x = force_reg (smode, x);
1201 return gen_lowpart (tmode, x);
1204 return convert_to_mode (tmode, x, unsignedp);
1207 /* Try to use an ext(z)v pattern to extract a field from OP0.
1208 Return the extracted value on success, otherwise return null.
1209 EXT_MODE is the mode of the extraction and the other arguments
1210 are as for extract_bit_field. */
1212 static rtx
1213 extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1214 unsigned HOST_WIDE_INT bitsize,
1215 unsigned HOST_WIDE_INT bitnum,
1216 int unsignedp, rtx target,
1217 enum machine_mode mode, enum machine_mode tmode)
1219 struct expand_operand ops[4];
1220 rtx spec_target = target;
1221 rtx spec_target_subreg = 0;
1222 enum machine_mode ext_mode = extv->field_mode;
1223 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1225 if (bitsize == 0 || unit < bitsize)
1226 return NULL_RTX;
1228 if (MEM_P (op0))
1229 /* Get a reference to the first byte of the field. */
1230 op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1231 &bitnum);
1232 else
1234 /* Convert from counting within OP0 to counting in EXT_MODE. */
1235 if (BYTES_BIG_ENDIAN)
1236 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1238 /* If op0 is a register, we need it in EXT_MODE to make it
1239 acceptable to the format of ext(z)v. */
1240 if (GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1241 return NULL_RTX;
1242 if (REG_P (op0) && GET_MODE (op0) != ext_mode)
1243 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1246 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1247 "backwards" from the size of the unit we are extracting from.
1248 Otherwise, we count bits from the most significant on a
1249 BYTES/BITS_BIG_ENDIAN machine. */
1251 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1252 bitnum = unit - bitsize - bitnum;
1254 if (target == 0)
1255 target = spec_target = gen_reg_rtx (tmode);
1257 if (GET_MODE (target) != ext_mode)
1259 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1260 between the mode of the extraction (word_mode) and the target
1261 mode. Instead, create a temporary and use convert_move to set
1262 the target. */
1263 if (REG_P (target)
1264 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
1266 target = gen_lowpart (ext_mode, target);
1267 if (GET_MODE_PRECISION (ext_mode)
1268 > GET_MODE_PRECISION (GET_MODE (spec_target)))
1269 spec_target_subreg = target;
1271 else
1272 target = gen_reg_rtx (ext_mode);
1275 create_output_operand (&ops[0], target, ext_mode);
1276 create_fixed_operand (&ops[1], op0);
1277 create_integer_operand (&ops[2], bitsize);
1278 create_integer_operand (&ops[3], bitnum);
1279 if (maybe_expand_insn (extv->icode, 4, ops))
1281 target = ops[0].value;
1282 if (target == spec_target)
1283 return target;
1284 if (target == spec_target_subreg)
1285 return spec_target;
1286 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1288 return NULL_RTX;
1291 /* A subroutine of extract_bit_field, with the same arguments.
1292 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1293 if we can find no other means of implementing the operation.
1294 if FALLBACK_P is false, return NULL instead. */
1296 static rtx
1297 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1298 unsigned HOST_WIDE_INT bitnum,
1299 int unsignedp, bool packedp, rtx target,
1300 enum machine_mode mode, enum machine_mode tmode,
1301 bool fallback_p)
1303 rtx op0 = str_rtx;
1304 enum machine_mode int_mode;
1305 enum machine_mode mode1;
1307 if (tmode == VOIDmode)
1308 tmode = mode;
1310 while (GET_CODE (op0) == SUBREG)
1312 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1313 op0 = SUBREG_REG (op0);
1316 /* If we have an out-of-bounds access to a register, just return an
1317 uninitialized register of the required mode. This can occur if the
1318 source code contains an out-of-bounds access to a small array. */
1319 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1320 return gen_reg_rtx (tmode);
1322 if (REG_P (op0)
1323 && mode == GET_MODE (op0)
1324 && bitnum == 0
1325 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1327 /* We're trying to extract a full register from itself. */
1328 return op0;
1331 /* See if we can get a better vector mode before extracting. */
1332 if (VECTOR_MODE_P (GET_MODE (op0))
1333 && !MEM_P (op0)
1334 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1336 enum machine_mode new_mode;
1338 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1339 new_mode = MIN_MODE_VECTOR_FLOAT;
1340 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1341 new_mode = MIN_MODE_VECTOR_FRACT;
1342 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1343 new_mode = MIN_MODE_VECTOR_UFRACT;
1344 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1345 new_mode = MIN_MODE_VECTOR_ACCUM;
1346 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1347 new_mode = MIN_MODE_VECTOR_UACCUM;
1348 else
1349 new_mode = MIN_MODE_VECTOR_INT;
1351 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1352 if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1353 && targetm.vector_mode_supported_p (new_mode))
1354 break;
1355 if (new_mode != VOIDmode)
1356 op0 = gen_lowpart (new_mode, op0);
1359 /* Use vec_extract patterns for extracting parts of vectors whenever
1360 available. */
1361 if (VECTOR_MODE_P (GET_MODE (op0))
1362 && !MEM_P (op0)
1363 && optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
1364 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1365 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1367 struct expand_operand ops[3];
1368 enum machine_mode outermode = GET_MODE (op0);
1369 enum machine_mode innermode = GET_MODE_INNER (outermode);
1370 enum insn_code icode = optab_handler (vec_extract_optab, outermode);
1371 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1373 create_output_operand (&ops[0], target, innermode);
1374 create_input_operand (&ops[1], op0, outermode);
1375 create_integer_operand (&ops[2], pos);
1376 if (maybe_expand_insn (icode, 3, ops))
1378 target = ops[0].value;
1379 if (GET_MODE (target) != mode)
1380 return gen_lowpart (tmode, target);
1381 return target;
1385 /* Make sure we are playing with integral modes. Pun with subregs
1386 if we aren't. */
1388 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1389 if (imode != GET_MODE (op0))
1391 if (MEM_P (op0))
1392 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
1393 else if (imode != BLKmode)
1395 op0 = gen_lowpart (imode, op0);
1397 /* If we got a SUBREG, force it into a register since we
1398 aren't going to be able to do another SUBREG on it. */
1399 if (GET_CODE (op0) == SUBREG)
1400 op0 = force_reg (imode, op0);
1402 else if (REG_P (op0))
1404 rtx reg, subreg;
1405 imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1406 MODE_INT);
1407 reg = gen_reg_rtx (imode);
1408 subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1409 emit_move_insn (subreg, op0);
1410 op0 = reg;
1411 bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1413 else
1415 HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (op0));
1416 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1417 emit_move_insn (mem, op0);
1418 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1423 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1424 If that's wrong, the solution is to test for it and set TARGET to 0
1425 if needed. */
1427 /* If the bitfield is volatile, we need to make sure the access
1428 remains on a type-aligned boundary. */
1429 if (GET_CODE (op0) == MEM
1430 && MEM_VOLATILE_P (op0)
1431 && GET_MODE_BITSIZE (GET_MODE (op0)) > 0
1432 && flag_strict_volatile_bitfields > 0)
1433 goto no_subreg_mode_swap;
1435 /* Only scalar integer modes can be converted via subregs. There is an
1436 additional problem for FP modes here in that they can have a precision
1437 which is different from the size. mode_for_size uses precision, but
1438 we want a mode based on the size, so we must avoid calling it for FP
1439 modes. */
1440 mode1 = mode;
1441 if (SCALAR_INT_MODE_P (tmode))
1443 enum machine_mode try_mode = mode_for_size (bitsize,
1444 GET_MODE_CLASS (tmode), 0);
1445 if (try_mode != BLKmode)
1446 mode1 = try_mode;
1448 gcc_assert (mode1 != BLKmode);
1450 /* Extraction of a full MODE1 value can be done with a subreg as long
1451 as the least significant bit of the value is the least significant
1452 bit of either OP0 or a word of OP0. */
1453 if (!MEM_P (op0)
1454 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
1455 && bitsize == GET_MODE_BITSIZE (mode1)
1456 && TRULY_NOOP_TRUNCATION_MODES_P (mode1, GET_MODE (op0)))
1458 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1459 bitnum / BITS_PER_UNIT);
1460 if (sub)
1461 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1464 /* Extraction of a full MODE1 value can be done with a load as long as
1465 the field is on a byte boundary and is sufficiently aligned. */
1466 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1))
1468 op0 = adjust_bitfield_address (op0, mode1, bitnum / BITS_PER_UNIT);
1469 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1472 no_subreg_mode_swap:
1474 /* Handle fields bigger than a word. */
1476 if (bitsize > BITS_PER_WORD)
1478 /* Here we transfer the words of the field
1479 in the order least significant first.
1480 This is because the most significant word is the one which may
1481 be less than full. */
1483 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1484 unsigned int i;
1485 rtx last;
1487 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1488 target = gen_reg_rtx (mode);
1490 /* Indicate for flow that the entire target reg is being set. */
1491 emit_clobber (target);
1493 last = get_last_insn ();
1494 for (i = 0; i < nwords; i++)
1496 /* If I is 0, use the low-order word in both field and target;
1497 if I is 1, use the next to lowest word; and so on. */
1498 /* Word number in TARGET to use. */
1499 unsigned int wordnum
1500 = (WORDS_BIG_ENDIAN
1501 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1502 : i);
1503 /* Offset from start of field in OP0. */
1504 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1505 ? MAX (0, ((int) bitsize - ((int) i + 1)
1506 * (int) BITS_PER_WORD))
1507 : (int) i * BITS_PER_WORD);
1508 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1509 rtx result_part
1510 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1511 bitsize - i * BITS_PER_WORD),
1512 bitnum + bit_offset, 1, false, target_part,
1513 mode, word_mode, fallback_p);
1515 gcc_assert (target_part);
1516 if (!result_part)
1518 delete_insns_since (last);
1519 return NULL;
1522 if (result_part != target_part)
1523 emit_move_insn (target_part, result_part);
1526 if (unsignedp)
1528 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1529 need to be zero'd out. */
1530 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1532 unsigned int i, total_words;
1534 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1535 for (i = nwords; i < total_words; i++)
1536 emit_move_insn
1537 (operand_subword (target,
1538 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1539 1, VOIDmode),
1540 const0_rtx);
1542 return target;
1545 /* Signed bit field: sign-extend with two arithmetic shifts. */
1546 target = expand_shift (LSHIFT_EXPR, mode, target,
1547 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1548 return expand_shift (RSHIFT_EXPR, mode, target,
1549 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1552 /* If OP0 is a multi-word register, narrow it to the affected word.
1553 If the region spans two words, defer to extract_split_bit_field. */
1554 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1556 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
1557 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1558 bitnum %= BITS_PER_WORD;
1559 if (bitnum + bitsize > BITS_PER_WORD)
1561 if (!fallback_p)
1562 return NULL_RTX;
1563 target = extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1564 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1568 /* From here on we know the desired field is smaller than a word.
1569 If OP0 is a register, it too fits within a word. */
1570 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
1571 extraction_insn extv;
1572 if (!MEM_P (op0)
1573 /* ??? We could limit the structure size to the part of OP0 that
1574 contains the field, with appropriate checks for endianness
1575 and TRULY_NOOP_TRUNCATION. */
1576 && get_best_reg_extraction_insn (&extv, pattern,
1577 GET_MODE_BITSIZE (GET_MODE (op0)),
1578 tmode))
1580 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize, bitnum,
1581 unsignedp, target, mode,
1582 tmode);
1583 if (result)
1584 return result;
1587 /* If OP0 is a memory, try copying it to a register and seeing if a
1588 cheap register alternative is available. */
1589 if (MEM_P (op0))
1591 /* Do not use extv/extzv for volatile bitfields when
1592 -fstrict-volatile-bitfields is in effect. */
1593 if (!(MEM_VOLATILE_P (op0) && flag_strict_volatile_bitfields > 0)
1594 && get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
1595 tmode))
1597 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize,
1598 bitnum, unsignedp,
1599 target, mode,
1600 tmode);
1601 if (result)
1602 return result;
1605 rtx last = get_last_insn ();
1607 /* Try loading part of OP0 into a register and extracting the
1608 bitfield from that. */
1609 unsigned HOST_WIDE_INT bitpos;
1610 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
1611 0, 0, tmode, &bitpos);
1612 if (xop0)
1614 xop0 = copy_to_reg (xop0);
1615 rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
1616 unsignedp, packedp, target,
1617 mode, tmode, false);
1618 if (result)
1619 return result;
1620 delete_insns_since (last);
1624 if (!fallback_p)
1625 return NULL;
1627 /* Find a correspondingly-sized integer field, so we can apply
1628 shifts and masks to it. */
1629 int_mode = int_mode_for_mode (tmode);
1630 if (int_mode == BLKmode)
1631 int_mode = int_mode_for_mode (mode);
1632 /* Should probably push op0 out to memory and then do a load. */
1633 gcc_assert (int_mode != BLKmode);
1635 target = extract_fixed_bit_field (int_mode, op0, bitsize, bitnum,
1636 target, unsignedp, packedp);
1637 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1640 /* Generate code to extract a byte-field from STR_RTX
1641 containing BITSIZE bits, starting at BITNUM,
1642 and put it in TARGET if possible (if TARGET is nonzero).
1643 Regardless of TARGET, we return the rtx for where the value is placed.
1645 STR_RTX is the structure containing the byte (a REG or MEM).
1646 UNSIGNEDP is nonzero if this is an unsigned bit field.
1647 PACKEDP is nonzero if the field has the packed attribute.
1648 MODE is the natural mode of the field value once extracted.
1649 TMODE is the mode the caller would like the value to have;
1650 but the value may be returned with type MODE instead.
1652 If a TARGET is specified and we can store in it at no extra cost,
1653 we do so, and return TARGET.
1654 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1655 if they are equally easy. */
1658 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1659 unsigned HOST_WIDE_INT bitnum, int unsignedp, bool packedp,
1660 rtx target, enum machine_mode mode, enum machine_mode tmode)
1662 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp, packedp,
1663 target, mode, tmode, true);
1666 /* Use shifts and boolean operations to extract a field of BITSIZE bits
1667 from bit BITNUM of OP0.
1669 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1670 PACKEDP is true if the field has the packed attribute.
1672 If TARGET is nonzero, attempts to store the value there
1673 and return TARGET, but this is not guaranteed.
1674 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1676 static rtx
1677 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1678 unsigned HOST_WIDE_INT bitsize,
1679 unsigned HOST_WIDE_INT bitnum, rtx target,
1680 int unsignedp, bool packedp)
1682 enum machine_mode mode;
1684 if (MEM_P (op0))
1686 /* Get the proper mode to use for this field. We want a mode that
1687 includes the entire field. If such a mode would be larger than
1688 a word, we won't be doing the extraction the normal way. */
1690 if (MEM_VOLATILE_P (op0)
1691 && flag_strict_volatile_bitfields > 0)
1693 if (GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
1694 mode = GET_MODE (op0);
1695 else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
1696 mode = GET_MODE (target);
1697 else
1698 mode = tmode;
1700 else
1701 mode = get_best_mode (bitsize, bitnum, 0, 0,
1702 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1704 if (mode == VOIDmode)
1705 /* The only way this should occur is if the field spans word
1706 boundaries. */
1707 return extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1709 unsigned int total_bits = GET_MODE_BITSIZE (mode);
1710 HOST_WIDE_INT bit_offset = bitnum - bitnum % total_bits;
1712 /* If we're accessing a volatile MEM, we can't apply BIT_OFFSET
1713 if it results in a multi-word access where we otherwise wouldn't
1714 have one. So, check for that case here. */
1715 if (MEM_P (op0)
1716 && MEM_VOLATILE_P (op0)
1717 && flag_strict_volatile_bitfields > 0
1718 && bitnum % BITS_PER_UNIT + bitsize <= total_bits
1719 && bitnum % GET_MODE_BITSIZE (mode) + bitsize > total_bits)
1721 if (STRICT_ALIGNMENT)
1723 static bool informed_about_misalignment = false;
1725 if (packedp)
1727 if (bitsize == total_bits)
1728 warning_at (input_location, OPT_fstrict_volatile_bitfields,
1729 "multiple accesses to volatile structure"
1730 " member because of packed attribute");
1731 else
1732 warning_at (input_location, OPT_fstrict_volatile_bitfields,
1733 "multiple accesses to volatile structure"
1734 " bitfield because of packed attribute");
1736 return extract_split_bit_field (op0, bitsize, bitnum,
1737 unsignedp);
1740 if (bitsize == total_bits)
1741 warning_at (input_location, OPT_fstrict_volatile_bitfields,
1742 "mis-aligned access used for structure member");
1743 else
1744 warning_at (input_location, OPT_fstrict_volatile_bitfields,
1745 "mis-aligned access used for structure bitfield");
1747 if (! informed_about_misalignment)
1749 informed_about_misalignment = true;
1750 inform (input_location,
1751 "when a volatile object spans multiple type-sized"
1752 " locations, the compiler must choose between using"
1753 " a single mis-aligned access to preserve the"
1754 " volatility, or using multiple aligned accesses"
1755 " to avoid runtime faults; this code may fail at"
1756 " runtime if the hardware does not allow this"
1757 " access");
1760 bit_offset = bitnum - bitnum % BITS_PER_UNIT;
1762 op0 = adjust_bitfield_address (op0, mode, bit_offset / BITS_PER_UNIT);
1763 bitnum -= bit_offset;
1766 mode = GET_MODE (op0);
1767 gcc_assert (SCALAR_INT_MODE_P (mode));
1769 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1770 for invalid input, such as extract equivalent of f5 from
1771 gcc.dg/pr48335-2.c. */
1773 if (BYTES_BIG_ENDIAN)
1774 /* BITNUM is the distance between our msb and that of OP0.
