Daily bump.
[official-gcc.git] / gcc / combine.c
blobc88382efbd3bdf1a1801f1837f244451922879ef
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "expr.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107 #include "function-abi.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx_insn *i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 struct reg_stat_type {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx_insn *last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx_insn *last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
256 static vec<reg_stat_type> reg_stat;
258 /* One plus the highest pseudo for which we track REG_N_SETS.
259 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
260 but during combine_split_insns new pseudos can be created. As we don't have
261 updated DF information in that case, it is hard to initialize the array
262 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
263 so instead of growing the arrays, just assume all newly created pseudos
264 during combine might be set multiple times. */
266 static unsigned int reg_n_sets_max;
268 /* Record the luid of the last insn that invalidated memory
269 (anything that writes memory, and subroutine calls, but not pushes). */
271 static int mem_last_set;
273 /* Record the luid of the last CALL_INSN
274 so we can tell whether a potential combination crosses any calls. */
276 static int last_call_luid;
278 /* When `subst' is called, this is the insn that is being modified
279 (by combining in a previous insn). The PATTERN of this insn
280 is still the old pattern partially modified and it should not be
281 looked at, but this may be used to examine the successors of the insn
282 to judge whether a simplification is valid. */
284 static rtx_insn *subst_insn;
286 /* This is the lowest LUID that `subst' is currently dealing with.
287 get_last_value will not return a value if the register was set at or
288 after this LUID. If not for this mechanism, we could get confused if
289 I2 or I1 in try_combine were an insn that used the old value of a register
290 to obtain a new value. In that case, we might erroneously get the
291 new value of the register when we wanted the old one. */
293 static int subst_low_luid;
295 /* This contains any hard registers that are used in newpat; reg_dead_at_p
296 must consider all these registers to be always live. */
298 static HARD_REG_SET newpat_used_regs;
300 /* This is an insn to which a LOG_LINKS entry has been added. If this
301 insn is the earlier than I2 or I3, combine should rescan starting at
302 that location. */
304 static rtx_insn *added_links_insn;
306 /* And similarly, for notes. */
308 static rtx_insn *added_notes_insn;
310 /* Basic block in which we are performing combines. */
311 static basic_block this_basic_block;
312 static bool optimize_this_for_speed_p;
315 /* Length of the currently allocated uid_insn_cost array. */
317 static int max_uid_known;
319 /* The following array records the insn_cost for every insn
320 in the instruction stream. */
322 static int *uid_insn_cost;
324 /* The following array records the LOG_LINKS for every insn in the
325 instruction stream as struct insn_link pointers. */
327 struct insn_link {
328 rtx_insn *insn;
329 unsigned int regno;
330 struct insn_link *next;
333 static struct insn_link **uid_log_links;
335 static inline int
336 insn_uid_check (const_rtx insn)
338 int uid = INSN_UID (insn);
339 gcc_checking_assert (uid <= max_uid_known);
340 return uid;
343 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
344 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
346 #define FOR_EACH_LOG_LINK(L, INSN) \
347 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
349 /* Links for LOG_LINKS are allocated from this obstack. */
351 static struct obstack insn_link_obstack;
353 /* Allocate a link. */
355 static inline struct insn_link *
356 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
358 struct insn_link *l
359 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
360 sizeof (struct insn_link));
361 l->insn = insn;
362 l->regno = regno;
363 l->next = next;
364 return l;
367 /* Incremented for each basic block. */
369 static int label_tick;
371 /* Reset to label_tick for each extended basic block in scanning order. */
373 static int label_tick_ebb_start;
375 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
376 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
378 static scalar_int_mode nonzero_bits_mode;
380 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
381 be safely used. It is zero while computing them and after combine has
382 completed. This former test prevents propagating values based on
383 previously set values, which can be incorrect if a variable is modified
384 in a loop. */
386 static int nonzero_sign_valid;
389 /* Record one modification to rtl structure
390 to be undone by storing old_contents into *where. */
392 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
394 struct undo
396 struct undo *next;
397 enum undo_kind kind;
398 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
399 union { rtx *r; int *i; struct insn_link **l; } where;
402 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
403 num_undo says how many are currently recorded.
405 other_insn is nonzero if we have modified some other insn in the process
406 of working on subst_insn. It must be verified too. */
408 struct undobuf
410 struct undo *undos;
411 struct undo *frees;
412 rtx_insn *other_insn;
415 static struct undobuf undobuf;
417 /* Number of times the pseudo being substituted for
418 was found and replaced. */
420 static int n_occurrences;
422 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
423 scalar_int_mode,
424 unsigned HOST_WIDE_INT *);
425 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
426 scalar_int_mode,
427 unsigned int *);
428 static void do_SUBST (rtx *, rtx);
429 static void do_SUBST_INT (int *, int);
430 static void init_reg_last (void);
431 static void setup_incoming_promotions (rtx_insn *);
432 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
433 static int cant_combine_insn_p (rtx_insn *);
434 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 rtx_insn *, rtx_insn *, rtx *, rtx *);
436 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
437 static int contains_muldiv (rtx);
438 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
439 int *, rtx_insn *);
440 static void undo_all (void);
441 static void undo_commit (void);
442 static rtx *find_split_point (rtx *, rtx_insn *, bool);
443 static rtx subst (rtx, rtx, rtx, int, int, int);
444 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
445 static rtx simplify_if_then_else (rtx);
446 static rtx simplify_set (rtx);
447 static rtx simplify_logical (rtx);
448 static rtx expand_compound_operation (rtx);
449 static const_rtx expand_field_assignment (const_rtx);
450 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
451 rtx, unsigned HOST_WIDE_INT, int, int, int);
452 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
453 unsigned HOST_WIDE_INT *);
454 static rtx canon_reg_for_combine (rtx, rtx);
455 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
456 scalar_int_mode, unsigned HOST_WIDE_INT, int);
457 static rtx force_to_mode (rtx, machine_mode,
458 unsigned HOST_WIDE_INT, int);
459 static rtx if_then_else_cond (rtx, rtx *, rtx *);
460 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
461 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
462 static rtx make_field_assignment (rtx);
463 static rtx apply_distributive_law (rtx);
464 static rtx distribute_and_simplify_rtx (rtx, int);
465 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
466 unsigned HOST_WIDE_INT);
467 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
468 unsigned HOST_WIDE_INT);
469 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
470 HOST_WIDE_INT, machine_mode, int *);
471 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
472 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
473 int);
474 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
475 static rtx gen_lowpart_for_combine (machine_mode, rtx);
476 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
477 rtx, rtx *);
478 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
479 static void update_table_tick (rtx);
480 static void record_value_for_reg (rtx, rtx_insn *, rtx);
481 static void check_promoted_subreg (rtx_insn *, rtx);
482 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
483 static void record_dead_and_set_regs (rtx_insn *);
484 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
485 static rtx get_last_value (const_rtx);
486 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
487 static int reg_dead_at_p (rtx, rtx_insn *);
488 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
489 static int reg_bitfield_target_p (rtx, rtx);
490 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
491 static void distribute_links (struct insn_link *);
492 static void mark_used_regs_combine (rtx);
493 static void record_promoted_value (rtx_insn *, rtx);
494 static bool unmentioned_reg_p (rtx, rtx);
495 static void record_truncated_values (rtx *, void *);
496 static bool reg_truncated_to_mode (machine_mode, const_rtx);
497 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
500 /* It is not safe to use ordinary gen_lowpart in combine.
501 See comments in gen_lowpart_for_combine. */
502 #undef RTL_HOOKS_GEN_LOWPART
503 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
505 /* Our implementation of gen_lowpart never emits a new pseudo. */
506 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
507 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
509 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
510 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
512 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
513 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
515 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
516 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
518 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
521 /* Convenience wrapper for the canonicalize_comparison target hook.
522 Target hooks cannot use enum rtx_code. */
523 static inline void
524 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
525 bool op0_preserve_value)
527 int code_int = (int)*code;
528 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
529 *code = (enum rtx_code)code_int;
532 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
533 PATTERN cannot be split. Otherwise, it returns an insn sequence.
534 This is a wrapper around split_insns which ensures that the
535 reg_stat vector is made larger if the splitter creates a new
536 register. */
538 static rtx_insn *
539 combine_split_insns (rtx pattern, rtx_insn *insn)
541 rtx_insn *ret;
542 unsigned int nregs;
544 ret = split_insns (pattern, insn);
545 nregs = max_reg_num ();
546 if (nregs > reg_stat.length ())
547 reg_stat.safe_grow_cleared (nregs, true);
548 return ret;
551 /* This is used by find_single_use to locate an rtx in LOC that
552 contains exactly one use of DEST, which is typically either a REG
553 or CC0. It returns a pointer to the innermost rtx expression
554 containing DEST. Appearances of DEST that are being used to
555 totally replace it are not counted. */
557 static rtx *
558 find_single_use_1 (rtx dest, rtx *loc)
560 rtx x = *loc;
561 enum rtx_code code = GET_CODE (x);
562 rtx *result = NULL;
563 rtx *this_result;
564 int i;
565 const char *fmt;
567 switch (code)
569 case CONST:
570 case LABEL_REF:
571 case SYMBOL_REF:
572 CASE_CONST_ANY:
573 case CLOBBER:
574 return 0;
576 case SET:
577 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
578 of a REG that occupies all of the REG, the insn uses DEST if
579 it is mentioned in the destination or the source. Otherwise, we
580 need just check the source. */
581 if (GET_CODE (SET_DEST (x)) != CC0
582 && GET_CODE (SET_DEST (x)) != PC
583 && !REG_P (SET_DEST (x))
584 && ! (GET_CODE (SET_DEST (x)) == SUBREG
585 && REG_P (SUBREG_REG (SET_DEST (x)))
586 && !read_modify_subreg_p (SET_DEST (x))))
587 break;
589 return find_single_use_1 (dest, &SET_SRC (x));
591 case MEM:
592 case SUBREG:
593 return find_single_use_1 (dest, &XEXP (x, 0));
595 default:
596 break;
599 /* If it wasn't one of the common cases above, check each expression and
600 vector of this code. Look for a unique usage of DEST. */
602 fmt = GET_RTX_FORMAT (code);
603 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
605 if (fmt[i] == 'e')
607 if (dest == XEXP (x, i)
608 || (REG_P (dest) && REG_P (XEXP (x, i))
609 && REGNO (dest) == REGNO (XEXP (x, i))))
610 this_result = loc;
611 else
612 this_result = find_single_use_1 (dest, &XEXP (x, i));
614 if (result == NULL)
615 result = this_result;
616 else if (this_result)
617 /* Duplicate usage. */
618 return NULL;
620 else if (fmt[i] == 'E')
622 int j;
624 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
626 if (XVECEXP (x, i, j) == dest
627 || (REG_P (dest)
628 && REG_P (XVECEXP (x, i, j))
629 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
630 this_result = loc;
631 else
632 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
634 if (result == NULL)
635 result = this_result;
636 else if (this_result)
637 return NULL;
642 return result;
646 /* See if DEST, produced in INSN, is used only a single time in the
647 sequel. If so, return a pointer to the innermost rtx expression in which
648 it is used.
650 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
652 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
653 care about REG_DEAD notes or LOG_LINKS.
655 Otherwise, we find the single use by finding an insn that has a
656 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
657 only referenced once in that insn, we know that it must be the first
658 and last insn referencing DEST. */
660 static rtx *
661 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
663 basic_block bb;
664 rtx_insn *next;
665 rtx *result;
666 struct insn_link *link;
668 if (dest == cc0_rtx)
670 next = NEXT_INSN (insn);
671 if (next == 0
672 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
673 return 0;
675 result = find_single_use_1 (dest, &PATTERN (next));
676 if (result && ploc)
677 *ploc = next;
678 return result;
681 if (!REG_P (dest))
682 return 0;
684 bb = BLOCK_FOR_INSN (insn);
685 for (next = NEXT_INSN (insn);
686 next && BLOCK_FOR_INSN (next) == bb;
687 next = NEXT_INSN (next))
688 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
690 FOR_EACH_LOG_LINK (link, next)
691 if (link->insn == insn && link->regno == REGNO (dest))
692 break;
694 if (link)
696 result = find_single_use_1 (dest, &PATTERN (next));
697 if (ploc)
698 *ploc = next;
699 return result;
703 return 0;
706 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
707 insn. The substitution can be undone by undo_all. If INTO is already
708 set to NEWVAL, do not record this change. Because computing NEWVAL might
709 also call SUBST, we have to compute it before we put anything into
710 the undo table. */
712 static void
713 do_SUBST (rtx *into, rtx newval)
715 struct undo *buf;
716 rtx oldval = *into;
718 if (oldval == newval)
719 return;
721 /* We'd like to catch as many invalid transformations here as
722 possible. Unfortunately, there are way too many mode changes
723 that are perfectly valid, so we'd waste too much effort for
724 little gain doing the checks here. Focus on catching invalid
725 transformations involving integer constants. */
726 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
727 && CONST_INT_P (newval))
729 /* Sanity check that we're replacing oldval with a CONST_INT
730 that is a valid sign-extension for the original mode. */
731 gcc_assert (INTVAL (newval)
732 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
734 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
735 CONST_INT is not valid, because after the replacement, the
736 original mode would be gone. Unfortunately, we can't tell
737 when do_SUBST is called to replace the operand thereof, so we
738 perform this test on oldval instead, checking whether an
739 invalid replacement took place before we got here. */
740 gcc_assert (!(GET_CODE (oldval) == SUBREG
741 && CONST_INT_P (SUBREG_REG (oldval))));
742 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
743 && CONST_INT_P (XEXP (oldval, 0))));
746 if (undobuf.frees)
747 buf = undobuf.frees, undobuf.frees = buf->next;
748 else
749 buf = XNEW (struct undo);
751 buf->kind = UNDO_RTX;
752 buf->where.r = into;
753 buf->old_contents.r = oldval;
754 *into = newval;
756 buf->next = undobuf.undos, undobuf.undos = buf;
759 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
761 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
762 for the value of a HOST_WIDE_INT value (including CONST_INT) is
763 not safe. */
765 static void
766 do_SUBST_INT (int *into, int newval)
768 struct undo *buf;
769 int oldval = *into;
771 if (oldval == newval)
772 return;
774 if (undobuf.frees)
775 buf = undobuf.frees, undobuf.frees = buf->next;
776 else
777 buf = XNEW (struct undo);
779 buf->kind = UNDO_INT;
780 buf->where.i = into;
781 buf->old_contents.i = oldval;
782 *into = newval;
784 buf->next = undobuf.undos, undobuf.undos = buf;
787 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
789 /* Similar to SUBST, but just substitute the mode. This is used when
790 changing the mode of a pseudo-register, so that any other
791 references to the entry in the regno_reg_rtx array will change as
792 well. */
794 static void
795 do_SUBST_MODE (rtx *into, machine_mode newval)
797 struct undo *buf;
798 machine_mode oldval = GET_MODE (*into);
800 if (oldval == newval)
801 return;
803 if (undobuf.frees)
804 buf = undobuf.frees, undobuf.frees = buf->next;
805 else
806 buf = XNEW (struct undo);
808 buf->kind = UNDO_MODE;
809 buf->where.r = into;
810 buf->old_contents.m = oldval;
811 adjust_reg_mode (*into, newval);
813 buf->next = undobuf.undos, undobuf.undos = buf;
816 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
818 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
820 static void
821 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
823 struct undo *buf;
824 struct insn_link * oldval = *into;
826 if (oldval == newval)
827 return;
829 if (undobuf.frees)
830 buf = undobuf.frees, undobuf.frees = buf->next;
831 else
832 buf = XNEW (struct undo);
834 buf->kind = UNDO_LINKS;
835 buf->where.l = into;
836 buf->old_contents.l = oldval;
837 *into = newval;
839 buf->next = undobuf.undos, undobuf.undos = buf;
842 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
844 /* Subroutine of try_combine. Determine whether the replacement patterns
845 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
846 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
847 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
848 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
849 of all the instructions can be estimated and the replacements are more
850 expensive than the original sequence. */
852 static bool
853 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
854 rtx newpat, rtx newi2pat, rtx newotherpat)
856 int i0_cost, i1_cost, i2_cost, i3_cost;
857 int new_i2_cost, new_i3_cost;
858 int old_cost, new_cost;
860 /* Lookup the original insn_costs. */
861 i2_cost = INSN_COST (i2);
862 i3_cost = INSN_COST (i3);
864 if (i1)
866 i1_cost = INSN_COST (i1);
867 if (i0)
869 i0_cost = INSN_COST (i0);
870 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
871 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
873 else
875 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
876 ? i1_cost + i2_cost + i3_cost : 0);
877 i0_cost = 0;
880 else
882 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
883 i1_cost = i0_cost = 0;
886 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
887 correct that. */
888 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
889 old_cost -= i1_cost;
892 /* Calculate the replacement insn_costs. */
893 rtx tmp = PATTERN (i3);
894 PATTERN (i3) = newpat;
895 int tmpi = INSN_CODE (i3);
896 INSN_CODE (i3) = -1;
897 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
898 PATTERN (i3) = tmp;
899 INSN_CODE (i3) = tmpi;
900 if (newi2pat)
902 tmp = PATTERN (i2);
903 PATTERN (i2) = newi2pat;
904 tmpi = INSN_CODE (i2);
905 INSN_CODE (i2) = -1;
906 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
907 PATTERN (i2) = tmp;
908 INSN_CODE (i2) = tmpi;
909 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
910 ? new_i2_cost + new_i3_cost : 0;
912 else
914 new_cost = new_i3_cost;
915 new_i2_cost = 0;
918 if (undobuf.other_insn)
920 int old_other_cost, new_other_cost;
922 old_other_cost = INSN_COST (undobuf.other_insn);
923 tmp = PATTERN (undobuf.other_insn);
924 PATTERN (undobuf.other_insn) = newotherpat;
925 tmpi = INSN_CODE (undobuf.other_insn);
926 INSN_CODE (undobuf.other_insn) = -1;
927 new_other_cost = insn_cost (undobuf.other_insn,
928 optimize_this_for_speed_p);
929 PATTERN (undobuf.other_insn) = tmp;
930 INSN_CODE (undobuf.other_insn) = tmpi;
931 if (old_other_cost > 0 && new_other_cost > 0)
933 old_cost += old_other_cost;
934 new_cost += new_other_cost;
936 else
937 old_cost = 0;
940 /* Disallow this combination if both new_cost and old_cost are greater than
941 zero, and new_cost is greater than old cost. */
942 int reject = old_cost > 0 && new_cost > old_cost;
944 if (dump_file)
946 fprintf (dump_file, "%s combination of insns ",
947 reject ? "rejecting" : "allowing");
948 if (i0)
949 fprintf (dump_file, "%d, ", INSN_UID (i0));
950 if (i1 && INSN_UID (i1) != INSN_UID (i2))
951 fprintf (dump_file, "%d, ", INSN_UID (i1));
952 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
954 fprintf (dump_file, "original costs ");
955 if (i0)
956 fprintf (dump_file, "%d + ", i0_cost);
957 if (i1 && INSN_UID (i1) != INSN_UID (i2))
958 fprintf (dump_file, "%d + ", i1_cost);
959 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
961 if (newi2pat)
962 fprintf (dump_file, "replacement costs %d + %d = %d\n",
963 new_i2_cost, new_i3_cost, new_cost);
964 else
965 fprintf (dump_file, "replacement cost %d\n", new_cost);
968 if (reject)
969 return false;
971 /* Update the uid_insn_cost array with the replacement costs. */
972 INSN_COST (i2) = new_i2_cost;
973 INSN_COST (i3) = new_i3_cost;
974 if (i1)
976 INSN_COST (i1) = 0;
977 if (i0)
978 INSN_COST (i0) = 0;
981 return true;
985 /* Delete any insns that copy a register to itself.
986 Return true if the CFG was changed. */
988 static bool
989 delete_noop_moves (void)
991 rtx_insn *insn, *next;
992 basic_block bb;
994 bool edges_deleted = false;
996 FOR_EACH_BB_FN (bb, cfun)
998 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
1000 next = NEXT_INSN (insn);
1001 if (INSN_P (insn) && noop_move_p (insn))
1003 if (dump_file)
1004 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1006 edges_deleted |= delete_insn_and_edges (insn);
1011 return edges_deleted;
1015 /* Return false if we do not want to (or cannot) combine DEF. */
1016 static bool
1017 can_combine_def_p (df_ref def)
1019 /* Do not consider if it is pre/post modification in MEM. */
1020 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1021 return false;
1023 unsigned int regno = DF_REF_REGNO (def);
1025 /* Do not combine frame pointer adjustments. */
1026 if ((regno == FRAME_POINTER_REGNUM
1027 && (!reload_completed || frame_pointer_needed))
1028 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1029 && regno == HARD_FRAME_POINTER_REGNUM
1030 && (!reload_completed || frame_pointer_needed))
1031 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1032 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1033 return false;
1035 return true;
1038 /* Return false if we do not want to (or cannot) combine USE. */
1039 static bool
1040 can_combine_use_p (df_ref use)
1042 /* Do not consider the usage of the stack pointer by function call. */
1043 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1044 return false;
1046 return true;
1049 /* Fill in log links field for all insns. */
1051 static void
1052 create_log_links (void)
1054 basic_block bb;
1055 rtx_insn **next_use;
1056 rtx_insn *insn;
1057 df_ref def, use;
1059 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1061 /* Pass through each block from the end, recording the uses of each
1062 register and establishing log links when def is encountered.
1063 Note that we do not clear next_use array in order to save time,
1064 so we have to test whether the use is in the same basic block as def.
1066 There are a few cases below when we do not consider the definition or
1067 usage -- these are taken from original flow.c did. Don't ask me why it is
1068 done this way; I don't know and if it works, I don't want to know. */
1070 FOR_EACH_BB_FN (bb, cfun)
1072 FOR_BB_INSNS_REVERSE (bb, insn)
1074 if (!NONDEBUG_INSN_P (insn))
1075 continue;
1077 /* Log links are created only once. */
1078 gcc_assert (!LOG_LINKS (insn));
1080 FOR_EACH_INSN_DEF (def, insn)
1082 unsigned int regno = DF_REF_REGNO (def);
1083 rtx_insn *use_insn;
1085 if (!next_use[regno])
1086 continue;
1088 if (!can_combine_def_p (def))
1089 continue;
1091 use_insn = next_use[regno];
1092 next_use[regno] = NULL;
1094 if (BLOCK_FOR_INSN (use_insn) != bb)
1095 continue;
1097 /* flow.c claimed:
1099 We don't build a LOG_LINK for hard registers contained
1100 in ASM_OPERANDs. If these registers get replaced,
1101 we might wind up changing the semantics of the insn,
1102 even if reload can make what appear to be valid
1103 assignments later. */
1104 if (regno < FIRST_PSEUDO_REGISTER
1105 && asm_noperands (PATTERN (use_insn)) >= 0)
1106 continue;
1108 /* Don't add duplicate links between instructions. */
1109 struct insn_link *links;
1110 FOR_EACH_LOG_LINK (links, use_insn)
1111 if (insn == links->insn && regno == links->regno)
1112 break;
1114 if (!links)
1115 LOG_LINKS (use_insn)
1116 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1119 FOR_EACH_INSN_USE (use, insn)
1120 if (can_combine_use_p (use))
1121 next_use[DF_REF_REGNO (use)] = insn;
1125 free (next_use);
1128 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1129 true if we found a LOG_LINK that proves that A feeds B. This only works
1130 if there are no instructions between A and B which could have a link
1131 depending on A, since in that case we would not record a link for B.
1132 We also check the implicit dependency created by a cc0 setter/user
1133 pair. */
1135 static bool
1136 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1138 struct insn_link *links;
1139 FOR_EACH_LOG_LINK (links, b)
1140 if (links->insn == a)
1141 return true;
1142 if (HAVE_cc0 && sets_cc0_p (a))
1143 return true;
1144 return false;
1147 /* Main entry point for combiner. F is the first insn of the function.
