1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
49 #include "diagnostic-core.h"
51 #include "fold-const.h"
59 #include "stor-layout.h"
62 #include "rtx-vector-builder.h"
64 #include "gimple-ssa.h"
67 struct target_rtl default_target_rtl
;
69 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
72 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
74 /* Commonly used modes. */
76 scalar_int_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
77 scalar_int_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
78 scalar_int_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
80 /* Datastructures maintained for currently processed function in RTL form. */
82 struct rtl_data x_rtl
;
84 /* Indexed by pseudo register number, gives the rtx for that pseudo.
85 Allocated in parallel with regno_pointer_align.
86 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
87 with length attribute nested in top level structures. */
91 /* This is *not* reset after each function. It gives each CODE_LABEL
92 in the entire compilation a unique label number. */
94 static GTY(()) int label_num
= 1;
96 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
97 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
98 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
99 is set only for MODE_INT and MODE_VECTOR_INT modes. */
101 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
105 REAL_VALUE_TYPE dconst0
;
106 REAL_VALUE_TYPE dconst1
;
107 REAL_VALUE_TYPE dconst2
;
108 REAL_VALUE_TYPE dconstm1
;
109 REAL_VALUE_TYPE dconsthalf
;
111 /* Record fixed-point constant 0 and 1. */
112 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
113 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
115 /* We make one copy of (const_int C) where C is in
116 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
117 to save space during the compilation and simplify comparisons of
120 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
122 /* Standard pieces of rtx, to be substituted directly into things. */
125 rtx simple_return_rtx
;
128 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
129 this pointer should normally never be dereferenced), but is required to be
130 distinct from NULL_RTX. Currently used by peephole2 pass. */
131 rtx_insn
*invalid_insn_rtx
;
133 /* A hash table storing CONST_INTs whose absolute value is greater
134 than MAX_SAVED_CONST_INT. */
136 struct const_int_hasher
: ggc_cache_ptr_hash
<rtx_def
>
138 typedef HOST_WIDE_INT compare_type
;
140 static hashval_t
hash (rtx i
);
141 static bool equal (rtx i
, HOST_WIDE_INT h
);
144 static GTY ((cache
)) hash_table
<const_int_hasher
> *const_int_htab
;
146 struct const_wide_int_hasher
: ggc_cache_ptr_hash
<rtx_def
>
148 static hashval_t
hash (rtx x
);
149 static bool equal (rtx x
, rtx y
);
152 static GTY ((cache
)) hash_table
<const_wide_int_hasher
> *const_wide_int_htab
;
154 struct const_poly_int_hasher
: ggc_cache_ptr_hash
<rtx_def
>
156 typedef std::pair
<machine_mode
, poly_wide_int_ref
> compare_type
;
158 static hashval_t
hash (rtx x
);
159 static bool equal (rtx x
, const compare_type
&y
);
162 static GTY ((cache
)) hash_table
<const_poly_int_hasher
> *const_poly_int_htab
;
164 /* A hash table storing register attribute structures. */
165 struct reg_attr_hasher
: ggc_cache_ptr_hash
<reg_attrs
>
167 static hashval_t
hash (reg_attrs
*x
);
168 static bool equal (reg_attrs
*a
, reg_attrs
*b
);
171 static GTY ((cache
)) hash_table
<reg_attr_hasher
> *reg_attrs_htab
;
173 /* A hash table storing all CONST_DOUBLEs. */
174 struct const_double_hasher
: ggc_cache_ptr_hash
<rtx_def
>
176 static hashval_t
hash (rtx x
);
177 static bool equal (rtx x
, rtx y
);
180 static GTY ((cache
)) hash_table
<const_double_hasher
> *const_double_htab
;
182 /* A hash table storing all CONST_FIXEDs. */
183 struct const_fixed_hasher
: ggc_cache_ptr_hash
<rtx_def
>
185 static hashval_t
hash (rtx x
);
186 static bool equal (rtx x
, rtx y
);
189 static GTY ((cache
)) hash_table
<const_fixed_hasher
> *const_fixed_htab
;
191 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
192 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
193 #define first_label_num (crtl->emit.x_first_label_num)
195 static void set_used_decls (tree
);
196 static void mark_label_nuses (rtx
);
197 #if TARGET_SUPPORTS_WIDE_INT
198 static rtx
lookup_const_wide_int (rtx
);
200 static rtx
lookup_const_double (rtx
);
201 static rtx
lookup_const_fixed (rtx
);
202 static rtx
gen_const_vector (machine_mode
, int);
203 static void copy_rtx_if_shared_1 (rtx
*orig
);
205 /* Probability of the conditional branch currently proceeded by try_split. */
206 profile_probability split_branch_probability
;
208 /* Returns a hash code for X (which is a really a CONST_INT). */
211 const_int_hasher::hash (rtx x
)
213 return (hashval_t
) INTVAL (x
);
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
221 const_int_hasher::equal (rtx x
, HOST_WIDE_INT y
)
223 return (INTVAL (x
) == y
);
226 #if TARGET_SUPPORTS_WIDE_INT
227 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
230 const_wide_int_hasher::hash (rtx x
)
233 unsigned HOST_WIDE_INT hash
= 0;
236 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (xr
); i
++)
237 hash
+= CONST_WIDE_INT_ELT (xr
, i
);
239 return (hashval_t
) hash
;
242 /* Returns nonzero if the value represented by X (which is really a
243 CONST_WIDE_INT) is the same as that given by Y (which is really a
247 const_wide_int_hasher::equal (rtx x
, rtx y
)
252 if (CONST_WIDE_INT_NUNITS (xr
) != CONST_WIDE_INT_NUNITS (yr
))
255 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (xr
); i
++)
256 if (CONST_WIDE_INT_ELT (xr
, i
) != CONST_WIDE_INT_ELT (yr
, i
))
263 /* Returns a hash code for CONST_POLY_INT X. */
266 const_poly_int_hasher::hash (rtx x
)
269 h
.add_int (GET_MODE (x
));
270 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
271 h
.add_wide_int (CONST_POLY_INT_COEFFS (x
)[i
]);
275 /* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */
278 const_poly_int_hasher::equal (rtx x
, const compare_type
&y
)
280 if (GET_MODE (x
) != y
.first
)
282 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
283 if (CONST_POLY_INT_COEFFS (x
)[i
] != y
.second
.coeffs
[i
])
288 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
290 const_double_hasher::hash (rtx x
)
292 const_rtx
const value
= x
;
295 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (value
) == VOIDmode
)
296 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
299 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
300 /* MODE is used in the comparison, so it should be in the hash. */
301 h
^= GET_MODE (value
);
306 /* Returns nonzero if the value represented by X (really a ...)
307 is the same as that represented by Y (really a ...) */
309 const_double_hasher::equal (rtx x
, rtx y
)
311 const_rtx
const a
= x
, b
= y
;
313 if (GET_MODE (a
) != GET_MODE (b
))
315 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (a
) == VOIDmode
)
316 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
317 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
319 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
320 CONST_DOUBLE_REAL_VALUE (b
));
323 /* Returns a hash code for X (which is really a CONST_FIXED). */
326 const_fixed_hasher::hash (rtx x
)
328 const_rtx
const value
= x
;
331 h
= fixed_hash (CONST_FIXED_VALUE (value
));
332 /* MODE is used in the comparison, so it should be in the hash. */
333 h
^= GET_MODE (value
);
337 /* Returns nonzero if the value represented by X is the same as that
341 const_fixed_hasher::equal (rtx x
, rtx y
)
343 const_rtx
const a
= x
, b
= y
;
345 if (GET_MODE (a
) != GET_MODE (b
))
347 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
350 /* Return true if the given memory attributes are equal. */
353 mem_attrs_eq_p (const class mem_attrs
*p
, const class mem_attrs
*q
)
359 return (p
->alias
== q
->alias
360 && p
->offset_known_p
== q
->offset_known_p
361 && (!p
->offset_known_p
|| known_eq (p
->offset
, q
->offset
))
362 && p
->size_known_p
== q
->size_known_p
363 && (!p
->size_known_p
|| known_eq (p
->size
, q
->size
))
364 && p
->align
== q
->align
365 && p
->addrspace
== q
->addrspace
366 && (p
->expr
== q
->expr
367 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
368 && operand_equal_p (p
->expr
, q
->expr
, 0))));
371 /* Set MEM's memory attributes so that they are the same as ATTRS. */
374 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
376 /* If everything is the default, we can just clear the attributes. */
377 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
384 || !mem_attrs_eq_p (attrs
, MEM_ATTRS (mem
)))
386 MEM_ATTRS (mem
) = ggc_alloc
<mem_attrs
> ();
387 memcpy (MEM_ATTRS (mem
), attrs
, sizeof (mem_attrs
));
391 /* Returns a hash code for X (which is a really a reg_attrs *). */
394 reg_attr_hasher::hash (reg_attrs
*x
)
396 const reg_attrs
*const p
= x
;
400 h
.add_poly_hwi (p
->offset
);
404 /* Returns nonzero if the value represented by X is the same as that given by
408 reg_attr_hasher::equal (reg_attrs
*x
, reg_attrs
*y
)
410 const reg_attrs
*const p
= x
;
411 const reg_attrs
*const q
= y
;
413 return (p
->decl
== q
->decl
&& known_eq (p
->offset
, q
->offset
));
415 /* Allocate a new reg_attrs structure and insert it into the hash table if
416 one identical to it is not already in the table. We are doing this for
420 get_reg_attrs (tree decl
, poly_int64 offset
)
424 /* If everything is the default, we can just return zero. */
425 if (decl
== 0 && known_eq (offset
, 0))
429 attrs
.offset
= offset
;
431 reg_attrs
**slot
= reg_attrs_htab
->find_slot (&attrs
, INSERT
);
434 *slot
= ggc_alloc
<reg_attrs
> ();
435 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
443 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
444 and to block register equivalences to be seen across this insn. */
449 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
450 MEM_VOLATILE_P (x
) = true;
456 /* Set the mode and register number of X to MODE and REGNO. */
459 set_mode_and_regno (rtx x
, machine_mode mode
, unsigned int regno
)
461 unsigned int nregs
= (HARD_REGISTER_NUM_P (regno
)
462 ? hard_regno_nregs (regno
, mode
)
464 PUT_MODE_RAW (x
, mode
);
465 set_regno_raw (x
, regno
, nregs
);
468 /* Initialize a fresh REG rtx with mode MODE and register REGNO. */
471 init_raw_REG (rtx x
, machine_mode mode
, unsigned int regno
)
473 set_mode_and_regno (x
, mode
, regno
);
474 REG_ATTRS (x
) = NULL
;
475 ORIGINAL_REGNO (x
) = regno
;
479 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
480 don't attempt to share with the various global pieces of rtl (such as
481 frame_pointer_rtx). */
484 gen_raw_REG (machine_mode mode
, unsigned int regno
)
486 rtx x
= rtx_alloc (REG MEM_STAT_INFO
);
487 init_raw_REG (x
, mode
, regno
);
491 /* There are some RTL codes that require special attention; the generation
492 functions do the raw handling. If you add to this list, modify
493 special_rtx in gengenrtl.c as well. */
496 gen_rtx_EXPR_LIST (machine_mode mode
, rtx expr
, rtx expr_list
)
498 return as_a
<rtx_expr_list
*> (gen_rtx_fmt_ee (EXPR_LIST
, mode
, expr
,
503 gen_rtx_INSN_LIST (machine_mode mode
, rtx insn
, rtx insn_list
)
505 return as_a
<rtx_insn_list
*> (gen_rtx_fmt_ue (INSN_LIST
, mode
, insn
,
510 gen_rtx_INSN (machine_mode mode
, rtx_insn
*prev_insn
, rtx_insn
*next_insn
,
511 basic_block bb
, rtx pattern
, int location
, int code
,
514 return as_a
<rtx_insn
*> (gen_rtx_fmt_uuBeiie (INSN
, mode
,
515 prev_insn
, next_insn
,
516 bb
, pattern
, location
, code
,
521 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
523 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
524 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
526 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
527 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
528 return const_true_rtx
;
531 /* Look up the CONST_INT in the hash table. */
532 rtx
*slot
= const_int_htab
->find_slot_with_hash (arg
, (hashval_t
) arg
,
535 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
541 gen_int_mode (poly_int64 c
, machine_mode mode
)
543 c
= trunc_int_for_mode (c
, mode
);
544 if (c
.is_constant ())
545 return GEN_INT (c
.coeffs
[0]);
546 unsigned int prec
= GET_MODE_PRECISION (as_a
<scalar_mode
> (mode
));
547 return immed_wide_int_const (poly_wide_int::from (c
, prec
, SIGNED
), mode
);
550 /* CONST_DOUBLEs might be created from pairs of integers, or from
551 REAL_VALUE_TYPEs. Also, their length is known only at run time,
552 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
554 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
555 hash table. If so, return its counterpart; otherwise add it
556 to the hash table and return it. */
558 lookup_const_double (rtx real
)
560 rtx
*slot
= const_double_htab
->find_slot (real
, INSERT
);
567 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
568 VALUE in mode MODE. */
570 const_double_from_real_value (REAL_VALUE_TYPE value
, machine_mode mode
)
572 rtx real
= rtx_alloc (CONST_DOUBLE
);
573 PUT_MODE (real
, mode
);
577 return lookup_const_double (real
);
580 /* Determine whether FIXED, a CONST_FIXED, already exists in the
581 hash table. If so, return its counterpart; otherwise add it
582 to the hash table and return it. */
585 lookup_const_fixed (rtx fixed
)
587 rtx
*slot
= const_fixed_htab
->find_slot (fixed
, INSERT
);
594 /* Return a CONST_FIXED rtx for a fixed-point value specified by
595 VALUE in mode MODE. */
598 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, machine_mode mode
)
600 rtx fixed
= rtx_alloc (CONST_FIXED
);
601 PUT_MODE (fixed
, mode
);
605 return lookup_const_fixed (fixed
);
608 #if TARGET_SUPPORTS_WIDE_INT == 0
609 /* Constructs double_int from rtx CST. */
612 rtx_to_double_int (const_rtx cst
)
616 if (CONST_INT_P (cst
))
617 r
= double_int::from_shwi (INTVAL (cst
));
618 else if (CONST_DOUBLE_AS_INT_P (cst
))
620 r
.low
= CONST_DOUBLE_LOW (cst
);
621 r
.high
= CONST_DOUBLE_HIGH (cst
);
630 #if TARGET_SUPPORTS_WIDE_INT
631 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
632 If so, return its counterpart; otherwise add it to the hash table and
636 lookup_const_wide_int (rtx wint
)
638 rtx
*slot
= const_wide_int_htab
->find_slot (wint
, INSERT
);
646 /* Return an rtx constant for V, given that the constant has mode MODE.
647 The returned rtx will be a CONST_INT if V fits, otherwise it will be
648 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
649 (if TARGET_SUPPORTS_WIDE_INT). */
652 immed_wide_int_const_1 (const wide_int_ref
&v
, machine_mode mode
)
654 unsigned int len
= v
.get_len ();
655 /* Not scalar_int_mode because we also allow pointer bound modes. */
656 unsigned int prec
= GET_MODE_PRECISION (as_a
<scalar_mode
> (mode
));
658 /* Allow truncation but not extension since we do not know if the
659 number is signed or unsigned. */
660 gcc_assert (prec
<= v
.get_precision ());
662 if (len
< 2 || prec
<= HOST_BITS_PER_WIDE_INT
)
663 return gen_int_mode (v
.elt (0), mode
);
665 #if TARGET_SUPPORTS_WIDE_INT
669 unsigned int blocks_needed
670 = (prec
+ HOST_BITS_PER_WIDE_INT
- 1) / HOST_BITS_PER_WIDE_INT
;
672 if (len
> blocks_needed
)
675 value
= const_wide_int_alloc (len
);
677 /* It is so tempting to just put the mode in here. Must control
679 PUT_MODE (value
, VOIDmode
);
680 CWI_PUT_NUM_ELEM (value
, len
);
682 for (i
= 0; i
< len
; i
++)
683 CONST_WIDE_INT_ELT (value
, i
) = v
.elt (i
);
685 return lookup_const_wide_int (value
);
688 return immed_double_const (v
.elt (0), v
.elt (1), mode
);
692 #if TARGET_SUPPORTS_WIDE_INT == 0
693 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
694 of ints: I0 is the low-order word and I1 is the high-order word.
695 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
696 implied upper bits are copies of the high bit of i1. The value
697 itself is neither signed nor unsigned. Do not use this routine for
698 non-integer modes; convert to REAL_VALUE_TYPE and use
699 const_double_from_real_value. */
702 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, machine_mode mode
)
707 /* There are the following cases (note that there are no modes with
708 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
710 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
712 2) If the value of the integer fits into HOST_WIDE_INT anyway
713 (i.e., i1 consists only from copies of the sign bit, and sign
714 of i0 and i1 are the same), then we return a CONST_INT for i0.
715 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
717 if (is_a
<scalar_mode
> (mode
, &smode
)
718 && GET_MODE_BITSIZE (smode
) <= HOST_BITS_PER_WIDE_INT
)
719 return gen_int_mode (i0
, mode
);
721 /* If this integer fits in one word, return a CONST_INT. */
722 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
725 /* We use VOIDmode for integers. */
726 value
= rtx_alloc (CONST_DOUBLE
);
727 PUT_MODE (value
, VOIDmode
);
729 CONST_DOUBLE_LOW (value
) = i0
;
730 CONST_DOUBLE_HIGH (value
) = i1
;
732 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
733 XWINT (value
, i
) = 0;
735 return lookup_const_double (value
);
739 /* Return an rtx representation of C in mode MODE. */
742 immed_wide_int_const (const poly_wide_int_ref
&c
, machine_mode mode
)
744 if (c
.is_constant ())
745 return immed_wide_int_const_1 (c
.coeffs
[0], mode
);
747 /* Not scalar_int_mode because we also allow pointer bound modes. */
748 unsigned int prec
= GET_MODE_PRECISION (as_a
<scalar_mode
> (mode
));
750 /* Allow truncation but not extension since we do not know if the
751 number is signed or unsigned. */
752 gcc_assert (prec
<= c
.coeffs
[0].get_precision ());
753 poly_wide_int newc
= poly_wide_int::from (c
, prec
, SIGNED
);
755 /* See whether we already have an rtx for this constant. */
758 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
759 h
.add_wide_int (newc
.coeffs
[i
]);
760 const_poly_int_hasher::compare_type
typed_value (mode
, newc
);
761 rtx
*slot
= const_poly_int_htab
->find_slot_with_hash (typed_value
,
767 /* Create a new rtx. There's a choice to be made here between installing
768 the actual mode of the rtx or leaving it as VOIDmode (for consistency
769 with CONST_INT). In practice the handling of the codes is different
770 enough that we get no benefit from using VOIDmode, and various places
771 assume that VOIDmode implies CONST_INT. Using the real mode seems like
772 the right long-term direction anyway. */
773 typedef trailing_wide_ints
<NUM_POLY_INT_COEFFS
> twi
;
774 size_t extra_size
= twi::extra_size (prec
);
775 x
= rtx_alloc_v (CONST_POLY_INT
,
776 sizeof (struct const_poly_int_def
) + extra_size
);
778 CONST_POLY_INT_COEFFS (x
).set_precision (prec
);
779 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
780 CONST_POLY_INT_COEFFS (x
)[i
] = newc
.coeffs
[i
];
787 gen_rtx_REG (machine_mode mode
, unsigned int regno
)
789 /* In case the MD file explicitly references the frame pointer, have
790 all such references point to the same frame pointer. This is
791 used during frame pointer elimination to distinguish the explicit
792 references to these registers from pseudos that happened to be
795 If we have eliminated the frame pointer or arg pointer, we will
796 be using it as a normal register, for example as a spill
797 register. In such cases, we might be accessing it in a mode that
798 is not Pmode and therefore cannot use the pre-allocated rtx.
