1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2020 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
32 initializer_each_zero_or_onep
34 tree_expr_nonnegative_p
43 (define_operator_list tcc_comparison
44 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
45 (define_operator_list inverted_tcc_comparison
46 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
47 (define_operator_list inverted_tcc_comparison_with_nans
48 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list swapped_tcc_comparison
50 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
51 (define_operator_list simple_comparison lt le eq ne ge gt)
52 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
54 #include "cfn-operators.pd"
56 /* Define operand lists for math rounding functions {,i,l,ll}FN,
57 where the versions prefixed with "i" return an int, those prefixed with
58 "l" return a long and those prefixed with "ll" return a long long.
60 Also define operand lists:
62 X<FN>F for all float functions, in the order i, l, ll
63 X<FN> for all double functions, in the same order
64 X<FN>L for all long double functions, in the same order. */
65 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
66 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
69 (define_operator_list X##FN BUILT_IN_I##FN \
72 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
76 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
77 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
78 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
81 /* Binary operations and their associated IFN_COND_* function. */
82 (define_operator_list UNCOND_BINARY
84 mult trunc_div trunc_mod rdiv
86 bit_and bit_ior bit_xor
88 (define_operator_list COND_BINARY
89 IFN_COND_ADD IFN_COND_SUB
90 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
91 IFN_COND_MIN IFN_COND_MAX
92 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
93 IFN_COND_SHL IFN_COND_SHR)
95 /* Same for ternary operations. */
96 (define_operator_list UNCOND_TERNARY
97 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
98 (define_operator_list COND_TERNARY
99 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
101 /* With nop_convert? combine convert? and view_convert? in one pattern
102 plus conditionalize on tree_nop_conversion_p conversions. */
103 (match (nop_convert @0)
105 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
106 (match (nop_convert @0)
108 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
109 && known_eq (TYPE_VECTOR_SUBPARTS (type),
110 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
111 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
113 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
114 ABSU_EXPR returns unsigned absolute value of the operand and the operand
115 of the ABSU_EXPR will have the corresponding signed type. */
116 (simplify (abs (convert @0))
117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
118 && !TYPE_UNSIGNED (TREE_TYPE (@0))
119 && element_precision (type) > element_precision (TREE_TYPE (@0)))
120 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
121 (convert (absu:utype @0)))))
124 /* Optimize (X + (X >> (prec - 1))) ^ (X >> (prec - 1)) into abs (X). */
126 (bit_xor:c (plus:c @0 (rshift@2 @0 INTEGER_CST@1)) @2)
127 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
128 && !TYPE_UNSIGNED (TREE_TYPE (@0))
129 && wi::to_widest (@1) == element_precision (TREE_TYPE (@0)) - 1)
133 /* Simplifications of operations with one constant operand and
134 simplifications to constants or single values. */
136 (for op (plus pointer_plus minus bit_ior bit_xor)
138 (op @0 integer_zerop)
141 /* 0 +p index -> (type)index */
143 (pointer_plus integer_zerop @1)
144 (non_lvalue (convert @1)))
146 /* ptr - 0 -> (type)ptr */
148 (pointer_diff @0 integer_zerop)
151 /* See if ARG1 is zero and X + ARG1 reduces to X.
152 Likewise if the operands are reversed. */
154 (plus:c @0 real_zerop@1)
155 (if (fold_real_zero_addition_p (type, @1, 0))
158 /* See if ARG1 is zero and X - ARG1 reduces to X. */
160 (minus @0 real_zerop@1)
161 (if (fold_real_zero_addition_p (type, @1, 1))
164 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
165 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
166 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
167 if not -frounding-math. For sNaNs the first operation would raise
168 exceptions but turn the result into qNan, so the second operation
169 would not raise it. */
170 (for inner_op (plus minus)
171 (for outer_op (plus minus)
173 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
176 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
177 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
178 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
180 = ((outer_op == PLUS_EXPR)
181 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
182 (if (outer_plus && !inner_plus)
187 This is unsafe for certain floats even in non-IEEE formats.
188 In IEEE, it is unsafe because it does wrong for NaNs.
189 Also note that operand_equal_p is always false if an operand
193 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
194 { build_zero_cst (type); }))
196 (pointer_diff @@0 @0)
197 { build_zero_cst (type); })
200 (mult @0 integer_zerop@1)
203 /* Maybe fold x * 0 to 0. The expressions aren't the same
204 when x is NaN, since x * 0 is also NaN. Nor are they the
205 same in modes with signed zeros, since multiplying a
206 negative value by 0 gives -0, not +0. */
208 (mult @0 real_zerop@1)
209 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
212 /* In IEEE floating point, x*1 is not equivalent to x for snans.
213 Likewise for complex arithmetic with signed zeros. */
216 (if (!HONOR_SNANS (type)
217 && (!HONOR_SIGNED_ZEROS (type)
218 || !COMPLEX_FLOAT_TYPE_P (type)))
221 /* Transform x * -1.0 into -x. */
223 (mult @0 real_minus_onep)
224 (if (!HONOR_SNANS (type)
225 && (!HONOR_SIGNED_ZEROS (type)
226 || !COMPLEX_FLOAT_TYPE_P (type)))
229 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
231 (mult SSA_NAME@1 SSA_NAME@2)
232 (if (INTEGRAL_TYPE_P (type)
233 && get_nonzero_bits (@1) == 1
234 && get_nonzero_bits (@2) == 1)
237 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
238 unless the target has native support for the former but not the latter. */
240 (mult @0 VECTOR_CST@1)
241 (if (initializer_each_zero_or_onep (@1)
242 && !HONOR_SNANS (type)
243 && !HONOR_SIGNED_ZEROS (type))
244 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
246 && (!VECTOR_MODE_P (TYPE_MODE (type))
247 || (VECTOR_MODE_P (TYPE_MODE (itype))
248 && optab_handler (and_optab,
249 TYPE_MODE (itype)) != CODE_FOR_nothing)))
250 (view_convert (bit_and:itype (view_convert @0)
251 (ne @1 { build_zero_cst (type); })))))))
253 (for cmp (gt ge lt le)
254 outp (convert convert negate negate)
255 outn (negate negate convert convert)
256 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
257 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
258 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
259 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
261 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
262 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
263 && types_match (type, TREE_TYPE (@0)))
265 (if (types_match (type, float_type_node))
266 (BUILT_IN_COPYSIGNF @1 (outp @0)))
267 (if (types_match (type, double_type_node))
268 (BUILT_IN_COPYSIGN @1 (outp @0)))
269 (if (types_match (type, long_double_type_node))
270 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
271 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
272 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
273 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
274 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
276 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
277 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
278 && types_match (type, TREE_TYPE (@0)))
280 (if (types_match (type, float_type_node))
281 (BUILT_IN_COPYSIGNF @1 (outn @0)))
282 (if (types_match (type, double_type_node))
283 (BUILT_IN_COPYSIGN @1 (outn @0)))
284 (if (types_match (type, long_double_type_node))
285 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
287 /* Transform X * copysign (1.0, X) into abs(X). */
289 (mult:c @0 (COPYSIGN_ALL real_onep @0))
290 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
293 /* Transform X * copysign (1.0, -X) into -abs(X). */
295 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
296 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
299 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
301 (COPYSIGN_ALL REAL_CST@0 @1)
302 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
303 (COPYSIGN_ALL (negate @0) @1)))
305 /* X * 1, X / 1 -> X. */
306 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
311 /* (A / (1 << B)) -> (A >> B).
312 Only for unsigned A. For signed A, this would not preserve rounding
314 For example: (-1 / ( 1 << B)) != -1 >> B.
315 Also also widening conversions, like:
316 (A / (unsigned long long) (1U << B)) -> (A >> B)
318 (A / (unsigned long long) (1 << B)) -> (A >> B).
319 If the left shift is signed, it can be done only if the upper bits
320 of A starting from shift's type sign bit are zero, as
321 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
322 so it is valid only if A >> 31 is zero. */
324 (trunc_div @0 (convert? (lshift integer_onep@1 @2)))
325 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
326 && (!VECTOR_TYPE_P (type)
327 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
328 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
329 && (useless_type_conversion_p (type, TREE_TYPE (@1))
330 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
331 && (TYPE_UNSIGNED (TREE_TYPE (@1))
332 || (element_precision (type)
333 == element_precision (TREE_TYPE (@1)))
334 || (INTEGRAL_TYPE_P (type)
335 && (tree_nonzero_bits (@0)
336 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
338 element_precision (type))) == 0)))))
341 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
342 undefined behavior in constexpr evaluation, and assuming that the division
343 traps enables better optimizations than these anyway. */
344 (for div (trunc_div ceil_div floor_div round_div exact_div)
345 /* 0 / X is always zero. */
347 (div integer_zerop@0 @1)
348 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
349 (if (!integer_zerop (@1))
353 (div @0 integer_minus_onep@1)
354 (if (!TYPE_UNSIGNED (type))
359 /* But not for 0 / 0 so that we can get the proper warnings and errors.
360 And not for _Fract types where we can't build 1. */
361 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
362 { build_one_cst (type); }))
363 /* X / abs (X) is X < 0 ? -1 : 1. */
366 (if (INTEGRAL_TYPE_P (type)
367 && TYPE_OVERFLOW_UNDEFINED (type))
368 (cond (lt @0 { build_zero_cst (type); })
369 { build_minus_one_cst (type); } { build_one_cst (type); })))
372 (div:C @0 (negate @0))
373 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
374 && TYPE_OVERFLOW_UNDEFINED (type))
375 { build_minus_one_cst (type); })))
377 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
378 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
381 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
382 && TYPE_UNSIGNED (type))
385 /* Combine two successive divisions. Note that combining ceil_div
386 and floor_div is trickier and combining round_div even more so. */
387 (for div (trunc_div exact_div)
389 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
391 wi::overflow_type overflow;
392 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
393 TYPE_SIGN (type), &overflow);
395 (if (div == EXACT_DIV_EXPR
396 || optimize_successive_divisions_p (@2, @3))
398 (div @0 { wide_int_to_tree (type, mul); })
399 (if (TYPE_UNSIGNED (type)
400 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
401 { build_zero_cst (type); }))))))
403 /* Combine successive multiplications. Similar to above, but handling
404 overflow is different. */
406 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
408 wi::overflow_type overflow;
409 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
410 TYPE_SIGN (type), &overflow);
412 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
413 otherwise undefined overflow implies that @0 must be zero. */
414 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
415 (mult @0 { wide_int_to_tree (type, mul); }))))
417 /* Optimize A / A to 1.0 if we don't care about
418 NaNs or Infinities. */
421 (if (FLOAT_TYPE_P (type)
422 && ! HONOR_NANS (type)
423 && ! HONOR_INFINITIES (type))
424 { build_one_cst (type); }))
426 /* Optimize -A / A to -1.0 if we don't care about
427 NaNs or Infinities. */
429 (rdiv:C @0 (negate @0))
430 (if (FLOAT_TYPE_P (type)
431 && ! HONOR_NANS (type)
432 && ! HONOR_INFINITIES (type))
433 { build_minus_one_cst (type); }))
435 /* PR71078: x / abs(x) -> copysign (1.0, x) */
437 (rdiv:C (convert? @0) (convert? (abs @0)))
438 (if (SCALAR_FLOAT_TYPE_P (type)
439 && ! HONOR_NANS (type)
440 && ! HONOR_INFINITIES (type))
442 (if (types_match (type, float_type_node))
443 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
444 (if (types_match (type, double_type_node))
445 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
446 (if (types_match (type, long_double_type_node))
447 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
449 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
452 (if (!HONOR_SNANS (type))
455 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
457 (rdiv @0 real_minus_onep)
458 (if (!HONOR_SNANS (type))
461 (if (flag_reciprocal_math)
462 /* Convert (A/B)/C to A/(B*C). */
464 (rdiv (rdiv:s @0 @1) @2)
465 (rdiv @0 (mult @1 @2)))
467 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
469 (rdiv @0 (mult:s @1 REAL_CST@2))
471 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
473 (rdiv (mult @0 { tem; } ) @1))))
475 /* Convert A/(B/C) to (A/B)*C */
477 (rdiv @0 (rdiv:s @1 @2))
478 (mult (rdiv @0 @1) @2)))
480 /* Simplify x / (- y) to -x / y. */
482 (rdiv @0 (negate @1))
483 (rdiv (negate @0) @1))
485 (if (flag_unsafe_math_optimizations)
486 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
487 Since C / x may underflow to zero, do this only for unsafe math. */
488 (for op (lt le gt ge)
491 (op (rdiv REAL_CST@0 @1) real_zerop@2)
492 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
494 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
496 /* For C < 0, use the inverted operator. */
497 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
500 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
501 (for div (trunc_div ceil_div floor_div round_div exact_div)
503 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
504 (if (integer_pow2p (@2)
505 && tree_int_cst_sgn (@2) > 0
506 && tree_nop_conversion_p (type, TREE_TYPE (@0))
507 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
509 { build_int_cst (integer_type_node,
510 wi::exact_log2 (wi::to_wide (@2))); }))))
512 /* If ARG1 is a constant, we can convert this to a multiply by the
513 reciprocal. This does not have the same rounding properties,
514 so only do this if -freciprocal-math. We can actually
515 always safely do it if ARG1 is a power of two, but it's hard to
516 tell if it is or not in a portable manner. */
517 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
521 (if (flag_reciprocal_math
524 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
526 (mult @0 { tem; } )))
527 (if (cst != COMPLEX_CST)
528 (with { tree inverse = exact_inverse (type, @1); }
530 (mult @0 { inverse; } ))))))))
532 (for mod (ceil_mod floor_mod round_mod trunc_mod)
533 /* 0 % X is always zero. */
535 (mod integer_zerop@0 @1)
536 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
537 (if (!integer_zerop (@1))
539 /* X % 1 is always zero. */
541 (mod @0 integer_onep)
542 { build_zero_cst (type); })
543 /* X % -1 is zero. */
545 (mod @0 integer_minus_onep@1)
546 (if (!TYPE_UNSIGNED (type))
547 { build_zero_cst (type); }))
551 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
552 (if (!integer_zerop (@0))
553 { build_zero_cst (type); }))
554 /* (X % Y) % Y is just X % Y. */
556 (mod (mod@2 @0 @1) @1)
558 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
560 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
561 (if (ANY_INTEGRAL_TYPE_P (type)
562 && TYPE_OVERFLOW_UNDEFINED (type)
563 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
565 { build_zero_cst (type); }))
566 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
567 modulo and comparison, since it is simpler and equivalent. */
570 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
571 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
572 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
573 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
575 /* X % -C is the same as X % C. */
577 (trunc_mod @0 INTEGER_CST@1)
578 (if (TYPE_SIGN (type) == SIGNED
579 && !TREE_OVERFLOW (@1)
580 && wi::neg_p (wi::to_wide (@1))
581 && !TYPE_OVERFLOW_TRAPS (type)
582 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
583 && !sign_bit_p (@1, @1))
584 (trunc_mod @0 (negate @1))))
586 /* X % -Y is the same as X % Y. */
588 (trunc_mod @0 (convert? (negate @1)))
589 (if (INTEGRAL_TYPE_P (type)
590 && !TYPE_UNSIGNED (type)
591 && !TYPE_OVERFLOW_TRAPS (type)
592 && tree_nop_conversion_p (type, TREE_TYPE (@1))
593 /* Avoid this transformation if X might be INT_MIN or
594 Y might be -1, because we would then change valid
595 INT_MIN % -(-1) into invalid INT_MIN % -1. */
596 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
597 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
599 (trunc_mod @0 (convert @1))))
601 /* X - (X / Y) * Y is the same as X % Y. */
603 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
604 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
605 (convert (trunc_mod @0 @1))))
607 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
608 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
609 Also optimize A % (C << N) where C is a power of 2,
610 to A & ((C << N) - 1). */
611 (match (power_of_two_cand @1)
613 (match (power_of_two_cand @1)
614 (lshift INTEGER_CST@1 @2))
615 (for mod (trunc_mod floor_mod)
617 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
618 (if ((TYPE_UNSIGNED (type)
619 || tree_expr_nonnegative_p (@0))
620 && tree_nop_conversion_p (type, TREE_TYPE (@3))
621 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
622 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
624 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
626 (trunc_div (mult @0 integer_pow2p@1) @1)
627 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
628 (bit_and @0 { wide_int_to_tree
629 (type, wi::mask (TYPE_PRECISION (type)
630 - wi::exact_log2 (wi::to_wide (@1)),
631 false, TYPE_PRECISION (type))); })))
633 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
635 (mult (trunc_div @0 integer_pow2p@1) @1)
636 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
637 (bit_and @0 (negate @1))))
639 /* Simplify (t * 2) / 2) -> t. */
640 (for div (trunc_div ceil_div floor_div round_div exact_div)
642 (div (mult:c @0 @1) @1)
643 (if (ANY_INTEGRAL_TYPE_P (type)
644 && TYPE_OVERFLOW_UNDEFINED (type))
648 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
653 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
656 (pows (op @0) REAL_CST@1)
657 (with { HOST_WIDE_INT n; }
658 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
660 /* Likewise for powi. */
663 (pows (op @0) INTEGER_CST@1)
664 (if ((wi::to_wide (@1) & 1) == 0)
666 /* Strip negate and abs from both operands of hypot. */
674 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
675 (for copysigns (COPYSIGN_ALL)
677 (copysigns (op @0) @1)
680 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
685 /* Convert absu(x)*absu(x) -> x*x. */
687 (mult (absu@1 @0) @1)
688 (mult (convert@2 @0) @2))
690 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
694 (coss (copysigns @0 @1))
697 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
701 (pows (copysigns @0 @2) REAL_CST@1)
702 (with { HOST_WIDE_INT n; }
703 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
705 /* Likewise for powi. */
709 (pows (copysigns @0 @2) INTEGER_CST@1)
710 (if ((wi::to_wide (@1) & 1) == 0)
715 /* hypot(copysign(x, y), z) -> hypot(x, z). */
717 (hypots (copysigns @0 @1) @2)
719 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
721 (hypots @0 (copysigns @1 @2))
724 /* copysign(x, CST) -> [-]abs (x). */
725 (for copysigns (COPYSIGN_ALL)
727 (copysigns @0 REAL_CST@1)
728 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
732 /* copysign(copysign(x, y), z) -> copysign(x, z). */
733 (for copysigns (COPYSIGN_ALL)
735 (copysigns (copysigns @0 @1) @2)
738 /* copysign(x,y)*copysign(x,y) -> x*x. */
739 (for copysigns (COPYSIGN_ALL)
741 (mult (copysigns@2 @0 @1) @2)
744 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
745 (for ccoss (CCOS CCOSH)
750 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
751 (for ops (conj negate)
757 /* Fold (a * (1 << b)) into (a << b) */
759 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
760 (if (! FLOAT_TYPE_P (type)
761 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
764 /* Fold (1 << (C - x)) where C = precision(type) - 1
765 into ((1 << C) >> x). */
767 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
768 (if (INTEGRAL_TYPE_P (type)
769 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
771 (if (TYPE_UNSIGNED (type))
772 (rshift (lshift @0 @2) @3)
774 { tree utype = unsigned_type_for (type); }
775 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
777 /* Fold (C1/X)*C2 into (C1*C2)/X. */
779 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
780 (if (flag_associative_math
783 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
785 (rdiv { tem; } @1)))))
787 /* Simplify ~X & X as zero. */
789 (bit_and:c (convert? @0) (convert? (bit_not @0)))
790 { build_zero_cst (type); })
792 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
794 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
795 (if (TYPE_UNSIGNED (type))
796 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
798 (for bitop (bit_and bit_ior)
800 /* PR35691: Transform
801 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
802 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
804 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
805 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
806 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
807 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
808 (cmp (bit_ior @0 (convert @1)) @2)))
810 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
811 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
813 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
814 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
815 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
816 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
817 (cmp (bit_and @0 (convert @1)) @2))))
819 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
821 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
822 (minus (bit_xor @0 @1) @1))
824 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
825 (if (~wi::to_wide (@2) == wi::to_wide (@1))
826 (minus (bit_xor @0 @1) @1)))
828 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
830 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
831 (minus @1 (bit_xor @0 @1)))
833 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
834 (for op (bit_ior bit_xor plus)
836 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
839 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
840 (if (~wi::to_wide (@2) == wi::to_wide (@1))
843 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
845 (bit_ior:c (bit_xor:c @0 @1) @0)
848 /* (a & ~b) | (a ^ b) --> a ^ b */
850 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
853 /* (a & ~b) ^ ~a --> ~(a & b) */
855 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
856 (bit_not (bit_and @0 @1)))
858 /* (~a & b) ^ a --> (a | b) */
860 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
863 /* (a | b) & ~(a ^ b) --> a & b */
865 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
868 /* a | ~(a ^ b) --> a | ~b */
870 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
871 (bit_ior @0 (bit_not @1)))
873 /* (a | b) | (a &^ b) --> a | b */
874 (for op (bit_and bit_xor)
876 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
879 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
881 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
884 /* ~(~a & b) --> a | ~b */
886 (bit_not (bit_and:cs (bit_not @0) @1))
887 (bit_ior @0 (bit_not @1)))
889 /* ~(~a | b) --> a & ~b */
891 (bit_not (bit_ior:cs (bit_not @0) @1))
892 (bit_and @0 (bit_not @1)))
894 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
897 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
898 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
899 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
903 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
904 ((A & N) + B) & M -> (A + B) & M
905 Similarly if (N & M) == 0,
906 ((A | N) + B) & M -> (A + B) & M
907 and for - instead of + (or unary - instead of +)
908 and/or ^ instead of |.
