* parse.y: Use VA_OPEN/VA_CLOSE/VA_FIXEDARG throughout.
[official-gcc.git] / gcc / tree.c
blob14d48071198502b57cf1063e5011751aa52f5289
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
49 #define obstack_chunk_alloc xmalloc
50 #define obstack_chunk_free free
51 /* obstack.[ch] explicitly declined to prototype this. */
52 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
54 static void unsave_expr_now_r PARAMS ((tree));
56 /* Objects allocated on this obstack last forever. */
58 struct obstack permanent_obstack;
60 /* Table indexed by tree code giving a string containing a character
61 classifying the tree code. Possibilities are
62 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
64 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
66 char tree_code_type[MAX_TREE_CODES] = {
67 #include "tree.def"
69 #undef DEFTREECODE
71 /* Table indexed by tree code giving number of expression
72 operands beyond the fixed part of the node structure.
73 Not used for types or decls. */
75 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
77 int tree_code_length[MAX_TREE_CODES] = {
78 #include "tree.def"
80 #undef DEFTREECODE
82 /* Names of tree components.
83 Used for printing out the tree and error messages. */
84 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
86 const char *tree_code_name[MAX_TREE_CODES] = {
87 #include "tree.def"
89 #undef DEFTREECODE
91 /* Statistics-gathering stuff. */
92 typedef enum
94 d_kind,
95 t_kind,
96 b_kind,
97 s_kind,
98 r_kind,
99 e_kind,
100 c_kind,
101 id_kind,
102 perm_list_kind,
103 temp_list_kind,
104 vec_kind,
105 x_kind,
106 lang_decl,
107 lang_type,
108 all_kinds
109 } tree_node_kind;
111 int tree_node_counts[(int) all_kinds];
112 int tree_node_sizes[(int) all_kinds];
113 int id_string_size = 0;
115 static const char * const tree_node_kind_names[] = {
116 "decls",
117 "types",
118 "blocks",
119 "stmts",
120 "refs",
121 "exprs",
122 "constants",
123 "identifiers",
124 "perm_tree_lists",
125 "temp_tree_lists",
126 "vecs",
127 "random kinds",
128 "lang_decl kinds",
129 "lang_type kinds"
132 /* Unique id for next decl created. */
133 static int next_decl_uid;
134 /* Unique id for next type created. */
135 static int next_type_uid = 1;
137 /* Since we cannot rehash a type after it is in the table, we have to
138 keep the hash code. */
140 struct type_hash
142 unsigned long hash;
143 tree type;
146 /* Initial size of the hash table (rounded to next prime). */
147 #define TYPE_HASH_INITIAL_SIZE 1000
149 /* Now here is the hash table. When recording a type, it is added to
150 the slot whose index is the hash code. Note that the hash table is
151 used for several kinds of types (function types, array types and
152 array index range types, for now). While all these live in the
153 same table, they are completely independent, and the hash code is
154 computed differently for each of these. */
156 htab_t type_hash_table;
158 static void build_real_from_int_cst_1 PARAMS ((PTR));
159 static void set_type_quals PARAMS ((tree, int));
160 static void append_random_chars PARAMS ((char *));
161 static void mark_type_hash PARAMS ((void *));
162 static int type_hash_eq PARAMS ((const void*, const void*));
163 static unsigned int type_hash_hash PARAMS ((const void*));
164 static void print_type_hash_statistics PARAMS((void));
165 static int mark_hash_entry PARAMS((void **, void *));
166 static void finish_vector_type PARAMS((tree));
167 static int mark_tree_hashtable_entry PARAMS((void **, void *));
169 /* If non-null, these are language-specific helper functions for
170 unsave_expr_now. If present, LANG_UNSAVE is called before its
171 argument (an UNSAVE_EXPR) is to be unsaved, and all other
172 processing in unsave_expr_now is aborted. LANG_UNSAVE_EXPR_NOW is
173 called from unsave_expr_1 for language-specific tree codes. */
174 void (*lang_unsave) PARAMS ((tree *));
175 void (*lang_unsave_expr_now) PARAMS ((tree));
177 /* If non-null, these are language-specific helper functions for
178 unsafe_for_reeval. Return negative to not handle some tree. */
179 int (*lang_unsafe_for_reeval) PARAMS ((tree));
181 /* Set the DECL_ASSEMBLER_NAME for a node. If it is the sort of thing
182 that the assembler should talk about, set DECL_ASSEMBLER_NAME to an
183 appropriate IDENTIFIER_NODE. Otherwise, set it to the
184 ERROR_MARK_NODE to ensure that the assembler does not talk about
185 it. */
186 void (*lang_set_decl_assembler_name) PARAMS ((tree));
188 tree global_trees[TI_MAX];
189 tree integer_types[itk_none];
191 /* Set the DECL_ASSEMBLER_NAME for DECL. */
192 void
193 set_decl_assembler_name (decl)
194 tree decl;
196 /* The language-independent code should never use the
197 DECL_ASSEMBLER_NAME for lots of DECLs. Only FUNCTION_DECLs and
198 VAR_DECLs for variables with static storage duration need a real
199 DECL_ASSEMBLER_NAME. */
200 if (TREE_CODE (decl) == FUNCTION_DECL
201 || (TREE_CODE (decl) == VAR_DECL
202 && (TREE_STATIC (decl)
203 || DECL_EXTERNAL (decl)
204 || TREE_PUBLIC (decl))))
205 /* By default, assume the name to use in assembly code is the
206 same as that used in the source language. (That's correct
207 for C, and GCC used to set DECL_ASSEMBLER_NAME to the same
208 value as DECL_NAME in build_decl, so this choice provides
209 backwards compatibility with existing front-ends. */
210 SET_DECL_ASSEMBLER_NAME (decl, DECL_NAME (decl));
211 else
212 /* Nobody should ever be asking for the DECL_ASSEMBLER_NAME of
213 these DECLs -- unless they're in language-dependent code, in
214 which case lang_set_decl_assembler_name should handle things. */
215 abort ();
218 /* Init the principal obstacks. */
220 void
221 init_obstacks ()
223 gcc_obstack_init (&permanent_obstack);
225 /* Initialize the hash table of types. */
226 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
227 type_hash_eq, 0);
228 ggc_add_root (&type_hash_table, 1, sizeof type_hash_table, mark_type_hash);
229 ggc_add_tree_root (global_trees, TI_MAX);
230 ggc_add_tree_root (integer_types, itk_none);
232 /* Set lang_set_decl_set_assembler_name to a default value. */
233 lang_set_decl_assembler_name = set_decl_assembler_name;
237 /* Allocate SIZE bytes in the permanent obstack
238 and return a pointer to them. */
240 char *
241 permalloc (size)
242 int size;
244 return (char *) obstack_alloc (&permanent_obstack, size);
247 /* Allocate NELEM items of SIZE bytes in the permanent obstack
248 and return a pointer to them. The storage is cleared before
249 returning the value. */
251 char *
252 perm_calloc (nelem, size)
253 int nelem;
254 long size;
256 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
257 memset (rval, 0, nelem * size);
258 return rval;
261 /* Compute the number of bytes occupied by 'node'. This routine only
262 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
263 size_t
264 tree_size (node)
265 tree node;
267 enum tree_code code = TREE_CODE (node);
269 switch (TREE_CODE_CLASS (code))
271 case 'd': /* A decl node */
272 return sizeof (struct tree_decl);
274 case 't': /* a type node */
275 return sizeof (struct tree_type);
277 case 'b': /* a lexical block node */
278 return sizeof (struct tree_block);
280 case 'r': /* a reference */
281 case 'e': /* an expression */
282 case 's': /* an expression with side effects */
283 case '<': /* a comparison expression */
284 case '1': /* a unary arithmetic expression */
285 case '2': /* a binary arithmetic expression */
286 return (sizeof (struct tree_exp)
287 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
289 case 'c': /* a constant */
290 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
291 words is machine-dependent due to varying length of HOST_WIDE_INT,
292 which might be wider than a pointer (e.g., long long). Similarly
293 for REAL_CST, since the number of words is machine-dependent due
294 to varying size and alignment of `double'. */
295 if (code == INTEGER_CST)
296 return sizeof (struct tree_int_cst);
297 else if (code == REAL_CST)
298 return sizeof (struct tree_real_cst);
299 else
300 return (sizeof (struct tree_common)
301 + TREE_CODE_LENGTH (code) * sizeof (char *));
303 case 'x': /* something random, like an identifier. */
305 size_t length;
306 length = (sizeof (struct tree_common)
307 + TREE_CODE_LENGTH (code) * sizeof (char *));
308 if (code == TREE_VEC)
309 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
310 return length;
313 default:
314 abort ();
318 /* Return a newly allocated node of code CODE.
319 For decl and type nodes, some other fields are initialized.
320 The rest of the node is initialized to zero.
322 Achoo! I got a code in the node. */
324 tree
325 make_node (code)
326 enum tree_code code;
328 register tree t;
329 register int type = TREE_CODE_CLASS (code);
330 register size_t length;
331 #ifdef GATHER_STATISTICS
332 register tree_node_kind kind;
333 #endif
334 struct tree_common ttmp;
336 /* We can't allocate a TREE_VEC without knowing how many elements
337 it will have. */
338 if (code == TREE_VEC)
339 abort ();
341 TREE_SET_CODE ((tree)&ttmp, code);
342 length = tree_size ((tree)&ttmp);
344 #ifdef GATHER_STATISTICS
345 switch (type)
347 case 'd': /* A decl node */
348 kind = d_kind;
349 break;
351 case 't': /* a type node */
352 kind = t_kind;
353 break;
355 case 'b': /* a lexical block */
356 kind = b_kind;
357 break;
359 case 's': /* an expression with side effects */
360 kind = s_kind;
361 break;
363 case 'r': /* a reference */
364 kind = r_kind;
365 break;
367 case 'e': /* an expression */
368 case '<': /* a comparison expression */
369 case '1': /* a unary arithmetic expression */
370 case '2': /* a binary arithmetic expression */
371 kind = e_kind;
372 break;
374 case 'c': /* a constant */
375 kind = c_kind;
376 break;
378 case 'x': /* something random, like an identifier. */
379 if (code == IDENTIFIER_NODE)
380 kind = id_kind;
381 else if (code == TREE_VEC)
382 kind = vec_kind;
383 else
384 kind = x_kind;
385 break;
387 default:
388 abort ();
391 tree_node_counts[(int) kind]++;
392 tree_node_sizes[(int) kind] += length;
393 #endif
395 t = ggc_alloc_tree (length);
397 memset ((PTR) t, 0, length);
399 TREE_SET_CODE (t, code);
401 switch (type)
403 case 's':
404 TREE_SIDE_EFFECTS (t) = 1;
405 TREE_TYPE (t) = void_type_node;
406 break;
408 case 'd':
409 if (code != FUNCTION_DECL)
410 DECL_ALIGN (t) = 1;
411 DECL_USER_ALIGN (t) = 0;
412 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
413 DECL_SOURCE_LINE (t) = lineno;
414 DECL_SOURCE_FILE (t) =
415 (input_filename) ? input_filename : "<built-in>";
416 DECL_UID (t) = next_decl_uid++;
418 /* We have not yet computed the alias set for this declaration. */
419 DECL_POINTER_ALIAS_SET (t) = -1;
420 break;
422 case 't':
423 TYPE_UID (t) = next_type_uid++;
424 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
425 TYPE_USER_ALIGN (t) = 0;
426 TYPE_MAIN_VARIANT (t) = t;
428 /* Default to no attributes for type, but let target change that. */
429 TYPE_ATTRIBUTES (t) = NULL_TREE;
430 (*targetm.set_default_type_attributes) (t);
432 /* We have not yet computed the alias set for this type. */
433 TYPE_ALIAS_SET (t) = -1;
434 break;
436 case 'c':
437 TREE_CONSTANT (t) = 1;
438 break;
440 case 'e':
441 switch (code)
443 case INIT_EXPR:
444 case MODIFY_EXPR:
445 case VA_ARG_EXPR:
446 case RTL_EXPR:
447 case PREDECREMENT_EXPR:
448 case PREINCREMENT_EXPR:
449 case POSTDECREMENT_EXPR:
450 case POSTINCREMENT_EXPR:
451 /* All of these have side-effects, no matter what their
452 operands are. */
453 TREE_SIDE_EFFECTS (t) = 1;
454 break;
456 default:
457 break;
459 break;
462 return t;
465 /* A front-end can reset this to an appropriate function if types need
466 special handling. */
468 tree (*make_lang_type_fn) PARAMS ((enum tree_code)) = make_node;
470 /* Return a new type (with the indicated CODE), doing whatever
471 language-specific processing is required. */
473 tree
474 make_lang_type (code)
475 enum tree_code code;
477 return (*make_lang_type_fn) (code);
480 /* Return a new node with the same contents as NODE except that its
481 TREE_CHAIN is zero and it has a fresh uid. */
483 tree
484 copy_node (node)
485 tree node;
487 register tree t;
488 register enum tree_code code = TREE_CODE (node);
489 register size_t length;
491 length = tree_size (node);
492 t = ggc_alloc_tree (length);
493 memcpy (t, node, length);
495 TREE_CHAIN (t) = 0;
496 TREE_ASM_WRITTEN (t) = 0;
498 if (TREE_CODE_CLASS (code) == 'd')
499 DECL_UID (t) = next_decl_uid++;
500 else if (TREE_CODE_CLASS (code) == 't')
502 TYPE_UID (t) = next_type_uid++;
503 /* The following is so that the debug code for
504 the copy is different from the original type.
505 The two statements usually duplicate each other
506 (because they clear fields of the same union),
507 but the optimizer should catch that. */
508 TYPE_SYMTAB_POINTER (t) = 0;
509 TYPE_SYMTAB_ADDRESS (t) = 0;
512 return t;
515 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
516 For example, this can copy a list made of TREE_LIST nodes. */
518 tree
519 copy_list (list)
520 tree list;
522 tree head;
523 register tree prev, next;
525 if (list == 0)
526 return 0;
528 head = prev = copy_node (list);
529 next = TREE_CHAIN (list);
530 while (next)
532 TREE_CHAIN (prev) = copy_node (next);
533 prev = TREE_CHAIN (prev);
534 next = TREE_CHAIN (next);
536 return head;
540 /* Return a newly constructed INTEGER_CST node whose constant value
541 is specified by the two ints LOW and HI.