1148 NREGS is the first unused pseudo-reg number.
1150 Return nonzero if the CFG was changed (e.g. if the combiner has
1151 turned an indirect jump instruction into a direct jump). */
1152 static int
1153 combine_instructions (rtx_insn *f, unsigned int nregs)
1155 rtx_insn *insn, *next;
1156 rtx_insn *prev;
1157 struct insn_link *links, *nextlinks;
1158 rtx_insn *first;
1159 basic_block last_bb;
1161 int new_direct_jump_p = 0;
1163 for (first = f; first && !NONDEBUG_INSN_P (first); )
1164 first = NEXT_INSN (first);
1165 if (!first)
1166 return 0;
1168 combine_attempts = 0;
1169 combine_merges = 0;
1170 combine_extras = 0;
1171 combine_successes = 0;
1173 rtl_hooks = combine_rtl_hooks;
1175 reg_stat.safe_grow_cleared (nregs, true);
1177 init_recog_no_volatile ();
1179 /* Allocate array for insn info. */
1180 max_uid_known = get_max_uid ();
1181 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1182 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1183 gcc_obstack_init (&insn_link_obstack);
1185 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1187 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1188 problems when, for example, we have j <<= 1 in a loop. */
1190 nonzero_sign_valid = 0;
1191 label_tick = label_tick_ebb_start = 1;
1193 /* Scan all SETs and see if we can deduce anything about what
1194 bits are known to be zero for some registers and how many copies
1195 of the sign bit are known to exist for those registers.
1197 Also set any known values so that we can use it while searching
1198 for what bits are known to be set. */
1200 setup_incoming_promotions (first);
1201 /* Allow the entry block and the first block to fall into the same EBB.
1202 Conceptually the incoming promotions are assigned to the entry block. */
1203 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1205 create_log_links ();
1206 FOR_EACH_BB_FN (this_basic_block, cfun)
1208 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1209 last_call_luid = 0;
1210 mem_last_set = -1;
1212 label_tick++;
1213 if (!single_pred_p (this_basic_block)
1214 || single_pred (this_basic_block) != last_bb)
1215 label_tick_ebb_start = label_tick;
1216 last_bb = this_basic_block;
1218 FOR_BB_INSNS (this_basic_block, insn)
1219 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1221 rtx links;
1223 subst_low_luid = DF_INSN_LUID (insn);
1224 subst_insn = insn;
1226 note_stores (insn, set_nonzero_bits_and_sign_copies, insn);
1227 record_dead_and_set_regs (insn);
1229 if (AUTO_INC_DEC)
1230 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1231 if (REG_NOTE_KIND (links) == REG_INC)
1232 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1233 insn);
1235 /* Record the current insn_cost of this instruction. */
1236 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1237 if (dump_file)
1239 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1240 dump_insn_slim (dump_file, insn);
1245 nonzero_sign_valid = 1;
1247 /* Now scan all the insns in forward order. */
1248 label_tick = label_tick_ebb_start = 1;
1249 init_reg_last ();
1250 setup_incoming_promotions (first);
1251 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1252 int max_combine = param_max_combine_insns;
1254 FOR_EACH_BB_FN (this_basic_block, cfun)
1256 rtx_insn *last_combined_insn = NULL;
1258 /* Ignore instruction combination in basic blocks that are going to
1259 be removed as unreachable anyway. See PR82386. */
1260 if (EDGE_COUNT (this_basic_block->preds) == 0)
1261 continue;
1263 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1264 last_call_luid = 0;
1265 mem_last_set = -1;
1267 label_tick++;
1268 if (!single_pred_p (this_basic_block)
1269 || single_pred (this_basic_block) != last_bb)
1270 label_tick_ebb_start = label_tick;
1271 last_bb = this_basic_block;
1273 rtl_profile_for_bb (this_basic_block);
1274 for (insn = BB_HEAD (this_basic_block);
1275 insn != NEXT_INSN (BB_END (this_basic_block));
1276 insn = next ? next : NEXT_INSN (insn))
1278 next = 0;
1279 if (!NONDEBUG_INSN_P (insn))
1280 continue;
1282 while (last_combined_insn
1283 && (!NONDEBUG_INSN_P (last_combined_insn)
1284 || last_combined_insn->deleted ()))
1285 last_combined_insn = PREV_INSN (last_combined_insn);
1286 if (last_combined_insn == NULL_RTX
1287 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1288 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1289 last_combined_insn = insn;
1291 /* See if we know about function return values before this
1292 insn based upon SUBREG flags. */
1293 check_promoted_subreg (insn, PATTERN (insn));
1295 /* See if we can find hardregs and subreg of pseudos in
1296 narrower modes. This could help turning TRUNCATEs
1297 into SUBREGs. */
1298 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1300 /* Try this insn with each insn it links back to. */
1302 FOR_EACH_LOG_LINK (links, insn)
1303 if ((next = try_combine (insn, links->insn, NULL,
1304 NULL, &new_direct_jump_p,
1305 last_combined_insn)) != 0)
1307 statistics_counter_event (cfun, "two-insn combine", 1);
1308 goto retry;
1311 /* Try each sequence of three linked insns ending with this one. */
1313 if (max_combine >= 3)
1314 FOR_EACH_LOG_LINK (links, insn)
1316 rtx_insn *link = links->insn;
1318 /* If the linked insn has been replaced by a note, then there
1319 is no point in pursuing this chain any further. */
1320 if (NOTE_P (link))
1321 continue;
1323 FOR_EACH_LOG_LINK (nextlinks, link)
1324 if ((next = try_combine (insn, link, nextlinks->insn,
1325 NULL, &new_direct_jump_p,
1326 last_combined_insn)) != 0)
1328 statistics_counter_event (cfun, "three-insn combine", 1);
1329 goto retry;
1333 /* Try to combine a jump insn that uses CC0
1334 with a preceding insn that sets CC0, and maybe with its
1335 logical predecessor as well.
1336 This is how we make decrement-and-branch insns.
1337 We need this special code because data flow connections
1338 via CC0 do not get entered in LOG_LINKS. */
1340 if (HAVE_cc0
1341 && JUMP_P (insn)
1342 && (prev = prev_nonnote_insn (insn)) != 0
1343 && NONJUMP_INSN_P (prev)
1344 && sets_cc0_p (PATTERN (prev)))
1346 if ((next = try_combine (insn, prev, NULL, NULL,
1347 &new_direct_jump_p,
1348 last_combined_insn)) != 0)
1349 goto retry;
1351 FOR_EACH_LOG_LINK (nextlinks, prev)
1352 if ((next = try_combine (insn, prev, nextlinks->insn,
1353 NULL, &new_direct_jump_p,
1354 last_combined_insn)) != 0)
1355 goto retry;
1358 /* Do the same for an insn that explicitly references CC0. */
1359 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1360 && (prev = prev_nonnote_insn (insn)) != 0
1361 && NONJUMP_INSN_P (prev)
1362 && sets_cc0_p (PATTERN (prev))
1363 && GET_CODE (PATTERN (insn)) == SET
1364 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1366 if ((next = try_combine (insn, prev, NULL, NULL,
1367 &new_direct_jump_p,
1368 last_combined_insn)) != 0)
1369 goto retry;
1371 FOR_EACH_LOG_LINK (nextlinks, prev)
1372 if ((next = try_combine (insn, prev, nextlinks->insn,
1373 NULL, &new_direct_jump_p,
1374 last_combined_insn)) != 0)
1375 goto retry;
1378 /* Finally, see if any of the insns that this insn links to
1379 explicitly references CC0. If so, try this insn, that insn,
1380 and its predecessor if it sets CC0. */
1381 if (HAVE_cc0)
1383 FOR_EACH_LOG_LINK (links, insn)
1384 if (NONJUMP_INSN_P (links->insn)
1385 && GET_CODE (PATTERN (links->insn)) == SET
1386 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1387 && (prev = prev_nonnote_insn (links->insn)) != 0
1388 && NONJUMP_INSN_P (prev)
1389 && sets_cc0_p (PATTERN (prev))
1390 && (next = try_combine (insn, links->insn,
1391 prev, NULL, &new_direct_jump_p,
1392 last_combined_insn)) != 0)
1393 goto retry;
1396 /* Try combining an insn with two different insns whose results it
1397 uses. */
1398 if (max_combine >= 3)
1399 FOR_EACH_LOG_LINK (links, insn)
1400 for (nextlinks = links->next; nextlinks;
1401 nextlinks = nextlinks->next)
1402 if ((next = try_combine (insn, links->insn,
1403 nextlinks->insn, NULL,
1404 &new_direct_jump_p,
1405 last_combined_insn)) != 0)
1408 statistics_counter_event (cfun, "three-insn combine", 1);
1409 goto retry;
1412 /* Try four-instruction combinations. */
1413 if (max_combine >= 4)
1414 FOR_EACH_LOG_LINK (links, insn)
1416 struct insn_link *next1;
1417 rtx_insn *link = links->insn;
1419 /* If the linked insn has been replaced by a note, then there
1420 is no point in pursuing this chain any further. */
1421 if (NOTE_P (link))
1422 continue;
1424 FOR_EACH_LOG_LINK (next1, link)
1426 rtx_insn *link1 = next1->insn;
1427 if (NOTE_P (link1))
1428 continue;
1429 /* I0 -> I1 -> I2 -> I3. */
1430 FOR_EACH_LOG_LINK (nextlinks, link1)
1431 if ((next = try_combine (insn, link, link1,
1432 nextlinks->insn,
1433 &new_direct_jump_p,
1434 last_combined_insn)) != 0)
1436 statistics_counter_event (cfun, "four-insn combine", 1);
1437 goto retry;
1439 /* I0, I1 -> I2, I2 -> I3. */
1440 for (nextlinks = next1->next; nextlinks;
1441 nextlinks = nextlinks->next)
1442 if ((next = try_combine (insn, link, link1,
1443 nextlinks->insn,
1444 &new_direct_jump_p,
1445 last_combined_insn)) != 0)
1447 statistics_counter_event (cfun, "four-insn combine", 1);
1448 goto retry;
1452 for (next1 = links->next; next1; next1 = next1->next)
1454 rtx_insn *link1 = next1->insn;
1455 if (NOTE_P (link1))
1456 continue;
1457 /* I0 -> I2; I1, I2 -> I3. */
1458 FOR_EACH_LOG_LINK (nextlinks, link)
1459 if ((next = try_combine (insn, link, link1,
1460 nextlinks->insn,
1461 &new_direct_jump_p,
1462 last_combined_insn)) != 0)
1464 statistics_counter_event (cfun, "four-insn combine", 1);
1465 goto retry;
1467 /* I0 -> I1; I1, I2 -> I3. */
1468 FOR_EACH_LOG_LINK (nextlinks, link1)
1469 if ((next = try_combine (insn, link, link1,
1470 nextlinks->insn,
1471 &new_direct_jump_p,
1472 last_combined_insn)) != 0)
1474 statistics_counter_event (cfun, "four-insn combine", 1);
1475 goto retry;
1480 /* Try this insn with each REG_EQUAL note it links back to. */
1481 FOR_EACH_LOG_LINK (links, insn)
1483 rtx set, note;
1484 rtx_insn *temp = links->insn;
1485 if ((set = single_set (temp)) != 0
1486 && (note = find_reg_equal_equiv_note (temp)) != 0
1487 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1488 && ! side_effects_p (SET_SRC (set))
1489 /* Avoid using a register that may already been marked
1490 dead by an earlier instruction. */
1491 && ! unmentioned_reg_p (note, SET_SRC (set))
1492 && (GET_MODE (note) == VOIDmode
1493 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1494 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1495 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1496 || (GET_MODE (XEXP (SET_DEST (set), 0))
1497 == GET_MODE (note))))))
1499 /* Temporarily replace the set's source with the
1500 contents of the REG_EQUAL note. The insn will
1501 be deleted or recognized by try_combine. */
1502 rtx orig_src = SET_SRC (set);
1503 rtx orig_dest = SET_DEST (set);
1504 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1505 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1506 SET_SRC (set) = note;
1507 i2mod = temp;
1508 i2mod_old_rhs = copy_rtx (orig_src);
1509 i2mod_new_rhs = copy_rtx (note);
1510 next = try_combine (insn, i2mod, NULL, NULL,
1511 &new_direct_jump_p,
1512 last_combined_insn);
1513 i2mod = NULL;
1514 if (next)
1516 statistics_counter_event (cfun, "insn-with-note combine", 1);
1517 goto retry;
1519 SET_SRC (set) = orig_src;
1520 SET_DEST (set) = orig_dest;
1524 if (!NOTE_P (insn))
1525 record_dead_and_set_regs (insn);
1527 retry:
1532 default_rtl_profile ();
1533 clear_bb_flags ();
1534 new_direct_jump_p |= purge_all_dead_edges ();
1535 new_direct_jump_p |= delete_noop_moves ();
1537 /* Clean up. */
1538 obstack_free (&insn_link_obstack, NULL);
1539 free (uid_log_links);
1540 free (uid_insn_cost);
1541 reg_stat.release ();
1544 struct undo *undo, *next;
1545 for (undo = undobuf.frees; undo; undo = next)
1547 next = undo->next;
1548 free (undo);
1550 undobuf.frees = 0;
1553 total_attempts += combine_attempts;
1554 total_merges += combine_merges;
1555 total_extras += combine_extras;
1556 total_successes += combine_successes;
1558 nonzero_sign_valid = 0;
1559 rtl_hooks = general_rtl_hooks;
1561 /* Make recognizer allow volatile MEMs again. */
1562 init_recog ();
1564 return new_direct_jump_p;
1567 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1569 static void
1570 init_reg_last (void)
1572 unsigned int i;
1573 reg_stat_type *p;
1575 FOR_EACH_VEC_ELT (reg_stat, i, p)
1576 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1579 /* Set up any promoted values for incoming argument registers. */
1581 static void
1582 setup_incoming_promotions (rtx_insn *first)
1584 tree arg;
1585 bool strictly_local = false;
1587 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1588 arg = DECL_CHAIN (arg))
1590 rtx x, reg = DECL_INCOMING_RTL (arg);
1591 int uns1, uns3;
1592 machine_mode mode1, mode2, mode3, mode4;
1594 /* Only continue if the incoming argument is in a register. */
1595 if (!REG_P (reg))
1596 continue;
1598 /* Determine, if possible, whether all call sites of the current
1599 function lie within the current compilation unit. (This does
1600 take into account the exporting of a function via taking its
1601 address, and so forth.) */
1602 strictly_local
1603 = cgraph_node::local_info_node (current_function_decl)->local;
1605 /* The mode and signedness of the argument before any promotions happen
1606 (equal to the mode of the pseudo holding it at that stage). */
1607 mode1 = TYPE_MODE (TREE_TYPE (arg));
1608 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1610 /* The mode and signedness of the argument after any source language and
1611 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1612 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1613 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1615 /* The mode and signedness of the argument as it is actually passed,
1616 see assign_parm_setup_reg in function.c. */
1617 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1618 TREE_TYPE (cfun->decl), 0);
1620 /* The mode of the register in which the argument is being passed. */
1621 mode4 = GET_MODE (reg);
1623 /* Eliminate sign extensions in the callee when:
1624 (a) A mode promotion has occurred; */
1625 if (mode1 == mode3)
1626 continue;
1627 /* (b) The mode of the register is the same as the mode of
1628 the argument as it is passed; */
1629 if (mode3 != mode4)
1630 continue;
1631 /* (c) There's no language level extension; */
1632 if (mode1 == mode2)
1634 /* (c.1) All callers are from the current compilation unit. If that's
1635 the case we don't have to rely on an ABI, we only have to know
1636 what we're generating right now, and we know that we will do the
1637 mode1 to mode2 promotion with the given sign. */
1638 else if (!strictly_local)
1639 continue;
1640 /* (c.2) The combination of the two promotions is useful. This is
1641 true when the signs match, or if the first promotion is unsigned.
1642 In the later case, (sign_extend (zero_extend x)) is the same as
1643 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1644 else if (uns1)
1645 uns3 = true;
1646 else if (uns3)
1647 continue;
1649 /* Record that the value was promoted from mode1 to mode3,
1650 so that any sign extension at the head of the current
1651 function may be eliminated. */
1652 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1653 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1654 record_value_for_reg (reg, first, x);
1658 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1659 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1660 because some machines (maybe most) will actually do the sign-extension and
1661 this is the conservative approach.
1663 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1664 kludge. */
1666 static rtx
1667 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1669 scalar_int_mode int_mode;
1670 if (CONST_INT_P (src)
1671 && is_a <scalar_int_mode> (mode, &int_mode)
1672 && GET_MODE_PRECISION (int_mode) < prec
1673 && INTVAL (src) > 0
1674 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1675 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1677 return src;
1680 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1681 and SET. */
1683 static void
1684 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1685 rtx x)
1687 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1688 unsigned HOST_WIDE_INT bits = 0;
1689 rtx reg_equal = NULL, src = SET_SRC (set);
1690 unsigned int num = 0;
1692 if (reg_equal_note)
1693 reg_equal = XEXP (reg_equal_note, 0);
1695 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1697 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1698 if (reg_equal)
1699 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1702 /* Don't call nonzero_bits if it cannot change anything. */
1703 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1705 machine_mode mode = GET_MODE (x);
1706 if (GET_MODE_CLASS (mode) == MODE_INT
1707 && HWI_COMPUTABLE_MODE_P (mode))
1708 mode = nonzero_bits_mode;
1709 bits = nonzero_bits (src, mode);
1710 if (reg_equal && bits)
1711 bits &= nonzero_bits (reg_equal, mode);
1712 rsp->nonzero_bits |= bits;
1715 /* Don't call num_sign_bit_copies if it cannot change anything. */
1716 if (rsp->sign_bit_copies != 1)
1718 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1719 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1721 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1722 if (num == 0 || numeq > num)
1723 num = numeq;
1725 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1726 rsp->sign_bit_copies = num;
1730 /* Called via note_stores. If X is a pseudo that is narrower than
1731 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1733 If we are setting only a portion of X and we can't figure out what
1734 portion, assume all bits will be used since we don't know what will
1735 be happening.
1737 Similarly, set how many bits of X are known to be copies of the sign bit
1738 at all locations in the function. This is the smallest number implied
1739 by any set of X. */
1741 static void
1742 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1744 rtx_insn *insn = (rtx_insn *) data;
1745 scalar_int_mode mode;
1747 if (REG_P (x)
1748 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1749 /* If this register is undefined at the start of the file, we can't
1750 say what its contents were. */
1751 && ! REGNO_REG_SET_P
1752 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1753 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1754 && HWI_COMPUTABLE_MODE_P (mode))
1756 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1758 if (set == 0 || GET_CODE (set) == CLOBBER)
1760 rsp->nonzero_bits = GET_MODE_MASK (mode);
1761 rsp->sign_bit_copies = 1;
1762 return;
1765 /* If this register is being initialized using itself, and the
1766 register is uninitialized in this basic block, and there are
1767 no LOG_LINKS which set the register, then part of the
1768 register is uninitialized. In that case we can't assume
1769 anything about the number of nonzero bits.
1771 ??? We could do better if we checked this in
1772 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1773 could avoid making assumptions about the insn which initially
1774 sets the register, while still using the information in other
1775 insns. We would have to be careful to check every insn
1776 involved in the combination. */
1778 if (insn
1779 && reg_referenced_p (x, PATTERN (insn))
1780 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1781 REGNO (x)))
1783 struct insn_link *link;
1785 FOR_EACH_LOG_LINK (link, insn)
1786 if (dead_or_set_p (link->insn, x))
1787 break;
1788 if (!link)
1790 rsp->nonzero_bits = GET_MODE_MASK (mode);
1791 rsp->sign_bit_copies = 1;
1792 return;
1796 /* If this is a complex assignment, see if we can convert it into a
1797 simple assignment. */
1798 set = expand_field_assignment (set);
1800 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1801 set what we know about X. */
1803 if (SET_DEST (set) == x
1804 || (paradoxical_subreg_p (SET_DEST (set))
1805 && SUBREG_REG (SET_DEST (set)) == x))
1806 update_rsp_from_reg_equal (rsp, insn, set, x);
1807 else
1809 rsp->nonzero_bits = GET_MODE_MASK (mode);
1810 rsp->sign_bit_copies = 1;
1815 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1816 optionally insns that were previously combined into I3 or that will be
1817 combined into the merger of INSN and I3. The order is PRED, PRED2,
1818 INSN, SUCC, SUCC2, I3.
1820 Return 0 if the combination is not allowed for any reason.
1822 If the combination is allowed, *PDEST will be set to the single
1823 destination of INSN and *PSRC to the single source, and this function
1824 will return 1. */
1826 static int
1827 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1828 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1829 rtx *pdest, rtx *psrc)
1831 int i;
1832 const_rtx set = 0;
1833 rtx src, dest;
1834 rtx_insn *p;
1835 rtx link;
1836 bool all_adjacent = true;
1837 int (*is_volatile_p) (const_rtx);
1839 if (succ)
1841 if (succ2)
1843 if (next_active_insn (succ2) != i3)
1844 all_adjacent = false;
1845 if (next_active_insn (succ) != succ2)
1846 all_adjacent = false;
1848 else if (next_active_insn (succ) != i3)
1849 all_adjacent = false;
1850 if (next_active_insn (insn) != succ)
1851 all_adjacent = false;
1853 else if (next_active_insn (insn) != i3)
1854 all_adjacent = false;
1856 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1857 or a PARALLEL consisting of such a SET and CLOBBERs.
1859 If INSN has CLOBBER parallel parts, ignore them for our processing.
1860 By definition, these happen during the execution of the insn. When it
1861 is merged with another insn, all bets are off. If they are, in fact,
1862 needed and aren't also supplied in I3, they may be added by
1863 recog_for_combine. Otherwise, it won't match.
1865 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1866 note.
1868 Get the source and destination of INSN. If more than one, can't
1869 combine. */
1871 if (GET_CODE (PATTERN (insn)) == SET)
1872 set = PATTERN (insn);
1873 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1874 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1876 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1878 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1880 switch (GET_CODE (elt))
1882 /* This is important to combine floating point insns
1883 for the SH4 port. */
1884 case USE:
1885 /* Combining an isolated USE doesn't make sense.
1886 We depend here on combinable_i3pat to reject them. */
1887 /* The code below this loop only verifies that the inputs of
1888 the SET in INSN do not change. We call reg_set_between_p
1889 to verify that the REG in the USE does not change between
1890 I3 and INSN.
1891 If the USE in INSN was for a pseudo register, the matching
1892 insn pattern will likely match any register; combining this
1893 with any other USE would only be safe if we knew that the
1894 used registers have identical values, or if there was
1895 something to tell them apart, e.g. different modes. For
1896 now, we forgo such complicated tests and simply disallow
1897 combining of USES of pseudo registers with any other USE. */
1898 if (REG_P (XEXP (elt, 0))
1899 && GET_CODE (PATTERN (i3)) == PARALLEL)
1901 rtx i3pat = PATTERN (i3);
1902 int i = XVECLEN (i3pat, 0) - 1;
1903 unsigned int regno = REGNO (XEXP (elt, 0));
1907 rtx i3elt = XVECEXP (i3pat, 0, i);
1909 if (GET_CODE (i3elt) == USE
1910 && REG_P (XEXP (i3elt, 0))
1911 && (REGNO (XEXP (i3elt, 0)) == regno
1912 ? reg_set_between_p (XEXP (elt, 0),
1913 PREV_INSN (insn), i3)
1914 : regno >= FIRST_PSEUDO_REGISTER))
1915 return 0;
1917 while (--i >= 0);
1919 break;
1921 /* We can ignore CLOBBERs. */
1922 case CLOBBER:
1923 break;
1925 case SET:
1926 /* Ignore SETs whose result isn't used but not those that
1927 have side-effects. */
1928 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1929 && insn_nothrow_p (insn)
1930 && !side_effects_p (elt))
1931 break;
1933 /* If we have already found a SET, this is a second one and
1934 so we cannot combine with this insn. */
1935 if (set)
1936 return 0;
1938 set = elt;
1939 break;
1941 default:
1942 /* Anything else means we can't combine. */
1943 return 0;
1947 if (set == 0
1948 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1949 so don't do anything with it. */
1950 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1951 return 0;
1953 else
1954 return 0;
1956 if (set == 0)
1957 return 0;
1959 /* The simplification in expand_field_assignment may call back to
1960 get_last_value, so set safe guard here. */
1961 subst_low_luid = DF_INSN_LUID (insn);
1963 set = expand_field_assignment (set);
1964 src = SET_SRC (set), dest = SET_DEST (set);
1966 /* Do not eliminate user-specified register if it is in an
1967 asm input because we may break the register asm usage defined
1968 in GCC manual if allow to do so.