800 Also don't do this when we are making new REGs in reload, since
801 we don't want to get confused with the real pointers. */
803 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
805 if (regno
== FRAME_POINTER_REGNUM
806 && (!reload_completed
|| frame_pointer_needed
))
807 return frame_pointer_rtx
;
809 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
810 && regno
== HARD_FRAME_POINTER_REGNUM
811 && (!reload_completed
|| frame_pointer_needed
))
812 return hard_frame_pointer_rtx
;
813 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
814 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
815 && regno
== ARG_POINTER_REGNUM
)
816 return arg_pointer_rtx
;
818 #ifdef RETURN_ADDRESS_POINTER_REGNUM
819 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
820 return return_address_pointer_rtx
;
822 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
823 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
824 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
825 return pic_offset_table_rtx
;
826 if (regno
== STACK_POINTER_REGNUM
)
827 return stack_pointer_rtx
;
831 /* If the per-function register table has been set up, try to re-use
832 an existing entry in that table to avoid useless generation of RTL.
834 This code is disabled for now until we can fix the various backends
835 which depend on having non-shared hard registers in some cases. Long
836 term we want to re-enable this code as it can significantly cut down
837 on the amount of useless RTL that gets generated.
839 We'll also need to fix some code that runs after reload that wants to
840 set ORIGINAL_REGNO. */
845 && regno
< FIRST_PSEUDO_REGISTER
846 && reg_raw_mode
[regno
] == mode
)
847 return regno_reg_rtx
[regno
];
850 return gen_raw_REG (mode
, regno
);
854 gen_rtx_MEM (machine_mode mode
, rtx addr
)
856 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
858 /* This field is not cleared by the mere allocation of the rtx, so
865 /* Generate a memory referring to non-trapping constant memory. */
868 gen_const_mem (machine_mode mode
, rtx addr
)
870 rtx mem
= gen_rtx_MEM (mode
, addr
);
871 MEM_READONLY_P (mem
) = 1;
872 MEM_NOTRAP_P (mem
) = 1;
876 /* Generate a MEM referring to fixed portions of the frame, e.g., register
880 gen_frame_mem (machine_mode mode
, rtx addr
)
882 rtx mem
= gen_rtx_MEM (mode
, addr
);
883 MEM_NOTRAP_P (mem
) = 1;
884 set_mem_alias_set (mem
, get_frame_alias_set ());
888 /* Generate a MEM referring to a temporary use of the stack, not part
889 of the fixed stack frame. For example, something which is pushed
890 by a target splitter. */
892 gen_tmp_stack_mem (machine_mode mode
, rtx addr
)
894 rtx mem
= gen_rtx_MEM (mode
, addr
);
895 MEM_NOTRAP_P (mem
) = 1;
896 if (!cfun
->calls_alloca
)
897 set_mem_alias_set (mem
, get_frame_alias_set ());
901 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
902 this construct would be valid, and false otherwise. */
905 validate_subreg (machine_mode omode
, machine_mode imode
,
906 const_rtx reg
, poly_uint64 offset
)
908 poly_uint64 isize
= GET_MODE_SIZE (imode
);
909 poly_uint64 osize
= GET_MODE_SIZE (omode
);
911 /* The sizes must be ordered, so that we know whether the subreg
912 is partial, paradoxical or complete. */
913 if (!ordered_p (isize
, osize
))
916 /* All subregs must be aligned. */
917 if (!multiple_p (offset
, osize
))
920 /* The subreg offset cannot be outside the inner object. */
921 if (maybe_ge (offset
, isize
))
924 poly_uint64 regsize
= REGMODE_NATURAL_SIZE (imode
);
926 /* ??? This should not be here. Temporarily continue to allow word_mode
927 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
928 Generally, backends are doing something sketchy but it'll take time to
930 if (omode
== word_mode
)
932 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
933 is the culprit here, and not the backends. */
934 else if (known_ge (osize
, regsize
) && known_ge (isize
, osize
))
936 /* Allow component subregs of complex and vector. Though given the below
937 extraction rules, it's not always clear what that means. */
938 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
939 && GET_MODE_INNER (imode
) == omode
)
941 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
942 i.e. (subreg:V4SF (reg:SF) 0) or (subreg:V4SF (reg:V2SF) 0). This
943 surely isn't the cleanest way to represent this. It's questionable
944 if this ought to be represented at all -- why can't this all be hidden
945 in post-reload splitters that make arbitrarily mode changes to the
946 registers themselves. */
947 else if (VECTOR_MODE_P (omode
)
948 && GET_MODE_INNER (omode
) == GET_MODE_INNER (imode
))
950 /* Subregs involving floating point modes are not allowed to
951 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
952 (subreg:SI (reg:DF) 0) isn't. */
953 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
955 if (! (known_eq (isize
, osize
)
956 /* LRA can use subreg to store a floating point value in
957 an integer mode. Although the floating point and the
958 integer modes need the same number of hard registers,
959 the size of floating point mode can be less than the
960 integer mode. LRA also uses subregs for a register
961 should be used in different mode in on insn. */
966 /* Paradoxical subregs must have offset zero. */
967 if (maybe_gt (osize
, isize
))
968 return known_eq (offset
, 0U);
970 /* This is a normal subreg. Verify that the offset is representable. */
972 /* For hard registers, we already have most of these rules collected in
973 subreg_offset_representable_p. */
974 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
976 unsigned int regno
= REGNO (reg
);
978 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
979 && GET_MODE_INNER (imode
) == omode
)
981 else if (!REG_CAN_CHANGE_MODE_P (regno
, imode
, omode
))
984 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
987 /* The outer size must be ordered wrt the register size, otherwise
988 we wouldn't know at compile time how many registers the outer
990 if (!ordered_p (osize
, regsize
))
993 /* For pseudo registers, we want most of the same checks. Namely:
995 Assume that the pseudo register will be allocated to hard registers
996 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
997 the remainder must correspond to the lowpart of the containing hard
998 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
999 otherwise it is at the lowest offset.
1001 Given that we've already checked the mode and offset alignment,
1002 we only have to check subblock subregs here. */
1003 if (maybe_lt (osize
, regsize
)
1004 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
1006 /* It is invalid for the target to pick a register size for a mode
1007 that isn't ordered wrt to the size of that mode. */
1008 poly_uint64 block_size
= ordered_min (isize
, regsize
);
1009 unsigned int start_reg
;
1010 poly_uint64 offset_within_reg
;
1011 if (!can_div_trunc_p (offset
, block_size
, &start_reg
, &offset_within_reg
)
1012 || (BYTES_BIG_ENDIAN
1013 ? maybe_ne (offset_within_reg
, block_size
- osize
)
1014 : maybe_ne (offset_within_reg
, 0U)))
1021 gen_rtx_SUBREG (machine_mode mode
, rtx reg
, poly_uint64 offset
)
1023 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
1024 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
1027 /* Generate a SUBREG representing the least-significant part of REG if MODE
1028 is smaller than mode of REG, otherwise paradoxical SUBREG. */
1031 gen_lowpart_SUBREG (machine_mode mode
, rtx reg
)
1033 machine_mode inmode
;
1035 inmode
= GET_MODE (reg
);
1036 if (inmode
== VOIDmode
)
1038 return gen_rtx_SUBREG (mode
, reg
,
1039 subreg_lowpart_offset (mode
, inmode
));
1043 gen_rtx_VAR_LOCATION (machine_mode mode
, tree decl
, rtx loc
,
1044 enum var_init_status status
)
1046 rtx x
= gen_rtx_fmt_te (VAR_LOCATION
, mode
, decl
, loc
);
1047 PAT_VAR_LOCATION_STATUS (x
) = status
;
1052 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
1055 gen_rtvec (int n
, ...)
1063 /* Don't allocate an empty rtvec... */
1070 rt_val
= rtvec_alloc (n
);
1072 for (i
= 0; i
< n
; i
++)
1073 rt_val
->elem
[i
] = va_arg (p
, rtx
);
1080 gen_rtvec_v (int n
, rtx
*argp
)
1085 /* Don't allocate an empty rtvec... */
1089 rt_val
= rtvec_alloc (n
);
1091 for (i
= 0; i
< n
; i
++)
1092 rt_val
->elem
[i
] = *argp
++;
1098 gen_rtvec_v (int n
, rtx_insn
**argp
)
1103 /* Don't allocate an empty rtvec... */
1107 rt_val
= rtvec_alloc (n
);
1109 for (i
= 0; i
< n
; i
++)
1110 rt_val
->elem
[i
] = *argp
++;
1116 /* Return the number of bytes between the start of an OUTER_MODE
1117 in-memory value and the start of an INNER_MODE in-memory value,
1118 given that the former is a lowpart of the latter. It may be a
1119 paradoxical lowpart, in which case the offset will be negative
1120 on big-endian targets. */
1123 byte_lowpart_offset (machine_mode outer_mode
,
1124 machine_mode inner_mode
)
1126 if (paradoxical_subreg_p (outer_mode
, inner_mode
))
1127 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
1129 return subreg_lowpart_offset (outer_mode
, inner_mode
);
1132 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1133 from address X. For paradoxical big-endian subregs this is a
1134 negative value, otherwise it's the same as OFFSET. */
1137 subreg_memory_offset (machine_mode outer_mode
, machine_mode inner_mode
,
1140 if (paradoxical_subreg_p (outer_mode
, inner_mode
))
1142 gcc_assert (known_eq (offset
, 0U));
1143 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
1148 /* As above, but return the offset that existing subreg X would have
1149 if SUBREG_REG (X) were stored in memory. The only significant thing
1150 about the current SUBREG_REG is its mode. */
1153 subreg_memory_offset (const_rtx x
)
1155 return subreg_memory_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
1159 /* Generate a REG rtx for a new pseudo register of mode MODE.
1160 This pseudo is assigned the next sequential register number. */
1163 gen_reg_rtx (machine_mode mode
)
1166 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
1168 gcc_assert (can_create_pseudo_p ());
1170 /* If a virtual register with bigger mode alignment is generated,
1171 increase stack alignment estimation because it might be spilled
1173 if (SUPPORTS_STACK_ALIGNMENT
1174 && crtl
->stack_alignment_estimated
< align
1175 && !crtl
->stack_realign_processed
)
1177 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
1178 if (crtl
->stack_alignment_estimated
< min_align
)
1179 crtl
->stack_alignment_estimated
= min_align
;
1182 if (generating_concat_p
1183 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
1184 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
1186 /* For complex modes, don't make a single pseudo.
1187 Instead, make a CONCAT of two pseudos.
1188 This allows noncontiguous allocation of the real and imaginary parts,
1189 which makes much better code. Besides, allocating DCmode
1190 pseudos overstrains reload on some machines like the 386. */
1191 rtx realpart
, imagpart
;
1192 machine_mode partmode
= GET_MODE_INNER (mode
);
1194 realpart
= gen_reg_rtx (partmode
);
1195 imagpart
= gen_reg_rtx (partmode
);
1196 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
1199 /* Do not call gen_reg_rtx with uninitialized crtl. */
1200 gcc_assert (crtl
->emit
.regno_pointer_align_length
);
1202 crtl
->emit
.ensure_regno_capacity ();
1203 gcc_assert (reg_rtx_no
< crtl
->emit
.regno_pointer_align_length
);
1205 val
= gen_raw_REG (mode
, reg_rtx_no
);
1206 regno_reg_rtx
[reg_rtx_no
++] = val
;
1210 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1211 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1214 emit_status::ensure_regno_capacity ()
1216 int old_size
= regno_pointer_align_length
;
1218 if (reg_rtx_no
< old_size
)
1221 int new_size
= old_size
* 2;
1222 while (reg_rtx_no
>= new_size
)
1225 char *tmp
= XRESIZEVEC (char, regno_pointer_align
, new_size
);
1226 memset (tmp
+ old_size
, 0, new_size
- old_size
);
1227 regno_pointer_align
= (unsigned char *) tmp
;
1229 rtx
*new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, new_size
);
1230 memset (new1
+ old_size
, 0, (new_size
- old_size
) * sizeof (rtx
));
1231 regno_reg_rtx
= new1
;
1233 crtl
->emit
.regno_pointer_align_length
= new_size
;
1236 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1239 reg_is_parm_p (rtx reg
)
1243 gcc_assert (REG_P (reg
));
1244 decl
= REG_EXPR (reg
);
1245 return (decl
&& TREE_CODE (decl
) == PARM_DECL
);
1248 /* Update NEW with the same attributes as REG, but with OFFSET added
1249 to the REG_OFFSET. */
1252 update_reg_offset (rtx new_rtx
, rtx reg
, poly_int64 offset
)
1254 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
1255 REG_OFFSET (reg
) + offset
);
1258 /* Generate a register with same attributes as REG, but with OFFSET
1259 added to the REG_OFFSET. */
1262 gen_rtx_REG_offset (rtx reg
, machine_mode mode
, unsigned int regno
,
1265 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
1267 update_reg_offset (new_rtx
, reg
, offset
);
1271 /* Generate a new pseudo-register with the same attributes as REG, but
1272 with OFFSET added to the REG_OFFSET. */
1275 gen_reg_rtx_offset (rtx reg
, machine_mode mode
, int offset
)
1277 rtx new_rtx
= gen_reg_rtx (mode
);
1279 update_reg_offset (new_rtx
, reg
, offset
);
1283 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1284 new register is a (possibly paradoxical) lowpart of the old one. */
1287 adjust_reg_mode (rtx reg
, machine_mode mode
)
1289 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
1290 PUT_MODE (reg
, mode
);
1293 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1294 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1297 set_reg_attrs_from_value (rtx reg
, rtx x
)
1300 bool can_be_reg_pointer
= true;
1302 /* Don't call mark_reg_pointer for incompatible pointer sign
1304 while (GET_CODE (x
) == SIGN_EXTEND
1305 || GET_CODE (x
) == ZERO_EXTEND
1306 || GET_CODE (x
) == TRUNCATE
1307 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
1309 #if defined(POINTERS_EXTEND_UNSIGNED)
1310 if (((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
1311 || (GET_CODE (x
) == ZERO_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
)
1312 || (paradoxical_subreg_p (x
)
1313 && ! (SUBREG_PROMOTED_VAR_P (x
)
1314 && SUBREG_CHECK_PROMOTED_SIGN (x
,
1315 POINTERS_EXTEND_UNSIGNED
))))
1316 && !targetm
.have_ptr_extend ())
1317 can_be_reg_pointer
= false;
1322 /* Hard registers can be reused for multiple purposes within the same
1323 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1324 on them is wrong. */
1325 if (HARD_REGISTER_P (reg
))
1328 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1331 if (MEM_OFFSET_KNOWN_P (x
))
1332 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
1333 MEM_OFFSET (x
) + offset
);
1334 if (can_be_reg_pointer
&& MEM_POINTER (x
))
1335 mark_reg_pointer (reg
, 0);
1340 update_reg_offset (reg
, x
, offset
);
1341 if (can_be_reg_pointer
&& REG_POINTER (x
))
1342 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1346 /* Generate a REG rtx for a new pseudo register, copying the mode
1347 and attributes from X. */
1350 gen_reg_rtx_and_attrs (rtx x
)
1352 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1353 set_reg_attrs_from_value (reg
, x
);
1357 /* Set the register attributes for registers contained in PARM_RTX.
1358 Use needed values from memory attributes of MEM. */
1361 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1363 if (REG_P (parm_rtx
))
1364 set_reg_attrs_from_value (parm_rtx
, mem
);
1365 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1367 /* Check for a NULL entry in the first slot, used to indicate that the
1368 parameter goes both on the stack and in registers. */
1369 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1370 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1372 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1373 if (REG_P (XEXP (x
, 0)))
1374 REG_ATTRS (XEXP (x
, 0))
1375 = get_reg_attrs (MEM_EXPR (mem
),
1376 INTVAL (XEXP (x
, 1)));
1381 /* Set the REG_ATTRS for registers in value X, given that X represents
1385 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1390 if (GET_CODE (x
) == SUBREG
)
1392 gcc_assert (subreg_lowpart_p (x
));
1397 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1400 : TYPE_MODE (TREE_TYPE (tdecl
))));
1401 if (GET_CODE (x
) == CONCAT
)
1403 if (REG_P (XEXP (x
, 0)))
1404 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1405 if (REG_P (XEXP (x
, 1)))
1406 REG_ATTRS (XEXP (x
, 1))
1407 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1409 if (GET_CODE (x
) == PARALLEL
)
1413 /* Check for a NULL entry, used to indicate that the parameter goes
1414 both on the stack and in registers. */
1415 if (XEXP (XVECEXP (x
, 0, 0), 0))
1420 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1422 rtx y
= XVECEXP (x
, 0, i
);
1423 if (REG_P (XEXP (y
, 0)))
1424 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1429 /* Assign the RTX X to declaration T. */
1432 set_decl_rtl (tree t
, rtx x
)
1434 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1436 set_reg_attrs_for_decl_rtl (t
, x
);
1439 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1440 if the ABI requires the parameter to be passed by reference. */
1443 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1445 DECL_INCOMING_RTL (t
) = x
;
1446 if (x
&& !by_reference_p
)
1447 set_reg_attrs_for_decl_rtl (t
, x
);
1450 /* Identify REG (which may be a CONCAT) as a user register. */
1453 mark_user_reg (rtx reg
)
1455 if (GET_CODE (reg
) == CONCAT
)
1457 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1458 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1462 gcc_assert (REG_P (reg
));
1463 REG_USERVAR_P (reg
) = 1;
1467 /* Identify REG as a probable pointer register and show its alignment
1468 as ALIGN, if nonzero. */
1471 mark_reg_pointer (rtx reg
, int align
)
1473 if (! REG_POINTER (reg
))
1475 REG_POINTER (reg
) = 1;
1478 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1480 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1481 /* We can no-longer be sure just how aligned this pointer is. */
1482 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1485 /* Return 1 plus largest pseudo reg number used in the current function. */
1493 /* Return 1 + the largest label number used so far in the current function. */
1496 max_label_num (void)
1501 /* Return first label number used in this function (if any were used). */
1504 get_first_label_num (void)
1506 return first_label_num
;
1509 /* If the rtx for label was created during the expansion of a nested
1510 function, then first_label_num won't include this label number.
1511 Fix this now so that array indices work later. */
1514 maybe_set_first_label_num (rtx_code_label
*x
)
1516 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1517 first_label_num
= CODE_LABEL_NUMBER (x
);
1520 /* For use by the RTL function loader, when mingling with normal
1522 Ensure that label_num is greater than the label num of X, to avoid
1523 duplicate labels in the generated assembler. */
1526 maybe_set_max_label_num (rtx_code_label
*x
)
1528 if (CODE_LABEL_NUMBER (x
) >= label_num
)
1529 label_num
= CODE_LABEL_NUMBER (x
) + 1;
1533 /* Return a value representing some low-order bits of X, where the number
1534 of low-order bits is given by MODE. Note that no conversion is done
1535 between floating-point and fixed-point values, rather, the bit
1536 representation is returned.
1538 This function handles the cases in common between gen_lowpart, below,
1539 and two variants in cse.c and combine.c. These are the cases that can
1540 be safely handled at all points in the compilation.