909 If B is constant and (B & M) == 0, fold into A & M. */
911 (for bitop (bit_and bit_ior bit_xor)
913 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
916 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
917 @3, @4, @1, ERROR_MARK, NULL_TREE,
920 (convert (bit_and (op (convert:utype { pmop[0]; })
921 (convert:utype { pmop[1]; }))
922 (convert:utype @2))))))
924 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
927 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
928 NULL_TREE, NULL_TREE, @1, bitop, @3,
931 (convert (bit_and (op (convert:utype { pmop[0]; })
932 (convert:utype { pmop[1]; }))
933 (convert:utype @2)))))))
935 (bit_and (op:s @0 @1) INTEGER_CST@2)
938 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
939 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
940 NULL_TREE, NULL_TREE, pmop); }
942 (convert (bit_and (op (convert:utype { pmop[0]; })
943 (convert:utype { pmop[1]; }))
944 (convert:utype @2)))))))
945 (for bitop (bit_and bit_ior bit_xor)
947 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
950 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
951 bitop, @2, @3, NULL_TREE, ERROR_MARK,
952 NULL_TREE, NULL_TREE, pmop); }
954 (convert (bit_and (negate (convert:utype { pmop[0]; }))
955 (convert:utype @1)))))))
957 /* X % Y is smaller than Y. */
960 (cmp (trunc_mod @0 @1) @1)
961 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
962 { constant_boolean_node (cmp == LT_EXPR, type); })))
965 (cmp @1 (trunc_mod @0 @1))
966 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
967 { constant_boolean_node (cmp == GT_EXPR, type); })))
971 (bit_ior @0 integer_all_onesp@1)
976 (bit_ior @0 integer_zerop)
981 (bit_and @0 integer_zerop@1)
987 (for op (bit_ior bit_xor plus)
989 (op:c (convert? @0) (convert? (bit_not @0)))
990 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
995 { build_zero_cst (type); })
997 /* Canonicalize X ^ ~0 to ~X. */
999 (bit_xor @0 integer_all_onesp@1)
1004 (bit_and @0 integer_all_onesp)
1007 /* x & x -> x, x | x -> x */
1008 (for bitop (bit_and bit_ior)
1013 /* x & C -> x if we know that x & ~C == 0. */
1016 (bit_and SSA_NAME@0 INTEGER_CST@1)
1017 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1018 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1022 /* ~(~X - Y) -> X + Y and ~(~X + Y) -> X - Y. */
1024 (bit_not (minus (bit_not @0) @1))
1027 (bit_not (plus:c (bit_not @0) @1))
1030 /* x + (x & 1) -> (x + 1) & ~1 */
1032 (plus:c @0 (bit_and:s @0 integer_onep@1))
1033 (bit_and (plus @0 @1) (bit_not @1)))
1035 /* x & ~(x & y) -> x & ~y */
1036 /* x | ~(x | y) -> x | ~y */
1037 (for bitop (bit_and bit_ior)
1039 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1040 (bitop @0 (bit_not @1))))
1042 /* (~x & y) | ~(x | y) -> ~x */
1044 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1047 /* (x | y) ^ (x | ~y) -> ~x */
1049 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1052 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1054 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1055 (bit_not (bit_xor @0 @1)))
1057 /* (~x | y) ^ (x ^ y) -> x | ~y */
1059 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1060 (bit_ior @0 (bit_not @1)))
1062 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1064 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1065 (bit_not (bit_and @0 @1)))
1067 /* (x | y) & ~x -> y & ~x */
1068 /* (x & y) | ~x -> y | ~x */
1069 (for bitop (bit_and bit_ior)
1070 rbitop (bit_ior bit_and)
1072 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1075 /* (x & y) ^ (x | y) -> x ^ y */
1077 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1080 /* (x ^ y) ^ (x | y) -> x & y */
1082 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1085 /* (x & y) + (x ^ y) -> x | y */
1086 /* (x & y) | (x ^ y) -> x | y */
1087 /* (x & y) ^ (x ^ y) -> x | y */
1088 (for op (plus bit_ior bit_xor)
1090 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1093 /* (x & y) + (x | y) -> x + y */
1095 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1098 /* (x + y) - (x | y) -> x & y */
1100 (minus (plus @0 @1) (bit_ior @0 @1))
1101 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1102 && !TYPE_SATURATING (type))
1105 /* (x + y) - (x & y) -> x | y */
1107 (minus (plus @0 @1) (bit_and @0 @1))
1108 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1109 && !TYPE_SATURATING (type))
1112 /* (x | y) - y -> (x & ~y) */
1114 (minus (bit_ior:cs @0 @1) @1)
1115 (bit_and @0 (bit_not @1)))
1117 /* (x | y) - (x ^ y) -> x & y */
1119 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1122 /* (x | y) - (x & y) -> x ^ y */
1124 (minus (bit_ior @0 @1) (bit_and @0 @1))
1127 /* (x | y) & ~(x & y) -> x ^ y */
1129 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1132 /* (x | y) & (~x ^ y) -> x & y */
1134 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1137 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1139 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1140 (bit_not (bit_xor @0 @1)))
1142 /* (~x | y) ^ (x | ~y) -> x ^ y */
1144 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1147 /* ((x & y) - (x | y)) - 1 -> ~(x ^ y) */
1149 (plus (nop_convert1? (minus@2 (nop_convert2? (bit_and:c @0 @1))
1150 (nop_convert2? (bit_ior @0 @1))))
1152 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1153 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1154 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1155 && !TYPE_SATURATING (TREE_TYPE (@2)))
1156 (bit_not (convert (bit_xor @0 @1)))))
1158 (minus (nop_convert1? (plus@2 (nop_convert2? (bit_and:c @0 @1))
1160 (nop_convert3? (bit_ior @0 @1)))
1161 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1162 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1163 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1164 && !TYPE_SATURATING (TREE_TYPE (@2)))
1165 (bit_not (convert (bit_xor @0 @1)))))
1167 (minus (nop_convert1? (bit_and @0 @1))
1168 (nop_convert2? (plus@2 (nop_convert3? (bit_ior:c @0 @1))
1170 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1171 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1172 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1173 && !TYPE_SATURATING (TREE_TYPE (@2)))
1174 (bit_not (convert (bit_xor @0 @1)))))
1176 /* ~x & ~y -> ~(x | y)
1177 ~x | ~y -> ~(x & y) */
1178 (for op (bit_and bit_ior)
1179 rop (bit_ior bit_and)
1181 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1182 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1183 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1184 (bit_not (rop (convert @0) (convert @1))))))
1186 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1187 with a constant, and the two constants have no bits in common,
1188 we should treat this as a BIT_IOR_EXPR since this may produce more
1190 (for op (bit_xor plus)
1192 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1193 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1194 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1195 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1196 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1197 (bit_ior (convert @4) (convert @5)))))
1199 /* (X | Y) ^ X -> Y & ~ X*/
1201 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1202 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1203 (convert (bit_and @1 (bit_not @0)))))
1205 /* Convert ~X ^ ~Y to X ^ Y. */
1207 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1208 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1209 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1210 (bit_xor (convert @0) (convert @1))))
1212 /* Convert ~X ^ C to X ^ ~C. */
1214 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1215 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1216 (bit_xor (convert @0) (bit_not @1))))
1218 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1219 (for opo (bit_and bit_xor)
1220 opi (bit_xor bit_and)
1222 (opo:c (opi:cs @0 @1) @1)
1223 (bit_and (bit_not @0) @1)))
1225 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1226 operands are another bit-wise operation with a common input. If so,
1227 distribute the bit operations to save an operation and possibly two if
1228 constants are involved. For example, convert
1229 (A | B) & (A | C) into A | (B & C)
1230 Further simplification will occur if B and C are constants. */
1231 (for op (bit_and bit_ior bit_xor)
1232 rop (bit_ior bit_and bit_and)
1234 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1235 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1236 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1237 (rop (convert @0) (op (convert @1) (convert @2))))))
1239 /* Some simple reassociation for bit operations, also handled in reassoc. */
1240 /* (X & Y) & Y -> X & Y
1241 (X | Y) | Y -> X | Y */
1242 (for op (bit_and bit_ior)
1244 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1246 /* (X ^ Y) ^ Y -> X */
1248 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1250 /* (X & Y) & (X & Z) -> (X & Y) & Z
1251 (X | Y) | (X | Z) -> (X | Y) | Z */
1252 (for op (bit_and bit_ior)
1254 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1255 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1256 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1257 (if (single_use (@5) && single_use (@6))
1258 (op @3 (convert @2))
1259 (if (single_use (@3) && single_use (@4))
1260 (op (convert @1) @5))))))
1261 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1263 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1264 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1265 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1266 (bit_xor (convert @1) (convert @2))))
1268 /* Convert abs (abs (X)) into abs (X).
1269 also absu (absu (X)) into absu (X). */
1275 (absu (convert@2 (absu@1 @0)))
1276 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1279 /* Convert abs[u] (-X) -> abs[u] (X). */
1288 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1290 (abs tree_expr_nonnegative_p@0)
1294 (absu tree_expr_nonnegative_p@0)
1297 /* A few cases of fold-const.c negate_expr_p predicate. */
1298 (match negate_expr_p
1300 (if ((INTEGRAL_TYPE_P (type)
1301 && TYPE_UNSIGNED (type))
1302 || (!TYPE_OVERFLOW_SANITIZED (type)
1303 && may_negate_without_overflow_p (t)))))
1304 (match negate_expr_p
1306 (match negate_expr_p
1308 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1309 (match negate_expr_p
1311 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1312 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1314 (match negate_expr_p
1316 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1317 (match negate_expr_p
1319 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1320 || (FLOAT_TYPE_P (type)
1321 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1322 && !HONOR_SIGNED_ZEROS (type)))))
1324 /* (-A) * (-B) -> A * B */
1326 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1327 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1328 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1329 (mult (convert @0) (convert (negate @1)))))
1331 /* -(A + B) -> (-B) - A. */
1333 (negate (plus:c @0 negate_expr_p@1))
1334 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1335 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1336 (minus (negate @1) @0)))
1338 /* -(A - B) -> B - A. */
1340 (negate (minus @0 @1))
1341 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1342 || (FLOAT_TYPE_P (type)
1343 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1344 && !HONOR_SIGNED_ZEROS (type)))
1347 (negate (pointer_diff @0 @1))
1348 (if (TYPE_OVERFLOW_UNDEFINED (type))
1349 (pointer_diff @1 @0)))
1351 /* A - B -> A + (-B) if B is easily negatable. */
1353 (minus @0 negate_expr_p@1)
1354 (if (!FIXED_POINT_TYPE_P (type))
1355 (plus @0 (negate @1))))
1357 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1359 For bitwise binary operations apply operand conversions to the
1360 binary operation result instead of to the operands. This allows
1361 to combine successive conversions and bitwise binary operations.
1362 We combine the above two cases by using a conditional convert. */
1363 (for bitop (bit_and bit_ior bit_xor)
1365 (bitop (convert@2 @0) (convert?@3 @1))
1366 (if (((TREE_CODE (@1) == INTEGER_CST
1367 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1368 && int_fits_type_p (@1, TREE_TYPE (@0)))
1369 || types_match (@0, @1))
1370 /* ??? This transform conflicts with fold-const.c doing
1371 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1372 constants (if x has signed type, the sign bit cannot be set
1373 in c). This folds extension into the BIT_AND_EXPR.
1374 Restrict it to GIMPLE to avoid endless recursions. */
1375 && (bitop != BIT_AND_EXPR || GIMPLE)
1376 && (/* That's a good idea if the conversion widens the operand, thus
1377 after hoisting the conversion the operation will be narrower. */
1378 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1379 /* It's also a good idea if the conversion is to a non-integer
1381 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1382 /* Or if the precision of TO is not the same as the precision
1384 || !type_has_mode_precision_p (type)
1385 /* In GIMPLE, getting rid of 2 conversions for one new results
1388 && TREE_CODE (@1) != INTEGER_CST
1389 && tree_nop_conversion_p (type, TREE_TYPE (@0))
1391 && single_use (@3))))
1392 (convert (bitop @0 (convert @1)))))
1393 /* In GIMPLE, getting rid of 2 conversions for one new results
1396 (convert (bitop:cs@2 (nop_convert:s @0) @1))
1398 && TREE_CODE (@1) != INTEGER_CST
1399 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1400 && types_match (type, @0))
1401 (bitop @0 (convert @1)))))
1403 (for bitop (bit_and bit_ior)
1404 rbitop (bit_ior bit_and)
1405 /* (x | y) & x -> x */
1406 /* (x & y) | x -> x */
1408 (bitop:c (rbitop:c @0 @1) @0)
1410 /* (~x | y) & x -> x & y */
1411 /* (~x & y) | x -> x | y */
1413 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1416 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1418 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1419 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1421 /* Combine successive equal operations with constants. */
1422 (for bitop (bit_and bit_ior bit_xor)
1424 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1425 (if (!CONSTANT_CLASS_P (@0))
1426 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1427 folded to a constant. */
1428 (bitop @0 (bitop @1 @2))
1429 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1430 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1431 the values involved are such that the operation can't be decided at
1432 compile time. Try folding one of @0 or @1 with @2 to see whether
1433 that combination can be decided at compile time.
1435 Keep the existing form if both folds fail, to avoid endless
1437 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1439 (bitop @1 { cst1; })
1440 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1442 (bitop @0 { cst2; }))))))))
1444 /* Try simple folding for X op !X, and X op X with the help
1445 of the truth_valued_p and logical_inverted_value predicates. */
1446 (match truth_valued_p
1448 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1449 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1450 (match truth_valued_p
1452 (match truth_valued_p
1455 (match (logical_inverted_value @0)
1457 (match (logical_inverted_value @0)
1458 (bit_not truth_valued_p@0))
1459 (match (logical_inverted_value @0)
1460 (eq @0 integer_zerop))
1461 (match (logical_inverted_value @0)
1462 (ne truth_valued_p@0 integer_truep))
1463 (match (logical_inverted_value @0)
1464 (bit_xor truth_valued_p@0 integer_truep))
1468 (bit_and:c @0 (logical_inverted_value @0))
1469 { build_zero_cst (type); })
1470 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1471 (for op (bit_ior bit_xor)
1473 (op:c truth_valued_p@0 (logical_inverted_value @0))
1474 { constant_boolean_node (true, type); }))
1475 /* X ==/!= !X is false/true. */
1478 (op:c truth_valued_p@0 (logical_inverted_value @0))
1479 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1483 (bit_not (bit_not @0))
1486 /* Convert ~ (-A) to A - 1. */
1488 (bit_not (convert? (negate @0)))
1489 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1490 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1491 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1493 /* Convert - (~A) to A + 1. */
1495 (negate (nop_convert? (bit_not @0)))
1496 (plus (view_convert @0) { build_each_one_cst (type); }))
1498 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1500 (bit_not (convert? (minus @0 integer_each_onep)))
1501 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1502 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1503 (convert (negate @0))))
1505 (bit_not (convert? (plus @0 integer_all_onesp)))
1506 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1507 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1508 (convert (negate @0))))
1510 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1512 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1513 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1514 (convert (bit_xor @0 (bit_not @1)))))
1516 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1517 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1518 (convert (bit_xor @0 @1))))
1520 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1522 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
1523 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1524 (bit_not (bit_xor (view_convert @0) @1))))
1526 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1528 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1529 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1531 /* Fold A - (A & B) into ~B & A. */
1533 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1534 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1535 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1536 (convert (bit_and (bit_not @1) @0))))
1538 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1539 (for cmp (gt lt ge le)
1541 (mult (convert (cmp @0 @1)) @2)
1542 (if (GIMPLE || !TREE_SIDE_EFFECTS (@2))
1543 (cond (cmp @0 @1) @2 { build_zero_cst (type); }))))
1545 /* For integral types with undefined overflow and C != 0 fold
1546 x * C EQ/NE y * C into x EQ/NE y. */
1549 (cmp (mult:c @0 @1) (mult:c @2 @1))
1550 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1551 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1552 && tree_expr_nonzero_p (@1))
1555 /* For integral types with wrapping overflow and C odd fold
1556 x * C EQ/NE y * C into x EQ/NE y. */
1559 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1560 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1561 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1562 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1565 /* For integral types with undefined overflow and C != 0 fold
1566 x * C RELOP y * C into:
1568 x RELOP y for nonnegative C
1569 y RELOP x for negative C */
1570 (for cmp (lt gt le ge)
1572 (cmp (mult:c @0 @1) (mult:c @2 @1))
1573 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1574 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1575 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1577 (if (TREE_CODE (@1) == INTEGER_CST
1578 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1581 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1585 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1586 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1587 && TYPE_UNSIGNED (TREE_TYPE (@0))
1588 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1589 && (wi::to_wide (@2)
1590 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1591 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1592 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1594 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1595 (for cmp (simple_comparison)
1597 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1598 (if (element_precision (@3) >= element_precision (@0)
1599 && types_match (@0, @1))
1600 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1601 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1603 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1606 tree utype = unsigned_type_for (TREE_TYPE (@0));
1608 (cmp (convert:utype @1) (convert:utype @0)))))
1609 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1610 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1614 tree utype = unsigned_type_for (TREE_TYPE (@0));
1616 (cmp (convert:utype @0) (convert:utype @1)))))))))
1618 /* X / C1 op C2 into a simple range test. */
1619 (for cmp (simple_comparison)
1621 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1622 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1623 && integer_nonzerop (@1)
1624 && !TREE_OVERFLOW (@1)
1625 && !TREE_OVERFLOW (@2))
1626 (with { tree lo, hi; bool neg_overflow;
1627 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1630 (if (code == LT_EXPR || code == GE_EXPR)
1631 (if (TREE_OVERFLOW (lo))
1632 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1633 (if (code == LT_EXPR)
1636 (if (code == LE_EXPR || code == GT_EXPR)
1637 (if (TREE_OVERFLOW (hi))
1638 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1639 (if (code == LE_EXPR)
1643 { build_int_cst (type, code == NE_EXPR); })
1644 (if (code == EQ_EXPR && !hi)
1646 (if (code == EQ_EXPR && !lo)
1648 (if (code == NE_EXPR && !hi)
1650 (if (code == NE_EXPR && !lo)
1653 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1657 tree etype = range_check_type (TREE_TYPE (@0));
1660 hi = fold_convert (etype, hi);
1661 lo = fold_convert (etype, lo);
1662 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1665 (if (etype && hi && !TREE_OVERFLOW (hi))
1666 (if (code == EQ_EXPR)
1667 (le (minus (convert:etype @0) { lo; }) { hi; })
1668 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1670 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1671 (for op (lt le ge gt)
1673 (op (plus:c @0 @2) (plus:c @1 @2))
1674 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1675 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1677 /* For equality and subtraction, this is also true with wrapping overflow. */
1678 (for op (eq ne minus)
1680 (op (plus:c @0 @2) (plus:c @1 @2))
1681 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1682 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1683 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1686 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1687 (for op (lt le ge gt)
1689 (op (minus @0 @2) (minus @1 @2))
1690 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1691 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1693 /* For equality and subtraction, this is also true with wrapping overflow. */
1694 (for op (eq ne minus)
1696 (op (minus @0 @2) (minus @1 @2))
1697 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1698 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1699 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1701 /* And for pointers... */
1702 (for op (simple_comparison)
1704 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1705 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1708 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1709 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1710 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1711 (pointer_diff @0 @1)))
1713 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1714 (for op (lt le ge gt)
1716 (op (minus @2 @0) (minus @2 @1))
1717 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1718 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1720 /* For equality and subtraction, this is also true with wrapping overflow. */
1721 (for op (eq ne minus)
1723 (op (minus @2 @0) (minus @2 @1))
1724 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1725 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1726 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1728 /* And for pointers... */
1729 (for op (simple_comparison)
1731 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1732 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1735 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1736 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1737 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1738 (pointer_diff @1 @0)))
1740 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1741 (for op (lt le gt ge)
1743 (op:c (plus:c@2 @0 @1) @1)
1744 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1745 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1746 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1747 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1748 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1749 /* For equality, this is also true with wrapping overflow. */
1752 (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1753 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1754 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1755 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1756 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1757 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1758 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1759 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1761 (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1762 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1763 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1764 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1765 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1767 /* X - Y < X is the same as Y > 0 when there is no overflow.