1969 Be aware that this may cover more cases than we expect but this
1970 should be harmless. */
1971 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1972 && extract_asm_operands (PATTERN (i3)))
1973 return 0;
1975 /* Don't eliminate a store in the stack pointer. */
1976 if (dest == stack_pointer_rtx
1977 /* Don't combine with an insn that sets a register to itself if it has
1978 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1979 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1980 /* Can't merge an ASM_OPERANDS. */
1981 || GET_CODE (src) == ASM_OPERANDS
1982 /* Can't merge a function call. */
1983 || GET_CODE (src) == CALL
1984 /* Don't eliminate a function call argument. */
1985 || (CALL_P (i3)
1986 && (find_reg_fusage (i3, USE, dest)
1987 || (REG_P (dest)
1988 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1989 && global_regs[REGNO (dest)])))
1990 /* Don't substitute into an incremented register. */
1991 || FIND_REG_INC_NOTE (i3, dest)
1992 || (succ && FIND_REG_INC_NOTE (succ, dest))
1993 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1994 /* Don't substitute into a non-local goto, this confuses CFG. */
1995 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1996 /* Make sure that DEST is not used after INSN but before SUCC, or
1997 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1998 || (!all_adjacent
1999 && ((succ2
2000 && (reg_used_between_p (dest, succ2, i3)
2001 || reg_used_between_p (dest, succ, succ2)))
2002 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
2003 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
2004 || (succ
2005 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
2006 that case SUCC is not in the insn stream, so use SUCC2
2007 instead for this test. */
2008 && reg_used_between_p (dest, insn,
2009 succ2
2010 && INSN_UID (succ) == INSN_UID (succ2)
2011 ? succ2 : succ))))
2012 /* Make sure that the value that is to be substituted for the register
2013 does not use any registers whose values alter in between. However,
2014 If the insns are adjacent, a use can't cross a set even though we
2015 think it might (this can happen for a sequence of insns each setting
2016 the same destination; last_set of that register might point to
2017 a NOTE). If INSN has a REG_EQUIV note, the register is always
2018 equivalent to the memory so the substitution is valid even if there
2019 are intervening stores. Also, don't move a volatile asm or
2020 UNSPEC_VOLATILE across any other insns. */
2021 || (! all_adjacent
2022 && (((!MEM_P (src)
2023 || ! find_reg_note (insn, REG_EQUIV, src))
2024 && modified_between_p (src, insn, i3))
2025 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2026 || GET_CODE (src) == UNSPEC_VOLATILE))
2027 /* Don't combine across a CALL_INSN, because that would possibly
2028 change whether the life span of some REGs crosses calls or not,
2029 and it is a pain to update that information.
2030 Exception: if source is a constant, moving it later can't hurt.
2031 Accept that as a special case. */
2032 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2033 return 0;
2035 /* DEST must either be a REG or CC0. */
2036 if (REG_P (dest))
2038 /* If register alignment is being enforced for multi-word items in all
2039 cases except for parameters, it is possible to have a register copy
2040 insn referencing a hard register that is not allowed to contain the
2041 mode being copied and which would not be valid as an operand of most
2042 insns. Eliminate this problem by not combining with such an insn.
2044 Also, on some machines we don't want to extend the life of a hard
2045 register. */
2047 if (REG_P (src)
2048 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2049 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2050 /* Don't extend the life of a hard register unless it is
2051 user variable (if we have few registers) or it can't
2052 fit into the desired register (meaning something special
2053 is going on).
2054 Also avoid substituting a return register into I3, because
2055 reload can't handle a conflict with constraints of other
2056 inputs. */
2057 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2058 && !targetm.hard_regno_mode_ok (REGNO (src),
2059 GET_MODE (src)))))
2060 return 0;
2062 else if (GET_CODE (dest) != CC0)
2063 return 0;
2066 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2067 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2068 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2070 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2072 /* If the clobber represents an earlyclobber operand, we must not
2073 substitute an expression containing the clobbered register.
2074 As we do not analyze the constraint strings here, we have to
2075 make the conservative assumption. However, if the register is
2076 a fixed hard reg, the clobber cannot represent any operand;
2077 we leave it up to the machine description to either accept or
2078 reject use-and-clobber patterns. */
2079 if (!REG_P (reg)
2080 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2081 || !fixed_regs[REGNO (reg)])
2082 if (reg_overlap_mentioned_p (reg, src))
2083 return 0;
2086 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2087 or not), reject, unless nothing volatile comes between it and I3 */
2089 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2091 /* Make sure neither succ nor succ2 contains a volatile reference. */
2092 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2093 return 0;
2094 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2095 return 0;
2096 /* We'll check insns between INSN and I3 below. */
2099 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2100 to be an explicit register variable, and was chosen for a reason. */
2102 if (GET_CODE (src) == ASM_OPERANDS
2103 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2104 return 0;
2106 /* If INSN contains volatile references (specifically volatile MEMs),
2107 we cannot combine across any other volatile references.
2108 Even if INSN doesn't contain volatile references, any intervening
2109 volatile insn might affect machine state. */
2111 is_volatile_p = volatile_refs_p (PATTERN (insn))
2112 ? volatile_refs_p
2113 : volatile_insn_p;
2115 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2116 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2117 return 0;
2119 /* If INSN contains an autoincrement or autodecrement, make sure that
2120 register is not used between there and I3, and not already used in
2121 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2122 Also insist that I3 not be a jump if using LRA; if it were one
2123 and the incremented register were spilled, we would lose.
2124 Reload handles this correctly. */
2126 if (AUTO_INC_DEC)
2127 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2128 if (REG_NOTE_KIND (link) == REG_INC
2129 && ((JUMP_P (i3) && targetm.lra_p ())
2130 || reg_used_between_p (XEXP (link, 0), insn, i3)
2131 || (pred != NULL_RTX
2132 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2133 || (pred2 != NULL_RTX
2134 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2135 || (succ != NULL_RTX
2136 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2137 || (succ2 != NULL_RTX
2138 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2139 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2140 return 0;
2142 /* Don't combine an insn that follows a CC0-setting insn.
2143 An insn that uses CC0 must not be separated from the one that sets it.
2144 We do, however, allow I2 to follow a CC0-setting insn if that insn
2145 is passed as I1; in that case it will be deleted also.
2146 We also allow combining in this case if all the insns are adjacent
2147 because that would leave the two CC0 insns adjacent as well.
2148 It would be more logical to test whether CC0 occurs inside I1 or I2,
2149 but that would be much slower, and this ought to be equivalent. */
2151 if (HAVE_cc0)
2153 p = prev_nonnote_insn (insn);
2154 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2155 && ! all_adjacent)
2156 return 0;
2159 /* If we get here, we have passed all the tests and the combination is
2160 to be allowed. */
2162 *pdest = dest;
2163 *psrc = src;
2165 return 1;
2168 /* LOC is the location within I3 that contains its pattern or the component
2169 of a PARALLEL of the pattern. We validate that it is valid for combining.
2171 One problem is if I3 modifies its output, as opposed to replacing it
2172 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2173 doing so would produce an insn that is not equivalent to the original insns.
2175 Consider:
2177 (set (reg:DI 101) (reg:DI 100))
2178 (set (subreg:SI (reg:DI 101) 0) <foo>)
2180 This is NOT equivalent to:
2182 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2183 (set (reg:DI 101) (reg:DI 100))])
2185 Not only does this modify 100 (in which case it might still be valid
2186 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2188 We can also run into a problem if I2 sets a register that I1
2189 uses and I1 gets directly substituted into I3 (not via I2). In that
2190 case, we would be getting the wrong value of I2DEST into I3, so we
2191 must reject the combination. This case occurs when I2 and I1 both
2192 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2193 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2194 of a SET must prevent combination from occurring. The same situation
2195 can occur for I0, in which case I0_NOT_IN_SRC is set.
2197 Before doing the above check, we first try to expand a field assignment
2198 into a set of logical operations.
2200 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2201 we place a register that is both set and used within I3. If more than one
2202 such register is detected, we fail.
2204 Return 1 if the combination is valid, zero otherwise. */
2206 static int
2207 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2208 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2210 rtx x = *loc;
2212 if (GET_CODE (x) == SET)
2214 rtx set = x ;
2215 rtx dest = SET_DEST (set);
2216 rtx src = SET_SRC (set);
2217 rtx inner_dest = dest;
2218 rtx subdest;
2220 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2221 || GET_CODE (inner_dest) == SUBREG
2222 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2223 inner_dest = XEXP (inner_dest, 0);
2225 /* Check for the case where I3 modifies its output, as discussed
2226 above. We don't want to prevent pseudos from being combined
2227 into the address of a MEM, so only prevent the combination if
2228 i1 or i2 set the same MEM. */
2229 if ((inner_dest != dest &&
2230 (!MEM_P (inner_dest)
2231 || rtx_equal_p (i2dest, inner_dest)
2232 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2233 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2234 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2235 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2236 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2238 /* This is the same test done in can_combine_p except we can't test
2239 all_adjacent; we don't have to, since this instruction will stay
2240 in place, thus we are not considering increasing the lifetime of
2241 INNER_DEST.
2243 Also, if this insn sets a function argument, combining it with
2244 something that might need a spill could clobber a previous
2245 function argument; the all_adjacent test in can_combine_p also
2246 checks this; here, we do a more specific test for this case. */
2248 || (REG_P (inner_dest)
2249 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2250 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2251 GET_MODE (inner_dest)))
2252 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2253 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2254 return 0;
2256 /* If DEST is used in I3, it is being killed in this insn, so
2257 record that for later. We have to consider paradoxical
2258 subregs here, since they kill the whole register, but we
2259 ignore partial subregs, STRICT_LOW_PART, etc.
2260 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2261 STACK_POINTER_REGNUM, since these are always considered to be
2262 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2263 subdest = dest;
2264 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2265 subdest = SUBREG_REG (subdest);
2266 if (pi3dest_killed
2267 && REG_P (subdest)
2268 && reg_referenced_p (subdest, PATTERN (i3))
2269 && REGNO (subdest) != FRAME_POINTER_REGNUM
2270 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2271 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2272 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2273 || (REGNO (subdest) != ARG_POINTER_REGNUM
2274 || ! fixed_regs [REGNO (subdest)]))
2275 && REGNO (subdest) != STACK_POINTER_REGNUM)
2277 if (*pi3dest_killed)
2278 return 0;
2280 *pi3dest_killed = subdest;
2284 else if (GET_CODE (x) == PARALLEL)
2286 int i;
2288 for (i = 0; i < XVECLEN (x, 0); i++)
2289 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2290 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2291 return 0;
2294 return 1;
2297 /* Return 1 if X is an arithmetic expression that contains a multiplication
2298 and division. We don't count multiplications by powers of two here. */
2300 static int
2301 contains_muldiv (rtx x)
2303 switch (GET_CODE (x))
2305 case MOD: case DIV: case UMOD: case UDIV:
2306 return 1;
2308 case MULT:
2309 return ! (CONST_INT_P (XEXP (x, 1))
2310 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2311 default:
2312 if (BINARY_P (x))
2313 return contains_muldiv (XEXP (x, 0))
2314 || contains_muldiv (XEXP (x, 1));
2316 if (UNARY_P (x))
2317 return contains_muldiv (XEXP (x, 0));
2319 return 0;
2323 /* Determine whether INSN can be used in a combination. Return nonzero if
2324 not. This is used in try_combine to detect early some cases where we
2325 can't perform combinations. */
2327 static int
2328 cant_combine_insn_p (rtx_insn *insn)
2330 rtx set;
2331 rtx src, dest;
2333 /* If this isn't really an insn, we can't do anything.
2334 This can occur when flow deletes an insn that it has merged into an
2335 auto-increment address. */
2336 if (!NONDEBUG_INSN_P (insn))
2337 return 1;
2339 /* Never combine loads and stores involving hard regs that are likely
2340 to be spilled. The register allocator can usually handle such
2341 reg-reg moves by tying. If we allow the combiner to make
2342 substitutions of likely-spilled regs, reload might die.
2343 As an exception, we allow combinations involving fixed regs; these are
2344 not available to the register allocator so there's no risk involved. */
2346 set = single_set (insn);
2347 if (! set)
2348 return 0;
2349 src = SET_SRC (set);
2350 dest = SET_DEST (set);
2351 if (GET_CODE (src) == SUBREG)
2352 src = SUBREG_REG (src);
2353 if (GET_CODE (dest) == SUBREG)
2354 dest = SUBREG_REG (dest);
2355 if (REG_P (src) && REG_P (dest)
2356 && ((HARD_REGISTER_P (src)
2357 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2358 #ifdef LEAF_REGISTERS
2359 && ! LEAF_REGISTERS [REGNO (src)])
2360 #else
2362 #endif
2363 || (HARD_REGISTER_P (dest)
2364 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2365 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2366 return 1;
2368 return 0;
2371 struct likely_spilled_retval_info
2373 unsigned regno, nregs;
2374 unsigned mask;
2377 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2378 hard registers that are known to be written to / clobbered in full. */
2379 static void
2380 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2382 struct likely_spilled_retval_info *const info =
2383 (struct likely_spilled_retval_info *) data;
2384 unsigned regno, nregs;
2385 unsigned new_mask;
2387 if (!REG_P (XEXP (set, 0)))
2388 return;
2389 regno = REGNO (x);
2390 if (regno >= info->regno + info->nregs)
2391 return;
2392 nregs = REG_NREGS (x);
2393 if (regno + nregs <= info->regno)
2394 return;
2395 new_mask = (2U << (nregs - 1)) - 1;
2396 if (regno < info->regno)
2397 new_mask >>= info->regno - regno;
2398 else
2399 new_mask <<= regno - info->regno;
2400 info->mask &= ~new_mask;
2403 /* Return nonzero iff part of the return value is live during INSN, and
2404 it is likely spilled. This can happen when more than one insn is needed
2405 to copy the return value, e.g. when we consider to combine into the
2406 second copy insn for a complex value. */
2408 static int
2409 likely_spilled_retval_p (rtx_insn *insn)
2411 rtx_insn *use = BB_END (this_basic_block);
2412 rtx reg;
2413 rtx_insn *p;
2414 unsigned regno, nregs;
2415 /* We assume here that no machine mode needs more than
2416 32 hard registers when the value overlaps with a register
2417 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2418 unsigned mask;
2419 struct likely_spilled_retval_info info;
2421 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2422 return 0;
2423 reg = XEXP (PATTERN (use), 0);
2424 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2425 return 0;
2426 regno = REGNO (reg);
2427 nregs = REG_NREGS (reg);
2428 if (nregs == 1)
2429 return 0;
2430 mask = (2U << (nregs - 1)) - 1;
2432 /* Disregard parts of the return value that are set later. */
2433 info.regno = regno;
2434 info.nregs = nregs;
2435 info.mask = mask;
2436 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2437 if (INSN_P (p))
2438 note_stores (p, likely_spilled_retval_1, &info);
2439 mask = info.mask;
2441 /* Check if any of the (probably) live return value registers is
2442 likely spilled. */
2443 nregs --;
2446 if ((mask & 1 << nregs)
2447 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2448 return 1;
2449 } while (nregs--);
2450 return 0;
2453 /* Adjust INSN after we made a change to its destination.
2455 Changing the destination can invalidate notes that say something about
2456 the results of the insn and a LOG_LINK pointing to the insn. */
2458 static void
2459 adjust_for_new_dest (rtx_insn *insn)
2461 /* For notes, be conservative and simply remove them. */
2462 remove_reg_equal_equiv_notes (insn, true);
2464 /* The new insn will have a destination that was previously the destination
2465 of an insn just above it. Call distribute_links to make a LOG_LINK from
2466 the next use of that destination. */
2468 rtx set = single_set (insn);
2469 gcc_assert (set);
2471 rtx reg = SET_DEST (set);
2473 while (GET_CODE (reg) == ZERO_EXTRACT
2474 || GET_CODE (reg) == STRICT_LOW_PART
2475 || GET_CODE (reg) == SUBREG)
2476 reg = XEXP (reg, 0);
2477 gcc_assert (REG_P (reg));
2479 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2481 df_insn_rescan (insn);
2484 /* Return TRUE if combine can reuse reg X in mode MODE.
2485 ADDED_SETS is nonzero if the original set is still required. */
2486 static bool
2487 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2489 unsigned int regno;
2491 if (!REG_P (x))
2492 return false;
2494 /* Don't change between modes with different underlying register sizes,
2495 since this could lead to invalid subregs. */
2496 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2497 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2498 return false;
2500 regno = REGNO (x);
2501 /* Allow hard registers if the new mode is legal, and occupies no more
2502 registers than the old mode. */
2503 if (regno < FIRST_PSEUDO_REGISTER)
2504 return (targetm.hard_regno_mode_ok (regno, mode)
2505 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2507 /* Or a pseudo that is only used once. */
2508 return (regno < reg_n_sets_max
2509 && REG_N_SETS (regno) == 1
2510 && !added_sets
2511 && !REG_USERVAR_P (x));
2515 /* Check whether X, the destination of a set, refers to part of
2516 the register specified by REG. */
2518 static bool
2519 reg_subword_p (rtx x, rtx reg)
2521 /* Check that reg is an integer mode register. */
2522 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2523 return false;
2525 if (GET_CODE (x) == STRICT_LOW_PART
2526 || GET_CODE (x) == ZERO_EXTRACT)
2527 x = XEXP (x, 0);
2529 return GET_CODE (x) == SUBREG
2530 && SUBREG_REG (x) == reg
2531 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2534 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2535 Note that the INSN should be deleted *after* removing dead edges, so
2536 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2537 but not for a (set (pc) (label_ref FOO)). */
2539 static void
2540 update_cfg_for_uncondjump (rtx_insn *insn)
2542 basic_block bb = BLOCK_FOR_INSN (insn);
2543 gcc_assert (BB_END (bb) == insn);
2545 purge_dead_edges (bb);
2547 delete_insn (insn);
2548 if (EDGE_COUNT (bb->succs) == 1)
2550 rtx_insn *insn;
2552 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2554 /* Remove barriers from the footer if there are any. */
2555 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2556 if (BARRIER_P (insn))
2558 if (PREV_INSN (insn))
2559 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2560 else
2561 BB_FOOTER (bb) = NEXT_INSN (insn);
2562 if (NEXT_INSN (insn))
2563 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2565 else if (LABEL_P (insn))
2566 break;
2570 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2571 by an arbitrary number of CLOBBERs. */
2572 static bool
2573 is_parallel_of_n_reg_sets (rtx pat, int n)
2575 if (GET_CODE (pat) != PARALLEL)
2576 return false;
2578 int len = XVECLEN (pat, 0);
2579 if (len < n)
2580 return false;
2582 int i;
2583 for (i = 0; i < n; i++)
2584 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2585 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2586 return false;
2587 for ( ; i < len; i++)
2588 switch (GET_CODE (XVECEXP (pat, 0, i)))
2590 case CLOBBER:
2591 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2592 return false;
2593 break;
2594 default:
2595 return false;
2597 return true;
2600 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2601 CLOBBERs), can be split into individual SETs in that order, without
2602 changing semantics. */
2603 static bool
2604 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2606 if (!insn_nothrow_p (insn))
2607 return false;
2609 rtx pat = PATTERN (insn);
2611 int i, j;
2612 for (i = 0; i < n; i++)
2614 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2615 return false;
2617 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2619 for (j = i + 1; j < n; j++)
2620 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2621 return false;
2624 return true;
2627 /* Return whether X is just a single_set, with the source
2628 a general_operand. */
2629 static bool
2630 is_just_move (rtx_insn *x)
2632 rtx set = single_set (x);
2633 if (!set)
2634 return false;
2636 return general_operand (SET_SRC (set), VOIDmode);
2639 /* Callback function to count autoincs. */
2641 static int
2642 count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2644 (*((int *) arg))++;
2646 return 0;
2649 /* Try to combine the insns I0, I1 and I2 into I3.
2650 Here I0, I1 and I2 appear earlier than I3.
2651 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2654 If we are combining more than two insns and the resulting insn is not
2655 recognized, try splitting it into two insns. If that happens, I2 and I3
2656 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2657 Otherwise, I0, I1 and I2 are pseudo-deleted.
2659 Return 0 if the combination does not work. Then nothing is changed.
2660 If we did the combination, return the insn at which combine should
2661 resume scanning.
2663 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2664 new direct jump instruction.
2666 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2667 been I3 passed to an earlier try_combine within the same basic
2668 block. */
2670 static rtx_insn *
2671 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2672 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2674 /* New patterns for I3 and I2, respectively. */
2675 rtx newpat, newi2pat = 0;
2676 rtvec newpat_vec_with_clobbers = 0;
2677 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2678 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2679 dead. */
2680 int added_sets_0, added_sets_1, added_sets_2;
2681 /* Total number of SETs to put into I3. */
2682 int total_sets;
2683 /* Nonzero if I2's or I1's body now appears in I3. */
2684 int i2_is_used = 0, i1_is_used = 0;
2685 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2686 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2687 /* Contains I3 if the destination of I3 is used in its source, which means
2688 that the old life of I3 is being killed. If that usage is placed into
2689 I2 and not in I3, a REG_DEAD note must be made. */
2690 rtx i3dest_killed = 0;
2691 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2692 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2693 /* Copy of SET_SRC of I1 and I0, if needed. */
2694 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2695 /* Set if I2DEST was reused as a scratch register. */
2696 bool i2scratch = false;
2697 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2698 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2699 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2700 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2701 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2702 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2703 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2704 /* Notes that must be added to REG_NOTES in I3 and I2. */
2705 rtx new_i3_notes, new_i2_notes;
2706 /* Notes that we substituted I3 into I2 instead of the normal case. */
2707 int i3_subst_into_i2 = 0;
2708 /* Notes that I1, I2 or I3 is a MULT operation. */
2709 int have_mult = 0;
2710 int swap_i2i3 = 0;
2711 int split_i2i3 = 0;
2712 int changed_i3_dest = 0;
2713 bool i2_was_move = false, i3_was_move = false;
2714 int n_auto_inc = 0;
2716 int maxreg;
2717 rtx_insn *temp_insn;
2718 rtx temp_expr;
2719 struct insn_link *link;
2720 rtx other_pat = 0;
2721 rtx new_other_notes;
2722 int i;
2723 scalar_int_mode dest_mode, temp_mode;
2725 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2726 never be). */
2727 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2728 return 0;
2730 /* Only try four-insn combinations when there's high likelihood of
2731 success. Look for simple insns, such as loads of constants or
2732 binary operations involving a constant. */
2733 if (i0)
2735 int i;
2736 int ngood = 0;
2737 int nshift = 0;
2738 rtx set0, set3;
2740 if (!flag_expensive_optimizations)
2741 return 0;
2743 for (i = 0; i < 4; i++)
2745 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2746 rtx set = single_set (insn);
2747 rtx src;
2748 if (!set)
2749 continue;
2750 src = SET_SRC (set);
2751 if (CONSTANT_P (src))
2753 ngood += 2;
2754 break;
2756 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2757 ngood++;
2758 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2759 || GET_CODE (src) == LSHIFTRT)
2760 nshift++;
2763 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2764 are likely manipulating its value. Ideally we'll be able to combine
2765 all four insns into a bitfield insertion of some kind.