1542 If this is not a case we can handle, return 0. */
1545 gen_lowpart_common (machine_mode mode
, rtx x
)
1547 poly_uint64 msize
= GET_MODE_SIZE (mode
);
1548 machine_mode innermode
;
1550 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1551 so we have to make one up. Yuk. */
1552 innermode
= GET_MODE (x
);
1554 && known_le (msize
* BITS_PER_UNIT
,
1555 (unsigned HOST_WIDE_INT
) HOST_BITS_PER_WIDE_INT
))
1556 innermode
= int_mode_for_size (HOST_BITS_PER_WIDE_INT
, 0).require ();
1557 else if (innermode
== VOIDmode
)
1558 innermode
= int_mode_for_size (HOST_BITS_PER_DOUBLE_INT
, 0).require ();
1560 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1562 if (innermode
== mode
)
1565 /* The size of the outer and inner modes must be ordered. */
1566 poly_uint64 xsize
= GET_MODE_SIZE (innermode
);
1567 if (!ordered_p (msize
, xsize
))
1570 if (SCALAR_FLOAT_MODE_P (mode
))
1572 /* Don't allow paradoxical FLOAT_MODE subregs. */
1573 if (maybe_gt (msize
, xsize
))
1578 /* MODE must occupy no more of the underlying registers than X. */
1579 poly_uint64 regsize
= REGMODE_NATURAL_SIZE (innermode
);
1580 unsigned int mregs
, xregs
;
1581 if (!can_div_away_from_zero_p (msize
, regsize
, &mregs
)
1582 || !can_div_away_from_zero_p (xsize
, regsize
, &xregs
)
1587 scalar_int_mode int_mode
, int_innermode
, from_mode
;
1588 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1589 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
1590 && is_a
<scalar_int_mode
> (innermode
, &int_innermode
)
1591 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &from_mode
))
1593 /* If we are getting the low-order part of something that has been
1594 sign- or zero-extended, we can either just use the object being
1595 extended or make a narrower extension. If we want an even smaller
1596 piece than the size of the object being extended, call ourselves
1599 This case is used mostly by combine and cse. */
1601 if (from_mode
== int_mode
)
1603 else if (GET_MODE_SIZE (int_mode
) < GET_MODE_SIZE (from_mode
))
1604 return gen_lowpart_common (int_mode
, XEXP (x
, 0));
1605 else if (GET_MODE_SIZE (int_mode
) < GET_MODE_SIZE (int_innermode
))
1606 return gen_rtx_fmt_e (GET_CODE (x
), int_mode
, XEXP (x
, 0));
1608 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1609 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1610 || CONST_DOUBLE_AS_FLOAT_P (x
) || CONST_SCALAR_INT_P (x
)
1611 || CONST_POLY_INT_P (x
))
1612 return lowpart_subreg (mode
, x
, innermode
);
1614 /* Otherwise, we can't do this. */
1619 gen_highpart (machine_mode mode
, rtx x
)
1621 poly_uint64 msize
= GET_MODE_SIZE (mode
);
1624 /* This case loses if X is a subreg. To catch bugs early,
1625 complain if an invalid MODE is used even in other cases. */
1626 gcc_assert (known_le (msize
, (unsigned int) UNITS_PER_WORD
)
1627 || known_eq (msize
, GET_MODE_UNIT_SIZE (GET_MODE (x
))));
1629 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1630 subreg_highpart_offset (mode
, GET_MODE (x
)));
1631 gcc_assert (result
);
1633 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1634 the target if we have a MEM. gen_highpart must return a valid operand,
1635 emitting code if necessary to do so. */
1638 result
= validize_mem (result
);
1639 gcc_assert (result
);
1645 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1646 be VOIDmode constant. */
1648 gen_highpart_mode (machine_mode outermode
, machine_mode innermode
, rtx exp
)
1650 if (GET_MODE (exp
) != VOIDmode
)
1652 gcc_assert (GET_MODE (exp
) == innermode
);
1653 return gen_highpart (outermode
, exp
);
1655 return simplify_gen_subreg (outermode
, exp
, innermode
,
1656 subreg_highpart_offset (outermode
, innermode
));
1659 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1660 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1663 subreg_size_lowpart_offset (poly_uint64 outer_bytes
, poly_uint64 inner_bytes
)
1665 gcc_checking_assert (ordered_p (outer_bytes
, inner_bytes
));
1666 if (maybe_gt (outer_bytes
, inner_bytes
))
1667 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1670 if (BYTES_BIG_ENDIAN
&& WORDS_BIG_ENDIAN
)
1671 return inner_bytes
- outer_bytes
;
1672 else if (!BYTES_BIG_ENDIAN
&& !WORDS_BIG_ENDIAN
)
1675 return subreg_size_offset_from_lsb (outer_bytes
, inner_bytes
, 0);
1678 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1679 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1682 subreg_size_highpart_offset (poly_uint64 outer_bytes
, poly_uint64 inner_bytes
)
1684 gcc_assert (known_ge (inner_bytes
, outer_bytes
));
1686 if (BYTES_BIG_ENDIAN
&& WORDS_BIG_ENDIAN
)
1688 else if (!BYTES_BIG_ENDIAN
&& !WORDS_BIG_ENDIAN
)
1689 return inner_bytes
- outer_bytes
;
1691 return subreg_size_offset_from_lsb (outer_bytes
, inner_bytes
,
1692 (inner_bytes
- outer_bytes
)
1696 /* Return 1 iff X, assumed to be a SUBREG,
1697 refers to the least significant part of its containing reg.
1698 If X is not a SUBREG, always return 1 (it is its own low part!). */
1701 subreg_lowpart_p (const_rtx x
)
1703 if (GET_CODE (x
) != SUBREG
)
1705 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1708 return known_eq (subreg_lowpart_offset (GET_MODE (x
),
1709 GET_MODE (SUBREG_REG (x
))),
1713 /* Return subword OFFSET of operand OP.
1714 The word number, OFFSET, is interpreted as the word number starting
1715 at the low-order address. OFFSET 0 is the low-order word if not
1716 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1718 If we cannot extract the required word, we return zero. Otherwise,
1719 an rtx corresponding to the requested word will be returned.
1721 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1722 reload has completed, a valid address will always be returned. After
1723 reload, if a valid address cannot be returned, we return zero.
1725 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1726 it is the responsibility of the caller.
1728 MODE is the mode of OP in case it is a CONST_INT.
1730 ??? This is still rather broken for some cases. The problem for the
1731 moment is that all callers of this thing provide no 'goal mode' to
1732 tell us to work with. This exists because all callers were written
1733 in a word based SUBREG world.
1734 Now use of this function can be deprecated by simplify_subreg in most
1739 operand_subword (rtx op
, poly_uint64 offset
, int validate_address
,
1742 if (mode
== VOIDmode
)
1743 mode
= GET_MODE (op
);
1745 gcc_assert (mode
!= VOIDmode
);
1747 /* If OP is narrower than a word, fail. */
1749 && maybe_lt (GET_MODE_SIZE (mode
), UNITS_PER_WORD
))
1752 /* If we want a word outside OP, return zero. */
1754 && maybe_gt ((offset
+ 1) * UNITS_PER_WORD
, GET_MODE_SIZE (mode
)))
1757 /* Form a new MEM at the requested address. */
1760 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1762 if (! validate_address
)
1765 else if (reload_completed
)
1767 if (! strict_memory_address_addr_space_p (word_mode
,
1769 MEM_ADDR_SPACE (op
)))
1773 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1776 /* Rest can be handled by simplify_subreg. */
1777 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1780 /* Similar to `operand_subword', but never return 0. If we can't
1781 extract the required subword, put OP into a register and try again.
1782 The second attempt must succeed. We always validate the address in
1785 MODE is the mode of OP, in case it is CONST_INT. */
1788 operand_subword_force (rtx op
, poly_uint64 offset
, machine_mode mode
)
1790 rtx result
= operand_subword (op
, offset
, 1, mode
);
1795 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1797 /* If this is a register which cannot be accessed by words, copy it
1798 to a pseudo register. */
1800 op
= copy_to_reg (op
);
1802 op
= force_reg (mode
, op
);
1805 result
= operand_subword (op
, offset
, 1, mode
);
1806 gcc_assert (result
);
1811 mem_attrs::mem_attrs ()
1817 addrspace (ADDR_SPACE_GENERIC
),
1818 offset_known_p (false),
1819 size_known_p (false)
1822 /* Returns 1 if both MEM_EXPR can be considered equal
1826 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1831 if (! expr1
|| ! expr2
)
1834 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1837 return operand_equal_p (expr1
, expr2
, 0);
1840 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1841 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1845 get_mem_align_offset (rtx mem
, unsigned int align
)
1850 /* This function can't use
1851 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1852 || (MAX (MEM_ALIGN (mem),
1853 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1857 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1859 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1860 for <variable>. get_inner_reference doesn't handle it and
1861 even if it did, the alignment in that case needs to be determined
1862 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1863 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1864 isn't sufficiently aligned, the object it is in might be. */
1865 gcc_assert (MEM_P (mem
));
1866 expr
= MEM_EXPR (mem
);
1867 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1870 offset
= MEM_OFFSET (mem
);
1873 if (DECL_ALIGN (expr
) < align
)
1876 else if (INDIRECT_REF_P (expr
))
1878 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1881 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1885 tree inner
= TREE_OPERAND (expr
, 0);
1886 tree field
= TREE_OPERAND (expr
, 1);
1887 tree byte_offset
= component_ref_field_offset (expr
);
1888 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1890 poly_uint64 suboffset
;
1892 || !poly_int_tree_p (byte_offset
, &suboffset
)
1893 || !tree_fits_uhwi_p (bit_offset
))
1896 offset
+= suboffset
;
1897 offset
+= tree_to_uhwi (bit_offset
) / BITS_PER_UNIT
;
1899 if (inner
== NULL_TREE
)
1901 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1902 < (unsigned int) align
)
1906 else if (DECL_P (inner
))
1908 if (DECL_ALIGN (inner
) < align
)
1912 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1920 HOST_WIDE_INT misalign
;
1921 if (!known_misalignment (offset
, align
/ BITS_PER_UNIT
, &misalign
))
1926 /* Given REF (a MEM) and T, either the type of X or the expression
1927 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1928 if we are making a new object of this type. BITPOS is nonzero if
1929 there is an offset outstanding on T that will be applied later. */
1932 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1935 poly_int64 apply_bitpos
= 0;
1937 class mem_attrs attrs
, *defattrs
, *refattrs
;
1940 /* It can happen that type_for_mode was given a mode for which there
1941 is no language-level type. In which case it returns NULL, which
1946 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1947 if (type
== error_mark_node
)
1950 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1951 wrong answer, as it assumes that DECL_RTL already has the right alias
1952 info. Callers should not set DECL_RTL until after the call to
1953 set_mem_attributes. */
1954 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1956 /* Get the alias set from the expression or type (perhaps using a
1957 front-end routine) and use it. */
1958 attrs
.alias
= get_alias_set (t
);
1960 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1961 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1963 /* Default values from pre-existing memory attributes if present. */
1964 refattrs
= MEM_ATTRS (ref
);
1967 /* ??? Can this ever happen? Calling this routine on a MEM that
1968 already carries memory attributes should probably be invalid. */
1969 attrs
.expr
= refattrs
->expr
;
1970 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1971 attrs
.offset
= refattrs
->offset
;
1972 attrs
.size_known_p
= refattrs
->size_known_p
;
1973 attrs
.size
= refattrs
->size
;
1974 attrs
.align
= refattrs
->align
;
1977 /* Otherwise, default values from the mode of the MEM reference. */
1980 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1981 gcc_assert (!defattrs
->expr
);
1982 gcc_assert (!defattrs
->offset_known_p
);
1984 /* Respect mode size. */
1985 attrs
.size_known_p
= defattrs
->size_known_p
;
1986 attrs
.size
= defattrs
->size
;
1987 /* ??? Is this really necessary? We probably should always get
1988 the size from the type below. */
1990 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1991 if T is an object, always compute the object alignment below. */
1993 attrs
.align
= defattrs
->align
;
1995 attrs
.align
= BITS_PER_UNIT
;
1996 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1997 e.g. if the type carries an alignment attribute. Should we be
1998 able to simply always use TYPE_ALIGN? */
2001 /* We can set the alignment from the type if we are making an object or if
2002 this is an INDIRECT_REF. */
2003 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
)
2004 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
2006 /* If the size is known, we can set that. */
2007 tree new_size
= TYPE_SIZE_UNIT (type
);
2009 /* The address-space is that of the type. */
2010 as
= TYPE_ADDR_SPACE (type
);
2012 /* If T is not a type, we may be able to deduce some more information about
2018 if (TREE_THIS_VOLATILE (t
))
2019 MEM_VOLATILE_P (ref
) = 1;
2021 /* Now remove any conversions: they don't change what the underlying
2022 object is. Likewise for SAVE_EXPR. */
2023 while (CONVERT_EXPR_P (t
)
2024 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
2025 || TREE_CODE (t
) == SAVE_EXPR
)
2026 t
= TREE_OPERAND (t
, 0);
2028 /* Note whether this expression can trap. */
2029 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
2031 base
= get_base_address (t
);
2035 && TREE_READONLY (base
)
2036 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
2037 && !TREE_THIS_VOLATILE (base
))
2038 MEM_READONLY_P (ref
) = 1;
2040 /* Mark static const strings readonly as well. */
2041 if (TREE_CODE (base
) == STRING_CST
2042 && TREE_READONLY (base
)
2043 && TREE_STATIC (base
))
2044 MEM_READONLY_P (ref
) = 1;
2046 /* Address-space information is on the base object. */
2047 if (TREE_CODE (base
) == MEM_REF
2048 || TREE_CODE (base
) == TARGET_MEM_REF
)
2049 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
2052 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
2055 /* If this expression uses it's parent's alias set, mark it such
2056 that we won't change it. */
2057 if (component_uses_parent_alias_set_from (t
) != NULL_TREE
)
2058 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
2060 /* If this is a decl, set the attributes of the MEM from it. */
2064 attrs
.offset_known_p
= true;
2066 apply_bitpos
= bitpos
;
2067 new_size
= DECL_SIZE_UNIT (t
);
2070 /* ??? If we end up with a constant or a descriptor do not
2071 record a MEM_EXPR. */
2072 else if (CONSTANT_CLASS_P (t
)
2073 || TREE_CODE (t
) == CONSTRUCTOR
)
2076 /* If this is a field reference, record it. */
2077 else if (TREE_CODE (t
) == COMPONENT_REF
)
2080 attrs
.offset_known_p
= true;
2082 apply_bitpos
= bitpos
;
2083 if (DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
2084 new_size
= DECL_SIZE_UNIT (TREE_OPERAND (t
, 1));
2087 /* Else record it. */
2090 gcc_assert (handled_component_p (t
)
2091 || TREE_CODE (t
) == MEM_REF
2092 || TREE_CODE (t
) == TARGET_MEM_REF
);
2094 attrs
.offset_known_p
= true;
2096 apply_bitpos
= bitpos
;
2099 /* If this is a reference based on a partitioned decl replace the
2100 base with a MEM_REF of the pointer representative we created
2101 during stack slot partitioning. */
2104 && ! is_global_var (base
)
2105 && cfun
->gimple_df
->decls_to_pointers
!= NULL
)
2107 tree
*namep
= cfun
->gimple_df
->decls_to_pointers
->get (base
);
2110 attrs
.expr
= unshare_expr (attrs
.expr
);
2111 tree
*orig_base
= &attrs
.expr
;
2112 while (handled_component_p (*orig_base
))
2113 orig_base
= &TREE_OPERAND (*orig_base
, 0);
2114 tree aptrt
= reference_alias_ptr_type (*orig_base
);
2115 *orig_base
= build2 (MEM_REF
, TREE_TYPE (*orig_base
), *namep
,
2116 build_int_cst (aptrt
, 0));
2120 /* Compute the alignment. */
2121 unsigned int obj_align
;
2122 unsigned HOST_WIDE_INT obj_bitpos
;
2123 get_object_alignment_1 (t
, &obj_align
, &obj_bitpos
);
2124 unsigned int diff_align
= known_alignment (obj_bitpos
- bitpos
);
2125 if (diff_align
!= 0)
2126 obj_align
= MIN (obj_align
, diff_align
);
2127 attrs
.align
= MAX (attrs
.align
, obj_align
);
2130 poly_uint64 const_size
;
2131 if (poly_int_tree_p (new_size
, &const_size
))
2133 attrs
.size_known_p
= true;
2134 attrs
.size
= const_size
;
2137 /* If we modified OFFSET based on T, then subtract the outstanding
2138 bit position offset. Similarly, increase the size of the accessed
2139 object to contain the negative offset. */
2140 if (maybe_ne (apply_bitpos
, 0))
2142 gcc_assert (attrs
.offset_known_p
);
2143 poly_int64 bytepos
= bits_to_bytes_round_down (apply_bitpos
);
2144 attrs
.offset
-= bytepos
;
2145 if (attrs
.size_known_p
)
2146 attrs
.size
+= bytepos
;
2149 /* Now set the attributes we computed above. */
2150 attrs
.addrspace
= as
;
2151 set_mem_attrs (ref
, &attrs
);
2155 set_mem_attributes (rtx ref
, tree t
, int objectp
)
2157 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
2160 /* Set the alias set of MEM to SET. */
2163 set_mem_alias_set (rtx mem
, alias_set_type set
)
2165 /* If the new and old alias sets don't conflict, something is wrong. */
2166 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
2167 mem_attrs
attrs (*get_mem_attrs (mem
));
2169 set_mem_attrs (mem
, &attrs
);
2172 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2175 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
2177 mem_attrs
attrs (*get_mem_attrs (mem
));
2178 attrs
.addrspace
= addrspace
;
2179 set_mem_attrs (mem
, &attrs
);
2182 /* Set the alignment of MEM to ALIGN bits. */
2185 set_mem_align (rtx mem
, unsigned int align
)
2187 mem_attrs
attrs (*get_mem_attrs (mem
));
2188 attrs
.align
= align
;
2189 set_mem_attrs (mem
, &attrs
);
2192 /* Set the expr for MEM to EXPR. */
2195 set_mem_expr (rtx mem
, tree expr
)
2197 mem_attrs
attrs (*get_mem_attrs (mem
));
2199 set_mem_attrs (mem
, &attrs
);
2202 /* Set the offset of MEM to OFFSET. */
2205 set_mem_offset (rtx mem
, poly_int64 offset
)
2207 mem_attrs
attrs (*get_mem_attrs (mem
));
2208 attrs
.offset_known_p
= true;
2209 attrs
.offset
= offset
;
2210 set_mem_attrs (mem
, &attrs
);
2213 /* Clear the offset of MEM. */
2216 clear_mem_offset (rtx mem
)
2218 mem_attrs
attrs (*get_mem_attrs (mem
));
2219 attrs
.offset_known_p
= false;
2220 set_mem_attrs (mem
, &attrs
);
2223 /* Set the size of MEM to SIZE. */
2226 set_mem_size (rtx mem
, poly_int64 size
)
2228 mem_attrs
attrs (*get_mem_attrs (mem
));
2229 attrs
.size_known_p
= true;
2231 set_mem_attrs (mem
, &attrs
);
2234 /* Clear the size of MEM. */
2237 clear_mem_size (rtx mem
)
2239 mem_attrs
attrs (*get_mem_attrs (mem
));
2240 attrs
.size_known_p
= false;
2241 set_mem_attrs (mem
, &attrs
);
2244 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2245 and its address changed to ADDR. (VOIDmode means don't change the mode.
2246 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2247 returned memory location is required to be valid. INPLACE is true if any
2248 changes can be made directly to MEMREF or false if MEMREF must be treated
2251 The memory attributes are not changed. */
2254 change_address_1 (rtx memref
, machine_mode mode
, rtx addr
, int validate
,
2260 gcc_assert (MEM_P (memref
));
2261 as
= MEM_ADDR_SPACE (memref
);
2262 if (mode
== VOIDmode
)
2263 mode
= GET_MODE (memref
);
2265 addr
= XEXP (memref
, 0);
2266 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
2267 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
2270 /* Don't validate address for LRA. LRA can make the address valid
2271 by itself in most efficient way. */
2272 if (validate
&& !lra_in_progress
)
2274 if (reload_in_progress
|| reload_completed
)
2275 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
2277 addr
= memory_address_addr_space (mode
, addr
, as
);
2280 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
2285 XEXP (memref
, 0) = addr
;
2289 new_rtx
= gen_rtx_MEM (mode
, addr
);
2290 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2294 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2295 way we are changing MEMREF, so we only preserve the alias set. */
2298 change_address (rtx memref
, machine_mode mode
, rtx addr
)
2300 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1, false);
2301 machine_mode mmode
= GET_MODE (new_rtx
);
2302 class mem_attrs
*defattrs
;
2304 mem_attrs
attrs (*get_mem_attrs (memref
));
2305 defattrs
= mode_mem_attrs
[(int) mmode
];
2306 attrs
.expr
= NULL_TREE
;
2307 attrs
.offset_known_p
= false;
2308 attrs
.size_known_p
= defattrs
->size_known_p
;
2309 attrs
.size
= defattrs
->size
;
2310 attrs
.align
= defattrs
->align
;
2312 /* If there are no changes, just return the original memory reference. */
2313 if (new_rtx
== memref
)
2315 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
2318 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
2319 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2322 set_mem_attrs (new_rtx
, &attrs
);
2326 /* Return a memory reference like MEMREF, but with its mode changed
2327 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2328 nonzero, the memory address is forced to be valid.