1768 For equality, this is also true with wrapping overflow. */
1769 (for op (simple_comparison)
1771 (op:c @0 (minus@2 @0 @1))
1772 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1773 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1774 || ((op == EQ_EXPR || op == NE_EXPR)
1775 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1776 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1777 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1780 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1781 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1785 (cmp (trunc_div @0 @1) integer_zerop)
1786 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1787 /* Complex ==/!= is allowed, but not </>=. */
1788 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1789 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1792 /* X == C - X can never be true if C is odd. */
1795 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1796 (if (TREE_INT_CST_LOW (@1) & 1)
1797 { constant_boolean_node (cmp == NE_EXPR, type); })))
1799 /* Arguments on which one can call get_nonzero_bits to get the bits
1801 (match with_possible_nonzero_bits
1803 (match with_possible_nonzero_bits
1805 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1806 /* Slightly extended version, do not make it recursive to keep it cheap. */
1807 (match (with_possible_nonzero_bits2 @0)
1808 with_possible_nonzero_bits@0)
1809 (match (with_possible_nonzero_bits2 @0)
1810 (bit_and:c with_possible_nonzero_bits@0 @2))
1812 /* Same for bits that are known to be set, but we do not have
1813 an equivalent to get_nonzero_bits yet. */
1814 (match (with_certain_nonzero_bits2 @0)
1816 (match (with_certain_nonzero_bits2 @0)
1817 (bit_ior @1 INTEGER_CST@0))
1819 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1822 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1823 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1824 { constant_boolean_node (cmp == NE_EXPR, type); })))
1826 /* ((X inner_op C0) outer_op C1)
1827 With X being a tree where value_range has reasoned certain bits to always be
1828 zero throughout its computed value range,
1829 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1830 where zero_mask has 1's for all bits that are sure to be 0 in
1832 if (inner_op == '^') C0 &= ~C1;
1833 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1834 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1836 (for inner_op (bit_ior bit_xor)
1837 outer_op (bit_xor bit_ior)
1840 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1844 wide_int zero_mask_not;
1848 if (TREE_CODE (@2) == SSA_NAME)
1849 zero_mask_not = get_nonzero_bits (@2);
1853 if (inner_op == BIT_XOR_EXPR)
1855 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1856 cst_emit = C0 | wi::to_wide (@1);
1860 C0 = wi::to_wide (@0);
1861 cst_emit = C0 ^ wi::to_wide (@1);
1864 (if (!fail && (C0 & zero_mask_not) == 0)
1865 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1866 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1867 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1869 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1871 (pointer_plus (pointer_plus:s @0 @1) @3)
1872 (pointer_plus @0 (plus @1 @3)))
1878 tem4 = (unsigned long) tem3;
1883 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1884 /* Conditionally look through a sign-changing conversion. */
1885 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1886 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1887 || (GENERIC && type == TREE_TYPE (@1))))
1890 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1891 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1895 tem = (sizetype) ptr;
1899 and produce the simpler and easier to analyze with respect to alignment
1900 ... = ptr & ~algn; */
1902 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1903 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1904 (bit_and @0 { algn; })))
1906 /* Try folding difference of addresses. */
1908 (minus (convert ADDR_EXPR@0) (convert @1))
1909 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1910 (with { poly_int64 diff; }
1911 (if (ptr_difference_const (@0, @1, &diff))
1912 { build_int_cst_type (type, diff); }))))
1914 (minus (convert @0) (convert ADDR_EXPR@1))
1915 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1916 (with { poly_int64 diff; }
1917 (if (ptr_difference_const (@0, @1, &diff))
1918 { build_int_cst_type (type, diff); }))))
1920 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1921 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1922 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1923 (with { poly_int64 diff; }
1924 (if (ptr_difference_const (@0, @1, &diff))
1925 { build_int_cst_type (type, diff); }))))
1927 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1928 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1929 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1930 (with { poly_int64 diff; }
1931 (if (ptr_difference_const (@0, @1, &diff))
1932 { build_int_cst_type (type, diff); }))))
1934 /* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst]. */
1936 (convert (pointer_diff @0 INTEGER_CST@1))
1937 (if (POINTER_TYPE_P (type))
1938 { build_fold_addr_expr_with_type
1939 (build2 (MEM_REF, char_type_node, @0,
1940 wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
1943 /* If arg0 is derived from the address of an object or function, we may
1944 be able to fold this expression using the object or function's
1947 (bit_and (convert? @0) INTEGER_CST@1)
1948 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1949 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1953 unsigned HOST_WIDE_INT bitpos;
1954 get_pointer_alignment_1 (@0, &align, &bitpos);
1956 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1957 { wide_int_to_tree (type, (wi::to_wide (@1)
1958 & (bitpos / BITS_PER_UNIT))); }))))
1962 (if (INTEGRAL_TYPE_P (type)
1963 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
1967 (if (INTEGRAL_TYPE_P (type)
1968 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
1970 /* x > y && x != XXX_MIN --> x > y
1971 x > y && x == XXX_MIN --> false . */
1974 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
1976 (if (eqne == EQ_EXPR)
1977 { constant_boolean_node (false, type); })
1978 (if (eqne == NE_EXPR)
1982 /* x < y && x != XXX_MAX --> x < y
1983 x < y && x == XXX_MAX --> false. */
1986 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
1988 (if (eqne == EQ_EXPR)
1989 { constant_boolean_node (false, type); })
1990 (if (eqne == NE_EXPR)
1994 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
1996 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
1999 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
2001 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
2004 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
2006 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
2009 /* x <= y || x != XXX_MIN --> true. */
2011 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
2012 { constant_boolean_node (true, type); })
2014 /* x <= y || x == XXX_MIN --> x <= y. */
2016 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
2019 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
2021 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
2024 /* x >= y || x != XXX_MAX --> true
2025 x >= y || x == XXX_MAX --> x >= y. */
2028 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
2030 (if (eqne == EQ_EXPR)
2032 (if (eqne == NE_EXPR)
2033 { constant_boolean_node (true, type); }))))
2035 /* Convert (X == CST1) && (X OP2 CST2) to a known value
2036 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2039 (for code2 (eq ne lt gt le ge)
2041 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2044 int cmp = tree_int_cst_compare (@1, @2);
2048 case EQ_EXPR: val = (cmp == 0); break;
2049 case NE_EXPR: val = (cmp != 0); break;
2050 case LT_EXPR: val = (cmp < 0); break;
2051 case GT_EXPR: val = (cmp > 0); break;
2052 case LE_EXPR: val = (cmp <= 0); break;
2053 case GE_EXPR: val = (cmp >= 0); break;
2054 default: gcc_unreachable ();
2058 (if (code1 == EQ_EXPR && val) @3)
2059 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
2060 (if (code1 == NE_EXPR && !val) @4))))))
2062 /* Convert (X OP1 CST1) && (X OP2 CST2). */
2064 (for code1 (lt le gt ge)
2065 (for code2 (lt le gt ge)
2067 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2070 int cmp = tree_int_cst_compare (@1, @2);
2073 /* Choose the more restrictive of two < or <= comparisons. */
2074 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2075 && (code2 == LT_EXPR || code2 == LE_EXPR))
2076 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2079 /* Likewise chose the more restrictive of two > or >= comparisons. */
2080 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2081 && (code2 == GT_EXPR || code2 == GE_EXPR))
2082 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2085 /* Check for singleton ranges. */
2087 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2088 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2090 /* Check for disjoint ranges. */
2092 && (code1 == LT_EXPR || code1 == LE_EXPR)
2093 && (code2 == GT_EXPR || code2 == GE_EXPR))
2094 { constant_boolean_node (false, type); })
2096 && (code1 == GT_EXPR || code1 == GE_EXPR)
2097 && (code2 == LT_EXPR || code2 == LE_EXPR))
2098 { constant_boolean_node (false, type); })
2101 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2102 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2105 (for code2 (eq ne lt gt le ge)
2107 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2110 int cmp = tree_int_cst_compare (@1, @2);
2114 case EQ_EXPR: val = (cmp == 0); break;
2115 case NE_EXPR: val = (cmp != 0); break;
2116 case LT_EXPR: val = (cmp < 0); break;
2117 case GT_EXPR: val = (cmp > 0); break;
2118 case LE_EXPR: val = (cmp <= 0); break;
2119 case GE_EXPR: val = (cmp >= 0); break;
2120 default: gcc_unreachable ();
2124 (if (code1 == EQ_EXPR && val) @4)
2125 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2126 (if (code1 == NE_EXPR && !val) @3))))))
2128 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2130 (for code1 (lt le gt ge)
2131 (for code2 (lt le gt ge)
2133 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2136 int cmp = tree_int_cst_compare (@1, @2);
2139 /* Choose the more restrictive of two < or <= comparisons. */
2140 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2141 && (code2 == LT_EXPR || code2 == LE_EXPR))
2142 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2145 /* Likewise chose the more restrictive of two > or >= comparisons. */
2146 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2147 && (code2 == GT_EXPR || code2 == GE_EXPR))
2148 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2151 /* Check for singleton ranges. */
2153 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2154 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2156 /* Check for disjoint ranges. */
2158 && (code1 == LT_EXPR || code1 == LE_EXPR)
2159 && (code2 == GT_EXPR || code2 == GE_EXPR))
2160 { constant_boolean_node (true, type); })
2162 && (code1 == GT_EXPR || code1 == GE_EXPR)
2163 && (code2 == LT_EXPR || code2 == LE_EXPR))
2164 { constant_boolean_node (true, type); })
2167 /* We can't reassociate at all for saturating types. */
2168 (if (!TYPE_SATURATING (type))
2170 /* Contract negates. */
2171 /* A + (-B) -> A - B */
2173 (plus:c @0 (convert? (negate @1)))
2174 /* Apply STRIP_NOPS on the negate. */
2175 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2176 && !TYPE_OVERFLOW_SANITIZED (type))
2180 if (INTEGRAL_TYPE_P (type)
2181 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2182 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2184 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2185 /* A - (-B) -> A + B */
2187 (minus @0 (convert? (negate @1)))
2188 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2189 && !TYPE_OVERFLOW_SANITIZED (type))
2193 if (INTEGRAL_TYPE_P (type)
2194 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2195 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2197 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2199 Sign-extension is ok except for INT_MIN, which thankfully cannot
2200 happen without overflow. */
2202 (negate (convert (negate @1)))
2203 (if (INTEGRAL_TYPE_P (type)
2204 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2205 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2206 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2207 && !TYPE_OVERFLOW_SANITIZED (type)
2208 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2211 (negate (convert negate_expr_p@1))
2212 (if (SCALAR_FLOAT_TYPE_P (type)
2213 && ((DECIMAL_FLOAT_TYPE_P (type)
2214 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2215 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2216 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2217 (convert (negate @1))))
2219 (negate (nop_convert? (negate @1)))
2220 (if (!TYPE_OVERFLOW_SANITIZED (type)
2221 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2224 /* We can't reassociate floating-point unless -fassociative-math
2225 or fixed-point plus or minus because of saturation to +-Inf. */
2226 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2227 && !FIXED_POINT_TYPE_P (type))
2229 /* Match patterns that allow contracting a plus-minus pair
2230 irrespective of overflow issues. */
2231 /* (A +- B) - A -> +- B */
2232 /* (A +- B) -+ B -> A */
2233 /* A - (A +- B) -> -+ B */
2234 /* A +- (B -+ A) -> +- B */
2236 (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2239 (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2240 (if (!ANY_INTEGRAL_TYPE_P (type)
2241 || TYPE_OVERFLOW_WRAPS (type))
2242 (negate (view_convert @1))
2243 (view_convert (negate @1))))
2245 (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2248 (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2249 (if (!ANY_INTEGRAL_TYPE_P (type)
2250 || TYPE_OVERFLOW_WRAPS (type))
2251 (negate (view_convert @1))
2252 (view_convert (negate @1))))
2254 (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2256 /* (A +- B) + (C - A) -> C +- B */
2257 /* (A + B) - (A - C) -> B + C */
2258 /* More cases are handled with comparisons. */
2260 (plus:c (plus:c @0 @1) (minus @2 @0))
2263 (plus:c (minus @0 @1) (minus @2 @0))
2266 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2267 (if (TYPE_OVERFLOW_UNDEFINED (type)
2268 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2269 (pointer_diff @2 @1)))
2271 (minus (plus:c @0 @1) (minus @0 @2))
2274 /* (A +- CST1) +- CST2 -> A + CST3
2275 Use view_convert because it is safe for vectors and equivalent for
2277 (for outer_op (plus minus)
2278 (for inner_op (plus minus)
2279 neg_inner_op (minus plus)
2281 (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2283 /* If one of the types wraps, use that one. */
2284 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2285 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2286 forever if something doesn't simplify into a constant. */
2287 (if (!CONSTANT_CLASS_P (@0))
2288 (if (outer_op == PLUS_EXPR)
2289 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2290 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2291 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2292 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2293 (if (outer_op == PLUS_EXPR)
2294 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2295 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2296 /* If the constant operation overflows we cannot do the transform
2297 directly as we would introduce undefined overflow, for example
2298 with (a - 1) + INT_MIN. */
2299 (if (types_match (type, @0))
2300 (with { tree cst = const_binop (outer_op == inner_op
2301 ? PLUS_EXPR : MINUS_EXPR,
2303 (if (cst && !TREE_OVERFLOW (cst))
2304 (inner_op @0 { cst; } )
2305 /* X+INT_MAX+1 is X-INT_MIN. */
2306 (if (INTEGRAL_TYPE_P (type) && cst
2307 && wi::to_wide (cst) == wi::min_value (type))
2308 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2309 /* Last resort, use some unsigned type. */
2310 (with { tree utype = unsigned_type_for (type); }
2312 (view_convert (inner_op
2313 (view_convert:utype @0)
2315 { drop_tree_overflow (cst); }))))))))))))))
2317 /* (CST1 - A) +- CST2 -> CST3 - A */
2318 (for outer_op (plus minus)
2320 (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2321 /* If one of the types wraps, use that one. */
2322 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2323 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2324 forever if something doesn't simplify into a constant. */
2325 (if (!CONSTANT_CLASS_P (@0))
2326 (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2327 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2328 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2329 (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2330 (if (types_match (type, @0))
2331 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2332 (if (cst && !TREE_OVERFLOW (cst))
2333 (minus { cst; } @0))))))))
2335 /* CST1 - (CST2 - A) -> CST3 + A
2336 Use view_convert because it is safe for vectors and equivalent for
2339 (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2340 /* If one of the types wraps, use that one. */
2341 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2342 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2343 forever if something doesn't simplify into a constant. */
2344 (if (!CONSTANT_CLASS_P (@0))
2345 (plus (view_convert @0) (minus @1 (view_convert @2))))
2346 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2347 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2348 (view_convert (plus @0 (minus (view_convert @1) @2)))
2349 (if (types_match (type, @0))
2350 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2351 (if (cst && !TREE_OVERFLOW (cst))
2352 (plus { cst; } @0)))))))
2354 /* ((T)(A)) + CST -> (T)(A + CST) */
2357 (plus (convert SSA_NAME@0) INTEGER_CST@1)
2358 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2359 && TREE_CODE (type) == INTEGER_TYPE
2360 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2361 && int_fits_type_p (@1, TREE_TYPE (@0)))
2362 /* Perform binary operation inside the cast if the constant fits
2363 and (A + CST)'s range does not overflow. */
2366 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2367 max_ovf = wi::OVF_OVERFLOW;
2368 tree inner_type = TREE_TYPE (@0);
2371 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2372 TYPE_SIGN (inner_type));
2374 wide_int wmin0, wmax0;
2375 if (get_range_info (@0, &wmin0, &wmax0) == VR_RANGE)
2377 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2378 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2381 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2382 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2386 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
2388 (for op (plus minus)
2390 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2391 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2392 && TREE_CODE (type) == INTEGER_TYPE
2393 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2394 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2395 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2396 && TYPE_OVERFLOW_WRAPS (type))
2397 (plus (convert @0) (op @2 (convert @1))))))
2402 (plus:c (bit_not @0) @0)
2403 (if (!TYPE_OVERFLOW_TRAPS (type))
2404 { build_all_ones_cst (type); }))
2408 (plus (convert? (bit_not @0)) integer_each_onep)
2409 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2410 (negate (convert @0))))
2414 (minus (convert? (negate @0)) integer_each_onep)
2415 (if (!TYPE_OVERFLOW_TRAPS (type)
2416 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2417 (bit_not (convert @0))))
2421 (minus integer_all_onesp @0)
2424 /* (T)(P + A) - (T)P -> (T) A */
2426 (minus (convert (plus:c @@0 @1))
2428 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2429 /* For integer types, if A has a smaller type
2430 than T the result depends on the possible
2432 E.g. T=size_t, A=(unsigned)429497295, P>0.
2433 However, if an overflow in P + A would cause
2434 undefined behavior, we can assume that there
2436 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2437 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2440 (minus (convert (pointer_plus @@0 @1))
2442 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2443 /* For pointer types, if the conversion of A to the
2444 final type requires a sign- or zero-extension,
2445 then we have to punt - it is not defined which
2447 || (POINTER_TYPE_P (TREE_TYPE (@0))
2448 && TREE_CODE (@1) == INTEGER_CST
2449 && tree_int_cst_sign_bit (@1) == 0))
2452 (pointer_diff (pointer_plus @@0 @1) @0)
2453 /* The second argument of pointer_plus must be interpreted as signed, and
2454 thus sign-extended if necessary. */
2455 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2456 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2457 second arg is unsigned even when we need to consider it as signed,
2458 we don't want to diagnose overflow here. */
2459 (convert (view_convert:stype @1))))
2461 /* (T)P - (T)(P + A) -> -(T) A */
2463 (minus (convert? @0)
2464 (convert (plus:c @@0 @1)))
2465 (if (INTEGRAL_TYPE_P (type)
2466 && TYPE_OVERFLOW_UNDEFINED (type)
2467 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2468 (with { tree utype = unsigned_type_for (type); }
2469 (convert (negate (convert:utype @1))))
2470 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2471 /* For integer types, if A has a smaller type
2472 than T the result depends on the possible
2474 E.g. T=size_t, A=(unsigned)429497295, P>0.
2475 However, if an overflow in P + A would cause
2476 undefined behavior, we can assume that there
2478 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2479 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2480 (negate (convert @1)))))
2483 (convert (pointer_plus @@0 @1)))
2484 (if (INTEGRAL_TYPE_P (type)
2485 && TYPE_OVERFLOW_UNDEFINED (type)
2486 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2487 (with { tree utype = unsigned_type_for (type); }
2488 (convert (negate (convert:utype @1))))
2489 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2490 /* For pointer types, if the conversion of A to the
2491 final type requires a sign- or zero-extension,
2492 then we have to punt - it is not defined which
2494 || (POINTER_TYPE_P (TREE_TYPE (@0))
2495 && TREE_CODE (@1) == INTEGER_CST
2496 && tree_int_cst_sign_bit (@1) == 0))
2497 (negate (convert @1)))))
2499 (pointer_diff @0 (pointer_plus @@0 @1))
2500 /* The second argument of pointer_plus must be interpreted as signed, and
2501 thus sign-extended if necessary. */
2502 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2503 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2504 second arg is unsigned even when we need to consider it as signed,
2505 we don't want to diagnose overflow here. */
2506 (negate (convert (view_convert:stype @1)))))
2508 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2510 (minus (convert (plus:c @@0 @1))
2511 (convert (plus:c @0 @2)))
2512 (if (INTEGRAL_TYPE_P (type)
2513 && TYPE_OVERFLOW_UNDEFINED (type)
2514 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2515 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2516 (with { tree utype = unsigned_type_for (type); }
2517 (convert (minus (convert:utype @1) (convert:utype @2))))
2518 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2519 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2520 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2521 /* For integer types, if A has a smaller type
2522 than T the result depends on the possible
2524 E.g. T=size_t, A=(unsigned)429497295, P>0.
2525 However, if an overflow in P + A would cause
2526 undefined behavior, we can assume that there
2528 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2529 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2530 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2531 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2532 (minus (convert @1) (convert @2)))))
2534 (minus (convert (pointer_plus @@0 @1))
2535 (convert (pointer_plus @0 @2)))
2536 (if (INTEGRAL_TYPE_P (type)
2537 && TYPE_OVERFLOW_UNDEFINED (type)
2538 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2539 (with { tree utype = unsigned_type_for (type); }
2540 (convert (minus (convert:utype @1) (convert:utype @2))))
2541 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2542 /* For pointer types, if the conversion of A to the
2543 final type requires a sign- or zero-extension,
2544 then we have to punt - it is not defined which
2546 || (POINTER_TYPE_P (TREE_TYPE (@0))
2547 && TREE_CODE (@1) == INTEGER_CST
2548 && tree_int_cst_sign_bit (@1) == 0
2549 && TREE_CODE (@2) == INTEGER_CST
2550 && tree_int_cst_sign_bit (@2) == 0))
2551 (minus (convert @1) (convert @2)))))
2553 (pointer_diff (pointer_plus @0 @2) (pointer_plus @1 @2))
2554 (pointer_diff @0 @1))
2556 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2557 /* The second argument of pointer_plus must be interpreted as signed, and
2558 thus sign-extended if necessary. */
2559 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2560 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2561 second arg is unsigned even when we need to consider it as signed,
2562 we don't want to diagnose overflow here. */
2563 (minus (convert (view_convert:stype @1))
2564 (convert (view_convert:stype @2)))))))
2566 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2567 Modeled after fold_plusminus_mult_expr. */
2568 (if (!TYPE_SATURATING (type)
2569 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2570 (for plusminus (plus minus)
2572 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2573 (if ((!ANY_INTEGRAL_TYPE_P (type)
2574 || TYPE_OVERFLOW_WRAPS (type)
2575 || (INTEGRAL_TYPE_P (type)
2576 && tree_expr_nonzero_p (@0)
2577 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2578 /* If @1 +- @2 is constant require a hard single-use on either
2579 original operand (but not on both). */
2580 && (single_use (@3) || single_use (@4)))
2581 (mult (plusminus @1 @2) @0)))
2582 /* We cannot generate constant 1 for fract. */
2583 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2585 (plusminus @0 (mult:c@3 @0 @2))
2586 (if ((!ANY_INTEGRAL_TYPE_P (type)
2587 || TYPE_OVERFLOW_WRAPS (type)
2588 /* For @0 + @0*@2 this transformation would introduce UB
2589 (where there was none before) for @0 in [-1,0] and @2 max.
2590 For @0 - @0*@2 this transformation would introduce UB
2591 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
2592 || (INTEGRAL_TYPE_P (type)
2593 && ((tree_expr_nonzero_p (@0)
2594 && expr_not_equal_to (@0,
2595 wi::minus_one (TYPE_PRECISION (type))))
2596 || (plusminus == PLUS_EXPR
2597 ? expr_not_equal_to (@2,
2598 wi::max_value (TYPE_PRECISION (type), SIGNED))
2599 /* Let's ignore the @0 -1 and @2 min case. */
2600 : (expr_not_equal_to (@2,
2601 wi::min_value (TYPE_PRECISION (type), SIGNED))
2602 && expr_not_equal_to (@2,
2603 wi::min_value (TYPE_PRECISION (type), SIGNED)
2606 (mult (plusminus { build_one_cst (type); } @2) @0)))
2608 (plusminus (mult:c@3 @0 @2) @0)
2609 (if ((!ANY_INTEGRAL_TYPE_P (type)
2610 || TYPE_OVERFLOW_WRAPS (type)
2611 /* For @0*@2 + @0 this transformation would introduce UB
2612 (where there was none before) for @0 in [-1,0] and @2 max.