1775 Convert it to the distance from the lsb. */
1776 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1778 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
1779 We have reduced the big-endian case to the little-endian case. */
1781 if (unsignedp)
1783 if (bitnum)
1785 /* If the field does not already start at the lsb,
1786 shift it so it does. */
1787 /* Maybe propagate the target for the shift. */
1788 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1789 if (tmode != mode)
1790 subtarget = 0;
1791 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
1793 /* Convert the value to the desired mode. */
1794 if (mode != tmode)
1795 op0 = convert_to_mode (tmode, op0, 1);
1797 /* Unless the msb of the field used to be the msb when we shifted,
1798 mask out the upper bits. */
1800 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
1801 return expand_binop (GET_MODE (op0), and_optab, op0,
1802 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1803 target, 1, OPTAB_LIB_WIDEN);
1804 return op0;
1807 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1808 then arithmetic-shift its lsb to the lsb of the word. */
1809 op0 = force_reg (mode, op0);
1811 /* Find the narrowest integer mode that contains the field. */
1813 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1814 mode = GET_MODE_WIDER_MODE (mode))
1815 if (GET_MODE_BITSIZE (mode) >= bitsize + bitnum)
1817 op0 = convert_to_mode (mode, op0, 0);
1818 break;
1821 if (mode != tmode)
1822 target = 0;
1824 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
1826 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
1827 /* Maybe propagate the target for the shift. */
1828 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1829 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1832 return expand_shift (RSHIFT_EXPR, mode, op0,
1833 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
1836 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1837 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1838 complement of that if COMPLEMENT. The mask is truncated if
1839 necessary to the width of mode MODE. The mask is zero-extended if
1840 BITSIZE+BITPOS is too small for MODE. */
1842 static rtx
1843 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1845 double_int mask;
1847 mask = double_int::mask (bitsize);
1848 mask = mask.llshift (bitpos, HOST_BITS_PER_DOUBLE_INT);
1850 if (complement)
1851 mask = ~mask;
1853 return immed_double_int_const (mask, mode);
1856 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1857 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1859 static rtx
1860 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1862 double_int val;
1864 val = double_int::from_uhwi (INTVAL (value)).zext (bitsize);
1865 val = val.llshift (bitpos, HOST_BITS_PER_DOUBLE_INT);
1867 return immed_double_int_const (val, mode);
1870 /* Extract a bit field that is split across two words
1871 and return an RTX for the result.
1873 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1874 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1875 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1877 static rtx
1878 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1879 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1881 unsigned int unit;
1882 unsigned int bitsdone = 0;
1883 rtx result = NULL_RTX;
1884 int first = 1;
1886 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1887 much at a time. */
1888 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1889 unit = BITS_PER_WORD;
1890 else
1891 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1893 while (bitsdone < bitsize)
1895 unsigned HOST_WIDE_INT thissize;
1896 rtx part, word;
1897 unsigned HOST_WIDE_INT thispos;
1898 unsigned HOST_WIDE_INT offset;
1900 offset = (bitpos + bitsdone) / unit;
1901 thispos = (bitpos + bitsdone) % unit;
1903 /* THISSIZE must not overrun a word boundary. Otherwise,
1904 extract_fixed_bit_field will call us again, and we will mutually
1905 recurse forever. */
1906 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1907 thissize = MIN (thissize, unit - thispos);
1909 /* If OP0 is a register, then handle OFFSET here.
1911 When handling multiword bitfields, extract_bit_field may pass
1912 down a word_mode SUBREG of a larger REG for a bitfield that actually
1913 crosses a word boundary. Thus, for a SUBREG, we must find
1914 the current word starting from the base register. */
1915 if (GET_CODE (op0) == SUBREG)
1917 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1918 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1919 GET_MODE (SUBREG_REG (op0)));
1920 offset = 0;
1922 else if (REG_P (op0))
1924 word = operand_subword_force (op0, offset, GET_MODE (op0));
1925 offset = 0;
1927 else
1928 word = op0;
1930 /* Extract the parts in bit-counting order,
1931 whose meaning is determined by BYTES_PER_UNIT.
1932 OFFSET is in UNITs, and UNIT is in bits. */
1933 part = extract_fixed_bit_field (word_mode, word, thissize,
1934 offset * unit + thispos, 0, 1, false);
1935 bitsdone += thissize;
1937 /* Shift this part into place for the result. */
1938 if (BYTES_BIG_ENDIAN)
1940 if (bitsize != bitsdone)
1941 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1942 bitsize - bitsdone, 0, 1);
1944 else
1946 if (bitsdone != thissize)
1947 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1948 bitsdone - thissize, 0, 1);
1951 if (first)
1952 result = part;
1953 else
1954 /* Combine the parts with bitwise or. This works
1955 because we extracted each part as an unsigned bit field. */
1956 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
1957 OPTAB_LIB_WIDEN);
1959 first = 0;
1962 /* Unsigned bit field: we are done. */
1963 if (unsignedp)
1964 return result;
1965 /* Signed bit field: sign-extend with two arithmetic shifts. */
1966 result = expand_shift (LSHIFT_EXPR, word_mode, result,
1967 BITS_PER_WORD - bitsize, NULL_RTX, 0);
1968 return expand_shift (RSHIFT_EXPR, word_mode, result,
1969 BITS_PER_WORD - bitsize, NULL_RTX, 0);
1972 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
1973 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
1974 MODE, fill the upper bits with zeros. Fail if the layout of either
1975 mode is unknown (as for CC modes) or if the extraction would involve
1976 unprofitable mode punning. Return the value on success, otherwise
1977 return null.
1979 This is different from gen_lowpart* in these respects:
1981 - the returned value must always be considered an rvalue
1983 - when MODE is wider than SRC_MODE, the extraction involves
1984 a zero extension
1986 - when MODE is smaller than SRC_MODE, the extraction involves
1987 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
1989 In other words, this routine performs a computation, whereas the
1990 gen_lowpart* routines are conceptually lvalue or rvalue subreg
1991 operations. */
1994 extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
1996 enum machine_mode int_mode, src_int_mode;
1998 if (mode == src_mode)
1999 return src;
2001 if (CONSTANT_P (src))
2003 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2004 fails, it will happily create (subreg (symbol_ref)) or similar
2005 invalid SUBREGs. */
2006 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2007 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2008 if (ret)
2009 return ret;
2011 if (GET_MODE (src) == VOIDmode
2012 || !validate_subreg (mode, src_mode, src, byte))
2013 return NULL_RTX;
2015 src = force_reg (GET_MODE (src), src);
2016 return gen_rtx_SUBREG (mode, src, byte);
2019 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2020 return NULL_RTX;
2022 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2023 && MODES_TIEABLE_P (mode, src_mode))
2025 rtx x = gen_lowpart_common (mode, src);
2026 if (x)
2027 return x;
2030 src_int_mode = int_mode_for_mode (src_mode);
2031 int_mode = int_mode_for_mode (mode);
2032 if (src_int_mode == BLKmode || int_mode == BLKmode)
2033 return NULL_RTX;
2035 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2036 return NULL_RTX;
2037 if (!MODES_TIEABLE_P (int_mode, mode))
2038 return NULL_RTX;
2040 src = gen_lowpart (src_int_mode, src);
2041 src = convert_modes (int_mode, src_int_mode, src, true);
2042 src = gen_lowpart (mode, src);
2043 return src;
2046 /* Add INC into TARGET. */
2048 void
2049 expand_inc (rtx target, rtx inc)
2051 rtx value = expand_binop (GET_MODE (target), add_optab,
2052 target, inc,
2053 target, 0, OPTAB_LIB_WIDEN);
2054 if (value != target)
2055 emit_move_insn (target, value);
2058 /* Subtract DEC from TARGET. */
2060 void
2061 expand_dec (rtx target, rtx dec)
2063 rtx value = expand_binop (GET_MODE (target), sub_optab,
2064 target, dec,
2065 target, 0, OPTAB_LIB_WIDEN);
2066 if (value != target)
2067 emit_move_insn (target, value);
2070 /* Output a shift instruction for expression code CODE,
2071 with SHIFTED being the rtx for the value to shift,
2072 and AMOUNT the rtx for the amount to shift by.
2073 Store the result in the rtx TARGET, if that is convenient.
2074 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2075 Return the rtx for where the value is. */
2077 static rtx
2078 expand_shift_1 (enum tree_code code, enum machine_mode mode, rtx shifted,
2079 rtx amount, rtx target, int unsignedp)
2081 rtx op1, temp = 0;
2082 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2083 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2084 optab lshift_optab = ashl_optab;
2085 optab rshift_arith_optab = ashr_optab;
2086 optab rshift_uns_optab = lshr_optab;
2087 optab lrotate_optab = rotl_optab;
2088 optab rrotate_optab = rotr_optab;
2089 enum machine_mode op1_mode;
2090 int attempt;
2091 bool speed = optimize_insn_for_speed_p ();
2093 op1 = amount;
2094 op1_mode = GET_MODE (op1);
2096 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2097 shift amount is a vector, use the vector/vector shift patterns. */
2098 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2100 lshift_optab = vashl_optab;
2101 rshift_arith_optab = vashr_optab;
2102 rshift_uns_optab = vlshr_optab;
2103 lrotate_optab = vrotl_optab;
2104 rrotate_optab = vrotr_optab;
2107 /* Previously detected shift-counts computed by NEGATE_EXPR
2108 and shifted in the other direction; but that does not work
2109 on all machines. */
2111 if (SHIFT_COUNT_TRUNCATED)
2113 if (CONST_INT_P (op1)
2114 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2115 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2116 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2117 % GET_MODE_BITSIZE (mode));
2118 else if (GET_CODE (op1) == SUBREG
2119 && subreg_lowpart_p (op1)
2120 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2121 && SCALAR_INT_MODE_P (GET_MODE (op1)))
2122 op1 = SUBREG_REG (op1);
2125 if (op1 == const0_rtx)
2126 return shifted;
2128 /* Check whether its cheaper to implement a left shift by a constant
2129 bit count by a sequence of additions. */
2130 if (code == LSHIFT_EXPR
2131 && CONST_INT_P (op1)
2132 && INTVAL (op1) > 0
2133 && INTVAL (op1) < GET_MODE_PRECISION (mode)
2134 && INTVAL (op1) < MAX_BITS_PER_WORD
2135 && (shift_cost (speed, mode, INTVAL (op1))
2136 > INTVAL (op1) * add_cost (speed, mode))
2137 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2139 int i;
2140 for (i = 0; i < INTVAL (op1); i++)
2142 temp = force_reg (mode, shifted);
2143 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2144 unsignedp, OPTAB_LIB_WIDEN);
2146 return shifted;
2149 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2151 enum optab_methods methods;
2153 if (attempt == 0)
2154 methods = OPTAB_DIRECT;
2155 else if (attempt == 1)
2156 methods = OPTAB_WIDEN;
2157 else
2158 methods = OPTAB_LIB_WIDEN;
2160 if (rotate)
2162 /* Widening does not work for rotation. */
2163 if (methods == OPTAB_WIDEN)
2164 continue;
2165 else if (methods == OPTAB_LIB_WIDEN)
2167 /* If we have been unable to open-code this by a rotation,
2168 do it as the IOR of two shifts. I.e., to rotate A
2169 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2170 where C is the bitsize of A.
2172 It is theoretically possible that the target machine might
2173 not be able to perform either shift and hence we would
2174 be making two libcalls rather than just the one for the
2175 shift (similarly if IOR could not be done). We will allow
2176 this extremely unlikely lossage to avoid complicating the
2177 code below. */
2179 rtx subtarget = target == shifted ? 0 : target;
2180 rtx new_amount, other_amount;
2181 rtx temp1;
2183 new_amount = op1;
2184 if (CONST_INT_P (op1))
2185 other_amount = GEN_INT (GET_MODE_BITSIZE (mode)
2186 - INTVAL (op1));
2187 else
2188 other_amount
2189 = simplify_gen_binary (MINUS, GET_MODE (op1),
2190 GEN_INT (GET_MODE_PRECISION (mode)),
2191 op1);
2193 shifted = force_reg (mode, shifted);
2195 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2196 mode, shifted, new_amount, 0, 1);
2197 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2198 mode, shifted, other_amount,
2199 subtarget, 1);
2200 return expand_binop (mode, ior_optab, temp, temp1, target,
2201 unsignedp, methods);
2204 temp = expand_binop (mode,
2205 left ? lrotate_optab : rrotate_optab,
2206 shifted, op1, target, unsignedp, methods);
2208 else if (unsignedp)
2209 temp = expand_binop (mode,
2210 left ? lshift_optab : rshift_uns_optab,
2211 shifted, op1, target, unsignedp, methods);
2213 /* Do arithmetic shifts.
2214 Also, if we are going to widen the operand, we can just as well
2215 use an arithmetic right-shift instead of a logical one. */
2216 if (temp == 0 && ! rotate
2217 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2219 enum optab_methods methods1 = methods;
2221 /* If trying to widen a log shift to an arithmetic shift,
2222 don't accept an arithmetic shift of the same size. */
2223 if (unsignedp)
2224 methods1 = OPTAB_MUST_WIDEN;
2226 /* Arithmetic shift */
2228 temp = expand_binop (mode,
2229 left ? lshift_optab : rshift_arith_optab,
2230 shifted, op1, target, unsignedp, methods1);
2233 /* We used to try extzv here for logical right shifts, but that was
2234 only useful for one machine, the VAX, and caused poor code
2235 generation there for lshrdi3, so the code was deleted and a
2236 define_expand for lshrsi3 was added to vax.md. */
2239 gcc_assert (temp);
2240 return temp;
2243 /* Output a shift instruction for expression code CODE,
2244 with SHIFTED being the rtx for the value to shift,
2245 and AMOUNT the amount to shift by.
2246 Store the result in the rtx TARGET, if that is convenient.
2247 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2248 Return the rtx for where the value is. */
2251 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2252 int amount, rtx target, int unsignedp)
2254 return expand_shift_1 (code, mode,
2255 shifted, GEN_INT (amount), target, unsignedp);
2258 /* Output a shift instruction for expression code CODE,
2259 with SHIFTED being the rtx for the value to shift,
2260 and AMOUNT the tree for the amount to shift by.
2261 Store the result in the rtx TARGET, if that is convenient.
2262 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2263 Return the rtx for where the value is. */
2266 expand_variable_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2267 tree amount, rtx target, int unsignedp)
2269 return expand_shift_1 (code, mode,
2270 shifted, expand_normal (amount), target, unsignedp);
2274 /* Indicates the type of fixup needed after a constant multiplication.
2275 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2276 the result should be negated, and ADD_VARIANT means that the
2277 multiplicand should be added to the result. */
2278 enum mult_variant {basic_variant, negate_variant, add_variant};
2280 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2281 const struct mult_cost *, enum machine_mode mode);
2282 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2283 struct algorithm *, enum mult_variant *, int);
2284 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2285 const struct algorithm *, enum mult_variant);
2286 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2287 static rtx extract_high_half (enum machine_mode, rtx);
2288 static rtx expmed_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2289 static rtx expmed_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2290 int, int);
2291 /* Compute and return the best algorithm for multiplying by T.
2292 The algorithm must cost less than cost_limit
2293 If retval.cost >= COST_LIMIT, no algorithm was found and all
2294 other field of the returned struct are undefined.