542 The TREE_TYPE is set to `int'.
544 This function should be used via the `build_int_2' macro. */
546 tree
547 build_int_2_wide (low, hi)
548 unsigned HOST_WIDE_INT low;
549 HOST_WIDE_INT hi;
551 register tree t = make_node (INTEGER_CST);
553 TREE_INT_CST_LOW (t) = low;
554 TREE_INT_CST_HIGH (t) = hi;
555 TREE_TYPE (t) = integer_type_node;
556 return t;
559 /* Return a new REAL_CST node whose type is TYPE and value is D. */
561 tree
562 build_real (type, d)
563 tree type;
564 REAL_VALUE_TYPE d;
566 tree v;
567 int overflow = 0;
569 /* Check for valid float value for this type on this target machine;
570 if not, can print error message and store a valid value in D. */
571 #ifdef CHECK_FLOAT_VALUE
572 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
573 #endif
575 v = make_node (REAL_CST);
576 TREE_TYPE (v) = type;
577 TREE_REAL_CST (v) = d;
578 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
579 return v;
582 /* Return a new REAL_CST node whose type is TYPE
583 and whose value is the integer value of the INTEGER_CST node I. */
585 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
587 REAL_VALUE_TYPE
588 real_value_from_int_cst (type, i)
589 tree type ATTRIBUTE_UNUSED, i;
591 REAL_VALUE_TYPE d;
593 #ifdef REAL_ARITHMETIC
594 /* Clear all bits of the real value type so that we can later do
595 bitwise comparisons to see if two values are the same. */
596 memset ((char *) &d, 0, sizeof d);
598 if (! TREE_UNSIGNED (TREE_TYPE (i)))
599 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
600 TYPE_MODE (type));
601 else
602 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
603 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
604 #else /* not REAL_ARITHMETIC */
605 /* Some 386 compilers mishandle unsigned int to float conversions,
606 so introduce a temporary variable E to avoid those bugs. */
607 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
609 REAL_VALUE_TYPE e;
611 d = (double) (~TREE_INT_CST_HIGH (i));
612 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
613 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
614 d *= e;
615 e = (double) (~TREE_INT_CST_LOW (i));
616 d += e;
617 d = (- d - 1.0);
619 else
621 REAL_VALUE_TYPE e;
623 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
624 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
625 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
626 d *= e;
627 e = (double) TREE_INT_CST_LOW (i);
628 d += e;
630 #endif /* not REAL_ARITHMETIC */
631 return d;
634 /* Args to pass to and from build_real_from_int_cst_1. */
636 struct brfic_args
638 tree type; /* Input: type to conver to. */
639 tree i; /* Input: operand to convert. */
640 REAL_VALUE_TYPE d; /* Output: floating point value. */
643 /* Convert an integer to a floating point value while protected by a floating
644 point exception handler. */
646 static void
647 build_real_from_int_cst_1 (data)
648 PTR data;
650 struct brfic_args *args = (struct brfic_args *) data;
652 #ifdef REAL_ARITHMETIC
653 args->d = real_value_from_int_cst (args->type, args->i);
654 #else
655 args->d
656 = REAL_VALUE_TRUNCATE (TYPE_MODE (args->type),
657 real_value_from_int_cst (args->type, args->i));
658 #endif
661 /* Given a tree representing an integer constant I, return a tree
662 representing the same value as a floating-point constant of type TYPE.
663 We cannot perform this operation if there is no way of doing arithmetic
664 on floating-point values. */
666 tree
667 build_real_from_int_cst (type, i)
668 tree type;
669 tree i;
671 tree v;
672 int overflow = TREE_OVERFLOW (i);
673 REAL_VALUE_TYPE d;
674 struct brfic_args args;
676 v = make_node (REAL_CST);
677 TREE_TYPE (v) = type;
679 /* Setup input for build_real_from_int_cst_1() */
680 args.type = type;
681 args.i = i;
683 if (do_float_handler (build_real_from_int_cst_1, (PTR) &args))
684 /* Receive output from build_real_from_int_cst_1() */
685 d = args.d;
686 else
688 /* We got an exception from build_real_from_int_cst_1() */
689 d = dconst0;
690 overflow = 1;
693 /* Check for valid float value for this type on this target machine. */
695 #ifdef CHECK_FLOAT_VALUE
696 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
697 #endif
699 TREE_REAL_CST (v) = d;
700 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
701 return v;
704 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
706 /* Return a newly constructed STRING_CST node whose value is
707 the LEN characters at STR.
708 The TREE_TYPE is not initialized. */
710 tree
711 build_string (len, str)
712 int len;
713 const char *str;
715 register tree s = make_node (STRING_CST);
717 TREE_STRING_LENGTH (s) = len;
718 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
720 return s;
723 /* Return a newly constructed COMPLEX_CST node whose value is
724 specified by the real and imaginary parts REAL and IMAG.
725 Both REAL and IMAG should be constant nodes. TYPE, if specified,
726 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
728 tree
729 build_complex (type, real, imag)
730 tree type;
731 tree real, imag;
733 register tree t = make_node (COMPLEX_CST);
735 TREE_REALPART (t) = real;
736 TREE_IMAGPART (t) = imag;
737 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
738 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
739 TREE_CONSTANT_OVERFLOW (t)
740 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
741 return t;
744 /* Build a newly constructed TREE_VEC node of length LEN. */
746 tree
747 make_tree_vec (len)
748 int len;
750 register tree t;
751 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
753 #ifdef GATHER_STATISTICS
754 tree_node_counts[(int)vec_kind]++;
755 tree_node_sizes[(int)vec_kind] += length;
756 #endif
758 t = ggc_alloc_tree (length);
760 memset ((PTR) t, 0, length);
761 TREE_SET_CODE (t, TREE_VEC);
762 TREE_VEC_LENGTH (t) = len;
764 return t;
767 /* Return 1 if EXPR is the integer constant zero or a complex constant
768 of zero. */
771 integer_zerop (expr)
772 tree expr;
774 STRIP_NOPS (expr);
776 return ((TREE_CODE (expr) == INTEGER_CST
777 && ! TREE_CONSTANT_OVERFLOW (expr)
778 && TREE_INT_CST_LOW (expr) == 0
779 && TREE_INT_CST_HIGH (expr) == 0)
780 || (TREE_CODE (expr) == COMPLEX_CST
781 && integer_zerop (TREE_REALPART (expr))
782 && integer_zerop (TREE_IMAGPART (expr))));
785 /* Return 1 if EXPR is the integer constant one or the corresponding
786 complex constant. */
789 integer_onep (expr)
790 tree expr;
792 STRIP_NOPS (expr);
794 return ((TREE_CODE (expr) == INTEGER_CST
795 && ! TREE_CONSTANT_OVERFLOW (expr)
796 && TREE_INT_CST_LOW (expr) == 1
797 && TREE_INT_CST_HIGH (expr) == 0)
798 || (TREE_CODE (expr) == COMPLEX_CST
799 && integer_onep (TREE_REALPART (expr))
800 && integer_zerop (TREE_IMAGPART (expr))));
803 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
804 it contains. Likewise for the corresponding complex constant. */
807 integer_all_onesp (expr)
808 tree expr;
810 register int prec;
811 register int uns;
813 STRIP_NOPS (expr);
815 if (TREE_CODE (expr) == COMPLEX_CST
816 && integer_all_onesp (TREE_REALPART (expr))
817 && integer_zerop (TREE_IMAGPART (expr)))
818 return 1;
820 else if (TREE_CODE (expr) != INTEGER_CST
821 || TREE_CONSTANT_OVERFLOW (expr))
822 return 0;
824 uns = TREE_UNSIGNED (TREE_TYPE (expr));
825 if (!uns)
826 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
827 && TREE_INT_CST_HIGH (expr) == -1);
829 /* Note that using TYPE_PRECISION here is wrong. We care about the
830 actual bits, not the (arbitrary) range of the type. */
831 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
832 if (prec >= HOST_BITS_PER_WIDE_INT)
834 HOST_WIDE_INT high_value;
835 int shift_amount;
837 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
839 if (shift_amount > HOST_BITS_PER_WIDE_INT)
840 /* Can not handle precisions greater than twice the host int size. */
841 abort ();
842 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
843 /* Shifting by the host word size is undefined according to the ANSI
844 standard, so we must handle this as a special case. */
845 high_value = -1;
846 else
847 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
849 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
850 && TREE_INT_CST_HIGH (expr) == high_value);
852 else
853 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
856 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
857 one bit on). */
860 integer_pow2p (expr)
861 tree expr;
863 int prec;
864 HOST_WIDE_INT high, low;
866 STRIP_NOPS (expr);
868 if (TREE_CODE (expr) == COMPLEX_CST
869 && integer_pow2p (TREE_REALPART (expr))
870 && integer_zerop (TREE_IMAGPART (expr)))
871 return 1;
873 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
874 return 0;
876 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
877 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
878 high = TREE_INT_CST_HIGH (expr);
879 low = TREE_INT_CST_LOW (expr);
881 /* First clear all bits that are beyond the type's precision in case
882 we've been sign extended. */
884 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
886 else if (prec > HOST_BITS_PER_WIDE_INT)
887 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
888 else
890 high = 0;
891 if (prec < HOST_BITS_PER_WIDE_INT)
892 low &= ~((HOST_WIDE_INT) (-1) << prec);
895 if (high == 0 && low == 0)
896 return 0;
898 return ((high == 0 && (low & (low - 1)) == 0)
899 || (low == 0 && (high & (high - 1)) == 0));
902 /* Return the power of two represented by a tree node known to be a
903 power of two. */
906 tree_log2 (expr)
907 tree expr;
909 int prec;
910 HOST_WIDE_INT high, low;
912 STRIP_NOPS (expr);
914 if (TREE_CODE (expr) == COMPLEX_CST)
915 return tree_log2 (TREE_REALPART (expr));
917 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
918 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
920 high = TREE_INT_CST_HIGH (expr);
921 low = TREE_INT_CST_LOW (expr);
923 /* First clear all bits that are beyond the type's precision in case
924 we've been sign extended. */
926 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
928 else if (prec > HOST_BITS_PER_WIDE_INT)
929 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
930 else
932 high = 0;
933 if (prec < HOST_BITS_PER_WIDE_INT)
934 low &= ~((HOST_WIDE_INT) (-1) << prec);
937 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
938 : exact_log2 (low));
941 /* Similar, but return the largest integer Y such that 2 ** Y is less
942 than or equal to EXPR. */
945 tree_floor_log2 (expr)
946 tree expr;
948 int prec;
949 HOST_WIDE_INT high, low;
951 STRIP_NOPS (expr);
953 if (TREE_CODE (expr) == COMPLEX_CST)
954 return tree_log2 (TREE_REALPART (expr));
956 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
957 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
959 high = TREE_INT_CST_HIGH (expr);
960 low = TREE_INT_CST_LOW (expr);
962 /* First clear all bits that are beyond the type's precision in case
963 we've been sign extended. Ignore if type's precision hasn't been set
964 since what we are doing is setting it. */
966 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
968 else if (prec > HOST_BITS_PER_WIDE_INT)
969 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
970 else
972 high = 0;
973 if (prec < HOST_BITS_PER_WIDE_INT)
974 low &= ~((HOST_WIDE_INT) (-1) << prec);
977 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
978 : floor_log2 (low));
981 /* Return 1 if EXPR is the real constant zero. */
984 real_zerop (expr)
985 tree expr;
987 STRIP_NOPS (expr);
989 return ((TREE_CODE (expr) == REAL_CST
990 && ! TREE_CONSTANT_OVERFLOW (expr)
991 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
992 || (TREE_CODE (expr) == COMPLEX_CST
993 && real_zerop (TREE_REALPART (expr))
994 && real_zerop (TREE_IMAGPART (expr))));
997 /* Return 1 if EXPR is the real constant one in real or complex form. */
1000 real_onep (expr)
1001 tree expr;
1003 STRIP_NOPS (expr);
1005 return ((TREE_CODE (expr) == REAL_CST
1006 && ! TREE_CONSTANT_OVERFLOW (expr)
1007 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1008 || (TREE_CODE (expr) == COMPLEX_CST
1009 && real_onep (TREE_REALPART (expr))
1010 && real_zerop (TREE_IMAGPART (expr))));
1013 /* Return 1 if EXPR is the real constant two. */
1016 real_twop (expr)
1017 tree expr;
1019 STRIP_NOPS (expr);
1021 return ((TREE_CODE (expr) == REAL_CST
1022 && ! TREE_CONSTANT_OVERFLOW (expr)
1023 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1024 || (TREE_CODE (expr) == COMPLEX_CST
1025 && real_twop (TREE_REALPART (expr))
1026 && real_zerop (TREE_IMAGPART (expr))));
1029 /* Nonzero if EXP is a constant or a cast of a constant. */
1032 really_constant_p (exp)
1033 tree exp;
1035 /* This is not quite the same as STRIP_NOPS. It does more. */
1036 while (TREE_CODE (exp) == NOP_EXPR
1037 || TREE_CODE (exp) == CONVERT_EXPR
1038 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1039 exp = TREE_OPERAND (exp, 0);
1040 return TREE_CONSTANT (exp);
1043 /* Return first list element whose TREE_VALUE is ELEM.
1044 Return 0 if ELEM is not in LIST. */
1046 tree
1047 value_member (elem, list)
1048 tree elem, list;
1050 while (list)
1052 if (elem == TREE_VALUE (list))
1053 return list;
1054 list = TREE_CHAIN (list);
1056 return NULL_TREE;
1059 /* Return first list element whose TREE_PURPOSE is ELEM.
1060 Return 0 if ELEM is not in LIST. */
1062 tree
1063 purpose_member (elem, list)
1064 tree elem, list;
1066 while (list)
1068 if (elem == TREE_PURPOSE (list))
1069 return list;
1070 list = TREE_CHAIN (list);
1072 return NULL_TREE;
1075 /* Return first list element whose BINFO_TYPE is ELEM.
1076 Return 0 if ELEM is not in LIST. */
1078 tree
1079 binfo_member (elem, list)
1080 tree elem, list;
1082 while (list)
1084 if (elem == BINFO_TYPE (list))
1085 return list;
1086 list = TREE_CHAIN (list);
1088 return NULL_TREE;
1091 /* Return nonzero if ELEM is part of the chain CHAIN. */
1094 chain_member (elem, chain)
1095 tree elem, chain;
1097 while (chain)
1099 if (elem == chain)
1100 return 1;
1101 chain = TREE_CHAIN (chain);
1104 return 0;
1107 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1108 chain CHAIN. This and the next function are currently unused, but
1109 are retained for completeness. */
1112 chain_member_value (elem, chain)
1113 tree elem, chain;
1115 while (chain)
1117 if (elem == TREE_VALUE (chain))
1118 return 1;
1119 chain = TREE_CHAIN (chain);
1122 return 0;
1125 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1126 for any piece of chain CHAIN. */
1129 chain_member_purpose (elem, chain)
1130 tree elem, chain;
1132 while (chain)
1134 if (elem == TREE_PURPOSE (chain))
1135 return 1;
1136 chain = TREE_CHAIN (chain);
1139 return 0;
1142 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1143 We expect a null pointer to mark the end of the chain.
1144 This is the Lisp primitive `length'. */
1147 list_length (t)
1148 tree t;
1150 register tree tail;
1151 register int len = 0;
1153 for (tail = t; tail; tail = TREE_CHAIN (tail))
1154 len++;
1156 return len;
1159 /* Returns the number of FIELD_DECLs in TYPE. */
1162 fields_length (type)
1163 tree type;
1165 tree t = TYPE_FIELDS (type);
1166 int count = 0;
1168 for (; t; t = TREE_CHAIN (t))
1169 if (TREE_CODE (t) == FIELD_DECL)
1170 ++count;
1172 return count;
1175 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1176 by modifying the last node in chain 1 to point to chain 2.