2613 For @0*@2 - @0 this transformation would introduce UB
2614 for @0 0 and @2 min. */
2615 || (INTEGRAL_TYPE_P (type)
2616 && ((tree_expr_nonzero_p (@0)
2617 && (plusminus == MINUS_EXPR
2618 || expr_not_equal_to (@0,
2619 wi::minus_one (TYPE_PRECISION (type)))))
2620 || expr_not_equal_to (@2,
2621 (plusminus == PLUS_EXPR
2622 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
2623 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
2625 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2628 /* Canonicalize X + (X << C) into X * (1 + (1 << C)) and
2629 (X << C1) + (X << C2) into X * ((1 << C1) + (1 << C2)). */
2631 (plus:c @0 (lshift:s @0 INTEGER_CST@1))
2632 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2633 && tree_fits_uhwi_p (@1)
2634 && tree_to_uhwi (@1) < element_precision (type))
2635 (with { tree t = type;
2636 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2637 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1),
2638 element_precision (type));
2640 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2642 cst = build_uniform_cst (t, cst); }
2643 (convert (mult (convert:t @0) { cst; })))))
2645 (plus (lshift:s @0 INTEGER_CST@1) (lshift:s @0 INTEGER_CST@2))
2646 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2647 && tree_fits_uhwi_p (@1)
2648 && tree_to_uhwi (@1) < element_precision (type)
2649 && tree_fits_uhwi_p (@2)
2650 && tree_to_uhwi (@2) < element_precision (type))
2651 (with { tree t = type;
2652 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2653 unsigned int prec = element_precision (type);
2654 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), prec);
2655 w += wi::set_bit_in_zero (tree_to_uhwi (@2), prec);
2656 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2658 cst = build_uniform_cst (t, cst); }
2659 (convert (mult (convert:t @0) { cst; })))))
2662 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2664 (for minmax (min max FMIN_ALL FMAX_ALL)
2668 /* min(max(x,y),y) -> y. */
2670 (min:c (max:c @0 @1) @1)
2672 /* max(min(x,y),y) -> y. */
2674 (max:c (min:c @0 @1) @1)
2676 /* max(a,-a) -> abs(a). */
2678 (max:c @0 (negate @0))
2679 (if (TREE_CODE (type) != COMPLEX_TYPE
2680 && (! ANY_INTEGRAL_TYPE_P (type)
2681 || TYPE_OVERFLOW_UNDEFINED (type)))
2683 /* min(a,-a) -> -abs(a). */
2685 (min:c @0 (negate @0))
2686 (if (TREE_CODE (type) != COMPLEX_TYPE
2687 && (! ANY_INTEGRAL_TYPE_P (type)
2688 || TYPE_OVERFLOW_UNDEFINED (type)))
2693 (if (INTEGRAL_TYPE_P (type)
2694 && TYPE_MIN_VALUE (type)
2695 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2697 (if (INTEGRAL_TYPE_P (type)
2698 && TYPE_MAX_VALUE (type)
2699 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2704 (if (INTEGRAL_TYPE_P (type)
2705 && TYPE_MAX_VALUE (type)
2706 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2708 (if (INTEGRAL_TYPE_P (type)
2709 && TYPE_MIN_VALUE (type)
2710 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2713 /* max (a, a + CST) -> a + CST where CST is positive. */
2714 /* max (a, a + CST) -> a where CST is negative. */
2716 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2717 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2718 (if (tree_int_cst_sgn (@1) > 0)
2722 /* min (a, a + CST) -> a where CST is positive. */
2723 /* min (a, a + CST) -> a + CST where CST is negative. */
2725 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2726 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2727 (if (tree_int_cst_sgn (@1) > 0)
2731 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2732 and the outer convert demotes the expression back to x's type. */
2733 (for minmax (min max)
2735 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2736 (if (INTEGRAL_TYPE_P (type)
2737 && types_match (@1, type) && int_fits_type_p (@2, type)
2738 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2739 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2740 (minmax @1 (convert @2)))))
2742 (for minmax (FMIN_ALL FMAX_ALL)
2743 /* If either argument is NaN, return the other one. Avoid the
2744 transformation if we get (and honor) a signalling NaN. */
2746 (minmax:c @0 REAL_CST@1)
2747 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2748 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2750 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2751 functions to return the numeric arg if the other one is NaN.
2752 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2753 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2754 worry about it either. */
2755 (if (flag_finite_math_only)
2762 /* min (-A, -B) -> -max (A, B) */
2763 (for minmax (min max FMIN_ALL FMAX_ALL)
2764 maxmin (max min FMAX_ALL FMIN_ALL)
2766 (minmax (negate:s@2 @0) (negate:s@3 @1))
2767 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2768 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2769 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2770 (negate (maxmin @0 @1)))))
2771 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2772 MAX (~X, ~Y) -> ~MIN (X, Y) */
2773 (for minmax (min max)
2776 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2777 (bit_not (maxmin @0 @1))))
2779 /* MIN (X, Y) == X -> X <= Y */
2780 (for minmax (min min max max)
2784 (cmp:c (minmax:c @0 @1) @0)
2785 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2787 /* MIN (X, 5) == 0 -> X == 0
2788 MIN (X, 5) == 7 -> false */
2791 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2792 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2793 TYPE_SIGN (TREE_TYPE (@0))))
2794 { constant_boolean_node (cmp == NE_EXPR, type); }
2795 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2796 TYPE_SIGN (TREE_TYPE (@0))))
2800 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2801 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2802 TYPE_SIGN (TREE_TYPE (@0))))
2803 { constant_boolean_node (cmp == NE_EXPR, type); }
2804 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2805 TYPE_SIGN (TREE_TYPE (@0))))
2807 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2808 (for minmax (min min max max min min max max )
2809 cmp (lt le gt ge gt ge lt le )
2810 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2812 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2813 (comb (cmp @0 @2) (cmp @1 @2))))
2815 /* Undo fancy way of writing max/min or other ?: expressions,
2816 like a - ((a - b) & -(a < b)), in this case into (a < b) ? b : a.
2817 People normally use ?: and that is what we actually try to optimize. */
2818 (for cmp (simple_comparison)
2820 (minus @0 (bit_and:c (minus @0 @1)
2821 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2822 (if (INTEGRAL_TYPE_P (type)
2823 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2824 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2825 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2826 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2827 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
2828 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
2829 (cond (cmp @2 @3) @1 @0)))
2831 (plus:c @0 (bit_and:c (minus @1 @0)
2832 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2833 (if (INTEGRAL_TYPE_P (type)
2834 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2835 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2836 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2837 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2838 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
2839 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
2840 (cond (cmp @2 @3) @1 @0)))
2841 /* Similarly with ^ instead of - though in that case with :c. */
2843 (bit_xor:c @0 (bit_and:c (bit_xor:c @0 @1)
2844 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2845 (if (INTEGRAL_TYPE_P (type)
2846 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2847 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2848 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2849 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2850 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
2851 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
2852 (cond (cmp @2 @3) @1 @0))))
2854 /* Simplifications of shift and rotates. */
2856 (for rotate (lrotate rrotate)
2858 (rotate integer_all_onesp@0 @1)
2861 /* Optimize -1 >> x for arithmetic right shifts. */
2863 (rshift integer_all_onesp@0 @1)
2864 (if (!TYPE_UNSIGNED (type)
2865 && tree_expr_nonnegative_p (@1))
2868 /* Optimize (x >> c) << c into x & (-1<<c). */
2870 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
2871 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2872 /* It doesn't matter if the right shift is arithmetic or logical. */
2873 (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
2876 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
2877 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
2878 /* Allow intermediate conversion to integral type with whatever sign, as
2879 long as the low TYPE_PRECISION (type)
2880 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
2881 && INTEGRAL_TYPE_P (type)
2882 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2883 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2884 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
2885 && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
2886 || wi::geu_p (wi::to_wide (@1),
2887 TYPE_PRECISION (type)
2888 - TYPE_PRECISION (TREE_TYPE (@2)))))
2889 (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
2891 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2894 (rshift (lshift @0 INTEGER_CST@1) @1)
2895 (if (TYPE_UNSIGNED (type)
2896 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2897 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2899 (for shiftrotate (lrotate rrotate lshift rshift)
2901 (shiftrotate @0 integer_zerop)
2904 (shiftrotate integer_zerop@0 @1)
2906 /* Prefer vector1 << scalar to vector1 << vector2
2907 if vector2 is uniform. */
2908 (for vec (VECTOR_CST CONSTRUCTOR)
2910 (shiftrotate @0 vec@1)
2911 (with { tree tem = uniform_vector_p (@1); }
2913 (shiftrotate @0 { tem; }))))))
2915 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2916 Y is 0. Similarly for X >> Y. */
2918 (for shift (lshift rshift)
2920 (shift @0 SSA_NAME@1)
2921 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2923 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2924 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2926 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2930 /* Rewrite an LROTATE_EXPR by a constant into an
2931 RROTATE_EXPR by a new constant. */
2933 (lrotate @0 INTEGER_CST@1)
2934 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2935 build_int_cst (TREE_TYPE (@1),
2936 element_precision (type)), @1); }))
2938 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2939 (for op (lrotate rrotate rshift lshift)
2941 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2942 (with { unsigned int prec = element_precision (type); }
2943 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2944 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2945 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2946 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2947 (with { unsigned int low = (tree_to_uhwi (@1)
2948 + tree_to_uhwi (@2)); }
2949 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2950 being well defined. */
2952 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2953 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2954 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2955 { build_zero_cst (type); }
2956 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2957 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2960 /* ((1 << A) & 1) != 0 -> A == 0
2961 ((1 << A) & 1) == 0 -> A != 0 */
2965 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2966 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2968 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2969 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2973 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2974 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2976 || (!integer_zerop (@2)
2977 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2978 { constant_boolean_node (cmp == NE_EXPR, type); }
2979 (if (!integer_zerop (@2)
2980 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2981 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2983 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2984 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2985 if the new mask might be further optimized. */
2986 (for shift (lshift rshift)
2988 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2990 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2991 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2992 && tree_fits_uhwi_p (@1)
2993 && tree_to_uhwi (@1) > 0
2994 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2997 unsigned int shiftc = tree_to_uhwi (@1);
2998 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2999 unsigned HOST_WIDE_INT newmask, zerobits = 0;
3000 tree shift_type = TREE_TYPE (@3);
3003 if (shift == LSHIFT_EXPR)
3004 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
3005 else if (shift == RSHIFT_EXPR
3006 && type_has_mode_precision_p (shift_type))
3008 prec = TYPE_PRECISION (TREE_TYPE (@3));
3010 /* See if more bits can be proven as zero because of
3013 && TYPE_UNSIGNED (TREE_TYPE (@0)))
3015 tree inner_type = TREE_TYPE (@0);
3016 if (type_has_mode_precision_p (inner_type)
3017 && TYPE_PRECISION (inner_type) < prec)
3019 prec = TYPE_PRECISION (inner_type);
3020 /* See if we can shorten the right shift. */
3022 shift_type = inner_type;
3023 /* Otherwise X >> C1 is all zeros, so we'll optimize
3024 it into (X, 0) later on by making sure zerobits
3028 zerobits = HOST_WIDE_INT_M1U;
3031 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
3032 zerobits <<= prec - shiftc;
3034 /* For arithmetic shift if sign bit could be set, zerobits
3035 can contain actually sign bits, so no transformation is
3036 possible, unless MASK masks them all away. In that
3037 case the shift needs to be converted into logical shift. */
3038 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
3039 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
3041 if ((mask & zerobits) == 0)
3042 shift_type = unsigned_type_for (TREE_TYPE (@3));
3048 /* ((X << 16) & 0xff00) is (X, 0). */
3049 (if ((mask & zerobits) == mask)
3050 { build_int_cst (type, 0); }
3051 (with { newmask = mask | zerobits; }
3052 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
3055 /* Only do the transformation if NEWMASK is some integer
3057 for (prec = BITS_PER_UNIT;
3058 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
3059 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
3062 (if (prec < HOST_BITS_PER_WIDE_INT
3063 || newmask == HOST_WIDE_INT_M1U)
3065 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
3066 (if (!tree_int_cst_equal (newmaskt, @2))
3067 (if (shift_type != TREE_TYPE (@3))
3068 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
3069 (bit_and @4 { newmaskt; })))))))))))))
3071 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
3072 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
3073 (for shift (lshift rshift)
3074 (for bit_op (bit_and bit_xor bit_ior)
3076 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
3077 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3078 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
3079 (bit_op (shift (convert @0) @1) { mask; }))))))
3081 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
3083 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
3084 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
3085 && (element_precision (TREE_TYPE (@0))
3086 <= element_precision (TREE_TYPE (@1))
3087 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
3089 { tree shift_type = TREE_TYPE (@0); }
3090 (convert (rshift (convert:shift_type @1) @2)))))
3092 /* ~(~X >>r Y) -> X >>r Y
3093 ~(~X <<r Y) -> X <<r Y */
3094 (for rotate (lrotate rrotate)
3096 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
3097 (if ((element_precision (TREE_TYPE (@0))
3098 <= element_precision (TREE_TYPE (@1))
3099 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
3100 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
3101 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
3103 { tree rotate_type = TREE_TYPE (@0); }
3104 (convert (rotate (convert:rotate_type @1) @2))))))
3106 /* Simplifications of conversions. */
3108 /* Basic strip-useless-type-conversions / strip_nops. */
3109 (for cvt (convert view_convert float fix_trunc)
3112 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
3113 || (GENERIC && type == TREE_TYPE (@0)))
3116 /* Contract view-conversions. */
3118 (view_convert (view_convert @0))
3121 /* For integral conversions with the same precision or pointer
3122 conversions use a NOP_EXPR instead. */
3125 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
3126 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3127 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
3130 /* Strip inner integral conversions that do not change precision or size, or
3131 zero-extend while keeping the same size (for bool-to-char). */
3133 (view_convert (convert@0 @1))
3134 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3135 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3136 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
3137 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
3138 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
3139 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
3142 /* Simplify a view-converted empty constructor. */
3144 (view_convert CONSTRUCTOR@0)
3145 (if (TREE_CODE (@0) != SSA_NAME
3146 && CONSTRUCTOR_NELTS (@0) == 0)
3147 { build_zero_cst (type); }))
3149 /* Re-association barriers around constants and other re-association
3150 barriers can be removed. */
3152 (paren CONSTANT_CLASS_P@0)
3155 (paren (paren@1 @0))
3158 /* Handle cases of two conversions in a row. */
3159 (for ocvt (convert float fix_trunc)
3160 (for icvt (convert float)
3165 tree inside_type = TREE_TYPE (@0);
3166 tree inter_type = TREE_TYPE (@1);
3167 int inside_int = INTEGRAL_TYPE_P (inside_type);
3168 int inside_ptr = POINTER_TYPE_P (inside_type);
3169 int inside_float = FLOAT_TYPE_P (inside_type);
3170 int inside_vec = VECTOR_TYPE_P (inside_type);
3171 unsigned int inside_prec = TYPE_PRECISION (inside_type);
3172 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3173 int inter_int = INTEGRAL_TYPE_P (inter_type);
3174 int inter_ptr = POINTER_TYPE_P (inter_type);
3175 int inter_float = FLOAT_TYPE_P (inter_type);
3176 int inter_vec = VECTOR_TYPE_P (inter_type);
3177 unsigned int inter_prec = TYPE_PRECISION (inter_type);
3178 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3179 int final_int = INTEGRAL_TYPE_P (type);
3180 int final_ptr = POINTER_TYPE_P (type);
3181 int final_float = FLOAT_TYPE_P (type);
3182 int final_vec = VECTOR_TYPE_P (type);
3183 unsigned int final_prec = TYPE_PRECISION (type);
3184 int final_unsignedp = TYPE_UNSIGNED (type);
3187 /* In addition to the cases of two conversions in a row
3188 handled below, if we are converting something to its own
3189 type via an object of identical or wider precision, neither
3190 conversion is needed. */
3191 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3193 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3194 && (((inter_int || inter_ptr) && final_int)
3195 || (inter_float && final_float))
3196 && inter_prec >= final_prec)
3199 /* Likewise, if the intermediate and initial types are either both
3200 float or both integer, we don't need the middle conversion if the
3201 former is wider than the latter and doesn't change the signedness
3202 (for integers). Avoid this if the final type is a pointer since
3203 then we sometimes need the middle conversion. */
3204 (if (((inter_int && inside_int) || (inter_float && inside_float))
3205 && (final_int || final_float)
3206 && inter_prec >= inside_prec
3207 && (inter_float || inter_unsignedp == inside_unsignedp))
3210 /* If we have a sign-extension of a zero-extended value, we can
3211 replace that by a single zero-extension. Likewise if the
3212 final conversion does not change precision we can drop the
3213 intermediate conversion. */
3214 (if (inside_int && inter_int && final_int
3215 && ((inside_prec < inter_prec && inter_prec < final_prec
3216 && inside_unsignedp && !inter_unsignedp)
3217 || final_prec == inter_prec))
3220 /* Two conversions in a row are not needed unless:
3221 - some conversion is floating-point (overstrict for now), or
3222 - some conversion is a vector (overstrict for now), or
3223 - the intermediate type is narrower than both initial and
3225 - the intermediate type and innermost type differ in signedness,
3226 and the outermost type is wider than the intermediate, or
3227 - the initial type is a pointer type and the precisions of the
3228 intermediate and final types differ, or
3229 - the final type is a pointer type and the precisions of the
3230 initial and intermediate types differ. */
3231 (if (! inside_float && ! inter_float && ! final_float
3232 && ! inside_vec && ! inter_vec && ! final_vec
3233 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3234 && ! (inside_int && inter_int
3235 && inter_unsignedp != inside_unsignedp
3236 && inter_prec < final_prec)
3237 && ((inter_unsignedp && inter_prec > inside_prec)
3238 == (final_unsignedp && final_prec > inter_prec))
3239 && ! (inside_ptr && inter_prec != final_prec)
3240 && ! (final_ptr && inside_prec != inter_prec))
3243 /* A truncation to an unsigned type (a zero-extension) should be
3244 canonicalized as bitwise and of a mask. */
3245 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
3246 && final_int && inter_int && inside_int
3247 && final_prec == inside_prec
3248 && final_prec > inter_prec
3250 (convert (bit_and @0 { wide_int_to_tree
3252 wi::mask (inter_prec, false,
3253 TYPE_PRECISION (inside_type))); })))
3255 /* If we are converting an integer to a floating-point that can
3256 represent it exactly and back to an integer, we can skip the
3257 floating-point conversion. */
3258 (if (GIMPLE /* PR66211 */
3259 && inside_int && inter_float && final_int &&
3260 (unsigned) significand_size (TYPE_MODE (inter_type))
3261 >= inside_prec - !inside_unsignedp)
3264 /* If we have a narrowing conversion to an integral type that is fed by a
3265 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3266 masks off bits outside the final type (and nothing else). */
3268 (convert (bit_and @0 INTEGER_CST@1))
3269 (if (INTEGRAL_TYPE_P (type)
3270 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3271 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3272 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3273 TYPE_PRECISION (type)), 0))
3277 /* (X /[ex] A) * A -> X. */
3279 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3282 /* Simplify (A / B) * B + (A % B) -> A. */
3283 (for div (trunc_div ceil_div floor_div round_div)
3284 mod (trunc_mod ceil_mod floor_mod round_mod)
3286 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3289 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
3290 (for op (plus minus)
3292 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3293 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3294 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3297 wi::overflow_type overflow;
3298 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3299 TYPE_SIGN (type), &overflow);
3301 (if (types_match (type, TREE_TYPE (@2))
3302 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3303 (op @0 { wide_int_to_tree (type, mul); })
3304 (with { tree utype = unsigned_type_for (type); }
3305 (convert (op (convert:utype @0)
3306 (mult (convert:utype @1) (convert:utype @2))))))))))
3308 /* Canonicalization of binary operations. */
3310 /* Convert X + -C into X - C. */
3312 (plus @0 REAL_CST@1)
3313 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3314 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3315 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3316 (minus @0 { tem; })))))
3318 /* Convert x+x into x*2. */
3321 (if (SCALAR_FLOAT_TYPE_P (type))
3322 (mult @0 { build_real (type, dconst2); })
3323 (if (INTEGRAL_TYPE_P (type))
3324 (mult @0 { build_int_cst (type, 2); }))))
3328 (minus integer_zerop @1)
3331 (pointer_diff integer_zerop @1)
3332 (negate (convert @1)))
3334 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
3335 ARG0 is zero and X + ARG0 reduces to X, since that would mean
3336 (-ARG1 + ARG0) reduces to -ARG1. */
3338 (minus real_zerop@0 @1)
3339 (if (fold_real_zero_addition_p (type, @0, 0))
3342 /* Transform x * -1 into -x. */
3344 (mult @0 integer_minus_onep)
3347 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
3348 signed overflow for CST != 0 && CST != -1. */
3350 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3351 (if (TREE_CODE (@2) != INTEGER_CST
3353 && !integer_zerop (@1) && !integer_minus_onep (@1))
3354 (mult (mult @0 @2) @1)))
3356 /* True if we can easily extract the real and imaginary parts of a complex
3358 (match compositional_complex
3359 (convert? (complex @0 @1)))
3361 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
3363 (complex (realpart @0) (imagpart @0))
3366 (realpart (complex @0 @1))
3369 (imagpart (complex @0 @1))
3372 /* Sometimes we only care about half of a complex expression. */
3374 (realpart (convert?:s (conj:s @0)))
3375 (convert (realpart @0)))
3377 (imagpart (convert?:s (conj:s @0)))
3378 (convert (negate (imagpart @0))))
3379 (for part (realpart imagpart)
3380 (for op (plus minus)
3382 (part (convert?:s@2 (op:s @0 @1)))
3383 (convert (op (part @0) (part @1))))))
3385 (realpart (convert?:s (CEXPI:s @0)))
3388 (imagpart (convert?:s (CEXPI:s @0)))
3391 /* conj(conj(x)) -> x */
3393 (conj (convert? (conj @0)))
3394 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3397 /* conj({x,y}) -> {x,-y} */
3399 (conj (convert?:s (complex:s @0 @1)))
3400 (with { tree itype = TREE_TYPE (type); }
3401 (complex (convert:itype @0) (negate (convert:itype @1)))))
3403 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
3404 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
3409 (bswap (bit_not (bswap @0)))
3411 (for bitop (bit_xor bit_ior bit_and)
3413 (bswap (bitop:c (bswap @0) @1))
3414 (bitop @0 (bswap @1)))))
3417 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
3419 /* Simplify constant conditions.
3420 Only optimize constant conditions when the selected branch
3421 has the same type as the COND_EXPR. This avoids optimizing
3422 away "c ? x : throw", where the throw has a void type.