2295 MODE is the machine mode of the multiplication. */
2297 static void
2298 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2299 const struct mult_cost *cost_limit, enum machine_mode mode)
2301 int m;
2302 struct algorithm *alg_in, *best_alg;
2303 struct mult_cost best_cost;
2304 struct mult_cost new_limit;
2305 int op_cost, op_latency;
2306 unsigned HOST_WIDE_INT orig_t = t;
2307 unsigned HOST_WIDE_INT q;
2308 int maxm, hash_index;
2309 bool cache_hit = false;
2310 enum alg_code cache_alg = alg_zero;
2311 bool speed = optimize_insn_for_speed_p ();
2312 enum machine_mode imode;
2313 struct alg_hash_entry *entry_ptr;
2315 /* Indicate that no algorithm is yet found. If no algorithm
2316 is found, this value will be returned and indicate failure. */
2317 alg_out->cost.cost = cost_limit->cost + 1;
2318 alg_out->cost.latency = cost_limit->latency + 1;
2320 if (cost_limit->cost < 0
2321 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2322 return;
2324 /* Be prepared for vector modes. */
2325 imode = GET_MODE_INNER (mode);
2326 if (imode == VOIDmode)
2327 imode = mode;
2329 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2331 /* Restrict the bits of "t" to the multiplication's mode. */
2332 t &= GET_MODE_MASK (imode);
2334 /* t == 1 can be done in zero cost. */
2335 if (t == 1)
2337 alg_out->ops = 1;
2338 alg_out->cost.cost = 0;
2339 alg_out->cost.latency = 0;
2340 alg_out->op[0] = alg_m;
2341 return;
2344 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2345 fail now. */
2346 if (t == 0)
2348 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2349 return;
2350 else
2352 alg_out->ops = 1;
2353 alg_out->cost.cost = zero_cost (speed);
2354 alg_out->cost.latency = zero_cost (speed);
2355 alg_out->op[0] = alg_zero;
2356 return;
2360 /* We'll be needing a couple extra algorithm structures now. */
2362 alg_in = XALLOCA (struct algorithm);
2363 best_alg = XALLOCA (struct algorithm);
2364 best_cost = *cost_limit;
2366 /* Compute the hash index. */
2367 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2369 /* See if we already know what to do for T. */
2370 entry_ptr = alg_hash_entry_ptr (hash_index);
2371 if (entry_ptr->t == t
2372 && entry_ptr->mode == mode
2373 && entry_ptr->mode == mode
2374 && entry_ptr->speed == speed
2375 && entry_ptr->alg != alg_unknown)
2377 cache_alg = entry_ptr->alg;
2379 if (cache_alg == alg_impossible)
2381 /* The cache tells us that it's impossible to synthesize
2382 multiplication by T within entry_ptr->cost. */
2383 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2384 /* COST_LIMIT is at least as restrictive as the one
2385 recorded in the hash table, in which case we have no
2386 hope of synthesizing a multiplication. Just
2387 return. */
2388 return;
2390 /* If we get here, COST_LIMIT is less restrictive than the
2391 one recorded in the hash table, so we may be able to
2392 synthesize a multiplication. Proceed as if we didn't
2393 have the cache entry. */
2395 else
2397 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2398 /* The cached algorithm shows that this multiplication
2399 requires more cost than COST_LIMIT. Just return. This
2400 way, we don't clobber this cache entry with
2401 alg_impossible but retain useful information. */
2402 return;
2404 cache_hit = true;
2406 switch (cache_alg)
2408 case alg_shift:
2409 goto do_alg_shift;
2411 case alg_add_t_m2:
2412 case alg_sub_t_m2:
2413 goto do_alg_addsub_t_m2;
2415 case alg_add_factor:
2416 case alg_sub_factor:
2417 goto do_alg_addsub_factor;
2419 case alg_add_t2_m:
2420 goto do_alg_add_t2_m;
2422 case alg_sub_t2_m:
2423 goto do_alg_sub_t2_m;
2425 default:
2426 gcc_unreachable ();
2431 /* If we have a group of zero bits at the low-order part of T, try
2432 multiplying by the remaining bits and then doing a shift. */
2434 if ((t & 1) == 0)
2436 do_alg_shift:
2437 m = floor_log2 (t & -t); /* m = number of low zero bits */
2438 if (m < maxm)
2440 q = t >> m;
2441 /* The function expand_shift will choose between a shift and
2442 a sequence of additions, so the observed cost is given as
2443 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2444 op_cost = m * add_cost (speed, mode);
2445 if (shift_cost (speed, mode, m) < op_cost)
2446 op_cost = shift_cost (speed, mode, m);
2447 new_limit.cost = best_cost.cost - op_cost;
2448 new_limit.latency = best_cost.latency - op_cost;
2449 synth_mult (alg_in, q, &new_limit, mode);
2451 alg_in->cost.cost += op_cost;
2452 alg_in->cost.latency += op_cost;
2453 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2455 struct algorithm *x;
2456 best_cost = alg_in->cost;
2457 x = alg_in, alg_in = best_alg, best_alg = x;
2458 best_alg->log[best_alg->ops] = m;
2459 best_alg->op[best_alg->ops] = alg_shift;
2462 /* See if treating ORIG_T as a signed number yields a better
2463 sequence. Try this sequence only for a negative ORIG_T
2464 as it would be useless for a non-negative ORIG_T. */
2465 if ((HOST_WIDE_INT) orig_t < 0)
2467 /* Shift ORIG_T as follows because a right shift of a
2468 negative-valued signed type is implementation
2469 defined. */
2470 q = ~(~orig_t >> m);
2471 /* The function expand_shift will choose between a shift
2472 and a sequence of additions, so the observed cost is
2473 given as MIN (m * add_cost(speed, mode),
2474 shift_cost(speed, mode, m)). */
2475 op_cost = m * add_cost (speed, mode);
2476 if (shift_cost (speed, mode, m) < op_cost)
2477 op_cost = shift_cost (speed, mode, m);
2478 new_limit.cost = best_cost.cost - op_cost;
2479 new_limit.latency = best_cost.latency - op_cost;
2480 synth_mult (alg_in, q, &new_limit, mode);
2482 alg_in->cost.cost += op_cost;
2483 alg_in->cost.latency += op_cost;
2484 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2486 struct algorithm *x;
2487 best_cost = alg_in->cost;
2488 x = alg_in, alg_in = best_alg, best_alg = x;
2489 best_alg->log[best_alg->ops] = m;
2490 best_alg->op[best_alg->ops] = alg_shift;
2494 if (cache_hit)
2495 goto done;
2498 /* If we have an odd number, add or subtract one. */
2499 if ((t & 1) != 0)
2501 unsigned HOST_WIDE_INT w;
2503 do_alg_addsub_t_m2:
2504 for (w = 1; (w & t) != 0; w <<= 1)
2506 /* If T was -1, then W will be zero after the loop. This is another
2507 case where T ends with ...111. Handling this with (T + 1) and
2508 subtract 1 produces slightly better code and results in algorithm
2509 selection much faster than treating it like the ...0111 case
2510 below. */
2511 if (w == 0
2512 || (w > 2
2513 /* Reject the case where t is 3.
2514 Thus we prefer addition in that case. */
2515 && t != 3))
2517 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2519 op_cost = add_cost (speed, mode);
2520 new_limit.cost = best_cost.cost - op_cost;
2521 new_limit.latency = best_cost.latency - op_cost;
2522 synth_mult (alg_in, t + 1, &new_limit, mode);
2524 alg_in->cost.cost += op_cost;
2525 alg_in->cost.latency += op_cost;
2526 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2528 struct algorithm *x;
2529 best_cost = alg_in->cost;
2530 x = alg_in, alg_in = best_alg, best_alg = x;
2531 best_alg->log[best_alg->ops] = 0;
2532 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2535 else
2537 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2539 op_cost = add_cost (speed, mode);
2540 new_limit.cost = best_cost.cost - op_cost;
2541 new_limit.latency = best_cost.latency - op_cost;
2542 synth_mult (alg_in, t - 1, &new_limit, mode);
2544 alg_in->cost.cost += op_cost;
2545 alg_in->cost.latency += op_cost;
2546 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2548 struct algorithm *x;
2549 best_cost = alg_in->cost;
2550 x = alg_in, alg_in = best_alg, best_alg = x;
2551 best_alg->log[best_alg->ops] = 0;
2552 best_alg->op[best_alg->ops] = alg_add_t_m2;
2556 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2557 quickly with a - a * n for some appropriate constant n. */
2558 m = exact_log2 (-orig_t + 1);
2559 if (m >= 0 && m < maxm)
2561 op_cost = shiftsub1_cost (speed, mode, m);
2562 new_limit.cost = best_cost.cost - op_cost;
2563 new_limit.latency = best_cost.latency - op_cost;
2564 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
2565 &new_limit, mode);
2567 alg_in->cost.cost += op_cost;
2568 alg_in->cost.latency += op_cost;
2569 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2571 struct algorithm *x;
2572 best_cost = alg_in->cost;
2573 x = alg_in, alg_in = best_alg, best_alg = x;
2574 best_alg->log[best_alg->ops] = m;
2575 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2579 if (cache_hit)
2580 goto done;
2583 /* Look for factors of t of the form
2584 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2585 If we find such a factor, we can multiply by t using an algorithm that
2586 multiplies by q, shift the result by m and add/subtract it to itself.
2588 We search for large factors first and loop down, even if large factors
2589 are less probable than small; if we find a large factor we will find a
2590 good sequence quickly, and therefore be able to prune (by decreasing
2591 COST_LIMIT) the search. */
2593 do_alg_addsub_factor:
2594 for (m = floor_log2 (t - 1); m >= 2; m--)
2596 unsigned HOST_WIDE_INT d;
2598 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2599 if (t % d == 0 && t > d && m < maxm
2600 && (!cache_hit || cache_alg == alg_add_factor))
2602 /* If the target has a cheap shift-and-add instruction use
2603 that in preference to a shift insn followed by an add insn.
2604 Assume that the shift-and-add is "atomic" with a latency
2605 equal to its cost, otherwise assume that on superscalar
2606 hardware the shift may be executed concurrently with the
2607 earlier steps in the algorithm. */
2608 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2609 if (shiftadd_cost (speed, mode, m) < op_cost)
2611 op_cost = shiftadd_cost (speed, mode, m);
2612 op_latency = op_cost;
2614 else
2615 op_latency = add_cost (speed, mode);
2617 new_limit.cost = best_cost.cost - op_cost;
2618 new_limit.latency = best_cost.latency - op_latency;
2619 synth_mult (alg_in, t / d, &new_limit, mode);
2621 alg_in->cost.cost += op_cost;
2622 alg_in->cost.latency += op_latency;
2623 if (alg_in->cost.latency < op_cost)
2624 alg_in->cost.latency = op_cost;
2625 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2627 struct algorithm *x;
2628 best_cost = alg_in->cost;
2629 x = alg_in, alg_in = best_alg, best_alg = x;
2630 best_alg->log[best_alg->ops] = m;
2631 best_alg->op[best_alg->ops] = alg_add_factor;
2633 /* Other factors will have been taken care of in the recursion. */
2634 break;
2637 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2638 if (t % d == 0 && t > d && m < maxm
2639 && (!cache_hit || cache_alg == alg_sub_factor))
2641 /* If the target has a cheap shift-and-subtract insn use
2642 that in preference to a shift insn followed by a sub insn.
2643 Assume that the shift-and-sub is "atomic" with a latency
2644 equal to it's cost, otherwise assume that on superscalar
2645 hardware the shift may be executed concurrently with the
2646 earlier steps in the algorithm. */
2647 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2648 if (shiftsub0_cost (speed, mode, m) < op_cost)
2650 op_cost = shiftsub0_cost (speed, mode, m);
2651 op_latency = op_cost;
2653 else
2654 op_latency = add_cost (speed, mode);
2656 new_limit.cost = best_cost.cost - op_cost;
2657 new_limit.latency = best_cost.latency - op_latency;
2658 synth_mult (alg_in, t / d, &new_limit, mode);
2660 alg_in->cost.cost += op_cost;
2661 alg_in->cost.latency += op_latency;
2662 if (alg_in->cost.latency < op_cost)
2663 alg_in->cost.latency = op_cost;
2664 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2666 struct algorithm *x;
2667 best_cost = alg_in->cost;
2668 x = alg_in, alg_in = best_alg, best_alg = x;
2669 best_alg->log[best_alg->ops] = m;
2670 best_alg->op[best_alg->ops] = alg_sub_factor;
2672 break;
2675 if (cache_hit)
2676 goto done;
2678 /* Try shift-and-add (load effective address) instructions,
2679 i.e. do a*3, a*5, a*9. */
2680 if ((t & 1) != 0)
2682 do_alg_add_t2_m:
2683 q = t - 1;
2684 q = q & -q;
2685 m = exact_log2 (q);
2686 if (m >= 0 && m < maxm)
2688 op_cost = shiftadd_cost (speed, mode, m);
2689 new_limit.cost = best_cost.cost - op_cost;
2690 new_limit.latency = best_cost.latency - op_cost;
2691 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2693 alg_in->cost.cost += op_cost;
2694 alg_in->cost.latency += op_cost;
2695 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2697 struct algorithm *x;
2698 best_cost = alg_in->cost;
2699 x = alg_in, alg_in = best_alg, best_alg = x;
2700 best_alg->log[best_alg->ops] = m;
2701 best_alg->op[best_alg->ops] = alg_add_t2_m;
2704 if (cache_hit)
2705 goto done;
2707 do_alg_sub_t2_m:
2708 q = t + 1;
2709 q = q & -q;
2710 m = exact_log2 (q);
2711 if (m >= 0 && m < maxm)
2713 op_cost = shiftsub0_cost (speed, mode, m);
2714 new_limit.cost = best_cost.cost - op_cost;
2715 new_limit.latency = best_cost.latency - op_cost;
2716 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2718 alg_in->cost.cost += op_cost;
2719 alg_in->cost.latency += op_cost;
2720 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2722 struct algorithm *x;
2723 best_cost = alg_in->cost;
2724 x = alg_in, alg_in = best_alg, best_alg = x;
2725 best_alg->log[best_alg->ops] = m;
2726 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2729 if (cache_hit)
2730 goto done;
2733 done:
2734 /* If best_cost has not decreased, we have not found any algorithm. */
2735 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2737 /* We failed to find an algorithm. Record alg_impossible for
2738 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2739 we are asked to find an algorithm for T within the same or
2740 lower COST_LIMIT, we can immediately return to the
2741 caller. */
2742 entry_ptr->t = t;
2743 entry_ptr->mode = mode;
2744 entry_ptr->speed = speed;
2745 entry_ptr->alg = alg_impossible;
2746 entry_ptr->cost = *cost_limit;
2747 return;
2750 /* Cache the result. */
2751 if (!cache_hit)
2753 entry_ptr->t = t;
2754 entry_ptr->mode = mode;
2755 entry_ptr->speed = speed;
2756 entry_ptr->alg = best_alg->op[best_alg->ops];
2757 entry_ptr->cost.cost = best_cost.cost;
2758 entry_ptr->cost.latency = best_cost.latency;
2761 /* If we are getting a too long sequence for `struct algorithm'
2762 to record, make this search fail. */
2763 if (best_alg->ops == MAX_BITS_PER_WORD)
2764 return;
2766 /* Copy the algorithm from temporary space to the space at alg_out.
2767 We avoid using structure assignment because the majority of
2768 best_alg is normally undefined, and this is a critical function. */
2769 alg_out->ops = best_alg->ops + 1;
2770 alg_out->cost = best_cost;
2771 memcpy (alg_out->op, best_alg->op,
2772 alg_out->ops * sizeof *alg_out->op);
2773 memcpy (alg_out->log, best_alg->log,
2774 alg_out->ops * sizeof *alg_out->log);
2777 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2778 Try three variations:
2780 - a shift/add sequence based on VAL itself
2781 - a shift/add sequence based on -VAL, followed by a negation
2782 - a shift/add sequence based on VAL - 1, followed by an addition.
2784 Return true if the cheapest of these cost less than MULT_COST,
2785 describing the algorithm in *ALG and final fixup in *VARIANT. */
2787 static bool
2788 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2789 struct algorithm *alg, enum mult_variant *variant,
2790 int mult_cost)
2792 struct algorithm alg2;
2793 struct mult_cost limit;
2794 int op_cost;
2795 bool speed = optimize_insn_for_speed_p ();
2797 /* Fail quickly for impossible bounds. */
2798 if (mult_cost < 0)
2799 return false;
2801 /* Ensure that mult_cost provides a reasonable upper bound.
2802 Any constant multiplication can be performed with less
2803 than 2 * bits additions. */
2804 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
2805 if (mult_cost > op_cost)
2806 mult_cost = op_cost;
2808 *variant = basic_variant;
2809 limit.cost = mult_cost;
2810 limit.latency = mult_cost;
2811 synth_mult (alg, val, &limit, mode);
2813 /* This works only if the inverted value actually fits in an
2814 `unsigned int' */
2815 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
2817 op_cost = neg_cost(speed, mode);
2818 if (MULT_COST_LESS (&alg->cost, mult_cost))
2820 limit.cost = alg->cost.cost - op_cost;
2821 limit.latency = alg->cost.latency - op_cost;
2823 else
2825 limit.cost = mult_cost - op_cost;
2826 limit.latency = mult_cost - op_cost;
2829 synth_mult (&alg2, -val, &limit, mode);
2830 alg2.cost.cost += op_cost;
2831 alg2.cost.latency += op_cost;
2832 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2833 *alg = alg2, *variant = negate_variant;
2836 /* This proves very useful for division-by-constant. */
2837 op_cost = add_cost (speed, mode);
2838 if (MULT_COST_LESS (&alg->cost, mult_cost))
2840 limit.cost = alg->cost.cost - op_cost;
2841 limit.latency = alg->cost.latency - op_cost;
2843 else
2845 limit.cost = mult_cost - op_cost;
2846 limit.latency = mult_cost - op_cost;
2849 synth_mult (&alg2, val - 1, &limit, mode);
2850 alg2.cost.cost += op_cost;
2851 alg2.cost.latency += op_cost;
2852 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2853 *alg = alg2, *variant = add_variant;
2855 return MULT_COST_LESS (&alg->cost, mult_cost);
2858 /* A subroutine of expand_mult, used for constant multiplications.