2767 Note the source in I0 might be inside a sign/zero extension and the
2768 memory modes in I0 and I3 might be different. So extract the address
2769 from the destination of I3 and search for it in the source of I0.
2771 In the event that there's a match but the source/dest do not actually
2772 refer to the same memory, the worst that happens is we try some
2773 combinations that we wouldn't have otherwise. */
2774 if ((set0 = single_set (i0))
2775 /* Ensure the source of SET0 is a MEM, possibly buried inside
2776 an extension. */
2777 && (GET_CODE (SET_SRC (set0)) == MEM
2778 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2779 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2780 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2781 && (set3 = single_set (i3))
2782 /* Ensure the destination of SET3 is a MEM. */
2783 && GET_CODE (SET_DEST (set3)) == MEM
2784 /* Would it be better to extract the base address for the MEM
2785 in SET3 and look for that? I don't have cases where it matters
2786 but I could envision such cases. */
2787 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2788 ngood += 2;
2790 if (ngood < 2 && nshift < 2)
2791 return 0;
2794 /* Exit early if one of the insns involved can't be used for
2795 combinations. */
2796 if (CALL_P (i2)
2797 || (i1 && CALL_P (i1))
2798 || (i0 && CALL_P (i0))
2799 || cant_combine_insn_p (i3)
2800 || cant_combine_insn_p (i2)
2801 || (i1 && cant_combine_insn_p (i1))
2802 || (i0 && cant_combine_insn_p (i0))
2803 || likely_spilled_retval_p (i3))
2804 return 0;
2806 combine_attempts++;
2807 undobuf.other_insn = 0;
2809 /* Reset the hard register usage information. */
2810 CLEAR_HARD_REG_SET (newpat_used_regs);
2812 if (dump_file && (dump_flags & TDF_DETAILS))
2814 if (i0)
2815 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2816 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2817 else if (i1)
2818 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2819 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2820 else
2821 fprintf (dump_file, "\nTrying %d -> %d:\n",
2822 INSN_UID (i2), INSN_UID (i3));
2824 if (i0)
2825 dump_insn_slim (dump_file, i0);
2826 if (i1)
2827 dump_insn_slim (dump_file, i1);
2828 dump_insn_slim (dump_file, i2);
2829 dump_insn_slim (dump_file, i3);
2832 /* If multiple insns feed into one of I2 or I3, they can be in any
2833 order. To simplify the code below, reorder them in sequence. */
2834 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2835 std::swap (i0, i2);
2836 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2837 std::swap (i0, i1);
2838 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2839 std::swap (i1, i2);
2841 added_links_insn = 0;
2842 added_notes_insn = 0;
2844 /* First check for one important special case that the code below will
2845 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2846 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2847 we may be able to replace that destination with the destination of I3.
2848 This occurs in the common code where we compute both a quotient and
2849 remainder into a structure, in which case we want to do the computation
2850 directly into the structure to avoid register-register copies.
2852 Note that this case handles both multiple sets in I2 and also cases
2853 where I2 has a number of CLOBBERs inside the PARALLEL.
2855 We make very conservative checks below and only try to handle the
2856 most common cases of this. For example, we only handle the case
2857 where I2 and I3 are adjacent to avoid making difficult register
2858 usage tests. */
2860 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2861 && REG_P (SET_SRC (PATTERN (i3)))
2862 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2863 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2864 && GET_CODE (PATTERN (i2)) == PARALLEL
2865 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2866 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2867 below would need to check what is inside (and reg_overlap_mentioned_p
2868 doesn't support those codes anyway). Don't allow those destinations;
2869 the resulting insn isn't likely to be recognized anyway. */
2870 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2871 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2872 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2873 SET_DEST (PATTERN (i3)))
2874 && next_active_insn (i2) == i3)
2876 rtx p2 = PATTERN (i2);
2878 /* Make sure that the destination of I3,
2879 which we are going to substitute into one output of I2,
2880 is not used within another output of I2. We must avoid making this:
2881 (parallel [(set (mem (reg 69)) ...)
2882 (set (reg 69) ...)])
2883 which is not well-defined as to order of actions.
2884 (Besides, reload can't handle output reloads for this.)
2886 The problem can also happen if the dest of I3 is a memory ref,
2887 if another dest in I2 is an indirect memory ref.
2889 Neither can this PARALLEL be an asm. We do not allow combining
2890 that usually (see can_combine_p), so do not here either. */
2891 bool ok = true;
2892 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2894 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2895 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2896 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2897 SET_DEST (XVECEXP (p2, 0, i))))
2898 ok = false;
2899 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2900 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2901 ok = false;
2904 if (ok)
2905 for (i = 0; i < XVECLEN (p2, 0); i++)
2906 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2907 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2909 combine_merges++;
2911 subst_insn = i3;
2912 subst_low_luid = DF_INSN_LUID (i2);
2914 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2915 i2src = SET_SRC (XVECEXP (p2, 0, i));
2916 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2917 i2dest_killed = dead_or_set_p (i2, i2dest);
2919 /* Replace the dest in I2 with our dest and make the resulting
2920 insn the new pattern for I3. Then skip to where we validate
2921 the pattern. Everything was set up above. */
2922 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2923 newpat = p2;
2924 i3_subst_into_i2 = 1;
2925 goto validate_replacement;
2929 /* If I2 is setting a pseudo to a constant and I3 is setting some
2930 sub-part of it to another constant, merge them by making a new
2931 constant. */
2932 if (i1 == 0
2933 && (temp_expr = single_set (i2)) != 0
2934 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2935 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2936 && GET_CODE (PATTERN (i3)) == SET
2937 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2938 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2940 rtx dest = SET_DEST (PATTERN (i3));
2941 rtx temp_dest = SET_DEST (temp_expr);
2942 int offset = -1;
2943 int width = 0;
2945 if (GET_CODE (dest) == ZERO_EXTRACT)
2947 if (CONST_INT_P (XEXP (dest, 1))
2948 && CONST_INT_P (XEXP (dest, 2))
2949 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2950 &dest_mode))
2952 width = INTVAL (XEXP (dest, 1));
2953 offset = INTVAL (XEXP (dest, 2));
2954 dest = XEXP (dest, 0);
2955 if (BITS_BIG_ENDIAN)
2956 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2959 else
2961 if (GET_CODE (dest) == STRICT_LOW_PART)
2962 dest = XEXP (dest, 0);
2963 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2965 width = GET_MODE_PRECISION (dest_mode);
2966 offset = 0;
2970 if (offset >= 0)
2972 /* If this is the low part, we're done. */
2973 if (subreg_lowpart_p (dest))
2975 /* Handle the case where inner is twice the size of outer. */
2976 else if (GET_MODE_PRECISION (temp_mode)
2977 == 2 * GET_MODE_PRECISION (dest_mode))
2978 offset += GET_MODE_PRECISION (dest_mode);
2979 /* Otherwise give up for now. */
2980 else
2981 offset = -1;
2984 if (offset >= 0)
2986 rtx inner = SET_SRC (PATTERN (i3));
2987 rtx outer = SET_SRC (temp_expr);
2989 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2990 rtx_mode_t (inner, dest_mode),
2991 offset, width);
2993 combine_merges++;
2994 subst_insn = i3;
2995 subst_low_luid = DF_INSN_LUID (i2);
2996 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2997 i2dest = temp_dest;
2998 i2dest_killed = dead_or_set_p (i2, i2dest);
3000 /* Replace the source in I2 with the new constant and make the
3001 resulting insn the new pattern for I3. Then skip to where we
3002 validate the pattern. Everything was set up above. */
3003 SUBST (SET_SRC (temp_expr),
3004 immed_wide_int_const (o, temp_mode));
3006 newpat = PATTERN (i2);
3008 /* The dest of I3 has been replaced with the dest of I2. */
3009 changed_i3_dest = 1;
3010 goto validate_replacement;
3014 /* If we have no I1 and I2 looks like:
3015 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
3016 (set Y OP)])
3017 make up a dummy I1 that is
3018 (set Y OP)
3019 and change I2 to be
3020 (set (reg:CC X) (compare:CC Y (const_int 0)))
3022 (We can ignore any trailing CLOBBERs.)
3024 This undoes a previous combination and allows us to match a branch-and-
3025 decrement insn. */
3027 if (!HAVE_cc0 && i1 == 0
3028 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3029 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
3030 == MODE_CC)
3031 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
3032 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
3033 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
3034 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
3035 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3036 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3038 /* We make I1 with the same INSN_UID as I2. This gives it
3039 the same DF_INSN_LUID for value tracking. Our fake I1 will
3040 never appear in the insn stream so giving it the same INSN_UID
3041 as I2 will not cause a problem. */
3043 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3044 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3045 -1, NULL_RTX);
3046 INSN_UID (i1) = INSN_UID (i2);
3048 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3049 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3050 SET_DEST (PATTERN (i1)));
3051 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3052 SUBST_LINK (LOG_LINKS (i2),
3053 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3056 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3057 make those two SETs separate I1 and I2 insns, and make an I0 that is
3058 the original I1. */
3059 if (!HAVE_cc0 && i0 == 0
3060 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3061 && can_split_parallel_of_n_reg_sets (i2, 2)
3062 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3063 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3064 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3065 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3067 /* If there is no I1, there is no I0 either. */
3068 i0 = i1;
3070 /* We make I1 with the same INSN_UID as I2. This gives it
3071 the same DF_INSN_LUID for value tracking. Our fake I1 will
3072 never appear in the insn stream so giving it the same INSN_UID
3073 as I2 will not cause a problem. */
3075 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3076 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3077 -1, NULL_RTX);
3078 INSN_UID (i1) = INSN_UID (i2);
3080 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3083 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3084 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3086 if (dump_file && (dump_flags & TDF_DETAILS))
3087 fprintf (dump_file, "Can't combine i2 into i3\n");
3088 undo_all ();
3089 return 0;
3091 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3093 if (dump_file && (dump_flags & TDF_DETAILS))
3094 fprintf (dump_file, "Can't combine i1 into i3\n");
3095 undo_all ();
3096 return 0;
3098 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3100 if (dump_file && (dump_flags & TDF_DETAILS))
3101 fprintf (dump_file, "Can't combine i0 into i3\n");
3102 undo_all ();
3103 return 0;
3106 /* Record whether i2 and i3 are trivial moves. */
3107 i2_was_move = is_just_move (i2);
3108 i3_was_move = is_just_move (i3);
3110 /* Record whether I2DEST is used in I2SRC and similarly for the other
3111 cases. Knowing this will help in register status updating below. */
3112 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3113 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3114 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3115 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3116 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3117 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3118 i2dest_killed = dead_or_set_p (i2, i2dest);
3119 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3120 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3122 /* For the earlier insns, determine which of the subsequent ones they
3123 feed. */
3124 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3125 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3126 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3127 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3128 && reg_overlap_mentioned_p (i0dest, i2src))));
3130 /* Ensure that I3's pattern can be the destination of combines. */
3131 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3132 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3133 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3134 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3135 &i3dest_killed))
3137 undo_all ();
3138 return 0;
3141 /* See if any of the insns is a MULT operation. Unless one is, we will
3142 reject a combination that is, since it must be slower. Be conservative
3143 here. */
3144 if (GET_CODE (i2src) == MULT
3145 || (i1 != 0 && GET_CODE (i1src) == MULT)
3146 || (i0 != 0 && GET_CODE (i0src) == MULT)
3147 || (GET_CODE (PATTERN (i3)) == SET
3148 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3149 have_mult = 1;
3151 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3152 We used to do this EXCEPT in one case: I3 has a post-inc in an
3153 output operand. However, that exception can give rise to insns like
3154 mov r3,(r3)+
3155 which is a famous insn on the PDP-11 where the value of r3 used as the
3156 source was model-dependent. Avoid this sort of thing. */
3158 #if 0
3159 if (!(GET_CODE (PATTERN (i3)) == SET
3160 && REG_P (SET_SRC (PATTERN (i3)))
3161 && MEM_P (SET_DEST (PATTERN (i3)))
3162 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3163 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3164 /* It's not the exception. */
3165 #endif
3166 if (AUTO_INC_DEC)
3168 rtx link;
3169 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3170 if (REG_NOTE_KIND (link) == REG_INC
3171 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3172 || (i1 != 0
3173 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3175 undo_all ();
3176 return 0;
3180 /* See if the SETs in I1 or I2 need to be kept around in the merged
3181 instruction: whenever the value set there is still needed past I3.
3182 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3184 For the SET in I1, we have two cases: if I1 and I2 independently feed
3185 into I3, the set in I1 needs to be kept around unless I1DEST dies
3186 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3187 in I1 needs to be kept around unless I1DEST dies or is set in either
3188 I2 or I3. The same considerations apply to I0. */
3190 added_sets_2 = !dead_or_set_p (i3, i2dest);
3192 if (i1)
3193 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3194 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3195 else
3196 added_sets_1 = 0;
3198 if (i0)
3199 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3200 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3201 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3202 && dead_or_set_p (i2, i0dest)));
3203 else
3204 added_sets_0 = 0;
3206 /* We are about to copy insns for the case where they need to be kept
3207 around. Check that they can be copied in the merged instruction. */
3209 if (targetm.cannot_copy_insn_p
3210 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3211 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3212 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3214 undo_all ();
3215 return 0;
3218 /* Count how many auto_inc expressions there were in the original insns;
3219 we need to have the same number in the resulting patterns. */
3221 if (i0)
3222 for_each_inc_dec (PATTERN (i0), count_auto_inc, &n_auto_inc);
3223 if (i1)
3224 for_each_inc_dec (PATTERN (i1), count_auto_inc, &n_auto_inc);
3225 for_each_inc_dec (PATTERN (i2), count_auto_inc, &n_auto_inc);
3226 for_each_inc_dec (PATTERN (i3), count_auto_inc, &n_auto_inc);
3228 /* If the set in I2 needs to be kept around, we must make a copy of
3229 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3230 PATTERN (I2), we are only substituting for the original I1DEST, not into
3231 an already-substituted copy. This also prevents making self-referential
3232 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3233 I2DEST. */
3235 if (added_sets_2)
3237 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3238 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3239 else
3240 i2pat = copy_rtx (PATTERN (i2));
3243 if (added_sets_1)
3245 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3246 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3247 else
3248 i1pat = copy_rtx (PATTERN (i1));
3251 if (added_sets_0)
3253 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3254 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3255 else
3256 i0pat = copy_rtx (PATTERN (i0));
3259 combine_merges++;
3261 /* Substitute in the latest insn for the regs set by the earlier ones. */
3263 maxreg = max_reg_num ();
3265 subst_insn = i3;
3267 /* Many machines that don't use CC0 have insns that can both perform an
3268 arithmetic operation and set the condition code. These operations will
3269 be represented as a PARALLEL with the first element of the vector
3270 being a COMPARE of an arithmetic operation with the constant zero.
3271 The second element of the vector will set some pseudo to the result
3272 of the same arithmetic operation. If we simplify the COMPARE, we won't
3273 match such a pattern and so will generate an extra insn. Here we test
3274 for this case, where both the comparison and the operation result are
3275 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3276 I2SRC. Later we will make the PARALLEL that contains I2. */
3278 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3279 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3280 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3281 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3283 rtx newpat_dest;
3284 rtx *cc_use_loc = NULL;
3285 rtx_insn *cc_use_insn = NULL;
3286 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3287 machine_mode compare_mode, orig_compare_mode;
3288 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3289 scalar_int_mode mode;
3291 newpat = PATTERN (i3);
3292 newpat_dest = SET_DEST (newpat);
3293 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3295 if (undobuf.other_insn == 0
3296 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3297 &cc_use_insn)))
3299 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3300 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3301 compare_code = simplify_compare_const (compare_code, mode,
3302 op0, &op1);
3303 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3306 /* Do the rest only if op1 is const0_rtx, which may be the
3307 result of simplification. */
3308 if (op1 == const0_rtx)
3310 /* If a single use of the CC is found, prepare to modify it
3311 when SELECT_CC_MODE returns a new CC-class mode, or when
3312 the above simplify_compare_const() returned a new comparison
3313 operator. undobuf.other_insn is assigned the CC use insn
3314 when modifying it. */
3315 if (cc_use_loc)
3317 #ifdef SELECT_CC_MODE
3318 machine_mode new_mode
3319 = SELECT_CC_MODE (compare_code, op0, op1);
3320 if (new_mode != orig_compare_mode
3321 && can_change_dest_mode (SET_DEST (newpat),
3322 added_sets_2, new_mode))
3324 unsigned int regno = REGNO (newpat_dest);
3325 compare_mode = new_mode;
3326 if (regno < FIRST_PSEUDO_REGISTER)
3327 newpat_dest = gen_rtx_REG (compare_mode, regno);
3328 else
3330 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3331 newpat_dest = regno_reg_rtx[regno];
3334 #endif
3335 /* Cases for modifying the CC-using comparison. */
3336 if (compare_code != orig_compare_code
3337 /* ??? Do we need to verify the zero rtx? */
3338 && XEXP (*cc_use_loc, 1) == const0_rtx)
3340 /* Replace cc_use_loc with entire new RTX. */
3341 SUBST (*cc_use_loc,
3342 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3343 newpat_dest, const0_rtx));
3344 undobuf.other_insn = cc_use_insn;
3346 else if (compare_mode != orig_compare_mode)
3348 /* Just replace the CC reg with a new mode. */
3349 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3350 undobuf.other_insn = cc_use_insn;
3354 /* Now we modify the current newpat:
3355 First, SET_DEST(newpat) is updated if the CC mode has been
3356 altered. For targets without SELECT_CC_MODE, this should be
3357 optimized away. */
3358 if (compare_mode != orig_compare_mode)
3359 SUBST (SET_DEST (newpat), newpat_dest);
3360 /* This is always done to propagate i2src into newpat. */
3361 SUBST (SET_SRC (newpat),
3362 gen_rtx_COMPARE (compare_mode, op0, op1));
3363 /* Create new version of i2pat if needed; the below PARALLEL
3364 creation needs this to work correctly. */
3365 if (! rtx_equal_p (i2src, op0))
3366 i2pat = gen_rtx_SET (i2dest, op0);
3367 i2_is_used = 1;
3371 if (i2_is_used == 0)
3373 /* It is possible that the source of I2 or I1 may be performing
3374 an unneeded operation, such as a ZERO_EXTEND of something
3375 that is known to have the high part zero. Handle that case
3376 by letting subst look at the inner insns.
3378 Another way to do this would be to have a function that tries
3379 to simplify a single insn instead of merging two or more
3380 insns. We don't do this because of the potential of infinite
3381 loops and because of the potential extra memory required.
3382 However, doing it the way we are is a bit of a kludge and
3383 doesn't catch all cases.
3385 But only do this if -fexpensive-optimizations since it slows
3386 things down and doesn't usually win.
3388 This is not done in the COMPARE case above because the
3389 unmodified I2PAT is used in the PARALLEL and so a pattern
3390 with a modified I2SRC would not match. */
3392 if (flag_expensive_optimizations)
3394 /* Pass pc_rtx so no substitutions are done, just
3395 simplifications. */
3396 if (i1)
3398 subst_low_luid = DF_INSN_LUID (i1);
3399 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3402 subst_low_luid = DF_INSN_LUID (i2);
3403 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3406 n_occurrences = 0; /* `subst' counts here */
3407 subst_low_luid = DF_INSN_LUID (i2);
3409 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3410 copy of I2SRC each time we substitute it, in order to avoid creating
3411 self-referential RTL when we will be substituting I1SRC for I1DEST
3412 later. Likewise if I0 feeds into I2, either directly or indirectly
3413 through I1, and I0DEST is in I0SRC. */
3414 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3415 (i1_feeds_i2_n && i1dest_in_i1src)
3416 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3417 && i0dest_in_i0src));
3418 substed_i2 = 1;
3420 /* Record whether I2's body now appears within I3's body. */
3421 i2_is_used = n_occurrences;
3424 /* If we already got a failure, don't try to do more. Otherwise, try to
3425 substitute I1 if we have it. */
3427 if (i1 && GET_CODE (newpat) != CLOBBER)
3429 /* Before we can do this substitution, we must redo the test done
3430 above (see detailed comments there) that ensures I1DEST isn't
3431 mentioned in any SETs in NEWPAT that are field assignments. */
3432 if (!combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3433 0, 0, 0))
3435 undo_all ();
3436 return 0;
3439 n_occurrences = 0;
3440 subst_low_luid = DF_INSN_LUID (i1);
3442 /* If the following substitution will modify I1SRC, make a copy of it
3443 for the case where it is substituted for I1DEST in I2PAT later. */
3444 if (added_sets_2 && i1_feeds_i2_n)
3445 i1src_copy = copy_rtx (i1src);
3447 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3448 copy of I1SRC each time we substitute it, in order to avoid creating
3449 self-referential RTL when we will be substituting I0SRC for I0DEST
3450 later. */
3451 newpat = subst (newpat, i1dest, i1src, 0, 0,
3452 i0_feeds_i1_n && i0dest_in_i0src);
3453 substed_i1 = 1;
3455 /* Record whether I1's body now appears within I3's body. */
3456 i1_is_used = n_occurrences;
3459 /* Likewise for I0 if we have it. */
3461 if (i0 && GET_CODE (newpat) != CLOBBER)
3463 if (!combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3464 0, 0, 0))
3466 undo_all ();
3467 return 0;
3470 /* If the following substitution will modify I0SRC, make a copy of it
3471 for the case where it is substituted for I0DEST in I1PAT later. */
3472 if (added_sets_1 && i0_feeds_i1_n)
3473 i0src_copy = copy_rtx (i0src);
3474 /* And a copy for I0DEST in I2PAT substitution. */
3475 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3476 || (i0_feeds_i2_n)))
3477 i0src_copy2 = copy_rtx (i0src);
3479 n_occurrences = 0;
3480 subst_low_luid = DF_INSN_LUID (i0);
3481 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3482 substed_i0 = 1;
3485 if (n_auto_inc)
3487 int new_n_auto_inc = 0;
3488 for_each_inc_dec (newpat, count_auto_inc, &new_n_auto_inc);
3490 if (n_auto_inc != new_n_auto_inc)
3492 if (dump_file && (dump_flags & TDF_DETAILS))
3493 fprintf (dump_file, "Number of auto_inc expressions changed\n");
3494 undo_all ();
3495 return 0;
3499 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3500 to count all the ways that I2SRC and I1SRC can be used. */
3501 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3502 && i2_is_used + added_sets_2 > 1)
3503 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3504 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3505 > 1))
3506 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3507 && (n_occurrences + added_sets_0
3508 + (added_sets_1 && i0_feeds_i1_n)
3509 + (added_sets_2 && i0_feeds_i2_n)
3510 > 1))
3511 /* Fail if we tried to make a new register. */
3512 || max_reg_num () != maxreg
3513 /* Fail if we couldn't do something and have a CLOBBER. */
3514 || GET_CODE (newpat) == CLOBBER
3515 /* Fail if this new pattern is a MULT and we didn't have one before
3516 at the outer level. */
3517 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3518 && ! have_mult))
3520 undo_all ();
3521 return 0;
3524 /* If the actions of the earlier insns must be kept
3525 in addition to substituting them into the latest one,
3526 we must make a new PARALLEL for the latest insn
3527 to hold additional the SETs. */
3529 if (added_sets_0 || added_sets_1 || added_sets_2)
3531 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3532 combine_extras++;
3534 if (GET_CODE (newpat) == PARALLEL)
3536 rtvec old = XVEC (newpat, 0);
3537 total_sets = XVECLEN (newpat, 0) + extra_sets;
3538 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3539 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3540 sizeof (old->elem[0]) * old->num_elem);
3542 else
3544 rtx old = newpat;
3545 total_sets = 1 + extra_sets;
3546 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3547 XVECEXP (newpat, 0, 0) = old;
3550 if (added_sets_0)
3551 XVECEXP (newpat, 0, --total_sets) = i0pat;
3553 if (added_sets_1)
3555 rtx t = i1pat;
3556 if (i0_feeds_i1_n)
3557 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3559 XVECEXP (newpat, 0, --total_sets) = t;
3561 if (added_sets_2)
3563 rtx t = i2pat;
3564 if (i1_feeds_i2_n)
3565 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3566 i0_feeds_i1_n && i0dest_in_i0src);
3567 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3568 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3570 XVECEXP (newpat, 0, --total_sets) = t;
3574 validate_replacement:
3576 /* Note which hard regs this insn has as inputs. */
3577 mark_used_regs_combine (newpat);
3579 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3580 consider splitting this pattern, we might need these clobbers. */
3581 if (i1 && GET_CODE (newpat) == PARALLEL
3582 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3584 int len = XVECLEN (newpat, 0);
3586 newpat_vec_with_clobbers = rtvec_alloc (len);
3587 for (i = 0; i < len; i++)
3588 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3591 /* We have recognized nothing yet. */
3592 insn_code_number = -1;
3594 /* See if this is a PARALLEL of two SETs where one SET's destination is
3595 a register that is unused and this isn't marked as an instruction that
3596 might trap in an EH region. In that case, we just need the other SET.