3423 Note that we cannot throw away the fold-const.c variant nor
3424 this one as we depend on doing this transform before possibly
3425 A ? B : B -> B triggers and the fold-const.c one can optimize
3426 0 ? A : B to B even if A has side-effects. Something
3427 genmatch cannot handle. */
3429 (cond INTEGER_CST@0 @1 @2)
3430 (if (integer_zerop (@0))
3431 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
3433 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
3436 (vec_cond VECTOR_CST@0 @1 @2)
3437 (if (integer_all_onesp (@0))
3439 (if (integer_zerop (@0))
3443 /* Sink unary operations to branches, but only if we do fold both. */
3444 (for op (negate bit_not abs absu)
3446 (op (vec_cond:s @0 @1 @2))
3447 (vec_cond @0 (op! @1) (op! @2))))
3449 /* Sink binary operation to branches, but only if we can fold it. */
3450 (for op (tcc_comparison plus minus mult bit_and bit_ior bit_xor
3451 rdiv trunc_div ceil_div floor_div round_div
3452 trunc_mod ceil_mod floor_mod round_mod min max)
3453 /* (c ? a : b) op (c ? d : e) --> c ? (a op d) : (b op e) */
3455 (op (vec_cond:s @0 @1 @2) (vec_cond:s @0 @3 @4))
3456 (vec_cond @0 (op! @1 @3) (op! @2 @4)))
3458 /* (c ? a : b) op d --> c ? (a op d) : (b op d) */
3460 (op (vec_cond:s @0 @1 @2) @3)
3461 (vec_cond @0 (op! @1 @3) (op! @2 @3)))
3463 (op @3 (vec_cond:s @0 @1 @2))
3464 (vec_cond @0 (op! @3 @1) (op! @3 @2))))
3467 /* (v ? w : 0) ? a : b is just (v & w) ? a : b
3468 Currently disabled after pass lvec because ARM understands
3469 VEC_COND_EXPR<v==w,-1,0> but not a plain v==w fed to BIT_IOR_EXPR. */
3471 (vec_cond (vec_cond:s @0 @3 integer_zerop) @1 @2)
3472 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3473 (vec_cond (bit_and @0 @3) @1 @2)))
3475 (vec_cond (vec_cond:s @0 integer_all_onesp @3) @1 @2)
3476 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3477 (vec_cond (bit_ior @0 @3) @1 @2)))
3479 (vec_cond (vec_cond:s @0 integer_zerop @3) @1 @2)
3480 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3481 (vec_cond (bit_ior @0 (bit_not @3)) @2 @1)))
3483 (vec_cond (vec_cond:s @0 @3 integer_all_onesp) @1 @2)
3484 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3485 (vec_cond (bit_and @0 (bit_not @3)) @2 @1)))
3487 /* c1 ? c2 ? a : b : b --> (c1 & c2) ? a : b */
3489 (vec_cond @0 (vec_cond:s @1 @2 @3) @3)
3490 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
3491 (vec_cond (bit_and @0 @1) @2 @3)))
3493 (vec_cond @0 @2 (vec_cond:s @1 @2 @3))
3494 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
3495 (vec_cond (bit_ior @0 @1) @2 @3)))
3497 (vec_cond @0 (vec_cond:s @1 @2 @3) @2)
3498 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
3499 (vec_cond (bit_ior (bit_not @0) @1) @2 @3)))
3501 (vec_cond @0 @3 (vec_cond:s @1 @2 @3))
3502 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
3503 (vec_cond (bit_and (bit_not @0) @1) @2 @3)))
3505 /* Simplification moved from fold_cond_expr_with_comparison. It may also
3507 /* This pattern implements two kinds simplification:
3510 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
3511 1) Conversions are type widening from smaller type.
3512 2) Const c1 equals to c2 after canonicalizing comparison.
3513 3) Comparison has tree code LT, LE, GT or GE.
3514 This specific pattern is needed when (cmp (convert x) c) may not
3515 be simplified by comparison patterns because of multiple uses of
3516 x. It also makes sense here because simplifying across multiple
3517 referred var is always benefitial for complicated cases.
3520 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
3521 (for cmp (lt le gt ge eq)
3523 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
3526 tree from_type = TREE_TYPE (@1);
3527 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
3528 enum tree_code code = ERROR_MARK;
3530 if (INTEGRAL_TYPE_P (from_type)
3531 && int_fits_type_p (@2, from_type)
3532 && (types_match (c1_type, from_type)
3533 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
3534 && (TYPE_UNSIGNED (from_type)
3535 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
3536 && (types_match (c2_type, from_type)
3537 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
3538 && (TYPE_UNSIGNED (from_type)
3539 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
3543 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
3545 /* X <= Y - 1 equals to X < Y. */
3548 /* X > Y - 1 equals to X >= Y. */
3552 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
3554 /* X < Y + 1 equals to X <= Y. */
3557 /* X >= Y + 1 equals to X > Y. */
3561 if (code != ERROR_MARK
3562 || wi::to_widest (@2) == wi::to_widest (@3))
3564 if (cmp == LT_EXPR || cmp == LE_EXPR)
3566 if (cmp == GT_EXPR || cmp == GE_EXPR)
3570 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
3571 else if (int_fits_type_p (@3, from_type))
3575 (if (code == MAX_EXPR)
3576 (convert (max @1 (convert @2)))
3577 (if (code == MIN_EXPR)
3578 (convert (min @1 (convert @2)))
3579 (if (code == EQ_EXPR)
3580 (convert (cond (eq @1 (convert @3))
3581 (convert:from_type @3) (convert:from_type @2)))))))))
3583 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3585 1) OP is PLUS or MINUS.
3586 2) CMP is LT, LE, GT or GE.
3587 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3589 This pattern also handles special cases like:
3591 A) Operand x is a unsigned to signed type conversion and c1 is
3592 integer zero. In this case,
3593 (signed type)x < 0 <=> x > MAX_VAL(signed type)
3594 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
3595 B) Const c1 may not equal to (C3 op' C2). In this case we also
3596 check equality for (c1+1) and (c1-1) by adjusting comparison
3599 TODO: Though signed type is handled by this pattern, it cannot be
3600 simplified at the moment because C standard requires additional
3601 type promotion. In order to match&simplify it here, the IR needs
3602 to be cleaned up by other optimizers, i.e, VRP. */
3603 (for op (plus minus)
3604 (for cmp (lt le gt ge)
3606 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3607 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3608 (if (types_match (from_type, to_type)
3609 /* Check if it is special case A). */
3610 || (TYPE_UNSIGNED (from_type)
3611 && !TYPE_UNSIGNED (to_type)
3612 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3613 && integer_zerop (@1)
3614 && (cmp == LT_EXPR || cmp == GE_EXPR)))
3617 wi::overflow_type overflow = wi::OVF_NONE;
3618 enum tree_code code, cmp_code = cmp;
3620 wide_int c1 = wi::to_wide (@1);
3621 wide_int c2 = wi::to_wide (@2);
3622 wide_int c3 = wi::to_wide (@3);
3623 signop sgn = TYPE_SIGN (from_type);
3625 /* Handle special case A), given x of unsigned type:
3626 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3627 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3628 if (!types_match (from_type, to_type))
3630 if (cmp_code == LT_EXPR)
3632 if (cmp_code == GE_EXPR)
3634 c1 = wi::max_value (to_type);
3636 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3637 compute (c3 op' c2) and check if it equals to c1 with op' being
3638 the inverted operator of op. Make sure overflow doesn't happen
3639 if it is undefined. */
3640 if (op == PLUS_EXPR)
3641 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3643 real_c1 = wi::add (c3, c2, sgn, &overflow);
3646 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3648 /* Check if c1 equals to real_c1. Boundary condition is handled
3649 by adjusting comparison operation if necessary. */
3650 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3653 /* X <= Y - 1 equals to X < Y. */
3654 if (cmp_code == LE_EXPR)
3656 /* X > Y - 1 equals to X >= Y. */
3657 if (cmp_code == GT_EXPR)
3660 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3663 /* X < Y + 1 equals to X <= Y. */
3664 if (cmp_code == LT_EXPR)
3666 /* X >= Y + 1 equals to X > Y. */
3667 if (cmp_code == GE_EXPR)
3670 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3672 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3674 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3679 (if (code == MAX_EXPR)
3680 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3681 { wide_int_to_tree (from_type, c2); })
3682 (if (code == MIN_EXPR)
3683 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3684 { wide_int_to_tree (from_type, c2); })))))))))
3686 (for cnd (cond vec_cond)
3687 /* A ? B : (A ? X : C) -> A ? B : C. */
3689 (cnd @0 (cnd @0 @1 @2) @3)
3692 (cnd @0 @1 (cnd @0 @2 @3))
3694 /* A ? B : (!A ? C : X) -> A ? B : C. */
3695 /* ??? This matches embedded conditions open-coded because genmatch
3696 would generate matching code for conditions in separate stmts only.
3697 The following is still important to merge then and else arm cases
3698 from if-conversion. */
3700 (cnd @0 @1 (cnd @2 @3 @4))
3701 (if (inverse_conditions_p (@0, @2))
3704 (cnd @0 (cnd @1 @2 @3) @4)
3705 (if (inverse_conditions_p (@0, @1))
3708 /* A ? B : B -> B. */
3713 /* !A ? B : C -> A ? C : B. */
3715 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3718 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3719 return all -1 or all 0 results. */
3720 /* ??? We could instead convert all instances of the vec_cond to negate,
3721 but that isn't necessarily a win on its own. */
3723 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3724 (if (VECTOR_TYPE_P (type)
3725 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3726 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3727 && (TYPE_MODE (TREE_TYPE (type))
3728 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3729 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3731 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3733 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3734 (if (VECTOR_TYPE_P (type)
3735 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3736 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3737 && (TYPE_MODE (TREE_TYPE (type))
3738 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3739 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3742 /* Simplifications of comparisons. */
3744 /* See if we can reduce the magnitude of a constant involved in a
3745 comparison by changing the comparison code. This is a canonicalization
3746 formerly done by maybe_canonicalize_comparison_1. */
3750 (cmp @0 uniform_integer_cst_p@1)
3751 (with { tree cst = uniform_integer_cst_p (@1); }
3752 (if (tree_int_cst_sgn (cst) == -1)
3753 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3754 wide_int_to_tree (TREE_TYPE (cst),
3760 (cmp @0 uniform_integer_cst_p@1)
3761 (with { tree cst = uniform_integer_cst_p (@1); }
3762 (if (tree_int_cst_sgn (cst) == 1)
3763 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3764 wide_int_to_tree (TREE_TYPE (cst),
3765 wi::to_wide (cst) - 1)); })))))
3767 /* We can simplify a logical negation of a comparison to the
3768 inverted comparison. As we cannot compute an expression
3769 operator using invert_tree_comparison we have to simulate
3770 that with expression code iteration. */
3771 (for cmp (tcc_comparison)
3772 icmp (inverted_tcc_comparison)
3773 ncmp (inverted_tcc_comparison_with_nans)
3774 /* Ideally we'd like to combine the following two patterns
3775 and handle some more cases by using
3776 (logical_inverted_value (cmp @0 @1))
3777 here but for that genmatch would need to "inline" that.
3778 For now implement what forward_propagate_comparison did. */
3780 (bit_not (cmp @0 @1))
3781 (if (VECTOR_TYPE_P (type)
3782 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3783 /* Comparison inversion may be impossible for trapping math,
3784 invert_tree_comparison will tell us. But we can't use
3785 a computed operator in the replacement tree thus we have
3786 to play the trick below. */
3787 (with { enum tree_code ic = invert_tree_comparison
3788 (cmp, HONOR_NANS (@0)); }
3794 (bit_xor (cmp @0 @1) integer_truep)
3795 (with { enum tree_code ic = invert_tree_comparison
3796 (cmp, HONOR_NANS (@0)); }
3802 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3803 ??? The transformation is valid for the other operators if overflow
3804 is undefined for the type, but performing it here badly interacts
3805 with the transformation in fold_cond_expr_with_comparison which
3806 attempts to synthetize ABS_EXPR. */
3808 (for sub (minus pointer_diff)
3810 (cmp (sub@2 @0 @1) integer_zerop)
3811 (if (single_use (@2))
3814 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3815 signed arithmetic case. That form is created by the compiler
3816 often enough for folding it to be of value. One example is in
3817 computing loop trip counts after Operator Strength Reduction. */
3818 (for cmp (simple_comparison)
3819 scmp (swapped_simple_comparison)
3821 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3822 /* Handle unfolded multiplication by zero. */
3823 (if (integer_zerop (@1))
3825 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3826 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3828 /* If @1 is negative we swap the sense of the comparison. */
3829 (if (tree_int_cst_sgn (@1) < 0)
3833 /* For integral types with undefined overflow fold
3834 x * C1 == C2 into x == C2 / C1 or false.
3835 If overflow wraps and C1 is odd, simplify to x == C2 / C1 in the ring
3839 (cmp (mult @0 INTEGER_CST@1) INTEGER_CST@2)
3840 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3841 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3842 && wi::to_wide (@1) != 0)
3843 (with { widest_int quot; }
3844 (if (wi::multiple_of_p (wi::to_widest (@2), wi::to_widest (@1),
3845 TYPE_SIGN (TREE_TYPE (@0)), "))
3846 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), quot); })
3847 { constant_boolean_node (cmp == NE_EXPR, type); }))
3848 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3849 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3850 && (wi::bit_and (wi::to_wide (@1), 1) == 1))
3853 tree itype = TREE_TYPE (@0);
3854 int p = TYPE_PRECISION (itype);
3855 wide_int m = wi::one (p + 1) << p;
3856 wide_int a = wide_int::from (wi::to_wide (@1), p + 1, UNSIGNED);
3857 wide_int i = wide_int::from (wi::mod_inv (a, m),
3858 p, TYPE_SIGN (itype));
3859 wide_int_to_tree (itype, wi::mul (i, wi::to_wide (@2)));
3862 /* Simplify comparison of something with itself. For IEEE
3863 floating-point, we can only do some of these simplifications. */
3867 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3868 || ! HONOR_NANS (@0))
3869 { constant_boolean_node (true, type); }
3870 (if (cmp != EQ_EXPR)
3876 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3877 || ! HONOR_NANS (@0))
3878 { constant_boolean_node (false, type); })))
3879 (for cmp (unle unge uneq)
3882 { constant_boolean_node (true, type); }))
3883 (for cmp (unlt ungt)
3889 (if (!flag_trapping_math)
3890 { constant_boolean_node (false, type); }))
3892 /* Fold ~X op ~Y as Y op X. */
3893 (for cmp (simple_comparison)
3895 (cmp (bit_not@2 @0) (bit_not@3 @1))
3896 (if (single_use (@2) && single_use (@3))
3899 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3900 (for cmp (simple_comparison)
3901 scmp (swapped_simple_comparison)
3903 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3904 (if (single_use (@2)
3905 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3906 (scmp @0 (bit_not @1)))))
3908 (for cmp (simple_comparison)
3909 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3911 (cmp (convert@2 @0) (convert? @1))
3912 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3913 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3914 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3915 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3916 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3919 tree type1 = TREE_TYPE (@1);
3920 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3922 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3923 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3924 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3925 type1 = float_type_node;
3926 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3927 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3928 type1 = double_type_node;
3931 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3932 ? TREE_TYPE (@0) : type1);
3934 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3935 (cmp (convert:newtype @0) (convert:newtype @1))))))
3939 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3941 /* a CMP (-0) -> a CMP 0 */
3942 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3943 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3944 /* x != NaN is always true, other ops are always false. */
3945 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3946 && ! HONOR_SNANS (@1))
3947 { constant_boolean_node (cmp == NE_EXPR, type); })
3948 /* Fold comparisons against infinity. */
3949 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3950 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3953 REAL_VALUE_TYPE max;
3954 enum tree_code code = cmp;
3955 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3957 code = swap_tree_comparison (code);
3960 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3961 (if (code == GT_EXPR
3962 && !(HONOR_NANS (@0) && flag_trapping_math))
3963 { constant_boolean_node (false, type); })
3964 (if (code == LE_EXPR)
3965 /* x <= +Inf is always true, if we don't care about NaNs. */
3966 (if (! HONOR_NANS (@0))
3967 { constant_boolean_node (true, type); }
3968 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3969 an "invalid" exception. */
3970 (if (!flag_trapping_math)
3972 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3973 for == this introduces an exception for x a NaN. */
3974 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3976 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3978 (lt @0 { build_real (TREE_TYPE (@0), max); })
3979 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3980 /* x < +Inf is always equal to x <= DBL_MAX. */
3981 (if (code == LT_EXPR)
3982 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3984 (ge @0 { build_real (TREE_TYPE (@0), max); })
3985 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3986 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3987 an exception for x a NaN so use an unordered comparison. */
3988 (if (code == NE_EXPR)
3989 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3990 (if (! HONOR_NANS (@0))
3992 (ge @0 { build_real (TREE_TYPE (@0), max); })
3993 (le @0 { build_real (TREE_TYPE (@0), max); }))
3995 (unge @0 { build_real (TREE_TYPE (@0), max); })
3996 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3998 /* If this is a comparison of a real constant with a PLUS_EXPR
3999 or a MINUS_EXPR of a real constant, we can convert it into a
4000 comparison with a revised real constant as long as no overflow
4001 occurs when unsafe_math_optimizations are enabled. */
4002 (if (flag_unsafe_math_optimizations)
4003 (for op (plus minus)
4005 (cmp (op @0 REAL_CST@1) REAL_CST@2)
4008 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
4009 TREE_TYPE (@1), @2, @1);
4011 (if (tem && !TREE_OVERFLOW (tem))
4012 (cmp @0 { tem; }))))))
4014 /* Likewise, we can simplify a comparison of a real constant with
4015 a MINUS_EXPR whose first operand is also a real constant, i.e.
4016 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
4017 floating-point types only if -fassociative-math is set. */
4018 (if (flag_associative_math)
4020 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
4021 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
4022 (if (tem && !TREE_OVERFLOW (tem))
4023 (cmp { tem; } @1)))))
4025 /* Fold comparisons against built-in math functions. */
4026 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
4029 (cmp (sq @0) REAL_CST@1)
4031 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
4033 /* sqrt(x) < y is always false, if y is negative. */
4034 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
4035 { constant_boolean_node (false, type); })
4036 /* sqrt(x) > y is always true, if y is negative and we
4037 don't care about NaNs, i.e. negative values of x. */
4038 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
4039 { constant_boolean_node (true, type); })
4040 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
4041 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
4042 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
4044 /* sqrt(x) < 0 is always false. */
4045 (if (cmp == LT_EXPR)
4046 { constant_boolean_node (false, type); })
4047 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
4048 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
4049 { constant_boolean_node (true, type); })
4050 /* sqrt(x) <= 0 -> x == 0. */
4051 (if (cmp == LE_EXPR)
4053 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
4054 == or !=. In the last case:
4056 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
4058 if x is negative or NaN. Due to -funsafe-math-optimizations,
4059 the results for other x follow from natural arithmetic. */
4061 (if ((cmp == LT_EXPR
4065 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4066 /* Give up for -frounding-math. */
4067 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
4071 enum tree_code ncmp = cmp;
4072 const real_format *fmt
4073 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
4074 real_arithmetic (&c2, MULT_EXPR,
4075 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
4076 real_convert (&c2, fmt, &c2);
4077 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
4078 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
4079 if (!REAL_VALUE_ISINF (c2))
4081 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
4082 build_real (TREE_TYPE (@0), c2));
4083 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
4085 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
4086 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
4087 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
4088 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
4089 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
4090 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
4093 /* With rounding to even, sqrt of up to 3 different values
4094 gives the same normal result, so in some cases c2 needs
4096 REAL_VALUE_TYPE c2alt, tow;
4097 if (cmp == LT_EXPR || cmp == GE_EXPR)
4101 real_nextafter (&c2alt, fmt, &c2, &tow);
4102 real_convert (&c2alt, fmt, &c2alt);
4103 if (REAL_VALUE_ISINF (c2alt))
4107 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
4108 build_real (TREE_TYPE (@0), c2alt));
4109 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
4111 else if (real_equal (&TREE_REAL_CST (c3),
4112 &TREE_REAL_CST (@1)))
4118 (if (cmp == GT_EXPR || cmp == GE_EXPR)
4119 (if (REAL_VALUE_ISINF (c2))
4120 /* sqrt(x) > y is x == +Inf, when y is very large. */
4121 (if (HONOR_INFINITIES (@0))
4122 (eq @0 { build_real (TREE_TYPE (@0), c2); })
4123 { constant_boolean_node (false, type); })
4124 /* sqrt(x) > c is the same as x > c*c. */
4125 (if (ncmp != ERROR_MARK)
4126 (if (ncmp == GE_EXPR)
4127 (ge @0 { build_real (TREE_TYPE (@0), c2); })
4128 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
4129 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
4130 (if (REAL_VALUE_ISINF (c2))
4132 /* sqrt(x) < y is always true, when y is a very large
4133 value and we don't care about NaNs or Infinities. */
4134 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
4135 { constant_boolean_node (true, type); })
4136 /* sqrt(x) < y is x != +Inf when y is very large and we
4137 don't care about NaNs. */
4138 (if (! HONOR_NANS (@0))
4139 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
4140 /* sqrt(x) < y is x >= 0 when y is very large and we
4141 don't care about Infinities. */
4142 (if (! HONOR_INFINITIES (@0))
4143 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
4144 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
4147 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4148 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
4149 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
4150 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
4151 (if (ncmp == LT_EXPR)
4152 (lt @0 { build_real (TREE_TYPE (@0), c2); })
4153 (le @0 { build_real (TREE_TYPE (@0), c2); }))
4154 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
4155 (if (ncmp != ERROR_MARK && GENERIC)
4156 (if (ncmp == LT_EXPR)
4158 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4159 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
4161 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4162 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
4163 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
4165 (cmp (sq @0) (sq @1))
4166 (if (! HONOR_NANS (@0))
4169 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
4170 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
4171 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
4173 (cmp (float@0 @1) (float @2))
4174 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
4175 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
4178 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
4179 tree type1 = TREE_TYPE (@1);
4180 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
4181 tree type2 = TREE_TYPE (@2);
4182 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
4184 (if (fmt.can_represent_integral_type_p (type1)
4185 && fmt.can_represent_integral_type_p (type2))
4186 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
4187 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
4188 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
4189 && type1_signed_p >= type2_signed_p)
4190 (icmp @1 (convert @2))
4191 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
4192 && type1_signed_p <= type2_signed_p)
4193 (icmp (convert:type2 @1) @2)
4194 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
4195 && type1_signed_p == type2_signed_p)
4196 (icmp @1 @2))))))))))
4198 /* Optimize various special cases of (FTYPE) N CMP CST. */
4199 (for cmp (lt le eq ne ge gt)
4200 icmp (le le eq ne ge ge)
4202 (cmp (float @0) REAL_CST@1)
4203 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
4204 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
4207 tree itype = TREE_TYPE (@0);
4208 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
4209 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
4210 /* Be careful to preserve any potential exceptions due to
4211 NaNs. qNaNs are ok in == or != context.
4212 TODO: relax under -fno-trapping-math or
4213 -fno-signaling-nans. */
4215 = real_isnan (cst) && (cst->signalling
4216 || (cmp != EQ_EXPR && cmp != NE_EXPR));
4218 /* TODO: allow non-fitting itype and SNaNs when
4219 -fno-trapping-math. */
4220 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
4223 signop isign = TYPE_SIGN (itype);
4224 REAL_VALUE_TYPE imin, imax;
4225 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
4226 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
4228 REAL_VALUE_TYPE icst;
4229 if (cmp == GT_EXPR || cmp == GE_EXPR)
4230 real_ceil (&icst, fmt, cst);
4231 else if (cmp == LT_EXPR || cmp == LE_EXPR)
4232 real_floor (&icst, fmt, cst);
4234 real_trunc (&icst, fmt, cst);
4236 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
4238 bool overflow_p = false;
4240 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
4243 /* Optimize cases when CST is outside of ITYPE's range. */
4244 (if (real_compare (LT_EXPR, cst, &imin))
4245 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
4247 (if (real_compare (GT_EXPR, cst, &imax))
4248 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
4250 /* Remove cast if CST is an integer representable by ITYPE. */
4252 (cmp @0 { gcc_assert (!overflow_p);
4253 wide_int_to_tree (itype, icst_val); })
4255 /* When CST is fractional, optimize
4256 (FTYPE) N == CST -> 0
4257 (FTYPE) N != CST -> 1. */
4258 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4259 { constant_boolean_node (cmp == NE_EXPR, type); })
4260 /* Otherwise replace with sensible integer constant. */
4263 gcc_checking_assert (!overflow_p);
4265 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
4267 /* Fold A /[ex] B CMP C to A CMP B * C. */
4270 (cmp (exact_div @0 @1) INTEGER_CST@2)
4271 (if (!integer_zerop (@1))
4272 (if (wi::to_wide (@2) == 0)
4274 (if (TREE_CODE (@1) == INTEGER_CST)
4277 wi::overflow_type ovf;
4278 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4279 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4282 { constant_boolean_node (cmp == NE_EXPR, type); }
4283 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
4284 (for cmp (lt le gt ge)
4286 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
4287 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4290 wi::overflow_type ovf;
4291 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4292 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4295 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
4296 TYPE_SIGN (TREE_TYPE (@2)))
4297 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
4298 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
4300 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
4302 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
4303 For large C (more than min/B+2^size), this is also true, with the
4304 multiplication computed modulo 2^size.