1177 This is the Lisp primitive `nconc'. */
1179 tree
1180 chainon (op1, op2)
1181 tree op1, op2;
1184 if (op1)
1186 register tree t1;
1187 #ifdef ENABLE_TREE_CHECKING
1188 register tree t2;
1189 #endif
1191 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1193 TREE_CHAIN (t1) = op2;
1194 #ifdef ENABLE_TREE_CHECKING
1195 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1196 if (t2 == t1)
1197 abort (); /* Circularity created. */
1198 #endif
1199 return op1;
1201 else
1202 return op2;
1205 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1207 tree
1208 tree_last (chain)
1209 register tree chain;
1211 register tree next;
1212 if (chain)
1213 while ((next = TREE_CHAIN (chain)))
1214 chain = next;
1215 return chain;
1218 /* Reverse the order of elements in the chain T,
1219 and return the new head of the chain (old last element). */
1221 tree
1222 nreverse (t)
1223 tree t;
1225 register tree prev = 0, decl, next;
1226 for (decl = t; decl; decl = next)
1228 next = TREE_CHAIN (decl);
1229 TREE_CHAIN (decl) = prev;
1230 prev = decl;
1232 return prev;
1235 /* Given a chain CHAIN of tree nodes,
1236 construct and return a list of those nodes. */
1238 tree
1239 listify (chain)
1240 tree chain;
1242 tree result = NULL_TREE;
1243 tree in_tail = chain;
1244 tree out_tail = NULL_TREE;
1246 while (in_tail)
1248 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1249 if (out_tail)
1250 TREE_CHAIN (out_tail) = next;
1251 else
1252 result = next;
1253 out_tail = next;
1254 in_tail = TREE_CHAIN (in_tail);
1257 return result;
1260 /* Return a newly created TREE_LIST node whose
1261 purpose and value fields are PARM and VALUE. */
1263 tree
1264 build_tree_list (parm, value)
1265 tree parm, value;
1267 register tree t = make_node (TREE_LIST);
1268 TREE_PURPOSE (t) = parm;
1269 TREE_VALUE (t) = value;
1270 return t;
1273 /* Return a newly created TREE_LIST node whose
1274 purpose and value fields are PARM and VALUE
1275 and whose TREE_CHAIN is CHAIN. */
1277 tree
1278 tree_cons (purpose, value, chain)
1279 tree purpose, value, chain;
1281 register tree node;
1283 node = ggc_alloc_tree (sizeof (struct tree_list));
1285 memset (node, 0, sizeof (struct tree_common));
1287 #ifdef GATHER_STATISTICS
1288 tree_node_counts[(int) x_kind]++;
1289 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1290 #endif
1292 TREE_SET_CODE (node, TREE_LIST);
1293 TREE_CHAIN (node) = chain;
1294 TREE_PURPOSE (node) = purpose;
1295 TREE_VALUE (node) = value;
1296 return node;
1300 /* Return the size nominally occupied by an object of type TYPE
1301 when it resides in memory. The value is measured in units of bytes,
1302 and its data type is that normally used for type sizes
1303 (which is the first type created by make_signed_type or
1304 make_unsigned_type). */
1306 tree
1307 size_in_bytes (type)
1308 tree type;
1310 tree t;
1312 if (type == error_mark_node)
1313 return integer_zero_node;
1315 type = TYPE_MAIN_VARIANT (type);
1316 t = TYPE_SIZE_UNIT (type);
1318 if (t == 0)
1320 incomplete_type_error (NULL_TREE, type);
1321 return size_zero_node;
1324 if (TREE_CODE (t) == INTEGER_CST)
1325 force_fit_type (t, 0);
1327 return t;
1330 /* Return the size of TYPE (in bytes) as a wide integer
1331 or return -1 if the size can vary or is larger than an integer. */
1333 HOST_WIDE_INT
1334 int_size_in_bytes (type)
1335 tree type;
1337 tree t;
1339 if (type == error_mark_node)
1340 return 0;
1342 type = TYPE_MAIN_VARIANT (type);
1343 t = TYPE_SIZE_UNIT (type);
1344 if (t == 0
1345 || TREE_CODE (t) != INTEGER_CST
1346 || TREE_OVERFLOW (t)
1347 || TREE_INT_CST_HIGH (t) != 0
1348 /* If the result would appear negative, it's too big to represent. */
1349 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1350 return -1;
1352 return TREE_INT_CST_LOW (t);
1355 /* Return the bit position of FIELD, in bits from the start of the record.
1356 This is a tree of type bitsizetype. */
1358 tree
1359 bit_position (field)
1360 tree field;
1363 return bit_from_pos (DECL_FIELD_OFFSET (field),
1364 DECL_FIELD_BIT_OFFSET (field));
1367 /* Likewise, but return as an integer. Abort if it cannot be represented
1368 in that way (since it could be a signed value, we don't have the option
1369 of returning -1 like int_size_in_byte can. */
1371 HOST_WIDE_INT
1372 int_bit_position (field)
1373 tree field;
1375 return tree_low_cst (bit_position (field), 0);
1378 /* Return the byte position of FIELD, in bytes from the start of the record.
1379 This is a tree of type sizetype. */
1381 tree
1382 byte_position (field)
1383 tree field;
1385 return byte_from_pos (DECL_FIELD_OFFSET (field),
1386 DECL_FIELD_BIT_OFFSET (field));
1389 /* Likewise, but return as an integer. Abort if it cannot be represented
1390 in that way (since it could be a signed value, we don't have the option
1391 of returning -1 like int_size_in_byte can. */
1393 HOST_WIDE_INT
1394 int_byte_position (field)
1395 tree field;
1397 return tree_low_cst (byte_position (field), 0);
1400 /* Return the strictest alignment, in bits, that T is known to have. */
1402 unsigned int
1403 expr_align (t)
1404 tree t;
1406 unsigned int align0, align1;
1408 switch (TREE_CODE (t))
1410 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1411 /* If we have conversions, we know that the alignment of the
1412 object must meet each of the alignments of the types. */
1413 align0 = expr_align (TREE_OPERAND (t, 0));
1414 align1 = TYPE_ALIGN (TREE_TYPE (t));
1415 return MAX (align0, align1);
1417 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1418 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1419 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1420 /* These don't change the alignment of an object. */
1421 return expr_align (TREE_OPERAND (t, 0));
1423 case COND_EXPR:
1424 /* The best we can do is say that the alignment is the least aligned
1425 of the two arms. */
1426 align0 = expr_align (TREE_OPERAND (t, 1));
1427 align1 = expr_align (TREE_OPERAND (t, 2));
1428 return MIN (align0, align1);
1430 case LABEL_DECL: case CONST_DECL:
1431 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1432 if (DECL_ALIGN (t) != 0)
1433 return DECL_ALIGN (t);
1434 break;
1436 case FUNCTION_DECL:
1437 return FUNCTION_BOUNDARY;
1439 default:
1440 break;
1443 /* Otherwise take the alignment from that of the type. */
1444 return TYPE_ALIGN (TREE_TYPE (t));
1447 /* Return, as a tree node, the number of elements for TYPE (which is an
1448 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1450 tree
1451 array_type_nelts (type)
1452 tree type;
1454 tree index_type, min, max;
1456 /* If they did it with unspecified bounds, then we should have already
1457 given an error about it before we got here. */
1458 if (! TYPE_DOMAIN (type))
1459 return error_mark_node;
1461 index_type = TYPE_DOMAIN (type);
1462 min = TYPE_MIN_VALUE (index_type);
1463 max = TYPE_MAX_VALUE (index_type);
1465 return (integer_zerop (min)
1466 ? max
1467 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1470 /* Return nonzero if arg is static -- a reference to an object in
1471 static storage. This is not the same as the C meaning of `static'. */
1474 staticp (arg)
1475 tree arg;
1477 switch (TREE_CODE (arg))
1479 case FUNCTION_DECL:
1480 /* Nested functions aren't static, since taking their address
1481 involves a trampoline. */
1482 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1483 && ! DECL_NON_ADDR_CONST_P (arg);
1485 case VAR_DECL:
1486 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1487 && ! DECL_NON_ADDR_CONST_P (arg);
1489 case CONSTRUCTOR:
1490 return TREE_STATIC (arg);
1492 case LABEL_DECL:
1493 case STRING_CST:
1494 return 1;
1496 /* If we are referencing a bitfield, we can't evaluate an
1497 ADDR_EXPR at compile time and so it isn't a constant. */
1498 case COMPONENT_REF:
1499 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1500 && staticp (TREE_OPERAND (arg, 0)));
1502 case BIT_FIELD_REF:
1503 return 0;
1505 #if 0
1506 /* This case is technically correct, but results in setting
1507 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1508 compile time. */
1509 case INDIRECT_REF:
1510 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1511 #endif
1513 case ARRAY_REF:
1514 case ARRAY_RANGE_REF:
1515 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1516 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1517 return staticp (TREE_OPERAND (arg, 0));
1519 default:
1520 return 0;
1524 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1525 Do this to any expression which may be used in more than one place,
1526 but must be evaluated only once.
1528 Normally, expand_expr would reevaluate the expression each time.
1529 Calling save_expr produces something that is evaluated and recorded
1530 the first time expand_expr is called on it. Subsequent calls to
1531 expand_expr just reuse the recorded value.
1533 The call to expand_expr that generates code that actually computes
1534 the value is the first call *at compile time*. Subsequent calls
1535 *at compile time* generate code to use the saved value.
1536 This produces correct result provided that *at run time* control
1537 always flows through the insns made by the first expand_expr
1538 before reaching the other places where the save_expr was evaluated.
1539 You, the caller of save_expr, must make sure this is so.
1541 Constants, and certain read-only nodes, are returned with no
1542 SAVE_EXPR because that is safe. Expressions containing placeholders
1543 are not touched; see tree.def for an explanation of what these
1544 are used for. */
1546 tree
1547 save_expr (expr)
1548 tree expr;
1550 register tree t = fold (expr);
1552 /* We don't care about whether this can be used as an lvalue in this
1553 context. */
1554 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1555 t = TREE_OPERAND (t, 0);
1557 /* If the tree evaluates to a constant, then we don't want to hide that
1558 fact (i.e. this allows further folding, and direct checks for constants).
1559 However, a read-only object that has side effects cannot be bypassed.
1560 Since it is no problem to reevaluate literals, we just return the
1561 literal node. */
1563 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
1564 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
1565 return t;
1567 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1568 it means that the size or offset of some field of an object depends on
1569 the value within another field.
1571 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1572 and some variable since it would then need to be both evaluated once and
1573 evaluated more than once. Front-ends must assure this case cannot
1574 happen by surrounding any such subexpressions in their own SAVE_EXPR
1575 and forcing evaluation at the proper time. */
1576 if (contains_placeholder_p (t))
1577 return t;
1579 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1581 /* This expression might be placed ahead of a jump to ensure that the
1582 value was computed on both sides of the jump. So make sure it isn't
1583 eliminated as dead. */
1584 TREE_SIDE_EFFECTS (t) = 1;
1585 TREE_READONLY (t) = 1;
1586 return t;
1589 /* Arrange for an expression to be expanded multiple independent
1590 times. This is useful for cleanup actions, as the backend can
1591 expand them multiple times in different places. */
1593 tree
1594 unsave_expr (expr)
1595 tree expr;
1597 tree t;
1599 /* If this is already protected, no sense in protecting it again. */
1600 if (TREE_CODE (expr) == UNSAVE_EXPR)
1601 return expr;
1603 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1604 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1605 return t;
1608 /* Returns the index of the first non-tree operand for CODE, or the number
1609 of operands if all are trees. */
1612 first_rtl_op (code)
1613 enum tree_code code;
1615 switch (code)
1617 case SAVE_EXPR:
1618 return 2;
1619 case GOTO_SUBROUTINE_EXPR:
1620 case RTL_EXPR:
1621 return 0;
1622 case WITH_CLEANUP_EXPR:
1623 return 2;
1624 case METHOD_CALL_EXPR:
1625 return 3;
1626 default:
1627 return TREE_CODE_LENGTH (code);
1631 /* Perform any modifications to EXPR required when it is unsaved. Does
1632 not recurse into EXPR's subtrees. */
1634 void
1635 unsave_expr_1 (expr)
1636 tree expr;
1638 switch (TREE_CODE (expr))
1640 case SAVE_EXPR:
1641 if (! SAVE_EXPR_PERSISTENT_P (expr))
1642 SAVE_EXPR_RTL (expr) = 0;
1643 break;
1645 case TARGET_EXPR:
1646 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1647 It's OK for this to happen if it was part of a subtree that
1648 isn't immediately expanded, such as operand 2 of another
1649 TARGET_EXPR. */
1650 if (TREE_OPERAND (expr, 1))
1651 break;
1653 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1654 TREE_OPERAND (expr, 3) = NULL_TREE;
1655 break;
1657 case RTL_EXPR:
1658 /* I don't yet know how to emit a sequence multiple times. */
1659 if (RTL_EXPR_SEQUENCE (expr) != 0)
1660 abort ();
1661 break;
1663 default:
1664 if (lang_unsave_expr_now != 0)
1665 (*lang_unsave_expr_now) (expr);
1666 break;
1670 /* Helper function for unsave_expr_now. */
1672 static void
1673 unsave_expr_now_r (expr)
1674 tree expr;
1676 enum tree_code code;
1678 /* There's nothing to do for NULL_TREE. */
1679 if (expr == 0)
1680 return;
1682 unsave_expr_1 (expr);
1684 code = TREE_CODE (expr);
1685 switch (TREE_CODE_CLASS (code))
1687 case 'c': /* a constant */
1688 case 't': /* a type node */
1689 case 'd': /* A decl node */
1690 case 'b': /* A block node */
1691 break;
1693 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1694 if (code == TREE_LIST)
1696 unsave_expr_now_r (TREE_VALUE (expr));
1697 unsave_expr_now_r (TREE_CHAIN (expr));
1699 break;
1701 case 'e': /* an expression */
1702 case 'r': /* a reference */
1703 case 's': /* an expression with side effects */
1704 case '<': /* a comparison expression */
1705 case '2': /* a binary arithmetic expression */
1706 case '1': /* a unary arithmetic expression */
1708 int i;
1710 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1711 unsave_expr_now_r (TREE_OPERAND (expr, i));
1713 break;
1715 default:
1716 abort ();
1720 /* Modify a tree in place so that all the evaluate only once things
1721 are cleared out. Return the EXPR given. */
1723 tree
1724 unsave_expr_now (expr)
1725 tree expr;
1727 if (lang_unsave!= 0)
1728 (*lang_unsave) (&expr);
1729 else
1730 unsave_expr_now_r (expr);
1732 return expr;
1735 /* Return 0 if it is safe to evaluate EXPR multiple times,
1736 return 1 if it is safe if EXPR is unsaved afterward, or
1737 return 2 if it is completely unsafe.
1739 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1740 an expression tree, so that it safe to unsave them and the surrounding
1741 context will be correct.
1743 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1744 occasionally across the whole of a function. It is therefore only
1745 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1746 below the UNSAVE_EXPR.