3597 We prefer this over the PARALLEL.
3599 This can occur when simplifying a divmod insn. We *must* test for this
3600 case here because the code below that splits two independent SETs doesn't
3601 handle this case correctly when it updates the register status.
3603 It's pointless doing this if we originally had two sets, one from
3604 i3, and one from i2. Combining then splitting the parallel results
3605 in the original i2 again plus an invalid insn (which we delete).
3606 The net effect is only to move instructions around, which makes
3607 debug info less accurate.
3609 If the remaining SET came from I2 its destination should not be used
3610 between I2 and I3. See PR82024. */
3612 if (!(added_sets_2 && i1 == 0)
3613 && is_parallel_of_n_reg_sets (newpat, 2)
3614 && asm_noperands (newpat) < 0)
3616 rtx set0 = XVECEXP (newpat, 0, 0);
3617 rtx set1 = XVECEXP (newpat, 0, 1);
3618 rtx oldpat = newpat;
3620 if (((REG_P (SET_DEST (set1))
3621 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3622 || (GET_CODE (SET_DEST (set1)) == SUBREG
3623 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3624 && insn_nothrow_p (i3)
3625 && !side_effects_p (SET_SRC (set1)))
3627 newpat = set0;
3628 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3631 else if (((REG_P (SET_DEST (set0))
3632 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3633 || (GET_CODE (SET_DEST (set0)) == SUBREG
3634 && find_reg_note (i3, REG_UNUSED,
3635 SUBREG_REG (SET_DEST (set0)))))
3636 && insn_nothrow_p (i3)
3637 && !side_effects_p (SET_SRC (set0)))
3639 rtx dest = SET_DEST (set1);
3640 if (GET_CODE (dest) == SUBREG)
3641 dest = SUBREG_REG (dest);
3642 if (!reg_used_between_p (dest, i2, i3))
3644 newpat = set1;
3645 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3647 if (insn_code_number >= 0)
3648 changed_i3_dest = 1;
3652 if (insn_code_number < 0)
3653 newpat = oldpat;
3656 /* Is the result of combination a valid instruction? */
3657 if (insn_code_number < 0)
3658 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3660 /* If we were combining three insns and the result is a simple SET
3661 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3662 insns. There are two ways to do this. It can be split using a
3663 machine-specific method (like when you have an addition of a large
3664 constant) or by combine in the function find_split_point. */
3666 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3667 && asm_noperands (newpat) < 0)
3669 rtx parallel, *split;
3670 rtx_insn *m_split_insn;
3672 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3673 use I2DEST as a scratch register will help. In the latter case,
3674 convert I2DEST to the mode of the source of NEWPAT if we can. */
3676 m_split_insn = combine_split_insns (newpat, i3);
3678 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3679 inputs of NEWPAT. */
3681 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3682 possible to try that as a scratch reg. This would require adding
3683 more code to make it work though. */
3685 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3687 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3689 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3690 (temporarily, until we are committed to this instruction
3691 combination) does not work: for example, any call to nonzero_bits
3692 on the register (from a splitter in the MD file, for example)
3693 will get the old information, which is invalid.
3695 Since nowadays we can create registers during combine just fine,
3696 we should just create a new one here, not reuse i2dest. */
3698 /* First try to split using the original register as a
3699 scratch register. */
3700 parallel = gen_rtx_PARALLEL (VOIDmode,
3701 gen_rtvec (2, newpat,
3702 gen_rtx_CLOBBER (VOIDmode,
3703 i2dest)));
3704 m_split_insn = combine_split_insns (parallel, i3);
3706 /* If that didn't work, try changing the mode of I2DEST if
3707 we can. */
3708 if (m_split_insn == 0
3709 && new_mode != GET_MODE (i2dest)
3710 && new_mode != VOIDmode
3711 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3713 machine_mode old_mode = GET_MODE (i2dest);
3714 rtx ni2dest;
3716 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3717 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3718 else
3720 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3721 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3724 parallel = (gen_rtx_PARALLEL
3725 (VOIDmode,
3726 gen_rtvec (2, newpat,
3727 gen_rtx_CLOBBER (VOIDmode,
3728 ni2dest))));
3729 m_split_insn = combine_split_insns (parallel, i3);
3731 if (m_split_insn == 0
3732 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3734 struct undo *buf;
3736 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3737 buf = undobuf.undos;
3738 undobuf.undos = buf->next;
3739 buf->next = undobuf.frees;
3740 undobuf.frees = buf;
3744 i2scratch = m_split_insn != 0;
3747 /* If recog_for_combine has discarded clobbers, try to use them
3748 again for the split. */
3749 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3751 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3752 m_split_insn = combine_split_insns (parallel, i3);
3755 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3757 rtx m_split_pat = PATTERN (m_split_insn);
3758 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3759 if (insn_code_number >= 0)
3760 newpat = m_split_pat;
3762 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3763 && (next_nonnote_nondebug_insn (i2) == i3
3764 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3766 rtx i2set, i3set;
3767 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3768 newi2pat = PATTERN (m_split_insn);
3770 i3set = single_set (NEXT_INSN (m_split_insn));
3771 i2set = single_set (m_split_insn);
3773 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3775 /* If I2 or I3 has multiple SETs, we won't know how to track
3776 register status, so don't use these insns. If I2's destination
3777 is used between I2 and I3, we also can't use these insns. */
3779 if (i2_code_number >= 0 && i2set && i3set
3780 && (next_nonnote_nondebug_insn (i2) == i3
3781 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3782 insn_code_number = recog_for_combine (&newi3pat, i3,
3783 &new_i3_notes);
3784 if (insn_code_number >= 0)
3785 newpat = newi3pat;
3787 /* It is possible that both insns now set the destination of I3.
3788 If so, we must show an extra use of it. */
3790 if (insn_code_number >= 0)
3792 rtx new_i3_dest = SET_DEST (i3set);
3793 rtx new_i2_dest = SET_DEST (i2set);
3795 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3796 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3797 || GET_CODE (new_i3_dest) == SUBREG)
3798 new_i3_dest = XEXP (new_i3_dest, 0);
3800 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3801 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3802 || GET_CODE (new_i2_dest) == SUBREG)
3803 new_i2_dest = XEXP (new_i2_dest, 0);
3805 if (REG_P (new_i3_dest)
3806 && REG_P (new_i2_dest)
3807 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3808 && REGNO (new_i2_dest) < reg_n_sets_max)
3809 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3813 /* If we can split it and use I2DEST, go ahead and see if that
3814 helps things be recognized. Verify that none of the registers
3815 are set between I2 and I3. */
3816 if (insn_code_number < 0
3817 && (split = find_split_point (&newpat, i3, false)) != 0
3818 && (!HAVE_cc0 || REG_P (i2dest))
3819 /* We need I2DEST in the proper mode. If it is a hard register
3820 or the only use of a pseudo, we can change its mode.
3821 Make sure we don't change a hard register to have a mode that
3822 isn't valid for it, or change the number of registers. */
3823 && (GET_MODE (*split) == GET_MODE (i2dest)
3824 || GET_MODE (*split) == VOIDmode
3825 || can_change_dest_mode (i2dest, added_sets_2,
3826 GET_MODE (*split)))
3827 && (next_nonnote_nondebug_insn (i2) == i3
3828 || !modified_between_p (*split, i2, i3))
3829 /* We can't overwrite I2DEST if its value is still used by
3830 NEWPAT. */
3831 && ! reg_referenced_p (i2dest, newpat))
3833 rtx newdest = i2dest;
3834 enum rtx_code split_code = GET_CODE (*split);
3835 machine_mode split_mode = GET_MODE (*split);
3836 bool subst_done = false;
3837 newi2pat = NULL_RTX;
3839 i2scratch = true;
3841 /* *SPLIT may be part of I2SRC, so make sure we have the
3842 original expression around for later debug processing.
3843 We should not need I2SRC any more in other cases. */
3844 if (MAY_HAVE_DEBUG_BIND_INSNS)
3845 i2src = copy_rtx (i2src);
3846 else
3847 i2src = NULL;
3849 /* Get NEWDEST as a register in the proper mode. We have already
3850 validated that we can do this. */
3851 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3853 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3854 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3855 else
3857 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3858 newdest = regno_reg_rtx[REGNO (i2dest)];
3862 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3863 an ASHIFT. This can occur if it was inside a PLUS and hence
3864 appeared to be a memory address. This is a kludge. */
3865 if (split_code == MULT
3866 && CONST_INT_P (XEXP (*split, 1))
3867 && INTVAL (XEXP (*split, 1)) > 0
3868 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3870 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3871 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3872 XEXP (*split, 0), i_rtx));
3873 /* Update split_code because we may not have a multiply
3874 anymore. */
3875 split_code = GET_CODE (*split);
3878 /* Similarly for (plus (mult FOO (const_int pow2))). */
3879 if (split_code == PLUS
3880 && GET_CODE (XEXP (*split, 0)) == MULT
3881 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3882 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3883 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3885 rtx nsplit = XEXP (*split, 0);
3886 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3887 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3888 XEXP (nsplit, 0),
3889 i_rtx));
3890 /* Update split_code because we may not have a multiply
3891 anymore. */
3892 split_code = GET_CODE (*split);
3895 #ifdef INSN_SCHEDULING
3896 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3897 be written as a ZERO_EXTEND. */
3898 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3900 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3901 what it really is. */
3902 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3903 == SIGN_EXTEND)
3904 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3905 SUBREG_REG (*split)));
3906 else
3907 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3908 SUBREG_REG (*split)));
3910 #endif
3912 /* Attempt to split binary operators using arithmetic identities. */
3913 if (BINARY_P (SET_SRC (newpat))
3914 && split_mode == GET_MODE (SET_SRC (newpat))
3915 && ! side_effects_p (SET_SRC (newpat)))
3917 rtx setsrc = SET_SRC (newpat);
3918 machine_mode mode = GET_MODE (setsrc);
3919 enum rtx_code code = GET_CODE (setsrc);
3920 rtx src_op0 = XEXP (setsrc, 0);
3921 rtx src_op1 = XEXP (setsrc, 1);
3923 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3924 if (rtx_equal_p (src_op0, src_op1))
3926 newi2pat = gen_rtx_SET (newdest, src_op0);
3927 SUBST (XEXP (setsrc, 0), newdest);
3928 SUBST (XEXP (setsrc, 1), newdest);
3929 subst_done = true;
3931 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3932 else if ((code == PLUS || code == MULT)
3933 && GET_CODE (src_op0) == code
3934 && GET_CODE (XEXP (src_op0, 0)) == code
3935 && (INTEGRAL_MODE_P (mode)
3936 || (FLOAT_MODE_P (mode)
3937 && flag_unsafe_math_optimizations)))
3939 rtx p = XEXP (XEXP (src_op0, 0), 0);
3940 rtx q = XEXP (XEXP (src_op0, 0), 1);
3941 rtx r = XEXP (src_op0, 1);
3942 rtx s = src_op1;
3944 /* Split both "((X op Y) op X) op Y" and
3945 "((X op Y) op Y) op X" as "T op T" where T is
3946 "X op Y". */
3947 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3948 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3950 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3951 SUBST (XEXP (setsrc, 0), newdest);
3952 SUBST (XEXP (setsrc, 1), newdest);
3953 subst_done = true;
3955 /* Split "((X op X) op Y) op Y)" as "T op T" where
3956 T is "X op Y". */
3957 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3959 rtx tmp = simplify_gen_binary (code, mode, p, r);
3960 newi2pat = gen_rtx_SET (newdest, tmp);
3961 SUBST (XEXP (setsrc, 0), newdest);
3962 SUBST (XEXP (setsrc, 1), newdest);
3963 subst_done = true;
3968 if (!subst_done)
3970 newi2pat = gen_rtx_SET (newdest, *split);
3971 SUBST (*split, newdest);
3974 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3976 /* recog_for_combine might have added CLOBBERs to newi2pat.
3977 Make sure NEWPAT does not depend on the clobbered regs. */
3978 if (GET_CODE (newi2pat) == PARALLEL)
3979 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3980 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3982 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3983 if (reg_overlap_mentioned_p (reg, newpat))
3985 undo_all ();
3986 return 0;
3990 /* If the split point was a MULT and we didn't have one before,
3991 don't use one now. */
3992 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3993 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3997 /* Check for a case where we loaded from memory in a narrow mode and
3998 then sign extended it, but we need both registers. In that case,
3999 we have a PARALLEL with both loads from the same memory location.
4000 We can split this into a load from memory followed by a register-register
4001 copy. This saves at least one insn, more if register allocation can
4002 eliminate the copy.
4004 We cannot do this if the destination of the first assignment is a
4005 condition code register or cc0. We eliminate this case by making sure
4006 the SET_DEST and SET_SRC have the same mode.
4008 We cannot do this if the destination of the second assignment is
4009 a register that we have already assumed is zero-extended. Similarly
4010 for a SUBREG of such a register. */
4012 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
4013 && GET_CODE (newpat) == PARALLEL
4014 && XVECLEN (newpat, 0) == 2
4015 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4016 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
4017 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
4018 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
4019 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4020 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
4021 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
4022 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
4023 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4024 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4025 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
4026 (REG_P (temp_expr)
4027 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4028 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4029 BITS_PER_WORD)
4030 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4031 HOST_BITS_PER_INT)
4032 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4033 != GET_MODE_MASK (word_mode))))
4034 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
4035 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
4036 (REG_P (temp_expr)
4037 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4038 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4039 BITS_PER_WORD)
4040 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4041 HOST_BITS_PER_INT)
4042 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4043 != GET_MODE_MASK (word_mode)))))
4044 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4045 SET_SRC (XVECEXP (newpat, 0, 1)))
4046 && ! find_reg_note (i3, REG_UNUSED,
4047 SET_DEST (XVECEXP (newpat, 0, 0))))
4049 rtx ni2dest;
4051 newi2pat = XVECEXP (newpat, 0, 0);
4052 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
4053 newpat = XVECEXP (newpat, 0, 1);
4054 SUBST (SET_SRC (newpat),
4055 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
4056 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4058 if (i2_code_number >= 0)
4059 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4061 if (insn_code_number >= 0)
4062 swap_i2i3 = 1;
4065 /* Similarly, check for a case where we have a PARALLEL of two independent
4066 SETs but we started with three insns. In this case, we can do the sets
4067 as two separate insns. This case occurs when some SET allows two
4068 other insns to combine, but the destination of that SET is still live.
4070 Also do this if we started with two insns and (at least) one of the
4071 resulting sets is a noop; this noop will be deleted later.
4073 Also do this if we started with two insns neither of which was a simple
4074 move. */
4076 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4077 && GET_CODE (newpat) == PARALLEL
4078 && XVECLEN (newpat, 0) == 2
4079 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4080 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4081 && (i1
4082 || set_noop_p (XVECEXP (newpat, 0, 0))
4083 || set_noop_p (XVECEXP (newpat, 0, 1))
4084 || (!i2_was_move && !i3_was_move))
4085 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4086 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4087 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4088 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4089 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4090 XVECEXP (newpat, 0, 0))
4091 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4092 XVECEXP (newpat, 0, 1))
4093 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4094 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4096 rtx set0 = XVECEXP (newpat, 0, 0);
4097 rtx set1 = XVECEXP (newpat, 0, 1);
4099 /* Normally, it doesn't matter which of the two is done first,
4100 but the one that references cc0 can't be the second, and
4101 one which uses any regs/memory set in between i2 and i3 can't
4102 be first. The PARALLEL might also have been pre-existing in i3,
4103 so we need to make sure that we won't wrongly hoist a SET to i2
4104 that would conflict with a death note present in there, or would
4105 have its dest modified between i2 and i3. */
4106 if (!modified_between_p (SET_SRC (set1), i2, i3)
4107 && !(REG_P (SET_DEST (set1))
4108 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4109 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4110 && find_reg_note (i2, REG_DEAD,
4111 SUBREG_REG (SET_DEST (set1))))
4112 && !modified_between_p (SET_DEST (set1), i2, i3)
4113 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4114 /* If I3 is a jump, ensure that set0 is a jump so that
4115 we do not create invalid RTL. */
4116 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4119 newi2pat = set1;
4120 newpat = set0;
4122 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4123 && !(REG_P (SET_DEST (set0))
4124 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4125 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4126 && find_reg_note (i2, REG_DEAD,
4127 SUBREG_REG (SET_DEST (set0))))
4128 && !modified_between_p (SET_DEST (set0), i2, i3)
4129 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4130 /* If I3 is a jump, ensure that set1 is a jump so that
4131 we do not create invalid RTL. */
4132 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4135 newi2pat = set0;
4136 newpat = set1;
4138 else
4140 undo_all ();
4141 return 0;
4144 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4146 if (i2_code_number >= 0)
4148 /* recog_for_combine might have added CLOBBERs to newi2pat.
4149 Make sure NEWPAT does not depend on the clobbered regs. */
4150 if (GET_CODE (newi2pat) == PARALLEL)
4152 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4153 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4155 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4156 if (reg_overlap_mentioned_p (reg, newpat))
4158 undo_all ();
4159 return 0;
4164 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4166 if (insn_code_number >= 0)
4167 split_i2i3 = 1;
4171 /* If it still isn't recognized, fail and change things back the way they
4172 were. */
4173 if ((insn_code_number < 0
4174 /* Is the result a reasonable ASM_OPERANDS? */
4175 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4177 undo_all ();
4178 return 0;
4181 /* If we had to change another insn, make sure it is valid also. */
4182 if (undobuf.other_insn)
4184 CLEAR_HARD_REG_SET (newpat_used_regs);
4186 other_pat = PATTERN (undobuf.other_insn);
4187 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4188 &new_other_notes);
4190 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4192 undo_all ();
4193 return 0;
4197 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4198 they are adjacent to each other or not. */
4199 if (HAVE_cc0)
4201 rtx_insn *p = prev_nonnote_insn (i3);
4202 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4203 && sets_cc0_p (newi2pat))
4205 undo_all ();
4206 return 0;
4210 /* Only allow this combination if insn_cost reports that the
4211 replacement instructions are cheaper than the originals. */
4212 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4214 undo_all ();
4215 return 0;
4218 if (MAY_HAVE_DEBUG_BIND_INSNS)
4220 struct undo *undo;
4222 for (undo = undobuf.undos; undo; undo = undo->next)
4223 if (undo->kind == UNDO_MODE)
4225 rtx reg = *undo->where.r;
4226 machine_mode new_mode = GET_MODE (reg);
4227 machine_mode old_mode = undo->old_contents.m;
4229 /* Temporarily revert mode back. */
4230 adjust_reg_mode (reg, old_mode);
4232 if (reg == i2dest && i2scratch)
4234 /* If we used i2dest as a scratch register with a
4235 different mode, substitute it for the original
4236 i2src while its original mode is temporarily
4237 restored, and then clear i2scratch so that we don't
4238 do it again later. */
4239 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4240 this_basic_block);
4241 i2scratch = false;
4242 /* Put back the new mode. */
4243 adjust_reg_mode (reg, new_mode);
4245 else
4247 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4248 rtx_insn *first, *last;
4250 if (reg == i2dest)
4252 first = i2;
4253 last = last_combined_insn;
4255 else
4257 first = i3;
4258 last = undobuf.other_insn;
4259 gcc_assert (last);
4260 if (DF_INSN_LUID (last)
4261 < DF_INSN_LUID (last_combined_insn))
4262 last = last_combined_insn;
4265 /* We're dealing with a reg that changed mode but not
4266 meaning, so we want to turn it into a subreg for
4267 the new mode. However, because of REG sharing and
4268 because its mode had already changed, we have to do
4269 it in two steps. First, replace any debug uses of
4270 reg, with its original mode temporarily restored,
4271 with this copy we have created; then, replace the
4272 copy with the SUBREG of the original shared reg,
4273 once again changed to the new mode. */
4274 propagate_for_debug (first, last, reg, tempreg,
4275 this_basic_block);
4276 adjust_reg_mode (reg, new_mode);
4277 propagate_for_debug (first, last, tempreg,
4278 lowpart_subreg (old_mode, reg, new_mode),
4279 this_basic_block);
4284 /* If we will be able to accept this, we have made a
4285 change to the destination of I3. This requires us to
4286 do a few adjustments. */
4288 if (changed_i3_dest)
4290 PATTERN (i3) = newpat;
4291 adjust_for_new_dest (i3);
4294 /* We now know that we can do this combination. Merge the insns and
4295 update the status of registers and LOG_LINKS. */
4297 if (undobuf.other_insn)
4299 rtx note, next;
4301 PATTERN (undobuf.other_insn) = other_pat;
4303 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4304 ensure that they are still valid. Then add any non-duplicate
4305 notes added by recog_for_combine. */
4306 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4308 next = XEXP (note, 1);
4310 if ((REG_NOTE_KIND (note) == REG_DEAD
4311 && !reg_referenced_p (XEXP (note, 0),
4312 PATTERN (undobuf.other_insn)))
4313 ||(REG_NOTE_KIND (note) == REG_UNUSED
4314 && !reg_set_p (XEXP (note, 0),
4315 PATTERN (undobuf.other_insn)))
4316 /* Simply drop equal note since it may be no longer valid
4317 for other_insn. It may be possible to record that CC
4318 register is changed and only discard those notes, but
4319 in practice it's unnecessary complication and doesn't
4320 give any meaningful improvement.
4322 See PR78559. */
4323 || REG_NOTE_KIND (note) == REG_EQUAL
4324 || REG_NOTE_KIND (note) == REG_EQUIV)
4325 remove_note (undobuf.other_insn, note);
4328 distribute_notes (new_other_notes, undobuf.other_insn,
4329 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4330 NULL_RTX);
4333 if (swap_i2i3)
4335 /* I3 now uses what used to be its destination and which is now
4336 I2's destination. This requires us to do a few adjustments. */
4337 PATTERN (i3) = newpat;
4338 adjust_for_new_dest (i3);
4341 if (swap_i2i3 || split_i2i3)
4343 /* We might need a LOG_LINK from I3 to I2. But then we used to
4344 have one, so we still will.