4305 For intermediate C, this just tests the sign of A. */
4306 (for cmp (lt le gt ge)
4309 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
4310 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
4311 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
4312 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4315 tree utype = TREE_TYPE (@2);
4316 wide_int denom = wi::to_wide (@1);
4317 wide_int right = wi::to_wide (@2);
4318 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
4319 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
4320 bool small = wi::leu_p (right, smax);
4321 bool large = wi::geu_p (right, smin);
4323 (if (small || large)
4324 (cmp (convert:utype @0) (mult @2 (convert @1)))
4325 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
4327 /* Unordered tests if either argument is a NaN. */
4329 (bit_ior (unordered @0 @0) (unordered @1 @1))
4330 (if (types_match (@0, @1))
4333 (bit_and (ordered @0 @0) (ordered @1 @1))
4334 (if (types_match (@0, @1))
4337 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
4340 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
4343 /* Simple range test simplifications. */
4344 /* A < B || A >= B -> true. */
4345 (for test1 (lt le le le ne ge)
4346 test2 (ge gt ge ne eq ne)
4348 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
4349 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4350 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4351 { constant_boolean_node (true, type); })))
4352 /* A < B && A >= B -> false. */
4353 (for test1 (lt lt lt le ne eq)
4354 test2 (ge gt eq gt eq gt)
4356 (bit_and:c (test1 @0 @1) (test2 @0 @1))
4357 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4358 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4359 { constant_boolean_node (false, type); })))
4361 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
4362 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
4364 Note that comparisons
4365 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
4366 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
4367 will be canonicalized to above so there's no need to
4374 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
4375 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4378 tree ty = TREE_TYPE (@0);
4379 unsigned prec = TYPE_PRECISION (ty);
4380 wide_int mask = wi::to_wide (@2, prec);
4381 wide_int rhs = wi::to_wide (@3, prec);
4382 signop sgn = TYPE_SIGN (ty);
4384 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
4385 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
4386 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
4387 { build_zero_cst (ty); }))))))
4389 /* -A CMP -B -> B CMP A. */
4390 (for cmp (tcc_comparison)
4391 scmp (swapped_tcc_comparison)
4393 (cmp (negate @0) (negate @1))
4394 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4395 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4396 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4399 (cmp (negate @0) CONSTANT_CLASS_P@1)
4400 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4401 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4402 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4403 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
4404 (if (tem && !TREE_OVERFLOW (tem))
4405 (scmp @0 { tem; }))))))
4407 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
4410 (op (abs @0) zerop@1)
4413 /* From fold_sign_changed_comparison and fold_widened_comparison.
4414 FIXME: the lack of symmetry is disturbing. */
4415 (for cmp (simple_comparison)
4417 (cmp (convert@0 @00) (convert?@1 @10))
4418 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4419 /* Disable this optimization if we're casting a function pointer
4420 type on targets that require function pointer canonicalization. */
4421 && !(targetm.have_canonicalize_funcptr_for_compare ()
4422 && ((POINTER_TYPE_P (TREE_TYPE (@00))
4423 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
4424 || (POINTER_TYPE_P (TREE_TYPE (@10))
4425 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
4427 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
4428 && (TREE_CODE (@10) == INTEGER_CST
4430 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
4433 && !POINTER_TYPE_P (TREE_TYPE (@00)))
4434 /* ??? The special-casing of INTEGER_CST conversion was in the original
4435 code and here to avoid a spurious overflow flag on the resulting
4436 constant which fold_convert produces. */
4437 (if (TREE_CODE (@1) == INTEGER_CST)
4438 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
4439 TREE_OVERFLOW (@1)); })
4440 (cmp @00 (convert @1)))
4442 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
4443 /* If possible, express the comparison in the shorter mode. */
4444 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
4445 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
4446 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
4447 && TYPE_UNSIGNED (TREE_TYPE (@00))))
4448 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
4449 || ((TYPE_PRECISION (TREE_TYPE (@00))
4450 >= TYPE_PRECISION (TREE_TYPE (@10)))
4451 && (TYPE_UNSIGNED (TREE_TYPE (@00))
4452 == TYPE_UNSIGNED (TREE_TYPE (@10))))
4453 || (TREE_CODE (@10) == INTEGER_CST
4454 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4455 && int_fits_type_p (@10, TREE_TYPE (@00)))))
4456 (cmp @00 (convert @10))
4457 (if (TREE_CODE (@10) == INTEGER_CST
4458 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4459 && !int_fits_type_p (@10, TREE_TYPE (@00)))
4462 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4463 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4464 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
4465 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
4467 (if (above || below)
4468 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4469 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
4470 (if (cmp == LT_EXPR || cmp == LE_EXPR)
4471 { constant_boolean_node (above ? true : false, type); }
4472 (if (cmp == GT_EXPR || cmp == GE_EXPR)
4473 { constant_boolean_node (above ? false : true, type); }))))))))))))
4477 /* SSA names are canonicalized to 2nd place. */
4478 (cmp addr@0 SSA_NAME@1)
4480 { poly_int64 off; tree base; }
4481 /* A local variable can never be pointed to by
4482 the default SSA name of an incoming parameter. */
4483 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
4484 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
4485 && (base = get_base_address (TREE_OPERAND (@0, 0)))
4486 && TREE_CODE (base) == VAR_DECL
4487 && auto_var_in_fn_p (base, current_function_decl))
4488 (if (cmp == NE_EXPR)
4489 { constant_boolean_node (true, type); }
4490 { constant_boolean_node (false, type); })
4491 /* If the address is based on @1 decide using the offset. */
4492 (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off))
4493 && TREE_CODE (base) == MEM_REF
4494 && TREE_OPERAND (base, 0) == @1)
4495 (with { off += mem_ref_offset (base).force_shwi (); }
4496 (if (known_ne (off, 0))
4497 { constant_boolean_node (cmp == NE_EXPR, type); }
4498 (if (known_eq (off, 0))
4499 { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
4501 /* Equality compare simplifications from fold_binary */
4504 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
4505 Similarly for NE_EXPR. */
4507 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
4508 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
4509 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
4510 { constant_boolean_node (cmp == NE_EXPR, type); }))
4512 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
4514 (cmp (bit_xor @0 @1) integer_zerop)
4517 /* (X ^ Y) == Y becomes X == 0.
4518 Likewise (X ^ Y) == X becomes Y == 0. */
4520 (cmp:c (bit_xor:c @0 @1) @0)
4521 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
4523 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
4525 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
4526 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
4527 (cmp @0 (bit_xor @1 (convert @2)))))
4530 (cmp (convert? addr@0) integer_zerop)
4531 (if (tree_single_nonzero_warnv_p (@0, NULL))
4532 { constant_boolean_node (cmp == NE_EXPR, type); }))
4534 /* (X & C) op (Y & C) into (X ^ Y) & C op 0. */
4536 (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2))
4537 (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); })))
4539 /* (X < 0) != (Y < 0) into (X ^ Y) < 0.
4540 (X >= 0) != (Y >= 0) into (X ^ Y) < 0.
4541 (X < 0) == (Y < 0) into (X ^ Y) >= 0.
4542 (X >= 0) == (Y >= 0) into (X ^ Y) >= 0. */
4547 (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop))
4548 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4549 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4550 && types_match (@0, @1))
4551 (ncmp (bit_xor @0 @1) @2)))))
4552 /* (X < 0) == (Y >= 0) into (X ^ Y) < 0.
4553 (X < 0) != (Y >= 0) into (X ^ Y) >= 0. */
4557 (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop))
4558 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4559 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4560 && types_match (@0, @1))
4561 (ncmp (bit_xor @0 @1) @2))))
4563 /* If we have (A & C) == C where C is a power of 2, convert this into
4564 (A & C) != 0. Similarly for NE_EXPR. */
4568 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
4569 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
4571 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
4572 convert this into a shift followed by ANDing with D. */
4575 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
4576 INTEGER_CST@2 integer_zerop)
4577 (if (integer_pow2p (@2))
4579 int shift = (wi::exact_log2 (wi::to_wide (@2))
4580 - wi::exact_log2 (wi::to_wide (@1)));
4584 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
4586 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
4589 /* If we have (A & C) != 0 where C is the sign bit of A, convert
4590 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
4594 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
4595 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4596 && type_has_mode_precision_p (TREE_TYPE (@0))
4597 && element_precision (@2) >= element_precision (@0)
4598 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
4599 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
4600 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
4602 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
4603 this into a right shift or sign extension followed by ANDing with C. */
4606 (lt @0 integer_zerop)
4607 INTEGER_CST@1 integer_zerop)
4608 (if (integer_pow2p (@1)
4609 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
4611 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
4615 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
4617 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
4618 sign extension followed by AND with C will achieve the effect. */
4619 (bit_and (convert @0) @1)))))
4621 /* When the addresses are not directly of decls compare base and offset.
4622 This implements some remaining parts of fold_comparison address
4623 comparisons but still no complete part of it. Still it is good
4624 enough to make fold_stmt not regress when not dispatching to fold_binary. */
4625 (for cmp (simple_comparison)
4627 (cmp (convert1?@2 addr@0) (convert2? addr@1))
4630 poly_int64 off0, off1;
4631 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
4632 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
4633 if (base0 && TREE_CODE (base0) == MEM_REF)
4635 off0 += mem_ref_offset (base0).force_shwi ();
4636 base0 = TREE_OPERAND (base0, 0);
4638 if (base1 && TREE_CODE (base1) == MEM_REF)
4640 off1 += mem_ref_offset (base1).force_shwi ();
4641 base1 = TREE_OPERAND (base1, 0);
4644 (if (base0 && base1)
4648 /* Punt in GENERIC on variables with value expressions;
4649 the value expressions might point to fields/elements
4650 of other vars etc. */
4652 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
4653 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
4655 else if (decl_in_symtab_p (base0)
4656 && decl_in_symtab_p (base1))
4657 equal = symtab_node::get_create (base0)
4658 ->equal_address_to (symtab_node::get_create (base1));
4659 else if ((DECL_P (base0)
4660 || TREE_CODE (base0) == SSA_NAME
4661 || TREE_CODE (base0) == STRING_CST)
4663 || TREE_CODE (base1) == SSA_NAME
4664 || TREE_CODE (base1) == STRING_CST))
4665 equal = (base0 == base1);
4668 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
4669 off0.is_constant (&ioff0);
4670 off1.is_constant (&ioff1);
4671 if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
4672 || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
4673 || (TREE_CODE (base0) == STRING_CST
4674 && TREE_CODE (base1) == STRING_CST
4675 && ioff0 >= 0 && ioff1 >= 0
4676 && ioff0 < TREE_STRING_LENGTH (base0)
4677 && ioff1 < TREE_STRING_LENGTH (base1)
4678 /* This is a too conservative test that the STRING_CSTs
4679 will not end up being string-merged. */
4680 && strncmp (TREE_STRING_POINTER (base0) + ioff0,
4681 TREE_STRING_POINTER (base1) + ioff1,
4682 MIN (TREE_STRING_LENGTH (base0) - ioff0,
4683 TREE_STRING_LENGTH (base1) - ioff1)) != 0))
4685 else if (!DECL_P (base0) || !DECL_P (base1))
4687 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
4689 /* If this is a pointer comparison, ignore for now even
4690 valid equalities where one pointer is the offset zero
4691 of one object and the other to one past end of another one. */
4692 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
4694 /* Assume that automatic variables can't be adjacent to global
4696 else if (is_global_var (base0) != is_global_var (base1))
4700 tree sz0 = DECL_SIZE_UNIT (base0);
4701 tree sz1 = DECL_SIZE_UNIT (base1);
4702 /* If sizes are unknown, e.g. VLA or not representable,
4704 if (!tree_fits_poly_int64_p (sz0)
4705 || !tree_fits_poly_int64_p (sz1))
4709 poly_int64 size0 = tree_to_poly_int64 (sz0);
4710 poly_int64 size1 = tree_to_poly_int64 (sz1);
4711 /* If one offset is pointing (or could be) to the beginning
4712 of one object and the other is pointing to one past the
4713 last byte of the other object, punt. */
4714 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
4716 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
4718 /* If both offsets are the same, there are some cases
4719 we know that are ok. Either if we know they aren't
4720 zero, or if we know both sizes are no zero. */
4722 && known_eq (off0, off1)
4723 && (known_ne (off0, 0)
4724 || (known_ne (size0, 0) && known_ne (size1, 0))))
4731 && (cmp == EQ_EXPR || cmp == NE_EXPR
4732 /* If the offsets are equal we can ignore overflow. */
4733 || known_eq (off0, off1)
4734 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4735 /* Or if we compare using pointers to decls or strings. */
4736 || (POINTER_TYPE_P (TREE_TYPE (@2))
4737 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
4739 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4740 { constant_boolean_node (known_eq (off0, off1), type); })
4741 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4742 { constant_boolean_node (known_ne (off0, off1), type); })
4743 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4744 { constant_boolean_node (known_lt (off0, off1), type); })
4745 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4746 { constant_boolean_node (known_le (off0, off1), type); })
4747 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4748 { constant_boolean_node (known_ge (off0, off1), type); })
4749 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4750 { constant_boolean_node (known_gt (off0, off1), type); }))
4753 (if (cmp == EQ_EXPR)
4754 { constant_boolean_node (false, type); })
4755 (if (cmp == NE_EXPR)
4756 { constant_boolean_node (true, type); })))))))))
4758 /* Simplify pointer equality compares using PTA. */
4762 (if (POINTER_TYPE_P (TREE_TYPE (@0))
4763 && ptrs_compare_unequal (@0, @1))
4764 { constant_boolean_node (neeq != EQ_EXPR, type); })))
4766 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
4767 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4768 Disable the transform if either operand is pointer to function.
4769 This broke pr22051-2.c for arm where function pointer
4770 canonicalizaion is not wanted. */
4774 (cmp (convert @0) INTEGER_CST@1)
4775 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4776 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4777 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4778 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4779 && POINTER_TYPE_P (TREE_TYPE (@1))
4780 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4781 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
4782 (cmp @0 (convert @1)))))
4784 /* Non-equality compare simplifications from fold_binary */
4785 (for cmp (lt gt le ge)
4786 /* Comparisons with the highest or lowest possible integer of
4787 the specified precision will have known values. */
4789 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4790 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4791 || POINTER_TYPE_P (TREE_TYPE (@1))
4792 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4793 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4796 tree cst = uniform_integer_cst_p (@1);
4797 tree arg1_type = TREE_TYPE (cst);
4798 unsigned int prec = TYPE_PRECISION (arg1_type);
4799 wide_int max = wi::max_value (arg1_type);
4800 wide_int signed_max = wi::max_value (prec, SIGNED);
4801 wide_int min = wi::min_value (arg1_type);
4804 (if (wi::to_wide (cst) == max)
4806 (if (cmp == GT_EXPR)
4807 { constant_boolean_node (false, type); })
4808 (if (cmp == GE_EXPR)
4810 (if (cmp == LE_EXPR)
4811 { constant_boolean_node (true, type); })
4812 (if (cmp == LT_EXPR)
4814 (if (wi::to_wide (cst) == min)
4816 (if (cmp == LT_EXPR)
4817 { constant_boolean_node (false, type); })
4818 (if (cmp == LE_EXPR)
4820 (if (cmp == GE_EXPR)
4821 { constant_boolean_node (true, type); })
4822 (if (cmp == GT_EXPR)
4824 (if (wi::to_wide (cst) == max - 1)
4826 (if (cmp == GT_EXPR)
4827 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4828 wide_int_to_tree (TREE_TYPE (cst),
4831 (if (cmp == LE_EXPR)
4832 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4833 wide_int_to_tree (TREE_TYPE (cst),
4836 (if (wi::to_wide (cst) == min + 1)
4838 (if (cmp == GE_EXPR)
4839 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4840 wide_int_to_tree (TREE_TYPE (cst),
4843 (if (cmp == LT_EXPR)
4844 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4845 wide_int_to_tree (TREE_TYPE (cst),
4848 (if (wi::to_wide (cst) == signed_max
4849 && TYPE_UNSIGNED (arg1_type)
4850 /* We will flip the signedness of the comparison operator
4851 associated with the mode of @1, so the sign bit is
4852 specified by this mode. Check that @1 is the signed
4853 max associated with this sign bit. */
4854 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4855 /* signed_type does not work on pointer types. */
4856 && INTEGRAL_TYPE_P (arg1_type))
4857 /* The following case also applies to X < signed_max+1
4858 and X >= signed_max+1 because previous transformations. */
4859 (if (cmp == LE_EXPR || cmp == GT_EXPR)
4860 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4862 (if (cst == @1 && cmp == LE_EXPR)
4863 (ge (convert:st @0) { build_zero_cst (st); }))
4864 (if (cst == @1 && cmp == GT_EXPR)
4865 (lt (convert:st @0) { build_zero_cst (st); }))
4866 (if (cmp == LE_EXPR)
4867 (ge (view_convert:st @0) { build_zero_cst (st); }))
4868 (if (cmp == GT_EXPR)
4869 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4871 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4872 /* If the second operand is NaN, the result is constant. */
4875 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4876 && (cmp != LTGT_EXPR || ! flag_trapping_math))
4877 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4878 ? false : true, type); })))
4880 /* bool_var != 0 becomes bool_var. */
4882 (ne @0 integer_zerop)
4883 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4884 && types_match (type, TREE_TYPE (@0)))
4886 /* bool_var == 1 becomes bool_var. */
4888 (eq @0 integer_onep)
4889 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4890 && types_match (type, TREE_TYPE (@0)))
4893 bool_var == 0 becomes !bool_var or
4894 bool_var != 1 becomes !bool_var
4895 here because that only is good in assignment context as long
4896 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4897 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4898 clearly less optimal and which we'll transform again in forwprop. */
4900 /* When one argument is a constant, overflow detection can be simplified.
4901 Currently restricted to single use so as not to interfere too much with
4902 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4903 A + CST CMP A -> A CMP' CST' */
4904 (for cmp (lt le ge gt)
4907 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4908 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4909 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4910 && wi::to_wide (@1) != 0
4912 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4913 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4914 wi::max_value (prec, UNSIGNED)
4915 - wi::to_wide (@1)); })))))
4917 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4918 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4919 expects the long form, so we restrict the transformation for now. */
4922 (cmp:c (minus@2 @0 @1) @0)
4923 (if (single_use (@2)
4924 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4925 && TYPE_UNSIGNED (TREE_TYPE (@0)))
4928 /* Optimize A - B + -1 >= A into B >= A for unsigned comparisons. */
4931 (cmp:c (plus (minus @0 @1) integer_minus_onep) @0)
4932 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4933 && TYPE_UNSIGNED (TREE_TYPE (@0)))
4936 /* Testing for overflow is unnecessary if we already know the result. */
4941 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4942 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4943 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4944 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4949 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4950 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4951 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4952 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4954 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4955 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4959 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4960 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4961 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4962 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4964 /* Similarly, for unsigned operands, (((type) A * B) >> prec) != 0 where type
4965 is at least twice as wide as type of A and B, simplify to
4966 __builtin_mul_overflow (A, B, <unused>). */
4969 (cmp (rshift (mult:s (convert@3 @0) (convert @1)) INTEGER_CST@2)
4971 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4972 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
4973 && TYPE_UNSIGNED (TREE_TYPE (@0))
4974 && (TYPE_PRECISION (TREE_TYPE (@3))
4975 >= 2 * TYPE_PRECISION (TREE_TYPE (@0)))
4976 && tree_fits_uhwi_p (@2)
4977 && tree_to_uhwi (@2) == TYPE_PRECISION (TREE_TYPE (@0))
4978 && types_match (@0, @1)
4979 && type_has_mode_precision_p (TREE_TYPE (@0))
4980 && (optab_handler (umulv4_optab, TYPE_MODE (TREE_TYPE (@0)))
4981 != CODE_FOR_nothing))
4982 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4983 (cmp (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4985 /* Simplification of math builtins. These rules must all be optimizations
4986 as well as IL simplifications. If there is a possibility that the new
4987 form could be a pessimization, the rule should go in the canonicalization
4988 section that follows this one.