2859 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2860 convenient. Use the shift/add sequence described by ALG and apply
2861 the final fixup specified by VARIANT. */
2863 static rtx
2864 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2865 rtx target, const struct algorithm *alg,
2866 enum mult_variant variant)
2868 HOST_WIDE_INT val_so_far;
2869 rtx insn, accum, tem;
2870 int opno;
2871 enum machine_mode nmode;
2873 /* Avoid referencing memory over and over and invalid sharing
2874 on SUBREGs. */
2875 op0 = force_reg (mode, op0);
2877 /* ACCUM starts out either as OP0 or as a zero, depending on
2878 the first operation. */
2880 if (alg->op[0] == alg_zero)
2882 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
2883 val_so_far = 0;
2885 else if (alg->op[0] == alg_m)
2887 accum = copy_to_mode_reg (mode, op0);
2888 val_so_far = 1;
2890 else
2891 gcc_unreachable ();
2893 for (opno = 1; opno < alg->ops; opno++)
2895 int log = alg->log[opno];
2896 rtx shift_subtarget = optimize ? 0 : accum;
2897 rtx add_target
2898 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2899 && !optimize)
2900 ? target : 0;
2901 rtx accum_target = optimize ? 0 : accum;
2902 rtx accum_inner;
2904 switch (alg->op[opno])
2906 case alg_shift:
2907 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
2908 /* REG_EQUAL note will be attached to the following insn. */
2909 emit_move_insn (accum, tem);
2910 val_so_far <<= log;
2911 break;
2913 case alg_add_t_m2:
2914 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
2915 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2916 add_target ? add_target : accum_target);
2917 val_so_far += (HOST_WIDE_INT) 1 << log;
2918 break;
2920 case alg_sub_t_m2:
2921 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
2922 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2923 add_target ? add_target : accum_target);
2924 val_so_far -= (HOST_WIDE_INT) 1 << log;
2925 break;
2927 case alg_add_t2_m:
2928 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2929 log, shift_subtarget, 0);
2930 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2931 add_target ? add_target : accum_target);
2932 val_so_far = (val_so_far << log) + 1;
2933 break;
2935 case alg_sub_t2_m:
2936 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2937 log, shift_subtarget, 0);
2938 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2939 add_target ? add_target : accum_target);
2940 val_so_far = (val_so_far << log) - 1;
2941 break;
2943 case alg_add_factor:
2944 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
2945 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2946 add_target ? add_target : accum_target);
2947 val_so_far += val_so_far << log;
2948 break;
2950 case alg_sub_factor:
2951 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
2952 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2953 (add_target
2954 ? add_target : (optimize ? 0 : tem)));
2955 val_so_far = (val_so_far << log) - val_so_far;
2956 break;
2958 default:
2959 gcc_unreachable ();
2962 if (SCALAR_INT_MODE_P (mode))
2964 /* Write a REG_EQUAL note on the last insn so that we can cse
2965 multiplication sequences. Note that if ACCUM is a SUBREG,
2966 we've set the inner register and must properly indicate that. */
2967 tem = op0, nmode = mode;
2968 accum_inner = accum;
2969 if (GET_CODE (accum) == SUBREG)
2971 accum_inner = SUBREG_REG (accum);
2972 nmode = GET_MODE (accum_inner);
2973 tem = gen_lowpart (nmode, op0);
2976 insn = get_last_insn ();
2977 set_dst_reg_note (insn, REG_EQUAL,
2978 gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)),
2979 accum_inner);
2983 if (variant == negate_variant)
2985 val_so_far = -val_so_far;
2986 accum = expand_unop (mode, neg_optab, accum, target, 0);
2988 else if (variant == add_variant)
2990 val_so_far = val_so_far + 1;
2991 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
2994 /* Compare only the bits of val and val_so_far that are significant
2995 in the result mode, to avoid sign-/zero-extension confusion. */
2996 nmode = GET_MODE_INNER (mode);
2997 if (nmode == VOIDmode)
2998 nmode = mode;
2999 val &= GET_MODE_MASK (nmode);
3000 val_so_far &= GET_MODE_MASK (nmode);
3001 gcc_assert (val == val_so_far);
3003 return accum;
3006 /* Perform a multiplication and return an rtx for the result.
3007 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3008 TARGET is a suggestion for where to store the result (an rtx).
3010 We check specially for a constant integer as OP1.
3011 If you want this check for OP0 as well, then before calling
3012 you should swap the two operands if OP0 would be constant. */
3015 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3016 int unsignedp)
3018 enum mult_variant variant;
3019 struct algorithm algorithm;
3020 rtx scalar_op1;
3021 int max_cost;
3022 bool speed = optimize_insn_for_speed_p ();
3023 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3025 if (CONSTANT_P (op0))
3027 rtx temp = op0;
3028 op0 = op1;
3029 op1 = temp;
3032 /* For vectors, there are several simplifications that can be made if
3033 all elements of the vector constant are identical. */
3034 scalar_op1 = op1;
3035 if (GET_CODE (op1) == CONST_VECTOR)
3037 int i, n = CONST_VECTOR_NUNITS (op1);
3038 scalar_op1 = CONST_VECTOR_ELT (op1, 0);
3039 for (i = 1; i < n; ++i)
3040 if (!rtx_equal_p (scalar_op1, CONST_VECTOR_ELT (op1, i)))
3041 goto skip_scalar;
3044 if (INTEGRAL_MODE_P (mode))
3046 rtx fake_reg;
3047 HOST_WIDE_INT coeff;
3048 bool is_neg;
3049 int mode_bitsize;
3051 if (op1 == CONST0_RTX (mode))
3052 return op1;
3053 if (op1 == CONST1_RTX (mode))
3054 return op0;
3055 if (op1 == CONSTM1_RTX (mode))
3056 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3057 op0, target, 0);
3059 if (do_trapv)
3060 goto skip_synth;
3062 /* These are the operations that are potentially turned into
3063 a sequence of shifts and additions. */
3064 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3066 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3067 less than or equal in size to `unsigned int' this doesn't matter.
3068 If the mode is larger than `unsigned int', then synth_mult works
3069 only if the constant value exactly fits in an `unsigned int' without
3070 any truncation. This means that multiplying by negative values does
3071 not work; results are off by 2^32 on a 32 bit machine. */
3073 if (CONST_INT_P (scalar_op1))
3075 coeff = INTVAL (scalar_op1);
3076 is_neg = coeff < 0;
3078 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3080 /* If we are multiplying in DImode, it may still be a win
3081 to try to work with shifts and adds. */
3082 if (CONST_DOUBLE_HIGH (scalar_op1) == 0
3083 && (CONST_DOUBLE_LOW (scalar_op1) > 0
3084 || (CONST_DOUBLE_LOW (scalar_op1) < 0
3085 && EXACT_POWER_OF_2_OR_ZERO_P
3086 (CONST_DOUBLE_LOW (scalar_op1)))))
3088 coeff = CONST_DOUBLE_LOW (scalar_op1);
3089 is_neg = false;
3091 else if (CONST_DOUBLE_LOW (scalar_op1) == 0)
3093 coeff = CONST_DOUBLE_HIGH (scalar_op1);
3094 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3096 int shift = floor_log2 (coeff) + HOST_BITS_PER_WIDE_INT;
3097 if (shift < HOST_BITS_PER_DOUBLE_INT - 1
3098 || mode_bitsize <= HOST_BITS_PER_DOUBLE_INT)
3099 return expand_shift (LSHIFT_EXPR, mode, op0,
3100 shift, target, unsignedp);
3102 goto skip_synth;
3104 else
3105 goto skip_synth;
3107 else
3108 goto skip_synth;
3110 /* We used to test optimize here, on the grounds that it's better to
3111 produce a smaller program when -O is not used. But this causes
3112 such a terrible slowdown sometimes that it seems better to always
3113 use synth_mult. */
3115 /* Special case powers of two. */
3116 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3117 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3118 return expand_shift (LSHIFT_EXPR, mode, op0,
3119 floor_log2 (coeff), target, unsignedp);
3121 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3123 /* Attempt to handle multiplication of DImode values by negative
3124 coefficients, by performing the multiplication by a positive
3125 multiplier and then inverting the result. */
3126 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3128 /* Its safe to use -coeff even for INT_MIN, as the
3129 result is interpreted as an unsigned coefficient.
3130 Exclude cost of op0 from max_cost to match the cost
3131 calculation of the synth_mult. */
3132 coeff = -(unsigned HOST_WIDE_INT) coeff;
3133 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed)
3134 - neg_cost(speed, mode));
3135 if (max_cost <= 0)
3136 goto skip_synth;
3138 /* Special case powers of two. */
3139 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3141 rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3142 floor_log2 (coeff), target, unsignedp);
3143 return expand_unop (mode, neg_optab, temp, target, 0);
3146 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3147 max_cost))
3149 rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
3150 &algorithm, variant);
3151 return expand_unop (mode, neg_optab, temp, target, 0);
3153 goto skip_synth;
3156 /* Exclude cost of op0 from max_cost to match the cost
3157 calculation of the synth_mult. */
3158 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed);
3159 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3160 return expand_mult_const (mode, op0, coeff, target,
3161 &algorithm, variant);
3163 skip_synth:
3165 /* Expand x*2.0 as x+x. */
3166 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1))
3168 REAL_VALUE_TYPE d;
3169 REAL_VALUE_FROM_CONST_DOUBLE (d, scalar_op1);
3171 if (REAL_VALUES_EQUAL (d, dconst2))
3173 op0 = force_reg (GET_MODE (op0), op0);
3174 return expand_binop (mode, add_optab, op0, op0,
3175 target, unsignedp, OPTAB_LIB_WIDEN);
3178 skip_scalar:
3180 /* This used to use umul_optab if unsigned, but for non-widening multiply
3181 there is no difference between signed and unsigned. */
3182 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3183 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3184 gcc_assert (op0);
3185 return op0;
3188 /* Return a cost estimate for multiplying a register by the given
3189 COEFFicient in the given MODE and SPEED. */
3192 mult_by_coeff_cost (HOST_WIDE_INT coeff, enum machine_mode mode, bool speed)
3194 int max_cost;
3195 struct algorithm algorithm;
3196 enum mult_variant variant;
3198 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3199 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg), speed);
3200 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3201 return algorithm.cost.cost;
3202 else
3203 return max_cost;
3206 /* Perform a widening multiplication and return an rtx for the result.
3207 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3208 TARGET is a suggestion for where to store the result (an rtx).
3209 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3210 or smul_widen_optab.
3212 We check specially for a constant integer as OP1, comparing the
3213 cost of a widening multiply against the cost of a sequence of shifts
3214 and adds. */
3217 expand_widening_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3218 int unsignedp, optab this_optab)
3220 bool speed = optimize_insn_for_speed_p ();
3221 rtx cop1;
3223 if (CONST_INT_P (op1)
3224 && GET_MODE (op0) != VOIDmode
3225 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3226 this_optab == umul_widen_optab))
3227 && CONST_INT_P (cop1)
3228 && (INTVAL (cop1) >= 0
3229 || HWI_COMPUTABLE_MODE_P (mode)))
3231 HOST_WIDE_INT coeff = INTVAL (cop1);
3232 int max_cost;
3233 enum mult_variant variant;
3234 struct algorithm algorithm;
3236 /* Special case powers of two. */
3237 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3239 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3240 return expand_shift (LSHIFT_EXPR, mode, op0,
3241 floor_log2 (coeff), target, unsignedp);
3244 /* Exclude cost of op0 from max_cost to match the cost
3245 calculation of the synth_mult. */
3246 max_cost = mul_widen_cost (speed, mode);
3247 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3248 max_cost))
3250 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3251 return expand_mult_const (mode, op0, coeff, target,
3252 &algorithm, variant);
3255 return expand_binop (mode, this_optab, op0, op1, target,
3256 unsignedp, OPTAB_LIB_WIDEN);
3259 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3260 replace division by D, and put the least significant N bits of the result
3261 in *MULTIPLIER_PTR and return the most significant bit.
3263 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3264 needed precision is in PRECISION (should be <= N).
3266 PRECISION should be as small as possible so this function can choose
3267 multiplier more freely.
3269 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3270 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3272 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3273 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3275 unsigned HOST_WIDE_INT
3276 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3277 unsigned HOST_WIDE_INT *multiplier_ptr,
3278 int *post_shift_ptr, int *lgup_ptr)
3280 double_int mhigh, mlow;
3281 int lgup, post_shift;
3282 int pow, pow2;
3284 /* lgup = ceil(log2(divisor)); */
3285 lgup = ceil_log2 (d);
3287 gcc_assert (lgup <= n);
3289 pow = n + lgup;
3290 pow2 = n + lgup - precision;
3292 /* We could handle this with some effort, but this case is much
3293 better handled directly with a scc insn, so rely on caller using
3294 that. */
3295 gcc_assert (pow != HOST_BITS_PER_DOUBLE_INT);
3297 /* mlow = 2^(N + lgup)/d */
3298 double_int val = double_int_zero.set_bit (pow);
3299 mlow = val.div (double_int::from_uhwi (d), true, TRUNC_DIV_EXPR);
3301 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3302 val |= double_int_zero.set_bit (pow2);
3303 mhigh = val.div (double_int::from_uhwi (d), true, TRUNC_DIV_EXPR);
3305 gcc_assert (!mhigh.high || val.high - d < d);
3306 gcc_assert (mhigh.high <= 1 && mlow.high <= 1);
3307 /* Assert that mlow < mhigh. */
3308 gcc_assert (mlow.ult (mhigh));
3310 /* If precision == N, then mlow, mhigh exceed 2^N
3311 (but they do not exceed 2^(N+1)). */
3313 /* Reduce to lowest terms. */
3314 for (post_shift = lgup; post_shift > 0; post_shift--)
3316 int shft = HOST_BITS_PER_WIDE_INT - 1;
3317 unsigned HOST_WIDE_INT ml_lo = (mlow.high << shft) | (mlow.low >> 1);
3318 unsigned HOST_WIDE_INT mh_lo = (mhigh.high << shft) | (mhigh.low >> 1);
3319 if (ml_lo >= mh_lo)
3320 break;
3322 mlow = double_int::from_uhwi (ml_lo);
3323 mhigh = double_int::from_uhwi (mh_lo);
3326 *post_shift_ptr = post_shift;
3327 *lgup_ptr = lgup;
3328 if (n < HOST_BITS_PER_WIDE_INT)
3330 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3331 *multiplier_ptr = mhigh.low & mask;
3332 return mhigh.low >= mask;
3334 else
3336 *multiplier_ptr = mhigh.low;
3337 return mhigh.high;
3341 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3342 congruent to 1 (mod 2**N). */
3344 static unsigned HOST_WIDE_INT
3345 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3347 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3349 /* The algorithm notes that the choice y = x satisfies
3350 x*y == 1 mod 2^3, since x is assumed odd.
3351 Each iteration doubles the number of bits of significance in y. */
3353 unsigned HOST_WIDE_INT mask;
3354 unsigned HOST_WIDE_INT y = x;
3355 int nbit = 3;
3357 mask = (n == HOST_BITS_PER_WIDE_INT
3358 ? ~(unsigned HOST_WIDE_INT) 0
3359 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3361 while (nbit < n)
3363 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3364 nbit *= 2;
3366 return y;
3369 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3370 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3371 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3372 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3373 become signed.