4346 However, some later insn might be using I2's dest and have
4347 a LOG_LINK pointing at I3. We should change it to point at
4348 I2 instead. */
4350 /* newi2pat is usually a SET here; however, recog_for_combine might
4351 have added some clobbers. */
4352 rtx x = newi2pat;
4353 if (GET_CODE (x) == PARALLEL)
4354 x = XVECEXP (newi2pat, 0, 0);
4356 if (REG_P (SET_DEST (x))
4357 || (GET_CODE (SET_DEST (x)) == SUBREG
4358 && REG_P (SUBREG_REG (SET_DEST (x)))))
4360 unsigned int regno = reg_or_subregno (SET_DEST (x));
4362 bool done = false;
4363 for (rtx_insn *insn = NEXT_INSN (i3);
4364 !done
4365 && insn
4366 && NONDEBUG_INSN_P (insn)
4367 && BLOCK_FOR_INSN (insn) == this_basic_block;
4368 insn = NEXT_INSN (insn))
4370 struct insn_link *link;
4371 FOR_EACH_LOG_LINK (link, insn)
4372 if (link->insn == i3 && link->regno == regno)
4374 link->insn = i2;
4375 done = true;
4376 break;
4383 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4384 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4385 rtx midnotes = 0;
4386 int from_luid;
4387 /* Compute which registers we expect to eliminate. newi2pat may be setting
4388 either i3dest or i2dest, so we must check it. */
4389 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4390 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4391 || !i2dest_killed
4392 ? 0 : i2dest);
4393 /* For i1, we need to compute both local elimination and global
4394 elimination information with respect to newi2pat because i1dest
4395 may be the same as i3dest, in which case newi2pat may be setting
4396 i1dest. Global information is used when distributing REG_DEAD
4397 note for i2 and i3, in which case it does matter if newi2pat sets
4398 i1dest or not.
4400 Local information is used when distributing REG_DEAD note for i1,
4401 in which case it doesn't matter if newi2pat sets i1dest or not.
4402 See PR62151, if we have four insns combination:
4403 i0: r0 <- i0src
4404 i1: r1 <- i1src (using r0)
4405 REG_DEAD (r0)
4406 i2: r0 <- i2src (using r1)
4407 i3: r3 <- i3src (using r0)
4408 ix: using r0
4409 From i1's point of view, r0 is eliminated, no matter if it is set
4410 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4411 should be discarded.
4413 Note local information only affects cases in forms like "I1->I2->I3",
4414 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4415 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4416 i0dest anyway. */
4417 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4418 || !i1dest_killed
4419 ? 0 : i1dest);
4420 rtx elim_i1 = (local_elim_i1 == 0
4421 || (newi2pat && reg_set_p (i1dest, newi2pat))
4422 ? 0 : i1dest);
4423 /* Same case as i1. */
4424 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4425 ? 0 : i0dest);
4426 rtx elim_i0 = (local_elim_i0 == 0
4427 || (newi2pat && reg_set_p (i0dest, newi2pat))
4428 ? 0 : i0dest);
4430 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4431 clear them. */
4432 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4433 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4434 if (i1)
4435 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4436 if (i0)
4437 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4439 /* Ensure that we do not have something that should not be shared but
4440 occurs multiple times in the new insns. Check this by first
4441 resetting all the `used' flags and then copying anything is shared. */
4443 reset_used_flags (i3notes);
4444 reset_used_flags (i2notes);
4445 reset_used_flags (i1notes);
4446 reset_used_flags (i0notes);
4447 reset_used_flags (newpat);
4448 reset_used_flags (newi2pat);
4449 if (undobuf.other_insn)
4450 reset_used_flags (PATTERN (undobuf.other_insn));
4452 i3notes = copy_rtx_if_shared (i3notes);
4453 i2notes = copy_rtx_if_shared (i2notes);
4454 i1notes = copy_rtx_if_shared (i1notes);
4455 i0notes = copy_rtx_if_shared (i0notes);
4456 newpat = copy_rtx_if_shared (newpat);
4457 newi2pat = copy_rtx_if_shared (newi2pat);
4458 if (undobuf.other_insn)
4459 reset_used_flags (PATTERN (undobuf.other_insn));
4461 INSN_CODE (i3) = insn_code_number;
4462 PATTERN (i3) = newpat;
4464 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4466 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4467 link = XEXP (link, 1))
4469 if (substed_i2)
4471 /* I2SRC must still be meaningful at this point. Some
4472 splitting operations can invalidate I2SRC, but those
4473 operations do not apply to calls. */
4474 gcc_assert (i2src);
4475 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4476 i2dest, i2src);
4478 if (substed_i1)
4479 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4480 i1dest, i1src);
4481 if (substed_i0)
4482 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4483 i0dest, i0src);
4487 if (undobuf.other_insn)
4488 INSN_CODE (undobuf.other_insn) = other_code_number;
4490 /* We had one special case above where I2 had more than one set and
4491 we replaced a destination of one of those sets with the destination
4492 of I3. In that case, we have to update LOG_LINKS of insns later
4493 in this basic block. Note that this (expensive) case is rare.
4495 Also, in this case, we must pretend that all REG_NOTEs for I2
4496 actually came from I3, so that REG_UNUSED notes from I2 will be
4497 properly handled. */
4499 if (i3_subst_into_i2)
4501 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4502 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4503 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4504 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4505 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4506 && ! find_reg_note (i2, REG_UNUSED,
4507 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4508 for (temp_insn = NEXT_INSN (i2);
4509 temp_insn
4510 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4511 || BB_HEAD (this_basic_block) != temp_insn);
4512 temp_insn = NEXT_INSN (temp_insn))
4513 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4514 FOR_EACH_LOG_LINK (link, temp_insn)
4515 if (link->insn == i2)
4516 link->insn = i3;
4518 if (i3notes)
4520 rtx link = i3notes;
4521 while (XEXP (link, 1))
4522 link = XEXP (link, 1);
4523 XEXP (link, 1) = i2notes;
4525 else
4526 i3notes = i2notes;
4527 i2notes = 0;
4530 LOG_LINKS (i3) = NULL;
4531 REG_NOTES (i3) = 0;
4532 LOG_LINKS (i2) = NULL;
4533 REG_NOTES (i2) = 0;
4535 if (newi2pat)
4537 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4538 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4539 this_basic_block);
4540 INSN_CODE (i2) = i2_code_number;
4541 PATTERN (i2) = newi2pat;
4543 else
4545 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4546 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4547 this_basic_block);
4548 SET_INSN_DELETED (i2);
4551 if (i1)
4553 LOG_LINKS (i1) = NULL;
4554 REG_NOTES (i1) = 0;
4555 if (MAY_HAVE_DEBUG_BIND_INSNS)
4556 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4557 this_basic_block);
4558 SET_INSN_DELETED (i1);
4561 if (i0)
4563 LOG_LINKS (i0) = NULL;
4564 REG_NOTES (i0) = 0;
4565 if (MAY_HAVE_DEBUG_BIND_INSNS)
4566 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4567 this_basic_block);
4568 SET_INSN_DELETED (i0);
4571 /* Get death notes for everything that is now used in either I3 or
4572 I2 and used to die in a previous insn. If we built two new
4573 patterns, move from I1 to I2 then I2 to I3 so that we get the
4574 proper movement on registers that I2 modifies. */
4576 if (i0)
4577 from_luid = DF_INSN_LUID (i0);
4578 else if (i1)
4579 from_luid = DF_INSN_LUID (i1);
4580 else
4581 from_luid = DF_INSN_LUID (i2);
4582 if (newi2pat)
4583 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4584 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4586 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4587 if (i3notes)
4588 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4589 elim_i2, elim_i1, elim_i0);
4590 if (i2notes)
4591 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4592 elim_i2, elim_i1, elim_i0);
4593 if (i1notes)
4594 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4595 elim_i2, local_elim_i1, local_elim_i0);
4596 if (i0notes)
4597 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4598 elim_i2, elim_i1, local_elim_i0);
4599 if (midnotes)
4600 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4601 elim_i2, elim_i1, elim_i0);
4603 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4604 know these are REG_UNUSED and want them to go to the desired insn,
4605 so we always pass it as i3. */
4607 if (newi2pat && new_i2_notes)
4608 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4609 NULL_RTX);
4611 if (new_i3_notes)
4612 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4613 NULL_RTX);
4615 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4616 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4617 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4618 in that case, it might delete I2. Similarly for I2 and I1.
4619 Show an additional death due to the REG_DEAD note we make here. If
4620 we discard it in distribute_notes, we will decrement it again. */
4622 if (i3dest_killed)
4624 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4625 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4626 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4627 elim_i1, elim_i0);
4628 else
4629 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4630 elim_i2, elim_i1, elim_i0);
4633 if (i2dest_in_i2src)
4635 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4636 if (newi2pat && reg_set_p (i2dest, newi2pat))
4637 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4638 NULL_RTX, NULL_RTX);
4639 else
4640 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4641 NULL_RTX, NULL_RTX, NULL_RTX);
4644 if (i1dest_in_i1src)
4646 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4647 if (newi2pat && reg_set_p (i1dest, newi2pat))
4648 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4649 NULL_RTX, NULL_RTX);
4650 else
4651 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4652 NULL_RTX, NULL_RTX, NULL_RTX);
4655 if (i0dest_in_i0src)
4657 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4658 if (newi2pat && reg_set_p (i0dest, newi2pat))
4659 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4660 NULL_RTX, NULL_RTX);
4661 else
4662 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4663 NULL_RTX, NULL_RTX, NULL_RTX);
4666 distribute_links (i3links);
4667 distribute_links (i2links);
4668 distribute_links (i1links);
4669 distribute_links (i0links);
4671 if (REG_P (i2dest))
4673 struct insn_link *link;
4674 rtx_insn *i2_insn = 0;
4675 rtx i2_val = 0, set;
4677 /* The insn that used to set this register doesn't exist, and
4678 this life of the register may not exist either. See if one of
4679 I3's links points to an insn that sets I2DEST. If it does,
4680 that is now the last known value for I2DEST. If we don't update
4681 this and I2 set the register to a value that depended on its old
4682 contents, we will get confused. If this insn is used, thing
4683 will be set correctly in combine_instructions. */
4684 FOR_EACH_LOG_LINK (link, i3)
4685 if ((set = single_set (link->insn)) != 0
4686 && rtx_equal_p (i2dest, SET_DEST (set)))
4687 i2_insn = link->insn, i2_val = SET_SRC (set);
4689 record_value_for_reg (i2dest, i2_insn, i2_val);
4691 /* If the reg formerly set in I2 died only once and that was in I3,
4692 zero its use count so it won't make `reload' do any work. */
4693 if (! added_sets_2
4694 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4695 && ! i2dest_in_i2src
4696 && REGNO (i2dest) < reg_n_sets_max)
4697 INC_REG_N_SETS (REGNO (i2dest), -1);
4700 if (i1 && REG_P (i1dest))
4702 struct insn_link *link;
4703 rtx_insn *i1_insn = 0;
4704 rtx i1_val = 0, set;
4706 FOR_EACH_LOG_LINK (link, i3)
4707 if ((set = single_set (link->insn)) != 0
4708 && rtx_equal_p (i1dest, SET_DEST (set)))
4709 i1_insn = link->insn, i1_val = SET_SRC (set);
4711 record_value_for_reg (i1dest, i1_insn, i1_val);
4713 if (! added_sets_1
4714 && ! i1dest_in_i1src
4715 && REGNO (i1dest) < reg_n_sets_max)
4716 INC_REG_N_SETS (REGNO (i1dest), -1);
4719 if (i0 && REG_P (i0dest))
4721 struct insn_link *link;
4722 rtx_insn *i0_insn = 0;
4723 rtx i0_val = 0, set;
4725 FOR_EACH_LOG_LINK (link, i3)
4726 if ((set = single_set (link->insn)) != 0
4727 && rtx_equal_p (i0dest, SET_DEST (set)))
4728 i0_insn = link->insn, i0_val = SET_SRC (set);
4730 record_value_for_reg (i0dest, i0_insn, i0_val);
4732 if (! added_sets_0
4733 && ! i0dest_in_i0src
4734 && REGNO (i0dest) < reg_n_sets_max)
4735 INC_REG_N_SETS (REGNO (i0dest), -1);
4738 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4739 been made to this insn. The order is important, because newi2pat
4740 can affect nonzero_bits of newpat. */
4741 if (newi2pat)
4742 note_pattern_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4743 note_pattern_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4746 if (undobuf.other_insn != NULL_RTX)
4748 if (dump_file)
4750 fprintf (dump_file, "modifying other_insn ");
4751 dump_insn_slim (dump_file, undobuf.other_insn);
4753 df_insn_rescan (undobuf.other_insn);
4756 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4758 if (dump_file)
4760 fprintf (dump_file, "modifying insn i0 ");
4761 dump_insn_slim (dump_file, i0);
4763 df_insn_rescan (i0);
4766 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4768 if (dump_file)
4770 fprintf (dump_file, "modifying insn i1 ");
4771 dump_insn_slim (dump_file, i1);
4773 df_insn_rescan (i1);
4776 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4778 if (dump_file)
4780 fprintf (dump_file, "modifying insn i2 ");
4781 dump_insn_slim (dump_file, i2);
4783 df_insn_rescan (i2);
4786 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4788 if (dump_file)
4790 fprintf (dump_file, "modifying insn i3 ");
4791 dump_insn_slim (dump_file, i3);
4793 df_insn_rescan (i3);
4796 /* Set new_direct_jump_p if a new return or simple jump instruction
4797 has been created. Adjust the CFG accordingly. */
4798 if (returnjump_p (i3) || any_uncondjump_p (i3))
4800 *new_direct_jump_p = 1;
4801 mark_jump_label (PATTERN (i3), i3, 0);
4802 update_cfg_for_uncondjump (i3);
4805 if (undobuf.other_insn != NULL_RTX
4806 && (returnjump_p (undobuf.other_insn)
4807 || any_uncondjump_p (undobuf.other_insn)))
4809 *new_direct_jump_p = 1;
4810 update_cfg_for_uncondjump (undobuf.other_insn);
4813 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4814 && XEXP (PATTERN (i3), 0) == const1_rtx)
4816 basic_block bb = BLOCK_FOR_INSN (i3);
4817 gcc_assert (bb);
4818 remove_edge (split_block (bb, i3));
4819 emit_barrier_after_bb (bb);
4820 *new_direct_jump_p = 1;
4823 if (undobuf.other_insn
4824 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4825 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4827 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4828 gcc_assert (bb);
4829 remove_edge (split_block (bb, undobuf.other_insn));
4830 emit_barrier_after_bb (bb);
4831 *new_direct_jump_p = 1;
4834 /* A noop might also need cleaning up of CFG, if it comes from the
4835 simplification of a jump. */
4836 if (JUMP_P (i3)
4837 && GET_CODE (newpat) == SET
4838 && SET_SRC (newpat) == pc_rtx
4839 && SET_DEST (newpat) == pc_rtx)
4841 *new_direct_jump_p = 1;
4842 update_cfg_for_uncondjump (i3);
4845 if (undobuf.other_insn != NULL_RTX
4846 && JUMP_P (undobuf.other_insn)
4847 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4848 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4849 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4851 *new_direct_jump_p = 1;
4852 update_cfg_for_uncondjump (undobuf.other_insn);
4855 combine_successes++;
4856 undo_commit ();
4858 rtx_insn *ret = newi2pat ? i2 : i3;
4859 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4860 ret = added_links_insn;
4861 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4862 ret = added_notes_insn;
4864 return ret;
4867 /* Get a marker for undoing to the current state. */
4869 static void *
4870 get_undo_marker (void)
4872 return undobuf.undos;
4875 /* Undo the modifications up to the marker. */
4877 static void
4878 undo_to_marker (void *marker)
4880 struct undo *undo, *next;
4882 for (undo = undobuf.undos; undo != marker; undo = next)
4884 gcc_assert (undo);
4886 next = undo->next;
4887 switch (undo->kind)
4889 case UNDO_RTX:
4890 *undo->where.r = undo->old_contents.r;
4891 break;
4892 case UNDO_INT:
4893 *undo->where.i = undo->old_contents.i;
4894 break;
4895 case UNDO_MODE:
4896 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4897 break;
4898 case UNDO_LINKS:
4899 *undo->where.l = undo->old_contents.l;
4900 break;
4901 default:
4902 gcc_unreachable ();
4905 undo->next = undobuf.frees;
4906 undobuf.frees = undo;
4909 undobuf.undos = (struct undo *) marker;
4912 /* Undo all the modifications recorded in undobuf. */
4914 static void
4915 undo_all (void)
4917 undo_to_marker (0);
4920 /* We've committed to accepting the changes we made. Move all
4921 of the undos to the free list. */
4923 static void
4924 undo_commit (void)
4926 struct undo *undo, *next;
4928 for (undo = undobuf.undos; undo; undo = next)
4930 next = undo->next;
4931 undo->next = undobuf.frees;
4932 undobuf.frees = undo;
4934 undobuf.undos = 0;
4937 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4938 where we have an arithmetic expression and return that point. LOC will
4939 be inside INSN.
4941 try_combine will call this function to see if an insn can be split into
4942 two insns. */
4944 static rtx *
4945 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4947 rtx x = *loc;
4948 enum rtx_code code = GET_CODE (x);
4949 rtx *split;
4950 unsigned HOST_WIDE_INT len = 0;
4951 HOST_WIDE_INT pos = 0;
4952 int unsignedp = 0;
4953 rtx inner = NULL_RTX;
4954 scalar_int_mode mode, inner_mode;
4956 /* First special-case some codes. */
4957 switch (code)
4959 case SUBREG:
4960 #ifdef INSN_SCHEDULING
4961 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4962 point. */
4963 if (MEM_P (SUBREG_REG (x)))
4964 return loc;
4965 #endif
4966 return find_split_point (&SUBREG_REG (x), insn, false);
4968 case MEM:
4969 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4970 using LO_SUM and HIGH. */
4971 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4972 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4974 machine_mode address_mode = get_address_mode (x);
4976 SUBST (XEXP (x, 0),
4977 gen_rtx_LO_SUM (address_mode,
4978 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4979 XEXP (x, 0)));
4980 return &XEXP (XEXP (x, 0), 0);
4983 /* If we have a PLUS whose second operand is a constant and the
4984 address is not valid, perhaps we can split it up using
4985 the machine-specific way to split large constants. We use
4986 the first pseudo-reg (one of the virtual regs) as a placeholder;
4987 it will not remain in the result. */
4988 if (GET_CODE (XEXP (x, 0)) == PLUS
4989 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4990 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4991 MEM_ADDR_SPACE (x)))
4993 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4994 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4995 subst_insn);
4997 /* This should have produced two insns, each of which sets our
4998 placeholder. If the source of the second is a valid address,
4999 we can put both sources together and make a split point
5000 in the middle. */
5002 if (seq
5003 && NEXT_INSN (seq) != NULL_RTX
5004 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
5005 && NONJUMP_INSN_P (seq)
5006 && GET_CODE (PATTERN (seq)) == SET
5007 && SET_DEST (PATTERN (seq)) == reg
5008 && ! reg_mentioned_p (reg,
5009 SET_SRC (PATTERN (seq)))
5010 && NONJUMP_INSN_P (NEXT_INSN (seq))
5011 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
5012 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
5013 && memory_address_addr_space_p
5014 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
5015 MEM_ADDR_SPACE (x)))
5017 rtx src1 = SET_SRC (PATTERN (seq));
5018 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
5020 /* Replace the placeholder in SRC2 with SRC1. If we can
5021 find where in SRC2 it was placed, that can become our
5022 split point and we can replace this address with SRC2.
5023 Just try two obvious places. */
5025 src2 = replace_rtx (src2, reg, src1);
5026 split = 0;
5027 if (XEXP (src2, 0) == src1)
5028 split = &XEXP (src2, 0);
5029 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
5030 && XEXP (XEXP (src2, 0), 0) == src1)
5031 split = &XEXP (XEXP (src2, 0), 0);
5033 if (split)
5035 SUBST (XEXP (x, 0), src2);
5036 return split;
5040 /* If that didn't work and we have a nested plus, like:
5041 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
5042 is valid address, try to split (REG1 * CONST1). */
5043 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5044 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5045 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5046 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
5047 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5048 0), 0)))))
5050 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
5051 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
5052 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5053 MEM_ADDR_SPACE (x)))
5055 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5056 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
5058 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5060 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5061 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5062 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5063 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
5064 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5065 0), 1)))))
5067 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
5068 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
5069 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5070 MEM_ADDR_SPACE (x)))
5072 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5073 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
5075 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5078 /* If that didn't work, perhaps the first operand is complex and
5079 needs to be computed separately, so make a split point there.
5080 This will occur on machines that just support REG + CONST
5081 and have a constant moved through some previous computation. */
5082 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
5083 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5084 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5085 return &XEXP (XEXP (x, 0), 0);
5088 /* If we have a PLUS whose first operand is complex, try computing it
5089 separately by making a split there. */
5090 if (GET_CODE (XEXP (x, 0)) == PLUS
5091 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5092 MEM_ADDR_SPACE (x))
5093 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5094 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5095 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5096 return &XEXP (XEXP (x, 0), 0);
5097 break;
5099 case SET:
5100 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5101 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5102 we need to put the operand into a register. So split at that
5103 point. */
5105 if (SET_DEST (x) == cc0_rtx
5106 && GET_CODE (SET_SRC (x)) != COMPARE
5107 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5108 && !OBJECT_P (SET_SRC (x))
5109 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5110 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5111 return &SET_SRC (x);
5113 /* See if we can split SET_SRC as it stands. */
5114 split = find_split_point (&SET_SRC (x), insn, true);
5115 if (split && split != &SET_SRC (x))
5116 return split;
5118 /* See if we can split SET_DEST as it stands. */
5119 split = find_split_point (&SET_DEST (x), insn, false);
5120 if (split && split != &SET_DEST (x))
5121 return split;
5123 /* See if this is a bitfield assignment with everything constant. If
5124 so, this is an IOR of an AND, so split it into that. */
5125 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5126 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5127 &inner_mode)
5128 && HWI_COMPUTABLE_MODE_P (inner_mode)
5129 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5130 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5131 && CONST_INT_P (SET_SRC (x))
5132 && ((INTVAL (XEXP (SET_DEST (x), 1))
5133 + INTVAL (XEXP (SET_DEST (x), 2)))
5134 <= GET_MODE_PRECISION (inner_mode))
5135 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5137 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5138 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5139 rtx dest = XEXP (SET_DEST (x), 0);
5140 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << len) - 1;
5141 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x)) & mask;
5142 rtx or_mask;
5144 if (BITS_BIG_ENDIAN)
5145 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5147 or_mask = gen_int_mode (src << pos, inner_mode);
5148 if (src == mask)
5149 SUBST (SET_SRC (x),
5150 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5151 else
5153 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5154 SUBST (SET_SRC (x),
5155 simplify_gen_binary (IOR, inner_mode,
5156 simplify_gen_binary (AND, inner_mode,
5157 dest, negmask),
5158 or_mask));
5161 SUBST (SET_DEST (x), dest);
5163 split = find_split_point (&SET_SRC (x), insn, true);
5164 if (split && split != &SET_SRC (x))
5165 return split;
5168 /* Otherwise, see if this is an operation that we can split into two.