2329 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2330 and the caller is responsible for adjusting MEMREF base register.
2331 If ADJUST_OBJECT is zero, the underlying object associated with the
2332 memory reference is left unchanged and the caller is responsible for
2333 dealing with it. Otherwise, if the new memory reference is outside
2334 the underlying object, even partially, then the object is dropped.
2335 SIZE, if nonzero, is the size of an access in cases where MODE
2336 has no inherent size. */
2339 adjust_address_1 (rtx memref
, machine_mode mode
, poly_int64 offset
,
2340 int validate
, int adjust_address
, int adjust_object
,
2343 rtx addr
= XEXP (memref
, 0);
2345 scalar_int_mode address_mode
;
2346 class mem_attrs
attrs (*get_mem_attrs (memref
)), *defattrs
;
2347 unsigned HOST_WIDE_INT max_align
;
2348 #ifdef POINTERS_EXTEND_UNSIGNED
2349 scalar_int_mode pointer_mode
2350 = targetm
.addr_space
.pointer_mode (attrs
.addrspace
);
2353 /* VOIDmode means no mode change for change_address_1. */
2354 if (mode
== VOIDmode
)
2355 mode
= GET_MODE (memref
);
2357 /* Take the size of non-BLKmode accesses from the mode. */
2358 defattrs
= mode_mem_attrs
[(int) mode
];
2359 if (defattrs
->size_known_p
)
2360 size
= defattrs
->size
;
2362 /* If there are no changes, just return the original memory reference. */
2363 if (mode
== GET_MODE (memref
)
2364 && known_eq (offset
, 0)
2365 && (known_eq (size
, 0)
2366 || (attrs
.size_known_p
&& known_eq (attrs
.size
, size
)))
2367 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2371 /* ??? Prefer to create garbage instead of creating shared rtl.
2372 This may happen even if offset is nonzero -- consider
2373 (plus (plus reg reg) const_int) -- so do this always. */
2374 addr
= copy_rtx (addr
);
2376 /* Convert a possibly large offset to a signed value within the
2377 range of the target address space. */
2378 address_mode
= get_address_mode (memref
);
2379 offset
= trunc_int_for_mode (offset
, address_mode
);
2383 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2384 object, we can merge it into the LO_SUM. */
2385 if (GET_MODE (memref
) != BLKmode
2386 && GET_CODE (addr
) == LO_SUM
2387 && known_in_range_p (offset
,
2388 0, (GET_MODE_ALIGNMENT (GET_MODE (memref
))
2390 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2391 plus_constant (address_mode
,
2392 XEXP (addr
, 1), offset
));
2393 #ifdef POINTERS_EXTEND_UNSIGNED
2394 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2395 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2396 the fact that pointers are not allowed to overflow. */
2397 else if (POINTERS_EXTEND_UNSIGNED
> 0
2398 && GET_CODE (addr
) == ZERO_EXTEND
2399 && GET_MODE (XEXP (addr
, 0)) == pointer_mode
2400 && known_eq (trunc_int_for_mode (offset
, pointer_mode
), offset
))
2401 addr
= gen_rtx_ZERO_EXTEND (address_mode
,
2402 plus_constant (pointer_mode
,
2403 XEXP (addr
, 0), offset
));
2406 addr
= plus_constant (address_mode
, addr
, offset
);
2409 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
, false);
2411 /* If the address is a REG, change_address_1 rightfully returns memref,
2412 but this would destroy memref's MEM_ATTRS. */
2413 if (new_rtx
== memref
&& maybe_ne (offset
, 0))
2414 new_rtx
= copy_rtx (new_rtx
);
2416 /* Conservatively drop the object if we don't know where we start from. */
2417 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2419 attrs
.expr
= NULL_TREE
;
2423 /* Compute the new values of the memory attributes due to this adjustment.
2424 We add the offsets and update the alignment. */
2425 if (attrs
.offset_known_p
)
2427 attrs
.offset
+= offset
;
2429 /* Drop the object if the new left end is not within its bounds. */
2430 if (adjust_object
&& maybe_lt (attrs
.offset
, 0))
2432 attrs
.expr
= NULL_TREE
;
2437 /* Compute the new alignment by taking the MIN of the alignment and the
2438 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2440 if (maybe_ne (offset
, 0))
2442 max_align
= known_alignment (offset
) * BITS_PER_UNIT
;
2443 attrs
.align
= MIN (attrs
.align
, max_align
);
2446 if (maybe_ne (size
, 0))
2448 /* Drop the object if the new right end is not within its bounds. */
2449 if (adjust_object
&& maybe_gt (offset
+ size
, attrs
.size
))
2451 attrs
.expr
= NULL_TREE
;
2454 attrs
.size_known_p
= true;
2457 else if (attrs
.size_known_p
)
2459 gcc_assert (!adjust_object
);
2460 attrs
.size
-= offset
;
2461 /* ??? The store_by_pieces machinery generates negative sizes,
2462 so don't assert for that here. */
2465 set_mem_attrs (new_rtx
, &attrs
);
2470 /* Return a memory reference like MEMREF, but with its mode changed
2471 to MODE and its address changed to ADDR, which is assumed to be
2472 MEMREF offset by OFFSET bytes. If VALIDATE is
2473 nonzero, the memory address is forced to be valid. */
2476 adjust_automodify_address_1 (rtx memref
, machine_mode mode
, rtx addr
,
2477 poly_int64 offset
, int validate
)
2479 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
, false);
2480 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0, 0);
2483 /* Return a memory reference like MEMREF, but whose address is changed by
2484 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2485 known to be in OFFSET (possibly 1). */
2488 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2490 rtx new_rtx
, addr
= XEXP (memref
, 0);
2491 machine_mode address_mode
;
2492 class mem_attrs
*defattrs
;
2494 mem_attrs
attrs (*get_mem_attrs (memref
));
2495 address_mode
= get_address_mode (memref
);
2496 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2498 /* At this point we don't know _why_ the address is invalid. It
2499 could have secondary memory references, multiplies or anything.
2501 However, if we did go and rearrange things, we can wind up not
2502 being able to recognize the magic around pic_offset_table_rtx.
2503 This stuff is fragile, and is yet another example of why it is
2504 bad to expose PIC machinery too early. */
2505 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2507 && GET_CODE (addr
) == PLUS
2508 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2510 addr
= force_reg (GET_MODE (addr
), addr
);
2511 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2514 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2515 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1, false);
2517 /* If there are no changes, just return the original memory reference. */
2518 if (new_rtx
== memref
)
2521 /* Update the alignment to reflect the offset. Reset the offset, which
2523 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2524 attrs
.offset_known_p
= false;
2525 attrs
.size_known_p
= defattrs
->size_known_p
;
2526 attrs
.size
= defattrs
->size
;
2527 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2528 set_mem_attrs (new_rtx
, &attrs
);
2532 /* Return a memory reference like MEMREF, but with its address changed to
2533 ADDR. The caller is asserting that the actual piece of memory pointed
2534 to is the same, just the form of the address is being changed, such as
2535 by putting something into a register. INPLACE is true if any changes
2536 can be made directly to MEMREF or false if MEMREF must be treated as
2540 replace_equiv_address (rtx memref
, rtx addr
, bool inplace
)
2542 /* change_address_1 copies the memory attribute structure without change
2543 and that's exactly what we want here. */
2544 update_temp_slot_address (XEXP (memref
, 0), addr
);
2545 return change_address_1 (memref
, VOIDmode
, addr
, 1, inplace
);
2548 /* Likewise, but the reference is not required to be valid. */
2551 replace_equiv_address_nv (rtx memref
, rtx addr
, bool inplace
)
2553 return change_address_1 (memref
, VOIDmode
, addr
, 0, inplace
);
2556 /* Return a memory reference like MEMREF, but with its mode widened to
2557 MODE and offset by OFFSET. This would be used by targets that e.g.
2558 cannot issue QImode memory operations and have to use SImode memory
2559 operations plus masking logic. */
2562 widen_memory_access (rtx memref
, machine_mode mode
, poly_int64 offset
)
2564 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0, 0);
2565 poly_uint64 size
= GET_MODE_SIZE (mode
);
2567 /* If there are no changes, just return the original memory reference. */
2568 if (new_rtx
== memref
)
2571 mem_attrs
attrs (*get_mem_attrs (new_rtx
));
2573 /* If we don't know what offset we were at within the expression, then
2574 we can't know if we've overstepped the bounds. */
2575 if (! attrs
.offset_known_p
)
2576 attrs
.expr
= NULL_TREE
;
2580 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2582 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2583 tree offset
= component_ref_field_offset (attrs
.expr
);
2585 if (! DECL_SIZE_UNIT (field
))
2587 attrs
.expr
= NULL_TREE
;
2591 /* Is the field at least as large as the access? If so, ok,
2592 otherwise strip back to the containing structure. */
2593 if (poly_int_tree_p (DECL_SIZE_UNIT (field
))
2594 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field
)), size
)
2595 && known_ge (attrs
.offset
, 0))
2598 poly_uint64 suboffset
;
2599 if (!poly_int_tree_p (offset
, &suboffset
))
2601 attrs
.expr
= NULL_TREE
;
2605 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2606 attrs
.offset
+= suboffset
;
2607 attrs
.offset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
2610 /* Similarly for the decl. */
2611 else if (DECL_P (attrs
.expr
)
2612 && DECL_SIZE_UNIT (attrs
.expr
)
2613 && poly_int_tree_p (DECL_SIZE_UNIT (attrs
.expr
))
2614 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs
.expr
)),
2616 && known_ge (attrs
.offset
, 0))
2620 /* The widened memory access overflows the expression, which means
2621 that it could alias another expression. Zap it. */
2622 attrs
.expr
= NULL_TREE
;
2628 attrs
.offset_known_p
= false;
2630 /* The widened memory may alias other stuff, so zap the alias set. */
2631 /* ??? Maybe use get_alias_set on any remaining expression. */
2633 attrs
.size_known_p
= true;
2635 set_mem_attrs (new_rtx
, &attrs
);
2639 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2640 static GTY(()) tree spill_slot_decl
;
2643 get_spill_slot_decl (bool force_build_p
)
2645 tree d
= spill_slot_decl
;
2648 if (d
|| !force_build_p
)
2651 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2652 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2653 DECL_ARTIFICIAL (d
) = 1;
2654 DECL_IGNORED_P (d
) = 1;
2656 spill_slot_decl
= d
;
2658 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2659 MEM_NOTRAP_P (rd
) = 1;
2660 mem_attrs
attrs (*mode_mem_attrs
[(int) BLKmode
]);
2661 attrs
.alias
= new_alias_set ();
2663 set_mem_attrs (rd
, &attrs
);
2664 SET_DECL_RTL (d
, rd
);
2669 /* Given MEM, a result from assign_stack_local, fill in the memory
2670 attributes as appropriate for a register allocator spill slot.
2671 These slots are not aliasable by other memory. We arrange for
2672 them all to use a single MEM_EXPR, so that the aliasing code can
2673 work properly in the case of shared spill slots. */
2676 set_mem_attrs_for_spill (rtx mem
)
2680 mem_attrs
attrs (*get_mem_attrs (mem
));
2681 attrs
.expr
= get_spill_slot_decl (true);
2682 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2683 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2685 /* We expect the incoming memory to be of the form:
2686 (mem:MODE (plus (reg sfp) (const_int offset)))
2687 with perhaps the plus missing for offset = 0. */
2688 addr
= XEXP (mem
, 0);
2689 attrs
.offset_known_p
= true;
2690 strip_offset (addr
, &attrs
.offset
);
2692 set_mem_attrs (mem
, &attrs
);
2693 MEM_NOTRAP_P (mem
) = 1;
2696 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2699 gen_label_rtx (void)
2701 return as_a
<rtx_code_label
*> (
2702 gen_rtx_CODE_LABEL (VOIDmode
, NULL_RTX
, NULL_RTX
,
2703 NULL
, label_num
++, NULL
));
2706 /* For procedure integration. */
2708 /* Install new pointers to the first and last insns in the chain.
2709 Also, set cur_insn_uid to one higher than the last in use.
2710 Used for an inline-procedure after copying the insn chain. */
2713 set_new_first_and_last_insn (rtx_insn
*first
, rtx_insn
*last
)
2717 set_first_insn (first
);
2718 set_last_insn (last
);
2721 if (param_min_nondebug_insn_uid
|| MAY_HAVE_DEBUG_INSNS
)
2723 int debug_count
= 0;
2725 cur_insn_uid
= param_min_nondebug_insn_uid
- 1;
2726 cur_debug_insn_uid
= 0;
2728 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2729 if (INSN_UID (insn
) < param_min_nondebug_insn_uid
)
2730 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2733 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2734 if (DEBUG_INSN_P (insn
))
2739 cur_debug_insn_uid
= param_min_nondebug_insn_uid
+ debug_count
;
2741 cur_debug_insn_uid
++;
2744 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2745 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2750 /* Go through all the RTL insn bodies and copy any invalid shared
2751 structure. This routine should only be called once. */
2754 unshare_all_rtl_1 (rtx_insn
*insn
)
2756 /* Unshare just about everything else. */
2757 unshare_all_rtl_in_chain (insn
);
2759 /* Make sure the addresses of stack slots found outside the insn chain
2760 (such as, in DECL_RTL of a variable) are not shared
2761 with the insn chain.
2763 This special care is necessary when the stack slot MEM does not
2764 actually appear in the insn chain. If it does appear, its address
2765 is unshared from all else at that point. */
2768 FOR_EACH_VEC_SAFE_ELT (stack_slot_list
, i
, temp
)
2769 (*stack_slot_list
)[i
] = copy_rtx_if_shared (temp
);
2772 /* Go through all the RTL insn bodies and copy any invalid shared
2773 structure, again. This is a fairly expensive thing to do so it
2774 should be done sparingly. */
2777 unshare_all_rtl_again (rtx_insn
*insn
)
2782 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2785 reset_used_flags (PATTERN (p
));
2786 reset_used_flags (REG_NOTES (p
));
2788 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2791 /* Make sure that virtual stack slots are not shared. */
2792 set_used_decls (DECL_INITIAL (cfun
->decl
));
2794 /* Make sure that virtual parameters are not shared. */
2795 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2796 set_used_flags (DECL_RTL (decl
));
2800 FOR_EACH_VEC_SAFE_ELT (stack_slot_list
, i
, temp
)
2801 reset_used_flags (temp
);
2803 unshare_all_rtl_1 (insn
);
2807 unshare_all_rtl (void)
2809 unshare_all_rtl_1 (get_insns ());
2811 for (tree decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2813 if (DECL_RTL_SET_P (decl
))
2814 SET_DECL_RTL (decl
, copy_rtx_if_shared (DECL_RTL (decl
)));
2815 DECL_INCOMING_RTL (decl
) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl
));
2822 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2823 Recursively does the same for subexpressions. */
2826 verify_rtx_sharing (rtx orig
, rtx insn
)
2831 const char *format_ptr
;
2836 code
= GET_CODE (x
);
2838 /* These types may be freely shared. */
2854 /* SCRATCH must be shared because they represent distinct values. */
2857 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2858 clobbers or clobbers of hard registers that originated as pseudos.
2859 This is needed to allow safe register renaming. */
2860 if (REG_P (XEXP (x
, 0))
2861 && HARD_REGISTER_NUM_P (REGNO (XEXP (x
, 0)))
2862 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x
, 0))))
2867 if (shared_const_p (orig
))
2872 /* A MEM is allowed to be shared if its address is constant. */
2873 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2874 || reload_completed
|| reload_in_progress
)
2883 /* This rtx may not be shared. If it has already been seen,
2884 replace it with a copy of itself. */
2885 if (flag_checking
&& RTX_FLAG (x
, used
))
2887 error ("invalid rtl sharing found in the insn");
2889 error ("shared rtx");
2891 internal_error ("internal consistency failure");
2893 gcc_assert (!RTX_FLAG (x
, used
));
2895 RTX_FLAG (x
, used
) = 1;
2897 /* Now scan the subexpressions recursively. */
2899 format_ptr
= GET_RTX_FORMAT (code
);
2901 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2903 switch (*format_ptr
++)
2906 verify_rtx_sharing (XEXP (x
, i
), insn
);
2910 if (XVEC (x
, i
) != NULL
)
2913 int len
= XVECLEN (x
, i
);
2915 for (j
= 0; j
< len
; j
++)
2917 /* We allow sharing of ASM_OPERANDS inside single
2919 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2920 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2922 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2924 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2933 /* Reset used-flags for INSN. */
2936 reset_insn_used_flags (rtx insn
)
2938 gcc_assert (INSN_P (insn
));
2939 reset_used_flags (PATTERN (insn
));
2940 reset_used_flags (REG_NOTES (insn
));
2942 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2945 /* Go through all the RTL insn bodies and clear all the USED bits. */
2948 reset_all_used_flags (void)
2952 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2955 rtx pat
= PATTERN (p
);
2956 if (GET_CODE (pat
) != SEQUENCE
)
2957 reset_insn_used_flags (p
);
2960 gcc_assert (REG_NOTES (p
) == NULL
);
2961 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2963 rtx insn
= XVECEXP (pat
, 0, i
);
2965 reset_insn_used_flags (insn
);
2971 /* Verify sharing in INSN. */
2974 verify_insn_sharing (rtx insn
)
2976 gcc_assert (INSN_P (insn
));
2977 verify_rtx_sharing (PATTERN (insn
), insn
);
2978 verify_rtx_sharing (REG_NOTES (insn
), insn
);
2980 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn
), insn
);
2983 /* Go through all the RTL insn bodies and check that there is no unexpected
2984 sharing in between the subexpressions. */
2987 verify_rtl_sharing (void)
2991 timevar_push (TV_VERIFY_RTL_SHARING
);
2993 reset_all_used_flags ();
2995 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2998 rtx pat
= PATTERN (p
);
2999 if (GET_CODE (pat
) != SEQUENCE
)
3000 verify_insn_sharing (p
);
3002 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
3004 rtx insn
= XVECEXP (pat
, 0, i
);
3006 verify_insn_sharing (insn
);
3010 reset_all_used_flags ();
3012 timevar_pop (TV_VERIFY_RTL_SHARING
);
3015 /* Go through all the RTL insn bodies and copy any invalid shared structure.
3016 Assumes the mark bits are cleared at entry. */
3019 unshare_all_rtl_in_chain (rtx_insn
*insn
)
3021 for (; insn
; insn
= NEXT_INSN (insn
))
3024 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
3025 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
3027 CALL_INSN_FUNCTION_USAGE (insn
)
3028 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
3032 /* Go through all virtual stack slots of a function and mark them as
3033 shared. We never replace the DECL_RTLs themselves with a copy,
3034 but expressions mentioned into a DECL_RTL cannot be shared with
3035 expressions in the instruction stream.
3037 Note that reload may convert pseudo registers into memories in-place.
3038 Pseudo registers are always shared, but MEMs never are. Thus if we
3039 reset the used flags on MEMs in the instruction stream, we must set
3040 them again on MEMs that appear in DECL_RTLs. */
3043 set_used_decls (tree blk
)
3048 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
3049 if (DECL_RTL_SET_P (t
))
3050 set_used_flags (DECL_RTL (t
));
3052 /* Now process sub-blocks. */
3053 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
3057 /* Mark ORIG as in use, and return a copy of it if it was already in use.
