Daily bump.
[official-gcc.git] / gcc / modulo-sched.c
blob6f699a874e3c69349da9cfa1b80f225a95256606
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2020 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "gcov-io.h"
36 #include "profile.h"
37 #include "insn-attr.h"
38 #include "cfgrtl.h"
39 #include "sched-int.h"
40 #include "cfgloop.h"
41 #include "expr.h"
42 #include "ddg.h"
43 #include "tree-pass.h"
44 #include "dbgcnt.h"
45 #include "loop-unroll.h"
47 #ifdef INSN_SCHEDULING
49 /* This file contains the implementation of the Swing Modulo Scheduler,
50 described in the following references:
51 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
52 Lifetime--sensitive modulo scheduling in a production environment.
53 IEEE Trans. on Comps., 50(3), March 2001
54 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
55 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
56 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
58 The basic structure is:
59 1. Build a data-dependence graph (DDG) for each loop.
60 2. Use the DDG to order the insns of a loop (not in topological order
61 necessarily, but rather) trying to place each insn after all its
62 predecessors _or_ after all its successors.
63 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
64 4. Use the ordering to perform list-scheduling of the loop:
65 1. Set II = MII. We will try to schedule the loop within II cycles.
66 2. Try to schedule the insns one by one according to the ordering.
67 For each insn compute an interval of cycles by considering already-
68 scheduled preds and succs (and associated latencies); try to place
69 the insn in the cycles of this window checking for potential
70 resource conflicts (using the DFA interface).
71 Note: this is different from the cycle-scheduling of schedule_insns;
72 here the insns are not scheduled monotonically top-down (nor bottom-
73 up).
74 3. If failed in scheduling all insns - bump II++ and try again, unless
75 II reaches an upper bound MaxII, in which case report failure.
76 5. If we succeeded in scheduling the loop within II cycles, we now
77 generate prolog and epilog, decrease the counter of the loop, and
78 perform modulo variable expansion for live ranges that span more than
79 II cycles (i.e. use register copies to prevent a def from overwriting
80 itself before reaching the use).
82 SMS works with countable loops (1) whose control part can be easily
83 decoupled from the rest of the loop and (2) whose loop count can
84 be easily adjusted. This is because we peel a constant number of
85 iterations into a prologue and epilogue for which we want to avoid
86 emitting the control part, and a kernel which is to iterate that
87 constant number of iterations less than the original loop. So the
88 control part should be a set of insns clearly identified and having
89 its own iv, not otherwise used in the loop (at-least for now), which
90 initializes a register before the loop to the number of iterations.
91 Currently SMS relies on the do-loop pattern to recognize such loops,
92 where (1) the control part comprises of all insns defining and/or
93 using a certain 'count' register and (2) the loop count can be
94 adjusted by modifying this register prior to the loop.
95 TODO: Rely on cfgloop analysis instead. */
97 /* This page defines partial-schedule structures and functions for
98 modulo scheduling. */
100 typedef struct partial_schedule *partial_schedule_ptr;
101 typedef struct ps_insn *ps_insn_ptr;
103 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
104 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
106 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
107 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
109 /* Perform signed modulo, always returning a non-negative value. */
110 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
112 /* The number of different iterations the nodes in ps span, assuming
113 the stage boundaries are placed efficiently. */
114 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
115 + 1 + ii - 1) / ii)
116 /* The stage count of ps. */
117 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
119 /* A single instruction in the partial schedule. */
120 struct ps_insn
122 /* Identifies the instruction to be scheduled. Values smaller than
123 the ddg's num_nodes refer directly to ddg nodes. A value of
124 X - num_nodes refers to register move X. */
125 int id;
127 /* The (absolute) cycle in which the PS instruction is scheduled.
128 Same as SCHED_TIME (node). */
129 int cycle;
131 /* The next/prev PS_INSN in the same row. */
132 ps_insn_ptr next_in_row,
133 prev_in_row;
137 /* Information about a register move that has been added to a partial
138 schedule. */
139 struct ps_reg_move_info
141 /* The source of the move is defined by the ps_insn with id DEF.
142 The destination is used by the ps_insns with the ids in USES. */
143 int def;
144 sbitmap uses;
146 /* The original form of USES' instructions used OLD_REG, but they
147 should now use NEW_REG. */
148 rtx old_reg;
149 rtx new_reg;
151 /* The number of consecutive stages that the move occupies. */
152 int num_consecutive_stages;
154 /* An instruction that sets NEW_REG to the correct value. The first
155 move associated with DEF will have an rhs of OLD_REG; later moves
156 use the result of the previous move. */
157 rtx_insn *insn;
160 /* Holds the partial schedule as an array of II rows. Each entry of the
161 array points to a linked list of PS_INSNs, which represents the
162 instructions that are scheduled for that row. */
163 struct partial_schedule
165 int ii; /* Number of rows in the partial schedule. */
166 int history; /* Threshold for conflict checking using DFA. */
168 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
169 ps_insn_ptr *rows;
171 /* All the moves added for this partial schedule. Index X has
172 a ps_insn id of X + g->num_nodes. */
173 vec<ps_reg_move_info> reg_moves;
175 /* rows_length[i] holds the number of instructions in the row.
176 It is used only (as an optimization) to back off quickly from
177 trying to schedule a node in a full row; that is, to avoid running
178 through futile DFA state transitions. */
179 int *rows_length;
181 /* The earliest absolute cycle of an insn in the partial schedule. */
182 int min_cycle;
184 /* The latest absolute cycle of an insn in the partial schedule. */
185 int max_cycle;
187 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
189 int stage_count; /* The stage count of the partial schedule. */
193 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
194 static void free_partial_schedule (partial_schedule_ptr);
195 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
196 void print_partial_schedule (partial_schedule_ptr, FILE *);
197 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
198 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
199 int, int, sbitmap, sbitmap);
200 static void rotate_partial_schedule (partial_schedule_ptr, int);
201 void set_row_column_for_ps (partial_schedule_ptr);
202 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
203 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
206 /* This page defines constants and structures for the modulo scheduling
207 driver. */
209 static int sms_order_nodes (ddg_ptr, int, int *, int *);
210 static void set_node_sched_params (ddg_ptr);
211 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
212 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
213 static void generate_prolog_epilog (partial_schedule_ptr, class loop *,
214 rtx, rtx);
215 static int calculate_stage_count (partial_schedule_ptr, int);
216 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
217 int, int, sbitmap, sbitmap, sbitmap);
218 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
219 sbitmap, int, int *, int *, int *);
220 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
221 sbitmap, int *, sbitmap, sbitmap);
222 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
224 #define NODE_ASAP(node) ((node)->aux.count)
226 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
227 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
228 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
229 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
230 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
232 /* The scheduling parameters held for each node. */
233 typedef struct node_sched_params
235 int time; /* The absolute scheduling cycle. */
237 int row; /* Holds time % ii. */
238 int stage; /* Holds time / ii. */
240 /* The column of a node inside the ps. If nodes u, v are on the same row,
241 u will precede v if column (u) < column (v). */
242 int column;
243 } *node_sched_params_ptr;
245 /* The following three functions are copied from the current scheduler
246 code in order to use sched_analyze() for computing the dependencies.
247 They are used when initializing the sched_info structure. */
248 static const char *
249 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
251 static char tmp[80];
253 sprintf (tmp, "i%4d", INSN_UID (insn));
254 return tmp;
257 static void
258 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
259 regset used ATTRIBUTE_UNUSED)
263 static struct common_sched_info_def sms_common_sched_info;
265 static struct sched_deps_info_def sms_sched_deps_info =
267 compute_jump_reg_dependencies,
268 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
269 NULL,
270 0, 0, 0
273 static struct haifa_sched_info sms_sched_info =
275 NULL,
276 NULL,
277 NULL,
278 NULL,
279 NULL,
280 sms_print_insn,
281 NULL,
282 NULL, /* insn_finishes_block_p */
283 NULL, NULL,
284 NULL, NULL,
285 0, 0,
287 NULL, NULL, NULL, NULL,
288 NULL, NULL,
292 /* Partial schedule instruction ID in PS is a register move. Return
293 information about it. */
294 static struct ps_reg_move_info *
295 ps_reg_move (partial_schedule_ptr ps, int id)
297 gcc_checking_assert (id >= ps->g->num_nodes);
298 return &ps->reg_moves[id - ps->g->num_nodes];
301 /* Return the rtl instruction that is being scheduled by partial schedule
302 instruction ID, which belongs to schedule PS. */
303 static rtx_insn *
304 ps_rtl_insn (partial_schedule_ptr ps, int id)
306 if (id < ps->g->num_nodes)
307 return ps->g->nodes[id].insn;
308 else
309 return ps_reg_move (ps, id)->insn;
312 /* Partial schedule instruction ID, which belongs to PS, occurred in
313 the original (unscheduled) loop. Return the first instruction
314 in the loop that was associated with ps_rtl_insn (PS, ID).
315 If the instruction had some notes before it, this is the first
316 of those notes. */
317 static rtx_insn *
318 ps_first_note (partial_schedule_ptr ps, int id)
320 gcc_assert (id < ps->g->num_nodes);
321 return ps->g->nodes[id].first_note;
324 /* Return the number of consecutive stages that are occupied by
325 partial schedule instruction ID in PS. */
326 static int
327 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
329 if (id < ps->g->num_nodes)
330 return 1;
331 else
332 return ps_reg_move (ps, id)->num_consecutive_stages;
335 /* Given HEAD and TAIL which are the first and last insns in a loop;
336 return the register which controls the loop. Return zero if it has
337 more than one occurrence in the loop besides the control part or the
338 do-loop pattern is not of the form we expect. */
339 static rtx
340 doloop_register_get (rtx_insn *head, rtx_insn *tail)
342 rtx reg, condition;
343 rtx_insn *insn, *first_insn_not_to_check;
345 if (!JUMP_P (tail))
346 return NULL_RTX;
348 if (!targetm.code_for_doloop_end)
349 return NULL_RTX;
351 /* TODO: Free SMS's dependence on doloop_condition_get. */
352 condition = doloop_condition_get (tail);
353 if (! condition)
354 return NULL_RTX;
356 if (REG_P (XEXP (condition, 0)))
357 reg = XEXP (condition, 0);
358 else if (GET_CODE (XEXP (condition, 0)) == PLUS
359 && REG_P (XEXP (XEXP (condition, 0), 0)))
360 reg = XEXP (XEXP (condition, 0), 0);
361 else
362 gcc_unreachable ();
364 /* Check that the COUNT_REG has no other occurrences in the loop
365 until the decrement. We assume the control part consists of
366 either a single (parallel) branch-on-count or a (non-parallel)
367 branch immediately preceded by a single (decrement) insn. */
368 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
369 : prev_nondebug_insn (tail));
371 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
372 if (NONDEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
374 if (dump_file)
376 fprintf (dump_file, "SMS count_reg found ");
377 print_rtl_single (dump_file, reg);
378 fprintf (dump_file, " outside control in insn:\n");
379 print_rtl_single (dump_file, insn);
382 return NULL_RTX;
385 return reg;
388 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
389 that the number of iterations is a compile-time constant. If so,
390 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
391 this constant. Otherwise return 0. */
392 static rtx_insn *
393 const_iteration_count (rtx count_reg, basic_block pre_header,
394 int64_t * count)
396 rtx_insn *insn;
397 rtx_insn *head, *tail;
399 if (! pre_header)
400 return NULL;
402 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
404 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
405 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
406 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
408 rtx pat = single_set (insn);
410 if (CONST_INT_P (SET_SRC (pat)))
412 *count = INTVAL (SET_SRC (pat));
413 return insn;
416 return NULL;
419 return NULL;
422 /* A very simple resource-based lower bound on the initiation interval.