3375 The result is put in TARGET if that is convenient.
3377 MODE is the mode of operation. */
3380 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3381 rtx op1, rtx target, int unsignedp)
3383 rtx tem;
3384 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3386 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3387 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3388 tem = expand_and (mode, tem, op1, NULL_RTX);
3389 adj_operand
3390 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3391 adj_operand);
3393 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3394 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3395 tem = expand_and (mode, tem, op0, NULL_RTX);
3396 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3397 target);
3399 return target;
3402 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3404 static rtx
3405 extract_high_half (enum machine_mode mode, rtx op)
3407 enum machine_mode wider_mode;
3409 if (mode == word_mode)
3410 return gen_highpart (mode, op);
3412 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3414 wider_mode = GET_MODE_WIDER_MODE (mode);
3415 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3416 GET_MODE_BITSIZE (mode), 0, 1);
3417 return convert_modes (mode, wider_mode, op, 0);
3420 /* Like expmed_mult_highpart, but only consider using a multiplication
3421 optab. OP1 is an rtx for the constant operand. */
3423 static rtx
3424 expmed_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3425 rtx target, int unsignedp, int max_cost)
3427 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3428 enum machine_mode wider_mode;
3429 optab moptab;
3430 rtx tem;
3431 int size;
3432 bool speed = optimize_insn_for_speed_p ();
3434 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3436 wider_mode = GET_MODE_WIDER_MODE (mode);
3437 size = GET_MODE_BITSIZE (mode);
3439 /* Firstly, try using a multiplication insn that only generates the needed
3440 high part of the product, and in the sign flavor of unsignedp. */
3441 if (mul_highpart_cost (speed, mode) < max_cost)
3443 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3444 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3445 unsignedp, OPTAB_DIRECT);
3446 if (tem)
3447 return tem;
3450 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3451 Need to adjust the result after the multiplication. */
3452 if (size - 1 < BITS_PER_WORD
3453 && (mul_highpart_cost (speed, mode)
3454 + 2 * shift_cost (speed, mode, size-1)
3455 + 4 * add_cost (speed, mode) < max_cost))
3457 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3458 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3459 unsignedp, OPTAB_DIRECT);
3460 if (tem)
3461 /* We used the wrong signedness. Adjust the result. */
3462 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3463 tem, unsignedp);
3466 /* Try widening multiplication. */
3467 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3468 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3469 && mul_widen_cost (speed, wider_mode) < max_cost)
3471 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3472 unsignedp, OPTAB_WIDEN);
3473 if (tem)
3474 return extract_high_half (mode, tem);
3477 /* Try widening the mode and perform a non-widening multiplication. */
3478 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3479 && size - 1 < BITS_PER_WORD
3480 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3481 < max_cost))
3483 rtx insns, wop0, wop1;
3485 /* We need to widen the operands, for example to ensure the
3486 constant multiplier is correctly sign or zero extended.
3487 Use a sequence to clean-up any instructions emitted by
3488 the conversions if things don't work out. */
3489 start_sequence ();
3490 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3491 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3492 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3493 unsignedp, OPTAB_WIDEN);
3494 insns = get_insns ();
3495 end_sequence ();
3497 if (tem)
3499 emit_insn (insns);
3500 return extract_high_half (mode, tem);
3504 /* Try widening multiplication of opposite signedness, and adjust. */
3505 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3506 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3507 && size - 1 < BITS_PER_WORD
3508 && (mul_widen_cost (speed, wider_mode)
3509 + 2 * shift_cost (speed, mode, size-1)
3510 + 4 * add_cost (speed, mode) < max_cost))
3512 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3513 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3514 if (tem != 0)
3516 tem = extract_high_half (mode, tem);
3517 /* We used the wrong signedness. Adjust the result. */
3518 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3519 target, unsignedp);
3523 return 0;
3526 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3527 putting the high half of the result in TARGET if that is convenient,
3528 and return where the result is. If the operation can not be performed,
3529 0 is returned.
3531 MODE is the mode of operation and result.
3533 UNSIGNEDP nonzero means unsigned multiply.
3535 MAX_COST is the total allowed cost for the expanded RTL. */
3537 static rtx
3538 expmed_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3539 rtx target, int unsignedp, int max_cost)
3541 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3542 unsigned HOST_WIDE_INT cnst1;
3543 int extra_cost;
3544 bool sign_adjust = false;
3545 enum mult_variant variant;
3546 struct algorithm alg;
3547 rtx tem;
3548 bool speed = optimize_insn_for_speed_p ();
3550 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3551 /* We can't support modes wider than HOST_BITS_PER_INT. */
3552 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3554 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3556 /* We can't optimize modes wider than BITS_PER_WORD.
3557 ??? We might be able to perform double-word arithmetic if
3558 mode == word_mode, however all the cost calculations in
3559 synth_mult etc. assume single-word operations. */
3560 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3561 return expmed_mult_highpart_optab (mode, op0, op1, target,
3562 unsignedp, max_cost);
3564 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3566 /* Check whether we try to multiply by a negative constant. */
3567 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3569 sign_adjust = true;
3570 extra_cost += add_cost (speed, mode);
3573 /* See whether shift/add multiplication is cheap enough. */
3574 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3575 max_cost - extra_cost))
3577 /* See whether the specialized multiplication optabs are
3578 cheaper than the shift/add version. */
3579 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3580 alg.cost.cost + extra_cost);
3581 if (tem)
3582 return tem;
3584 tem = convert_to_mode (wider_mode, op0, unsignedp);
3585 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3586 tem = extract_high_half (mode, tem);
3588 /* Adjust result for signedness. */
3589 if (sign_adjust)
3590 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3592 return tem;
3594 return expmed_mult_highpart_optab (mode, op0, op1, target,
3595 unsignedp, max_cost);
3599 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3601 static rtx
3602 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3604 unsigned HOST_WIDE_INT masklow, maskhigh;
3605 rtx result, temp, shift, label;
3606 int logd;
3608 logd = floor_log2 (d);
3609 result = gen_reg_rtx (mode);
3611 /* Avoid conditional branches when they're expensive. */
3612 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3613 && optimize_insn_for_speed_p ())
3615 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3616 mode, 0, -1);
3617 if (signmask)
3619 signmask = force_reg (mode, signmask);
3620 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3621 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3623 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3624 which instruction sequence to use. If logical right shifts
3625 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3626 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3628 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3629 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3630 || (set_src_cost (temp, optimize_insn_for_speed_p ())
3631 > COSTS_N_INSNS (2)))
3633 temp = expand_binop (mode, xor_optab, op0, signmask,
3634 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3635 temp = expand_binop (mode, sub_optab, temp, signmask,
3636 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3637 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3638 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3639 temp = expand_binop (mode, xor_optab, temp, signmask,
3640 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3641 temp = expand_binop (mode, sub_optab, temp, signmask,
3642 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3644 else
3646 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3647 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3648 signmask = force_reg (mode, signmask);
3650 temp = expand_binop (mode, add_optab, op0, signmask,
3651 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3652 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3653 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3654 temp = expand_binop (mode, sub_optab, temp, signmask,
3655 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3657 return temp;
3661 /* Mask contains the mode's signbit and the significant bits of the
3662 modulus. By including the signbit in the operation, many targets
3663 can avoid an explicit compare operation in the following comparison
3664 against zero. */
3666 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3667 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3669 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3670 maskhigh = -1;
3672 else
3673 maskhigh = (HOST_WIDE_INT) -1
3674 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3676 temp = expand_binop (mode, and_optab, op0,
3677 immed_double_const (masklow, maskhigh, mode),
3678 result, 1, OPTAB_LIB_WIDEN);
3679 if (temp != result)
3680 emit_move_insn (result, temp);
3682 label = gen_label_rtx ();
3683 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3685 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3686 0, OPTAB_LIB_WIDEN);
3687 masklow = (HOST_WIDE_INT) -1 << logd;
3688 maskhigh = -1;
3689 temp = expand_binop (mode, ior_optab, temp,
3690 immed_double_const (masklow, maskhigh, mode),
3691 result, 1, OPTAB_LIB_WIDEN);
3692 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3693 0, OPTAB_LIB_WIDEN);
3694 if (temp != result)
3695 emit_move_insn (result, temp);
3696 emit_label (label);
3697 return result;
3700 /* Expand signed division of OP0 by a power of two D in mode MODE.
3701 This routine is only called for positive values of D. */
3703 static rtx
3704 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3706 rtx temp, label;
3707 int logd;
3709 logd = floor_log2 (d);
3711 if (d == 2
3712 && BRANCH_COST (optimize_insn_for_speed_p (),
3713 false) >= 1)
3715 temp = gen_reg_rtx (mode);
3716 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3717 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3718 0, OPTAB_LIB_WIDEN);
3719 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3722 #ifdef HAVE_conditional_move
3723 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3724 >= 2)
3726 rtx temp2;
3728 /* ??? emit_conditional_move forces a stack adjustment via
3729 compare_from_rtx so, if the sequence is discarded, it will
3730 be lost. Do it now instead. */
3731 do_pending_stack_adjust ();
3733 start_sequence ();
3734 temp2 = copy_to_mode_reg (mode, op0);
3735 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3736 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3737 temp = force_reg (mode, temp);
3739 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3740 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3741 mode, temp, temp2, mode, 0);
3742 if (temp2)
3744 rtx seq = get_insns ();
3745 end_sequence ();
3746 emit_insn (seq);
3747 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
3749 end_sequence ();
3751 #endif
3753 if (BRANCH_COST (optimize_insn_for_speed_p (),
3754 false) >= 2)
3756 int ushift = GET_MODE_BITSIZE (mode) - logd;
3758 temp = gen_reg_rtx (mode);
3759 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3760 if (shift_cost (optimize_insn_for_speed_p (), mode, ushift)
3761 > COSTS_N_INSNS (1))
3762 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3763 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3764 else
3765 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3766 ushift, NULL_RTX, 1);
3767 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3768 0, OPTAB_LIB_WIDEN);
3769 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3772 label = gen_label_rtx ();
3773 temp = copy_to_mode_reg (mode, op0);
3774 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3775 expand_inc (temp, GEN_INT (d - 1));
3776 emit_label (label);
3777 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3780 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3781 if that is convenient, and returning where the result is.
3782 You may request either the quotient or the remainder as the result;
3783 specify REM_FLAG nonzero to get the remainder.
3785 CODE is the expression code for which kind of division this is;
3786 it controls how rounding is done. MODE is the machine mode to use.
3787 UNSIGNEDP nonzero means do unsigned division. */
3789 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3790 and then correct it by or'ing in missing high bits
3791 if result of ANDI is nonzero.
3792 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3793 This could optimize to a bfexts instruction.
3794 But C doesn't use these operations, so their optimizations are
3795 left for later. */
3796 /* ??? For modulo, we don't actually need the highpart of the first product,
3797 the low part will do nicely. And for small divisors, the second multiply
3798 can also be a low-part only multiply or even be completely left out.
3799 E.g. to calculate the remainder of a division by 3 with a 32 bit
3800 multiply, multiply with 0x55555556 and extract the upper two bits;
3801 the result is exact for inputs up to 0x1fffffff.
3802 The input range can be reduced by using cross-sum rules.
3803 For odd divisors >= 3, the following table gives right shift counts
3804 so that if a number is shifted by an integer multiple of the given
3805 amount, the remainder stays the same:
3806 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3807 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3808 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3809 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3810 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3812 Cross-sum rules for even numbers can be derived by leaving as many bits
3813 to the right alone as the divisor has zeros to the right.
3814 E.g. if x is an unsigned 32 bit number:
3815 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3819 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3820 rtx op0, rtx op1, rtx target, int unsignedp)
3822 enum machine_mode compute_mode;
3823 rtx tquotient;
3824 rtx quotient = 0, remainder = 0;
3825 rtx last;
3826 int size;
3827 rtx insn;
3828 optab optab1, optab2;
3829 int op1_is_constant, op1_is_pow2 = 0;
3830 int max_cost, extra_cost;
3831 static HOST_WIDE_INT last_div_const = 0;
3832 bool speed = optimize_insn_for_speed_p ();
3834 op1_is_constant = CONST_INT_P (op1);
3835 if (op1_is_constant)
3837 unsigned HOST_WIDE_INT ext_op1 = UINTVAL (op1);
3838 if (unsignedp)
3839 ext_op1 &= GET_MODE_MASK (mode);
3840 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3841 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3845 This is the structure of expand_divmod:
3847 First comes code to fix up the operands so we can perform the operations
3848 correctly and efficiently.
3850 Second comes a switch statement with code specific for each rounding mode.
3851 For some special operands this code emits all RTL for the desired
3852 operation, for other cases, it generates only a quotient and stores it in
3853 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3854 to indicate that it has not done anything.
3856 Last comes code that finishes the operation. If QUOTIENT is set and
3857 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3858 QUOTIENT is not set, it is computed using trunc rounding.
3860 We try to generate special code for division and remainder when OP1 is a
3861 constant. If |OP1| = 2**n we can use shifts and some other fast
3862 operations. For other values of OP1, we compute a carefully selected
3863 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3864 by m.
3866 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3867 half of the product. Different strategies for generating the product are
3868 implemented in expmed_mult_highpart.
3870 If what we actually want is the remainder, we generate that by another
3871 by-constant multiplication and a subtraction. */
3873 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3874 code below will malfunction if we are, so check here and handle
3875 the special case if so. */
3876 if (op1 == const1_rtx)
3877 return rem_flag ? const0_rtx : op0;
3879 /* When dividing by -1, we could get an overflow.
3880 negv_optab can handle overflows. */
3881 if (! unsignedp && op1 == constm1_rtx)
3883 if (rem_flag)
3884 return const0_rtx;
3885 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3886 ? negv_optab : neg_optab, op0, target, 0);
3889 if (target
3890 /* Don't use the function value register as a target
3891 since we have to read it as well as write it,
3892 and function-inlining gets confused by this. */
3893 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3894 /* Don't clobber an operand while doing a multi-step calculation. */
3895 || ((rem_flag || op1_is_constant)
3896 && (reg_mentioned_p (target, op0)
3897 || (MEM_P (op0) && MEM_P (target))))
3898 || reg_mentioned_p (target, op1)
3899 || (MEM_P (op1) && MEM_P (target))))
3900 target = 0;
3902 /* Get the mode in which to perform this computation. Normally it will
3903 be MODE, but sometimes we can't do the desired operation in MODE.
3904 If so, pick a wider mode in which we can do the operation. Convert
3905 to that mode at the start to avoid repeated conversions.
3907 First see what operations we need. These depend on the expression
3908 we are evaluating. (We assume that divxx3 insns exist under the
3909 same conditions that modxx3 insns and that these insns don't normally
3910 fail. If these assumptions are not correct, we may generate less
3911 efficient code in some cases.)