3058 Recursively does the same for subexpressions. Uses
3059 copy_rtx_if_shared_1 to reduce stack space. */
3062 copy_rtx_if_shared (rtx orig
)
3064 copy_rtx_if_shared_1 (&orig
);
3068 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
3069 use. Recursively does the same for subexpressions. */
3072 copy_rtx_if_shared_1 (rtx
*orig1
)
3078 const char *format_ptr
;
3082 /* Repeat is used to turn tail-recursion into iteration. */
3089 code
= GET_CODE (x
);
3091 /* These types may be freely shared. */
3107 /* SCRATCH must be shared because they represent distinct values. */
3110 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
3111 clobbers or clobbers of hard registers that originated as pseudos.
3112 This is needed to allow safe register renaming. */
3113 if (REG_P (XEXP (x
, 0))
3114 && HARD_REGISTER_NUM_P (REGNO (XEXP (x
, 0)))
3115 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x
, 0))))
3120 if (shared_const_p (x
))
3130 /* The chain of insns is not being copied. */
3137 /* This rtx may not be shared. If it has already been seen,
3138 replace it with a copy of itself. */
3140 if (RTX_FLAG (x
, used
))
3142 x
= shallow_copy_rtx (x
);
3145 RTX_FLAG (x
, used
) = 1;
3147 /* Now scan the subexpressions recursively.
3148 We can store any replaced subexpressions directly into X
3149 since we know X is not shared! Any vectors in X
3150 must be copied if X was copied. */
3152 format_ptr
= GET_RTX_FORMAT (code
);
3153 length
= GET_RTX_LENGTH (code
);
3156 for (i
= 0; i
< length
; i
++)
3158 switch (*format_ptr
++)
3162 copy_rtx_if_shared_1 (last_ptr
);
3163 last_ptr
= &XEXP (x
, i
);
3167 if (XVEC (x
, i
) != NULL
)
3170 int len
= XVECLEN (x
, i
);
3172 /* Copy the vector iff I copied the rtx and the length
3174 if (copied
&& len
> 0)
3175 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
3177 /* Call recursively on all inside the vector. */
3178 for (j
= 0; j
< len
; j
++)
3181 copy_rtx_if_shared_1 (last_ptr
);
3182 last_ptr
= &XVECEXP (x
, i
, j
);
3197 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3200 mark_used_flags (rtx x
, int flag
)
3204 const char *format_ptr
;
3207 /* Repeat is used to turn tail-recursion into iteration. */
3212 code
= GET_CODE (x
);
3214 /* These types may be freely shared so we needn't do any resetting
3238 /* The chain of insns is not being copied. */
3245 RTX_FLAG (x
, used
) = flag
;
3247 format_ptr
= GET_RTX_FORMAT (code
);
3248 length
= GET_RTX_LENGTH (code
);
3250 for (i
= 0; i
< length
; i
++)
3252 switch (*format_ptr
++)
3260 mark_used_flags (XEXP (x
, i
), flag
);
3264 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3265 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
3271 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3272 to look for shared sub-parts. */
3275 reset_used_flags (rtx x
)
3277 mark_used_flags (x
, 0);
3280 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3281 to look for shared sub-parts. */
3284 set_used_flags (rtx x
)
3286 mark_used_flags (x
, 1);
3289 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3290 Return X or the rtx for the pseudo reg the value of X was copied into.
3291 OTHER must be valid as a SET_DEST. */
3294 make_safe_from (rtx x
, rtx other
)
3297 switch (GET_CODE (other
))
3300 other
= SUBREG_REG (other
);
3302 case STRICT_LOW_PART
:
3305 other
= XEXP (other
, 0);
3314 && GET_CODE (x
) != SUBREG
)
3316 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
3317 || reg_mentioned_p (other
, x
))))
3319 rtx temp
= gen_reg_rtx (GET_MODE (x
));
3320 emit_move_insn (temp
, x
);
3326 /* Emission of insns (adding them to the doubly-linked list). */
3328 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3331 get_last_insn_anywhere (void)
3333 struct sequence_stack
*seq
;
3334 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
3340 /* Return the first nonnote insn emitted in current sequence or current
3341 function. This routine looks inside SEQUENCEs. */
3344 get_first_nonnote_insn (void)
3346 rtx_insn
*insn
= get_insns ();
3351 for (insn
= next_insn (insn
);
3352 insn
&& NOTE_P (insn
);
3353 insn
= next_insn (insn
))
3357 if (NONJUMP_INSN_P (insn
)
3358 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3359 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3366 /* Return the last nonnote insn emitted in current sequence or current
3367 function. This routine looks inside SEQUENCEs. */
3370 get_last_nonnote_insn (void)
3372 rtx_insn
*insn
= get_last_insn ();
3377 for (insn
= previous_insn (insn
);
3378 insn
&& NOTE_P (insn
);
3379 insn
= previous_insn (insn
))
3383 if (NONJUMP_INSN_P (insn
))
3384 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
3385 insn
= seq
->insn (seq
->len () - 1);
3392 /* Return the number of actual (non-debug) insns emitted in this
3396 get_max_insn_count (void)
3398 int n
= cur_insn_uid
;
3400 /* The table size must be stable across -g, to avoid codegen
3401 differences due to debug insns, and not be affected by
3402 -fmin-insn-uid, to avoid excessive table size and to simplify
3403 debugging of -fcompare-debug failures. */
3404 if (cur_debug_insn_uid
> param_min_nondebug_insn_uid
)
3405 n
-= cur_debug_insn_uid
;
3407 n
-= param_min_nondebug_insn_uid
;
3413 /* Return the next insn. If it is a SEQUENCE, return the first insn
3417 next_insn (rtx_insn
*insn
)
3421 insn
= NEXT_INSN (insn
);
3422 if (insn
&& NONJUMP_INSN_P (insn
)
3423 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3424 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3430 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3434 previous_insn (rtx_insn
*insn
)
3438 insn
= PREV_INSN (insn
);
3439 if (insn
&& NONJUMP_INSN_P (insn
))
3440 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
3441 insn
= seq
->insn (seq
->len () - 1);
3447 /* Return the next insn after INSN that is not a NOTE. This routine does not
3448 look inside SEQUENCEs. */
3451 next_nonnote_insn (rtx_insn
*insn
)
3455 insn
= NEXT_INSN (insn
);
3456 if (insn
== 0 || !NOTE_P (insn
))
3463 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3464 routine does not look inside SEQUENCEs. */
3467 next_nondebug_insn (rtx_insn
*insn
)
3471 insn
= NEXT_INSN (insn
);
3472 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3479 /* Return the previous insn before INSN that is not a NOTE. This routine does
3480 not look inside SEQUENCEs. */
3483 prev_nonnote_insn (rtx_insn
*insn
)
3487 insn
= PREV_INSN (insn
);
3488 if (insn
== 0 || !NOTE_P (insn
))
3495 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3496 This routine does not look inside SEQUENCEs. */
3499 prev_nondebug_insn (rtx_insn
*insn
)
3503 insn
= PREV_INSN (insn
);
3504 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3511 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3512 This routine does not look inside SEQUENCEs. */
3515 next_nonnote_nondebug_insn (rtx_insn
*insn
)
3519 insn
= NEXT_INSN (insn
);
3520 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3527 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3528 but stop the search before we enter another basic block. This
3529 routine does not look inside SEQUENCEs. */
3532 next_nonnote_nondebug_insn_bb (rtx_insn
*insn
)
3536 insn
= NEXT_INSN (insn
);
3539 if (DEBUG_INSN_P (insn
))
3543 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3550 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3551 This routine does not look inside SEQUENCEs. */
3554 prev_nonnote_nondebug_insn (rtx_insn
*insn
)
3558 insn
= PREV_INSN (insn
);
3559 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3566 /* Return the previous insn before INSN that is not a NOTE nor
3567 DEBUG_INSN, but stop the search before we enter another basic
3568 block. This routine does not look inside SEQUENCEs. */
3571 prev_nonnote_nondebug_insn_bb (rtx_insn
*insn
)
3575 insn
= PREV_INSN (insn
);
3578 if (DEBUG_INSN_P (insn
))
3582 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3589 /* Return the next INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN after INSN;
3590 or 0, if there is none. This routine does not look inside
3594 next_real_insn (rtx_insn
*insn
)
3598 insn
= NEXT_INSN (insn
);
3599 if (insn
== 0 || INSN_P (insn
))
3606 /* Return the last INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN before INSN;
3607 or 0, if there is none. This routine does not look inside
3611 prev_real_insn (rtx_insn
*insn
)
3615 insn
= PREV_INSN (insn
);
3616 if (insn
== 0 || INSN_P (insn
))
3623 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3624 or 0, if there is none. This routine does not look inside
3628 next_real_nondebug_insn (rtx uncast_insn
)
3630 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3634 insn
= NEXT_INSN (insn
);
3635 if (insn
== 0 || NONDEBUG_INSN_P (insn
))
3642 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3643 or 0, if there is none. This routine does not look inside
3647 prev_real_nondebug_insn (rtx_insn
*insn
)
3651 insn
= PREV_INSN (insn
);
3652 if (insn
== 0 || NONDEBUG_INSN_P (insn
))
3659 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3660 This routine does not look inside SEQUENCEs. */
3663 last_call_insn (void)
3667 for (insn
= get_last_insn ();
3668 insn
&& !CALL_P (insn
);
3669 insn
= PREV_INSN (insn
))
3672 return safe_as_a
<rtx_call_insn
*> (insn
);
3675 /* Find the next insn after INSN that really does something. This routine
3676 does not look inside SEQUENCEs. After reload this also skips over
3677 standalone USE and CLOBBER insn. */
3680 active_insn_p (const rtx_insn
*insn
)
3682 return (CALL_P (insn
) || JUMP_P (insn
)
3683 || JUMP_TABLE_DATA_P (insn
) /* FIXME */
3684 || (NONJUMP_INSN_P (insn
)
3685 && (! reload_completed
3686 || (GET_CODE (PATTERN (insn
)) != USE
3687 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3691 next_active_insn (rtx_insn
*insn
)
3695 insn
= NEXT_INSN (insn
);
3696 if (insn
== 0 || active_insn_p (insn
))
3703 /* Find the last insn before INSN that really does something. This routine
3704 does not look inside SEQUENCEs. After reload this also skips over
3705 standalone USE and CLOBBER insn. */
3708 prev_active_insn (rtx_insn
*insn
)
3712 insn
= PREV_INSN (insn
);
3713 if (insn
== 0 || active_insn_p (insn
))
3720 /* Return the next insn that uses CC0 after INSN, which is assumed to
3721 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3722 applied to the result of this function should yield INSN).
3724 Normally, this is simply the next insn. However, if a REG_CC_USER note
3725 is present, it contains the insn that uses CC0.
3727 Return 0 if we can't find the insn. */
3730 next_cc0_user (rtx_insn
*insn
)
3732 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3735 return safe_as_a
<rtx_insn
*> (XEXP (note
, 0));
3737 insn
= next_nonnote_insn (insn
);
3738 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3739 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3741 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3747 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3748 note, it is the previous insn. */
3751 prev_cc0_setter (rtx_insn
*insn
)
3753 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3756 return safe_as_a
<rtx_insn
*> (XEXP (note
, 0));
3758 insn
= prev_nonnote_insn (insn
);
3759 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3764 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3767 find_auto_inc (const_rtx x
, const_rtx reg
)
3769 subrtx_iterator::array_type array
;
3770 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
3772 const_rtx x
= *iter
;
3773 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
3774 && rtx_equal_p (reg
, XEXP (x
, 0)))
3780 /* Increment the label uses for all labels present in rtx. */
3783 mark_label_nuses (rtx x
)
3789 code
= GET_CODE (x
);
3790 if (code
== LABEL_REF
&& LABEL_P (label_ref_label (x
)))
3791 LABEL_NUSES (label_ref_label (x
))++;
3793 fmt
= GET_RTX_FORMAT (code
);
3794 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3797 mark_label_nuses (XEXP (x
, i
));
3798 else if (fmt
[i
] == 'E')
3799 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3800 mark_label_nuses (XVECEXP (x
, i
, j
));
3805 /* Try splitting insns that can be split for better scheduling.
3806 PAT is the pattern which might split.
3807 TRIAL is the insn providing PAT.
3808 LAST is nonzero if we should return the last insn of the sequence produced.
3810 If this routine succeeds in splitting, it returns the first or last
3811 replacement insn depending on the value of LAST. Otherwise, it
3812 returns TRIAL. If the insn to be returned can be split, it will be. */
3815 try_split (rtx pat
, rtx_insn
*trial
, int last
)
3817 rtx_insn
*before
, *after
;
3819 rtx_insn
*seq
, *tem
;
3820 profile_probability probability
;
3821 rtx_insn
*insn_last
, *insn
;
3823 rtx_insn
*call_insn
= NULL
;
3825 if (any_condjump_p (trial
)
3826 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3827 split_branch_probability
3828 = profile_probability::from_reg_br_prob_note (XINT (note
, 0));
3830 split_branch_probability
= profile_probability::uninitialized ();
3832 probability
= split_branch_probability
;
3834 seq
= split_insns (pat
, trial
);
3836 split_branch_probability
= profile_probability::uninitialized ();
3841 int split_insn_count
= 0;
3842 /* Avoid infinite loop if any insn of the result matches
3843 the original pattern. */
3847 if (INSN_P (insn_last
)
3848 && rtx_equal_p (PATTERN (insn_last
), pat
))
3851 if (!NEXT_INSN (insn_last
))
3853 insn_last
= NEXT_INSN (insn_last
);
3856 /* We're not good at redistributing frame information if
3857 the split occurs before reload or if it results in more
3859 if (RTX_FRAME_RELATED_P (trial
))
3861 if (!reload_completed
|| split_insn_count
!= 1)
3864 rtx_insn
*new_insn
= seq
;
3865 rtx_insn
*old_insn
= trial
;
3866 copy_frame_info_to_split_insn (old_insn
, new_insn
);
3869 /* We will be adding the new sequence to the function. The splitters
3870 may have introduced invalid RTL sharing, so unshare the sequence now. */
3871 unshare_all_rtl_in_chain (seq
);
3873 /* Mark labels and copy flags. */
3874 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3879 CROSSING_JUMP_P (insn
) = CROSSING_JUMP_P (trial
);
3880 mark_jump_label (PATTERN (insn
), insn
, 0);
3882 if (probability
.initialized_p ()
3883 && any_condjump_p (insn
)
3884 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3886 /* We can preserve the REG_BR_PROB notes only if exactly
3887 one jump is created, otherwise the machine description
3888 is responsible for this step using
3889 split_branch_probability variable. */
3890 gcc_assert (njumps
== 1);
3891 add_reg_br_prob_note (insn
, probability
);
3896 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3897 in SEQ and copy any additional information across. */
3900 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3903 gcc_assert (call_insn
== NULL_RTX
);
3906 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3907 target may have explicitly specified. */
3908 rtx
*p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3911 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3913 /* If the old call was a sibling call, the new one must
3915 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3919 /* Copy notes, particularly those related to the CFG. */
3920 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3922 switch (REG_NOTE_KIND (note
))
3925 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3931 case REG_CALL_NOCF_CHECK
:
3932 case REG_CALL_ARG_LOCATION
:
3933 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3936 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3940 case REG_NON_LOCAL_GOTO
:
3941 case REG_LABEL_TARGET
:
3942 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3945 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3953 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3955 rtx reg
= XEXP (note
, 0);
3956 if (!FIND_REG_INC_NOTE (insn
, reg
)
3957 && find_auto_inc (PATTERN (insn
), reg
))
3958 add_reg_note (insn
, REG_INC
, reg
);
3963 fixup_args_size_notes (NULL
, insn_last
, get_args_size (note
));
3967 gcc_assert (call_insn
!= NULL_RTX
);
3968 add_reg_note (call_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3976 /* If there are LABELS inside the split insns increment the
3977 usage count so we don't delete the label. */
3981 while (insn
!= NULL_RTX
)
3983 /* JUMP_P insns have already been "marked" above. */
3984 if (NONJUMP_INSN_P (insn
))
3985 mark_label_nuses (PATTERN (insn
));
3987 insn
= PREV_INSN (insn
);
3991 before
= PREV_INSN (trial
);
3992 after
= NEXT_INSN (trial
);
3994 emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3996 delete_insn (trial
);
3998 /* Recursively call try_split for each new insn created; by the
3999 time control returns here that insn will be fully split, so
4000 set LAST and continue from the insn after the one returned.
4001 We can't use next_active_insn here since AFTER may be a note.
4002 Ignore deleted insns, which can be occur if not optimizing. */
4003 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
4004 if (! tem
->deleted () && INSN_P (tem
))
4005 tem
= try_split (PATTERN (tem
), tem
, 1);
4007 /* Return either the first or the last insn, depending on which was
4010 ? (after
? PREV_INSN (after
) : get_last_insn ())
4011 : NEXT_INSN (before
);
4014 /* Make and return an INSN rtx, initializing all its slots.
4015 Store PATTERN in the pattern slots. */
4018 make_insn_raw (rtx pattern
)
4022 insn
= as_a
<rtx_insn
*> (rtx_alloc (INSN
));
4024 INSN_UID (insn
) = cur_insn_uid
++;
4025 PATTERN (insn
) = pattern
;
4026 INSN_CODE (insn
) = -1;
4027 REG_NOTES (insn
) = NULL
;
4028 INSN_LOCATION (insn
) = curr_insn_location ();
4029 BLOCK_FOR_INSN (insn
) = NULL
;
4031 #ifdef ENABLE_RTL_CHECKING
4034 && (returnjump_p (insn
)
4035 || (GET_CODE (insn
) == SET
4036 && SET_DEST (insn
) == pc_rtx
)))
4038 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
4046 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
4049 make_debug_insn_raw (rtx pattern
)
4051 rtx_debug_insn
*insn
;
4053 insn
= as_a
<rtx_debug_insn
*> (rtx_alloc (DEBUG_INSN
));
4054 INSN_UID (insn
) = cur_debug_insn_uid
++;
4055 if (cur_debug_insn_uid
> param_min_nondebug_insn_uid
)
4056 INSN_UID (insn
) = cur_insn_uid
++;
4058 PATTERN (insn
) = pattern
;
4059 INSN_CODE (insn
) = -1;
4060 REG_NOTES (insn
) = NULL
;
4061 INSN_LOCATION (insn
) = curr_insn_location ();
4062 BLOCK_FOR_INSN (insn
) = NULL
;
4067 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
4070 make_jump_insn_raw (rtx pattern
)
4072 rtx_jump_insn
*insn
;
4074 insn
= as_a
<rtx_jump_insn
*> (rtx_alloc (JUMP_INSN
));
4075 INSN_UID (insn
) = cur_insn_uid
++;
4077 PATTERN (insn
) = pattern
;
4078 INSN_CODE (insn
) = -1;
4079 REG_NOTES (insn
) = NULL
;
4080 JUMP_LABEL (insn
) = NULL
;
4081 INSN_LOCATION (insn
) = curr_insn_location ();
4082 BLOCK_FOR_INSN (insn
) = NULL
;
4087 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
4090 make_call_insn_raw (rtx pattern
)
4092 rtx_call_insn
*insn
;
4094 insn
= as_a
<rtx_call_insn
*> (rtx_alloc (CALL_INSN
));
4095 INSN_UID (insn
) = cur_insn_uid
++;
4097 PATTERN (insn
) = pattern
;
4098 INSN_CODE (insn
) = -1;
4099 REG_NOTES (insn
) = NULL
;
4100 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
4101 INSN_LOCATION (insn
) = curr_insn_location ();
4102 BLOCK_FOR_INSN (insn
) = NULL
;
4107 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
4110 make_note_raw (enum insn_note subtype
)
4112 /* Some notes are never created this way at all. These notes are
4113 only created by patching out insns. */
4114 gcc_assert (subtype
!= NOTE_INSN_DELETED_LABEL
4115 && subtype
!= NOTE_INSN_DELETED_DEBUG_LABEL
);
4117 rtx_note
*note
= as_a
<rtx_note
*> (rtx_alloc (NOTE
));
4118 INSN_UID (note
) = cur_insn_uid
++;
4119 NOTE_KIND (note
) = subtype
;
4120 BLOCK_FOR_INSN (note
) = NULL
;
4121 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4125 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4126 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4127 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4130 link_insn_into_chain (rtx_insn
*insn
, rtx_insn
*prev
, rtx_insn
*next
)
4132 SET_PREV_INSN (insn
) = prev
;
4133 SET_NEXT_INSN (insn
) = next
;
4136 SET_NEXT_INSN (prev
) = insn
;
4137 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
4139 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (prev
));
4140 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = insn
;
4145 SET_PREV_INSN (next
) = insn
;
4146 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
4148 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (next
));
4149 SET_PREV_INSN (sequence
->insn (0)) = insn
;
4153 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
4155 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (insn
));
4156 SET_PREV_INSN (sequence
->insn (0)) = prev
;
4157 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = next
;
4161 /* Add INSN to the end of the doubly-linked list.