4990 Rules can generally go in this section if they satisfy one of
4993 - the rule describes an identity
4995 - the rule replaces calls with something as simple as addition or
4998 - the rule contains unary calls only and simplifies the surrounding
4999 arithmetic. (The idea here is to exclude non-unary calls in which
5000 one operand is constant and in which the call is known to be cheap
5001 when the operand has that value.) */
5003 (if (flag_unsafe_math_optimizations)
5004 /* Simplify sqrt(x) * sqrt(x) -> x. */
5006 (mult (SQRT_ALL@1 @0) @1)
5007 (if (!HONOR_SNANS (type))
5010 (for op (plus minus)
5011 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
5015 (rdiv (op @0 @2) @1)))
5017 (for cmp (lt le gt ge)
5018 neg_cmp (gt ge lt le)
5019 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
5021 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
5023 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
5025 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
5026 || (real_zerop (tem) && !real_zerop (@1))))
5028 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
5030 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
5031 (neg_cmp @0 { tem; })))))))
5033 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
5034 (for root (SQRT CBRT)
5036 (mult (root:s @0) (root:s @1))
5037 (root (mult @0 @1))))
5039 /* Simplify expN(x) * expN(y) -> expN(x+y). */
5040 (for exps (EXP EXP2 EXP10 POW10)
5042 (mult (exps:s @0) (exps:s @1))
5043 (exps (plus @0 @1))))
5045 /* Simplify a/root(b/c) into a*root(c/b). */
5046 (for root (SQRT CBRT)
5048 (rdiv @0 (root:s (rdiv:s @1 @2)))
5049 (mult @0 (root (rdiv @2 @1)))))
5051 /* Simplify x/expN(y) into x*expN(-y). */
5052 (for exps (EXP EXP2 EXP10 POW10)
5054 (rdiv @0 (exps:s @1))
5055 (mult @0 (exps (negate @1)))))
5057 (for logs (LOG LOG2 LOG10 LOG10)
5058 exps (EXP EXP2 EXP10 POW10)
5059 /* logN(expN(x)) -> x. */
5063 /* expN(logN(x)) -> x. */
5068 /* Optimize logN(func()) for various exponential functions. We
5069 want to determine the value "x" and the power "exponent" in
5070 order to transform logN(x**exponent) into exponent*logN(x). */
5071 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
5072 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
5075 (if (SCALAR_FLOAT_TYPE_P (type))
5081 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
5082 x = build_real_truncate (type, dconst_e ());
5085 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
5086 x = build_real (type, dconst2);
5090 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
5092 REAL_VALUE_TYPE dconst10;
5093 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
5094 x = build_real (type, dconst10);
5101 (mult (logs { x; }) @0)))))
5109 (if (SCALAR_FLOAT_TYPE_P (type))
5115 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
5116 x = build_real (type, dconsthalf);
5119 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
5120 x = build_real_truncate (type, dconst_third ());
5126 (mult { x; } (logs @0))))))
5128 /* logN(pow(x,exponent)) -> exponent*logN(x). */
5129 (for logs (LOG LOG2 LOG10)
5133 (mult @1 (logs @0))))
5135 /* pow(C,x) -> exp(log(C)*x) if C > 0,
5136 or if C is a positive power of 2,
5137 pow(C,x) -> exp2(log2(C)*x). */
5145 (pows REAL_CST@0 @1)
5146 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
5147 && real_isfinite (TREE_REAL_CST_PTR (@0))
5148 /* As libmvec doesn't have a vectorized exp2, defer optimizing
5149 the use_exp2 case until after vectorization. It seems actually
5150 beneficial for all constants to postpone this until later,
5151 because exp(log(C)*x), while faster, will have worse precision
5152 and if x folds into a constant too, that is unnecessary
5154 && canonicalize_math_after_vectorization_p ())
5156 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
5157 bool use_exp2 = false;
5158 if (targetm.libc_has_function (function_c99_misc)
5159 && value->cl == rvc_normal)
5161 REAL_VALUE_TYPE frac_rvt = *value;
5162 SET_REAL_EXP (&frac_rvt, 1);
5163 if (real_equal (&frac_rvt, &dconst1))
5168 (if (optimize_pow_to_exp (@0, @1))
5169 (exps (mult (logs @0) @1)))
5170 (exp2s (mult (log2s @0) @1)))))))
5173 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
5175 exps (EXP EXP2 EXP10 POW10)
5176 logs (LOG LOG2 LOG10 LOG10)
5178 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
5179 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
5180 && real_isfinite (TREE_REAL_CST_PTR (@0)))
5181 (exps (plus (mult (logs @0) @1) @2)))))
5186 exps (EXP EXP2 EXP10 POW10)
5187 /* sqrt(expN(x)) -> expN(x*0.5). */
5190 (exps (mult @0 { build_real (type, dconsthalf); })))
5191 /* cbrt(expN(x)) -> expN(x/3). */
5194 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
5195 /* pow(expN(x), y) -> expN(x*y). */
5198 (exps (mult @0 @1))))
5200 /* tan(atan(x)) -> x. */
5207 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
5211 copysigns (COPYSIGN)
5216 REAL_VALUE_TYPE r_cst;
5217 build_sinatan_real (&r_cst, type);
5218 tree t_cst = build_real (type, r_cst);
5219 tree t_one = build_one_cst (type);
5221 (if (SCALAR_FLOAT_TYPE_P (type))
5222 (cond (lt (abs @0) { t_cst; })
5223 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
5224 (copysigns { t_one; } @0))))))
5226 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
5230 copysigns (COPYSIGN)
5235 REAL_VALUE_TYPE r_cst;
5236 build_sinatan_real (&r_cst, type);
5237 tree t_cst = build_real (type, r_cst);
5238 tree t_one = build_one_cst (type);
5239 tree t_zero = build_zero_cst (type);
5241 (if (SCALAR_FLOAT_TYPE_P (type))
5242 (cond (lt (abs @0) { t_cst; })
5243 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
5244 (copysigns { t_zero; } @0))))))
5246 (if (!flag_errno_math)
5247 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
5252 (sinhs (atanhs:s @0))
5253 (with { tree t_one = build_one_cst (type); }
5254 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
5256 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
5261 (coshs (atanhs:s @0))
5262 (with { tree t_one = build_one_cst (type); }
5263 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
5265 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
5267 (CABS (complex:C @0 real_zerop@1))
5270 /* trunc(trunc(x)) -> trunc(x), etc. */
5271 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5275 /* f(x) -> x if x is integer valued and f does nothing for such values. */
5276 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5278 (fns integer_valued_real_p@0)
5281 /* hypot(x,0) and hypot(0,x) -> abs(x). */
5283 (HYPOT:c @0 real_zerop@1)
5286 /* pow(1,x) -> 1. */
5288 (POW real_onep@0 @1)
5292 /* copysign(x,x) -> x. */
5293 (COPYSIGN_ALL @0 @0)
5297 /* copysign(x,-x) -> -x. */
5298 (COPYSIGN_ALL @0 (negate@1 @0))
5302 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
5303 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
5306 (for scale (LDEXP SCALBN SCALBLN)
5307 /* ldexp(0, x) -> 0. */
5309 (scale real_zerop@0 @1)
5311 /* ldexp(x, 0) -> x. */
5313 (scale @0 integer_zerop@1)
5315 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
5317 (scale REAL_CST@0 @1)
5318 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
5321 /* Canonicalization of sequences of math builtins. These rules represent
5322 IL simplifications but are not necessarily optimizations.
5324 The sincos pass is responsible for picking "optimal" implementations
5325 of math builtins, which may be more complicated and can sometimes go
5326 the other way, e.g. converting pow into a sequence of sqrts.
5327 We only want to do these canonicalizations before the pass has run. */
5329 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
5330 /* Simplify tan(x) * cos(x) -> sin(x). */
5332 (mult:c (TAN:s @0) (COS:s @0))
5335 /* Simplify x * pow(x,c) -> pow(x,c+1). */
5337 (mult:c @0 (POW:s @0 REAL_CST@1))
5338 (if (!TREE_OVERFLOW (@1))
5339 (POW @0 (plus @1 { build_one_cst (type); }))))
5341 /* Simplify sin(x) / cos(x) -> tan(x). */
5343 (rdiv (SIN:s @0) (COS:s @0))
5346 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
5348 (rdiv (SINH:s @0) (COSH:s @0))
5351 /* Simplify tanh (x) / sinh (x) -> 1.0 / cosh (x). */
5353 (rdiv (TANH:s @0) (SINH:s @0))
5354 (rdiv {build_one_cst (type);} (COSH @0)))
5356 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
5358 (rdiv (COS:s @0) (SIN:s @0))
5359 (rdiv { build_one_cst (type); } (TAN @0)))
5361 /* Simplify sin(x) / tan(x) -> cos(x). */
5363 (rdiv (SIN:s @0) (TAN:s @0))
5364 (if (! HONOR_NANS (@0)
5365 && ! HONOR_INFINITIES (@0))
5368 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
5370 (rdiv (TAN:s @0) (SIN:s @0))
5371 (if (! HONOR_NANS (@0)
5372 && ! HONOR_INFINITIES (@0))
5373 (rdiv { build_one_cst (type); } (COS @0))))
5375 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
5377 (mult (POW:s @0 @1) (POW:s @0 @2))
5378 (POW @0 (plus @1 @2)))
5380 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
5382 (mult (POW:s @0 @1) (POW:s @2 @1))
5383 (POW (mult @0 @2) @1))
5385 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
5387 (mult (POWI:s @0 @1) (POWI:s @2 @1))
5388 (POWI (mult @0 @2) @1))
5390 /* Simplify pow(x,c) / x -> pow(x,c-1). */
5392 (rdiv (POW:s @0 REAL_CST@1) @0)
5393 (if (!TREE_OVERFLOW (@1))
5394 (POW @0 (minus @1 { build_one_cst (type); }))))
5396 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
5398 (rdiv @0 (POW:s @1 @2))
5399 (mult @0 (POW @1 (negate @2))))
5404 /* sqrt(sqrt(x)) -> pow(x,1/4). */
5407 (pows @0 { build_real (type, dconst_quarter ()); }))
5408 /* sqrt(cbrt(x)) -> pow(x,1/6). */
5411 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5412 /* cbrt(sqrt(x)) -> pow(x,1/6). */
5415 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5416 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
5418 (cbrts (cbrts tree_expr_nonnegative_p@0))
5419 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
5420 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
5422 (sqrts (pows @0 @1))
5423 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
5424 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
5426 (cbrts (pows tree_expr_nonnegative_p@0 @1))
5427 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5428 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
5430 (pows (sqrts @0) @1)
5431 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
5432 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
5434 (pows (cbrts tree_expr_nonnegative_p@0) @1)
5435 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5436 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
5438 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
5439 (pows @0 (mult @1 @2))))
5441 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
5443 (CABS (complex @0 @0))
5444 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5446 /* hypot(x,x) -> fabs(x)*sqrt(2). */
5449 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5451 /* cexp(x+yi) -> exp(x)*cexpi(y). */
5456 (cexps compositional_complex@0)
5457 (if (targetm.libc_has_function (function_c99_math_complex))
5459 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
5460 (mult @1 (imagpart @2)))))))
5462 (if (canonicalize_math_p ())
5463 /* floor(x) -> trunc(x) if x is nonnegative. */
5464 (for floors (FLOOR_ALL)
5467 (floors tree_expr_nonnegative_p@0)
5470 (match double_value_p
5472 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
5473 (for froms (BUILT_IN_TRUNCL
5485 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
5486 (if (optimize && canonicalize_math_p ())
5488 (froms (convert double_value_p@0))
5489 (convert (tos @0)))))
5491 (match float_value_p
5493 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
5494 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
5495 BUILT_IN_FLOORL BUILT_IN_FLOOR
5496 BUILT_IN_CEILL BUILT_IN_CEIL
5497 BUILT_IN_ROUNDL BUILT_IN_ROUND
5498 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
5499 BUILT_IN_RINTL BUILT_IN_RINT)
5500 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
5501 BUILT_IN_FLOORF BUILT_IN_FLOORF
5502 BUILT_IN_CEILF BUILT_IN_CEILF
5503 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
5504 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
5505 BUILT_IN_RINTF BUILT_IN_RINTF)
5506 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
5508 (if (optimize && canonicalize_math_p ()
5509 && targetm.libc_has_function (function_c99_misc))
5511 (froms (convert float_value_p@0))
5512 (convert (tos @0)))))
5514 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
5515 tos (XFLOOR XCEIL XROUND XRINT)
5516 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
5517 (if (optimize && canonicalize_math_p ())
5519 (froms (convert double_value_p@0))
5522 (for froms (XFLOORL XCEILL XROUNDL XRINTL
5523 XFLOOR XCEIL XROUND XRINT)
5524 tos (XFLOORF XCEILF XROUNDF XRINTF)
5525 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
5527 (if (optimize && canonicalize_math_p ())
5529 (froms (convert float_value_p@0))
5532 (if (canonicalize_math_p ())
5533 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
5534 (for floors (IFLOOR LFLOOR LLFLOOR)
5536 (floors tree_expr_nonnegative_p@0)
5539 (if (canonicalize_math_p ())
5540 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
5541 (for fns (IFLOOR LFLOOR LLFLOOR
5543 IROUND LROUND LLROUND)
5545 (fns integer_valued_real_p@0)
5547 (if (!flag_errno_math)
5548 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
5549 (for rints (IRINT LRINT LLRINT)
5551 (rints integer_valued_real_p@0)
5554 (if (canonicalize_math_p ())
5555 (for ifn (IFLOOR ICEIL IROUND IRINT)
5556 lfn (LFLOOR LCEIL LROUND LRINT)
5557 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
5558 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
5559 sizeof (int) == sizeof (long). */
5560 (if (TYPE_PRECISION (integer_type_node)
5561 == TYPE_PRECISION (long_integer_type_node))
5564 (lfn:long_integer_type_node @0)))
5565 /* Canonicalize llround (x) to lround (x) on LP64 targets where
5566 sizeof (long long) == sizeof (long). */
5567 (if (TYPE_PRECISION (long_long_integer_type_node)
5568 == TYPE_PRECISION (long_integer_type_node))
5571 (lfn:long_integer_type_node @0)))))
5573 /* cproj(x) -> x if we're ignoring infinities. */
5576 (if (!HONOR_INFINITIES (type))
5579 /* If the real part is inf and the imag part is known to be
5580 nonnegative, return (inf + 0i). */
5582 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
5583 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
5584 { build_complex_inf (type, false); }))
5586 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
5588 (CPROJ (complex @0 REAL_CST@1))
5589 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
5590 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
5596 (pows @0 REAL_CST@1)
5598 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
5599 REAL_VALUE_TYPE tmp;
5602 /* pow(x,0) -> 1. */
5603 (if (real_equal (value, &dconst0))
5604 { build_real (type, dconst1); })
5605 /* pow(x,1) -> x. */
5606 (if (real_equal (value, &dconst1))
5608 /* pow(x,-1) -> 1/x. */
5609 (if (real_equal (value, &dconstm1))
5610 (rdiv { build_real (type, dconst1); } @0))
5611 /* pow(x,0.5) -> sqrt(x). */
5612 (if (flag_unsafe_math_optimizations
5613 && canonicalize_math_p ()
5614 && real_equal (value, &dconsthalf))
5616 /* pow(x,1/3) -> cbrt(x). */
5617 (if (flag_unsafe_math_optimizations
5618 && canonicalize_math_p ()
5619 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
5620 real_equal (value, &tmp)))
5623 /* powi(1,x) -> 1. */
5625 (POWI real_onep@0 @1)
5629 (POWI @0 INTEGER_CST@1)
5631 /* powi(x,0) -> 1. */
5632 (if (wi::to_wide (@1) == 0)
5633 { build_real (type, dconst1); })
5634 /* powi(x,1) -> x. */
5635 (if (wi::to_wide (@1) == 1)
5637 /* powi(x,-1) -> 1/x. */
5638 (if (wi::to_wide (@1) == -1)
5639 (rdiv { build_real (type, dconst1); } @0))))
5641 /* Narrowing of arithmetic and logical operations.
5643 These are conceptually similar to the transformations performed for
5644 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
5645 term we want to move all that code out of the front-ends into here. */
5647 /* Convert (outertype)((innertype0)a+(innertype1)b)
5648 into ((newtype)a+(newtype)b) where newtype
5649 is the widest mode from all of these. */
5650 (for op (plus minus mult rdiv)
5652 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
5653 /* If we have a narrowing conversion of an arithmetic operation where
5654 both operands are widening conversions from the same type as the outer
5655 narrowing conversion. Then convert the innermost operands to a
5656 suitable unsigned type (to avoid introducing undefined behavior),
5657 perform the operation and convert the result to the desired type. */
5658 (if (INTEGRAL_TYPE_P (type)
5661 /* We check for type compatibility between @0 and @1 below,
5662 so there's no need to check that @2/@4 are integral types. */
5663 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5664 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5665 /* The precision of the type of each operand must match the
5666 precision of the mode of each operand, similarly for the
5668 && type_has_mode_precision_p (TREE_TYPE (@1))
5669 && type_has_mode_precision_p (TREE_TYPE (@2))
5670 && type_has_mode_precision_p (type)
5671 /* The inner conversion must be a widening conversion. */
5672 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
5673 && types_match (@1, type)
5674 && (types_match (@1, @2)
5675 /* Or the second operand is const integer or converted const
5676 integer from valueize. */
5677 || TREE_CODE (@2) == INTEGER_CST))
5678 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
5679 (op @1 (convert @2))
5680 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5681 (convert (op (convert:utype @1)
5682 (convert:utype @2)))))
5683 (if (FLOAT_TYPE_P (type)
5684 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5685 == DECIMAL_FLOAT_TYPE_P (type))
5686 (with { tree arg0 = strip_float_extensions (@1);
5687 tree arg1 = strip_float_extensions (@2);
5688 tree itype = TREE_TYPE (@0);
5689 tree ty1 = TREE_TYPE (arg0);
5690 tree ty2 = TREE_TYPE (arg1);
5691 enum tree_code code = TREE_CODE (itype); }
5692 (if (FLOAT_TYPE_P (ty1)
5693 && FLOAT_TYPE_P (ty2))
5694 (with { tree newtype = type;
5695 if (TYPE_MODE (ty1) == SDmode
5696 || TYPE_MODE (ty2) == SDmode
5697 || TYPE_MODE (type) == SDmode)
5698 newtype = dfloat32_type_node;
5699 if (TYPE_MODE (ty1) == DDmode
5700 || TYPE_MODE (ty2) == DDmode
5701 || TYPE_MODE (type) == DDmode)
5702 newtype = dfloat64_type_node;
5703 if (TYPE_MODE (ty1) == TDmode
5704 || TYPE_MODE (ty2) == TDmode
5705 || TYPE_MODE (type) == TDmode)
5706 newtype = dfloat128_type_node; }
5707 (if ((newtype == dfloat32_type_node
5708 || newtype == dfloat64_type_node
5709 || newtype == dfloat128_type_node)
5711 && types_match (newtype, type))
5712 (op (convert:newtype @1) (convert:newtype @2))
5713 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
5715 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
5717 /* Sometimes this transformation is safe (cannot
5718 change results through affecting double rounding
5719 cases) and sometimes it is not. If NEWTYPE is
5720 wider than TYPE, e.g. (float)((long double)double
5721 + (long double)double) converted to
5722 (float)(double + double), the transformation is
5723 unsafe regardless of the details of the types
5724 involved; double rounding can arise if the result
5725 of NEWTYPE arithmetic is a NEWTYPE value half way
5726 between two representable TYPE values but the
5727 exact value is sufficiently different (in the
5728 right direction) for this difference to be
5729 visible in ITYPE arithmetic. If NEWTYPE is the
5730 same as TYPE, however, the transformation may be
5731 safe depending on the types involved: it is safe
5732 if the ITYPE has strictly more than twice as many
5733 mantissa bits as TYPE, can represent infinities
5734 and NaNs if the TYPE can, and has sufficient
5735 exponent range for the product or ratio of two
5736 values representable in the TYPE to be within the
5737 range of normal values of ITYPE. */
5738 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
5739 && (flag_unsafe_math_optimizations
5740 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
5741 && real_can_shorten_arithmetic (TYPE_MODE (itype),
5743 && !excess_precision_type (newtype)))
5744 && !types_match (itype, newtype))
5745 (convert:type (op (convert:newtype @1)
5746 (convert:newtype @2)))
5751 /* This is another case of narrowing, specifically when there's an outer
5752 BIT_AND_EXPR which masks off bits outside the type of the innermost
5753 operands. Like the previous case we have to convert the operands
5754 to unsigned types to avoid introducing undefined behavior for the
5755 arithmetic operation. */
5756 (for op (minus plus)
5758 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
5759 (if (INTEGRAL_TYPE_P (type)
5760 /* We check for type compatibility between @0 and @1 below,
5761 so there's no need to check that @1/@3 are integral types. */
5762 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5763 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5764 /* The precision of the type of each operand must match the
5765 precision of the mode of each operand, similarly for the
5767 && type_has_mode_precision_p (TREE_TYPE (@0))
5768 && type_has_mode_precision_p (TREE_TYPE (@1))
5769 && type_has_mode_precision_p (type)
5770 /* The inner conversion must be a widening conversion. */
5771 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5772 && types_match (@0, @1)
5773 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
5774 <= TYPE_PRECISION (TREE_TYPE (@0)))
5775 && (wi::to_wide (@4)
5776 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
5777 true, TYPE_PRECISION (type))) == 0)
5778 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
5779 (with { tree ntype = TREE_TYPE (@0); }
5780 (convert (bit_and (op @0 @1) (convert:ntype @4))))
5781 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
5782 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
5783 (convert:utype @4))))))))
5785 /* Transform (@0 < @1 and @0 < @2) to use min,
5786 (@0 > @1 and @0 > @2) to use max */
5787 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
5788 op (lt le gt ge lt le gt ge )
5789 ext (min min max max max max min min )
5791 (logic (op:cs @0 @1) (op:cs @0 @2))
5792 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5793 && TREE_CODE (@0) != INTEGER_CST)
5794 (op @0 (ext @1 @2)))))
5797 /* signbit(x) -> 0 if x is nonnegative. */
5798 (SIGNBIT tree_expr_nonnegative_p@0)
5799 { integer_zero_node; })
5802 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
5804 (if (!HONOR_SIGNED_ZEROS (@0))
5805 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
5807 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
5809 (for op (plus minus)
5812 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5813 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5814 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
5815 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
5816 && !TYPE_SATURATING (TREE_TYPE (@0)))
5817 (with { tree res = int_const_binop (rop, @2, @1); }
5818 (if (TREE_OVERFLOW (res)
5819 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5820 { constant_boolean_node (cmp == NE_EXPR, type); }
5821 (if (single_use (@3))
5822 (cmp @0 { TREE_OVERFLOW (res)
5823 ? drop_tree_overflow (res) : res; }))))))))
5824 (for cmp (lt le gt ge)
5825 (for op (plus minus)
5828 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5829 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5830 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5831 (with { tree res = int_const_binop (rop, @2, @1); }
5832 (if (TREE_OVERFLOW (res))
5834 fold_overflow_warning (("assuming signed overflow does not occur "
5835 "when simplifying conditional to constant"),
5836 WARN_STRICT_OVERFLOW_CONDITIONAL);
5837 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
5838 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
5839 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
5840 TYPE_SIGN (TREE_TYPE (@1)))
5841 != (op == MINUS_EXPR);
5842 constant_boolean_node (less == ovf_high, type);
5844 (if (single_use (@3))
5847 fold_overflow_warning (("assuming signed overflow does not occur "
5848 "when changing X +- C1 cmp C2 to "
5850 WARN_STRICT_OVERFLOW_COMPARISON);
5852 (cmp @0 { res; })))))))))
5854 /* Canonicalizations of BIT_FIELD_REFs. */
5857 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
5858 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
5861 (BIT_FIELD_REF (view_convert @0) @1 @2)
5862 (BIT_FIELD_REF @0 @1 @2))
5865 (BIT_FIELD_REF @0 @1 integer_zerop)
5866 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
5870 (BIT_FIELD_REF @0 @1 @2)
5872 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5873 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5875 (if (integer_zerop (@2))
5876 (view_convert (realpart @0)))
5877 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5878 (view_convert (imagpart @0)))))
5879 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5880 && INTEGRAL_TYPE_P (type)
5881 /* On GIMPLE this should only apply to register arguments. */
5882 && (! GIMPLE || is_gimple_reg (@0))
5883 /* A bit-field-ref that referenced the full argument can be stripped. */
5884 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5885 && integer_zerop (@2))
5886 /* Low-parts can be reduced to integral conversions.