1748 RTL_EXPRs consume their rtl during evaluation. It is therefore
1749 never possible to unsave them. */
1752 unsafe_for_reeval (expr)
1753 tree expr;
1755 int unsafeness = 0;
1756 enum tree_code code;
1757 int i, tmp;
1758 tree exp;
1759 int first_rtl;
1761 if (expr == NULL_TREE)
1762 return 1;
1764 code = TREE_CODE (expr);
1765 first_rtl = first_rtl_op (code);
1767 switch (code)
1769 case SAVE_EXPR:
1770 case RTL_EXPR:
1771 return 2;
1773 case TREE_LIST:
1774 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1776 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1777 unsafeness = MAX (tmp, unsafeness);
1780 return unsafeness;
1782 case CALL_EXPR:
1783 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1784 return MAX (tmp, 1);
1786 case TARGET_EXPR:
1787 unsafeness = 1;
1788 break;
1790 default:
1791 if (lang_unsafe_for_reeval != 0)
1793 tmp = (*lang_unsafe_for_reeval) (expr);
1794 if (tmp >= 0)
1795 return tmp;
1797 break;
1800 switch (TREE_CODE_CLASS (code))
1802 case 'c': /* a constant */
1803 case 't': /* a type node */
1804 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1805 case 'd': /* A decl node */
1806 case 'b': /* A block node */
1807 return 0;
1809 case 'e': /* an expression */
1810 case 'r': /* a reference */
1811 case 's': /* an expression with side effects */
1812 case '<': /* a comparison expression */
1813 case '2': /* a binary arithmetic expression */
1814 case '1': /* a unary arithmetic expression */
1815 for (i = first_rtl - 1; i >= 0; i--)
1817 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1818 unsafeness = MAX (tmp, unsafeness);
1821 return unsafeness;
1823 default:
1824 return 2;
1828 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1829 or offset that depends on a field within a record. */
1832 contains_placeholder_p (exp)
1833 tree exp;
1835 register enum tree_code code;
1836 int result;
1838 if (!exp)
1839 return 0;
1841 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1842 in it since it is supplying a value for it. */
1843 code = TREE_CODE (exp);
1844 if (code == WITH_RECORD_EXPR)
1845 return 0;
1846 else if (code == PLACEHOLDER_EXPR)
1847 return 1;
1849 switch (TREE_CODE_CLASS (code))
1851 case 'r':
1852 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1853 position computations since they will be converted into a
1854 WITH_RECORD_EXPR involving the reference, which will assume
1855 here will be valid. */
1856 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1858 case 'x':
1859 if (code == TREE_LIST)
1860 return (contains_placeholder_p (TREE_VALUE (exp))
1861 || (TREE_CHAIN (exp) != 0
1862 && contains_placeholder_p (TREE_CHAIN (exp))));
1863 break;
1865 case '1':
1866 case '2': case '<':
1867 case 'e':
1868 switch (code)
1870 case COMPOUND_EXPR:
1871 /* Ignoring the first operand isn't quite right, but works best. */
1872 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1874 case RTL_EXPR:
1875 case CONSTRUCTOR:
1876 return 0;
1878 case COND_EXPR:
1879 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1880 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1881 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1883 case SAVE_EXPR:
1884 /* If we already know this doesn't have a placeholder, don't
1885 check again. */
1886 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1887 return 0;
1889 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1890 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1891 if (result)
1892 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1894 return result;
1896 case CALL_EXPR:
1897 return (TREE_OPERAND (exp, 1) != 0
1898 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1900 default:
1901 break;
1904 switch (TREE_CODE_LENGTH (code))
1906 case 1:
1907 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1908 case 2:
1909 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1910 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1911 default:
1912 return 0;
1915 default:
1916 return 0;
1918 return 0;
1921 /* Return 1 if EXP contains any expressions that produce cleanups for an
1922 outer scope to deal with. Used by fold. */
1925 has_cleanups (exp)
1926 tree exp;
1928 int i, nops, cmp;
1930 if (! TREE_SIDE_EFFECTS (exp))
1931 return 0;
1933 switch (TREE_CODE (exp))
1935 case TARGET_EXPR:
1936 case GOTO_SUBROUTINE_EXPR:
1937 case WITH_CLEANUP_EXPR:
1938 return 1;
1940 case CLEANUP_POINT_EXPR:
1941 return 0;
1943 case CALL_EXPR:
1944 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1946 cmp = has_cleanups (TREE_VALUE (exp));
1947 if (cmp)
1948 return cmp;
1950 return 0;
1952 default:
1953 break;
1956 /* This general rule works for most tree codes. All exceptions should be
1957 handled above. If this is a language-specific tree code, we can't
1958 trust what might be in the operand, so say we don't know
1959 the situation. */
1960 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1961 return -1;
1963 nops = first_rtl_op (TREE_CODE (exp));
1964 for (i = 0; i < nops; i++)
1965 if (TREE_OPERAND (exp, i) != 0)
1967 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1968 if (type == 'e' || type == '<' || type == '1' || type == '2'
1969 || type == 'r' || type == 's')
1971 cmp = has_cleanups (TREE_OPERAND (exp, i));
1972 if (cmp)
1973 return cmp;
1977 return 0;
1980 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1981 return a tree with all occurrences of references to F in a
1982 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1983 contains only arithmetic expressions or a CALL_EXPR with a
1984 PLACEHOLDER_EXPR occurring only in its arglist. */
1986 tree
1987 substitute_in_expr (exp, f, r)
1988 tree exp;
1989 tree f;
1990 tree r;
1992 enum tree_code code = TREE_CODE (exp);
1993 tree op0, op1, op2;
1994 tree new;
1995 tree inner;
1997 switch (TREE_CODE_CLASS (code))
1999 case 'c':
2000 case 'd':
2001 return exp;
2003 case 'x':
2004 if (code == PLACEHOLDER_EXPR)
2005 return exp;
2006 else if (code == TREE_LIST)
2008 op0 = (TREE_CHAIN (exp) == 0
2009 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2010 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2011 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2012 return exp;
2014 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2017 abort ();
2019 case '1':
2020 case '2':
2021 case '<':
2022 case 'e':
2023 switch (TREE_CODE_LENGTH (code))
2025 case 1:
2026 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2027 if (op0 == TREE_OPERAND (exp, 0))
2028 return exp;
2030 if (code == NON_LVALUE_EXPR)
2031 return op0;
2033 new = fold (build1 (code, TREE_TYPE (exp), op0));
2034 break;
2036 case 2:
2037 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2038 could, but we don't support it. */
2039 if (code == RTL_EXPR)
2040 return exp;
2041 else if (code == CONSTRUCTOR)
2042 abort ();
2044 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2045 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2046 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2047 return exp;
2049 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2050 break;
2052 case 3:
2053 /* It cannot be that anything inside a SAVE_EXPR contains a
2054 PLACEHOLDER_EXPR. */
2055 if (code == SAVE_EXPR)
2056 return exp;
2058 else if (code == CALL_EXPR)
2060 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2061 if (op1 == TREE_OPERAND (exp, 1))
2062 return exp;
2064 return build (code, TREE_TYPE (exp),
2065 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2068 else if (code != COND_EXPR)
2069 abort ();
2071 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2072 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2073 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2074 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2075 && op2 == TREE_OPERAND (exp, 2))
2076 return exp;
2078 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2079 break;
2081 default:
2082 abort ();
2085 break;
2087 case 'r':
2088 switch (code)
2090 case COMPONENT_REF:
2091 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2092 and it is the right field, replace it with R. */
2093 for (inner = TREE_OPERAND (exp, 0);
2094 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2095 inner = TREE_OPERAND (inner, 0))
2097 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2098 && TREE_OPERAND (exp, 1) == f)
2099 return r;
2101 /* If this expression hasn't been completed let, leave it
2102 alone. */
2103 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2104 && TREE_TYPE (inner) == 0)
2105 return exp;
2107 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2108 if (op0 == TREE_OPERAND (exp, 0))
2109 return exp;
2111 new = fold (build (code, TREE_TYPE (exp), op0,
2112 TREE_OPERAND (exp, 1)));
2113 break;
2115 case BIT_FIELD_REF:
2116 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2117 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2118 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2119 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2120 && op2 == TREE_OPERAND (exp, 2))
2121 return exp;
2123 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2124 break;
2126 case INDIRECT_REF:
2127 case BUFFER_REF:
2128 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2129 if (op0 == TREE_OPERAND (exp, 0))
2130 return exp;
2132 new = fold (build1 (code, TREE_TYPE (exp), op0));
2133 break;
2135 default:
2136 abort ();
2138 break;
2140 default:
2141 abort ();
2144 TREE_READONLY (new) = TREE_READONLY (exp);
2145 return new;
2148 /* Stabilize a reference so that we can use it any number of times
2149 without causing its operands to be evaluated more than once.
2150 Returns the stabilized reference. This works by means of save_expr,
2151 so see the caveats in the comments about save_expr.
2153 Also allows conversion expressions whose operands are references.
2154 Any other kind of expression is returned unchanged. */
2156 tree
2157 stabilize_reference (ref)
2158 tree ref;
2160 register tree result;
2161 register enum tree_code code = TREE_CODE (ref);
2163 switch (code)
2165 case VAR_DECL:
2166 case PARM_DECL:
2167 case RESULT_DECL:
2168 /* No action is needed in this case. */
2169 return ref;
2171 case NOP_EXPR:
2172 case CONVERT_EXPR:
2173 case FLOAT_EXPR:
2174 case FIX_TRUNC_EXPR:
2175 case FIX_FLOOR_EXPR:
2176 case FIX_ROUND_EXPR:
2177 case FIX_CEIL_EXPR:
2178 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2179 break;
2181 case INDIRECT_REF:
2182 result = build_nt (INDIRECT_REF,
2183 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2184 break;
2186 case COMPONENT_REF:
2187 result = build_nt (COMPONENT_REF,
2188 stabilize_reference (TREE_OPERAND (ref, 0)),
2189 TREE_OPERAND (ref, 1));
2190 break;
2192 case BIT_FIELD_REF:
2193 result = build_nt (BIT_FIELD_REF,
2194 stabilize_reference (TREE_OPERAND (ref, 0)),
2195 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2196 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2197 break;
2199 case ARRAY_REF:
2200 result = build_nt (ARRAY_REF,
2201 stabilize_reference (TREE_OPERAND (ref, 0)),
2202 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2203 break;
2205 case ARRAY_RANGE_REF:
2206 result = build_nt (ARRAY_RANGE_REF,
2207 stabilize_reference (TREE_OPERAND (ref, 0)),
2208 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2209 break;
2211 case COMPOUND_EXPR:
2212 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2213 it wouldn't be ignored. This matters when dealing with
2214 volatiles. */
2215 return stabilize_reference_1 (ref);
2217 case RTL_EXPR:
2218 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2219 save_expr (build1 (ADDR_EXPR,
2220 build_pointer_type (TREE_TYPE (ref)),
2221 ref)));
2222 break;
2224 /* If arg isn't a kind of lvalue we recognize, make no change.
2225 Caller should recognize the error for an invalid lvalue. */
2226 default:
2227 return ref;
2229 case ERROR_MARK:
2230 return error_mark_node;
2233 TREE_TYPE (result) = TREE_TYPE (ref);
2234 TREE_READONLY (result) = TREE_READONLY (ref);
2235 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2236 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2238 return result;
2241 /* Subroutine of stabilize_reference; this is called for subtrees of
2242 references. Any expression with side-effects must be put in a SAVE_EXPR
2243 to ensure that it is only evaluated once.
2245 We don't put SAVE_EXPR nodes around everything, because assigning very
2246 simple expressions to temporaries causes us to miss good opportunities
2247 for optimizations. Among other things, the opportunity to fold in the
2248 addition of a constant into an addressing mode often gets lost, e.g.
2249 "y[i+1] += x;". In general, we take the approach that we should not make
2250 an assignment unless we are forced into it - i.e., that any non-side effect
2251 operator should be allowed, and that cse should take care of coalescing
2252 multiple utterances of the same expression should that prove fruitful. */
2254 tree
2255 stabilize_reference_1 (e)
2256 tree e;
2258 register tree result;
2259 register enum tree_code code = TREE_CODE (e);
2261 /* We cannot ignore const expressions because it might be a reference
2262 to a const array but whose index contains side-effects. But we can
2263 ignore things that are actual constant or that already have been
2264 handled by this function. */
2266 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2267 return e;
2269 switch (TREE_CODE_CLASS (code))
2271 case 'x':
2272 case 't':
2273 case 'd':
2274 case 'b':
2275 case '<':
2276 case 's':
2277 case 'e':
2278 case 'r':
2279 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2280 so that it will only be evaluated once. */
2281 /* The reference (r) and comparison (<) classes could be handled as
2282 below, but it is generally faster to only evaluate them once. */
2283 if (TREE_SIDE_EFFECTS (e))
2284 return save_expr (e);
2285 return e;
2287 case 'c':
2288 /* Constants need no processing. In fact, we should never reach
2289 here. */
2290 return e;
2292 case '2':
2293 /* Division is slow and tends to be compiled with jumps,
2294 especially the division by powers of 2 that is often
2295 found inside of an array reference. So do it just once. */
2296 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2297 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2298 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2299 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2300 return save_expr (e);
2301 /* Recursively stabilize each operand. */
2302 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2303 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2304 break;
2306 case '1':
2307 /* Recursively stabilize each operand. */
2308 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2309 break;
2311 default:
2312 abort ();
2315 TREE_TYPE (result) = TREE_TYPE (e);
2316 TREE_READONLY (result) = TREE_READONLY (e);
2317 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2318 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2320 return result;
2323 /* Low-level constructors for expressions. */
2325 /* Build an expression of code CODE, data type TYPE,
2326 and operands as specified by the arguments ARG1 and following arguments.
2327 Expressions and reference nodes can be created this way.
2328 Constants, decls, types and misc nodes cannot be. */
2330 tree
2331 build VPARAMS ((enum tree_code code, tree tt, ...))
2333 register tree t;
2334 register int length;
2335 register int i;
2336 int fro;
2337 int constant;
2339 VA_OPEN (p, tt);
2340 VA_FIXEDARG (p, enum tree_code, code);
2341 VA_FIXEDARG (p, tree, tt);
2343 t = make_node (code);
2344 length = TREE_CODE_LENGTH (code);
2345 TREE_TYPE (t) = tt;
2347 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2348 result based on those same flags for the arguments. But if the
2349 arguments aren't really even `tree' expressions, we shouldn't be trying
2350 to do this. */
2351 fro = first_rtl_op (code);
2353 /* Expressions without side effects may be constant if their
2354 arguments are as well. */
2355 constant = (TREE_CODE_CLASS (code) == '<'
2356 || TREE_CODE_CLASS (code) == '1'
2357 || TREE_CODE_CLASS (code) == '2'
2358 || TREE_CODE_CLASS (code) == 'c');
2360 if (length == 2)
2362 /* This is equivalent to the loop below, but faster. */
2363 register tree arg0 = va_arg (p, tree);
2364 register tree arg1 = va_arg (p, tree);
2366 TREE_OPERAND (t, 0) = arg0;
2367 TREE_OPERAND (t, 1) = arg1;
2368 TREE_READONLY (t) = 1;
2369 if (arg0 && fro > 0)
2371 if (TREE_SIDE_EFFECTS (arg0))
2372 TREE_SIDE_EFFECTS (t) = 1;
2373 if (!TREE_READONLY (arg0))
2374 TREE_READONLY (t) = 0;
2375 if (!TREE_CONSTANT (arg0))
2376 constant = 0;
2379 if (arg1 && fro > 1)
2381 if (TREE_SIDE_EFFECTS (arg1))
2382 TREE_SIDE_EFFECTS (t) = 1;
2383 if (!TREE_READONLY (arg1))
2384 TREE_READONLY (t) = 0;
2385 if (!TREE_CONSTANT (arg1))
2386 constant = 0;
2389 else if (length == 1)
2391 register tree arg0 = va_arg (p, tree);
2393 /* The only one-operand cases we handle here are those with side-effects.
2394 Others are handled with build1. So don't bother checked if the
2395 arg has side-effects since we'll already have set it.
2397 ??? This really should use build1 too. */
2398 if (TREE_CODE_CLASS (code) != 's')
2399 abort ();
2400 TREE_OPERAND (t, 0) = arg0;
2402 else
2404 for (i = 0; i < length; i++)
2406 register tree operand = va_arg (p, tree);
2408 TREE_OPERAND (t, i) = operand;
2409 if (operand && fro > i)
2411 if (TREE_SIDE_EFFECTS (operand))
2412 TREE_SIDE_EFFECTS (t) = 1;
2413 if (!TREE_CONSTANT (operand))
2414 constant = 0;
2418 VA_CLOSE (p);
2420 TREE_CONSTANT (t) = constant;
2421 return t;
2424 /* Same as above, but only builds for unary operators.
2425 Saves lions share of calls to `build'; cuts down use
2426 of varargs, which is expensive for RISC machines. */
2428 tree
2429 build1 (code, type, node)
2430 enum tree_code code;
2431 tree type;
2432 tree node;
2434 register int length;
2435 #ifdef GATHER_STATISTICS
2436 register tree_node_kind kind;
2437 #endif
2438 register tree t;
2440 #ifdef GATHER_STATISTICS
2441 if (TREE_CODE_CLASS (code) == 'r')
2442 kind = r_kind;
2443 else
2444 kind = e_kind;
2445 #endif
2447 #ifdef ENABLE_CHECKING
2448 if (TREE_CODE_CLASS (code) == '2'
2449 || TREE_CODE_CLASS (code) == '<'
2450 || TREE_CODE_LENGTH (code) != 1)
2451 abort ();
2452 #endif /* ENABLE_CHECKING */
2454 length = sizeof (struct tree_exp);
2456 t = ggc_alloc_tree (length);
2458 memset ((PTR) t, 0, sizeof (struct tree_common));
2460 #ifdef GATHER_STATISTICS
2461 tree_node_counts[(int) kind]++;
2462 tree_node_sizes[(int) kind] += length;
2463 #endif
2465 TREE_SET_CODE (t, code);
2467 TREE_TYPE (t) = type;
2468 TREE_COMPLEXITY (t) = 0;
2469 TREE_OPERAND (t, 0) = node;
2470 if (node && first_rtl_op (code) != 0)
2472 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2473 TREE_READONLY (t) = TREE_READONLY (node);
2476 switch (code)
2478 case INIT_EXPR:
2479 case MODIFY_EXPR:
2480 case VA_ARG_EXPR:
2481 case RTL_EXPR:
2482 case PREDECREMENT_EXPR:
2483 case PREINCREMENT_EXPR:
2484 case POSTDECREMENT_EXPR:
2485 case POSTINCREMENT_EXPR:
2486 /* All of these have side-effects, no matter what their
2487 operands are. */
2488 TREE_SIDE_EFFECTS (t) = 1;
2489 TREE_READONLY (t) = 0;
2490 break;
2492 default:
2493 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2494 TREE_CONSTANT (t) = 1;
2495 break;
2498 return t;
2501 /* Similar except don't specify the TREE_TYPE
2502 and leave the TREE_SIDE_EFFECTS as 0.