4162 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4165 add_insn (rtx_insn
*insn
)
4167 rtx_insn
*prev
= get_last_insn ();
4168 link_insn_into_chain (insn
, prev
, NULL
);
4169 if (get_insns () == NULL
)
4170 set_first_insn (insn
);
4171 set_last_insn (insn
);
4174 /* Add INSN into the doubly-linked list after insn AFTER. */
4177 add_insn_after_nobb (rtx_insn
*insn
, rtx_insn
*after
)
4179 rtx_insn
*next
= NEXT_INSN (after
);
4181 gcc_assert (!optimize
|| !after
->deleted ());
4183 link_insn_into_chain (insn
, after
, next
);
4187 struct sequence_stack
*seq
;
4189 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4190 if (after
== seq
->last
)
4198 /* Add INSN into the doubly-linked list before insn BEFORE. */
4201 add_insn_before_nobb (rtx_insn
*insn
, rtx_insn
*before
)
4203 rtx_insn
*prev
= PREV_INSN (before
);
4205 gcc_assert (!optimize
|| !before
->deleted ());
4207 link_insn_into_chain (insn
, prev
, before
);
4211 struct sequence_stack
*seq
;
4213 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4214 if (before
== seq
->first
)
4224 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4225 If BB is NULL, an attempt is made to infer the bb from before.
4227 This and the next function should be the only functions called
4228 to insert an insn once delay slots have been filled since only
4229 they know how to update a SEQUENCE. */
4232 add_insn_after (rtx_insn
*insn
, rtx_insn
*after
, basic_block bb
)
4234 add_insn_after_nobb (insn
, after
);
4235 if (!BARRIER_P (after
)
4236 && !BARRIER_P (insn
)
4237 && (bb
= BLOCK_FOR_INSN (after
)))
4239 set_block_for_insn (insn
, bb
);
4241 df_insn_rescan (insn
);
4242 /* Should not happen as first in the BB is always
4243 either NOTE or LABEL. */
4244 if (BB_END (bb
) == after
4245 /* Avoid clobbering of structure when creating new BB. */
4246 && !BARRIER_P (insn
)
4247 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
4252 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4253 If BB is NULL, an attempt is made to infer the bb from before.
4255 This and the previous function should be the only functions called
4256 to insert an insn once delay slots have been filled since only
4257 they know how to update a SEQUENCE. */
4260 add_insn_before (rtx_insn
*insn
, rtx_insn
*before
, basic_block bb
)
4262 add_insn_before_nobb (insn
, before
);
4265 && !BARRIER_P (before
)
4266 && !BARRIER_P (insn
))
4267 bb
= BLOCK_FOR_INSN (before
);
4271 set_block_for_insn (insn
, bb
);
4273 df_insn_rescan (insn
);
4274 /* Should not happen as first in the BB is always either NOTE or
4276 gcc_assert (BB_HEAD (bb
) != insn
4277 /* Avoid clobbering of structure when creating new BB. */
4279 || NOTE_INSN_BASIC_BLOCK_P (insn
));
4283 /* Replace insn with an deleted instruction note. */
4286 set_insn_deleted (rtx_insn
*insn
)
4289 df_insn_delete (insn
);
4290 PUT_CODE (insn
, NOTE
);
4291 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
4295 /* Unlink INSN from the insn chain.
4297 This function knows how to handle sequences.
4299 This function does not invalidate data flow information associated with
4300 INSN (i.e. does not call df_insn_delete). That makes this function
4301 usable for only disconnecting an insn from the chain, and re-emit it
4304 To later insert INSN elsewhere in the insn chain via add_insn and
4305 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4306 the caller. Nullifying them here breaks many insn chain walks.
4308 To really delete an insn and related DF information, use delete_insn. */
4311 remove_insn (rtx_insn
*insn
)
4313 rtx_insn
*next
= NEXT_INSN (insn
);
4314 rtx_insn
*prev
= PREV_INSN (insn
);
4319 SET_NEXT_INSN (prev
) = next
;
4320 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
4322 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (prev
));
4323 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = next
;
4328 struct sequence_stack
*seq
;
4330 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4331 if (insn
== seq
->first
)
4342 SET_PREV_INSN (next
) = prev
;
4343 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
4345 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (next
));
4346 SET_PREV_INSN (sequence
->insn (0)) = prev
;
4351 struct sequence_stack
*seq
;
4353 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4354 if (insn
== seq
->last
)
4363 /* Fix up basic block boundaries, if necessary. */
4364 if (!BARRIER_P (insn
)
4365 && (bb
= BLOCK_FOR_INSN (insn
)))
4367 if (BB_HEAD (bb
) == insn
)
4369 /* Never ever delete the basic block note without deleting whole
4371 gcc_assert (!NOTE_P (insn
));
4372 BB_HEAD (bb
) = next
;
4374 if (BB_END (bb
) == insn
)
4379 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4382 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
4384 gcc_assert (call_insn
&& CALL_P (call_insn
));
4386 /* Put the register usage information on the CALL. If there is already
4387 some usage information, put ours at the end. */
4388 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4392 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4393 link
= XEXP (link
, 1))
4396 XEXP (link
, 1) = call_fusage
;
4399 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4402 /* Delete all insns made since FROM.
4403 FROM becomes the new last instruction. */
4406 delete_insns_since (rtx_insn
*from
)
4411 SET_NEXT_INSN (from
) = 0;
4412 set_last_insn (from
);
4415 /* This function is deprecated, please use sequences instead.
4417 Move a consecutive bunch of insns to a different place in the chain.
4418 The insns to be moved are those between FROM and TO.
4419 They are moved to a new position after the insn AFTER.
4420 AFTER must not be FROM or TO or any insn in between.
4422 This function does not know about SEQUENCEs and hence should not be
4423 called after delay-slot filling has been done. */
4426 reorder_insns_nobb (rtx_insn
*from
, rtx_insn
*to
, rtx_insn
*after
)
4430 for (rtx_insn
*x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4431 gcc_assert (after
!= x
);
4432 gcc_assert (after
!= to
);
4435 /* Splice this bunch out of where it is now. */
4436 if (PREV_INSN (from
))
4437 SET_NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4439 SET_PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4440 if (get_last_insn () == to
)
4441 set_last_insn (PREV_INSN (from
));
4442 if (get_insns () == from
)
4443 set_first_insn (NEXT_INSN (to
));
4445 /* Make the new neighbors point to it and it to them. */
4446 if (NEXT_INSN (after
))
4447 SET_PREV_INSN (NEXT_INSN (after
)) = to
;
4449 SET_NEXT_INSN (to
) = NEXT_INSN (after
);
4450 SET_PREV_INSN (from
) = after
;
4451 SET_NEXT_INSN (after
) = from
;
4452 if (after
== get_last_insn ())
4456 /* Same as function above, but take care to update BB boundaries. */
4458 reorder_insns (rtx_insn
*from
, rtx_insn
*to
, rtx_insn
*after
)
4460 rtx_insn
*prev
= PREV_INSN (from
);
4461 basic_block bb
, bb2
;
4463 reorder_insns_nobb (from
, to
, after
);
4465 if (!BARRIER_P (after
)
4466 && (bb
= BLOCK_FOR_INSN (after
)))
4469 df_set_bb_dirty (bb
);
4471 if (!BARRIER_P (from
)
4472 && (bb2
= BLOCK_FOR_INSN (from
)))
4474 if (BB_END (bb2
) == to
)
4475 BB_END (bb2
) = prev
;
4476 df_set_bb_dirty (bb2
);
4479 if (BB_END (bb
) == after
)
4482 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4484 df_insn_change_bb (x
, bb
);
4489 /* Emit insn(s) of given code and pattern
4490 at a specified place within the doubly-linked list.
4492 All of the emit_foo global entry points accept an object
4493 X which is either an insn list or a PATTERN of a single
4496 There are thus a few canonical ways to generate code and
4497 emit it at a specific place in the instruction stream. For
4498 example, consider the instruction named SPOT and the fact that
4499 we would like to emit some instructions before SPOT. We might
4503 ... emit the new instructions ...
4504 insns_head = get_insns ();
4507 emit_insn_before (insns_head, SPOT);
4509 It used to be common to generate SEQUENCE rtl instead, but that
4510 is a relic of the past which no longer occurs. The reason is that
4511 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4512 generated would almost certainly die right after it was created. */
4515 emit_pattern_before_noloc (rtx x
, rtx_insn
*before
, rtx_insn
*last
,
4517 rtx_insn
*(*make_raw
) (rtx
))
4521 gcc_assert (before
);
4526 switch (GET_CODE (x
))
4535 insn
= as_a
<rtx_insn
*> (x
);
4538 rtx_insn
*next
= NEXT_INSN (insn
);
4539 add_insn_before (insn
, before
, bb
);
4545 #ifdef ENABLE_RTL_CHECKING
4552 last
= (*make_raw
) (x
);
4553 add_insn_before (last
, before
, bb
);
4560 /* Make X be output before the instruction BEFORE. */
4563 emit_insn_before_noloc (rtx x
, rtx_insn
*before
, basic_block bb
)
4565 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4568 /* Make an instruction with body X and code JUMP_INSN
4569 and output it before the instruction BEFORE. */
4572 emit_jump_insn_before_noloc (rtx x
, rtx_insn
*before
)
4574 return as_a
<rtx_jump_insn
*> (
4575 emit_pattern_before_noloc (x
, before
, NULL
, NULL
,
4576 make_jump_insn_raw
));
4579 /* Make an instruction with body X and code CALL_INSN
4580 and output it before the instruction BEFORE. */
4583 emit_call_insn_before_noloc (rtx x
, rtx_insn
*before
)
4585 return emit_pattern_before_noloc (x
, before
, NULL
, NULL
,
4586 make_call_insn_raw
);
4589 /* Make an instruction with body X and code DEBUG_INSN
4590 and output it before the instruction BEFORE. */
4593 emit_debug_insn_before_noloc (rtx x
, rtx_insn
*before
)
4595 return emit_pattern_before_noloc (x
, before
, NULL
, NULL
,
4596 make_debug_insn_raw
);
4599 /* Make an insn of code BARRIER
4600 and output it before the insn BEFORE. */
4603 emit_barrier_before (rtx_insn
*before
)
4605 rtx_barrier
*insn
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
4607 INSN_UID (insn
) = cur_insn_uid
++;
4609 add_insn_before (insn
, before
, NULL
);
4613 /* Emit the label LABEL before the insn BEFORE. */
4616 emit_label_before (rtx_code_label
*label
, rtx_insn
*before
)
4618 gcc_checking_assert (INSN_UID (label
) == 0);
4619 INSN_UID (label
) = cur_insn_uid
++;
4620 add_insn_before (label
, before
, NULL
);
4624 /* Helper for emit_insn_after, handles lists of instructions
4628 emit_insn_after_1 (rtx_insn
*first
, rtx_insn
*after
, basic_block bb
)
4631 rtx_insn
*after_after
;
4632 if (!bb
&& !BARRIER_P (after
))
4633 bb
= BLOCK_FOR_INSN (after
);
4637 df_set_bb_dirty (bb
);
4638 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4639 if (!BARRIER_P (last
))
4641 set_block_for_insn (last
, bb
);
4642 df_insn_rescan (last
);
4644 if (!BARRIER_P (last
))
4646 set_block_for_insn (last
, bb
);
4647 df_insn_rescan (last
);
4649 if (BB_END (bb
) == after
)
4653 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4656 after_after
= NEXT_INSN (after
);
4658 SET_NEXT_INSN (after
) = first
;
4659 SET_PREV_INSN (first
) = after
;
4660 SET_NEXT_INSN (last
) = after_after
;
4662 SET_PREV_INSN (after_after
) = last
;
4664 if (after
== get_last_insn ())
4665 set_last_insn (last
);
4671 emit_pattern_after_noloc (rtx x
, rtx_insn
*after
, basic_block bb
,
4672 rtx_insn
*(*make_raw
)(rtx
))
4674 rtx_insn
*last
= after
;
4681 switch (GET_CODE (x
))
4690 last
= emit_insn_after_1 (as_a
<rtx_insn
*> (x
), after
, bb
);
4693 #ifdef ENABLE_RTL_CHECKING
4700 last
= (*make_raw
) (x
);
4701 add_insn_after (last
, after
, bb
);
4708 /* Make X be output after the insn AFTER and set the BB of insn. If
4709 BB is NULL, an attempt is made to infer the BB from AFTER. */
4712 emit_insn_after_noloc (rtx x
, rtx_insn
*after
, basic_block bb
)
4714 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4718 /* Make an insn of code JUMP_INSN with body X
4719 and output it after the insn AFTER. */
4722 emit_jump_insn_after_noloc (rtx x
, rtx_insn
*after
)
4724 return as_a
<rtx_jump_insn
*> (
4725 emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
));
4728 /* Make an instruction with body X and code CALL_INSN
4729 and output it after the instruction AFTER. */
4732 emit_call_insn_after_noloc (rtx x
, rtx_insn
*after
)
4734 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4737 /* Make an instruction with body X and code CALL_INSN
4738 and output it after the instruction AFTER. */
4741 emit_debug_insn_after_noloc (rtx x
, rtx_insn
*after
)
4743 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4746 /* Make an insn of code BARRIER
4747 and output it after the insn AFTER. */
4750 emit_barrier_after (rtx_insn
*after
)
4752 rtx_barrier
*insn
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
4754 INSN_UID (insn
) = cur_insn_uid
++;
4756 add_insn_after (insn
, after
, NULL
);
4760 /* Emit the label LABEL after the insn AFTER. */
4763 emit_label_after (rtx_insn
*label
, rtx_insn
*after
)
4765 gcc_checking_assert (INSN_UID (label
) == 0);
4766 INSN_UID (label
) = cur_insn_uid
++;
4767 add_insn_after (label
, after
, NULL
);
4771 /* Notes require a bit of special handling: Some notes need to have their
4772 BLOCK_FOR_INSN set, others should never have it set, and some should
4773 have it set or clear depending on the context. */
4775 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4776 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4777 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4780 note_outside_basic_block_p (enum insn_note subtype
, bool on_bb_boundary_p
)
4784 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4785 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
4788 /* Notes for var tracking and EH region markers can appear between or
4789 inside basic blocks. If the caller is emitting on the basic block
4790 boundary, do not set BLOCK_FOR_INSN on the new note. */
4791 case NOTE_INSN_VAR_LOCATION
:
4792 case NOTE_INSN_EH_REGION_BEG
:
4793 case NOTE_INSN_EH_REGION_END
:
4794 return on_bb_boundary_p
;
4796 /* Otherwise, BLOCK_FOR_INSN must be set. */
4802 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4805 emit_note_after (enum insn_note subtype
, rtx_insn
*after
)
4807 rtx_note
*note
= make_note_raw (subtype
);
4808 basic_block bb
= BARRIER_P (after
) ? NULL
: BLOCK_FOR_INSN (after
);
4809 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_END (bb
) == after
);
4811 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4812 add_insn_after_nobb (note
, after
);
4814 add_insn_after (note
, after
, bb
);
4818 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4821 emit_note_before (enum insn_note subtype
, rtx_insn
*before
)
4823 rtx_note
*note
= make_note_raw (subtype
);
4824 basic_block bb
= BARRIER_P (before
) ? NULL
: BLOCK_FOR_INSN (before
);
4825 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_HEAD (bb
) == before
);
4827 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4828 add_insn_before_nobb (note
, before
);
4830 add_insn_before (note
, before
, bb
);
4834 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4835 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4838 emit_pattern_after_setloc (rtx pattern
, rtx_insn
*after
, location_t loc
,
4839 rtx_insn
*(*make_raw
) (rtx
))
4841 rtx_insn
*last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4843 if (pattern
== NULL_RTX
|| !loc
)
4846 after
= NEXT_INSN (after
);
4849 if (active_insn_p (after
)
4850 && !JUMP_TABLE_DATA_P (after
) /* FIXME */
4851 && !INSN_LOCATION (after
))
4852 INSN_LOCATION (after
) = loc
;
4855 after
= NEXT_INSN (after
);
4860 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4861 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4865 emit_pattern_after (rtx pattern
, rtx_insn
*after
, bool skip_debug_insns
,
4866 rtx_insn
*(*make_raw
) (rtx
))
4868 rtx_insn
*prev
= after
;
4870 if (skip_debug_insns
)
4871 while (DEBUG_INSN_P (prev
))
4872 prev
= PREV_INSN (prev
);
4875 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4878 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4881 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4883 emit_insn_after_setloc (rtx pattern
, rtx_insn
*after
, location_t loc
)
4885 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4888 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4890 emit_insn_after (rtx pattern
, rtx_insn
*after
)
4892 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4895 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4897 emit_jump_insn_after_setloc (rtx pattern
, rtx_insn
*after
, location_t loc
)
4899 return as_a
<rtx_jump_insn
*> (
4900 emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
));
4903 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4905 emit_jump_insn_after (rtx pattern
, rtx_insn
*after
)
4907 return as_a
<rtx_jump_insn
*> (
4908 emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
));
4911 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4913 emit_call_insn_after_setloc (rtx pattern
, rtx_insn
*after
, location_t loc
)
4915 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4918 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4920 emit_call_insn_after (rtx pattern
, rtx_insn
*after
)
4922 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4925 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4927 emit_debug_insn_after_setloc (rtx pattern
, rtx_insn
*after
, location_t loc
)
4929 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4932 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4934 emit_debug_insn_after (rtx pattern
, rtx_insn
*after
)
4936 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4939 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4940 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4941 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4945 emit_pattern_before_setloc (rtx pattern
, rtx_insn
*before
, location_t loc
,
4946 bool insnp
, rtx_insn
*(*make_raw
) (rtx
))
4948 rtx_insn
*first
= PREV_INSN (before
);
4949 rtx_insn
*last
= emit_pattern_before_noloc (pattern
, before
,
4950 insnp
? before
: NULL
,
4953 if (pattern
== NULL_RTX
|| !loc
)
4957 first
= get_insns ();
4959 first
= NEXT_INSN (first
);
4962 if (active_insn_p (first
)
4963 && !JUMP_TABLE_DATA_P (first
) /* FIXME */
4964 && !INSN_LOCATION (first
))
4965 INSN_LOCATION (first
) = loc
;
4968 first
= NEXT_INSN (first
);
4973 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4974 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4975 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4976 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4979 emit_pattern_before (rtx pattern
, rtx_insn
*before
, bool skip_debug_insns
,
4980 bool insnp
, rtx_insn
*(*make_raw
) (rtx
))
4982 rtx_insn
*next
= before
;
4984 if (skip_debug_insns
)
4985 while (DEBUG_INSN_P (next
))
4986 next
= PREV_INSN (next
);
4989 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4992 return emit_pattern_before_noloc (pattern
, before
,
4993 insnp
? before
: NULL
,
4997 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4999 emit_insn_before_setloc (rtx pattern
, rtx_insn
*before
, location_t loc
)
5001 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
5005 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
5007 emit_insn_before (rtx pattern
, rtx_insn
*before
)
5009 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
5012 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5014 emit_jump_insn_before_setloc (rtx pattern
, rtx_insn
*before
, location_t loc
)
5016 return as_a
<rtx_jump_insn
*> (
5017 emit_pattern_before_setloc (pattern
, before
, loc
, false,
5018 make_jump_insn_raw
));
5021 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
5023 emit_jump_insn_before (rtx pattern
, rtx_insn
*before
)
5025 return as_a
<rtx_jump_insn
*> (
5026 emit_pattern_before (pattern
, before
, true, false,
5027 make_jump_insn_raw
));
5030 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5032 emit_call_insn_before_setloc (rtx pattern
, rtx_insn
*before
, location_t loc
)
5034 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
5035 make_call_insn_raw
);
5038 /* Like emit_call_insn_before_noloc,