5887 ??? The following doesn't work for PDP endian. */
5888 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5889 /* Don't even think about BITS_BIG_ENDIAN. */
5890 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5891 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5892 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5893 ? (TYPE_PRECISION (TREE_TYPE (@0))
5894 - TYPE_PRECISION (type))
5898 /* Simplify vector extracts. */
5901 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5902 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5903 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5904 || (VECTOR_TYPE_P (type)
5905 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5908 tree ctor = (TREE_CODE (@0) == SSA_NAME
5909 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5910 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5911 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5912 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5913 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5916 && (idx % width) == 0
5918 && known_le ((idx + n) / width,
5919 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5924 /* Constructor elements can be subvectors. */
5926 if (CONSTRUCTOR_NELTS (ctor) != 0)
5928 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5929 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5930 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5932 unsigned HOST_WIDE_INT elt, count, const_k;
5935 /* We keep an exact subset of the constructor elements. */
5936 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5937 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5938 { build_constructor (type, NULL); }
5940 (if (elt < CONSTRUCTOR_NELTS (ctor))
5941 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5942 { build_zero_cst (type); })
5943 /* We don't want to emit new CTORs unless the old one goes away.
5944 ??? Eventually allow this if the CTOR ends up constant or
5946 (if (single_use (@0))
5948 vec<constructor_elt, va_gc> *vals;
5949 vec_alloc (vals, count);
5950 for (unsigned i = 0;
5951 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5952 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5953 CONSTRUCTOR_ELT (ctor, elt + i)->value);
5954 build_constructor (type, vals);
5956 /* The bitfield references a single constructor element. */
5957 (if (k.is_constant (&const_k)
5958 && idx + n <= (idx / const_k + 1) * const_k)
5960 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
5961 { build_zero_cst (type); })
5963 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
5964 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5965 @1 { bitsize_int ((idx % const_k) * width); })))))))))
5967 /* Simplify a bit extraction from a bit insertion for the cases with
5968 the inserted element fully covering the extraction or the insertion
5969 not touching the extraction. */
5971 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5974 unsigned HOST_WIDE_INT isize;
5975 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5976 isize = TYPE_PRECISION (TREE_TYPE (@1));
5978 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5981 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5982 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5983 wi::to_wide (@ipos) + isize))
5984 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
5986 - wi::to_wide (@ipos)); }))
5987 (if (wi::geu_p (wi::to_wide (@ipos),
5988 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5989 || wi::geu_p (wi::to_wide (@rpos),
5990 wi::to_wide (@ipos) + isize))
5991 (BIT_FIELD_REF @0 @rsize @rpos)))))
5993 (if (canonicalize_math_after_vectorization_p ())
5996 (fmas:c (negate @0) @1 @2)
5997 (IFN_FNMA @0 @1 @2))
5999 (fmas @0 @1 (negate @2))
6002 (fmas:c (negate @0) @1 (negate @2))
6003 (IFN_FNMS @0 @1 @2))
6005 (negate (fmas@3 @0 @1 @2))
6006 (if (single_use (@3))
6007 (IFN_FNMS @0 @1 @2))))
6010 (IFN_FMS:c (negate @0) @1 @2)
6011 (IFN_FNMS @0 @1 @2))
6013 (IFN_FMS @0 @1 (negate @2))
6016 (IFN_FMS:c (negate @0) @1 (negate @2))
6017 (IFN_FNMA @0 @1 @2))
6019 (negate (IFN_FMS@3 @0 @1 @2))
6020 (if (single_use (@3))
6021 (IFN_FNMA @0 @1 @2)))
6024 (IFN_FNMA:c (negate @0) @1 @2)
6027 (IFN_FNMA @0 @1 (negate @2))
6028 (IFN_FNMS @0 @1 @2))
6030 (IFN_FNMA:c (negate @0) @1 (negate @2))
6033 (negate (IFN_FNMA@3 @0 @1 @2))
6034 (if (single_use (@3))
6035 (IFN_FMS @0 @1 @2)))
6038 (IFN_FNMS:c (negate @0) @1 @2)
6041 (IFN_FNMS @0 @1 (negate @2))
6042 (IFN_FNMA @0 @1 @2))
6044 (IFN_FNMS:c (negate @0) @1 (negate @2))
6047 (negate (IFN_FNMS@3 @0 @1 @2))
6048 (if (single_use (@3))
6049 (IFN_FMA @0 @1 @2))))
6051 /* POPCOUNT simplifications. */
6052 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
6054 (plus (POPCOUNT:s @0) (POPCOUNT:s @1))
6055 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
6056 (POPCOUNT (bit_ior @0 @1))))
6058 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
6059 (for popcount (POPCOUNT)
6060 (for cmp (le eq ne gt)
6063 (cmp (popcount @0) integer_zerop)
6064 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
6066 /* Canonicalize POPCOUNT(x)&1 as PARITY(X). */
6068 (bit_and (POPCOUNT @0) integer_onep)
6071 /* PARITY simplifications. */
6072 /* parity(~X) is parity(X). */
6074 (PARITY (bit_not @0))
6077 /* parity(X)^parity(Y) is parity(X^Y). */
6079 (bit_xor (PARITY:s @0) (PARITY:s @1))
6080 (PARITY (bit_xor @0 @1)))
6082 /* Common POPCOUNT/PARITY simplifications. */
6083 /* popcount(X&C1) is (X>>C2)&1 when C1 == 1<<C2. Same for parity(X&C1). */
6084 (for pfun (POPCOUNT PARITY)
6087 (with { wide_int nz = tree_nonzero_bits (@0); }
6091 (if (wi::popcount (nz) == 1)
6092 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
6093 (convert (rshift:utype (convert:utype @0)
6094 { build_int_cst (integer_type_node,
6095 wi::ctz (nz)); }))))))))
6098 /* 64- and 32-bits branchless implementations of popcount are detected:
6100 int popcount64c (uint64_t x)
6102 x -= (x >> 1) & 0x5555555555555555ULL;
6103 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
6104 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
6105 return (x * 0x0101010101010101ULL) >> 56;
6108 int popcount32c (uint32_t x)
6110 x -= (x >> 1) & 0x55555555;
6111 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
6112 x = (x + (x >> 4)) & 0x0f0f0f0f;
6113 return (x * 0x01010101) >> 24;
6120 (rshift @8 INTEGER_CST@5)
6122 (bit_and @6 INTEGER_CST@7)
6126 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
6132 /* Check constants and optab. */
6133 (with { unsigned prec = TYPE_PRECISION (type);
6134 int shift = (64 - prec) & 63;
6135 unsigned HOST_WIDE_INT c1
6136 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
6137 unsigned HOST_WIDE_INT c2
6138 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
6139 unsigned HOST_WIDE_INT c3
6140 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
6141 unsigned HOST_WIDE_INT c4
6142 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
6147 && TYPE_UNSIGNED (type)
6148 && integer_onep (@4)
6149 && wi::to_widest (@10) == 2
6150 && wi::to_widest (@5) == 4
6151 && wi::to_widest (@1) == prec - 8
6152 && tree_to_uhwi (@2) == c1
6153 && tree_to_uhwi (@3) == c2
6154 && tree_to_uhwi (@9) == c3
6155 && tree_to_uhwi (@7) == c3
6156 && tree_to_uhwi (@11) == c4
6157 && direct_internal_fn_supported_p (IFN_POPCOUNT, type,
6159 (convert (IFN_POPCOUNT:type @0)))))
6161 /* __builtin_ffs needs to deal on many targets with the possible zero
6162 argument. If we know the argument is always non-zero, __builtin_ctz + 1
6163 should lead to better code. */
6165 (FFS tree_expr_nonzero_p@0)
6166 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6167 && direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@0),
6168 OPTIMIZE_FOR_SPEED))
6169 (plus (CTZ:type @0) { build_one_cst (type); })))
6172 (for ffs (BUILT_IN_FFS BUILT_IN_FFSL BUILT_IN_FFSLL
6174 /* __builtin_ffs (X) == 0 -> X == 0.
6175 __builtin_ffs (X) == 6 -> (X & 63) == 32. */
6178 (cmp (ffs@2 @0) INTEGER_CST@1)
6179 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
6181 (if (integer_zerop (@1))
6182 (cmp @0 { build_zero_cst (TREE_TYPE (@0)); }))
6183 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) > prec)
6184 { constant_boolean_node (cmp == NE_EXPR ? true : false, type); })
6185 (if (single_use (@2))
6186 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0),
6187 wi::mask (tree_to_uhwi (@1),
6189 { wide_int_to_tree (TREE_TYPE (@0),
6190 wi::shifted_mask (tree_to_uhwi (@1) - 1, 1,
6191 false, prec)); }))))))
6193 /* __builtin_ffs (X) > 6 -> X != 0 && (X & 63) == 0. */
6197 bit_op (bit_and bit_ior)
6199 (cmp (ffs@2 @0) INTEGER_CST@1)
6200 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
6202 (if (integer_zerop (@1))
6203 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))
6204 (if (tree_int_cst_sgn (@1) < 0)
6205 { constant_boolean_node (cmp == GT_EXPR ? true : false, type); })
6206 (if (wi::to_widest (@1) >= prec)
6207 { constant_boolean_node (cmp == GT_EXPR ? false : true, type); })
6208 (if (wi::to_widest (@1) == prec - 1)
6209 (cmp3 @0 { wide_int_to_tree (TREE_TYPE (@0),
6210 wi::shifted_mask (prec - 1, 1,
6212 (if (single_use (@2))
6213 (bit_op (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })
6215 { wide_int_to_tree (TREE_TYPE (@0),
6216 wi::mask (tree_to_uhwi (@1),
6218 { build_zero_cst (TREE_TYPE (@0)); }))))))))
6227 r = c ? a1 op a2 : b;
6229 if the target can do it in one go. This makes the operation conditional
6230 on c, so could drop potentially-trapping arithmetic, but that's a valid
6231 simplification if the result of the operation isn't needed.
6233 Avoid speculatively generating a stand-alone vector comparison
6234 on targets that might not support them. Any target implementing
6235 conditional internal functions must support the same comparisons
6236 inside and outside a VEC_COND_EXPR. */
6239 (for uncond_op (UNCOND_BINARY)
6240 cond_op (COND_BINARY)
6242 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
6243 (with { tree op_type = TREE_TYPE (@4); }
6244 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6245 && element_precision (type) == element_precision (op_type))
6246 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
6248 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
6249 (with { tree op_type = TREE_TYPE (@4); }
6250 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6251 && element_precision (type) == element_precision (op_type))
6252 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
6254 /* Same for ternary operations. */
6255 (for uncond_op (UNCOND_TERNARY)
6256 cond_op (COND_TERNARY)
6258 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
6259 (with { tree op_type = TREE_TYPE (@5); }
6260 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6261 && element_precision (type) == element_precision (op_type))
6262 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
6264 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
6265 (with { tree op_type = TREE_TYPE (@5); }
6266 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6267 && element_precision (type) == element_precision (op_type))
6268 (view_convert (cond_op (bit_not @0) @2 @3 @4
6269 (view_convert:op_type @1)))))))
6272 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
6273 "else" value of an IFN_COND_*. */
6274 (for cond_op (COND_BINARY)
6276 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
6277 (with { tree op_type = TREE_TYPE (@3); }
6278 (if (element_precision (type) == element_precision (op_type))
6279 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
6281 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
6282 (with { tree op_type = TREE_TYPE (@5); }
6283 (if (inverse_conditions_p (@0, @2)
6284 && element_precision (type) == element_precision (op_type))
6285 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
6287 /* Same for ternary operations. */
6288 (for cond_op (COND_TERNARY)
6290 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
6291 (with { tree op_type = TREE_TYPE (@4); }
6292 (if (element_precision (type) == element_precision (op_type))
6293 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
6295 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
6296 (with { tree op_type = TREE_TYPE (@6); }
6297 (if (inverse_conditions_p (@0, @2)
6298 && element_precision (type) == element_precision (op_type))
6299 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
6301 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
6304 A: (@0 + @1 < @2) | (@2 + @1 < @0)
6305 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
6307 If pointers are known not to wrap, B checks whether @1 bytes starting
6308 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
6309 bytes. A is more efficiently tested as:
6311 A: (sizetype) (@0 + @1 - @2) > @1 * 2
6313 The equivalent expression for B is given by replacing @1 with @1 - 1:
6315 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
6317 @0 and @2 can be swapped in both expressions without changing the result.
6319 The folds rely on sizetype's being unsigned (which is always true)
6320 and on its being the same width as the pointer (which we have to check).
6322 The fold replaces two pointer_plus expressions, two comparisons and
6323 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
6324 the best case it's a saving of two operations. The A fold retains one
6325 of the original pointer_pluses, so is a win even if both pointer_pluses
6326 are used elsewhere. The B fold is a wash if both pointer_pluses are
6327 used elsewhere, since all we end up doing is replacing a comparison with
6328 a pointer_plus. We do still apply the fold under those circumstances
6329 though, in case applying it to other conditions eventually makes one of the
6330 pointer_pluses dead. */
6331 (for ior (truth_orif truth_or bit_ior)
6334 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
6335 (cmp:cs (pointer_plus@4 @2 @1) @0))
6336 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
6337 && TYPE_OVERFLOW_WRAPS (sizetype)
6338 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
6339 /* Calculate the rhs constant. */
6340 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
6341 offset_int rhs = off * 2; }
6342 /* Always fails for negative values. */
6343 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
6344 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
6345 pick a canonical order. This increases the chances of using the
6346 same pointer_plus in multiple checks. */
6347 (with { bool swap_p = tree_swap_operands_p (@0, @2);
6348 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
6349 (if (cmp == LT_EXPR)
6350 (gt (convert:sizetype
6351 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
6352 { swap_p ? @0 : @2; }))
6354 (gt (convert:sizetype
6355 (pointer_diff:ssizetype
6356 (pointer_plus { swap_p ? @2 : @0; }
6357 { wide_int_to_tree (sizetype, off); })
6358 { swap_p ? @0 : @2; }))
6359 { rhs_tree; })))))))))
6361 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
6363 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
6364 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
6365 (with { int i = single_nonzero_element (@1); }
6367 (with { tree elt = vector_cst_elt (@1, i);
6368 tree elt_type = TREE_TYPE (elt);
6369 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
6370 tree size = bitsize_int (elt_bits);
6371 tree pos = bitsize_int (elt_bits * i); }
6374 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
6378 (vec_perm @0 @1 VECTOR_CST@2)
6381 tree op0 = @0, op1 = @1, op2 = @2;
6383 /* Build a vector of integers from the tree mask. */
6384 vec_perm_builder builder;
6385 if (!tree_to_vec_perm_builder (&builder, op2))
6388 /* Create a vec_perm_indices for the integer vector. */
6389 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
6390 bool single_arg = (op0 == op1);
6391 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
6393 (if (sel.series_p (0, 1, 0, 1))
6395 (if (sel.series_p (0, 1, nelts, 1))
6401 if (sel.all_from_input_p (0))
6403 else if (sel.all_from_input_p (1))
6406 sel.rotate_inputs (1);
6408 else if (known_ge (poly_uint64 (sel[0]), nelts))
6410 std::swap (op0, op1);
6411 sel.rotate_inputs (1);
6415 tree cop0 = op0, cop1 = op1;
6416 if (TREE_CODE (op0) == SSA_NAME
6417 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
6418 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6419 cop0 = gimple_assign_rhs1 (def);
6420 if (TREE_CODE (op1) == SSA_NAME
6421 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
6422 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6423 cop1 = gimple_assign_rhs1 (def);
6427 (if ((TREE_CODE (cop0) == VECTOR_CST
6428 || TREE_CODE (cop0) == CONSTRUCTOR)
6429 && (TREE_CODE (cop1) == VECTOR_CST
6430 || TREE_CODE (cop1) == CONSTRUCTOR)
6431 && (t = fold_vec_perm (type, cop0, cop1, sel)))
6435 bool changed = (op0 == op1 && !single_arg);
6436 tree ins = NULL_TREE;
6439 /* See if the permutation is performing a single element
6440 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
6441 in that case. But only if the vector mode is supported,
6442 otherwise this is invalid GIMPLE. */
6443 if (TYPE_MODE (type) != BLKmode
6444 && (TREE_CODE (cop0) == VECTOR_CST
6445 || TREE_CODE (cop0) == CONSTRUCTOR
6446 || TREE_CODE (cop1) == VECTOR_CST
6447 || TREE_CODE (cop1) == CONSTRUCTOR))
6449 bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
6452 /* After canonicalizing the first elt to come from the
6453 first vector we only can insert the first elt from
6454 the first vector. */
6456 if ((ins = fold_read_from_vector (cop0, sel[0])))
6459 /* The above can fail for two-element vectors which always
6460 appear to insert the first element, so try inserting
6461 into the second lane as well. For more than two
6462 elements that's wasted time. */
6463 if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
6465 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
6466 for (at = 0; at < encoded_nelts; ++at)
6467 if (maybe_ne (sel[at], at))
6469 if (at < encoded_nelts
6470 && (known_eq (at + 1, nelts)
6471 || sel.series_p (at + 1, 1, at + 1, 1)))
6473 if (known_lt (poly_uint64 (sel[at]), nelts))
6474 ins = fold_read_from_vector (cop0, sel[at]);
6476 ins = fold_read_from_vector (cop1, sel[at] - nelts);
6481 /* Generate a canonical form of the selector. */
6482 if (!ins && sel.encoding () != builder)
6484 /* Some targets are deficient and fail to expand a single
6485 argument permutation while still allowing an equivalent
6486 2-argument version. */
6488 if (sel.ninputs () == 2
6489 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
6490 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6493 vec_perm_indices sel2 (builder, 2, nelts);
6494 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
6495 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
6497 /* Not directly supported with either encoding,
6498 so use the preferred form. */
6499 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6501 if (!operand_equal_p (op2, oldop2, 0))
6506 (bit_insert { op0; } { ins; }
6507 { bitsize_int (at * vector_element_bits (type)); })
6509 (vec_perm { op0; } { op1; } { op2; }))))))))))
6511 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
6513 (match vec_same_elem_p
6515 (if (uniform_vector_p (@0))))
6517 (match vec_same_elem_p
6521 (vec_perm vec_same_elem_p@0 @0 @1)
6524 /* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
6525 The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
6526 constant which when multiplied by a power of 2 contains a unique value
6527 in the top 5 or 6 bits. This is then indexed into a table which maps it
6528 to the number of trailing zeroes. */
6529 (match (ctz_table_index @1 @2 @3)
6530 (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))