423 ??? Improve the accuracy of this bound by considering the
424 utilization of various units. */
425 static int
426 res_MII (ddg_ptr g)
428 if (targetm.sched.sms_res_mii)
429 return targetm.sched.sms_res_mii (g);
431 return g->num_nodes / issue_rate;
435 /* A vector that contains the sched data for each ps_insn. */
436 static vec<node_sched_params> node_sched_param_vec;
438 /* Allocate sched_params for each node and initialize it. */
439 static void
440 set_node_sched_params (ddg_ptr g)
442 node_sched_param_vec.truncate (0);
443 node_sched_param_vec.safe_grow_cleared (g->num_nodes, true);
446 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
447 static void
448 extend_node_sched_params (partial_schedule_ptr ps)
450 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
451 + ps->reg_moves.length (), true);
454 /* Update the sched_params (time, row and stage) for node U using the II,
455 the CYCLE of U and MIN_CYCLE.
456 We're not simply taking the following
457 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
458 because the stages may not be aligned on cycle 0. */
459 static void
460 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
462 int sc_until_cycle_zero;
463 int stage;
465 SCHED_TIME (u) = cycle;
466 SCHED_ROW (u) = SMODULO (cycle, ii);
468 /* The calculation of stage count is done adding the number
469 of stages before cycle zero and after cycle zero. */
470 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
472 if (SCHED_TIME (u) < 0)
474 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
475 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
477 else
479 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
480 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
484 static void
485 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
487 int i;
489 if (! file)
490 return;
491 for (i = 0; i < num_nodes; i++)
493 node_sched_params_ptr nsp = SCHED_PARAMS (i);
495 fprintf (file, "Node = %d; INSN = %d\n", i,
496 INSN_UID (ps_rtl_insn (ps, i)));
497 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
498 fprintf (file, " time = %d:\n", nsp->time);
499 fprintf (file, " stage = %d:\n", nsp->stage);
503 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
504 static void
505 set_columns_for_row (partial_schedule_ptr ps, int row)
507 ps_insn_ptr cur_insn;
508 int column;
510 column = 0;
511 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
512 SCHED_COLUMN (cur_insn->id) = column++;
515 /* Set SCHED_COLUMN for each instruction in PS. */
516 static void
517 set_columns_for_ps (partial_schedule_ptr ps)
519 int row;
521 for (row = 0; row < ps->ii; row++)
522 set_columns_for_row (ps, row);
525 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
526 Its single predecessor has already been scheduled, as has its
527 ddg node successors. (The move may have also another move as its
528 successor, in which case that successor will be scheduled later.)
530 The move is part of a chain that satisfies register dependencies
531 between a producing ddg node and various consuming ddg nodes.
532 If some of these dependencies have a distance of 1 (meaning that
533 the use is upward-exposed) then DISTANCE1_USES is nonnull and
534 contains the set of uses with distance-1 dependencies.
535 DISTANCE1_USES is null otherwise.
537 MUST_FOLLOW is a scratch bitmap that is big enough to hold
538 all current ps_insn ids.
540 Return true on success. */
541 static bool
542 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
543 sbitmap distance1_uses, sbitmap must_follow)
545 unsigned int u;
546 int this_time, this_distance, this_start, this_end, this_latency;
547 int start, end, c, ii;
548 sbitmap_iterator sbi;
549 ps_reg_move_info *move;
550 rtx_insn *this_insn;
551 ps_insn_ptr psi;
553 move = ps_reg_move (ps, i_reg_move);
554 ii = ps->ii;
555 if (dump_file)
557 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
558 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
559 PS_MIN_CYCLE (ps));
560 print_rtl_single (dump_file, move->insn);
561 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
562 fprintf (dump_file, "=========== =========== =====\n");
565 start = INT_MIN;
566 end = INT_MAX;
568 /* For dependencies of distance 1 between a producer ddg node A
569 and consumer ddg node B, we have a chain of dependencies:
571 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
573 where Mi is the ith move. For dependencies of distance 0 between
574 a producer ddg node A and consumer ddg node C, we have a chain of
575 dependencies:
577 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
579 where Mi' occupies the same position as Mi but occurs a stage later.
580 We can only schedule each move once, so if we have both types of
581 chain, we model the second as:
583 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
585 First handle the dependencies between the previously-scheduled
586 predecessor and the move. */
587 this_insn = ps_rtl_insn (ps, move->def);
588 this_latency = insn_latency (this_insn, move->insn);
589 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
590 this_time = SCHED_TIME (move->def) - this_distance * ii;
591 this_start = this_time + this_latency;
592 this_end = this_time + ii;
593 if (dump_file)
594 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
595 this_start, this_end, SCHED_TIME (move->def),
596 INSN_UID (this_insn), this_latency, this_distance,
597 INSN_UID (move->insn));
599 if (start < this_start)
600 start = this_start;
601 if (end > this_end)
602 end = this_end;
604 /* Handle the dependencies between the move and previously-scheduled
605 successors. */
606 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
608 this_insn = ps_rtl_insn (ps, u);
609 this_latency = insn_latency (move->insn, this_insn);
610 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
611 this_distance = -1;
612 else
613 this_distance = 0;
614 this_time = SCHED_TIME (u) + this_distance * ii;
615 this_start = this_time - ii;
616 this_end = this_time - this_latency;
617 if (dump_file)
618 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
619 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
620 this_latency, this_distance, INSN_UID (this_insn));
622 if (start < this_start)
623 start = this_start;
624 if (end > this_end)
625 end = this_end;
628 if (dump_file)
630 fprintf (dump_file, "----------- ----------- -----\n");
631 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
634 bitmap_clear (must_follow);
635 bitmap_set_bit (must_follow, move->def);
637 start = MAX (start, end - (ii - 1));
638 for (c = end; c >= start; c--)
640 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
641 move->uses, must_follow);
642 if (psi)
644 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
645 if (dump_file)
646 fprintf (dump_file, "\nScheduled register move INSN %d at"
647 " time %d, row %d\n\n", INSN_UID (move->insn), c,
648 SCHED_ROW (i_reg_move));
649 return true;
653 if (dump_file)
654 fprintf (dump_file, "\nNo available slot\n\n");
656 return false;
660 Breaking intra-loop register anti-dependences:
661 Each intra-loop register anti-dependence implies a cross-iteration true
662 dependence of distance 1. Therefore, we can remove such false dependencies
663 and figure out if the partial schedule broke them by checking if (for a
664 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
665 if so generate a register move. The number of such moves is equal to:
666 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
667 nreg_moves = ----------------------------------- + 1 - { dependence.
668 ii { 1 if not.
670 static bool
671 schedule_reg_moves (partial_schedule_ptr ps)
673 ddg_ptr g = ps->g;
674 int ii = ps->ii;
675 int i;
677 for (i = 0; i < g->num_nodes; i++)
679 ddg_node_ptr u = &g->nodes[i];
680 ddg_edge_ptr e;
681 int nreg_moves = 0, i_reg_move;
682 rtx prev_reg, old_reg;
683 int first_move;
684 int distances[2];
685 sbitmap distance1_uses;
686 rtx set = single_set (u->insn);
688 /* Skip instructions that do not set a register. */
689 if (set && !REG_P (SET_DEST (set)))
690 continue;
692 /* Compute the number of reg_moves needed for u, by looking at life
693 ranges started at u (excluding self-loops). */
694 distances[0] = distances[1] = false;
695 for (e = u->out; e; e = e->next_out)
696 if (e->type == TRUE_DEP && e->dest != e->src)
698 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
699 - SCHED_TIME (e->src->cuid)) / ii;
701 if (e->distance == 1)
702 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
703 - SCHED_TIME (e->src->cuid) + ii) / ii;
705 /* If dest precedes src in the schedule of the kernel, then dest
706 will read before src writes and we can save one reg_copy. */
707 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
708 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
709 nreg_moves4e--;
711 if (nreg_moves4e >= 1)
713 /* !single_set instructions are not supported yet and
714 thus we do not except to encounter them in the loop
715 except from the doloop part. For the latter case
716 we assume no regmoves are generated as the doloop
717 instructions are tied to the branch with an edge. */
718 gcc_assert (set);
719 /* If the instruction contains auto-inc register then
720 validate that the regmov is being generated for the
721 target regsiter rather then the inc'ed register. */
722 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
725 if (nreg_moves4e)
727 gcc_assert (e->distance < 2);
728 distances[e->distance] = true;
730 nreg_moves = MAX (nreg_moves, nreg_moves4e);
733 if (nreg_moves == 0)
734 continue;
736 /* Create NREG_MOVES register moves. */
737 first_move = ps->reg_moves.length ();
738 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves, true);
739 extend_node_sched_params (ps);
741 /* Record the moves associated with this node. */
742 first_move += ps->g->num_nodes;
744 /* Generate each move. */
745 old_reg = prev_reg = SET_DEST (set);
746 if (HARD_REGISTER_P (old_reg))
747 return false;
749 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
751 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
753 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
754 move->uses = sbitmap_alloc (first_move + nreg_moves);
755 move->old_reg = old_reg;
756 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
757 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
758 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
759 bitmap_clear (move->uses);
761 prev_reg = move->new_reg;
764 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
766 if (distance1_uses)
767 bitmap_clear (distance1_uses);
769 /* Every use of the register defined by node may require a different
770 copy of this register, depending on the time the use is scheduled.