5169 If so, try to split that. */
5170 code = GET_CODE (SET_SRC (x));
5172 switch (code)
5174 case AND:
5175 /* If we are AND'ing with a large constant that is only a single
5176 bit and the result is only being used in a context where we
5177 need to know if it is zero or nonzero, replace it with a bit
5178 extraction. This will avoid the large constant, which might
5179 have taken more than one insn to make. If the constant were
5180 not a valid argument to the AND but took only one insn to make,
5181 this is no worse, but if it took more than one insn, it will
5182 be better. */
5184 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5185 && REG_P (XEXP (SET_SRC (x), 0))
5186 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5187 && REG_P (SET_DEST (x))
5188 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5189 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5190 && XEXP (*split, 0) == SET_DEST (x)
5191 && XEXP (*split, 1) == const0_rtx)
5193 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5194 XEXP (SET_SRC (x), 0),
5195 pos, NULL_RTX, 1, 1, 0, 0);
5196 if (extraction != 0)
5198 SUBST (SET_SRC (x), extraction);
5199 return find_split_point (loc, insn, false);
5202 break;
5204 case NE:
5205 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5206 is known to be on, this can be converted into a NEG of a shift. */
5207 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5208 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5209 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5210 GET_MODE (XEXP (SET_SRC (x),
5211 0))))) >= 1))
5213 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5214 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5215 SUBST (SET_SRC (x),
5216 gen_rtx_NEG (mode,
5217 gen_rtx_LSHIFTRT (mode,
5218 XEXP (SET_SRC (x), 0),
5219 pos_rtx)));
5221 split = find_split_point (&SET_SRC (x), insn, true);
5222 if (split && split != &SET_SRC (x))
5223 return split;
5225 break;
5227 case SIGN_EXTEND:
5228 inner = XEXP (SET_SRC (x), 0);
5230 /* We can't optimize if either mode is a partial integer
5231 mode as we don't know how many bits are significant
5232 in those modes. */
5233 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5234 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5235 break;
5237 pos = 0;
5238 len = GET_MODE_PRECISION (inner_mode);
5239 unsignedp = 0;
5240 break;
5242 case SIGN_EXTRACT:
5243 case ZERO_EXTRACT:
5244 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5245 &inner_mode)
5246 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5247 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5249 inner = XEXP (SET_SRC (x), 0);
5250 len = INTVAL (XEXP (SET_SRC (x), 1));
5251 pos = INTVAL (XEXP (SET_SRC (x), 2));
5253 if (BITS_BIG_ENDIAN)
5254 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5255 unsignedp = (code == ZERO_EXTRACT);
5257 break;
5259 default:
5260 break;
5263 if (len
5264 && known_subrange_p (pos, len,
5265 0, GET_MODE_PRECISION (GET_MODE (inner)))
5266 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5268 /* For unsigned, we have a choice of a shift followed by an
5269 AND or two shifts. Use two shifts for field sizes where the
5270 constant might be too large. We assume here that we can
5271 always at least get 8-bit constants in an AND insn, which is
5272 true for every current RISC. */
5274 if (unsignedp && len <= 8)
5276 unsigned HOST_WIDE_INT mask
5277 = (HOST_WIDE_INT_1U << len) - 1;
5278 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5279 SUBST (SET_SRC (x),
5280 gen_rtx_AND (mode,
5281 gen_rtx_LSHIFTRT
5282 (mode, gen_lowpart (mode, inner), pos_rtx),
5283 gen_int_mode (mask, mode)));
5285 split = find_split_point (&SET_SRC (x), insn, true);
5286 if (split && split != &SET_SRC (x))
5287 return split;
5289 else
5291 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5292 int right_bits = GET_MODE_PRECISION (mode) - len;
5293 SUBST (SET_SRC (x),
5294 gen_rtx_fmt_ee
5295 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5296 gen_rtx_ASHIFT (mode,
5297 gen_lowpart (mode, inner),
5298 gen_int_shift_amount (mode, left_bits)),
5299 gen_int_shift_amount (mode, right_bits)));
5301 split = find_split_point (&SET_SRC (x), insn, true);
5302 if (split && split != &SET_SRC (x))
5303 return split;
5307 /* See if this is a simple operation with a constant as the second
5308 operand. It might be that this constant is out of range and hence
5309 could be used as a split point. */
5310 if (BINARY_P (SET_SRC (x))
5311 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5312 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5313 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5314 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5315 return &XEXP (SET_SRC (x), 1);
5317 /* Finally, see if this is a simple operation with its first operand
5318 not in a register. The operation might require this operand in a
5319 register, so return it as a split point. We can always do this
5320 because if the first operand were another operation, we would have
5321 already found it as a split point. */
5322 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5323 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5324 return &XEXP (SET_SRC (x), 0);
5326 return 0;
5328 case AND:
5329 case IOR:
5330 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5331 it is better to write this as (not (ior A B)) so we can split it.
5332 Similarly for IOR. */
5333 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5335 SUBST (*loc,
5336 gen_rtx_NOT (GET_MODE (x),
5337 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5338 GET_MODE (x),
5339 XEXP (XEXP (x, 0), 0),
5340 XEXP (XEXP (x, 1), 0))));
5341 return find_split_point (loc, insn, set_src);
5344 /* Many RISC machines have a large set of logical insns. If the
5345 second operand is a NOT, put it first so we will try to split the
5346 other operand first. */
5347 if (GET_CODE (XEXP (x, 1)) == NOT)
5349 rtx tem = XEXP (x, 0);
5350 SUBST (XEXP (x, 0), XEXP (x, 1));
5351 SUBST (XEXP (x, 1), tem);
5353 break;
5355 case PLUS:
5356 case MINUS:
5357 /* Canonicalization can produce (minus A (mult B C)), where C is a
5358 constant. It may be better to try splitting (plus (mult B -C) A)
5359 instead if this isn't a multiply by a power of two. */
5360 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5361 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5362 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5364 machine_mode mode = GET_MODE (x);
5365 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5366 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5367 SUBST (*loc, gen_rtx_PLUS (mode,
5368 gen_rtx_MULT (mode,
5369 XEXP (XEXP (x, 1), 0),
5370 gen_int_mode (other_int,
5371 mode)),
5372 XEXP (x, 0)));
5373 return find_split_point (loc, insn, set_src);
5376 /* Split at a multiply-accumulate instruction. However if this is
5377 the SET_SRC, we likely do not have such an instruction and it's
5378 worthless to try this split. */
5379 if (!set_src
5380 && (GET_CODE (XEXP (x, 0)) == MULT
5381 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5382 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5383 return loc;
5385 default:
5386 break;
5389 /* Otherwise, select our actions depending on our rtx class. */
5390 switch (GET_RTX_CLASS (code))
5392 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5393 case RTX_TERNARY:
5394 split = find_split_point (&XEXP (x, 2), insn, false);
5395 if (split)
5396 return split;
5397 /* fall through */
5398 case RTX_BIN_ARITH:
5399 case RTX_COMM_ARITH:
5400 case RTX_COMPARE:
5401 case RTX_COMM_COMPARE:
5402 split = find_split_point (&XEXP (x, 1), insn, false);
5403 if (split)
5404 return split;
5405 /* fall through */
5406 case RTX_UNARY:
5407 /* Some machines have (and (shift ...) ...) insns. If X is not
5408 an AND, but XEXP (X, 0) is, use it as our split point. */
5409 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5410 return &XEXP (x, 0);
5412 split = find_split_point (&XEXP (x, 0), insn, false);
5413 if (split)
5414 return split;
5415 return loc;
5417 default:
5418 /* Otherwise, we don't have a split point. */
5419 return 0;
5423 /* Throughout X, replace FROM with TO, and return the result.
5424 The result is TO if X is FROM;
5425 otherwise the result is X, but its contents may have been modified.
5426 If they were modified, a record was made in undobuf so that
5427 undo_all will (among other things) return X to its original state.
5429 If the number of changes necessary is too much to record to undo,
5430 the excess changes are not made, so the result is invalid.
5431 The changes already made can still be undone.
5432 undobuf.num_undo is incremented for such changes, so by testing that
5433 the caller can tell whether the result is valid.
5435 `n_occurrences' is incremented each time FROM is replaced.
5437 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5439 IN_COND is nonzero if we are at the top level of a condition.
5441 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5442 by copying if `n_occurrences' is nonzero. */
5444 static rtx
5445 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5447 enum rtx_code code = GET_CODE (x);
5448 machine_mode op0_mode = VOIDmode;
5449 const char *fmt;
5450 int len, i;
5451 rtx new_rtx;
5453 /* Two expressions are equal if they are identical copies of a shared
5454 RTX or if they are both registers with the same register number
5455 and mode. */
5457 #define COMBINE_RTX_EQUAL_P(X,Y) \
5458 ((X) == (Y) \
5459 || (REG_P (X) && REG_P (Y) \
5460 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5462 /* Do not substitute into clobbers of regs -- this will never result in
5463 valid RTL. */
5464 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5465 return x;
5467 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5469 n_occurrences++;
5470 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5473 /* If X and FROM are the same register but different modes, they
5474 will not have been seen as equal above. However, the log links code
5475 will make a LOG_LINKS entry for that case. If we do nothing, we
5476 will try to rerecognize our original insn and, when it succeeds,
5477 we will delete the feeding insn, which is incorrect.
5479 So force this insn not to match in this (rare) case. */
5480 if (! in_dest && code == REG && REG_P (from)
5481 && reg_overlap_mentioned_p (x, from))
5482 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5484 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5485 of which may contain things that can be combined. */
5486 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5487 return x;
5489 /* It is possible to have a subexpression appear twice in the insn.
5490 Suppose that FROM is a register that appears within TO.
5491 Then, after that subexpression has been scanned once by `subst',
5492 the second time it is scanned, TO may be found. If we were
5493 to scan TO here, we would find FROM within it and create a
5494 self-referent rtl structure which is completely wrong. */
5495 if (COMBINE_RTX_EQUAL_P (x, to))
5496 return to;
5498 /* Parallel asm_operands need special attention because all of the
5499 inputs are shared across the arms. Furthermore, unsharing the
5500 rtl results in recognition failures. Failure to handle this case
5501 specially can result in circular rtl.
5503 Solve this by doing a normal pass across the first entry of the
5504 parallel, and only processing the SET_DESTs of the subsequent
5505 entries. Ug. */
5507 if (code == PARALLEL
5508 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5509 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5511 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5513 /* If this substitution failed, this whole thing fails. */
5514 if (GET_CODE (new_rtx) == CLOBBER
5515 && XEXP (new_rtx, 0) == const0_rtx)
5516 return new_rtx;
5518 SUBST (XVECEXP (x, 0, 0), new_rtx);
5520 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5522 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5524 if (!REG_P (dest)
5525 && GET_CODE (dest) != CC0
5526 && GET_CODE (dest) != PC)
5528 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5530 /* If this substitution failed, this whole thing fails. */
5531 if (GET_CODE (new_rtx) == CLOBBER
5532 && XEXP (new_rtx, 0) == const0_rtx)
5533 return new_rtx;
5535 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5539 else
5541 len = GET_RTX_LENGTH (code);
5542 fmt = GET_RTX_FORMAT (code);
5544 /* We don't need to process a SET_DEST that is a register, CC0,
5545 or PC, so set up to skip this common case. All other cases
5546 where we want to suppress replacing something inside a
5547 SET_SRC are handled via the IN_DEST operand. */
5548 if (code == SET
5549 && (REG_P (SET_DEST (x))
5550 || GET_CODE (SET_DEST (x)) == CC0
5551 || GET_CODE (SET_DEST (x)) == PC))
5552 fmt = "ie";
5554 /* Trying to simplify the operands of a widening MULT is not likely
5555 to create RTL matching a machine insn. */
5556 if (code == MULT
5557 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5558 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5559 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5560 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5561 && REG_P (XEXP (XEXP (x, 0), 0))
5562 && REG_P (XEXP (XEXP (x, 1), 0))
5563 && from == to)
5564 return x;
5567 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5568 constant. */
5569 if (fmt[0] == 'e')
5570 op0_mode = GET_MODE (XEXP (x, 0));
5572 for (i = 0; i < len; i++)
5574 if (fmt[i] == 'E')
5576 int j;
5577 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5579 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5581 new_rtx = (unique_copy && n_occurrences
5582 ? copy_rtx (to) : to);
5583 n_occurrences++;
5585 else
5587 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5588 unique_copy);
5590 /* If this substitution failed, this whole thing
5591 fails. */
5592 if (GET_CODE (new_rtx) == CLOBBER
5593 && XEXP (new_rtx, 0) == const0_rtx)
5594 return new_rtx;
5597 SUBST (XVECEXP (x, i, j), new_rtx);
5600 else if (fmt[i] == 'e')
5602 /* If this is a register being set, ignore it. */
5603 new_rtx = XEXP (x, i);
5604 if (in_dest
5605 && i == 0
5606 && (((code == SUBREG || code == ZERO_EXTRACT)
5607 && REG_P (new_rtx))
5608 || code == STRICT_LOW_PART))
5611 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5613 /* In general, don't install a subreg involving two
5614 modes not tieable. It can worsen register
5615 allocation, and can even make invalid reload
5616 insns, since the reg inside may need to be copied
5617 from in the outside mode, and that may be invalid
5618 if it is an fp reg copied in integer mode.
5620 We allow two exceptions to this: It is valid if
5621 it is inside another SUBREG and the mode of that
5622 SUBREG and the mode of the inside of TO is
5623 tieable and it is valid if X is a SET that copies
5624 FROM to CC0. */
5626 if (GET_CODE (to) == SUBREG
5627 && !targetm.modes_tieable_p (GET_MODE (to),
5628 GET_MODE (SUBREG_REG (to)))
5629 && ! (code == SUBREG
5630 && (targetm.modes_tieable_p
5631 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5632 && (!HAVE_cc0
5633 || (! (code == SET
5634 && i == 1
5635 && XEXP (x, 0) == cc0_rtx))))
5636 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5638 if (code == SUBREG
5639 && REG_P (to)
5640 && REGNO (to) < FIRST_PSEUDO_REGISTER
5641 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5642 SUBREG_BYTE (x),
5643 GET_MODE (x)) < 0)
5644 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5646 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5647 n_occurrences++;
5649 else
5650 /* If we are in a SET_DEST, suppress most cases unless we
5651 have gone inside a MEM, in which case we want to
5652 simplify the address. We assume here that things that
5653 are actually part of the destination have their inner
5654 parts in the first expression. This is true for SUBREG,
5655 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5656 things aside from REG and MEM that should appear in a
5657 SET_DEST. */
5658 new_rtx = subst (XEXP (x, i), from, to,
5659 (((in_dest
5660 && (code == SUBREG || code == STRICT_LOW_PART
5661 || code == ZERO_EXTRACT))
5662 || code == SET)
5663 && i == 0),
5664 code == IF_THEN_ELSE && i == 0,
5665 unique_copy);
5667 /* If we found that we will have to reject this combination,
5668 indicate that by returning the CLOBBER ourselves, rather than
5669 an expression containing it. This will speed things up as
5670 well as prevent accidents where two CLOBBERs are considered
5671 to be equal, thus producing an incorrect simplification. */
5673 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5674 return new_rtx;
5676 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5678 machine_mode mode = GET_MODE (x);
5680 x = simplify_subreg (GET_MODE (x), new_rtx,
5681 GET_MODE (SUBREG_REG (x)),
5682 SUBREG_BYTE (x));
5683 if (! x)
5684 x = gen_rtx_CLOBBER (mode, const0_rtx);
5686 else if (CONST_SCALAR_INT_P (new_rtx)
5687 && (GET_CODE (x) == ZERO_EXTEND
5688 || GET_CODE (x) == SIGN_EXTEND
5689 || GET_CODE (x) == FLOAT
5690 || GET_CODE (x) == UNSIGNED_FLOAT))
5692 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5693 new_rtx,
5694 GET_MODE (XEXP (x, 0)));
5695 if (!x)
5696 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5698 else
5699 SUBST (XEXP (x, i), new_rtx);
5704 /* Check if we are loading something from the constant pool via float
5705 extension; in this case we would undo compress_float_constant
5706 optimization and degenerate constant load to an immediate value. */
5707 if (GET_CODE (x) == FLOAT_EXTEND
5708 && MEM_P (XEXP (x, 0))
5709 && MEM_READONLY_P (XEXP (x, 0)))
5711 rtx tmp = avoid_constant_pool_reference (x);
5712 if (x != tmp)
5713 return x;
5716 /* Try to simplify X. If the simplification changed the code, it is likely
5717 that further simplification will help, so loop, but limit the number
5718 of repetitions that will be performed. */
5720 for (i = 0; i < 4; i++)
5722 /* If X is sufficiently simple, don't bother trying to do anything
5723 with it. */
5724 if (code != CONST_INT && code != REG && code != CLOBBER)
5725 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5727 if (GET_CODE (x) == code)
5728 break;
5730 code = GET_CODE (x);
5732 /* We no longer know the original mode of operand 0 since we
5733 have changed the form of X) */
5734 op0_mode = VOIDmode;
5737 return x;
5740 /* If X is a commutative operation whose operands are not in the canonical
5741 order, use substitutions to swap them. */
5743 static void
5744 maybe_swap_commutative_operands (rtx x)
5746 if (COMMUTATIVE_ARITH_P (x)
5747 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5749 rtx temp = XEXP (x, 0);
5750 SUBST (XEXP (x, 0), XEXP (x, 1));
5751 SUBST (XEXP (x, 1), temp);
5755 /* Simplify X, a piece of RTL. We just operate on the expression at the
5756 outer level; call `subst' to simplify recursively. Return the new
5757 expression.
5759 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5760 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5761 of a condition. */
5763 static rtx
5764 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5765 int in_cond)
5767 enum rtx_code code = GET_CODE (x);
5768 machine_mode mode = GET_MODE (x);
5769 scalar_int_mode int_mode;
5770 rtx temp;
5771 int i;
5773 /* If this is a commutative operation, put a constant last and a complex
5774 expression first. We don't need to do this for comparisons here. */
5775 maybe_swap_commutative_operands (x);
5777 /* Try to fold this expression in case we have constants that weren't
5778 present before. */
5779 temp = 0;
5780 switch (GET_RTX_CLASS (code))
5782 case RTX_UNARY:
5783 if (op0_mode == VOIDmode)
5784 op0_mode = GET_MODE (XEXP (x, 0));
5785 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5786 break;
5787 case RTX_COMPARE:
5788 case RTX_COMM_COMPARE:
5790 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5791 if (cmp_mode == VOIDmode)
5793 cmp_mode = GET_MODE (XEXP (x, 1));
5794 if (cmp_mode == VOIDmode)
5795 cmp_mode = op0_mode;
5797 temp = simplify_relational_operation (code, mode, cmp_mode,
5798 XEXP (x, 0), XEXP (x, 1));
5800 break;
5801 case RTX_COMM_ARITH:
5802 case RTX_BIN_ARITH:
5803 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5804 break;
5805 case RTX_BITFIELD_OPS:
5806 case RTX_TERNARY:
5807 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5808 XEXP (x, 1), XEXP (x, 2));
5809 break;
5810 default:
5811 break;
5814 if (temp)
5816 x = temp;
5817 code = GET_CODE (temp);
5818 op0_mode = VOIDmode;
5819 mode = GET_MODE (temp);
5822 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5823 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5824 things. Check for cases where both arms are testing the same
5825 condition.