5039 but set insn_location according to BEFORE. */
5041 emit_call_insn_before (rtx pattern
, rtx_insn
*before
)
5043 return emit_pattern_before (pattern
, before
, true, false,
5044 make_call_insn_raw
);
5047 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5049 emit_debug_insn_before_setloc (rtx pattern
, rtx_insn
*before
, location_t loc
)
5051 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
5052 make_debug_insn_raw
);
5055 /* Like emit_debug_insn_before_noloc,
5056 but set insn_location according to BEFORE. */
5058 emit_debug_insn_before (rtx pattern
, rtx_insn
*before
)
5060 return emit_pattern_before (pattern
, before
, false, false,
5061 make_debug_insn_raw
);
5064 /* Take X and emit it at the end of the doubly-linked
5067 Returns the last insn emitted. */
5072 rtx_insn
*last
= get_last_insn ();
5078 switch (GET_CODE (x
))
5087 insn
= as_a
<rtx_insn
*> (x
);
5090 rtx_insn
*next
= NEXT_INSN (insn
);
5097 #ifdef ENABLE_RTL_CHECKING
5098 case JUMP_TABLE_DATA
:
5105 last
= make_insn_raw (x
);
5113 /* Make an insn of code DEBUG_INSN with pattern X
5114 and add it to the end of the doubly-linked list. */
5117 emit_debug_insn (rtx x
)
5119 rtx_insn
*last
= get_last_insn ();
5125 switch (GET_CODE (x
))
5134 insn
= as_a
<rtx_insn
*> (x
);
5137 rtx_insn
*next
= NEXT_INSN (insn
);
5144 #ifdef ENABLE_RTL_CHECKING
5145 case JUMP_TABLE_DATA
:
5152 last
= make_debug_insn_raw (x
);
5160 /* Make an insn of code JUMP_INSN with pattern X
5161 and add it to the end of the doubly-linked list. */
5164 emit_jump_insn (rtx x
)
5166 rtx_insn
*last
= NULL
;
5169 switch (GET_CODE (x
))
5178 insn
= as_a
<rtx_insn
*> (x
);
5181 rtx_insn
*next
= NEXT_INSN (insn
);
5188 #ifdef ENABLE_RTL_CHECKING
5189 case JUMP_TABLE_DATA
:
5196 last
= make_jump_insn_raw (x
);
5204 /* Make an insn of code CALL_INSN with pattern X
5205 and add it to the end of the doubly-linked list. */
5208 emit_call_insn (rtx x
)
5212 switch (GET_CODE (x
))
5221 insn
= emit_insn (x
);
5224 #ifdef ENABLE_RTL_CHECKING
5226 case JUMP_TABLE_DATA
:
5232 insn
= make_call_insn_raw (x
);
5240 /* Add the label LABEL to the end of the doubly-linked list. */
5243 emit_label (rtx uncast_label
)
5245 rtx_code_label
*label
= as_a
<rtx_code_label
*> (uncast_label
);
5247 gcc_checking_assert (INSN_UID (label
) == 0);
5248 INSN_UID (label
) = cur_insn_uid
++;
5253 /* Make an insn of code JUMP_TABLE_DATA
5254 and add it to the end of the doubly-linked list. */
5256 rtx_jump_table_data
*
5257 emit_jump_table_data (rtx table
)
5259 rtx_jump_table_data
*jump_table_data
=
5260 as_a
<rtx_jump_table_data
*> (rtx_alloc (JUMP_TABLE_DATA
));
5261 INSN_UID (jump_table_data
) = cur_insn_uid
++;
5262 PATTERN (jump_table_data
) = table
;
5263 BLOCK_FOR_INSN (jump_table_data
) = NULL
;
5264 add_insn (jump_table_data
);
5265 return jump_table_data
;
5268 /* Make an insn of code BARRIER
5269 and add it to the end of the doubly-linked list. */
5274 rtx_barrier
*barrier
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
5275 INSN_UID (barrier
) = cur_insn_uid
++;
5280 /* Emit a copy of note ORIG. */
5283 emit_note_copy (rtx_note
*orig
)
5285 enum insn_note kind
= (enum insn_note
) NOTE_KIND (orig
);
5286 rtx_note
*note
= make_note_raw (kind
);
5287 NOTE_DATA (note
) = NOTE_DATA (orig
);
5292 /* Make an insn of code NOTE or type NOTE_NO
5293 and add it to the end of the doubly-linked list. */
5296 emit_note (enum insn_note kind
)
5298 rtx_note
*note
= make_note_raw (kind
);
5303 /* Emit a clobber of lvalue X. */
5306 emit_clobber (rtx x
)
5308 /* CONCATs should not appear in the insn stream. */
5309 if (GET_CODE (x
) == CONCAT
)
5311 emit_clobber (XEXP (x
, 0));
5312 return emit_clobber (XEXP (x
, 1));
5314 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
5317 /* Return a sequence of insns to clobber lvalue X. */
5331 /* Emit a use of rvalue X. */
5336 /* CONCATs should not appear in the insn stream. */
5337 if (GET_CODE (x
) == CONCAT
)
5339 emit_use (XEXP (x
, 0));
5340 return emit_use (XEXP (x
, 1));
5342 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
5345 /* Return a sequence of insns to use rvalue X. */
5359 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5360 Return the set in INSN that such notes describe, or NULL if the notes
5361 have no meaning for INSN. */
5364 set_for_reg_notes (rtx insn
)
5371 pat
= PATTERN (insn
);
5372 if (GET_CODE (pat
) == PARALLEL
)
5374 /* We do not use single_set because that ignores SETs of unused
5375 registers. REG_EQUAL and REG_EQUIV notes really do require the
5376 PARALLEL to have a single SET. */
5377 if (multiple_sets (insn
))
5379 pat
= XVECEXP (pat
, 0, 0);
5382 if (GET_CODE (pat
) != SET
)
5385 reg
= SET_DEST (pat
);
5387 /* Notes apply to the contents of a STRICT_LOW_PART. */
5388 if (GET_CODE (reg
) == STRICT_LOW_PART
5389 || GET_CODE (reg
) == ZERO_EXTRACT
)
5390 reg
= XEXP (reg
, 0);
5392 /* Check that we have a register. */
5393 if (!(REG_P (reg
) || GET_CODE (reg
) == SUBREG
))
5399 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5400 note of this type already exists, remove it first. */
5403 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
5405 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
5411 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5412 if (!set_for_reg_notes (insn
) && GET_CODE (PATTERN (insn
)) != USE
)
5415 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5416 It serves no useful purpose and breaks eliminate_regs. */
5417 if (GET_CODE (datum
) == ASM_OPERANDS
)
5420 /* Notes with side effects are dangerous. Even if the side-effect
5421 initially mirrors one in PATTERN (INSN), later optimizations
5422 might alter the way that the final register value is calculated
5423 and so move or alter the side-effect in some way. The note would
5424 then no longer be a valid substitution for SET_SRC. */
5425 if (side_effects_p (datum
))
5434 XEXP (note
, 0) = datum
;
5437 add_reg_note (insn
, kind
, datum
);
5438 note
= REG_NOTES (insn
);
5445 df_notes_rescan (as_a
<rtx_insn
*> (insn
));
5454 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5456 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
5458 rtx set
= set_for_reg_notes (insn
);
5460 if (set
&& SET_DEST (set
) == dst
)
5461 return set_unique_reg_note (insn
, kind
, datum
);
5465 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5466 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5469 If X is a label, it is simply added into the insn chain. */
5472 emit (rtx x
, bool allow_barrier_p
)
5474 enum rtx_code code
= classify_insn (x
);
5479 return emit_label (x
);
5481 return emit_insn (x
);
5484 rtx_insn
*insn
= emit_jump_insn (x
);
5486 && (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
))
5487 return emit_barrier ();
5491 return emit_call_insn (x
);
5493 return emit_debug_insn (x
);
5499 /* Space for free sequence stack entries. */
5500 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5502 /* Begin emitting insns to a sequence. If this sequence will contain
5503 something that might cause the compiler to pop arguments to function
5504 calls (because those pops have previously been deferred; see
5505 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5506 before calling this function. That will ensure that the deferred
5507 pops are not accidentally emitted in the middle of this sequence. */
5510 start_sequence (void)
5512 struct sequence_stack
*tem
;
5514 if (free_sequence_stack
!= NULL
)
5516 tem
= free_sequence_stack
;
5517 free_sequence_stack
= tem
->next
;
5520 tem
= ggc_alloc
<sequence_stack
> ();
5522 tem
->next
= get_current_sequence ()->next
;
5523 tem
->first
= get_insns ();
5524 tem
->last
= get_last_insn ();
5525 get_current_sequence ()->next
= tem
;
5531 /* Set up the insn chain starting with FIRST as the current sequence,
5532 saving the previously current one. See the documentation for
5533 start_sequence for more information about how to use this function. */
5536 push_to_sequence (rtx_insn
*first
)
5542 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5545 set_first_insn (first
);
5546 set_last_insn (last
);
5549 /* Like push_to_sequence, but take the last insn as an argument to avoid
5550 looping through the list. */
5553 push_to_sequence2 (rtx_insn
*first
, rtx_insn
*last
)
5557 set_first_insn (first
);
5558 set_last_insn (last
);
5561 /* Set up the outer-level insn chain
5562 as the current sequence, saving the previously current one. */
5565 push_topmost_sequence (void)
5567 struct sequence_stack
*top
;
5571 top
= get_topmost_sequence ();
5572 set_first_insn (top
->first
);
5573 set_last_insn (top
->last
);
5576 /* After emitting to the outer-level insn chain, update the outer-level
5577 insn chain, and restore the previous saved state. */
5580 pop_topmost_sequence (void)
5582 struct sequence_stack
*top
;
5584 top
= get_topmost_sequence ();
5585 top
->first
= get_insns ();
5586 top
->last
= get_last_insn ();
5591 /* After emitting to a sequence, restore previous saved state.
5593 To get the contents of the sequence just made, you must call
5594 `get_insns' *before* calling here.
5596 If the compiler might have deferred popping arguments while
5597 generating this sequence, and this sequence will not be immediately
5598 inserted into the instruction stream, use do_pending_stack_adjust
5599 before calling get_insns. That will ensure that the deferred
5600 pops are inserted into this sequence, and not into some random
5601 location in the instruction stream. See INHIBIT_DEFER_POP for more
5602 information about deferred popping of arguments. */
5607 struct sequence_stack
*tem
= get_current_sequence ()->next
;
5609 set_first_insn (tem
->first
);
5610 set_last_insn (tem
->last
);
5611 get_current_sequence ()->next
= tem
->next
;
5613 memset (tem
, 0, sizeof (*tem
));
5614 tem
->next
= free_sequence_stack
;
5615 free_sequence_stack
= tem
;
5618 /* Return 1 if currently emitting into a sequence. */
5621 in_sequence_p (void)
5623 return get_current_sequence ()->next
!= 0;
5626 /* Put the various virtual registers into REGNO_REG_RTX. */
5629 init_virtual_regs (void)
5631 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5632 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5633 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5634 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5635 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5636 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5637 = virtual_preferred_stack_boundary_rtx
;
5641 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5642 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5643 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5644 static int copy_insn_n_scratches
;
5646 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5647 copied an ASM_OPERANDS.
5648 In that case, it is the original input-operand vector. */
5649 static rtvec orig_asm_operands_vector
;
5651 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5652 copied an ASM_OPERANDS.
5653 In that case, it is the copied input-operand vector. */
5654 static rtvec copy_asm_operands_vector
;
5656 /* Likewise for the constraints vector. */
5657 static rtvec orig_asm_constraints_vector
;
5658 static rtvec copy_asm_constraints_vector
;
5660 /* Recursively create a new copy of an rtx for copy_insn.
5661 This function differs from copy_rtx in that it handles SCRATCHes and
5662 ASM_OPERANDs properly.
5663 Normally, this function is not used directly; use copy_insn as front end.
5664 However, you could first copy an insn pattern with copy_insn and then use
5665 this function afterwards to properly copy any REG_NOTEs containing
5669 copy_insn_1 (rtx orig
)
5674 const char *format_ptr
;
5679 code
= GET_CODE (orig
);
5694 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5695 clobbers or clobbers of hard registers that originated as pseudos.
5696 This is needed to allow safe register renaming. */
5697 if (REG_P (XEXP (orig
, 0))
5698 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig
, 0)))
5699 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig
, 0))))
5704 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5705 if (copy_insn_scratch_in
[i
] == orig
)
5706 return copy_insn_scratch_out
[i
];
5710 if (shared_const_p (orig
))
5714 /* A MEM with a constant address is not sharable. The problem is that
5715 the constant address may need to be reloaded. If the mem is shared,
5716 then reloading one copy of this mem will cause all copies to appear
5717 to have been reloaded. */
5723 /* Copy the various flags, fields, and other information. We assume
5724 that all fields need copying, and then clear the fields that should
5725 not be copied. That is the sensible default behavior, and forces
5726 us to explicitly document why we are *not* copying a flag. */
5727 copy
= shallow_copy_rtx (orig
);
5729 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5732 RTX_FLAG (copy
, jump
) = 0;
5733 RTX_FLAG (copy
, call
) = 0;
5734 RTX_FLAG (copy
, frame_related
) = 0;
5737 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5739 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5740 switch (*format_ptr
++)
5743 if (XEXP (orig
, i
) != NULL
)
5744 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5749 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5750 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5751 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5752 XVEC (copy
, i
) = copy_asm_operands_vector
;
5753 else if (XVEC (orig
, i
) != NULL
)
5755 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5756 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5757 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5769 /* These are left unchanged. */
5776 if (code
== SCRATCH
)
5778 i
= copy_insn_n_scratches
++;
5779 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5780 copy_insn_scratch_in
[i
] = orig
;
5781 copy_insn_scratch_out
[i
] = copy
;
5783 else if (code
== ASM_OPERANDS
)
5785 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5786 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5787 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5788 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5794 /* Create a new copy of an rtx.
5795 This function differs from copy_rtx in that it handles SCRATCHes and
5796 ASM_OPERANDs properly.
5797 INSN doesn't really have to be a full INSN; it could be just the
5800 copy_insn (rtx insn
)
5802 copy_insn_n_scratches
= 0;
5803 orig_asm_operands_vector
= 0;
5804 orig_asm_constraints_vector
= 0;
5805 copy_asm_operands_vector
= 0;
5806 copy_asm_constraints_vector
= 0;
5807 return copy_insn_1 (insn
);
5810 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5811 on that assumption that INSN itself remains in its original place. */
5814 copy_delay_slot_insn (rtx_insn
*insn
)
5816 /* Copy INSN with its rtx_code, all its notes, location etc. */
5817 insn
= as_a
<rtx_insn
*> (copy_rtx (insn
));
5818 INSN_UID (insn
) = cur_insn_uid
++;
5822 /* Initialize data structures and variables in this file
5823 before generating rtl for each function. */
5828 set_first_insn (NULL
);
5829 set_last_insn (NULL
);
5830 if (param_min_nondebug_insn_uid
)
5831 cur_insn_uid
= param_min_nondebug_insn_uid
;
5834 cur_debug_insn_uid
= 1;
5835 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5836 first_label_num
= label_num
;
5837 get_current_sequence ()->next
= NULL
;
5839 /* Init the tables that describe all the pseudo regs. */
5841 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5843 crtl
->emit
.regno_pointer_align
5844 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5847 = ggc_cleared_vec_alloc
<rtx
> (crtl
->emit
.regno_pointer_align_length
);
5849 /* Put copies of all the hard registers into regno_reg_rtx. */
5850 memcpy (regno_reg_rtx
,
5851 initial_regno_reg_rtx
,
5852 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5854 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5855 init_virtual_regs ();
5857 /* Indicate that the virtual registers and stack locations are
5859 REG_POINTER (stack_pointer_rtx
) = 1;
5860 REG_POINTER (frame_pointer_rtx
) = 1;
5861 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5862 REG_POINTER (arg_pointer_rtx
) = 1;
5864 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5865 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5866 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5867 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5868 REG_POINTER (virtual_cfa_rtx
) = 1;
5870 #ifdef STACK_BOUNDARY
5871 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5872 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5873 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5874 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5876 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5877 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5878 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5879 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5881 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5884 #ifdef INIT_EXPANDERS
5889 /* Return the value of element I of CONST_VECTOR X as a wide_int. */
5892 const_vector_int_elt (const_rtx x
, unsigned int i
)
5894 /* First handle elements that are directly encoded. */
5895 machine_mode elt_mode
= GET_MODE_INNER (GET_MODE (x
));
5896 if (i
< (unsigned int) XVECLEN (x
, 0))
5897 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x
, i
), elt_mode
);
5899 /* Identify the pattern that contains element I and work out the index of
5900 the last encoded element for that pattern. */
5901 unsigned int encoded_nelts
= const_vector_encoded_nelts (x
);
5902 unsigned int npatterns
= CONST_VECTOR_NPATTERNS (x
);
5903 unsigned int count
= i
/ npatterns
;
5904 unsigned int pattern
= i
% npatterns
;
5905 unsigned int final_i
= encoded_nelts
- npatterns
+ pattern
;
5907 /* If there are no steps, the final encoded value is the right one. */
5908 if (!CONST_VECTOR_STEPPED_P (x
))
5909 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x
, final_i
), elt_mode
);
5911 /* Otherwise work out the value from the last two encoded elements. */
5912 rtx v1
= CONST_VECTOR_ENCODED_ELT (x
, final_i
- npatterns
);
5913 rtx v2
= CONST_VECTOR_ENCODED_ELT (x
, final_i
);
5914 wide_int diff
= wi::sub (rtx_mode_t (v2
, elt_mode
),
5915 rtx_mode_t (v1
, elt_mode
));
5916 return wi::add (rtx_mode_t (v2
, elt_mode
), (count
- 2) * diff
);
5919 /* Return the value of element I of CONST_VECTOR X. */
5922 const_vector_elt (const_rtx x
, unsigned int i
)
5924 /* First handle elements that are directly encoded. */
5925 if (i
< (unsigned int) XVECLEN (x
, 0))
5926 return CONST_VECTOR_ENCODED_ELT (x
, i
);
5928 /* If there are no steps, the final encoded value is the right one. */
5929 if (!CONST_VECTOR_STEPPED_P (x
))
5931 /* Identify the pattern that contains element I and work out the index of
5932 the last encoded element for that pattern. */
5933 unsigned int encoded_nelts
= const_vector_encoded_nelts (x
);
5934 unsigned int npatterns
= CONST_VECTOR_NPATTERNS (x
);
5935 unsigned int pattern
= i
% npatterns
;
5936 unsigned int final_i
= encoded_nelts
- npatterns
+ pattern
;
5937 return CONST_VECTOR_ENCODED_ELT (x
, final_i
);
5940 /* Otherwise work out the value from the last two encoded elements. */
5941 return immed_wide_int_const (const_vector_int_elt (x
, i
),
5942 GET_MODE_INNER (GET_MODE (x
)));
5945 /* Return true if X is a valid element for a CONST_VECTOR of the given
5949 valid_for_const_vector_p (machine_mode
, rtx x
)
5951 return (CONST_SCALAR_INT_P (x
)
5952 || CONST_DOUBLE_AS_FLOAT_P (x
)
5953 || CONST_FIXED_P (x
));
5956 /* Generate a vector constant of mode MODE in which every element has
5960 gen_const_vec_duplicate (machine_mode mode
, rtx elt
)
5962 rtx_vector_builder
builder (mode
, 1, 1);
5963 builder
.quick_push (elt
);
5964 return builder
.build ();
5967 /* Return a vector rtx of mode MODE in which every element has value X.