2503 It is permissible for arguments to be null,
2504 or even garbage if their values do not matter. */
2506 tree
2507 build_nt VPARAMS ((enum tree_code code, ...))
2509 register tree t;
2510 register int length;
2511 register int i;
2513 VA_OPEN (p, code);
2514 VA_FIXEDARG (p, enum tree_code, code);
2516 t = make_node (code);
2517 length = TREE_CODE_LENGTH (code);
2519 for (i = 0; i < length; i++)
2520 TREE_OPERAND (t, i) = va_arg (p, tree);
2522 VA_CLOSE (p);
2523 return t;
2526 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2527 We do NOT enter this node in any sort of symbol table.
2529 layout_decl is used to set up the decl's storage layout.
2530 Other slots are initialized to 0 or null pointers. */
2532 tree
2533 build_decl (code, name, type)
2534 enum tree_code code;
2535 tree name, type;
2537 register tree t;
2539 t = make_node (code);
2541 /* if (type == error_mark_node)
2542 type = integer_type_node; */
2543 /* That is not done, deliberately, so that having error_mark_node
2544 as the type can suppress useless errors in the use of this variable. */
2546 DECL_NAME (t) = name;
2547 TREE_TYPE (t) = type;
2549 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2550 layout_decl (t, 0);
2551 else if (code == FUNCTION_DECL)
2552 DECL_MODE (t) = FUNCTION_MODE;
2554 return t;
2557 /* BLOCK nodes are used to represent the structure of binding contours
2558 and declarations, once those contours have been exited and their contents
2559 compiled. This information is used for outputting debugging info. */
2561 tree
2562 build_block (vars, tags, subblocks, supercontext, chain)
2563 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2565 register tree block = make_node (BLOCK);
2567 BLOCK_VARS (block) = vars;
2568 BLOCK_SUBBLOCKS (block) = subblocks;
2569 BLOCK_SUPERCONTEXT (block) = supercontext;
2570 BLOCK_CHAIN (block) = chain;
2571 return block;
2574 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2575 location where an expression or an identifier were encountered. It
2576 is necessary for languages where the frontend parser will handle
2577 recursively more than one file (Java is one of them). */
2579 tree
2580 build_expr_wfl (node, file, line, col)
2581 tree node;
2582 const char *file;
2583 int line, col;
2585 static const char *last_file = 0;
2586 static tree last_filenode = NULL_TREE;
2587 register tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2589 EXPR_WFL_NODE (wfl) = node;
2590 EXPR_WFL_SET_LINECOL (wfl, line, col);
2591 if (file != last_file)
2593 last_file = file;
2594 last_filenode = file ? get_identifier (file) : NULL_TREE;
2597 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2598 if (node)
2600 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2601 TREE_TYPE (wfl) = TREE_TYPE (node);
2604 return wfl;
2607 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
2608 is ATTRIBUTE. */
2610 tree
2611 build_decl_attribute_variant (ddecl, attribute)
2612 tree ddecl, attribute;
2614 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
2615 return ddecl;
2618 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2619 is ATTRIBUTE.
2621 Record such modified types already made so we don't make duplicates. */
2623 tree
2624 build_type_attribute_variant (ttype, attribute)
2625 tree ttype, attribute;
2627 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2629 unsigned int hashcode;
2630 tree ntype;
2632 ntype = copy_node (ttype);
2634 TYPE_POINTER_TO (ntype) = 0;
2635 TYPE_REFERENCE_TO (ntype) = 0;
2636 TYPE_ATTRIBUTES (ntype) = attribute;
2638 /* Create a new main variant of TYPE. */
2639 TYPE_MAIN_VARIANT (ntype) = ntype;
2640 TYPE_NEXT_VARIANT (ntype) = 0;
2641 set_type_quals (ntype, TYPE_UNQUALIFIED);
2643 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2644 + TYPE_HASH (TREE_TYPE (ntype))
2645 + attribute_hash_list (attribute));
2647 switch (TREE_CODE (ntype))
2649 case FUNCTION_TYPE:
2650 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2651 break;
2652 case ARRAY_TYPE:
2653 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2654 break;
2655 case INTEGER_TYPE:
2656 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2657 break;
2658 case REAL_TYPE:
2659 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2660 break;
2661 default:
2662 break;
2665 ntype = type_hash_canon (hashcode, ntype);
2666 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2669 return ttype;
2672 /* Default value of targetm.valid_decl_attribute_p and
2673 targetm.valid_type_attribute_p that always returns false. */
2676 default_valid_attribute_p (attr_name, attr_args, decl, type)
2677 tree attr_name ATTRIBUTE_UNUSED;
2678 tree attr_args ATTRIBUTE_UNUSED;
2679 tree decl ATTRIBUTE_UNUSED;
2680 tree type ATTRIBUTE_UNUSED;
2682 return 0;
2685 /* Default value of targetm.comp_type_attributes that always returns 1. */
2688 default_comp_type_attributes (type1, type2)
2689 tree type1 ATTRIBUTE_UNUSED;
2690 tree type2 ATTRIBUTE_UNUSED;
2692 return 1;
2695 /* Default version of targetm.set_default_type_attributes that always does
2696 nothing. */
2698 void
2699 default_set_default_type_attributes (type)
2700 tree type ATTRIBUTE_UNUSED;
2704 /* Default version of targetm.insert_attributes that always does nothing. */
2705 void
2706 default_insert_attributes (decl, attr_ptr)
2707 tree decl ATTRIBUTE_UNUSED;
2708 tree *attr_ptr ATTRIBUTE_UNUSED;
2712 /* Return 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration
2713 DECL or type TYPE and 0 otherwise. Validity is determined the
2714 target functions valid_decl_attribute and valid_machine_attribute. */
2717 valid_machine_attribute (attr_name, attr_args, decl, type)
2718 tree attr_name;
2719 tree attr_args;
2720 tree decl;
2721 tree type;
2723 tree type_attrs;
2725 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
2726 abort ();
2728 if (decl)
2730 tree decl_attrs = DECL_MACHINE_ATTRIBUTES (decl);
2732 if ((*targetm.valid_decl_attribute) (decl, decl_attrs, attr_name,
2733 attr_args))
2735 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2736 decl_attrs);
2738 if (attr != NULL_TREE)
2740 /* Override existing arguments. Declarations are unique
2741 so we can modify this in place. */
2742 TREE_VALUE (attr) = attr_args;
2744 else
2746 decl_attrs = tree_cons (attr_name, attr_args, decl_attrs);
2747 decl = build_decl_attribute_variant (decl, decl_attrs);
2750 /* Don't apply the attribute to both the decl and the type. */
2751 return 1;
2755 type_attrs = TYPE_ATTRIBUTES (type);
2756 if ((*targetm.valid_type_attribute) (type, type_attrs, attr_name,
2757 attr_args))
2759 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2760 type_attrs);
2762 if (attr != NULL_TREE)
2764 /* Override existing arguments. ??? This currently
2765 works since attribute arguments are not included in
2766 `attribute_hash_list'. Something more complicated
2767 may be needed in the future. */
2768 TREE_VALUE (attr) = attr_args;
2770 else
2772 /* If this is part of a declaration, create a type variant,
2773 otherwise, this is part of a type definition, so add it
2774 to the base type. */
2775 type_attrs = tree_cons (attr_name, attr_args, type_attrs);
2776 if (decl != 0)
2777 type = build_type_attribute_variant (type, type_attrs);
2778 else
2779 TYPE_ATTRIBUTES (type) = type_attrs;
2782 if (decl)
2783 TREE_TYPE (decl) = type;
2785 return 1;
2787 /* Handle putting a type attribute on pointer-to-function-type
2788 by putting the attribute on the function type. */
2789 else if (POINTER_TYPE_P (type)
2790 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
2791 && (*targetm.valid_type_attribute) (TREE_TYPE (type), type_attrs,
2792 attr_name, attr_args))
2794 tree inner_type = TREE_TYPE (type);
2795 tree inner_attrs = TYPE_ATTRIBUTES (inner_type);
2796 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2797 type_attrs);
2799 if (attr != NULL_TREE)
2800 TREE_VALUE (attr) = attr_args;
2801 else
2803 inner_attrs = tree_cons (attr_name, attr_args, inner_attrs);
2804 inner_type = build_type_attribute_variant (inner_type,
2805 inner_attrs);
2808 if (decl)
2809 TREE_TYPE (decl) = build_pointer_type (inner_type);
2810 else
2812 /* Clear TYPE_POINTER_TO for the old inner type, since
2813 `type' won't be pointing to it anymore. */
2814 TYPE_POINTER_TO (TREE_TYPE (type)) = NULL_TREE;
2815 TREE_TYPE (type) = inner_type;
2818 return 1;
2821 return 0;
2824 /* Return non-zero if IDENT is a valid name for attribute ATTR,
2825 or zero if not.
2827 We try both `text' and `__text__', ATTR may be either one. */
2828 /* ??? It might be a reasonable simplification to require ATTR to be only
2829 `text'. One might then also require attribute lists to be stored in
2830 their canonicalized form. */
2833 is_attribute_p (attr, ident)
2834 const char *attr;
2835 tree ident;
2837 int ident_len, attr_len;
2838 const char *p;
2840 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2841 return 0;
2843 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2844 return 1;
2846 p = IDENTIFIER_POINTER (ident);
2847 ident_len = strlen (p);
2848 attr_len = strlen (attr);
2850 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2851 if (attr[0] == '_')
2853 if (attr[1] != '_'
2854 || attr[attr_len - 2] != '_'
2855 || attr[attr_len - 1] != '_')
2856 abort ();
2857 if (ident_len == attr_len - 4
2858 && strncmp (attr + 2, p, attr_len - 4) == 0)
2859 return 1;
2861 else
2863 if (ident_len == attr_len + 4
2864 && p[0] == '_' && p[1] == '_'
2865 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2866 && strncmp (attr, p + 2, attr_len) == 0)
2867 return 1;
2870 return 0;
2873 /* Given an attribute name and a list of attributes, return a pointer to the
2874 attribute's list element if the attribute is part of the list, or NULL_TREE
2875 if not found. */
2877 tree
2878 lookup_attribute (attr_name, list)
2879 const char *attr_name;
2880 tree list;
2882 tree l;
2884 for (l = list; l; l = TREE_CHAIN (l))
2886 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2887 abort ();
2888 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2889 return l;
2892 return NULL_TREE;
2895 /* Return an attribute list that is the union of a1 and a2. */
2897 tree
2898 merge_attributes (a1, a2)
2899 register tree a1, a2;
2901 tree attributes;
2903 /* Either one unset? Take the set one. */
2905 if ((attributes = a1) == 0)
2906 attributes = a2;
2908 /* One that completely contains the other? Take it. */
2910 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2912 if (attribute_list_contained (a2, a1))
2913 attributes = a2;
2914 else
2916 /* Pick the longest list, and hang on the other list. */
2917 /* ??? For the moment we punt on the issue of attrs with args. */
2919 if (list_length (a1) < list_length (a2))
2920 attributes = a2, a2 = a1;
2922 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2923 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2924 attributes) == NULL_TREE)
2926 a1 = copy_node (a2);
2927 TREE_CHAIN (a1) = attributes;
2928 attributes = a1;
2932 return attributes;
2935 /* Given types T1 and T2, merge their attributes and return
2936 the result. */
2938 tree
2939 merge_type_attributes (t1, t2)
2940 tree t1, t2;
2942 return merge_attributes (TYPE_ATTRIBUTES (t1),
2943 TYPE_ATTRIBUTES (t2));
2946 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2947 the result. */
2949 tree
2950 merge_decl_attributes (olddecl, newdecl)
2951 tree olddecl, newdecl;
2953 return merge_attributes (DECL_MACHINE_ATTRIBUTES (olddecl),
2954 DECL_MACHINE_ATTRIBUTES (newdecl));
2957 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2959 /* Specialization of merge_decl_attributes for various Windows targets.
2961 This handles the following situation:
2963 __declspec (dllimport) int foo;
2964 int foo;
2966 The second instance of `foo' nullifies the dllimport. */
2968 tree
2969 merge_dllimport_decl_attributes (old, new)
2970 tree old;
2971 tree new;
2973 tree a;
2974 int delete_dllimport_p;
2976 old = DECL_MACHINE_ATTRIBUTES (old);
2977 new = DECL_MACHINE_ATTRIBUTES (new);
2979 /* What we need to do here is remove from `old' dllimport if it doesn't
2980 appear in `new'. dllimport behaves like extern: if a declaration is
2981 marked dllimport and a definition appears later, then the object
2982 is not dllimport'd. */
2983 if (lookup_attribute ("dllimport", old) != NULL_TREE
2984 && lookup_attribute ("dllimport", new) == NULL_TREE)
2985 delete_dllimport_p = 1;
2986 else
2987 delete_dllimport_p = 0;
2989 a = merge_attributes (old, new);
2991 if (delete_dllimport_p)
2993 tree prev,t;
2995 /* Scan the list for dllimport and delete it. */
2996 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2998 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
3000 if (prev == NULL_TREE)
3001 a = TREE_CHAIN (a);
3002 else
3003 TREE_CHAIN (prev) = TREE_CHAIN (t);
3004 break;
3009 return a;
3012 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3014 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3015 of the various TYPE_QUAL values. */
3017 static void
3018 set_type_quals (type, type_quals)
3019 tree type;
3020 int type_quals;
3022 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3023 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3024 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3027 /* Return a version of the TYPE, qualified as indicated by the
3028 TYPE_QUALS, if one exists. If no qualified version exists yet,
3029 return NULL_TREE. */
3031 tree
3032 get_qualified_type (type, type_quals)
3033 tree type;
3034 int type_quals;
3036 tree t;
3038 /* Search the chain of variants to see if there is already one there just
3039 like the one we need to have. If so, use that existing one. We must
3040 preserve the TYPE_NAME, since there is code that depends on this. */
3041 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3042 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
3043 return t;
3045 return NULL_TREE;
3048 /* Like get_qualified_type, but creates the type if it does not
3049 exist. This function never returns NULL_TREE. */
3051 tree
3052 build_qualified_type (type, type_quals)
3053 tree type;
3054 int type_quals;
3056 tree t;
3058 /* See if we already have the appropriate qualified variant. */
3059 t = get_qualified_type (type, type_quals);
3061 /* If not, build it. */
3062 if (!t)
3064 t = build_type_copy (type);
3065 set_type_quals (t, type_quals);
3068 return t;
3071 /* Create a new variant of TYPE, equivalent but distinct.
3072 This is so the caller can modify it. */
3074 tree
3075 build_type_copy (type)
3076 tree type;
3078 register tree t, m = TYPE_MAIN_VARIANT (type);
3080 t = copy_node (type);
3082 TYPE_POINTER_TO (t) = 0;
3083 TYPE_REFERENCE_TO (t) = 0;
3085 /* Add this type to the chain of variants of TYPE. */
3086 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3087 TYPE_NEXT_VARIANT (m) = t;
3089 return t;
3092 /* Hashing of types so that we don't make duplicates.