3913 Then see if we find a mode in which we can open-code that operation
3914 (either a division, modulus, or shift). Finally, check for the smallest
3915 mode for which we can do the operation with a library call. */
3917 /* We might want to refine this now that we have division-by-constant
3918 optimization. Since expmed_mult_highpart tries so many variants, it is
3919 not straightforward to generalize this. Maybe we should make an array
3920 of possible modes in init_expmed? Save this for GCC 2.7. */
3922 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3923 ? (unsignedp ? lshr_optab : ashr_optab)
3924 : (unsignedp ? udiv_optab : sdiv_optab));
3925 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3926 ? optab1
3927 : (unsignedp ? udivmod_optab : sdivmod_optab));
3929 for (compute_mode = mode; compute_mode != VOIDmode;
3930 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3931 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
3932 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
3933 break;
3935 if (compute_mode == VOIDmode)
3936 for (compute_mode = mode; compute_mode != VOIDmode;
3937 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3938 if (optab_libfunc (optab1, compute_mode)
3939 || optab_libfunc (optab2, compute_mode))
3940 break;
3942 /* If we still couldn't find a mode, use MODE, but expand_binop will
3943 probably die. */
3944 if (compute_mode == VOIDmode)
3945 compute_mode = mode;
3947 if (target && GET_MODE (target) == compute_mode)
3948 tquotient = target;
3949 else
3950 tquotient = gen_reg_rtx (compute_mode);
3952 size = GET_MODE_BITSIZE (compute_mode);
3953 #if 0
3954 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3955 (mode), and thereby get better code when OP1 is a constant. Do that
3956 later. It will require going over all usages of SIZE below. */
3957 size = GET_MODE_BITSIZE (mode);
3958 #endif
3960 /* Only deduct something for a REM if the last divide done was
3961 for a different constant. Then set the constant of the last
3962 divide. */
3963 max_cost = (unsignedp
3964 ? udiv_cost (speed, compute_mode)
3965 : sdiv_cost (speed, compute_mode));
3966 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3967 && INTVAL (op1) == last_div_const))
3968 max_cost -= (mul_cost (speed, compute_mode)
3969 + add_cost (speed, compute_mode));
3971 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3973 /* Now convert to the best mode to use. */
3974 if (compute_mode != mode)
3976 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3977 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3979 /* convert_modes may have placed op1 into a register, so we
3980 must recompute the following. */
3981 op1_is_constant = CONST_INT_P (op1);
3982 op1_is_pow2 = (op1_is_constant
3983 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3984 || (! unsignedp
3985 && EXACT_POWER_OF_2_OR_ZERO_P (-UINTVAL (op1))))));
3988 /* If one of the operands is a volatile MEM, copy it into a register. */
3990 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3991 op0 = force_reg (compute_mode, op0);
3992 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3993 op1 = force_reg (compute_mode, op1);
3995 /* If we need the remainder or if OP1 is constant, we need to
3996 put OP0 in a register in case it has any queued subexpressions. */
3997 if (rem_flag || op1_is_constant)
3998 op0 = force_reg (compute_mode, op0);
4000 last = get_last_insn ();
4002 /* Promote floor rounding to trunc rounding for unsigned operations. */
4003 if (unsignedp)
4005 if (code == FLOOR_DIV_EXPR)
4006 code = TRUNC_DIV_EXPR;
4007 if (code == FLOOR_MOD_EXPR)
4008 code = TRUNC_MOD_EXPR;
4009 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4010 code = TRUNC_DIV_EXPR;
4013 if (op1 != const0_rtx)
4014 switch (code)
4016 case TRUNC_MOD_EXPR:
4017 case TRUNC_DIV_EXPR:
4018 if (op1_is_constant)
4020 if (unsignedp)
4022 unsigned HOST_WIDE_INT mh, ml;
4023 int pre_shift, post_shift;
4024 int dummy;
4025 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4026 & GET_MODE_MASK (compute_mode));
4028 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4030 pre_shift = floor_log2 (d);
4031 if (rem_flag)
4033 remainder
4034 = expand_binop (compute_mode, and_optab, op0,
4035 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4036 remainder, 1,
4037 OPTAB_LIB_WIDEN);
4038 if (remainder)
4039 return gen_lowpart (mode, remainder);
4041 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4042 pre_shift, tquotient, 1);
4044 else if (size <= HOST_BITS_PER_WIDE_INT)
4046 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4048 /* Most significant bit of divisor is set; emit an scc
4049 insn. */
4050 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4051 compute_mode, 1, 1);
4053 else
4055 /* Find a suitable multiplier and right shift count
4056 instead of multiplying with D. */
4058 mh = choose_multiplier (d, size, size,
4059 &ml, &post_shift, &dummy);
4061 /* If the suggested multiplier is more than SIZE bits,
4062 we can do better for even divisors, using an
4063 initial right shift. */
4064 if (mh != 0 && (d & 1) == 0)
4066 pre_shift = floor_log2 (d & -d);
4067 mh = choose_multiplier (d >> pre_shift, size,
4068 size - pre_shift,
4069 &ml, &post_shift, &dummy);
4070 gcc_assert (!mh);
4072 else
4073 pre_shift = 0;
4075 if (mh != 0)
4077 rtx t1, t2, t3, t4;
4079 if (post_shift - 1 >= BITS_PER_WORD)
4080 goto fail1;
4082 extra_cost
4083 = (shift_cost (speed, compute_mode, post_shift - 1)
4084 + shift_cost (speed, compute_mode, 1)
4085 + 2 * add_cost (speed, compute_mode));
4086 t1 = expmed_mult_highpart (compute_mode, op0,
4087 GEN_INT (ml),
4088 NULL_RTX, 1,
4089 max_cost - extra_cost);
4090 if (t1 == 0)
4091 goto fail1;
4092 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4093 op0, t1),
4094 NULL_RTX);
4095 t3 = expand_shift (RSHIFT_EXPR, compute_mode,
4096 t2, 1, NULL_RTX, 1);
4097 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4098 t1, t3),
4099 NULL_RTX);
4100 quotient = expand_shift
4101 (RSHIFT_EXPR, compute_mode, t4,
4102 post_shift - 1, tquotient, 1);
4104 else
4106 rtx t1, t2;
4108 if (pre_shift >= BITS_PER_WORD
4109 || post_shift >= BITS_PER_WORD)
4110 goto fail1;
4112 t1 = expand_shift
4113 (RSHIFT_EXPR, compute_mode, op0,
4114 pre_shift, NULL_RTX, 1);
4115 extra_cost
4116 = (shift_cost (speed, compute_mode, pre_shift)
4117 + shift_cost (speed, compute_mode, post_shift));
4118 t2 = expmed_mult_highpart (compute_mode, t1,
4119 GEN_INT (ml),
4120 NULL_RTX, 1,
4121 max_cost - extra_cost);
4122 if (t2 == 0)
4123 goto fail1;
4124 quotient = expand_shift
4125 (RSHIFT_EXPR, compute_mode, t2,
4126 post_shift, tquotient, 1);
4130 else /* Too wide mode to use tricky code */
4131 break;
4133 insn = get_last_insn ();
4134 if (insn != last)
4135 set_dst_reg_note (insn, REG_EQUAL,
4136 gen_rtx_UDIV (compute_mode, op0, op1),
4137 quotient);
4139 else /* TRUNC_DIV, signed */
4141 unsigned HOST_WIDE_INT ml;
4142 int lgup, post_shift;
4143 rtx mlr;
4144 HOST_WIDE_INT d = INTVAL (op1);
4145 unsigned HOST_WIDE_INT abs_d;
4147 /* Since d might be INT_MIN, we have to cast to
4148 unsigned HOST_WIDE_INT before negating to avoid
4149 undefined signed overflow. */
4150 abs_d = (d >= 0
4151 ? (unsigned HOST_WIDE_INT) d
4152 : - (unsigned HOST_WIDE_INT) d);
4154 /* n rem d = n rem -d */
4155 if (rem_flag && d < 0)
4157 d = abs_d;
4158 op1 = gen_int_mode (abs_d, compute_mode);
4161 if (d == 1)
4162 quotient = op0;
4163 else if (d == -1)
4164 quotient = expand_unop (compute_mode, neg_optab, op0,
4165 tquotient, 0);
4166 else if (HOST_BITS_PER_WIDE_INT >= size
4167 && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4169 /* This case is not handled correctly below. */
4170 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4171 compute_mode, 1, 1);
4172 if (quotient == 0)
4173 goto fail1;
4175 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4176 && (rem_flag
4177 ? smod_pow2_cheap (speed, compute_mode)
4178 : sdiv_pow2_cheap (speed, compute_mode))
4179 /* We assume that cheap metric is true if the
4180 optab has an expander for this mode. */
4181 && ((optab_handler ((rem_flag ? smod_optab
4182 : sdiv_optab),
4183 compute_mode)
4184 != CODE_FOR_nothing)
4185 || (optab_handler (sdivmod_optab,
4186 compute_mode)
4187 != CODE_FOR_nothing)))
4189 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4191 if (rem_flag)
4193 remainder = expand_smod_pow2 (compute_mode, op0, d);
4194 if (remainder)
4195 return gen_lowpart (mode, remainder);
4198 if (sdiv_pow2_cheap (speed, compute_mode)
4199 && ((optab_handler (sdiv_optab, compute_mode)
4200 != CODE_FOR_nothing)
4201 || (optab_handler (sdivmod_optab, compute_mode)
4202 != CODE_FOR_nothing)))
4203 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4204 compute_mode, op0,
4205 gen_int_mode (abs_d,
4206 compute_mode),
4207 NULL_RTX, 0);
4208 else
4209 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4211 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4212 negate the quotient. */
4213 if (d < 0)
4215 insn = get_last_insn ();
4216 if (insn != last
4217 && abs_d < ((unsigned HOST_WIDE_INT) 1
4218 << (HOST_BITS_PER_WIDE_INT - 1)))
4219 set_dst_reg_note (insn, REG_EQUAL,
4220 gen_rtx_DIV (compute_mode, op0,
4221 gen_int_mode
4222 (abs_d,
4223 compute_mode)),
4224 quotient);
4226 quotient = expand_unop (compute_mode, neg_optab,
4227 quotient, quotient, 0);
4230 else if (size <= HOST_BITS_PER_WIDE_INT)
4232 choose_multiplier (abs_d, size, size - 1,
4233 &ml, &post_shift, &lgup);
4234 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4236 rtx t1, t2, t3;
4238 if (post_shift >= BITS_PER_WORD
4239 || size - 1 >= BITS_PER_WORD)
4240 goto fail1;
4242 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4243 + shift_cost (speed, compute_mode, size - 1)
4244 + add_cost (speed, compute_mode));
4245 t1 = expmed_mult_highpart (compute_mode, op0,
4246 GEN_INT (ml), NULL_RTX, 0,
4247 max_cost - extra_cost);
4248 if (t1 == 0)
4249 goto fail1;
4250 t2 = expand_shift
4251 (RSHIFT_EXPR, compute_mode, t1,
4252 post_shift, NULL_RTX, 0);
4253 t3 = expand_shift
4254 (RSHIFT_EXPR, compute_mode, op0,
4255 size - 1, NULL_RTX, 0);
4256 if (d < 0)
4257 quotient
4258 = force_operand (gen_rtx_MINUS (compute_mode,
4259 t3, t2),
4260 tquotient);
4261 else
4262 quotient
4263 = force_operand (gen_rtx_MINUS (compute_mode,
4264 t2, t3),
4265 tquotient);
4267 else
4269 rtx t1, t2, t3, t4;
4271 if (post_shift >= BITS_PER_WORD
4272 || size - 1 >= BITS_PER_WORD)
4273 goto fail1;
4275 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4276 mlr = gen_int_mode (ml, compute_mode);
4277 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4278 + shift_cost (speed, compute_mode, size - 1)
4279 + 2 * add_cost (speed, compute_mode));
4280 t1 = expmed_mult_highpart (compute_mode, op0, mlr,
4281 NULL_RTX, 0,
4282 max_cost - extra_cost);
4283 if (t1 == 0)
4284 goto fail1;
4285 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4286 t1, op0),
4287 NULL_RTX);
4288 t3 = expand_shift
4289 (RSHIFT_EXPR, compute_mode, t2,
4290 post_shift, NULL_RTX, 0);
4291 t4 = expand_shift
4292 (RSHIFT_EXPR, compute_mode, op0,
4293 size - 1, NULL_RTX, 0);
4294 if (d < 0)
4295 quotient
4296 = force_operand (gen_rtx_MINUS (compute_mode,
4297 t4, t3),
4298 tquotient);
4299 else
4300 quotient
4301 = force_operand (gen_rtx_MINUS (compute_mode,
4302 t3, t4),
4303 tquotient);
4306 else /* Too wide mode to use tricky code */
4307 break;
4309 insn = get_last_insn ();
4310 if (insn != last)
4311 set_dst_reg_note (insn, REG_EQUAL,
4312 gen_rtx_DIV (compute_mode, op0, op1),
4313 quotient);
4315 break;
4317 fail1:
4318 delete_insns_since (last);
4319 break;
4321 case FLOOR_DIV_EXPR:
4322 case FLOOR_MOD_EXPR:
4323 /* We will come here only for signed operations. */
4324 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4326 unsigned HOST_WIDE_INT mh, ml;
4327 int pre_shift, lgup, post_shift;
4328 HOST_WIDE_INT d = INTVAL (op1);
4330 if (d > 0)
4332 /* We could just as easily deal with negative constants here,
4333 but it does not seem worth the trouble for GCC 2.6. */
4334 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4336 pre_shift = floor_log2 (d);
4337 if (rem_flag)
4339 remainder = expand_binop (compute_mode, and_optab, op0,
4340 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4341 remainder, 0, OPTAB_LIB_WIDEN);
4342 if (remainder)
4343 return gen_lowpart (mode, remainder);
4345 quotient = expand_shift
4346 (RSHIFT_EXPR, compute_mode, op0,
4347 pre_shift, tquotient, 0);
4349 else
4351 rtx t1, t2, t3, t4;
4353 mh = choose_multiplier (d, size, size - 1,
4354 &ml, &post_shift, &lgup);
4355 gcc_assert (!mh);
4357 if (post_shift < BITS_PER_WORD
4358 && size - 1 < BITS_PER_WORD)
4360 t1 = expand_shift
4361 (RSHIFT_EXPR, compute_mode, op0,
4362 size - 1, NULL_RTX, 0);
4363 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4364 NULL_RTX, 0, OPTAB_WIDEN);
4365 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4366 + shift_cost (speed, compute_mode, size - 1)
4367 + 2 * add_cost (speed, compute_mode));
4368 t3 = expmed_mult_highpart (compute_mode, t2,
4369 GEN_INT (ml), NULL_RTX, 1,
4370 max_cost - extra_cost);
4371 if (t3 != 0)
4373 t4 = expand_shift
4374 (RSHIFT_EXPR, compute_mode, t3,
4375 post_shift, NULL_RTX, 1);
4376 quotient = expand_binop (compute_mode, xor_optab,
4377 t4, t1, tquotient, 0,
4378 OPTAB_WIDEN);
4383 else
4385 rtx nsign, t1, t2, t3, t4;
4386 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4387 op0, constm1_rtx), NULL_RTX);
4388 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4389 0, OPTAB_WIDEN);
4390 nsign = expand_shift
4391 (RSHIFT_EXPR, compute_mode, t2,
4392 size - 1, NULL_RTX, 0);
4393 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4394 NULL_RTX);
4395 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4396 NULL_RTX, 0);
4397 if (t4)
4399 rtx t5;
4400 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4401 NULL_RTX, 0);
4402 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4403 t4, t5),
4404 tquotient);
4409 if (quotient != 0)
4410 break;
4411 delete_insns_since (last);
4413 /* Try using an instruction that produces both the quotient and
4414 remainder, using truncation. We can easily compensate the quotient
4415 or remainder to get floor rounding, once we have the remainder.
4416 Notice that we compute also the final remainder value here,
4417 and return the result right away. */
4418 if (target == 0 || GET_MODE (target) != compute_mode)
4419 target = gen_reg_rtx (compute_mode);
4421 if (rem_flag)
4423 remainder
4424 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4425 quotient = gen_reg_rtx (compute_mode);
4427 else
4429 quotient
4430 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4431 remainder = gen_reg_rtx (compute_mode);
4434 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4435 quotient, remainder, 0))
4437 /* This could be computed with a branch-less sequence.
4438 Save that for later. */
4439 rtx tem;
4440 rtx label = gen_label_rtx ();
4441 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4442 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4443 NULL_RTX, 0, OPTAB_WIDEN);
4444 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4445 expand_dec (quotient, const1_rtx);
4446 expand_inc (remainder, op1);
4447 emit_label (label);
4448 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4451 /* No luck with division elimination or divmod. Have to do it
4452 by conditionally adjusting op0 *and* the result. */
4454 rtx label1, label2, label3, label4, label5;
4455 rtx adjusted_op0;
4456 rtx tem;
4458 quotient = gen_reg_rtx (compute_mode);
4459 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4460 label1 = gen_label_rtx ();
4461 label2 = gen_label_rtx ();
4462 label3 = gen_label_rtx ();
4463 label4 = gen_label_rtx ();
4464 label5 = gen_label_rtx ();
4465 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4466 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4467 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4468 quotient, 0, OPTAB_LIB_WIDEN);
4469 if (tem != quotient)
4470 emit_move_insn (quotient, tem);
4471 emit_jump_insn (gen_jump (label5));
4472 emit_barrier ();
4473 emit_label (label1);
4474 expand_inc (adjusted_op0, const1_rtx);
4475 emit_jump_insn (gen_jump (label4));
4476 emit_barrier ();
4477 emit_label (label2);
4478 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4479 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4480 quotient, 0, OPTAB_LIB_WIDEN);
4481 if (tem != quotient)
4482 emit_move_insn (quotient, tem);
4483 emit_jump_insn (gen_jump (label5));
4484 emit_barrier ();
4485 emit_label (label3);
4486 expand_dec (adjusted_op0, const1_rtx);
4487 emit_label (label4);
4488 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4489 quotient, 0, OPTAB_LIB_WIDEN);
4490 if (tem != quotient)
4491 emit_move_insn (quotient, tem);
4492 expand_dec (quotient, const1_rtx);
4493 emit_label (label5);
4495 break;
4497 case CEIL_DIV_EXPR:
4498 case CEIL_MOD_EXPR:
4499 if (unsignedp)
4501 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4503 rtx t1, t2, t3;
4504 unsigned HOST_WIDE_INT d = INTVAL (op1);
4505 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4506 floor_log2 (d), tquotient, 1);
4507 t2 = expand_binop (compute_mode, and_optab, op0,
4508 GEN_INT (d - 1),
4509 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4510 t3 = gen_reg_rtx (compute_mode);
4511 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4512 compute_mode, 1, 1);
4513 if (t3 == 0)
4515 rtx lab;
4516 lab = gen_label_rtx ();
4517 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4518 expand_inc (t1, const1_rtx);
4519 emit_label (lab);
4520 quotient = t1;
4522 else
4523 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4524 t1, t3),
4525 tquotient);
4526 break;
4529 /* Try using an instruction that produces both the quotient and
4530 remainder, using truncation. We can easily compensate the
4531 quotient or remainder to get ceiling rounding, once we have the
4532 remainder. Notice that we compute also the final remainder
4533 value here, and return the result right away. */
4534 if (target == 0 || GET_MODE (target) != compute_mode)
4535 target = gen_reg_rtx (compute_mode);
4537 if (rem_flag)
4539 remainder = (REG_P (target)
4540 ? target : gen_reg_rtx (compute_mode));
4541 quotient = gen_reg_rtx (compute_mode);
4543 else
4545 quotient = (REG_P (target)
4546 ? target : gen_reg_rtx (compute_mode));
4547 remainder = gen_reg_rtx (compute_mode);
4550 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4551 remainder, 1))
4553 /* This could be computed with a branch-less sequence.