5968 The result will be a constant if X is constant. */
5971 gen_vec_duplicate (machine_mode mode
, rtx x
)
5973 if (valid_for_const_vector_p (mode
, x
))
5974 return gen_const_vec_duplicate (mode
, x
);
5975 return gen_rtx_VEC_DUPLICATE (mode
, x
);
5978 /* A subroutine of const_vec_series_p that handles the case in which:
5980 (GET_CODE (X) == CONST_VECTOR
5981 && CONST_VECTOR_NPATTERNS (X) == 1
5982 && !CONST_VECTOR_DUPLICATE_P (X))
5984 is known to hold. */
5987 const_vec_series_p_1 (const_rtx x
, rtx
*base_out
, rtx
*step_out
)
5989 /* Stepped sequences are only defined for integers, to avoid specifying
5990 rounding behavior. */
5991 if (GET_MODE_CLASS (GET_MODE (x
)) != MODE_VECTOR_INT
)
5994 /* A non-duplicated vector with two elements can always be seen as a
5995 series with a nonzero step. Longer vectors must have a stepped
5997 if (maybe_ne (CONST_VECTOR_NUNITS (x
), 2)
5998 && !CONST_VECTOR_STEPPED_P (x
))
6001 /* Calculate the step between the first and second elements. */
6002 scalar_mode inner
= GET_MODE_INNER (GET_MODE (x
));
6003 rtx base
= CONST_VECTOR_ELT (x
, 0);
6004 rtx step
= simplify_binary_operation (MINUS
, inner
,
6005 CONST_VECTOR_ENCODED_ELT (x
, 1), base
);
6006 if (rtx_equal_p (step
, CONST0_RTX (inner
)))
6009 /* If we have a stepped encoding, check that the step between the
6010 second and third elements is the same as STEP. */
6011 if (CONST_VECTOR_STEPPED_P (x
))
6013 rtx diff
= simplify_binary_operation (MINUS
, inner
,
6014 CONST_VECTOR_ENCODED_ELT (x
, 2),
6015 CONST_VECTOR_ENCODED_ELT (x
, 1));
6016 if (!rtx_equal_p (step
, diff
))
6025 /* Generate a vector constant of mode MODE in which element I has
6026 the value BASE + I * STEP. */
6029 gen_const_vec_series (machine_mode mode
, rtx base
, rtx step
)
6031 gcc_assert (valid_for_const_vector_p (mode
, base
)
6032 && valid_for_const_vector_p (mode
, step
));
6034 rtx_vector_builder
builder (mode
, 1, 3);
6035 builder
.quick_push (base
);
6036 for (int i
= 1; i
< 3; ++i
)
6037 builder
.quick_push (simplify_gen_binary (PLUS
, GET_MODE_INNER (mode
),
6038 builder
[i
- 1], step
));
6039 return builder
.build ();
6042 /* Generate a vector of mode MODE in which element I has the value
6043 BASE + I * STEP. The result will be a constant if BASE and STEP
6044 are both constants. */
6047 gen_vec_series (machine_mode mode
, rtx base
, rtx step
)
6049 if (step
== const0_rtx
)
6050 return gen_vec_duplicate (mode
, base
);
6051 if (valid_for_const_vector_p (mode
, base
)
6052 && valid_for_const_vector_p (mode
, step
))
6053 return gen_const_vec_series (mode
, base
, step
);
6054 return gen_rtx_VEC_SERIES (mode
, base
, step
);
6057 /* Generate a new vector constant for mode MODE and constant value
6061 gen_const_vector (machine_mode mode
, int constant
)
6063 machine_mode inner
= GET_MODE_INNER (mode
);
6065 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
6067 rtx el
= const_tiny_rtx
[constant
][(int) inner
];
6070 return gen_const_vec_duplicate (mode
, el
);
6073 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
6074 all elements are zero, and the one vector when all elements are one. */
6076 gen_rtx_CONST_VECTOR (machine_mode mode
, rtvec v
)
6078 gcc_assert (known_eq (GET_MODE_NUNITS (mode
), GET_NUM_ELEM (v
)));
6080 /* If the values are all the same, check to see if we can use one of the
6081 standard constant vectors. */
6082 if (rtvec_all_equal_p (v
))
6083 return gen_const_vec_duplicate (mode
, RTVEC_ELT (v
, 0));
6085 unsigned int nunits
= GET_NUM_ELEM (v
);
6086 rtx_vector_builder
builder (mode
, nunits
, 1);
6087 for (unsigned int i
= 0; i
< nunits
; ++i
)
6088 builder
.quick_push (RTVEC_ELT (v
, i
));
6089 return builder
.build (v
);
6092 /* Initialise global register information required by all functions. */
6095 init_emit_regs (void)
6101 /* Reset register attributes */
6102 reg_attrs_htab
->empty ();
6104 /* We need reg_raw_mode, so initialize the modes now. */
6105 init_reg_modes_target ();
6107 /* Assign register numbers to the globally defined register rtx. */
6108 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
6109 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
6110 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
6111 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
6112 virtual_incoming_args_rtx
=
6113 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
6114 virtual_stack_vars_rtx
=
6115 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
6116 virtual_stack_dynamic_rtx
=
6117 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
6118 virtual_outgoing_args_rtx
=
6119 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
6120 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
6121 virtual_preferred_stack_boundary_rtx
=
6122 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
6124 /* Initialize RTL for commonly used hard registers. These are
6125 copied into regno_reg_rtx as we begin to compile each function. */
6126 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
6127 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
6129 #ifdef RETURN_ADDRESS_POINTER_REGNUM
6130 return_address_pointer_rtx
6131 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
6134 pic_offset_table_rtx
= NULL_RTX
;
6135 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
6136 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
6138 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
6140 mode
= (machine_mode
) i
;
6141 attrs
= ggc_cleared_alloc
<mem_attrs
> ();
6142 attrs
->align
= BITS_PER_UNIT
;
6143 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
6144 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
6146 attrs
->size_known_p
= true;
6147 attrs
->size
= GET_MODE_SIZE (mode
);
6148 if (STRICT_ALIGNMENT
)
6149 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
6151 mode_mem_attrs
[i
] = attrs
;
6154 split_branch_probability
= profile_probability::uninitialized ();
6157 /* Initialize global machine_mode variables. */
6160 init_derived_machine_modes (void)
6162 opt_scalar_int_mode mode_iter
, opt_byte_mode
, opt_word_mode
;
6163 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
6165 scalar_int_mode mode
= mode_iter
.require ();
6167 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
6168 && !opt_byte_mode
.exists ())
6169 opt_byte_mode
= mode
;
6171 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
6172 && !opt_word_mode
.exists ())
6173 opt_word_mode
= mode
;
6176 byte_mode
= opt_byte_mode
.require ();
6177 word_mode
= opt_word_mode
.require ();
6178 ptr_mode
= as_a
<scalar_int_mode
>
6179 (mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0).require ());
6182 /* Create some permanent unique rtl objects shared between all functions. */
6185 init_emit_once (void)
6189 scalar_float_mode double_mode
;
6190 opt_scalar_mode smode_iter
;
6192 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6193 CONST_FIXED, and memory attribute hash tables. */
6194 const_int_htab
= hash_table
<const_int_hasher
>::create_ggc (37);
6196 #if TARGET_SUPPORTS_WIDE_INT
6197 const_wide_int_htab
= hash_table
<const_wide_int_hasher
>::create_ggc (37);
6199 const_double_htab
= hash_table
<const_double_hasher
>::create_ggc (37);
6201 if (NUM_POLY_INT_COEFFS
> 1)
6202 const_poly_int_htab
= hash_table
<const_poly_int_hasher
>::create_ggc (37);
6204 const_fixed_htab
= hash_table
<const_fixed_hasher
>::create_ggc (37);
6206 reg_attrs_htab
= hash_table
<reg_attr_hasher
>::create_ggc (37);
6208 #ifdef INIT_EXPANDERS
6209 /* This is to initialize {init|mark|free}_machine_status before the first
6210 call to push_function_context_to. This is needed by the Chill front
6211 end which calls push_function_context_to before the first call to
6212 init_function_start. */
6216 /* Create the unique rtx's for certain rtx codes and operand values. */
6218 /* Process stack-limiting command-line options. */
6219 if (opt_fstack_limit_symbol_arg
!= NULL
)
6221 = gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (opt_fstack_limit_symbol_arg
));
6222 if (opt_fstack_limit_register_no
>= 0)
6223 stack_limit_rtx
= gen_rtx_REG (Pmode
, opt_fstack_limit_register_no
);
6225 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
6226 tries to use these variables. */
6227 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
6228 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
6229 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
6231 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
6232 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
6233 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
6235 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
6237 double_mode
= float_mode_for_size (DOUBLE_TYPE_SIZE
).require ();
6239 real_from_integer (&dconst0
, double_mode
, 0, SIGNED
);
6240 real_from_integer (&dconst1
, double_mode
, 1, SIGNED
);
6241 real_from_integer (&dconst2
, double_mode
, 2, SIGNED
);
6246 dconsthalf
= dconst1
;
6247 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
6249 for (i
= 0; i
< 3; i
++)
6251 const REAL_VALUE_TYPE
*const r
=
6252 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
6254 FOR_EACH_MODE_IN_CLASS (mode
, MODE_FLOAT
)
6255 const_tiny_rtx
[i
][(int) mode
] =
6256 const_double_from_real_value (*r
, mode
);
6258 FOR_EACH_MODE_IN_CLASS (mode
, MODE_DECIMAL_FLOAT
)
6259 const_tiny_rtx
[i
][(int) mode
] =
6260 const_double_from_real_value (*r
, mode
);
6262 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
6264 FOR_EACH_MODE_IN_CLASS (mode
, MODE_INT
)
6265 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
6267 for (mode
= MIN_MODE_PARTIAL_INT
;
6268 mode
<= MAX_MODE_PARTIAL_INT
;
6269 mode
= (machine_mode
)((int)(mode
) + 1))
6270 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
6273 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
6275 FOR_EACH_MODE_IN_CLASS (mode
, MODE_INT
)
6276 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
6278 /* For BImode, 1 and -1 are unsigned and signed interpretations
6279 of the same value. */
6280 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
6281 const_tiny_rtx
[1][(int) BImode
] = const_true_rtx
;
6282 const_tiny_rtx
[3][(int) BImode
] = const_true_rtx
;
6284 for (mode
= MIN_MODE_PARTIAL_INT
;
6285 mode
<= MAX_MODE_PARTIAL_INT
;
6286 mode
= (machine_mode
)((int)(mode
) + 1))
6287 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
6289 FOR_EACH_MODE_IN_CLASS (mode
, MODE_COMPLEX_INT
)
6291 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
6292 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
6295 FOR_EACH_MODE_IN_CLASS (mode
, MODE_COMPLEX_FLOAT
)
6297 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
6298 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
6301 /* As for BImode, "all 1" and "all -1" are unsigned and signed
6302 interpretations of the same value. */
6303 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_BOOL
)
6305 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6306 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
6307 const_tiny_rtx
[1][(int) mode
] = const_tiny_rtx
[3][(int) mode
];
6310 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_INT
)
6312 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6313 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6314 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
6317 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_FLOAT
)
6319 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6320 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6323 FOR_EACH_MODE_IN_CLASS (smode_iter
, MODE_FRACT
)
6325 scalar_mode smode
= smode_iter
.require ();
6326 FCONST0 (smode
).data
.high
= 0;
6327 FCONST0 (smode
).data
.low
= 0;
6328 FCONST0 (smode
).mode
= smode
;
6329 const_tiny_rtx
[0][(int) smode
]
6330 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode
), smode
);
6333 FOR_EACH_MODE_IN_CLASS (smode_iter
, MODE_UFRACT
)
6335 scalar_mode smode
= smode_iter
.require ();
6336 FCONST0 (smode
).data
.high
= 0;
6337 FCONST0 (smode
).data
.low
= 0;
6338 FCONST0 (smode
).mode
= smode
;
6339 const_tiny_rtx
[0][(int) smode
]
6340 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode
), smode
);
6343 FOR_EACH_MODE_IN_CLASS (smode_iter
, MODE_ACCUM
)
6345 scalar_mode smode
= smode_iter
.require ();
6346 FCONST0 (smode
).data
.high
= 0;
6347 FCONST0 (smode
).data
.low
= 0;
6348 FCONST0 (smode
).mode
= smode
;
6349 const_tiny_rtx
[0][(int) smode
]
6350 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode
), smode
);
6352 /* We store the value 1. */
6353 FCONST1 (smode
).data
.high
= 0;
6354 FCONST1 (smode
).data
.low
= 0;
6355 FCONST1 (smode
).mode
= smode
;
6356 FCONST1 (smode
).data
6357 = double_int_one
.lshift (GET_MODE_FBIT (smode
),
6358 HOST_BITS_PER_DOUBLE_INT
,
6359 SIGNED_FIXED_POINT_MODE_P (smode
));
6360 const_tiny_rtx
[1][(int) smode
]
6361 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode
), smode
);
6364 FOR_EACH_MODE_IN_CLASS (smode_iter
, MODE_UACCUM
)
6366 scalar_mode smode
= smode_iter
.require ();
6367 FCONST0 (smode
).data
.high
= 0;
6368 FCONST0 (smode
).data
.low
= 0;
6369 FCONST0 (smode
).mode
= smode
;
6370 const_tiny_rtx
[0][(int) smode
]
6371 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode
), smode
);
6373 /* We store the value 1. */
6374 FCONST1 (smode
).data
.high
= 0;
6375 FCONST1 (smode
).data
.low
= 0;
6376 FCONST1 (smode
).mode
= smode
;
6377 FCONST1 (smode
).data
6378 = double_int_one
.lshift (GET_MODE_FBIT (smode
),
6379 HOST_BITS_PER_DOUBLE_INT
,
6380 SIGNED_FIXED_POINT_MODE_P (smode
));
6381 const_tiny_rtx
[1][(int) smode
]
6382 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode
), smode
);
6385 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_FRACT
)
6387 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6390 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_UFRACT
)
6392 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6395 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_ACCUM
)
6397 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6398 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6401 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_UACCUM
)
6403 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6404 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6407 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
6408 if (GET_MODE_CLASS ((machine_mode
) i
) == MODE_CC
)
6409 const_tiny_rtx
[0][i
] = const0_rtx
;
6411 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
6412 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
6413 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
6414 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
6415 invalid_insn_rtx
= gen_rtx_INSN (VOIDmode
,
6419 /*pattern=*/NULL_RTX
,
6422 /*reg_notes=*/NULL_RTX
);
6425 /* Produce exact duplicate of insn INSN after AFTER.
6426 Care updating of libcall regions if present. */
6429 emit_copy_of_insn_after (rtx_insn
*insn
, rtx_insn
*after
)
6434 switch (GET_CODE (insn
))
6437 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
6441 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
6442 CROSSING_JUMP_P (new_rtx
) = CROSSING_JUMP_P (insn
);
6446 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
6450 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
6451 if (CALL_INSN_FUNCTION_USAGE (insn
))
6452 CALL_INSN_FUNCTION_USAGE (new_rtx
)
6453 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
6454 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
6455 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
6456 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
6457 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
6458 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
6465 /* Update LABEL_NUSES. */
6466 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
6468 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
6470 /* If the old insn is frame related, then so is the new one. This is
6471 primarily needed for IA-64 unwind info which marks epilogue insns,
6472 which may be duplicated by the basic block reordering code. */
6473 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
6475 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6476 rtx
*ptail
= ®_NOTES (new_rtx
);
6477 while (*ptail
!= NULL_RTX
)
6478 ptail
= &XEXP (*ptail
, 1);
6480 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6481 will make them. REG_LABEL_TARGETs are created there too, but are
6482 supposed to be sticky, so we copy them. */
6483 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
6484 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
6486 *ptail
= duplicate_reg_note (link
);
6487 ptail
= &XEXP (*ptail
, 1);
6490 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
6494 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
6496 gen_hard_reg_clobber (machine_mode mode
, unsigned int regno
)
6498 if (hard_reg_clobbers
[mode
][regno
])
6499 return hard_reg_clobbers
[mode
][regno
];
6501 return (hard_reg_clobbers
[mode
][regno
] =
6502 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
6505 location_t prologue_location
;
6506 location_t epilogue_location
;
6508 /* Hold current location information and last location information, so the
6509 datastructures are built lazily only when some instructions in given
6510 place are needed. */
6511 static location_t curr_location
;
6513 /* Allocate insn location datastructure. */
6515 insn_locations_init (void)
6517 prologue_location
= epilogue_location
= 0;
6518 curr_location
= UNKNOWN_LOCATION
;
6521 /* At the end of emit stage, clear current location. */
6523 insn_locations_finalize (void)
6525 epilogue_location
= curr_location
;
6526 curr_location
= UNKNOWN_LOCATION
;
6529 /* Set current location. */
6531 set_curr_insn_location (location_t location
)
6533 curr_location
= location
;
6536 /* Get current location. */
6538 curr_insn_location (void)
6540 return curr_location
;
6543 /* Set the location of the insn chain starting at INSN to LOC. */
6545 set_insn_locations (rtx_insn
*insn
, location_t loc
)
6550 INSN_LOCATION (insn
) = loc
;
6551 insn
= NEXT_INSN (insn
);
6555 /* Return lexical scope block insn belongs to. */
6557 insn_scope (const rtx_insn
*insn
)
6559 return LOCATION_BLOCK (INSN_LOCATION (insn
));
6562 /* Return line number of the statement that produced this insn. */
6564 insn_line (const rtx_insn
*insn
)
6566 return LOCATION_LINE (INSN_LOCATION (insn
));
6569 /* Return source file of the statement that produced this insn. */
6571 insn_file (const rtx_insn
*insn
)
6573 return LOCATION_FILE (INSN_LOCATION (insn
));
6576 /* Return expanded location of the statement that produced this insn. */
6578 insn_location (const rtx_insn
*insn
)
6580 return expand_location (INSN_LOCATION (insn
));
6583 /* Return true if memory model MODEL requires a pre-operation (release-style)
6584 barrier or a post-operation (acquire-style) barrier. While not universal,
6585 this function matches behavior of several targets. */
6588 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6590 switch (model
& MEMMODEL_BASE_MASK
)
6592 case MEMMODEL_RELAXED
:
6593 case MEMMODEL_CONSUME
:
6595 case MEMMODEL_RELEASE
:
6597 case MEMMODEL_ACQUIRE
:
6599 case MEMMODEL_ACQ_REL
:
6600 case MEMMODEL_SEQ_CST
:
6607 /* Return a constant shift amount for shifting a value of mode MODE
6611 gen_int_shift_amount (machine_mode
, poly_int64 value
)
6613 /* Use a 64-bit mode, to avoid any truncation.
6615 ??? Perhaps this should be automatically derived from the .md files
6616 instead, or perhaps have a target hook. */
6617 scalar_int_mode shift_mode
= (BITS_PER_UNIT
== 8
6619 : int_mode_for_size (64, 0).require ());
6620 return gen_int_mode (value
, shift_mode
);
6623 /* Initialize fields of rtl_data related to stack alignment. */
6626 rtl_data::init_stack_alignment ()
6628 stack_alignment_needed
= STACK_BOUNDARY
;
6629 max_used_stack_slot_alignment
= STACK_BOUNDARY
;
6630 stack_alignment_estimated
= 0;
6631 preferred_stack_boundary
= STACK_BOUNDARY
;
6635 #include "gt-emit-rtl.h"