3093 The entry point is `type_hash_canon'. */
3095 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3096 with types in the TREE_VALUE slots), by adding the hash codes
3097 of the individual types. */
3099 unsigned int
3100 type_hash_list (list)
3101 tree list;
3103 unsigned int hashcode;
3104 register tree tail;
3106 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3107 hashcode += TYPE_HASH (TREE_VALUE (tail));
3109 return hashcode;
3112 /* These are the Hashtable callback functions. */
3114 /* Returns true if the types are equal. */
3116 static int
3117 type_hash_eq (va, vb)
3118 const void *va;
3119 const void *vb;
3121 const struct type_hash *a = va, *b = vb;
3122 if (a->hash == b->hash
3123 && TREE_CODE (a->type) == TREE_CODE (b->type)
3124 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
3125 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3126 TYPE_ATTRIBUTES (b->type))
3127 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
3128 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3129 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3130 TYPE_MAX_VALUE (b->type)))
3131 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3132 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3133 TYPE_MIN_VALUE (b->type)))
3134 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3135 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
3136 || (TYPE_DOMAIN (a->type)
3137 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
3138 && TYPE_DOMAIN (b->type)
3139 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
3140 && type_list_equal (TYPE_DOMAIN (a->type),
3141 TYPE_DOMAIN (b->type)))))
3142 return 1;
3143 return 0;
3146 /* Return the cached hash value. */
3148 static unsigned int
3149 type_hash_hash (item)
3150 const void *item;
3152 return ((const struct type_hash *) item)->hash;
3155 /* Look in the type hash table for a type isomorphic to TYPE.
3156 If one is found, return it. Otherwise return 0. */
3158 tree
3159 type_hash_lookup (hashcode, type)
3160 unsigned int hashcode;
3161 tree type;
3163 struct type_hash *h, in;
3165 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3166 must call that routine before comparing TYPE_ALIGNs. */
3167 layout_type (type);
3169 in.hash = hashcode;
3170 in.type = type;
3172 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3173 if (h)
3174 return h->type;
3175 return NULL_TREE;
3178 /* Add an entry to the type-hash-table
3179 for a type TYPE whose hash code is HASHCODE. */
3181 void
3182 type_hash_add (hashcode, type)
3183 unsigned int hashcode;
3184 tree type;
3186 struct type_hash *h;
3187 void **loc;
3189 h = (struct type_hash *) permalloc (sizeof (struct type_hash));
3190 h->hash = hashcode;
3191 h->type = type;
3192 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3193 *(struct type_hash **) loc = h;
3196 /* Given TYPE, and HASHCODE its hash code, return the canonical
3197 object for an identical type if one already exists.
3198 Otherwise, return TYPE, and record it as the canonical object
3199 if it is a permanent object.
3201 To use this function, first create a type of the sort you want.
3202 Then compute its hash code from the fields of the type that
3203 make it different from other similar types.
3204 Then call this function and use the value.
3205 This function frees the type you pass in if it is a duplicate. */
3207 /* Set to 1 to debug without canonicalization. Never set by program. */
3208 int debug_no_type_hash = 0;
3210 tree
3211 type_hash_canon (hashcode, type)
3212 unsigned int hashcode;
3213 tree type;
3215 tree t1;
3217 if (debug_no_type_hash)
3218 return type;
3220 t1 = type_hash_lookup (hashcode, type);
3221 if (t1 != 0)
3223 #ifdef GATHER_STATISTICS
3224 tree_node_counts[(int) t_kind]--;
3225 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3226 #endif
3227 return t1;
3230 /* If this is a permanent type, record it for later reuse. */
3231 type_hash_add (hashcode, type);
3233 return type;
3236 /* Callback function for htab_traverse. */
3238 static int
3239 mark_hash_entry (entry, param)
3240 void **entry;
3241 void *param ATTRIBUTE_UNUSED;
3243 struct type_hash *p = *(struct type_hash **) entry;
3245 ggc_mark_tree (p->type);
3247 /* Continue scan. */
3248 return 1;
3251 /* Mark ARG (which is really a htab_t *) for GC. */
3253 static void
3254 mark_type_hash (arg)
3255 void *arg;
3257 htab_t t = *(htab_t *) arg;
3259 htab_traverse (t, mark_hash_entry, 0);
3262 /* Mark the hashtable slot pointed to by ENTRY (which is really a
3263 `tree**') for GC. */
3265 static int
3266 mark_tree_hashtable_entry (entry, data)
3267 void **entry;
3268 void *data ATTRIBUTE_UNUSED;
3270 ggc_mark_tree ((tree) *entry);
3271 return 1;
3274 /* Mark ARG (which is really a htab_t whose slots are trees) for
3275 GC. */
3277 void
3278 mark_tree_hashtable (arg)
3279 void *arg;
3281 htab_t t = *(htab_t *) arg;
3282 htab_traverse (t, mark_tree_hashtable_entry, 0);
3285 static void
3286 print_type_hash_statistics ()
3288 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3289 (long) htab_size (type_hash_table),
3290 (long) htab_elements (type_hash_table),
3291 htab_collisions (type_hash_table));
3294 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3295 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3296 by adding the hash codes of the individual attributes. */
3298 unsigned int
3299 attribute_hash_list (list)
3300 tree list;
3302 unsigned int hashcode;
3303 register tree tail;
3305 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3306 /* ??? Do we want to add in TREE_VALUE too? */
3307 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3308 return hashcode;
3311 /* Given two lists of attributes, return true if list l2 is
3312 equivalent to l1. */
3315 attribute_list_equal (l1, l2)
3316 tree l1, l2;
3318 return attribute_list_contained (l1, l2)
3319 && attribute_list_contained (l2, l1);
3322 /* Given two lists of attributes, return true if list L2 is
3323 completely contained within L1. */
3324 /* ??? This would be faster if attribute names were stored in a canonicalized
3325 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3326 must be used to show these elements are equivalent (which they are). */
3327 /* ??? It's not clear that attributes with arguments will always be handled
3328 correctly. */
3331 attribute_list_contained (l1, l2)
3332 tree l1, l2;
3334 register tree t1, t2;
3336 /* First check the obvious, maybe the lists are identical. */
3337 if (l1 == l2)
3338 return 1;
3340 /* Maybe the lists are similar. */
3341 for (t1 = l1, t2 = l2;
3342 t1 != 0 && t2 != 0
3343 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3344 && TREE_VALUE (t1) == TREE_VALUE (t2);
3345 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3347 /* Maybe the lists are equal. */
3348 if (t1 == 0 && t2 == 0)
3349 return 1;
3351 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3353 tree attr
3354 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3356 if (attr == 0)
3357 return 0;
3359 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3360 return 0;
3363 return 1;
3366 /* Given two lists of types
3367 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3368 return 1 if the lists contain the same types in the same order.
3369 Also, the TREE_PURPOSEs must match. */
3372 type_list_equal (l1, l2)
3373 tree l1, l2;
3375 register tree t1, t2;
3377 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3378 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3379 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3380 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3381 && (TREE_TYPE (TREE_PURPOSE (t1))
3382 == TREE_TYPE (TREE_PURPOSE (t2))))))
3383 return 0;
3385 return t1 == t2;
3388 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3389 given by TYPE. If the argument list accepts variable arguments,
3390 then this function counts only the ordinary arguments. */
3393 type_num_arguments (type)
3394 tree type;
3396 int i = 0;
3397 tree t;
3399 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3400 /* If the function does not take a variable number of arguments,
3401 the last element in the list will have type `void'. */
3402 if (VOID_TYPE_P (TREE_VALUE (t)))
3403 break;
3404 else
3405 ++i;
3407 return i;
3410 /* Nonzero if integer constants T1 and T2
3411 represent the same constant value. */
3414 tree_int_cst_equal (t1, t2)
3415 tree t1, t2;
3417 if (t1 == t2)
3418 return 1;
3420 if (t1 == 0 || t2 == 0)
3421 return 0;
3423 if (TREE_CODE (t1) == INTEGER_CST
3424 && TREE_CODE (t2) == INTEGER_CST
3425 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3426 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3427 return 1;
3429 return 0;
3432 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3433 The precise way of comparison depends on their data type. */
3436 tree_int_cst_lt (t1, t2)
3437 tree t1, t2;
3439 if (t1 == t2)
3440 return 0;
3442 if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3443 return INT_CST_LT (t1, t2);
3445 return INT_CST_LT_UNSIGNED (t1, t2);
3448 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3451 tree_int_cst_compare (t1, t2)
3452 tree t1;
3453 tree t2;
3455 if (tree_int_cst_lt (t1, t2))
3456 return -1;
3457 else if (tree_int_cst_lt (t2, t1))
3458 return 1;
3459 else
3460 return 0;
3463 /* Return 1 if T is an INTEGER_CST that can be represented in a single
3464 HOST_WIDE_INT value. If POS is nonzero, the result must be positive. */
3467 host_integerp (t, pos)
3468 tree t;
3469 int pos;
3471 return (TREE_CODE (t) == INTEGER_CST
3472 && ! TREE_OVERFLOW (t)
3473 && ((TREE_INT_CST_HIGH (t) == 0
3474 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3475 || (! pos && TREE_INT_CST_HIGH (t) == -1
3476 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
3477 || (! pos && TREE_INT_CST_HIGH (t) == 0
3478 && TREE_UNSIGNED (TREE_TYPE (t)))));
3481 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3482 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3483 be positive. Abort if we cannot satisfy the above conditions. */
3485 HOST_WIDE_INT
3486 tree_low_cst (t, pos)
3487 tree t;
3488 int pos;
3490 if (host_integerp (t, pos))
3491 return TREE_INT_CST_LOW (t);
3492 else
3493 abort ();
3496 /* Return the most significant bit of the integer constant T. */
3499 tree_int_cst_msb (t)
3500 tree t;
3502 register int prec;
3503 HOST_WIDE_INT h;
3504 unsigned HOST_WIDE_INT l;
3506 /* Note that using TYPE_PRECISION here is wrong. We care about the
3507 actual bits, not the (arbitrary) range of the type. */
3508 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3509 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3510 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3511 return (l & 1) == 1;
3514 /* Return an indication of the sign of the integer constant T.
3515 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3516 Note that -1 will never be returned it T's type is unsigned. */
3519 tree_int_cst_sgn (t)
3520 tree t;
3522 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3523 return 0;
3524 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3525 return 1;
3526 else if (TREE_INT_CST_HIGH (t) < 0)
3527 return -1;
3528 else
3529 return 1;
3532 /* Compare two constructor-element-type constants. Return 1 if the lists
3533 are known to be equal; otherwise return 0. */
3536 simple_cst_list_equal (l1, l2)
3537 tree l1, l2;
3539 while (l1 != NULL_TREE && l2 != NULL_TREE)
3541 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3542 return 0;
3544 l1 = TREE_CHAIN (l1);
3545 l2 = TREE_CHAIN (l2);
3548 return l1 == l2;
3551 /* Return truthvalue of whether T1 is the same tree structure as T2.
3552 Return 1 if they are the same.
3553 Return 0 if they are understandably different.
3554 Return -1 if either contains tree structure not understood by
3555 this function. */
3558 simple_cst_equal (t1, t2)
3559 tree t1, t2;
3561 register enum tree_code code1, code2;
3562 int cmp;
3563 int i;
3565 if (t1 == t2)
3566 return 1;
3567 if (t1 == 0 || t2 == 0)
3568 return 0;
3570 code1 = TREE_CODE (t1);
3571 code2 = TREE_CODE (t2);
3573 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3575 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3576 || code2 == NON_LVALUE_EXPR)
3577 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3578 else
3579 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3582 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3583 || code2 == NON_LVALUE_EXPR)
3584 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3586 if (code1 != code2)
3587 return 0;
3589 switch (code1)
3591 case INTEGER_CST:
3592 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3593 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3595 case REAL_CST:
3596 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3598 case STRING_CST:
3599 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3600 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3601 TREE_STRING_LENGTH (t1)));
3603 case CONSTRUCTOR:
3604 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3605 return 1;
3606 else
3607 abort ();
3609 case SAVE_EXPR:
3610 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3612 case CALL_EXPR:
3613 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3614 if (cmp <= 0)
3615 return cmp;
3616 return
3617 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3619 case TARGET_EXPR:
3620 /* Special case: if either target is an unallocated VAR_DECL,
3621 it means that it's going to be unified with whatever the
3622 TARGET_EXPR is really supposed to initialize, so treat it
3623 as being equivalent to anything. */
3624 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3625 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3626 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3627 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3628 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3629 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3630 cmp = 1;
3631 else
3632 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3634 if (cmp <= 0)
3635 return cmp;
3637 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3639 case WITH_CLEANUP_EXPR:
3640 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3641 if (cmp <= 0)
3642 return cmp;
3644 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3646 case COMPONENT_REF:
3647 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3648 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3650 return 0;
3652 case VAR_DECL:
3653 case PARM_DECL:
3654 case CONST_DECL:
3655 case FUNCTION_DECL:
3656 return 0;
3658 default:
3659 break;
3662 /* This general rule works for most tree codes. All exceptions should be
3663 handled above. If this is a language-specific tree code, we can't
3664 trust what might be in the operand, so say we don't know
3665 the situation. */
3666 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3667 return -1;
3669 switch (TREE_CODE_CLASS (code1))
3671 case '1':
3672 case '2':
3673 case '<':
3674 case 'e':
3675 case 'r':
3676 case 's':
3677 cmp = 1;
3678 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3680 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3681 if (cmp <= 0)
3682 return cmp;
3685 return cmp;
3687 default:
3688 return -1;
3692 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3693 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3694 than U, respectively. */
3697 compare_tree_int (t, u)
3698 tree t;
3699 unsigned int u;
3701 if (tree_int_cst_sgn (t) < 0)
3702 return -1;
3703 else if (TREE_INT_CST_HIGH (t) != 0)
3704 return 1;
3705 else if (TREE_INT_CST_LOW (t) == u)
3706 return 0;
3707 else if (TREE_INT_CST_LOW (t) < u)
3708 return -1;
3709 else
3710 return 1;
3713 /* Constructors for pointer, array and function types.
3714 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3715 constructed by language-dependent code, not here.) */
3717 /* Construct, lay out and return the type of pointers to TO_TYPE.
3718 If such a type has already been constructed, reuse it. */
3720 tree
3721 build_pointer_type (to_type)
3722 tree to_type;
3724 register tree t = TYPE_POINTER_TO (to_type);
3726 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3728 if (t != 0)
3729 return t;
3731 /* We need a new one. */
3732 t = make_node (POINTER_TYPE);
3734 TREE_TYPE (t) = to_type;
3736 /* Record this type as the pointer to TO_TYPE. */
3737 TYPE_POINTER_TO (to_type) = t;
3739 /* Lay out the type. This function has many callers that are concerned
3740 with expression-construction, and this simplifies them all.
3741 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3742 layout_type (t);
3744 return t;
3747 /* Build the node for the type of references-to-TO_TYPE. */
3749 tree
3750 build_reference_type (to_type)
3751 tree to_type;
3753 register tree t = TYPE_REFERENCE_TO (to_type);
3755 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3757 if (t)
3758 return t;
3760 /* We need a new one. */
3761 t = make_node (REFERENCE_TYPE);
3763 TREE_TYPE (t) = to_type;
3765 /* Record this type as the pointer to TO_TYPE. */
3766 TYPE_REFERENCE_TO (to_type) = t;
3768 layout_type (t);
3770 return t;
3773 /* Build a type that is compatible with t but has no cv quals anywhere
3774 in its type, thus
3776 const char *const *const * -> char ***. */
3778 tree
3779 build_type_no_quals (t)
3780 tree t;
3782 switch (TREE_CODE (t))
3784 case POINTER_TYPE:
3785 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3786 case REFERENCE_TYPE:
3787 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3788 default:
3789 return TYPE_MAIN_VARIANT (t);
3793 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3794 MAXVAL should be the maximum value in the domain
3795 (one less than the length of the array).