771 Record which uses require which move results. */
772 for (e = u->out; e; e = e->next_out)
773 if (e->type == TRUE_DEP && e->dest != e->src)
775 int dest_copy = (SCHED_TIME (e->dest->cuid)
776 - SCHED_TIME (e->src->cuid)) / ii;
778 if (e->distance == 1)
779 dest_copy = (SCHED_TIME (e->dest->cuid)
780 - SCHED_TIME (e->src->cuid) + ii) / ii;
782 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
783 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
784 dest_copy--;
786 if (dest_copy)
788 ps_reg_move_info *move;
790 move = ps_reg_move (ps, first_move + dest_copy - 1);
791 bitmap_set_bit (move->uses, e->dest->cuid);
792 if (e->distance == 1)
793 bitmap_set_bit (distance1_uses, e->dest->cuid);
797 auto_sbitmap must_follow (first_move + nreg_moves);
798 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
799 if (!schedule_reg_move (ps, first_move + i_reg_move,
800 distance1_uses, must_follow))
801 break;
802 if (distance1_uses)
803 sbitmap_free (distance1_uses);
804 if (i_reg_move < nreg_moves)
805 return false;
807 return true;
810 /* Emit the moves associated with PS. Apply the substitutions
811 associated with them. */
812 static void
813 apply_reg_moves (partial_schedule_ptr ps)
815 ps_reg_move_info *move;
816 int i;
818 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
820 unsigned int i_use;
821 sbitmap_iterator sbi;
823 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
825 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
826 df_insn_rescan (ps->g->nodes[i_use].insn);
831 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
832 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
833 will move to cycle zero. */
834 static void
835 reset_sched_times (partial_schedule_ptr ps, int amount)
837 int row;
838 int ii = ps->ii;
839 ps_insn_ptr crr_insn;
841 for (row = 0; row < ii; row++)
842 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
844 int u = crr_insn->id;
845 int normalized_time = SCHED_TIME (u) - amount;
846 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
848 if (dump_file)
850 /* Print the scheduling times after the rotation. */
851 rtx_insn *insn = ps_rtl_insn (ps, u);
853 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
854 "crr_insn->cycle=%d, min_cycle=%d", u,
855 INSN_UID (insn), normalized_time, new_min_cycle);
856 if (JUMP_P (insn))
857 fprintf (dump_file, " (branch)");
858 fprintf (dump_file, "\n");
861 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
862 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
864 crr_insn->cycle = normalized_time;
865 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
869 /* Permute the insns according to their order in PS, from row 0 to
870 row ii-1, and position them right before LAST. This schedules
871 the insns of the loop kernel. */
872 static void
873 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
875 int ii = ps->ii;
876 int row;
877 ps_insn_ptr ps_ij;
879 for (row = 0; row < ii ; row++)
880 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
882 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
884 if (PREV_INSN (last) != insn)
886 if (ps_ij->id < ps->g->num_nodes)
887 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
888 PREV_INSN (last));
889 else
890 add_insn_before (insn, last, NULL);
895 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
896 respectively only if cycle C falls on the border of the scheduling
897 window boundaries marked by START and END cycles. STEP is the
898 direction of the window. */
899 static inline void
900 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
901 sbitmap *tmp_precede, sbitmap must_precede, int c,
902 int start, int end, int step)
904 *tmp_precede = NULL;
905 *tmp_follow = NULL;
907 if (c == start)
909 if (step == 1)
910 *tmp_precede = must_precede;
911 else /* step == -1. */
912 *tmp_follow = must_follow;
914 if (c == end - step)
916 if (step == 1)
917 *tmp_follow = must_follow;
918 else /* step == -1. */
919 *tmp_precede = must_precede;
924 /* Return True if the branch can be moved to row ii-1 while
925 normalizing the partial schedule PS to start from cycle zero and thus
926 optimize the SC. Otherwise return False. */
927 static bool
928 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
930 int amount = PS_MIN_CYCLE (ps);
931 int start, end, step;
932 int ii = ps->ii;
933 bool ok = false;
934 int stage_count, stage_count_curr;
936 /* Compare the SC after normalization and SC after bringing the branch
937 to row ii-1. If they are equal just bail out. */
938 stage_count = calculate_stage_count (ps, amount);
939 stage_count_curr =
940 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
942 if (stage_count == stage_count_curr)
944 if (dump_file)
945 fprintf (dump_file, "SMS SC already optimized.\n");
947 return false;
950 if (dump_file)
952 fprintf (dump_file, "SMS Trying to optimize branch location\n");
953 fprintf (dump_file, "SMS partial schedule before trial:\n");
954 print_partial_schedule (ps, dump_file);
957 /* First, normalize the partial scheduling. */
958 reset_sched_times (ps, amount);
959 rotate_partial_schedule (ps, amount);
960 if (dump_file)
962 fprintf (dump_file,
963 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
964 ii, stage_count);
965 print_partial_schedule (ps, dump_file);
968 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
969 return true;
971 auto_sbitmap sched_nodes (g->num_nodes);
972 bitmap_ones (sched_nodes);
974 /* Calculate the new placement of the branch. It should be in row
975 ii-1 and fall into it's scheduling window. */
976 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
977 &step, &end) == 0)
979 bool success;
980 ps_insn_ptr next_ps_i;
981 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
982 int row = SMODULO (branch_cycle, ps->ii);
983 int num_splits = 0;
984 sbitmap tmp_precede, tmp_follow;
985 int min_cycle, c;
987 if (dump_file)
988 fprintf (dump_file, "\nTrying to schedule node %d "
989 "INSN = %d in (%d .. %d) step %d\n",
990 g->closing_branch->cuid,
991 (INSN_UID (g->closing_branch->insn)), start, end, step);
993 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
994 if (step == 1)
996 c = start + ii - SMODULO (start, ii) - 1;
997 gcc_assert (c >= start);
998 if (c >= end)
1000 if (dump_file)
1001 fprintf (dump_file,
1002 "SMS failed to schedule branch at cycle: %d\n", c);
1003 return false;
1006 else
1008 c = start - SMODULO (start, ii) - 1;
1009 gcc_assert (c <= start);
1011 if (c <= end)
1013 if (dump_file)
1014 fprintf (dump_file,
1015 "SMS failed to schedule branch at cycle: %d\n", c);
1016 return false;
1020 auto_sbitmap must_precede (g->num_nodes);
1021 auto_sbitmap must_follow (g->num_nodes);
1023 /* Try to schedule the branch is it's new cycle. */
1024 calculate_must_precede_follow (g->closing_branch, start, end,
1025 step, ii, sched_nodes,
1026 must_precede, must_follow);
1028 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1029 must_precede, c, start, end, step);
1031 /* Find the element in the partial schedule related to the closing
1032 branch so we can remove it from it's current cycle. */
1033 for (next_ps_i = ps->rows[row];
1034 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1035 if (next_ps_i->id == g->closing_branch->cuid)
1036 break;
1038 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1039 remove_node_from_ps (ps, next_ps_i);
1040 success =
1041 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1042 sched_nodes, &num_splits,
1043 tmp_precede, tmp_follow);
1044 gcc_assert (num_splits == 0);
1045 if (!success)
1047 if (dump_file)
1048 fprintf (dump_file,
1049 "SMS failed to schedule branch at cycle: %d, "
1050 "bringing it back to cycle %d\n", c, branch_cycle);
1052 /* The branch was failed to be placed in row ii - 1.
1053 Put it back in it's original place in the partial
1054 schedualing. */
1055 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1056 must_precede, branch_cycle, start, end,
1057 step);
1058 success =
1059 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1060 branch_cycle, sched_nodes,
1061 &num_splits, tmp_precede,
1062 tmp_follow);
1063 gcc_assert (success && (num_splits == 0));
1064 ok = false;
1066 else
1068 /* The branch is placed in row ii - 1. */
1069 if (dump_file)
1070 fprintf (dump_file,
1071 "SMS success in moving branch to cycle %d\n", c);
1073 update_node_sched_params (g->closing_branch->cuid, ii, c,
1074 PS_MIN_CYCLE (ps));
1075 ok = true;
1078 /* This might have been added to a new first stage. */
1079 if (PS_MIN_CYCLE (ps) < min_cycle)
1080 reset_sched_times (ps, 0);
1083 return ok;
1086 static void
1087 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1088 int to_stage, rtx count_reg, class loop *loop)
1090 int row;
1091 ps_insn_ptr ps_ij;
1092 copy_bb_data id;
1094 for (row = 0; row < ps->ii; row++)
1095 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1097 int u = ps_ij->id;
1098 int first_u, last_u;
1099 rtx_insn *u_insn;
1101 /* Do not duplicate any insn which refers to count_reg as it
1102 belongs to the control part.
1103 The closing branch is scheduled as well and thus should
1104 be ignored.
1105 TODO: This should be done by analyzing the control part of
1106 the loop. */
1107 u_insn = ps_rtl_insn (ps, u);
1108 if (reg_mentioned_p (count_reg, u_insn)
1109 || JUMP_P (u_insn))
1110 continue;
1112 first_u = SCHED_STAGE (u);
1113 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1114 if (from_stage <= last_u && to_stage >= first_u)
1116 if (u < ps->g->num_nodes)
1117 duplicate_insn_chain (ps_first_note (ps, u), u_insn,
1118 loop, &id);
1119 else
1120 emit_insn (copy_rtx (PATTERN (u_insn)));
1126 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1127 static void
1128 generate_prolog_epilog (partial_schedule_ptr ps, class loop *loop,
1129 rtx count_reg, rtx count_init)
1131 int i;
1132 int last_stage = PS_STAGE_COUNT (ps) - 1;
1133 edge e;
1135 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1136 start_sequence ();
1138 if (!count_init)
1140 /* Generate instructions at the beginning of the prolog to
1141 adjust the loop count by STAGE_COUNT. If loop count is constant
1142 (count_init), this constant is adjusted by STAGE_COUNT in
1143 generate_prolog_epilog function. */
1144 rtx sub_reg = NULL_RTX;
1146 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1147 gen_int_mode (last_stage,
1148 GET_MODE (count_reg)),
1149 count_reg, 1, OPTAB_DIRECT);
1150 gcc_assert (REG_P (sub_reg));
1151 if (REGNO (sub_reg) != REGNO (count_reg))
1152 emit_move_insn (count_reg, sub_reg);
1155 for (i = 0; i < last_stage; i++)
1156 duplicate_insns_of_cycles (ps, 0, i, count_reg, loop);
1158 /* Put the prolog on the entry edge. */
1159 e = loop_preheader_edge (loop);
1160 split_edge_and_insert (e, get_insns ());
1161 if (!flag_resched_modulo_sched)
1162 e->dest->flags |= BB_DISABLE_SCHEDULE;
1164 end_sequence ();
1166 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1167 start_sequence ();
1169 for (i = 0; i < last_stage; i++)
1170 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg, loop);
1172 /* Put the epilogue on the exit edge. */
1173 gcc_assert (single_exit (loop));
1174 e = single_exit (loop);
1175 split_edge_and_insert (e, get_insns ());
1176 if (!flag_resched_modulo_sched)
1177 e->dest->flags |= BB_DISABLE_SCHEDULE;
1179 end_sequence ();
1182 /* Mark LOOP as software pipelined so the later
1183 scheduling passes don't touch it. */
1184 static void
1185 mark_loop_unsched (class loop *loop)
1187 unsigned i;
1188 basic_block *bbs = get_loop_body (loop);
1190 for (i = 0; i < loop->num_nodes; i++)
1191 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1193 free (bbs);
1196 /* Return true if all the BBs of the loop are empty except the
1197 loop header. */
1198 static bool
1199 loop_single_full_bb_p (class loop *loop)
1201 unsigned i;
1202 basic_block *bbs = get_loop_body (loop);
1204 for (i = 0; i < loop->num_nodes ; i++)
1206 rtx_insn *head, *tail;
1207 bool empty_bb = true;
1209 if (bbs[i] == loop->header)
1210 continue;
1212 /* Make sure that basic blocks other than the header
1213 have only notes labels or jumps. */
1214 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1215 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1217 if (NOTE_P (head) || LABEL_P (head)
1218 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1219 continue;
1220 empty_bb = false;
1221 break;
1224 if (! empty_bb)
1226 free (bbs);
1227 return false;
1230 free (bbs);
1231 return true;
1234 /* Dump file:line from INSN's location info to dump_file. */
1236 static void
1237 dump_insn_location (rtx_insn *insn)
1239 if (dump_file && INSN_HAS_LOCATION (insn))
1241 expanded_location xloc = insn_location (insn);
1242 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1246 /* A simple loop from SMS point of view; it is a loop that is composed of
1247 either a single basic block or two BBs - a header and a latch. */
1248 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1249 && (EDGE_COUNT (loop->latch->preds) == 1) \
1250 && (EDGE_COUNT (loop->latch->succs) == 1))
1252 /* Return true if the loop is in its canonical form and false if not.