4554 Save that for later. */
4555 rtx label = gen_label_rtx ();
4556 do_cmp_and_jump (remainder, const0_rtx, EQ,
4557 compute_mode, label);
4558 expand_inc (quotient, const1_rtx);
4559 expand_dec (remainder, op1);
4560 emit_label (label);
4561 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4564 /* No luck with division elimination or divmod. Have to do it
4565 by conditionally adjusting op0 *and* the result. */
4567 rtx label1, label2;
4568 rtx adjusted_op0, tem;
4570 quotient = gen_reg_rtx (compute_mode);
4571 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4572 label1 = gen_label_rtx ();
4573 label2 = gen_label_rtx ();
4574 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4575 compute_mode, label1);
4576 emit_move_insn (quotient, const0_rtx);
4577 emit_jump_insn (gen_jump (label2));
4578 emit_barrier ();
4579 emit_label (label1);
4580 expand_dec (adjusted_op0, const1_rtx);
4581 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4582 quotient, 1, OPTAB_LIB_WIDEN);
4583 if (tem != quotient)
4584 emit_move_insn (quotient, tem);
4585 expand_inc (quotient, const1_rtx);
4586 emit_label (label2);
4589 else /* signed */
4591 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4592 && INTVAL (op1) >= 0)
4594 /* This is extremely similar to the code for the unsigned case
4595 above. For 2.7 we should merge these variants, but for
4596 2.6.1 I don't want to touch the code for unsigned since that
4597 get used in C. The signed case will only be used by other
4598 languages (Ada). */
4600 rtx t1, t2, t3;
4601 unsigned HOST_WIDE_INT d = INTVAL (op1);
4602 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4603 floor_log2 (d), tquotient, 0);
4604 t2 = expand_binop (compute_mode, and_optab, op0,
4605 GEN_INT (d - 1),
4606 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4607 t3 = gen_reg_rtx (compute_mode);
4608 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4609 compute_mode, 1, 1);
4610 if (t3 == 0)
4612 rtx lab;
4613 lab = gen_label_rtx ();
4614 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4615 expand_inc (t1, const1_rtx);
4616 emit_label (lab);
4617 quotient = t1;
4619 else
4620 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4621 t1, t3),
4622 tquotient);
4623 break;
4626 /* Try using an instruction that produces both the quotient and
4627 remainder, using truncation. We can easily compensate the
4628 quotient or remainder to get ceiling rounding, once we have the
4629 remainder. Notice that we compute also the final remainder
4630 value here, and return the result right away. */
4631 if (target == 0 || GET_MODE (target) != compute_mode)
4632 target = gen_reg_rtx (compute_mode);
4633 if (rem_flag)
4635 remainder= (REG_P (target)
4636 ? target : gen_reg_rtx (compute_mode));
4637 quotient = gen_reg_rtx (compute_mode);
4639 else
4641 quotient = (REG_P (target)
4642 ? target : gen_reg_rtx (compute_mode));
4643 remainder = gen_reg_rtx (compute_mode);
4646 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4647 remainder, 0))
4649 /* This could be computed with a branch-less sequence.
4650 Save that for later. */
4651 rtx tem;
4652 rtx label = gen_label_rtx ();
4653 do_cmp_and_jump (remainder, const0_rtx, EQ,
4654 compute_mode, label);
4655 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4656 NULL_RTX, 0, OPTAB_WIDEN);
4657 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4658 expand_inc (quotient, const1_rtx);
4659 expand_dec (remainder, op1);
4660 emit_label (label);
4661 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4664 /* No luck with division elimination or divmod. Have to do it
4665 by conditionally adjusting op0 *and* the result. */
4667 rtx label1, label2, label3, label4, label5;
4668 rtx adjusted_op0;
4669 rtx tem;
4671 quotient = gen_reg_rtx (compute_mode);
4672 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4673 label1 = gen_label_rtx ();
4674 label2 = gen_label_rtx ();
4675 label3 = gen_label_rtx ();
4676 label4 = gen_label_rtx ();
4677 label5 = gen_label_rtx ();
4678 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4679 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4680 compute_mode, label1);
4681 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4682 quotient, 0, OPTAB_LIB_WIDEN);
4683 if (tem != quotient)
4684 emit_move_insn (quotient, tem);
4685 emit_jump_insn (gen_jump (label5));
4686 emit_barrier ();
4687 emit_label (label1);
4688 expand_dec (adjusted_op0, const1_rtx);
4689 emit_jump_insn (gen_jump (label4));
4690 emit_barrier ();
4691 emit_label (label2);
4692 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4693 compute_mode, label3);
4694 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4695 quotient, 0, OPTAB_LIB_WIDEN);
4696 if (tem != quotient)
4697 emit_move_insn (quotient, tem);
4698 emit_jump_insn (gen_jump (label5));
4699 emit_barrier ();
4700 emit_label (label3);
4701 expand_inc (adjusted_op0, const1_rtx);
4702 emit_label (label4);
4703 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4704 quotient, 0, OPTAB_LIB_WIDEN);
4705 if (tem != quotient)
4706 emit_move_insn (quotient, tem);
4707 expand_inc (quotient, const1_rtx);
4708 emit_label (label5);
4711 break;
4713 case EXACT_DIV_EXPR:
4714 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4716 HOST_WIDE_INT d = INTVAL (op1);
4717 unsigned HOST_WIDE_INT ml;
4718 int pre_shift;
4719 rtx t1;
4721 pre_shift = floor_log2 (d & -d);
4722 ml = invert_mod2n (d >> pre_shift, size);
4723 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4724 pre_shift, NULL_RTX, unsignedp);
4725 quotient = expand_mult (compute_mode, t1,
4726 gen_int_mode (ml, compute_mode),
4727 NULL_RTX, 1);
4729 insn = get_last_insn ();
4730 set_dst_reg_note (insn, REG_EQUAL,
4731 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4732 compute_mode, op0, op1),
4733 quotient);
4735 break;
4737 case ROUND_DIV_EXPR:
4738 case ROUND_MOD_EXPR:
4739 if (unsignedp)
4741 rtx tem;
4742 rtx label;
4743 label = gen_label_rtx ();
4744 quotient = gen_reg_rtx (compute_mode);
4745 remainder = gen_reg_rtx (compute_mode);
4746 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4748 rtx tem;
4749 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4750 quotient, 1, OPTAB_LIB_WIDEN);
4751 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4752 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4753 remainder, 1, OPTAB_LIB_WIDEN);
4755 tem = plus_constant (compute_mode, op1, -1);
4756 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem, 1, NULL_RTX, 1);
4757 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4758 expand_inc (quotient, const1_rtx);
4759 expand_dec (remainder, op1);
4760 emit_label (label);
4762 else
4764 rtx abs_rem, abs_op1, tem, mask;
4765 rtx label;
4766 label = gen_label_rtx ();
4767 quotient = gen_reg_rtx (compute_mode);
4768 remainder = gen_reg_rtx (compute_mode);
4769 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4771 rtx tem;
4772 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4773 quotient, 0, OPTAB_LIB_WIDEN);
4774 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4775 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4776 remainder, 0, OPTAB_LIB_WIDEN);
4778 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4779 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4780 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4781 1, NULL_RTX, 1);
4782 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4783 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4784 NULL_RTX, 0, OPTAB_WIDEN);
4785 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4786 size - 1, NULL_RTX, 0);
4787 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4788 NULL_RTX, 0, OPTAB_WIDEN);
4789 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4790 NULL_RTX, 0, OPTAB_WIDEN);
4791 expand_inc (quotient, tem);
4792 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4793 NULL_RTX, 0, OPTAB_WIDEN);
4794 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4795 NULL_RTX, 0, OPTAB_WIDEN);
4796 expand_dec (remainder, tem);
4797 emit_label (label);
4799 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4801 default:
4802 gcc_unreachable ();
4805 if (quotient == 0)
4807 if (target && GET_MODE (target) != compute_mode)
4808 target = 0;
4810 if (rem_flag)
4812 /* Try to produce the remainder without producing the quotient.
4813 If we seem to have a divmod pattern that does not require widening,
4814 don't try widening here. We should really have a WIDEN argument
4815 to expand_twoval_binop, since what we'd really like to do here is
4816 1) try a mod insn in compute_mode
4817 2) try a divmod insn in compute_mode
4818 3) try a div insn in compute_mode and multiply-subtract to get
4819 remainder
4820 4) try the same things with widening allowed. */
4821 remainder
4822 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4823 op0, op1, target,
4824 unsignedp,
4825 ((optab_handler (optab2, compute_mode)
4826 != CODE_FOR_nothing)
4827 ? OPTAB_DIRECT : OPTAB_WIDEN));
4828 if (remainder == 0)
4830 /* No luck there. Can we do remainder and divide at once
4831 without a library call? */
4832 remainder = gen_reg_rtx (compute_mode);
4833 if (! expand_twoval_binop ((unsignedp
4834 ? udivmod_optab
4835 : sdivmod_optab),
4836 op0, op1,
4837 NULL_RTX, remainder, unsignedp))
4838 remainder = 0;
4841 if (remainder)
4842 return gen_lowpart (mode, remainder);
4845 /* Produce the quotient. Try a quotient insn, but not a library call.
4846 If we have a divmod in this mode, use it in preference to widening
4847 the div (for this test we assume it will not fail). Note that optab2
4848 is set to the one of the two optabs that the call below will use. */
4849 quotient
4850 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4851 op0, op1, rem_flag ? NULL_RTX : target,
4852 unsignedp,
4853 ((optab_handler (optab2, compute_mode)
4854 != CODE_FOR_nothing)
4855 ? OPTAB_DIRECT : OPTAB_WIDEN));
4857 if (quotient == 0)
4859 /* No luck there. Try a quotient-and-remainder insn,
4860 keeping the quotient alone. */
4861 quotient = gen_reg_rtx (compute_mode);
4862 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4863 op0, op1,
4864 quotient, NULL_RTX, unsignedp))
4866 quotient = 0;
4867 if (! rem_flag)
4868 /* Still no luck. If we are not computing the remainder,
4869 use a library call for the quotient. */
4870 quotient = sign_expand_binop (compute_mode,
4871 udiv_optab, sdiv_optab,
4872 op0, op1, target,
4873 unsignedp, OPTAB_LIB_WIDEN);
4878 if (rem_flag)
4880 if (target && GET_MODE (target) != compute_mode)
4881 target = 0;
4883 if (quotient == 0)
4885 /* No divide instruction either. Use library for remainder. */
4886 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4887 op0, op1, target,
4888 unsignedp, OPTAB_LIB_WIDEN);
4889 /* No remainder function. Try a quotient-and-remainder
4890 function, keeping the remainder. */
4891 if (!remainder)
4893 remainder = gen_reg_rtx (compute_mode);
4894 if (!expand_twoval_binop_libfunc
4895 (unsignedp ? udivmod_optab : sdivmod_optab,
4896 op0, op1,
4897 NULL_RTX, remainder,
4898 unsignedp ? UMOD : MOD))
4899 remainder = NULL_RTX;
4902 else
4904 /* We divided. Now finish doing X - Y * (X / Y). */
4905 remainder = expand_mult (compute_mode, quotient, op1,
4906 NULL_RTX, unsignedp);
4907 remainder = expand_binop (compute_mode, sub_optab, op0,
4908 remainder, target, unsignedp,
4909 OPTAB_LIB_WIDEN);
4913 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4916 /* Return a tree node with data type TYPE, describing the value of X.
4917 Usually this is an VAR_DECL, if there is no obvious better choice.
4918 X may be an expression, however we only support those expressions
4919 generated by loop.c. */
4921 tree
4922 make_tree (tree type, rtx x)
4924 tree t;
4926 switch (GET_CODE (x))
4928 case CONST_INT:
4930 HOST_WIDE_INT hi = 0;
4932 if (INTVAL (x) < 0
4933 && !(TYPE_UNSIGNED (type)
4934 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4935 < HOST_BITS_PER_WIDE_INT)))
4936 hi = -1;
4938 t = build_int_cst_wide (type, INTVAL (x), hi);
4940 return t;
4943 case CONST_DOUBLE:
4944 if (GET_MODE (x) == VOIDmode)
4945 t = build_int_cst_wide (type,
4946 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4947 else
4949 REAL_VALUE_TYPE d;
4951 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4952 t = build_real (type, d);
4955 return t;
4957 case CONST_VECTOR:
4959 int units = CONST_VECTOR_NUNITS (x);
4960 tree itype = TREE_TYPE (type);
4961 tree *elts;
4962 int i;
4964 /* Build a tree with vector elements. */
4965 elts = XALLOCAVEC (tree, units);
4966 for (i = units - 1; i >= 0; --i)
4968 rtx elt = CONST_VECTOR_ELT (x, i);
4969 elts[i] = make_tree (itype, elt);
4972 return build_vector (type, elts);
4975 case PLUS:
4976 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4977 make_tree (type, XEXP (x, 1)));
4979 case MINUS:
4980 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4981 make_tree (type, XEXP (x, 1)));
4983 case NEG:
4984 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
4986 case MULT:
4987 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4988 make_tree (type, XEXP (x, 1)));
4990 case ASHIFT:
4991 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4992 make_tree (type, XEXP (x, 1)));
4994 case LSHIFTRT:
4995 t = unsigned_type_for (type);
4996 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4997 make_tree (t, XEXP (x, 0)),
4998 make_tree (type, XEXP (x, 1))));
5000 case ASHIFTRT:
5001 t = signed_type_for (type);
5002 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5003 make_tree (t, XEXP (x, 0)),
5004 make_tree (type, XEXP (x, 1))));
5006 case DIV:
5007 if (TREE_CODE (type) != REAL_TYPE)
5008 t = signed_type_for (type);
5009 else
5010 t = type;
5012 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5013 make_tree (t, XEXP (x, 0)),
5014 make_tree (t, XEXP (x, 1))));
5015 case UDIV:
5016 t = unsigned_type_for (type);
5017 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5018 make_tree (t, XEXP (x, 0)),
5019 make_tree (t, XEXP (x, 1))));
5021 case SIGN_EXTEND:
5022 case ZERO_EXTEND:
5023 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5024 GET_CODE (x) == ZERO_EXTEND);
5025 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5027 case CONST:
5028 return make_tree (type, XEXP (x, 0));
5030 case SYMBOL_REF:
5031 t = SYMBOL_REF_DECL (x);
5032 if (t)
5033 return fold_convert (type, build_fold_addr_expr (t));
5034 /* else fall through. */
5036 default:
5037 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5039 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5040 address mode to pointer mode. */
5041 if (POINTER_TYPE_P (type))
5042 x = convert_memory_address_addr_space
5043 (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5045 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5046 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5047 t->decl_with_rtl.rtl = x;
5049 return t;
5053 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5054 and returning TARGET.
5056 If TARGET is 0, a pseudo-register or constant is returned. */
5059 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5061 rtx tem = 0;
5063 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5064 tem = simplify_binary_operation (AND, mode, op0, op1);
5065 if (tem == 0)
5066 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5068 if (target == 0)
5069 target = tem;
5070 else if (tem != target)
5071 emit_move_insn (target, tem);
5072 return target;
5075 /* Helper function for emit_store_flag. */
5076 static rtx
5077 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5078 enum machine_mode mode, enum machine_mode compare_mode,
5079 int unsignedp, rtx x, rtx y, int normalizep,
5080 enum machine_mode target_mode)
5082 struct expand_operand ops[4];
5083 rtx op0, last, comparison, subtarget;
5084 enum machine_mode result_mode = insn_data[(int) icode].operand[0].mode;
5086 last = get_last_insn ();
5087 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5088 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5089 if (!x || !y)
5091 delete_insns_since (last);
5092 return NULL_RTX;
5095 if (target_mode == VOIDmode)
5096 target_mode = result_mode;
5097 if (!target)
5098 target = gen_reg_rtx (target_mode);
5100 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5102 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5103 create_fixed_operand (&ops[1], comparison);
5104 create_fixed_operand (&ops[2], x);
5105 create_fixed_operand (&ops[3], y);
5106 if (!maybe_expand_insn (icode, 4, ops))
5108 delete_insns_since (last);
5109 return NULL_RTX;
5111 subtarget = ops[0].value;
5113 /* If we are converting to a wider mode, first convert to
5114 TARGET_MODE, then normalize. This produces better combining
5115 opportunities on machines that have a SIGN_EXTRACT when we are
5116 testing a single bit. This mostly benefits the 68k.