3797 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3798 We don't enforce this limit, that is up to caller (e.g. language front end).
3799 The limit exists because the result is a signed type and we don't handle
3800 sizes that use more than one HOST_WIDE_INT. */
3802 tree
3803 build_index_type (maxval)
3804 tree maxval;
3806 register tree itype = make_node (INTEGER_TYPE);
3808 TREE_TYPE (itype) = sizetype;
3809 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3810 TYPE_MIN_VALUE (itype) = size_zero_node;
3811 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3812 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3813 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3814 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3815 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3816 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3818 if (host_integerp (maxval, 1))
3819 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3820 else
3821 return itype;
3824 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3825 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3826 low bound LOWVAL and high bound HIGHVAL.
3827 if TYPE==NULL_TREE, sizetype is used. */
3829 tree
3830 build_range_type (type, lowval, highval)
3831 tree type, lowval, highval;
3833 register tree itype = make_node (INTEGER_TYPE);
3835 TREE_TYPE (itype) = type;
3836 if (type == NULL_TREE)
3837 type = sizetype;
3839 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3840 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3842 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3843 TYPE_MODE (itype) = TYPE_MODE (type);
3844 TYPE_SIZE (itype) = TYPE_SIZE (type);
3845 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3846 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3847 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3849 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3850 return type_hash_canon (tree_low_cst (highval, 0)
3851 - tree_low_cst (lowval, 0),
3852 itype);
3853 else
3854 return itype;
3857 /* Just like build_index_type, but takes lowval and highval instead
3858 of just highval (maxval). */
3860 tree
3861 build_index_2_type (lowval,highval)
3862 tree lowval, highval;
3864 return build_range_type (sizetype, lowval, highval);
3867 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3868 Needed because when index types are not hashed, equal index types
3869 built at different times appear distinct, even though structurally,
3870 they are not. */
3873 index_type_equal (itype1, itype2)
3874 tree itype1, itype2;
3876 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3877 return 0;
3879 if (TREE_CODE (itype1) == INTEGER_TYPE)
3881 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3882 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3883 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3884 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3885 return 0;
3887 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3888 TYPE_MIN_VALUE (itype2))
3889 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3890 TYPE_MAX_VALUE (itype2)))
3891 return 1;
3894 return 0;
3897 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3898 and number of elements specified by the range of values of INDEX_TYPE.
3899 If such a type has already been constructed, reuse it. */
3901 tree
3902 build_array_type (elt_type, index_type)
3903 tree elt_type, index_type;
3905 register tree t;
3906 unsigned int hashcode;
3908 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3910 error ("arrays of functions are not meaningful");
3911 elt_type = integer_type_node;
3914 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3915 build_pointer_type (elt_type);
3917 /* Allocate the array after the pointer type,
3918 in case we free it in type_hash_canon. */
3919 t = make_node (ARRAY_TYPE);
3920 TREE_TYPE (t) = elt_type;
3921 TYPE_DOMAIN (t) = index_type;
3923 if (index_type == 0)
3925 return t;
3928 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3929 t = type_hash_canon (hashcode, t);
3931 if (!COMPLETE_TYPE_P (t))
3932 layout_type (t);
3933 return t;
3936 /* Return the TYPE of the elements comprising
3937 the innermost dimension of ARRAY. */
3939 tree
3940 get_inner_array_type (array)
3941 tree array;
3943 tree type = TREE_TYPE (array);
3945 while (TREE_CODE (type) == ARRAY_TYPE)
3946 type = TREE_TYPE (type);
3948 return type;
3951 /* Construct, lay out and return
3952 the type of functions returning type VALUE_TYPE
3953 given arguments of types ARG_TYPES.
3954 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3955 are data type nodes for the arguments of the function.
3956 If such a type has already been constructed, reuse it. */
3958 tree
3959 build_function_type (value_type, arg_types)
3960 tree value_type, arg_types;
3962 register tree t;
3963 unsigned int hashcode;
3965 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3967 error ("function return type cannot be function");
3968 value_type = integer_type_node;
3971 /* Make a node of the sort we want. */
3972 t = make_node (FUNCTION_TYPE);
3973 TREE_TYPE (t) = value_type;
3974 TYPE_ARG_TYPES (t) = arg_types;
3976 /* If we already have such a type, use the old one and free this one. */
3977 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3978 t = type_hash_canon (hashcode, t);
3980 if (!COMPLETE_TYPE_P (t))
3981 layout_type (t);
3982 return t;
3985 /* Construct, lay out and return the type of methods belonging to class
3986 BASETYPE and whose arguments and values are described by TYPE.
3987 If that type exists already, reuse it.
3988 TYPE must be a FUNCTION_TYPE node. */
3990 tree
3991 build_method_type (basetype, type)
3992 tree basetype, type;
3994 register tree t;
3995 unsigned int hashcode;
3997 /* Make a node of the sort we want. */
3998 t = make_node (METHOD_TYPE);
4000 if (TREE_CODE (type) != FUNCTION_TYPE)
4001 abort ();
4003 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4004 TREE_TYPE (t) = TREE_TYPE (type);
4006 /* The actual arglist for this function includes a "hidden" argument
4007 which is "this". Put it into the list of argument types. */
4009 TYPE_ARG_TYPES (t)
4010 = tree_cons (NULL_TREE,
4011 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
4013 /* If we already have such a type, use the old one and free this one. */
4014 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4015 t = type_hash_canon (hashcode, t);
4017 if (!COMPLETE_TYPE_P (t))
4018 layout_type (t);
4020 return t;
4023 /* Construct, lay out and return the type of offsets to a value
4024 of type TYPE, within an object of type BASETYPE.
4025 If a suitable offset type exists already, reuse it. */
4027 tree
4028 build_offset_type (basetype, type)
4029 tree basetype, type;
4031 register tree t;
4032 unsigned int hashcode;
4034 /* Make a node of the sort we want. */
4035 t = make_node (OFFSET_TYPE);
4037 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4038 TREE_TYPE (t) = type;
4040 /* If we already have such a type, use the old one and free this one. */
4041 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4042 t = type_hash_canon (hashcode, t);
4044 if (!COMPLETE_TYPE_P (t))
4045 layout_type (t);
4047 return t;
4050 /* Create a complex type whose components are COMPONENT_TYPE. */
4052 tree
4053 build_complex_type (component_type)
4054 tree component_type;
4056 register tree t;
4057 unsigned int hashcode;
4059 /* Make a node of the sort we want. */
4060 t = make_node (COMPLEX_TYPE);
4062 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4063 set_type_quals (t, TYPE_QUALS (component_type));
4065 /* If we already have such a type, use the old one and free this one. */
4066 hashcode = TYPE_HASH (component_type);
4067 t = type_hash_canon (hashcode, t);
4069 if (!COMPLETE_TYPE_P (t))
4070 layout_type (t);
4072 /* If we are writing Dwarf2 output we need to create a name,
4073 since complex is a fundamental type. */
4074 if (write_symbols == DWARF2_DEBUG && ! TYPE_NAME (t))
4076 const char *name;
4077 if (component_type == char_type_node)
4078 name = "complex char";
4079 else if (component_type == signed_char_type_node)
4080 name = "complex signed char";
4081 else if (component_type == unsigned_char_type_node)
4082 name = "complex unsigned char";
4083 else if (component_type == short_integer_type_node)
4084 name = "complex short int";
4085 else if (component_type == short_unsigned_type_node)
4086 name = "complex short unsigned int";
4087 else if (component_type == integer_type_node)
4088 name = "complex int";
4089 else if (component_type == unsigned_type_node)
4090 name = "complex unsigned int";
4091 else if (component_type == long_integer_type_node)
4092 name = "complex long int";
4093 else if (component_type == long_unsigned_type_node)
4094 name = "complex long unsigned int";
4095 else if (component_type == long_long_integer_type_node)
4096 name = "complex long long int";
4097 else if (component_type == long_long_unsigned_type_node)
4098 name = "complex long long unsigned int";
4099 else
4100 name = 0;
4102 if (name != 0)
4103 TYPE_NAME (t) = get_identifier (name);
4106 return t;
4109 /* Return OP, stripped of any conversions to wider types as much as is safe.
4110 Converting the value back to OP's type makes a value equivalent to OP.
4112 If FOR_TYPE is nonzero, we return a value which, if converted to
4113 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4115 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4116 narrowest type that can hold the value, even if they don't exactly fit.
4117 Otherwise, bit-field references are changed to a narrower type
4118 only if they can be fetched directly from memory in that type.
4120 OP must have integer, real or enumeral type. Pointers are not allowed!
4122 There are some cases where the obvious value we could return
4123 would regenerate to OP if converted to OP's type,
4124 but would not extend like OP to wider types.
4125 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4126 For example, if OP is (unsigned short)(signed char)-1,
4127 we avoid returning (signed char)-1 if FOR_TYPE is int,
4128 even though extending that to an unsigned short would regenerate OP,
4129 since the result of extending (signed char)-1 to (int)
4130 is different from (int) OP. */
4132 tree
4133 get_unwidened (op, for_type)
4134 register tree op;
4135 tree for_type;
4137 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4138 register tree type = TREE_TYPE (op);
4139 register unsigned final_prec
4140 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4141 register int uns
4142 = (for_type != 0 && for_type != type
4143 && final_prec > TYPE_PRECISION (type)
4144 && TREE_UNSIGNED (type));
4145 register tree win = op;
4147 while (TREE_CODE (op) == NOP_EXPR)
4149 register int bitschange
4150 = TYPE_PRECISION (TREE_TYPE (op))
4151 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4153 /* Truncations are many-one so cannot be removed.
4154 Unless we are later going to truncate down even farther. */
4155 if (bitschange < 0
4156 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4157 break;
4159 /* See what's inside this conversion. If we decide to strip it,
4160 we will set WIN. */
4161 op = TREE_OPERAND (op, 0);
4163 /* If we have not stripped any zero-extensions (uns is 0),
4164 we can strip any kind of extension.
4165 If we have previously stripped a zero-extension,
4166 only zero-extensions can safely be stripped.
4167 Any extension can be stripped if the bits it would produce
4168 are all going to be discarded later by truncating to FOR_TYPE. */
4170 if (bitschange > 0)
4172 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4173 win = op;
4174 /* TREE_UNSIGNED says whether this is a zero-extension.
4175 Let's avoid computing it if it does not affect WIN
4176 and if UNS will not be needed again. */
4177 if ((uns || TREE_CODE (op) == NOP_EXPR)
4178 && TREE_UNSIGNED (TREE_TYPE (op)))
4180 uns = 1;
4181 win = op;
4186 if (TREE_CODE (op) == COMPONENT_REF
4187 /* Since type_for_size always gives an integer type. */
4188 && TREE_CODE (type) != REAL_TYPE
4189 /* Don't crash if field not laid out yet. */
4190 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4191 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4193 unsigned int innerprec
4194 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4196 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4198 /* We can get this structure field in the narrowest type it fits in.
4199 If FOR_TYPE is 0, do this only for a field that matches the
4200 narrower type exactly and is aligned for it
4201 The resulting extension to its nominal type (a fullword type)
4202 must fit the same conditions as for other extensions. */
4204 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4205 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4206 && (! uns || final_prec <= innerprec
4207 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4208 && type != 0)
4210 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4211 TREE_OPERAND (op, 1));
4212 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4213 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4217 return win;
4220 /* Return OP or a simpler expression for a narrower value
4221 which can be sign-extended or zero-extended to give back OP.
4222 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4223 or 0 if the value should be sign-extended. */
4225 tree
4226 get_narrower (op, unsignedp_ptr)
4227 register tree op;
4228 int *unsignedp_ptr;
4230 register int uns = 0;
4231 int first = 1;
4232 register tree win = op;
4234 while (TREE_CODE (op) == NOP_EXPR)
4236 register int bitschange
4237 = (TYPE_PRECISION (TREE_TYPE (op))
4238 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4240 /* Truncations are many-one so cannot be removed. */
4241 if (bitschange < 0)
4242 break;
4244 /* See what's inside this conversion. If we decide to strip it,
4245 we will set WIN. */
4246 op = TREE_OPERAND (op, 0);
4248 if (bitschange > 0)
4250 /* An extension: the outermost one can be stripped,
4251 but remember whether it is zero or sign extension. */
4252 if (first)
4253 uns = TREE_UNSIGNED (TREE_TYPE (op));
4254 /* Otherwise, if a sign extension has been stripped,
4255 only sign extensions can now be stripped;
4256 if a zero extension has been stripped, only zero-extensions. */
4257 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4258 break;
4259 first = 0;
4261 else /* bitschange == 0 */
4263 /* A change in nominal type can always be stripped, but we must
4264 preserve the unsignedness. */
4265 if (first)
4266 uns = TREE_UNSIGNED (TREE_TYPE (op));
4267 first = 0;
4270 win = op;
4273 if (TREE_CODE (op) == COMPONENT_REF
4274 /* Since type_for_size always gives an integer type. */
4275 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4276 /* Ensure field is laid out already. */
4277 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4279 unsigned HOST_WIDE_INT innerprec
4280 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4281 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4283 /* We can get this structure field in a narrower type that fits it,
4284 but the resulting extension to its nominal type (a fullword type)
4285 must satisfy the same conditions as for other extensions.
4287 Do this only for fields that are aligned (not bit-fields),
4288 because when bit-field insns will be used there is no
4289 advantage in doing this. */
4291 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4292 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4293 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4294 && type != 0)
4296 if (first)
4297 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4298 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4299 TREE_OPERAND (op, 1));
4300 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4301 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4304 *unsignedp_ptr = uns;
4305 return win;
4308 /* Nonzero if integer constant C has a value that is permissible
4309 for type TYPE (an INTEGER_TYPE). */
4312 int_fits_type_p (c, type)
4313 tree c, type;
4315 /* If the bounds of the type are integers, we can check ourselves.
4316 Otherwise,. use force_fit_type, which checks against the precision. */
4317 if (TYPE_MAX_VALUE (type) != NULL_TREE
4318 && TYPE_MIN_VALUE (type) != NULL_TREE
4319 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4320 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4322 if (TREE_UNSIGNED (type))
4323 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4324 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4325 /* Negative ints never fit unsigned types. */
4326 && ! (TREE_INT_CST_HIGH (c) < 0
4327 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4328 else
4329 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4330 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4331 /* Unsigned ints with top bit set never fit signed types. */
4332 && ! (TREE_INT_CST_HIGH (c) < 0
4333 && TREE_UNSIGNED (TREE_TYPE (c))));
4335 else
4337 c = copy_node (c);
4338 TREE_TYPE (c) = type;
4339 return !force_fit_type (c, 0);
4343 /* Given a DECL or TYPE, return the scope in which it was declared, or
4344 NULL_TREE if there is no containing scope. */
4346 tree
4347 get_containing_scope (t)
4348 tree t;
4350 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4353 /* Return the innermost context enclosing DECL that is
4354 a FUNCTION_DECL, or zero if none. */
4356 tree
4357 decl_function_context (decl)
4358 tree decl;
4360 tree context;
4362 if (TREE_CODE (decl) == ERROR_MARK)
4363 return 0;
4365 if (TREE_CODE (decl) == SAVE_EXPR)
4366 context = SAVE_EXPR_CONTEXT (decl);
4368 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4369 where we look up the function at runtime. Such functions always take
4370 a first argument of type 'pointer to real context'.