1253 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1254 static bool
1255 loop_canon_p (class loop *loop)
1258 if (loop->inner || !loop_outer (loop))
1260 if (dump_file)
1261 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1262 return false;
1265 if (!single_exit (loop))
1267 if (dump_file)
1269 rtx_insn *insn = BB_END (loop->header);
1271 fprintf (dump_file, "SMS loop many exits");
1272 dump_insn_location (insn);
1273 fprintf (dump_file, "\n");
1275 return false;
1278 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1280 if (dump_file)
1282 rtx_insn *insn = BB_END (loop->header);
1284 fprintf (dump_file, "SMS loop many BBs.");
1285 dump_insn_location (insn);
1286 fprintf (dump_file, "\n");
1288 return false;
1291 return true;
1294 /* If there are more than one entry for the loop,
1295 make it one by splitting the first entry edge and
1296 redirecting the others to the new BB. */
1297 static void
1298 canon_loop (class loop *loop)
1300 edge e;
1301 edge_iterator i;
1303 /* Avoid annoying special cases of edges going to exit
1304 block. */
1305 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1306 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1307 split_edge (e);
1309 if (loop->latch == loop->header
1310 || EDGE_COUNT (loop->latch->succs) > 1)
1312 FOR_EACH_EDGE (e, i, loop->header->preds)
1313 if (e->src == loop->latch)
1314 break;
1315 split_edge (e);
1319 /* Setup infos. */
1320 static void
1321 setup_sched_infos (void)
1323 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1324 sizeof (sms_common_sched_info));
1325 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1326 common_sched_info = &sms_common_sched_info;
1328 sched_deps_info = &sms_sched_deps_info;
1329 current_sched_info = &sms_sched_info;
1332 /* Probability in % that the sms-ed loop rolls enough so that optimized
1333 version may be entered. Just a guess. */
1334 #define PROB_SMS_ENOUGH_ITERATIONS 80
1336 /* Main entry point, perform SMS scheduling on the loops of the function
1337 that consist of single basic blocks. */
1338 static void
1339 sms_schedule (void)
1341 rtx_insn *insn;
1342 ddg_ptr *g_arr, g;
1343 int * node_order;
1344 int maxii, max_asap;
1345 partial_schedule_ptr ps;
1346 basic_block bb = NULL;
1347 class loop *loop;
1348 basic_block condition_bb = NULL;
1349 edge latch_edge;
1350 HOST_WIDE_INT trip_count, max_trip_count;
1352 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1353 | LOOPS_HAVE_RECORDED_EXITS);
1354 if (number_of_loops (cfun) <= 1)
1356 loop_optimizer_finalize ();
1357 return; /* There are no loops to schedule. */
1360 /* Initialize issue_rate. */
1361 if (targetm.sched.issue_rate)
1363 int temp = reload_completed;
1365 reload_completed = 1;
1366 issue_rate = targetm.sched.issue_rate ();
1367 reload_completed = temp;
1369 else
1370 issue_rate = 1;
1372 /* Initialize the scheduler. */
1373 setup_sched_infos ();
1374 haifa_sched_init ();
1376 /* Allocate memory to hold the DDG array one entry for each loop.
1377 We use loop->num as index into this array. */
1378 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1380 if (dump_file)
1382 fprintf (dump_file, "\n\nSMS analysis phase\n");
1383 fprintf (dump_file, "===================\n\n");
1386 /* Build DDGs for all the relevant loops and hold them in G_ARR
1387 indexed by the loop index. */
1388 FOR_EACH_LOOP (loop, 0)
1390 rtx_insn *head, *tail;
1391 rtx count_reg;
1393 /* For debugging. */
1394 if (dbg_cnt (sms_sched_loop) == false)
1396 if (dump_file)
1397 fprintf (dump_file, "SMS reached max limit... \n");
1399 break;
1402 if (dump_file)
1404 rtx_insn *insn = BB_END (loop->header);
1406 fprintf (dump_file, "SMS loop num: %d", loop->num);
1407 dump_insn_location (insn);
1408 fprintf (dump_file, "\n");
1411 if (! loop_canon_p (loop))
1412 continue;
1414 if (! loop_single_full_bb_p (loop))
1416 if (dump_file)
1417 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1418 continue;
1421 bb = loop->header;
1423 get_ebb_head_tail (bb, bb, &head, &tail);
1424 latch_edge = loop_latch_edge (loop);
1425 gcc_assert (single_exit (loop));
1426 trip_count = get_estimated_loop_iterations_int (loop);
1427 max_trip_count = get_max_loop_iterations_int (loop);
1429 /* Perform SMS only on loops that their average count is above threshold. */
1431 if ( latch_edge->count () > profile_count::zero ()
1432 && (latch_edge->count()
1433 < single_exit (loop)->count ().apply_scale
1434 (param_sms_loop_average_count_threshold, 1)))
1436 if (dump_file)
1438 dump_insn_location (tail);
1439 fprintf (dump_file, "\nSMS single-bb-loop\n");
1440 if (profile_info && flag_branch_probabilities)
1442 fprintf (dump_file, "SMS loop-count ");
1443 fprintf (dump_file, "%" PRId64,
1444 (int64_t) bb->count.to_gcov_type ());
1445 fprintf (dump_file, "\n");
1446 fprintf (dump_file, "SMS trip-count ");
1447 fprintf (dump_file, "%" PRId64 "max %" PRId64,
1448 (int64_t) trip_count, (int64_t) max_trip_count);
1449 fprintf (dump_file, "\n");
1452 continue;
1455 /* Make sure this is a doloop. */
1456 if ( !(count_reg = doloop_register_get (head, tail)))
1458 if (dump_file)
1459 fprintf (dump_file, "SMS doloop_register_get failed\n");
1460 continue;
1463 /* Don't handle BBs with calls or barriers
1464 or !single_set with the exception of instructions that include
1465 count_reg---these instructions are part of the control part
1466 that do-loop recognizes.
1467 ??? Should handle insns defining subregs. */
1468 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1470 rtx set;
1472 if (CALL_P (insn)
1473 || BARRIER_P (insn)
1474 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1475 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1476 && !reg_mentioned_p (count_reg, insn))
1477 || (INSN_P (insn) && (set = single_set (insn))
1478 && GET_CODE (SET_DEST (set)) == SUBREG))
1479 break;
1482 if (insn != NEXT_INSN (tail))
1484 if (dump_file)
1486 if (CALL_P (insn))
1487 fprintf (dump_file, "SMS loop-with-call\n");
1488 else if (BARRIER_P (insn))
1489 fprintf (dump_file, "SMS loop-with-barrier\n");
1490 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1491 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1492 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1493 else
1494 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1495 print_rtl_single (dump_file, insn);
1498 continue;
1501 /* Always schedule the closing branch with the rest of the
1502 instructions. The branch is rotated to be in row ii-1 at the
1503 end of the scheduling procedure to make sure it's the last
1504 instruction in the iteration. */
1505 if (! (g = create_ddg (bb, 1)))
1507 if (dump_file)
1508 fprintf (dump_file, "SMS create_ddg failed\n");
1509 continue;
1512 g_arr[loop->num] = g;
1513 if (dump_file)
1514 fprintf (dump_file, "...OK\n");
1517 if (dump_file)
1519 fprintf (dump_file, "\nSMS transformation phase\n");
1520 fprintf (dump_file, "=========================\n\n");
1523 /* We don't want to perform SMS on new loops - created by versioning. */
1524 FOR_EACH_LOOP (loop, 0)
1526 rtx_insn *head, *tail;
1527 rtx count_reg;
1528 rtx_insn *count_init;
1529 int mii, rec_mii, stage_count, min_cycle;
1530 int64_t loop_count = 0;
1531 bool opt_sc_p;
1533 if (! (g = g_arr[loop->num]))
1534 continue;
1536 if (dump_file)
1538 rtx_insn *insn = BB_END (loop->header);
1540 fprintf (dump_file, "SMS loop num: %d", loop->num);
1541 dump_insn_location (insn);
1542 fprintf (dump_file, "\n");
1544 print_ddg (dump_file, g);
1547 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1549 latch_edge = loop_latch_edge (loop);
1550 gcc_assert (single_exit (loop));
1551 trip_count = get_estimated_loop_iterations_int (loop);
1552 max_trip_count = get_max_loop_iterations_int (loop);
1554 if (dump_file)
1556 dump_insn_location (tail);
1557 fprintf (dump_file, "\nSMS single-bb-loop\n");
1558 if (profile_info && flag_branch_probabilities)
1560 fprintf (dump_file, "SMS loop-count ");
1561 fprintf (dump_file, "%" PRId64,
1562 (int64_t) bb->count.to_gcov_type ());
1563 fprintf (dump_file, "\n");
1565 fprintf (dump_file, "SMS doloop\n");
1566 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1567 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1568 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1572 /* In case of th loop have doloop register it gets special
1573 handling. */
1574 count_init = NULL;
1575 if ((count_reg = doloop_register_get (head, tail)))
1577 basic_block pre_header;
1579 pre_header = loop_preheader_edge (loop)->src;
1580 count_init = const_iteration_count (count_reg, pre_header,
1581 &loop_count);
1583 gcc_assert (count_reg);
1585 if (dump_file && count_init)
1587 fprintf (dump_file, "SMS const-doloop ");
1588 fprintf (dump_file, "%" PRId64,
1589 loop_count);
1590 fprintf (dump_file, "\n");
1593 node_order = XNEWVEC (int, g->num_nodes);
1595 mii = 1; /* Need to pass some estimate of mii. */
1596 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1597 mii = MAX (res_MII (g), rec_mii);
1598 mii = MAX (mii, 1);
1599 maxii = MAX (max_asap, param_sms_max_ii_factor * mii);
1601 if (dump_file)
1602 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1603 rec_mii, mii, maxii);
1605 for (;;)
1607 set_node_sched_params (g);
1609 stage_count = 0;
1610 opt_sc_p = false;
1611 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1613 if (ps)
1615 /* Try to achieve optimized SC by normalizing the partial
1616 schedule (having the cycles start from cycle zero).
1617 The branch location must be placed in row ii-1 in the
1618 final scheduling. If failed, shift all instructions to
1619 position the branch in row ii-1. */
1620 opt_sc_p = optimize_sc (ps, g);
1621 if (opt_sc_p)
1622 stage_count = calculate_stage_count (ps, 0);
1623 else
1625 /* Bring the branch to cycle ii-1. */
1626 int amount = (SCHED_TIME (g->closing_branch->cuid)
1627 - (ps->ii - 1));
1629 if (dump_file)
1630 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1632 stage_count = calculate_stage_count (ps, amount);
1635 gcc_assert (stage_count >= 1);
1638 /* The default value of param_sms_min_sc is 2 as stage count of
1639 1 means that there is no interleaving between iterations thus
1640 we let the scheduling passes do the job in this case. */
1641 if (stage_count < param_sms_min_sc
1642 || (count_init && (loop_count <= stage_count))
1643 || (max_trip_count >= 0 && max_trip_count <= stage_count)
1644 || (trip_count >= 0 && trip_count <= stage_count))
1646 if (dump_file)
1648 fprintf (dump_file, "SMS failed... \n");
1649 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1650 " loop-count=", stage_count);
1651 fprintf (dump_file, "%" PRId64, loop_count);
1652 fprintf (dump_file, ", trip-count=");
1653 fprintf (dump_file, "%" PRId64 "max %" PRId64,
1654 (int64_t) trip_count, (int64_t) max_trip_count);
1655 fprintf (dump_file, ")\n");
1657 break;
1660 if (!opt_sc_p)
1662 /* Rotate the partial schedule to have the branch in row ii-1. */
1663 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1665 reset_sched_times (ps, amount);
1666 rotate_partial_schedule (ps, amount);
1669 set_columns_for_ps (ps);
1671 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1672 if (!schedule_reg_moves (ps))
1674 mii = ps->ii + 1;
1675 free_partial_schedule (ps);
1676 continue;
1679 /* Moves that handle incoming values might have been added
1680 to a new first stage. Bump the stage count if so.