5118 If STORE_FLAG_VALUE does not have the sign bit set when
5119 interpreted in MODE, we can do this conversion as unsigned, which
5120 is usually more efficient. */
5121 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5123 convert_move (target, subtarget,
5124 val_signbit_known_clear_p (result_mode,
5125 STORE_FLAG_VALUE));
5126 op0 = target;
5127 result_mode = target_mode;
5129 else
5130 op0 = subtarget;
5132 /* If we want to keep subexpressions around, don't reuse our last
5133 target. */
5134 if (optimize)
5135 subtarget = 0;
5137 /* Now normalize to the proper value in MODE. Sometimes we don't
5138 have to do anything. */
5139 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5141 /* STORE_FLAG_VALUE might be the most negative number, so write
5142 the comparison this way to avoid a compiler-time warning. */
5143 else if (- normalizep == STORE_FLAG_VALUE)
5144 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5146 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5147 it hard to use a value of just the sign bit due to ANSI integer
5148 constant typing rules. */
5149 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5150 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5151 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5152 normalizep == 1);
5153 else
5155 gcc_assert (STORE_FLAG_VALUE & 1);
5157 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5158 if (normalizep == -1)
5159 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5162 /* If we were converting to a smaller mode, do the conversion now. */
5163 if (target_mode != result_mode)
5165 convert_move (target, op0, 0);
5166 return target;
5168 else
5169 return op0;
5173 /* A subroutine of emit_store_flag only including "tricks" that do not
5174 need a recursive call. These are kept separate to avoid infinite
5175 loops. */
5177 static rtx
5178 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5179 enum machine_mode mode, int unsignedp, int normalizep,
5180 enum machine_mode target_mode)
5182 rtx subtarget;
5183 enum insn_code icode;
5184 enum machine_mode compare_mode;
5185 enum mode_class mclass;
5186 enum rtx_code scode;
5187 rtx tem;
5189 if (unsignedp)
5190 code = unsigned_condition (code);
5191 scode = swap_condition (code);
5193 /* If one operand is constant, make it the second one. Only do this
5194 if the other operand is not constant as well. */
5196 if (swap_commutative_operands_p (op0, op1))
5198 tem = op0;
5199 op0 = op1;
5200 op1 = tem;
5201 code = swap_condition (code);
5204 if (mode == VOIDmode)
5205 mode = GET_MODE (op0);
5207 /* For some comparisons with 1 and -1, we can convert this to
5208 comparisons with zero. This will often produce more opportunities for
5209 store-flag insns. */
5211 switch (code)
5213 case LT:
5214 if (op1 == const1_rtx)
5215 op1 = const0_rtx, code = LE;
5216 break;
5217 case LE:
5218 if (op1 == constm1_rtx)
5219 op1 = const0_rtx, code = LT;
5220 break;
5221 case GE:
5222 if (op1 == const1_rtx)
5223 op1 = const0_rtx, code = GT;
5224 break;
5225 case GT:
5226 if (op1 == constm1_rtx)
5227 op1 = const0_rtx, code = GE;
5228 break;
5229 case GEU:
5230 if (op1 == const1_rtx)
5231 op1 = const0_rtx, code = NE;
5232 break;
5233 case LTU:
5234 if (op1 == const1_rtx)
5235 op1 = const0_rtx, code = EQ;
5236 break;
5237 default:
5238 break;
5241 /* If we are comparing a double-word integer with zero or -1, we can
5242 convert the comparison into one involving a single word. */
5243 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5244 && GET_MODE_CLASS (mode) == MODE_INT
5245 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5247 if ((code == EQ || code == NE)
5248 && (op1 == const0_rtx || op1 == constm1_rtx))
5250 rtx op00, op01;
5252 /* Do a logical OR or AND of the two words and compare the
5253 result. */
5254 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5255 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5256 tem = expand_binop (word_mode,
5257 op1 == const0_rtx ? ior_optab : and_optab,
5258 op00, op01, NULL_RTX, unsignedp,
5259 OPTAB_DIRECT);
5261 if (tem != 0)
5262 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5263 unsignedp, normalizep);
5265 else if ((code == LT || code == GE) && op1 == const0_rtx)
5267 rtx op0h;
5269 /* If testing the sign bit, can just test on high word. */
5270 op0h = simplify_gen_subreg (word_mode, op0, mode,
5271 subreg_highpart_offset (word_mode,
5272 mode));
5273 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5274 unsignedp, normalizep);
5276 else
5277 tem = NULL_RTX;
5279 if (tem)
5281 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5282 return tem;
5283 if (!target)
5284 target = gen_reg_rtx (target_mode);
5286 convert_move (target, tem,
5287 !val_signbit_known_set_p (word_mode,
5288 (normalizep ? normalizep
5289 : STORE_FLAG_VALUE)));
5290 return target;
5294 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5295 complement of A (for GE) and shifting the sign bit to the low bit. */
5296 if (op1 == const0_rtx && (code == LT || code == GE)
5297 && GET_MODE_CLASS (mode) == MODE_INT
5298 && (normalizep || STORE_FLAG_VALUE == 1
5299 || val_signbit_p (mode, STORE_FLAG_VALUE)))
5301 subtarget = target;
5303 if (!target)
5304 target_mode = mode;
5306 /* If the result is to be wider than OP0, it is best to convert it
5307 first. If it is to be narrower, it is *incorrect* to convert it
5308 first. */
5309 else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5311 op0 = convert_modes (target_mode, mode, op0, 0);
5312 mode = target_mode;
5315 if (target_mode != mode)
5316 subtarget = 0;
5318 if (code == GE)
5319 op0 = expand_unop (mode, one_cmpl_optab, op0,
5320 ((STORE_FLAG_VALUE == 1 || normalizep)
5321 ? 0 : subtarget), 0);
5323 if (STORE_FLAG_VALUE == 1 || normalizep)
5324 /* If we are supposed to produce a 0/1 value, we want to do
5325 a logical shift from the sign bit to the low-order bit; for
5326 a -1/0 value, we do an arithmetic shift. */
5327 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5328 GET_MODE_BITSIZE (mode) - 1,
5329 subtarget, normalizep != -1);
5331 if (mode != target_mode)
5332 op0 = convert_modes (target_mode, mode, op0, 0);
5334 return op0;
5337 mclass = GET_MODE_CLASS (mode);
5338 for (compare_mode = mode; compare_mode != VOIDmode;
5339 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5341 enum machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5342 icode = optab_handler (cstore_optab, optab_mode);
5343 if (icode != CODE_FOR_nothing)
5345 do_pending_stack_adjust ();
5346 tem = emit_cstore (target, icode, code, mode, compare_mode,
5347 unsignedp, op0, op1, normalizep, target_mode);
5348 if (tem)
5349 return tem;
5351 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5353 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5354 unsignedp, op1, op0, normalizep, target_mode);
5355 if (tem)
5356 return tem;
5358 break;
5362 return 0;
5365 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5366 and storing in TARGET. Normally return TARGET.
5367 Return 0 if that cannot be done.
5369 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5370 it is VOIDmode, they cannot both be CONST_INT.
5372 UNSIGNEDP is for the case where we have to widen the operands
5373 to perform the operation. It says to use zero-extension.
5375 NORMALIZEP is 1 if we should convert the result to be either zero
5376 or one. Normalize is -1 if we should convert the result to be
5377 either zero or -1. If NORMALIZEP is zero, the result will be left
5378 "raw" out of the scc insn. */
5381 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5382 enum machine_mode mode, int unsignedp, int normalizep)
5384 enum machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5385 enum rtx_code rcode;
5386 rtx subtarget;
5387 rtx tem, last, trueval;
5389 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5390 target_mode);
5391 if (tem)
5392 return tem;
5394 /* If we reached here, we can't do this with a scc insn, however there
5395 are some comparisons that can be done in other ways. Don't do any
5396 of these cases if branches are very cheap. */
5397 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5398 return 0;
5400 /* See what we need to return. We can only return a 1, -1, or the
5401 sign bit. */
5403 if (normalizep == 0)
5405 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5406 normalizep = STORE_FLAG_VALUE;
5408 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
5410 else
5411 return 0;
5414 last = get_last_insn ();
5416 /* If optimizing, use different pseudo registers for each insn, instead
5417 of reusing the same pseudo. This leads to better CSE, but slows
5418 down the compiler, since there are more pseudos */
5419 subtarget = (!optimize
5420 && (target_mode == mode)) ? target : NULL_RTX;
5421 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5423 /* For floating-point comparisons, try the reverse comparison or try
5424 changing the "orderedness" of the comparison. */
5425 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5427 enum rtx_code first_code;
5428 bool and_them;
5430 rcode = reverse_condition_maybe_unordered (code);
5431 if (can_compare_p (rcode, mode, ccp_store_flag)
5432 && (code == ORDERED || code == UNORDERED
5433 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5434 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5436 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5437 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5439 /* For the reverse comparison, use either an addition or a XOR. */
5440 if (want_add
5441 && rtx_cost (GEN_INT (normalizep), PLUS, 1,
5442 optimize_insn_for_speed_p ()) == 0)
5444 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5445 STORE_FLAG_VALUE, target_mode);
5446 if (tem)
5447 return expand_binop (target_mode, add_optab, tem,
5448 GEN_INT (normalizep),
5449 target, 0, OPTAB_WIDEN);
5451 else if (!want_add
5452 && rtx_cost (trueval, XOR, 1,
5453 optimize_insn_for_speed_p ()) == 0)
5455 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5456 normalizep, target_mode);
5457 if (tem)
5458 return expand_binop (target_mode, xor_optab, tem, trueval,
5459 target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5463 delete_insns_since (last);
5465 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5466 if (code == ORDERED || code == UNORDERED)
5467 return 0;
5469 and_them = split_comparison (code, mode, &first_code, &code);
5471 /* If there are no NaNs, the first comparison should always fall through.
5472 Effectively change the comparison to the other one. */
5473 if (!HONOR_NANS (mode))
5475 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5476 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5477 target_mode);
5480 #ifdef HAVE_conditional_move
5481 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5482 conditional move. */
5483 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5484 normalizep, target_mode);
5485 if (tem == 0)
5486 return 0;
5488 if (and_them)
5489 tem = emit_conditional_move (target, code, op0, op1, mode,
5490 tem, const0_rtx, GET_MODE (tem), 0);
5491 else
5492 tem = emit_conditional_move (target, code, op0, op1, mode,
5493 trueval, tem, GET_MODE (tem), 0);
5495 if (tem == 0)
5496 delete_insns_since (last);
5497 return tem;
5498 #else
5499 return 0;
5500 #endif
5503 /* The remaining tricks only apply to integer comparisons. */
5505 if (GET_MODE_CLASS (mode) != MODE_INT)
5506 return 0;
5508 /* If this is an equality comparison of integers, we can try to exclusive-or
5509 (or subtract) the two operands and use a recursive call to try the
5510 comparison with zero. Don't do any of these cases if branches are
5511 very cheap. */
5513 if ((code == EQ || code == NE) && op1 != const0_rtx)
5515 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5516 OPTAB_WIDEN);
5518 if (tem == 0)
5519 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5520 OPTAB_WIDEN);
5521 if (tem != 0)
5522 tem = emit_store_flag (target, code, tem, const0_rtx,
5523 mode, unsignedp, normalizep);
5524 if (tem != 0)
5525 return tem;
5527 delete_insns_since (last);
5530 /* For integer comparisons, try the reverse comparison. However, for
5531 small X and if we'd have anyway to extend, implementing "X != 0"
5532 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5533 rcode = reverse_condition (code);
5534 if (can_compare_p (rcode, mode, ccp_store_flag)
5535 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5536 && code == NE
5537 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5538 && op1 == const0_rtx))
5540 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5541 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5543 /* Again, for the reverse comparison, use either an addition or a XOR. */
5544 if (want_add
5545 && rtx_cost (GEN_INT (normalizep), PLUS, 1,
5546 optimize_insn_for_speed_p ()) == 0)
5548 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5549 STORE_FLAG_VALUE, target_mode);
5550 if (tem != 0)
5551 tem = expand_binop (target_mode, add_optab, tem,
5552 GEN_INT (normalizep), target, 0, OPTAB_WIDEN);
5554 else if (!want_add
5555 && rtx_cost (trueval, XOR, 1,
5556 optimize_insn_for_speed_p ()) == 0)
5558 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5559 normalizep, target_mode);
5560 if (tem != 0)
5561 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5562 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5565 if (tem != 0)
5566 return tem;
5567 delete_insns_since (last);
5570 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5571 the constant zero. Reject all other comparisons at this point. Only
5572 do LE and GT if branches are expensive since they are expensive on
5573 2-operand machines. */
5575 if (op1 != const0_rtx
5576 || (code != EQ && code != NE
5577 && (BRANCH_COST (optimize_insn_for_speed_p (),
5578 false) <= 1 || (code != LE && code != GT))))
5579 return 0;
5581 /* Try to put the result of the comparison in the sign bit. Assume we can't
5582 do the necessary operation below. */
5584 tem = 0;
5586 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5587 the sign bit set. */
5589 if (code == LE)
5591 /* This is destructive, so SUBTARGET can't be OP0. */
5592 if (rtx_equal_p (subtarget, op0))
5593 subtarget = 0;
5595 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5596 OPTAB_WIDEN);
5597 if (tem)
5598 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5599 OPTAB_WIDEN);
5602 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5603 number of bits in the mode of OP0, minus one. */
5605 if (code == GT)
5607 if (rtx_equal_p (subtarget, op0))
5608 subtarget = 0;
5610 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5611 GET_MODE_BITSIZE (mode) - 1,
5612 subtarget, 0);
5613 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5614 OPTAB_WIDEN);
5617 if (code == EQ || code == NE)
5619 /* For EQ or NE, one way to do the comparison is to apply an operation
5620 that converts the operand into a positive number if it is nonzero
5621 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5622 for NE we negate. This puts the result in the sign bit. Then we
5623 normalize with a shift, if needed.
5625 Two operations that can do the above actions are ABS and FFS, so try
5626 them. If that doesn't work, and MODE is smaller than a full word,
5627 we can use zero-extension to the wider mode (an unsigned conversion)
5628 as the operation. */
5630 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5631 that is compensated by the subsequent overflow when subtracting
5632 one / negating. */
5634 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5635 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5636 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5637 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5638 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5640 tem = convert_modes (word_mode, mode, op0, 1);
5641 mode = word_mode;
5644 if (tem != 0)
5646 if (code == EQ)
5647 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5648 0, OPTAB_WIDEN);
5649 else
5650 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5653 /* If we couldn't do it that way, for NE we can "or" the two's complement
5654 of the value with itself. For EQ, we take the one's complement of
5655 that "or", which is an extra insn, so we only handle EQ if branches
5656 are expensive. */
5658 if (tem == 0
5659 && (code == NE
5660 || BRANCH_COST (optimize_insn_for_speed_p (),
5661 false) > 1))
5663 if (rtx_equal_p (subtarget, op0))
5664 subtarget = 0;
5666 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5667 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5668 OPTAB_WIDEN);
5670 if (tem && code == EQ)
5671 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5675 if (tem && normalizep)
5676 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5677 GET_MODE_BITSIZE (mode) - 1,
5678 subtarget, normalizep == 1);
5680 if (tem)
5682 if (!target)
5684 else if (GET_MODE (tem) != target_mode)
5686 convert_move (target, tem, 0);
5687 tem = target;
5689 else if (!subtarget)
5691 emit_move_insn (target, tem);
5692 tem = target;
5695 else
5696 delete_insns_since (last);
5698 return tem;
5701 /* Like emit_store_flag, but always succeeds. */
5704 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5705 enum machine_mode mode, int unsignedp, int normalizep)
5707 rtx tem, label;
5708 rtx trueval, falseval;
5710 /* First see if emit_store_flag can do the job. */
5711 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5712 if (tem != 0)
5713 return tem;
5715 if (!target)
5716 target = gen_reg_rtx (word_mode);
5718 /* If this failed, we have to do this with set/compare/jump/set code.
5719 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5720 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5721 if (code == NE
5722 && GET_MODE_CLASS (mode) == MODE_INT
5723 && REG_P (target)
5724 && op0 == target
5725 && op1 == const0_rtx)
5727 label = gen_label_rtx ();
5728 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp,
5729 mode, NULL_RTX, NULL_RTX, label, -1);
5730 emit_move_insn (target, trueval);
5731 emit_label (label);
5732 return target;
5735 if (!REG_P (target)
5736 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5737 target = gen_reg_rtx (GET_MODE (target));
5739 /* Jump in the right direction if the target cannot implement CODE
5740 but can jump on its reverse condition. */
5741 falseval = const0_rtx;
5742 if (! can_compare_p (code, mode, ccp_jump)
5743 && (! FLOAT_MODE_P (mode)
5744 || code == ORDERED || code == UNORDERED
5745 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5746 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5748 enum rtx_code rcode;
5749 if (FLOAT_MODE_P (mode))
5750 rcode = reverse_condition_maybe_unordered (code);
5751 else
5752 rcode = reverse_condition (code);
5754 /* Canonicalize to UNORDERED for the libcall. */
5755 if (can_compare_p (rcode, mode, ccp_jump)
5756 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5758 falseval = trueval;
5759 trueval = const0_rtx;
5760 code = rcode;
5764 emit_move_insn (target, trueval);
5765 label = gen_label_rtx ();
5766 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5767 NULL_RTX, label, -1);
5769 emit_move_insn (target, falseval);
5770 emit_label (label);
5772 return target;
5775 /* Perform possibly multi-word comparison and conditional jump to LABEL
5776 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5777 now a thin wrapper around do_compare_rtx_and_jump. */
5779 static void
5780 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5781 rtx label)
5783 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5784 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5785 NULL_RTX, NULL_RTX, label, -1);