4372 C++ should really be fixed to use DECL_CONTEXT for the real context,
4373 and use something else for the "virtual context". */
4374 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4375 context
4376 = TYPE_MAIN_VARIANT
4377 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4378 else
4379 context = DECL_CONTEXT (decl);
4381 while (context && TREE_CODE (context) != FUNCTION_DECL)
4383 if (TREE_CODE (context) == BLOCK)
4384 context = BLOCK_SUPERCONTEXT (context);
4385 else
4386 context = get_containing_scope (context);
4389 return context;
4392 /* Return the innermost context enclosing DECL that is
4393 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4394 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4396 tree
4397 decl_type_context (decl)
4398 tree decl;
4400 tree context = DECL_CONTEXT (decl);
4402 while (context)
4404 if (TREE_CODE (context) == RECORD_TYPE
4405 || TREE_CODE (context) == UNION_TYPE
4406 || TREE_CODE (context) == QUAL_UNION_TYPE)
4407 return context;
4409 if (TREE_CODE (context) == TYPE_DECL
4410 || TREE_CODE (context) == FUNCTION_DECL)
4411 context = DECL_CONTEXT (context);
4413 else if (TREE_CODE (context) == BLOCK)
4414 context = BLOCK_SUPERCONTEXT (context);
4416 else
4417 /* Unhandled CONTEXT!? */
4418 abort ();
4420 return NULL_TREE;
4423 /* CALL is a CALL_EXPR. Return the declaration for the function
4424 called, or NULL_TREE if the called function cannot be
4425 determined. */
4427 tree
4428 get_callee_fndecl (call)
4429 tree call;
4431 tree addr;
4433 /* It's invalid to call this function with anything but a
4434 CALL_EXPR. */
4435 if (TREE_CODE (call) != CALL_EXPR)
4436 abort ();
4438 /* The first operand to the CALL is the address of the function
4439 called. */
4440 addr = TREE_OPERAND (call, 0);
4442 STRIP_NOPS (addr);
4444 /* If this is a readonly function pointer, extract its initial value. */
4445 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4446 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4447 && DECL_INITIAL (addr))
4448 addr = DECL_INITIAL (addr);
4450 /* If the address is just `&f' for some function `f', then we know
4451 that `f' is being called. */
4452 if (TREE_CODE (addr) == ADDR_EXPR
4453 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4454 return TREE_OPERAND (addr, 0);
4456 /* We couldn't figure out what was being called. */
4457 return NULL_TREE;
4460 /* Print debugging information about the obstack O, named STR. */
4462 void
4463 print_obstack_statistics (str, o)
4464 const char *str;
4465 struct obstack *o;
4467 struct _obstack_chunk *chunk = o->chunk;
4468 int n_chunks = 1;
4469 int n_alloc = 0;
4471 n_alloc += o->next_free - chunk->contents;
4472 chunk = chunk->prev;
4473 while (chunk)
4475 n_chunks += 1;
4476 n_alloc += chunk->limit - &chunk->contents[0];
4477 chunk = chunk->prev;
4479 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4480 str, n_alloc, n_chunks);
4483 /* Print debugging information about tree nodes generated during the compile,
4484 and any language-specific information. */
4486 void
4487 dump_tree_statistics ()
4489 #ifdef GATHER_STATISTICS
4490 int i;
4491 int total_nodes, total_bytes;
4492 #endif
4494 fprintf (stderr, "\n??? tree nodes created\n\n");
4495 #ifdef GATHER_STATISTICS
4496 fprintf (stderr, "Kind Nodes Bytes\n");
4497 fprintf (stderr, "-------------------------------------\n");
4498 total_nodes = total_bytes = 0;
4499 for (i = 0; i < (int) all_kinds; i++)
4501 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4502 tree_node_counts[i], tree_node_sizes[i]);
4503 total_nodes += tree_node_counts[i];
4504 total_bytes += tree_node_sizes[i];
4506 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4507 fprintf (stderr, "-------------------------------------\n");
4508 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4509 fprintf (stderr, "-------------------------------------\n");
4510 #else
4511 fprintf (stderr, "(No per-node statistics)\n");
4512 #endif
4513 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4514 print_type_hash_statistics ();
4515 print_lang_statistics ();
4518 #define FILE_FUNCTION_PREFIX_LEN 9
4520 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4522 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4523 clashes in cases where we can't reliably choose a unique name.
4525 Derived from mkstemp.c in libiberty. */
4527 static void
4528 append_random_chars (template)
4529 char *template;
4531 static const char letters[]
4532 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4533 static unsigned HOST_WIDE_INT value;
4534 unsigned HOST_WIDE_INT v;
4536 if (! value)
4538 struct stat st;
4540 /* VALUE should be unique for each file and must
4541 not change between compiles since this can cause
4542 bootstrap comparison errors. */
4544 if (stat (main_input_filename, &st) < 0)
4545 abort ();
4547 value = st.st_dev ^ st.st_ino ^ st.st_mtime;
4550 template += strlen (template);
4552 v = value;
4554 /* Fill in the random bits. */
4555 template[0] = letters[v % 62];
4556 v /= 62;
4557 template[1] = letters[v % 62];
4558 v /= 62;
4559 template[2] = letters[v % 62];
4560 v /= 62;
4561 template[3] = letters[v % 62];
4562 v /= 62;
4563 template[4] = letters[v % 62];
4564 v /= 62;
4565 template[5] = letters[v % 62];
4567 template[6] = '\0';
4570 /* P is a string that will be used in a symbol. Mask out any characters
4571 that are not valid in that context. */
4573 void
4574 clean_symbol_name (p)
4575 char *p;
4577 for (; *p; p++)
4578 if (! (ISDIGIT(*p)
4579 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4580 || *p == '$'
4581 #endif
4582 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4583 || *p == '.'
4584 #endif
4585 || ISUPPER (*p)
4586 || ISLOWER (*p)))
4587 *p = '_';
4590 /* Generate a name for a function unique to this translation unit.
4591 TYPE is some string to identify the purpose of this function to the
4592 linker or collect2. */
4594 tree
4595 get_file_function_name_long (type)
4596 const char *type;
4598 char *buf;
4599 const char *p;
4600 char *q;
4602 if (first_global_object_name)
4603 p = first_global_object_name;
4604 else
4606 /* We don't have anything that we know to be unique to this translation
4607 unit, so use what we do have and throw in some randomness. */
4609 const char *name = weak_global_object_name;
4610 const char *file = main_input_filename;
4612 if (! name)
4613 name = "";
4614 if (! file)
4615 file = input_filename;
4617 q = (char *) alloca (7 + strlen (name) + strlen (file));
4619 sprintf (q, "%s%s", name, file);
4620 append_random_chars (q);
4621 p = q;
4624 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4625 + strlen (type));
4627 /* Set up the name of the file-level functions we may need.
4628 Use a global object (which is already required to be unique over
4629 the program) rather than the file name (which imposes extra
4630 constraints). */
4631 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4633 /* Don't need to pull weird characters out of global names. */
4634 if (p != first_global_object_name)
4635 clean_symbol_name (buf + 11);
4637 return get_identifier (buf);
4640 /* If KIND=='I', return a suitable global initializer (constructor) name.
4641 If KIND=='D', return a suitable global clean-up (destructor) name. */
4643 tree
4644 get_file_function_name (kind)
4645 int kind;
4647 char p[2];
4649 p[0] = kind;
4650 p[1] = 0;
4652 return get_file_function_name_long (p);
4655 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4656 The result is placed in BUFFER (which has length BIT_SIZE),
4657 with one bit in each char ('\000' or '\001').
4659 If the constructor is constant, NULL_TREE is returned.
4660 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4662 tree
4663 get_set_constructor_bits (init, buffer, bit_size)
4664 tree init;
4665 char *buffer;
4666 int bit_size;
4668 int i;
4669 tree vals;
4670 HOST_WIDE_INT domain_min
4671 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4672 tree non_const_bits = NULL_TREE;
4674 for (i = 0; i < bit_size; i++)
4675 buffer[i] = 0;
4677 for (vals = TREE_OPERAND (init, 1);
4678 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4680 if (!host_integerp (TREE_VALUE (vals), 0)
4681 || (TREE_PURPOSE (vals) != NULL_TREE
4682 && !host_integerp (TREE_PURPOSE (vals), 0)))
4683 non_const_bits
4684 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4685 else if (TREE_PURPOSE (vals) != NULL_TREE)
4687 /* Set a range of bits to ones. */
4688 HOST_WIDE_INT lo_index
4689 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4690 HOST_WIDE_INT hi_index
4691 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4693 if (lo_index < 0 || lo_index >= bit_size
4694 || hi_index < 0 || hi_index >= bit_size)
4695 abort ();
4696 for (; lo_index <= hi_index; lo_index++)
4697 buffer[lo_index] = 1;
4699 else
4701 /* Set a single bit to one. */
4702 HOST_WIDE_INT index
4703 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4704 if (index < 0 || index >= bit_size)
4706 error ("invalid initializer for bit string");
4707 return NULL_TREE;
4709 buffer[index] = 1;
4712 return non_const_bits;
4715 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4716 The result is placed in BUFFER (which is an array of bytes).
4717 If the constructor is constant, NULL_TREE is returned.
4718 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4720 tree
4721 get_set_constructor_bytes (init, buffer, wd_size)
4722 tree init;
4723 unsigned char *buffer;
4724 int wd_size;
4726 int i;
4727 int set_word_size = BITS_PER_UNIT;
4728 int bit_size = wd_size * set_word_size;
4729 int bit_pos = 0;
4730 unsigned char *bytep = buffer;
4731 char *bit_buffer = (char *) alloca (bit_size);
4732 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4734 for (i = 0; i < wd_size; i++)
4735 buffer[i] = 0;
4737 for (i = 0; i < bit_size; i++)
4739 if (bit_buffer[i])
4741 if (BYTES_BIG_ENDIAN)
4742 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4743 else
4744 *bytep |= 1 << bit_pos;
4746 bit_pos++;
4747 if (bit_pos >= set_word_size)
4748 bit_pos = 0, bytep++;
4750 return non_const_bits;
4753 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4754 /* Complain that the tree code of NODE does not match the expected CODE.
4755 FILE, LINE, and FUNCTION are of the caller. */
4757 void
4758 tree_check_failed (node, code, file, line, function)
4759 const tree node;
4760 enum tree_code code;
4761 const char *file;
4762 int line;
4763 const char *function;
4765 internal_error ("Tree check: expected %s, have %s in %s, at %s:%d",
4766 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4767 function, trim_filename (file), line);
4770 /* Similar to above, except that we check for a class of tree
4771 code, given in CL. */
4773 void
4774 tree_class_check_failed (node, cl, file, line, function)
4775 const tree node;
4776 int cl;
4777 const char *file;
4778 int line;
4779 const char *function;
4781 internal_error
4782 ("Tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4783 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4784 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4787 #endif /* ENABLE_TREE_CHECKING */
4789 /* For a new vector type node T, build the information necessary for
4790 debuggint output. */
4792 static void
4793 finish_vector_type (t)
4794 tree t;
4796 layout_type (t);
4799 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4800 tree array = build_array_type (TREE_TYPE (t),
4801 build_index_type (index));
4802 tree rt = make_node (RECORD_TYPE);
4804 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4805 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4806 layout_type (rt);
4807 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4808 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4809 the representation type, and we want to find that die when looking up
4810 the vector type. This is most easily achieved by making the TYPE_UID
4811 numbers equal. */
4812 TYPE_UID (rt) = TYPE_UID (t);
4816 /* Create nodes for all integer types (and error_mark_node) using the sizes
4817 of C datatypes. The caller should call set_sizetype soon after calling
4818 this function to select one of the types as sizetype. */
4820 void
4821 build_common_tree_nodes (signed_char)
4822 int signed_char;
4824 error_mark_node = make_node (ERROR_MARK);
4825 TREE_TYPE (error_mark_node) = error_mark_node;
4827 initialize_sizetypes ();
4829 /* Define both `signed char' and `unsigned char'. */
4830 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4831 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4833 /* Define `char', which is like either `signed char' or `unsigned char'
4834 but not the same as either. */
4835 char_type_node
4836 = (signed_char
4837 ? make_signed_type (CHAR_TYPE_SIZE)
4838 : make_unsigned_type (CHAR_TYPE_SIZE));
4840 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4841 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4842 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4843 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4844 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4845 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4846 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4847 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4849 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4850 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4851 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4852 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4853 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4855 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4856 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4857 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4858 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4859 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4862 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4863 It will create several other common tree nodes. */
4865 void
4866 build_common_tree_nodes_2 (short_double)
4867 int short_double;
4869 /* Define these next since types below may used them. */
4870 integer_zero_node = build_int_2 (0, 0);
4871 integer_one_node = build_int_2 (1, 0);
4872 integer_minus_one_node = build_int_2 (-1, -1);
4874 size_zero_node = size_int (0);
4875 size_one_node = size_int (1);
4876 bitsize_zero_node = bitsize_int (0);
4877 bitsize_one_node = bitsize_int (1);
4878 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4880 void_type_node = make_node (VOID_TYPE);
4881 layout_type (void_type_node);
4883 /* We are not going to have real types in C with less than byte alignment,
4884 so we might as well not have any types that claim to have it. */
4885 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4886 TYPE_USER_ALIGN (void_type_node) = 0;
4888 null_pointer_node = build_int_2 (0, 0);
4889 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4890 layout_type (TREE_TYPE (null_pointer_node));
4892 ptr_type_node = build_pointer_type (void_type_node);
4893 const_ptr_type_node
4894 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4896 float_type_node = make_node (REAL_TYPE);
4897 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4898 layout_type (float_type_node);
4900 double_type_node = make_node (REAL_TYPE);
4901 if (short_double)
4902 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4903 else
4904 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4905 layout_type (double_type_node);
4907 long_double_type_node = make_node (REAL_TYPE);
4908 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4909 layout_type (long_double_type_node);
4911 complex_integer_type_node = make_node (COMPLEX_TYPE);
4912 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4913 layout_type (complex_integer_type_node);
4915 complex_float_type_node = make_node (COMPLEX_TYPE);
4916 TREE_TYPE (complex_float_type_node) = float_type_node;
4917 layout_type (complex_float_type_node);
4919 complex_double_type_node = make_node (COMPLEX_TYPE);
4920 TREE_TYPE (complex_double_type_node) = double_type_node;
4921 layout_type (complex_double_type_node);
4923 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4924 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4925 layout_type (complex_long_double_type_node);
4928 tree t;
4929 BUILD_VA_LIST_TYPE (t);
4931 /* Many back-ends define record types without seting TYPE_NAME.
4932 If we copied the record type here, we'd keep the original
4933 record type without a name. This breaks name mangling. So,
4934 don't copy record types and let c_common_nodes_and_builtins()
4935 declare the type to be __builtin_va_list. */
4936 if (TREE_CODE (t) != RECORD_TYPE)
4937 t = build_type_copy (t);
4939 va_list_type_node = t;
4942 V4SF_type_node = make_node (VECTOR_TYPE);
4943 TREE_TYPE (V4SF_type_node) = float_type_node;
4944 TYPE_MODE (V4SF_type_node) = V4SFmode;
4945 finish_vector_type (V4SF_type_node);
4947 V4SI_type_node = make_node (VECTOR_TYPE);
4948 TREE_TYPE (V4SI_type_node) = intSI_type_node;
4949 TYPE_MODE (V4SI_type_node) = V4SImode;
4950 finish_vector_type (V4SI_type_node);
4952 V2SI_type_node = make_node (VECTOR_TYPE);
4953 TREE_TYPE (V2SI_type_node) = intSI_type_node;
4954 TYPE_MODE (V2SI_type_node) = V2SImode;
4955 finish_vector_type (V2SI_type_node);
4957 V4HI_type_node = make_node (VECTOR_TYPE);
4958 TREE_TYPE (V4HI_type_node) = intHI_type_node;
4959 TYPE_MODE (V4HI_type_node) = V4HImode;
4960 finish_vector_type (V4HI_type_node);
4962 V8QI_type_node = make_node (VECTOR_TYPE);
4963 TREE_TYPE (V8QI_type_node) = intQI_type_node;
4964 TYPE_MODE (V8QI_type_node) = V8QImode;
4965 finish_vector_type (V8QI_type_node);