1682 ??? Perhaps we could consider rotating the schedule here
1683 instead? */
1684 if (PS_MIN_CYCLE (ps) < min_cycle)
1686 reset_sched_times (ps, 0);
1687 stage_count++;
1690 /* The stage count should now be correct without rotation. */
1691 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1692 PS_STAGE_COUNT (ps) = stage_count;
1694 canon_loop (loop);
1696 if (dump_file)
1698 dump_insn_location (tail);
1699 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1700 ps->ii, stage_count);
1701 print_partial_schedule (ps, dump_file);
1704 /* case the BCT count is not known , Do loop-versioning */
1705 if (count_reg && ! count_init)
1707 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1708 gen_int_mode (stage_count,
1709 GET_MODE (count_reg)));
1710 profile_probability prob = profile_probability::guessed_always ()
1711 .apply_scale (PROB_SMS_ENOUGH_ITERATIONS, 100);
1713 loop_version (loop, comp_rtx, &condition_bb,
1714 prob, prob.invert (),
1715 prob, prob.invert (), true);
1718 /* Set new iteration count of loop kernel. */
1719 if (count_reg && count_init)
1720 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1721 - stage_count + 1);
1723 /* Now apply the scheduled kernel to the RTL of the loop. */
1724 permute_partial_schedule (ps, g->closing_branch->first_note);
1726 /* Mark this loop as software pipelined so the later
1727 scheduling passes don't touch it. */
1728 if (! flag_resched_modulo_sched)
1729 mark_loop_unsched (loop);
1731 /* The life-info is not valid any more. */
1732 df_set_bb_dirty (g->bb);
1734 apply_reg_moves (ps);
1735 if (dump_file)
1736 print_node_sched_params (dump_file, g->num_nodes, ps);
1737 /* Generate prolog and epilog. */
1738 generate_prolog_epilog (ps, loop, count_reg, count_init);
1739 break;
1742 free_partial_schedule (ps);
1743 node_sched_param_vec.release ();
1744 free (node_order);
1745 free_ddg (g);
1748 free (g_arr);
1750 /* Release scheduler data, needed until now because of DFA. */
1751 haifa_sched_finish ();
1752 loop_optimizer_finalize ();
1755 /* The SMS scheduling algorithm itself
1756 -----------------------------------
1757 Input: 'O' an ordered list of insns of a loop.
1758 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1760 'Q' is the empty Set
1761 'PS' is the partial schedule; it holds the currently scheduled nodes with
1762 their cycle/slot.
1763 'PSP' previously scheduled predecessors.
1764 'PSS' previously scheduled successors.
1765 't(u)' the cycle where u is scheduled.
1766 'l(u)' is the latency of u.
1767 'd(v,u)' is the dependence distance from v to u.
1768 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1769 the node ordering phase.
1770 'check_hardware_resources_conflicts(u, PS, c)'
1771 run a trace around cycle/slot through DFA model
1772 to check resource conflicts involving instruction u
1773 at cycle c given the partial schedule PS.
1774 'add_to_partial_schedule_at_time(u, PS, c)'
1775 Add the node/instruction u to the partial schedule
1776 PS at time c.
1777 'calculate_register_pressure(PS)'
1778 Given a schedule of instructions, calculate the register
1779 pressure it implies. One implementation could be the
1780 maximum number of overlapping live ranges.
1781 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1782 registers available in the hardware.
1784 1. II = MII.
1785 2. PS = empty list
1786 3. for each node u in O in pre-computed order
1787 4. if (PSP(u) != Q && PSS(u) == Q) then
1788 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1789 6. start = Early_start; end = Early_start + II - 1; step = 1
1790 11. else if (PSP(u) == Q && PSS(u) != Q) then
1791 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1792 13. start = Late_start; end = Late_start - II + 1; step = -1
1793 14. else if (PSP(u) != Q && PSS(u) != Q) then
1794 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1795 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1796 17. start = Early_start;
1797 18. end = min(Early_start + II - 1 , Late_start);
1798 19. step = 1
1799 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1800 21. start = ASAP(u); end = start + II - 1; step = 1
1801 22. endif
1803 23. success = false
1804 24. for (c = start ; c != end ; c += step)
1805 25. if check_hardware_resources_conflicts(u, PS, c) then
1806 26. add_to_partial_schedule_at_time(u, PS, c)
1807 27. success = true
1808 28. break
1809 29. endif
1810 30. endfor
1811 31. if (success == false) then
1812 32. II = II + 1
1813 33. if (II > maxII) then
1814 34. finish - failed to schedule
1815 35. endif
1816 36. goto 2.
1817 37. endif
1818 38. endfor
1819 39. if (calculate_register_pressure(PS) > maxRP) then
1820 40. goto 32.
1821 41. endif
1822 42. compute epilogue & prologue
1823 43. finish - succeeded to schedule
1825 ??? The algorithm restricts the scheduling window to II cycles.
1826 In rare cases, it may be better to allow windows of II+1 cycles.
1827 The window would then start and end on the same row, but with
1828 different "must precede" and "must follow" requirements. */
1830 /* A threshold for the number of repeated unsuccessful attempts to insert
1831 an empty row, before we flush the partial schedule and start over. */
1832 #define MAX_SPLIT_NUM 10
1833 /* Given the partial schedule PS, this function calculates and returns the
1834 cycles in which we can schedule the node with the given index I.
1835 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1836 noticed that there are several cases in which we fail to SMS the loop
1837 because the sched window of a node is empty due to tight data-deps. In
1838 such cases we want to unschedule some of the predecessors/successors
1839 until we get non-empty scheduling window. It returns -1 if the
1840 scheduling window is empty and zero otherwise. */
1842 static int
1843 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1844 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1845 int *end_p)
1847 int start, step, end;
1848 int early_start, late_start;
1849 ddg_edge_ptr e;
1850 auto_sbitmap psp (ps->g->num_nodes);
1851 auto_sbitmap pss (ps->g->num_nodes);
1852 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1853 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1854 int psp_not_empty;
1855 int pss_not_empty;
1856 int count_preds;
1857 int count_succs;
1859 /* 1. compute sched window for u (start, end, step). */
1860 bitmap_clear (psp);
1861 bitmap_clear (pss);
1862 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1863 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1865 /* We first compute a forward range (start <= end), then decide whether
1866 to reverse it. */
1867 early_start = INT_MIN;
1868 late_start = INT_MAX;
1869 start = INT_MIN;
1870 end = INT_MAX;
1871 step = 1;
1873 count_preds = 0;
1874 count_succs = 0;
1876 if (dump_file && (psp_not_empty || pss_not_empty))
1878 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1879 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1880 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1881 "start", "early start", "late start", "end", "time");
1882 fprintf (dump_file, "=========== =========== =========== ==========="
1883 " =====\n");
1885 /* Calculate early_start and limit end. Both bounds are inclusive. */
1886 if (psp_not_empty)
1887 for (e = u_node->in; e != 0; e = e->next_in)
1889 int v = e->src->cuid;
1891 if (bitmap_bit_p (sched_nodes, v))
1893 int p_st = SCHED_TIME (v);
1894 int earliest = p_st + e->latency - (e->distance * ii);
1895 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1897 if (dump_file)
1899 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1900 "", earliest, "", latest, p_st);
1901 print_ddg_edge (dump_file, e);
1902 fprintf (dump_file, "\n");
1905 early_start = MAX (early_start, earliest);
1906 end = MIN (end, latest);
1908 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1909 count_preds++;
1913 /* Calculate late_start and limit start. Both bounds are inclusive. */
1914 if (pss_not_empty)
1915 for (e = u_node->out; e != 0; e = e->next_out)
1917 int v = e->dest->cuid;
1919 if (bitmap_bit_p (sched_nodes, v))
1921 int s_st = SCHED_TIME (v);
1922 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1923 int latest = s_st - e->latency + (e->distance * ii);
1925 if (dump_file)
1927 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1928 earliest, "", latest, "", s_st);
1929 print_ddg_edge (dump_file, e);
1930 fprintf (dump_file, "\n");
1933 start = MAX (start, earliest);
1934 late_start = MIN (late_start, latest);
1936 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1937 count_succs++;
1941 if (dump_file && (psp_not_empty || pss_not_empty))
1943 fprintf (dump_file, "----------- ----------- ----------- -----------"
1944 " -----\n");
1945 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1946 start, early_start, late_start, end, "",
1947 "(max, max, min, min)");
1950 /* Get a target scheduling window no bigger than ii. */
1951 if (early_start == INT_MIN && late_start == INT_MAX)
1952 early_start = NODE_ASAP (u_node);
1953 else if (early_start == INT_MIN)
1954 early_start = late_start - (ii - 1);
1955 late_start = MIN (late_start, early_start + (ii - 1));
1957 /* Apply memory dependence limits. */
1958 start = MAX (start, early_start);
1959 end = MIN (end, late_start);
1961 if (dump_file && (psp_not_empty || pss_not_empty))
1962 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1963 "", start, end, "", "");
1965 /* If there are at least as many successors as predecessors, schedule the
1966 node close to its successors. */
1967 if (pss_not_empty && count_succs >= count_preds)
1969 std::swap (start, end);
1970 step = -1;
1973 /* Now that we've finalized the window, make END an exclusive rather
1974 than an inclusive bound. */
1975 end += step;
1977 *start_p = start;
1978 *step_p = step;
1979 *end_p = end;
1981 if ((start >= end && step == 1) || (start <= end && step == -1))
1983 if (dump_file)
1984 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
1985 start, end, step);
1986 return -1;
1989 return 0;
1992 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
1993 node currently been scheduled. At the end of the calculation
1994 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
1995 U_NODE which are (1) already scheduled in the first/last row of
1996 U_NODE's scheduling window, (2) whose dependence inequality with U
1997 becomes an equality when U is scheduled in this same row, and (3)
1998 whose dependence latency is zero.
2000 The first and last rows are calculated using the following parameters:
2001 START/END rows - The cycles that begins/ends the traversal on the window;
2002 searching for an empty cycle to schedule U_NODE.
2003 STEP - The direction in which we traverse the window.
2004 II - The initiation interval. */
2006 static void
2007 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2008 int step, int ii, sbitmap sched_nodes,
2009 sbitmap must_precede, sbitmap must_follow)
2011 ddg_edge_ptr e;
2012 int first_cycle_in_window, last_cycle_in_window;
2014 gcc_assert (must_precede && must_follow);
2016 /* Consider the following scheduling window:
2017 {first_cycle_in_window, first_cycle_in_window+1, ...,
2018 last_cycle_in_window}. If step is 1 then the following will be
2019 the order we traverse the window: {start=first_cycle_in_window,
2020 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2021 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2022 end=first_cycle_in_window-1} if step is -1. */
2023 first_cycle_in_window = (step == 1) ? start : end - step;
2024 last_cycle_in_window = (step == 1) ? end - step : start;
2026 bitmap_clear (must_precede);
2027 bitmap_clear (must_follow);
2029 if (dump_file)
2030 fprintf (dump_file, "\nmust_precede: ");
2032 /* Instead of checking if:
2033 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2034 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2035 first_cycle_in_window)
2036 && e->latency == 0
2037 we use the fact that latency is non-negative:
2038 SCHED_TIME (e->src) - (e->distance * ii) <=
2039 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2040 first_cycle_in_window
2041 and check only if
2042 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2043 for (e = u_node->in; e != 0; e = e->next_in)
2044 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2045 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2046 first_cycle_in_window))
2048 if (dump_file)
2049 fprintf (dump_file, "%d ", e->src->cuid);
2051 bitmap_set_bit (must_precede, e->src->cuid);
2054 if (dump_file)
2055 fprintf (dump_file, "\nmust_follow: ");
2057 /* Instead of checking if:
2058 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2059 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2060 last_cycle_in_window)
2061 && e->latency == 0
2062 we use the fact that latency is non-negative:
2063 SCHED_TIME (e->dest) + (e->distance * ii) >=
2064 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2065 last_cycle_in_window
2066 and check only if
2067 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2068 for (e = u_node->out; e != 0; e = e->next_out)
2069 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2070 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2071 last_cycle_in_window))
2073 if (dump_file)
2074 fprintf (dump_file, "%d ", e->dest->cuid);
2076 bitmap_set_bit (must_follow, e->dest->cuid);
2079 if (dump_file)
2080 fprintf (dump_file, "\n");
2083 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2084 parameters to decide if that's possible:
2085 PS - The partial schedule.
2086 U - The serial number of U_NODE.
2087 NUM_SPLITS - The number of row splits made so far.
2088 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2089 the first row of the scheduling window)
2090 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2091 last row of the scheduling window) */
2093 static bool
2094 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2095 int u, int cycle, sbitmap sched_nodes,
2096 int *num_splits, sbitmap must_precede,
2097 sbitmap must_follow)
2099 ps_insn_ptr psi;
2100 bool success = 0;
2102 verify_partial_schedule (ps, sched_nodes);
2103 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2104 if (psi)
2106 SCHED_TIME (u) = cycle;
2107 bitmap_set_bit (sched_nodes, u);
2108 success = 1;
2109 *num_splits = 0;
2110 if (dump_file)
2111 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2115 return success;
2118 /* This function implements the scheduling algorithm for SMS according to the
2119 above algorithm. */
2120 static partial_schedule_ptr
2121 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2123 int ii = mii;
2124 int i, c, success, num_splits = 0;
2125 int flush_and_start_over = true;
2126 int num_nodes = g->num_nodes;
2127 int start, end, step; /* Place together into one struct? */
2128 auto_sbitmap sched_nodes (num_nodes);
2129 auto_sbitmap must_precede (num_nodes);
2130 auto_sbitmap must_follow (num_nodes);
2131 auto_sbitmap tobe_scheduled (num_nodes);
2133 /* Value of param_sms_dfa_history is a limit on the number of cycles that
2134 resource conflicts can span. ??? Should be provided by DFA, and be
2135 dependent on the type of insn scheduled. Set to 0 by default to save
2136 compile time. */
2137 partial_schedule_ptr ps = create_partial_schedule (ii, g,
2138 param_sms_dfa_history);
2140 bitmap_ones (tobe_scheduled);
2141 bitmap_clear (sched_nodes);
2143 while (flush_and_start_over && (ii < maxii))
2146 if (dump_file)
2147 fprintf (dump_file, "Starting with ii=%d\n", ii);
2148 flush_and_start_over = false;
2149 bitmap_clear (sched_nodes);
2151 for (i = 0; i < num_nodes; i++)
2153 int u = nodes_order[i];
2154 ddg_node_ptr u_node = &ps->g->nodes[u];
2155 rtx_insn *insn = u_node->insn;
2157 gcc_checking_assert (NONDEBUG_INSN_P (insn));
2159 if (bitmap_bit_p (sched_nodes, u))
2160 continue;
2162 /* Try to get non-empty scheduling window. */
2163 success = 0;
2164 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2165 &step, &end) == 0)
2167 if (dump_file)
2168 fprintf (dump_file, "\nTrying to schedule node %d "
2169 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2170 (g->nodes[u].insn)), start, end, step);
2172 gcc_assert ((step > 0 && start < end)
2173 || (step < 0 && start > end));
2175 calculate_must_precede_follow (u_node, start, end, step, ii,
2176 sched_nodes, must_precede,
2177 must_follow);
2179 for (c = start; c != end; c += step)
2181 sbitmap tmp_precede, tmp_follow;
2183 set_must_precede_follow (&tmp_follow, must_follow,
2184 &tmp_precede, must_precede,
2185 c, start, end, step);
2186 success =
2187 try_scheduling_node_in_cycle (ps, u, c,
2188 sched_nodes,
2189 &num_splits, tmp_precede,
2190 tmp_follow);
2191 if (success)
2192 break;
2195 verify_partial_schedule (ps, sched_nodes);
2197 if (!success)
2199 int split_row;
2201 if (ii++ == maxii)
2202 break;
2204 if (num_splits >= MAX_SPLIT_NUM)
2206 num_splits = 0;
2207 flush_and_start_over = true;
2208 verify_partial_schedule (ps, sched_nodes);
2209 reset_partial_schedule (ps, ii);
2210 verify_partial_schedule (ps, sched_nodes);
2211 break;
2214 num_splits++;
2215 /* The scheduling window is exclusive of 'end'
2216 whereas compute_split_window() expects an inclusive,
2217 ordered range. */
2218 if (step == 1)
2219 split_row = compute_split_row (sched_nodes, start, end - 1,
2220 ps->ii, u_node);
2221 else
2222 split_row = compute_split_row (sched_nodes, end + 1, start,
2223 ps->ii, u_node);
2225 ps_insert_empty_row (ps, split_row, sched_nodes);
2226 i--; /* Go back and retry node i. */
2228 if (dump_file)
2229 fprintf (dump_file, "num_splits=%d\n", num_splits);
2232 /* ??? If (success), check register pressure estimates. */
2233 } /* Continue with next node. */
2234 } /* While flush_and_start_over. */
2235 if (ii >= maxii)
2237 free_partial_schedule (ps);
2238 ps = NULL;
2240 else
2241 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2243 return ps;
2246 /* This function inserts a new empty row into PS at the position
2247 according to SPLITROW, keeping all already scheduled instructions
2248 intact and updating their SCHED_TIME and cycle accordingly. */
2249 static void
2250 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2251 sbitmap sched_nodes)
2253 ps_insn_ptr crr_insn;
2254 ps_insn_ptr *rows_new;
2255 int ii = ps->ii;
2256 int new_ii = ii + 1;
2257 int row;
2258 int *rows_length_new;
2260 verify_partial_schedule (ps, sched_nodes);
2262 /* We normalize sched_time and rotate ps to have only non-negative sched
2263 times, for simplicity of updating cycles after inserting new row. */
2264 split_row -= ps->min_cycle;
2265 split_row = SMODULO (split_row, ii);
2266 if (dump_file)
2267 fprintf (dump_file, "split_row=%d\n", split_row);
2269 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2270 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2272 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2273 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2274 for (row = 0; row < split_row; row++)
2276 rows_new[row] = ps->rows[row];
2277 rows_length_new[row] = ps->rows_length[row];
2278 ps->rows[row] = NULL;
2279 for (crr_insn = rows_new[row];
2280 crr_insn; crr_insn = crr_insn->next_in_row)
2282 int u = crr_insn->id;
2283 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2285 SCHED_TIME (u) = new_time;
2286 crr_insn->cycle = new_time;
2287 SCHED_ROW (u) = new_time % new_ii;
2288 SCHED_STAGE (u) = new_time / new_ii;
2293 rows_new[split_row] = NULL;
2295 for (row = split_row; row < ii; row++)
2297 rows_new[row + 1] = ps->rows[row];
2298 rows_length_new[row + 1] = ps->rows_length[row];
2299 ps->rows[row] = NULL;
2300 for (crr_insn = rows_new[row + 1];
2301 crr_insn; crr_insn = crr_insn->next_in_row)
2303 int u = crr_insn->id;
2304 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2306 SCHED_TIME (u) = new_time;
2307 crr_insn->cycle = new_time;
2308 SCHED_ROW (u) = new_time % new_ii;
2309 SCHED_STAGE (u) = new_time / new_ii;
2313 /* Updating ps. */
2314 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2315 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2316 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2317 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2318 free (ps->rows);
2319 ps->rows = rows_new;
2320 free (ps->rows_length);
2321 ps->rows_length = rows_length_new;
2322 ps->ii = new_ii;
2323 gcc_assert (ps->min_cycle >= 0);
2325 verify_partial_schedule (ps, sched_nodes);
2327 if (dump_file)
2328 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2329 ps->max_cycle);
2332 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2333 UP which are the boundaries of it's scheduling window; compute using
2334 SCHED_NODES and II a row in the partial schedule that can be split
2335 which will separate a critical predecessor from a critical successor
2336 thereby expanding the window, and return it. */
2337 static int
2338 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2339 ddg_node_ptr u_node)
2341 ddg_edge_ptr e;
2342 int lower = INT_MIN, upper = INT_MAX;
2343 int crit_pred = -1;
2344 int crit_succ = -1;
2345 int crit_cycle;
2347 for (e = u_node->in; e != 0; e = e->next_in)
2349 int v = e->src->cuid;
2351 if (bitmap_bit_p (sched_nodes, v)
2352 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2353 if (SCHED_TIME (v) > lower)
2355 crit_pred = v;
2356 lower = SCHED_TIME (v);
2360 if (crit_pred >= 0)
2362 crit_cycle = SCHED_TIME (crit_pred) + 1;
2363 return SMODULO (crit_cycle, ii);
2366 for (e = u_node->out; e != 0; e = e->next_out)
2368 int v = e->dest->cuid;
2370 if (bitmap_bit_p (sched_nodes, v)
2371 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2372 if (SCHED_TIME (v) < upper)
2374 crit_succ = v;
2375 upper = SCHED_TIME (v);
2379 if (crit_succ >= 0)
2381 crit_cycle = SCHED_TIME (crit_succ);
2382 return SMODULO (crit_cycle, ii);
2385 if (dump_file)
2386 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2388 return SMODULO ((low + up + 1) / 2, ii);
2391 static void
2392 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2394 int row;
2395 ps_insn_ptr crr_insn;
2397 for (row = 0; row < ps->ii; row++)
2399 int length = 0;
2401 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2403 int u = crr_insn->id;
2405 length++;
2406 gcc_assert (bitmap_bit_p (sched_nodes, u));
2407 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2408 popcount (sched_nodes) == number of insns in ps. */
2409 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2410 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2413 gcc_assert (ps->rows_length[row] == length);
2418 /* This page implements the algorithm for ordering the nodes of a DDG
2419 for modulo scheduling, activated through the
2420 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2422 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2423 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2424 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2425 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2426 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2427 #define DEPTH(x) (ASAP ((x)))
2429 typedef struct node_order_params * nopa;
2431 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2432 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2433 static nopa calculate_order_params (ddg_ptr, int, int *);
2434 static int find_max_asap (ddg_ptr, sbitmap);
2435 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2436 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2438 enum sms_direction {BOTTOMUP, TOPDOWN};
2440 struct node_order_params
2442 int asap;
2443 int alap;
2444 int height;
2447 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2448 static void
2449 check_nodes_order (int *node_order, int num_nodes)
2451 int i;
2452 auto_sbitmap tmp (num_nodes);
2454 bitmap_clear (tmp);
2456 if (dump_file)
2457 fprintf (dump_file, "SMS final nodes order: \n");
2459 for (i = 0; i < num_nodes; i++)
2461 int u = node_order[i];
2463 if (dump_file)
2464 fprintf (dump_file, "%d ", u);
2465 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2467 bitmap_set_bit (tmp, u);
2470 if (dump_file)
2471 fprintf (dump_file, "\n");
2474 /* Order the nodes of G for scheduling and pass the result in
2475 NODE_ORDER. Also set aux.count of each node to ASAP.
2476 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2477 static int
2478 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2480 int i;
2481 int rec_mii = 0;
2482 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2484 nopa nops = calculate_order_params (g, mii, pmax_asap);
2486 if (dump_file)
2487 print_sccs (dump_file, sccs, g);
2489 order_nodes_of_sccs (sccs, node_order);
2491 if (sccs->num_sccs > 0)
2492 /* First SCC has the largest recurrence_length. */
2493 rec_mii = sccs->sccs[0]->recurrence_length;
2495 /* Save ASAP before destroying node_order_params. */
2496 for (i = 0; i < g->num_nodes; i++)
2498 ddg_node_ptr v = &g->nodes[i];
2499 v->aux.count = ASAP (v);
2502 free (nops);
2503 free_ddg_all_sccs (sccs);
2504 check_nodes_order (node_order, g->num_nodes);
2506 return rec_mii;
2509 static void
2510 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2512 int i, pos = 0;
2513 ddg_ptr g = all_sccs->ddg;
2514 int num_nodes = g->num_nodes;
2515 auto_sbitmap prev_sccs (num_nodes);
2516 auto_sbitmap on_path (num_nodes);
2517 auto_sbitmap tmp (num_nodes);
2518 auto_sbitmap ones (num_nodes);
2520 bitmap_clear (prev_sccs);
2521 bitmap_ones (ones);
2523 /* Perform the node ordering starting from the SCC with the highest recMII.
2524 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2525 for (i = 0; i < all_sccs->num_sccs; i++)
2527 ddg_scc_ptr scc = all_sccs->sccs[i];
2529 /* Add nodes on paths from previous SCCs to the current SCC. */
2530 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2531 bitmap_ior (tmp, scc->nodes, on_path);
2533 /* Add nodes on paths from the current SCC to previous SCCs. */
2534 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2535 bitmap_ior (tmp, tmp, on_path);
2537 /* Remove nodes of previous SCCs from current extended SCC. */
2538 bitmap_and_compl (tmp, tmp, prev_sccs);
2540 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2541 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2544 /* Handle the remaining nodes that do not belong to any scc. Each call
2545 to order_nodes_in_scc handles a single connected component. */
2546 while (pos < g->num_nodes)
2548 bitmap_and_compl (tmp, ones, prev_sccs);
2549 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2553 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2554 static struct node_order_params *
2555 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2557 int u;
2558 int max_asap;
2559 int num_nodes = g->num_nodes;
2560 ddg_edge_ptr e;
2561 /* Allocate a place to hold ordering params for each node in the DDG. */
2562 nopa node_order_params_arr;
2564 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2565 node_order_params_arr = (nopa) xcalloc (num_nodes,
2566 sizeof (struct node_order_params));
2568 /* Set the aux pointer of each node to point to its order_params structure. */
2569 for (u = 0; u < num_nodes; u++)
2570 g->nodes[u].aux.info = &node_order_params_arr[u];
2572 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2573 calculate ASAP, ALAP, mobility, distance, and height for each node
2574 in the dependence (direct acyclic) graph. */
2576 /* We assume that the nodes in the array are in topological order. */
2578 max_asap = 0;
2579 for (u = 0; u < num_nodes; u++)
2581 ddg_node_ptr u_node = &g->nodes[u];
2583 ASAP (u_node) = 0;
2584 for (e = u_node->in; e; e = e->next_in)
2585 if (e->distance == 0)
2586 ASAP (u_node) = MAX (ASAP (u_node),
2587 ASAP (e->src) + e->latency);
2588 max_asap = MAX (max_asap, ASAP (u_node));
2591 for (u = num_nodes - 1; u > -1; u--)
2593 ddg_node_ptr u_node = &g->nodes[u];
2595 ALAP (u_node) = max_asap;
2596 HEIGHT (u_node) = 0;
2597 for (e = u_node->out; e; e = e->next_out)
2598 if (e->distance == 0)
2600 ALAP (u_node) = MIN (ALAP (u_node),
2601 ALAP (e->dest) - e->latency);
2602 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2603 HEIGHT (e->dest) + e->latency);
2606 if (dump_file)
2608 fprintf (dump_file, "\nOrder params\n");
2609 for (u = 0; u < num_nodes; u++)
2611 ddg_node_ptr u_node = &g->nodes[u];
2613 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2614 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2618 *pmax_asap = max_asap;
2619 return node_order_params_arr;
2622 static int
2623 find_max_asap (ddg_ptr g, sbitmap nodes)
2625 unsigned int u = 0;
2626 int max_asap = -1;
2627 int result = -1;
2628 sbitmap_iterator sbi;
2630 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2632 ddg_node_ptr u_node = &g->nodes[u];
2634 if (max_asap < ASAP (u_node))
2636 max_asap = ASAP (u_node);
2637 result = u;
2640 return result;
2643 static int
2644 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2646 unsigned int u = 0;
2647 int max_hv = -1;
2648 int min_mob = INT_MAX;
2649 int result = -1;
2650 sbitmap_iterator sbi;
2652 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2654 ddg_node_ptr u_node = &g->nodes[u];
2656 if (max_hv < HEIGHT (u_node))
2658 max_hv = HEIGHT (u_node);
2659 min_mob = MOB (u_node);
2660 result = u;
2662 else if ((max_hv == HEIGHT (u_node))
2663 && (min_mob > MOB (u_node)))
2665 min_mob = MOB (u_node);
2666 result = u;
2669 return result;
2672 static int
2673 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2675 unsigned int u = 0;
2676 int max_dv = -1;
2677 int min_mob = INT_MAX;
2678 int result = -1;
2679 sbitmap_iterator sbi;
2681 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2683 ddg_node_ptr u_node = &g->nodes[u];
2685 if (max_dv < DEPTH (u_node))
2687 max_dv = DEPTH (u_node);
2688 min_mob = MOB (u_node);
2689 result = u;
2691 else if ((max_dv == DEPTH (u_node))
2692 && (min_mob > MOB (u_node)))
2694 min_mob = MOB (u_node);
2695 result = u;
2698 return result;
2701 /* Places the nodes of SCC into the NODE_ORDER array starting
2702 at position POS, according to the SMS ordering algorithm.
2703 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2704 the NODE_ORDER array, starting from position zero. */
2705 static int
2706 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2707 int * node_order, int pos)
2709 enum sms_direction dir;
2710 int num_nodes = g->num_nodes;
2711 auto_sbitmap workset (num_nodes);
2712 auto_sbitmap tmp (num_nodes);
2713 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2714 auto_sbitmap predecessors (num_nodes);
2715 auto_sbitmap successors (num_nodes);
2717 bitmap_clear (predecessors);
2718 find_predecessors (predecessors, g, nodes_ordered);
2720 bitmap_clear (successors);
2721 find_successors (successors, g, nodes_ordered);
2723 bitmap_clear (tmp);
2724 if (bitmap_and (tmp, predecessors, scc))
2726 bitmap_copy (workset, tmp);
2727 dir = BOTTOMUP;
2729 else if (bitmap_and (tmp, successors, scc))
2731 bitmap_copy (workset, tmp);
2732 dir = TOPDOWN;
2734 else
2736 int u;
2738 bitmap_clear (workset);
2739 if ((u = find_max_asap (g, scc)) >= 0)
2740 bitmap_set_bit (workset, u);
2741 dir = BOTTOMUP;
2744 bitmap_clear (zero_bitmap);
2745 while (!bitmap_equal_p (workset, zero_bitmap))
2747 int v;
2748 ddg_node_ptr v_node;
2749 sbitmap v_node_preds;
2750 sbitmap v_node_succs;
2752 if (dir == TOPDOWN)
2754 while (!bitmap_equal_p (workset, zero_bitmap))
2756 v = find_max_hv_min_mob (g, workset);
2757 v_node = &g->nodes[v];
2758 node_order[pos++] = v;
2759 v_node_succs = NODE_SUCCESSORS (v_node);
2760 bitmap_and (tmp, v_node_succs, scc);
2762 /* Don't consider the already ordered successors again. */
2763 bitmap_and_compl (tmp, tmp, nodes_ordered);
2764 bitmap_ior (workset, workset, tmp);
2765 bitmap_clear_bit (workset, v);
2766 bitmap_set_bit (nodes_ordered, v);
2768 dir = BOTTOMUP;
2769 bitmap_clear (predecessors);
2770 find_predecessors (predecessors, g, nodes_ordered);
2771 bitmap_and (workset, predecessors, scc);
2773 else
2775 while (!bitmap_equal_p (workset, zero_bitmap))
2777 v = find_max_dv_min_mob (g, workset);
2778 v_node = &g->nodes[v];
2779 node_order[pos++] = v;
2780 v_node_preds = NODE_PREDECESSORS (v_node);
2781 bitmap_and (tmp, v_node_preds, scc);
2783 /* Don't consider the already ordered predecessors again. */
2784 bitmap_and_compl (tmp, tmp, nodes_ordered);
2785 bitmap_ior (workset, workset, tmp);
2786 bitmap_clear_bit (workset, v);
2787 bitmap_set_bit (nodes_ordered, v);
2789 dir = TOPDOWN;
2790 bitmap_clear (successors);
2791 find_successors (successors, g, nodes_ordered);
2792 bitmap_and (workset, successors, scc);
2795 sbitmap_free (zero_bitmap);
2796 return pos;
2800 /* This page contains functions for manipulating partial-schedules during
2801 modulo scheduling. */
2803 /* Create a partial schedule and allocate a memory to hold II rows. */
2805 static partial_schedule_ptr
2806 create_partial_schedule (int ii, ddg_ptr g, int history)
2808 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2809 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2810 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2811 ps->reg_moves.create (0);
2812 ps->ii = ii;
2813 ps->history = history;
2814 ps->min_cycle = INT_MAX;
2815 ps->max_cycle = INT_MIN;
2816 ps->g = g;
2818 return ps;
2821 /* Free the PS_INSNs in rows array of the given partial schedule.
2822 ??? Consider caching the PS_INSN's. */
2823 static void
2824 free_ps_insns (partial_schedule_ptr ps)
2826 int i;
2828 for (i = 0; i < ps->ii; i++)
2830 while (ps->rows[i])
2832 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2834 free (ps->rows[i]);
2835 ps->rows[i] = ps_insn;
2837 ps->rows[i] = NULL;
2841 /* Free all the memory allocated to the partial schedule. */
2843 static void
2844 free_partial_schedule (partial_schedule_ptr ps)
2846 ps_reg_move_info *move;
2847 unsigned int i;
2849 if (!ps)
2850 return;
2852 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2853 sbitmap_free (move->uses);
2854 ps->reg_moves.release ();
2856 free_ps_insns (ps);
2857 free (ps->rows);
2858 free (ps->rows_length);
2859 free (ps);
2862 /* Clear the rows array with its PS_INSNs, and create a new one with
2863 NEW_II rows. */
2865 static void
2866 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2868 if (!ps)
2869 return;
2870 free_ps_insns (ps);
2871 if (new_ii == ps->ii)
2872 return;
2873 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2874 * sizeof (ps_insn_ptr));
2875 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2876 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2877 memset (ps->rows_length, 0, new_ii * sizeof (int));
2878 ps->ii = new_ii;
2879 ps->min_cycle = INT_MAX;
2880 ps->max_cycle = INT_MIN;
2883 /* Prints the partial schedule as an ii rows array, for each rows
2884 print the ids of the insns in it. */
2885 void
2886 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2888 int i;
2890 for (i = 0; i < ps->ii; i++)
2892 ps_insn_ptr ps_i = ps->rows[i];
2894 fprintf (dump, "\n[ROW %d ]: ", i);
2895 while (ps_i)
2897 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2899 if (JUMP_P (insn))
2900 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2901 else
2902 fprintf (dump, "%d, ", INSN_UID (insn));
2904 ps_i = ps_i->next_in_row;
2909 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2910 static ps_insn_ptr
2911 create_ps_insn (int id, int cycle)
2913 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2915 ps_i->id = id;
2916 ps_i->next_in_row = NULL;
2917 ps_i->prev_in_row = NULL;
2918 ps_i->cycle = cycle;
2920 return ps_i;
2924 /* Removes the given PS_INSN from the partial schedule. */
2925 static void
2926 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2928 int row;
2930 gcc_assert (ps && ps_i);
2932 row = SMODULO (ps_i->cycle, ps->ii);
2933 if (! ps_i->prev_in_row)
2935 gcc_assert (ps_i == ps->rows[row]);
2936 ps->rows[row] = ps_i->next_in_row;
2937 if (ps->rows[row])
2938 ps->rows[row]->prev_in_row = NULL;
2940 else
2942 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2943 if (ps_i->next_in_row)
2944 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2947 ps->rows_length[row] -= 1;
2948 free (ps_i);
2949 return;
2952 /* Unlike what literature describes for modulo scheduling (which focuses
2953 on VLIW machines) the order of the instructions inside a cycle is
2954 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2955 where the current instruction should go relative to the already
2956 scheduled instructions in the given cycle. Go over these
2957 instructions and find the first possible column to put it in. */
2958 static bool
2959 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2960 sbitmap must_precede, sbitmap must_follow)
2962 ps_insn_ptr next_ps_i;
2963 ps_insn_ptr first_must_follow = NULL;
2964 ps_insn_ptr last_must_precede = NULL;
2965 ps_insn_ptr last_in_row = NULL;
2966 int row;
2968 if (! ps_i)
2969 return false;
2971 row = SMODULO (ps_i->cycle, ps->ii);
2973 /* Find the first must follow and the last must precede
2974 and insert the node immediately after the must precede
2975 but make sure that it there is no must follow after it. */
2976 for (next_ps_i = ps->rows[row];
2977 next_ps_i;
2978 next_ps_i = next_ps_i->next_in_row)
2980 if (must_follow
2981 && bitmap_bit_p (must_follow, next_ps_i->id)
2982 && ! first_must_follow)
2983 first_must_follow = next_ps_i;
2984 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
2986 /* If we have already met a node that must follow, then
2987 there is no possible column. */
2988 if (first_must_follow)
2989 return false;
2990 else
2991 last_must_precede = next_ps_i;
2993 /* The closing branch must be the last in the row. */
2994 if (JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
2995 return false;
2997 last_in_row = next_ps_i;
3000 /* The closing branch is scheduled as well. Make sure there is no
3001 dependent instruction after it as the branch should be the last
3002 instruction in the row. */
3003 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3005 if (first_must_follow)
3006 return false;
3007 if (last_in_row)
3009 /* Make the branch the last in the row. New instructions
3010 will be inserted at the beginning of the row or after the
3011 last must_precede instruction thus the branch is guaranteed
3012 to remain the last instruction in the row. */
3013 last_in_row->next_in_row = ps_i;
3014 ps_i->prev_in_row = last_in_row;
3015 ps_i->next_in_row = NULL;
3017 else
3018 ps->rows[row] = ps_i;
3019 return true;
3022 /* Now insert the node after INSERT_AFTER_PSI. */
3024 if (! last_must_precede)
3026 ps_i->next_in_row = ps->rows[row];
3027 ps_i->prev_in_row = NULL;
3028 if (ps_i->next_in_row)
3029 ps_i->next_in_row->prev_in_row = ps_i;
3030 ps->rows[row] = ps_i;
3032 else
3034 ps_i->next_in_row = last_must_precede->next_in_row;
3035 last_must_precede->next_in_row = ps_i;
3036 ps_i->prev_in_row = last_must_precede;
3037 if (ps_i->next_in_row)
3038 ps_i->next_in_row->prev_in_row = ps_i;
3041 return true;
3044 /* Advances the PS_INSN one column in its current row; returns false
3045 in failure and true in success. Bit N is set in MUST_FOLLOW if
3046 the node with cuid N must be come after the node pointed to by
3047 PS_I when scheduled in the same cycle. */
3048 static int
3049 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3050 sbitmap must_follow)
3052 ps_insn_ptr prev, next;
3053 int row;
3055 if (!ps || !ps_i)
3056 return false;
3058 row = SMODULO (ps_i->cycle, ps->ii);
3060 if (! ps_i->next_in_row)
3061 return false;
3063 /* Check if next_in_row is dependent on ps_i, both having same sched
3064 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3065 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3066 return false;
3068 /* Advance PS_I over its next_in_row in the doubly linked list. */
3069 prev = ps_i->prev_in_row;
3070 next = ps_i->next_in_row;
3072 if (ps_i == ps->rows[row])
3073 ps->rows[row] = next;
3075 ps_i->next_in_row = next->next_in_row;
3077 if (next->next_in_row)
3078 next->next_in_row->prev_in_row = ps_i;
3080 next->next_in_row = ps_i;
3081 ps_i->prev_in_row = next;
3083 next->prev_in_row = prev;
3084 if (prev)
3085 prev->next_in_row = next;
3087 return true;
3090 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3091 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3092 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3093 before/after (respectively) the node pointed to by PS_I when scheduled
3094 in the same cycle. */
3095 static ps_insn_ptr
3096 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3097 sbitmap must_precede, sbitmap must_follow)
3099 ps_insn_ptr ps_i;
3100 int row = SMODULO (cycle, ps->ii);
3102 if (ps->rows_length[row] >= issue_rate)
3103 return NULL;
3105 ps_i = create_ps_insn (id, cycle);
3107 /* Finds and inserts PS_I according to MUST_FOLLOW and
3108 MUST_PRECEDE. */
3109 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3111 free (ps_i);
3112 return NULL;
3115 ps->rows_length[row] += 1;
3116 return ps_i;
3119 /* Advance time one cycle. Assumes DFA is being used. */
3120 static void
3121 advance_one_cycle (void)
3123 if (targetm.sched.dfa_pre_cycle_insn)
3124 state_transition (curr_state,
3125 targetm.sched.dfa_pre_cycle_insn ());
3127 state_transition (curr_state, NULL);
3129 if (targetm.sched.dfa_post_cycle_insn)
3130 state_transition (curr_state,
3131 targetm.sched.dfa_post_cycle_insn ());
3136 /* Checks if PS has resource conflicts according to DFA, starting from
3137 FROM cycle to TO cycle; returns true if there are conflicts and false
3138 if there are no conflicts. Assumes DFA is being used. */
3139 static int
3140 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3142 int cycle;
3144 state_reset (curr_state);
3146 for (cycle = from; cycle <= to; cycle++)
3148 ps_insn_ptr crr_insn;
3149 /* Holds the remaining issue slots in the current row. */
3150 int can_issue_more = issue_rate;
3152 /* Walk through the DFA for the current row. */
3153 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3154 crr_insn;
3155 crr_insn = crr_insn->next_in_row)
3157 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3159 /* Check if there is room for the current insn. */
3160 if (!can_issue_more || state_dead_lock_p (curr_state))
3161 return true;
3163 /* Update the DFA state and return with failure if the DFA found
3164 resource conflicts. */
3165 if (state_transition (curr_state, insn) >= 0)
3166 return true;
3168 if (targetm.sched.variable_issue)
3169 can_issue_more =
3170 targetm.sched.variable_issue (sched_dump, sched_verbose,
3171 insn, can_issue_more);
3172 /* A naked CLOBBER or USE generates no instruction, so don't
3173 let them consume issue slots. */
3174 else if (GET_CODE (PATTERN (insn)) != USE
3175 && GET_CODE (PATTERN (insn)) != CLOBBER)
3176 can_issue_more--;
3179 /* Advance the DFA to the next cycle. */
3180 advance_one_cycle ();
3182 return false;
3185 /* Checks if the given node causes resource conflicts when added to PS at
3186 cycle C. If not the node is added to PS and returned; otherwise zero
3187 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3188 cuid N must be come before/after (respectively) the node pointed to by
3189 PS_I when scheduled in the same cycle. */
3190 ps_insn_ptr
3191 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3192 int c, sbitmap must_precede,
3193 sbitmap must_follow)
3195 int i, first, amount, has_conflicts = 0;
3196 ps_insn_ptr ps_i;
3198 /* First add the node to the PS, if this succeeds check for
3199 conflicts, trying different issue slots in the same row. */
3200 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3201 return NULL; /* Failed to insert the node at the given cycle. */
3203 while (1)
3205 has_conflicts = ps_has_conflicts (ps, c, c);
3206 if (ps->history > 0 && !has_conflicts)
3208 /* Check all 2h+1 intervals, starting from c-2h..c up to c..2h,
3209 but not more than ii intervals. */
3210 first = c - ps->history;
3211 amount = 2 * ps->history + 1;
3212 if (amount > ps->ii)
3213 amount = ps->ii;
3214 for (i = first; i < first + amount; i++)
3216 has_conflicts = ps_has_conflicts (ps,
3217 i - ps->history,
3218 i + ps->history);
3219 if (has_conflicts)
3220 break;
3223 if (!has_conflicts)
3224 break;
3225 /* Try different issue slots to find one that the given node can be
3226 scheduled in without conflicts. */
3227 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3228 break;
3231 if (has_conflicts)
3233 remove_node_from_ps (ps, ps_i);
3234 return NULL;
3237 ps->min_cycle = MIN (ps->min_cycle, c);
3238 ps->max_cycle = MAX (ps->max_cycle, c);
3239 return ps_i;
3242 /* Calculate the stage count of the partial schedule PS. The calculation
3243 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3245 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3247 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3248 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3249 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3251 /* The calculation of stage count is done adding the number of stages
3252 before cycle zero and after cycle zero. */
3253 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3255 return stage_count;
3258 /* Rotate the rows of PS such that insns scheduled at time
3259 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3260 void
3261 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3263 int i, row, backward_rotates;
3264 int last_row = ps->ii - 1;
3266 if (start_cycle == 0)
3267 return;
3269 backward_rotates = SMODULO (start_cycle, ps->ii);
3271 /* Revisit later and optimize this into a single loop. */
3272 for (i = 0; i < backward_rotates; i++)
3274 ps_insn_ptr first_row = ps->rows[0];
3275 int first_row_length = ps->rows_length[0];
3277 for (row = 0; row < last_row; row++)
3279 ps->rows[row] = ps->rows[row + 1];
3280 ps->rows_length[row] = ps->rows_length[row + 1];
3283 ps->rows[last_row] = first_row;
3284 ps->rows_length[last_row] = first_row_length;
3287 ps->max_cycle -= start_cycle;
3288 ps->min_cycle -= start_cycle;
3291 #endif /* INSN_SCHEDULING */
3293 /* Run instruction scheduler. */
3294 /* Perform SMS module scheduling. */
3296 namespace {
3298 const pass_data pass_data_sms =
3300 RTL_PASS, /* type */
3301 "sms", /* name */
3302 OPTGROUP_NONE, /* optinfo_flags */
3303 TV_SMS, /* tv_id */
3304 0, /* properties_required */
3305 0, /* properties_provided */
3306 0, /* properties_destroyed */
3307 0, /* todo_flags_start */
3308 TODO_df_finish, /* todo_flags_finish */
3311 class pass_sms : public rtl_opt_pass
3313 public:
3314 pass_sms (gcc::context *ctxt)
3315 : rtl_opt_pass (pass_data_sms, ctxt)
3318 /* opt_pass methods: */
3319 virtual bool gate (function *)
3321 return (optimize > 0 && flag_modulo_sched);
3324 virtual unsigned int execute (function *);
3326 }; // class pass_sms
3328 unsigned int
3329 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3331 #ifdef INSN_SCHEDULING
3332 basic_block bb;
3334 /* Collect loop information to be used in SMS. */
3335 cfg_layout_initialize (0);
3336 sms_schedule ();
3338 /* Update the life information, because we add pseudos. */
3339 max_regno = max_reg_num ();
3341 /* Finalize layout changes. */
3342 FOR_EACH_BB_FN (bb, fun)
3343 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3344 bb->aux = bb->next_bb;
3345 free_dominance_info (CDI_DOMINATORS);
3346 cfg_layout_finalize ();
3347 #endif /* INSN_SCHEDULING */
3348 return 0;
3351 } // anon namespace
3353 rtl_opt_pass *
3354 make_pass_sms (gcc::context *ctxt)
3356 return new pass_sms (ctxt);