5827 Don't do anything if all operands are very simple. */
5829 if ((BINARY_P (x)
5830 && ((!OBJECT_P (XEXP (x, 0))
5831 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5832 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5833 || (!OBJECT_P (XEXP (x, 1))
5834 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5835 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5836 || (UNARY_P (x)
5837 && (!OBJECT_P (XEXP (x, 0))
5838 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5839 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5841 rtx cond, true_rtx, false_rtx;
5843 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5844 if (cond != 0
5845 /* If everything is a comparison, what we have is highly unlikely
5846 to be simpler, so don't use it. */
5847 && ! (COMPARISON_P (x)
5848 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5849 /* Similarly, if we end up with one of the expressions the same
5850 as the original, it is certainly not simpler. */
5851 && ! rtx_equal_p (x, true_rtx)
5852 && ! rtx_equal_p (x, false_rtx))
5854 rtx cop1 = const0_rtx;
5855 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5857 if (cond_code == NE && COMPARISON_P (cond))
5858 return x;
5860 /* Simplify the alternative arms; this may collapse the true and
5861 false arms to store-flag values. Be careful to use copy_rtx
5862 here since true_rtx or false_rtx might share RTL with x as a
5863 result of the if_then_else_cond call above. */
5864 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5865 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5867 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5868 is unlikely to be simpler. */
5869 if (general_operand (true_rtx, VOIDmode)
5870 && general_operand (false_rtx, VOIDmode))
5872 enum rtx_code reversed;
5874 /* Restarting if we generate a store-flag expression will cause
5875 us to loop. Just drop through in this case. */
5877 /* If the result values are STORE_FLAG_VALUE and zero, we can
5878 just make the comparison operation. */
5879 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5880 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5881 cond, cop1);
5882 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5883 && ((reversed = reversed_comparison_code_parts
5884 (cond_code, cond, cop1, NULL))
5885 != UNKNOWN))
5886 x = simplify_gen_relational (reversed, mode, VOIDmode,
5887 cond, cop1);
5889 /* Likewise, we can make the negate of a comparison operation
5890 if the result values are - STORE_FLAG_VALUE and zero. */
5891 else if (CONST_INT_P (true_rtx)
5892 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5893 && false_rtx == const0_rtx)
5894 x = simplify_gen_unary (NEG, mode,
5895 simplify_gen_relational (cond_code,
5896 mode, VOIDmode,
5897 cond, cop1),
5898 mode);
5899 else if (CONST_INT_P (false_rtx)
5900 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5901 && true_rtx == const0_rtx
5902 && ((reversed = reversed_comparison_code_parts
5903 (cond_code, cond, cop1, NULL))
5904 != UNKNOWN))
5905 x = simplify_gen_unary (NEG, mode,
5906 simplify_gen_relational (reversed,
5907 mode, VOIDmode,
5908 cond, cop1),
5909 mode);
5911 code = GET_CODE (x);
5912 op0_mode = VOIDmode;
5917 /* First see if we can apply the inverse distributive law. */
5918 if (code == PLUS || code == MINUS
5919 || code == AND || code == IOR || code == XOR)
5921 x = apply_distributive_law (x);
5922 code = GET_CODE (x);
5923 op0_mode = VOIDmode;
5926 /* If CODE is an associative operation not otherwise handled, see if we
5927 can associate some operands. This can win if they are constants or
5928 if they are logically related (i.e. (a & b) & a). */
5929 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5930 || code == AND || code == IOR || code == XOR
5931 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5932 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5933 || (flag_associative_math && FLOAT_MODE_P (mode))))
5935 if (GET_CODE (XEXP (x, 0)) == code)
5937 rtx other = XEXP (XEXP (x, 0), 0);
5938 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5939 rtx inner_op1 = XEXP (x, 1);
5940 rtx inner;
5942 /* Make sure we pass the constant operand if any as the second
5943 one if this is a commutative operation. */
5944 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5945 std::swap (inner_op0, inner_op1);
5946 inner = simplify_binary_operation (code == MINUS ? PLUS
5947 : code == DIV ? MULT
5948 : code,
5949 mode, inner_op0, inner_op1);
5951 /* For commutative operations, try the other pair if that one
5952 didn't simplify. */
5953 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5955 other = XEXP (XEXP (x, 0), 1);
5956 inner = simplify_binary_operation (code, mode,
5957 XEXP (XEXP (x, 0), 0),
5958 XEXP (x, 1));
5961 if (inner)
5962 return simplify_gen_binary (code, mode, other, inner);
5966 /* A little bit of algebraic simplification here. */
5967 switch (code)
5969 case MEM:
5970 /* Ensure that our address has any ASHIFTs converted to MULT in case
5971 address-recognizing predicates are called later. */
5972 temp = make_compound_operation (XEXP (x, 0), MEM);
5973 SUBST (XEXP (x, 0), temp);
5974 break;
5976 case SUBREG:
5977 if (op0_mode == VOIDmode)
5978 op0_mode = GET_MODE (SUBREG_REG (x));
5980 /* See if this can be moved to simplify_subreg. */
5981 if (CONSTANT_P (SUBREG_REG (x))
5982 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5983 /* Don't call gen_lowpart if the inner mode
5984 is VOIDmode and we cannot simplify it, as SUBREG without
5985 inner mode is invalid. */
5986 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5987 || gen_lowpart_common (mode, SUBREG_REG (x))))
5988 return gen_lowpart (mode, SUBREG_REG (x));
5990 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5991 break;
5993 rtx temp;
5994 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5995 SUBREG_BYTE (x));
5996 if (temp)
5997 return temp;
5999 /* If op is known to have all lower bits zero, the result is zero. */
6000 scalar_int_mode int_mode, int_op0_mode;
6001 if (!in_dest
6002 && is_a <scalar_int_mode> (mode, &int_mode)
6003 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
6004 && (GET_MODE_PRECISION (int_mode)
6005 < GET_MODE_PRECISION (int_op0_mode))
6006 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
6007 SUBREG_BYTE (x))
6008 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
6009 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
6010 & GET_MODE_MASK (int_mode)) == 0)
6011 && !side_effects_p (SUBREG_REG (x)))
6012 return CONST0_RTX (int_mode);
6015 /* Don't change the mode of the MEM if that would change the meaning
6016 of the address. */
6017 if (MEM_P (SUBREG_REG (x))
6018 && (MEM_VOLATILE_P (SUBREG_REG (x))
6019 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
6020 MEM_ADDR_SPACE (SUBREG_REG (x)))))
6021 return gen_rtx_CLOBBER (mode, const0_rtx);
6023 /* Note that we cannot do any narrowing for non-constants since
6024 we might have been counting on using the fact that some bits were
6025 zero. We now do this in the SET. */
6027 break;
6029 case NEG:
6030 temp = expand_compound_operation (XEXP (x, 0));
6032 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
6033 replaced by (lshiftrt X C). This will convert
6034 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
6036 if (GET_CODE (temp) == ASHIFTRT
6037 && CONST_INT_P (XEXP (temp, 1))
6038 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
6039 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
6040 INTVAL (XEXP (temp, 1)));
6042 /* If X has only a single bit that might be nonzero, say, bit I, convert
6043 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
6044 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
6045 (sign_extract X 1 Y). But only do this if TEMP isn't a register
6046 or a SUBREG of one since we'd be making the expression more
6047 complex if it was just a register. */
6049 if (!REG_P (temp)
6050 && ! (GET_CODE (temp) == SUBREG
6051 && REG_P (SUBREG_REG (temp)))
6052 && is_a <scalar_int_mode> (mode, &int_mode)
6053 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
6055 rtx temp1 = simplify_shift_const
6056 (NULL_RTX, ASHIFTRT, int_mode,
6057 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
6058 GET_MODE_PRECISION (int_mode) - 1 - i),
6059 GET_MODE_PRECISION (int_mode) - 1 - i);
6061 /* If all we did was surround TEMP with the two shifts, we
6062 haven't improved anything, so don't use it. Otherwise,
6063 we are better off with TEMP1. */
6064 if (GET_CODE (temp1) != ASHIFTRT
6065 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
6066 || XEXP (XEXP (temp1, 0), 0) != temp)
6067 return temp1;
6069 break;
6071 case TRUNCATE:
6072 /* We can't handle truncation to a partial integer mode here
6073 because we don't know the real bitsize of the partial
6074 integer mode. */
6075 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6076 break;
6078 if (HWI_COMPUTABLE_MODE_P (mode))
6079 SUBST (XEXP (x, 0),
6080 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6081 GET_MODE_MASK (mode), 0));
6083 /* We can truncate a constant value and return it. */
6085 poly_int64 c;
6086 if (poly_int_rtx_p (XEXP (x, 0), &c))
6087 return gen_int_mode (c, mode);
6090 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
6091 whose value is a comparison can be replaced with a subreg if
6092 STORE_FLAG_VALUE permits. */
6093 if (HWI_COMPUTABLE_MODE_P (mode)
6094 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6095 && (temp = get_last_value (XEXP (x, 0)))
6096 && COMPARISON_P (temp))
6097 return gen_lowpart (mode, XEXP (x, 0));
6098 break;
6100 case CONST:
6101 /* (const (const X)) can become (const X). Do it this way rather than
6102 returning the inner CONST since CONST can be shared with a
6103 REG_EQUAL note. */
6104 if (GET_CODE (XEXP (x, 0)) == CONST)
6105 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6106 break;
6108 case LO_SUM:
6109 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6110 can add in an offset. find_split_point will split this address up
6111 again if it doesn't match. */
6112 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6113 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6114 return XEXP (x, 1);
6115 break;
6117 case PLUS:
6118 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6119 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6120 bit-field and can be replaced by either a sign_extend or a
6121 sign_extract. The `and' may be a zero_extend and the two
6122 <c>, -<c> constants may be reversed. */
6123 if (GET_CODE (XEXP (x, 0)) == XOR
6124 && is_a <scalar_int_mode> (mode, &int_mode)
6125 && CONST_INT_P (XEXP (x, 1))
6126 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6127 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6128 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6129 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6130 && HWI_COMPUTABLE_MODE_P (int_mode)
6131 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6132 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6133 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6134 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6135 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6136 && known_eq ((GET_MODE_PRECISION
6137 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6138 (unsigned int) i + 1))))
6139 return simplify_shift_const
6140 (NULL_RTX, ASHIFTRT, int_mode,
6141 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6142 XEXP (XEXP (XEXP (x, 0), 0), 0),
6143 GET_MODE_PRECISION (int_mode) - (i + 1)),
6144 GET_MODE_PRECISION (int_mode) - (i + 1));
6146 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6147 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6148 the bitsize of the mode - 1. This allows simplification of
6149 "a = (b & 8) == 0;" */
6150 if (XEXP (x, 1) == constm1_rtx
6151 && !REG_P (XEXP (x, 0))
6152 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6153 && REG_P (SUBREG_REG (XEXP (x, 0))))
6154 && is_a <scalar_int_mode> (mode, &int_mode)
6155 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6156 return simplify_shift_const
6157 (NULL_RTX, ASHIFTRT, int_mode,
6158 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6159 gen_rtx_XOR (int_mode, XEXP (x, 0),
6160 const1_rtx),
6161 GET_MODE_PRECISION (int_mode) - 1),
6162 GET_MODE_PRECISION (int_mode) - 1);
6164 /* If we are adding two things that have no bits in common, convert
6165 the addition into an IOR. This will often be further simplified,
6166 for example in cases like ((a & 1) + (a & 2)), which can
6167 become a & 3. */
6169 if (HWI_COMPUTABLE_MODE_P (mode)
6170 && (nonzero_bits (XEXP (x, 0), mode)
6171 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6173 /* Try to simplify the expression further. */
6174 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6175 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6177 /* If we could, great. If not, do not go ahead with the IOR
6178 replacement, since PLUS appears in many special purpose
6179 address arithmetic instructions. */
6180 if (GET_CODE (temp) != CLOBBER
6181 && (GET_CODE (temp) != IOR
6182 || ((XEXP (temp, 0) != XEXP (x, 0)
6183 || XEXP (temp, 1) != XEXP (x, 1))
6184 && (XEXP (temp, 0) != XEXP (x, 1)
6185 || XEXP (temp, 1) != XEXP (x, 0)))))
6186 return temp;
6189 /* Canonicalize x + x into x << 1. */
6190 if (GET_MODE_CLASS (mode) == MODE_INT
6191 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6192 && !side_effects_p (XEXP (x, 0)))
6193 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6195 break;
6197 case MINUS:
6198 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6199 (and <foo> (const_int pow2-1)) */
6200 if (is_a <scalar_int_mode> (mode, &int_mode)
6201 && GET_CODE (XEXP (x, 1)) == AND
6202 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6203 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6204 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6205 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6206 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6207 break;
6209 case MULT:
6210 /* If we have (mult (plus A B) C), apply the distributive law and then
6211 the inverse distributive law to see if things simplify. This
6212 occurs mostly in addresses, often when unrolling loops. */
6214 if (GET_CODE (XEXP (x, 0)) == PLUS)
6216 rtx result = distribute_and_simplify_rtx (x, 0);
6217 if (result)
6218 return result;
6221 /* Try simplify a*(b/c) as (a*b)/c. */
6222 if (FLOAT_MODE_P (mode) && flag_associative_math
6223 && GET_CODE (XEXP (x, 0)) == DIV)
6225 rtx tem = simplify_binary_operation (MULT, mode,
6226 XEXP (XEXP (x, 0), 0),
6227 XEXP (x, 1));
6228 if (tem)
6229 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6231 break;
6233 case UDIV:
6234 /* If this is a divide by a power of two, treat it as a shift if
6235 its first operand is a shift. */
6236 if (is_a <scalar_int_mode> (mode, &int_mode)
6237 && CONST_INT_P (XEXP (x, 1))
6238 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6239 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6240 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6241 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6242 || GET_CODE (XEXP (x, 0)) == ROTATE
6243 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6244 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6245 XEXP (x, 0), i);
6246 break;
6248 case EQ: case NE:
6249 case GT: case GTU: case GE: case GEU:
6250 case LT: case LTU: case LE: case LEU:
6251 case UNEQ: case LTGT:
6252 case UNGT: case UNGE:
6253 case UNLT: case UNLE:
6254 case UNORDERED: case ORDERED:
6255 /* If the first operand is a condition code, we can't do anything
6256 with it. */
6257 if (GET_CODE (XEXP (x, 0)) == COMPARE
6258 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6259 && ! CC0_P (XEXP (x, 0))))
6261 rtx op0 = XEXP (x, 0);
6262 rtx op1 = XEXP (x, 1);
6263 enum rtx_code new_code;
6265 if (GET_CODE (op0) == COMPARE)
6266 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6268 /* Simplify our comparison, if possible. */
6269 new_code = simplify_comparison (code, &op0, &op1);
6271 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6272 if only the low-order bit is possibly nonzero in X (such as when
6273 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6274 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6275 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6276 (plus X 1).
6278 Remove any ZERO_EXTRACT we made when thinking this was a
6279 comparison. It may now be simpler to use, e.g., an AND. If a
6280 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6281 the call to make_compound_operation in the SET case.
6283 Don't apply these optimizations if the caller would
6284 prefer a comparison rather than a value.
6285 E.g., for the condition in an IF_THEN_ELSE most targets need
6286 an explicit comparison. */
6288 if (in_cond)
6291 else if (STORE_FLAG_VALUE == 1
6292 && new_code == NE
6293 && is_int_mode (mode, &int_mode)
6294 && op1 == const0_rtx
6295 && int_mode == GET_MODE (op0)
6296 && nonzero_bits (op0, int_mode) == 1)
6297 return gen_lowpart (int_mode,
6298 expand_compound_operation (op0));
6300 else if (STORE_FLAG_VALUE == 1
6301 && new_code == NE
6302 && is_int_mode (mode, &int_mode)
6303 && op1 == const0_rtx
6304 && int_mode == GET_MODE (op0)
6305 && (num_sign_bit_copies (op0, int_mode)
6306 == GET_MODE_PRECISION (int_mode)))
6308 op0 = expand_compound_operation (op0);
6309 return simplify_gen_unary (NEG, int_mode,
6310 gen_lowpart (int_mode, op0),
6311 int_mode);
6314 else if (STORE_FLAG_VALUE == 1
6315 && new_code == EQ
6316 && is_int_mode (mode, &int_mode)
6317 && op1 == const0_rtx
6318 && int_mode == GET_MODE (op0)
6319 && nonzero_bits (op0, int_mode) == 1)
6321 op0 = expand_compound_operation (op0);
6322 return simplify_gen_binary (XOR, int_mode,
6323 gen_lowpart (int_mode, op0),
6324 const1_rtx);
6327 else if (STORE_FLAG_VALUE == 1
6328 && new_code == EQ
6329 && is_int_mode (mode, &int_mode)
6330 && op1 == const0_rtx
6331 && int_mode == GET_MODE (op0)
6332 && (num_sign_bit_copies (op0, int_mode)
6333 == GET_MODE_PRECISION (int_mode)))
6335 op0 = expand_compound_operation (op0);
6336 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6339 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6340 those above. */
6341 if (in_cond)
6344 else if (STORE_FLAG_VALUE == -1
6345 && new_code == NE
6346 && is_int_mode (mode, &int_mode)
6347 && op1 == const0_rtx
6348 && int_mode == GET_MODE (op0)
6349 && (num_sign_bit_copies (op0, int_mode)
6350 == GET_MODE_PRECISION (int_mode)))
6351 return gen_lowpart (int_mode, expand_compound_operation (op0));
6353 else if (STORE_FLAG_VALUE == -1
6354 && new_code == NE
6355 && is_int_mode (mode, &int_mode)
6356 && op1 == const0_rtx
6357 && int_mode == GET_MODE (op0)
6358 && nonzero_bits (op0, int_mode) == 1)
6360 op0 = expand_compound_operation (op0);
6361 return simplify_gen_unary (NEG, int_mode,
6362 gen_lowpart (int_mode, op0),
6363 int_mode);
6366 else if (STORE_FLAG_VALUE == -1
6367 && new_code == EQ
6368 && is_int_mode (mode, &int_mode)
6369 && op1 == const0_rtx
6370 && int_mode == GET_MODE (op0)
6371 && (num_sign_bit_copies (op0, int_mode)
6372 == GET_MODE_PRECISION (int_mode)))
6374 op0 = expand_compound_operation (op0);
6375 return simplify_gen_unary (NOT, int_mode,
6376 gen_lowpart (int_mode, op0),
6377 int_mode);
6380 /* If X is 0/1, (eq X 0) is X-1. */
6381 else if (STORE_FLAG_VALUE == -1
6382 && new_code == EQ
6383 && is_int_mode (mode, &int_mode)
6384 && op1 == const0_rtx
6385 && int_mode == GET_MODE (op0)
6386 && nonzero_bits (op0, int_mode) == 1)
6388 op0 = expand_compound_operation (op0);
6389 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6392 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6393 one bit that might be nonzero, we can convert (ne x 0) to
6394 (ashift x c) where C puts the bit in the sign bit. Remove any
6395 AND with STORE_FLAG_VALUE when we are done, since we are only
6396 going to test the sign bit. */
6397 if (new_code == NE
6398 && is_int_mode (mode, &int_mode)
6399 && HWI_COMPUTABLE_MODE_P (int_mode)
6400 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6401 && op1 == const0_rtx
6402 && int_mode == GET_MODE (op0)
6403 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6405 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6406 expand_compound_operation (op0),
6407 GET_MODE_PRECISION (int_mode) - 1 - i);
6408 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6409 return XEXP (x, 0);
6410 else
6411 return x;
6414 /* If the code changed, return a whole new comparison.
6415 We also need to avoid using SUBST in cases where
6416 simplify_comparison has widened a comparison with a CONST_INT,
6417 since in that case the wider CONST_INT may fail the sanity
6418 checks in do_SUBST. */
6419 if (new_code != code
6420 || (CONST_INT_P (op1)
6421 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6422 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6423 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6425 /* Otherwise, keep this operation, but maybe change its operands.
6426 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6427 SUBST (XEXP (x, 0), op0);
6428 SUBST (XEXP (x, 1), op1);
6430 break;
6432 case IF_THEN_ELSE:
6433 return simplify_if_then_else (x);
6435 case ZERO_EXTRACT:
6436 case SIGN_EXTRACT:
6437 case ZERO_EXTEND:
6438 case SIGN_EXTEND:
6439 /* If we are processing SET_DEST, we are done. */
6440 if (in_dest)
6441 return x;
6443 return expand_compound_operation (x);
6445 case SET:
6446 return simplify_set (x);
6448 case AND:
6449 case IOR:
6450 return simplify_logical (x);
6452 case ASHIFT:
6453 case LSHIFTRT:
6454 case ASHIFTRT:
6455 case ROTATE:
6456 case ROTATERT:
6457 /* If this is a shift by a constant amount, simplify it. */
6458 if (CONST_INT_P (XEXP (x, 1)))
6459 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6460 INTVAL (XEXP (x, 1)));
6462 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6463 SUBST (XEXP (x, 1),
6464 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6465 (HOST_WIDE_INT_1U
6466 << exact_log2 (GET_MODE_UNIT_BITSIZE
6467 (GET_MODE (x))))
6468 - 1,
6469 0));
6470 break;
6472 default:
6473 break;
6476 return x;
6479 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6481 static rtx
6482 simplify_if_then_else (rtx x)
6484 machine_mode mode = GET_MODE (x);
6485 rtx cond = XEXP (x, 0);
6486 rtx true_rtx = XEXP (x, 1);
6487 rtx false_rtx = XEXP (x, 2);
6488 enum rtx_code true_code = GET_CODE (cond);
6489 int comparison_p = COMPARISON_P (cond);
6490 rtx temp;
6491 int i;
6492 enum rtx_code false_code;
6493 rtx reversed;
6494 scalar_int_mode int_mode, inner_mode;
6496 /* Simplify storing of the truth value. */
6497 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6498 return simplify_gen_relational (true_code, mode, VOIDmode,
6499 XEXP (cond, 0), XEXP (cond, 1));
6501 /* Also when the truth value has to be reversed. */
6502 if (comparison_p
6503 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6504 && (reversed = reversed_comparison (cond, mode)))
6505 return reversed;
6507 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6508 in it is being compared against certain values. Get the true and false
6509 comparisons and see if that says anything about the value of each arm. */
6511 if (comparison_p
6512 && ((false_code = reversed_comparison_code (cond, NULL))
6513 != UNKNOWN)
6514 && REG_P (XEXP (cond, 0)))
6516 HOST_WIDE_INT nzb;
6517 rtx from = XEXP (cond, 0);
6518 rtx true_val = XEXP (cond, 1);
6519 rtx false_val = true_val;
6520 int swapped = 0;
6522 /* If FALSE_CODE is EQ, swap the codes and arms. */
6524 if (false_code == EQ)
6526 swapped = 1, true_code = EQ, false_code = NE;
6527 std::swap (true_rtx, false_rtx);
6530 scalar_int_mode from_mode;
6531 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6533 /* If we are comparing against zero and the expression being
6534 tested has only a single bit that might be nonzero, that is
6535 its value when it is not equal to zero. Similarly if it is
6536 known to be -1 or 0. */
6537 if (true_code == EQ
6538 && true_val == const0_rtx
6539 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6541 false_code = EQ;
6542 false_val = gen_int_mode (nzb, from_mode);
6544 else if (true_code == EQ
6545 && true_val == const0_rtx
6546 && (num_sign_bit_copies (from, from_mode)
6547 == GET_MODE_PRECISION (from_mode)))
6549 false_code = EQ;
6550 false_val = constm1_rtx;
6554 /* Now simplify an arm if we know the value of the register in the
6555 branch and it is used in the arm. Be careful due to the potential
6556 of locally-shared RTL. */
6558 if (reg_mentioned_p (from, true_rtx))
6559 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6560 from, true_val),
6561 pc_rtx, pc_rtx, 0, 0, 0);
6562 if (reg_mentioned_p (from, false_rtx))
6563 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6564 from, false_val),
6565 pc_rtx, pc_rtx, 0, 0, 0);
6567 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6568 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6570 true_rtx = XEXP (x, 1);
6571 false_rtx = XEXP (x, 2);
6572 true_code = GET_CODE (cond);
6575 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6576 reversed, do so to avoid needing two sets of patterns for
6577 subtract-and-branch insns. Similarly if we have a constant in the true
6578 arm, the false arm is the same as the first operand of the comparison, or
6579 the false arm is more complicated than the true arm. */
6581 if (comparison_p
6582 && reversed_comparison_code (cond, NULL) != UNKNOWN
6583 && (true_rtx == pc_rtx
6584 || (CONSTANT_P (true_rtx)
6585 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6586 || true_rtx == const0_rtx
6587 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6588 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6589 && !OBJECT_P (false_rtx))
6590 || reg_mentioned_p (true_rtx, false_rtx)
6591 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6593 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6594 SUBST (XEXP (x, 1), false_rtx);
6595 SUBST (XEXP (x, 2), true_rtx);
6597 std::swap (true_rtx, false_rtx);
6598 cond = XEXP (x, 0);
6600 /* It is possible that the conditional has been simplified out. */
6601 true_code = GET_CODE (cond);
6602 comparison_p = COMPARISON_P (cond);
6605 /* If the two arms are identical, we don't need the comparison. */
6607 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6608 return true_rtx;
6610 /* Convert a == b ? b : a to "a". */
6611 if (true_code == EQ && ! side_effects_p (cond)
6612 && !HONOR_NANS (mode)
6613 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6614 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6615 return false_rtx;
6616 else if (true_code == NE && ! side_effects_p (cond)
6617 && !HONOR_NANS (mode)
6618 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6619 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6620 return true_rtx;
6622 /* Look for cases where we have (abs x) or (neg (abs X)). */
6624 if (GET_MODE_CLASS (mode) == MODE_INT
6625 && comparison_p
6626 && XEXP (cond, 1) == const0_rtx
6627 && GET_CODE (false_rtx) == NEG
6628 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6629 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6630 && ! side_effects_p (true_rtx))
6631 switch (true_code)
6633 case GT:
6634 case GE:
6635 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6636 case LT:
6637 case LE:
6638 return
6639 simplify_gen_unary (NEG, mode,
6640 simplify_gen_unary (ABS, mode, true_rtx, mode),
6641 mode);
6642 default:
6643 break;
6646 /* Look for MIN or MAX. */
6648 if ((! FLOAT_MODE_P (mode)
6649 || (flag_unsafe_math_optimizations
6650 && !HONOR_NANS (mode)
6651 && !HONOR_SIGNED_ZEROS (mode)))
6652 && comparison_p
6653 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6654 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6655 && ! side_effects_p (cond))
6656 switch (true_code)
6658 case GE:
6659 case GT:
6660 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6661 case LE:
6662 case LT:
6663 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6664 case GEU:
6665 case GTU:
6666 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6667 case LEU:
6668 case LTU:
6669 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6670 default:
6671 break;
6674 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6675 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6676 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6677 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6678 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6679 neither 1 or -1, but it isn't worth checking for. */
6681 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6682 && comparison_p
6683 && is_int_mode (mode, &int_mode)
6684 && ! side_effects_p (x))
6686 rtx t = make_compound_operation (true_rtx, SET);
6687 rtx f = make_compound_operation (false_rtx, SET);
6688 rtx cond_op0 = XEXP (cond, 0);
6689 rtx cond_op1 = XEXP (cond, 1);
6690 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6691 scalar_int_mode m = int_mode;
6692 rtx z = 0, c1 = NULL_RTX;
6694 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6695 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6696 || GET_CODE (t) == ASHIFT
6697 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6698 && rtx_equal_p (XEXP (t, 0), f))
6699 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6701 /* If an identity-zero op is commutative, check whether there
6702 would be a match if we swapped the operands. */
6703 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6704 || GET_CODE (t) == XOR)
6705 && rtx_equal_p (XEXP (t, 1), f))
6706 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6707 else if (GET_CODE (t) == SIGN_EXTEND
6708 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6709 && (GET_CODE (XEXP (t, 0)) == PLUS
6710 || GET_CODE (XEXP (t, 0)) == MINUS
6711 || GET_CODE (XEXP (t, 0)) == IOR
6712 || GET_CODE (XEXP (t, 0)) == XOR
6713 || GET_CODE (XEXP (t, 0)) == ASHIFT
6714 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6715 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6716 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6717 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6718 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6719 && (num_sign_bit_copies (f, GET_MODE (f))
6720 > (unsigned int)
6721 (GET_MODE_PRECISION (int_mode)
6722 - GET_MODE_PRECISION (inner_mode))))
6724 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6725 extend_op = SIGN_EXTEND;
6726 m = inner_mode;
6728 else if (GET_CODE (t) == SIGN_EXTEND
6729 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6730 && (GET_CODE (XEXP (t, 0)) == PLUS
6731 || GET_CODE (XEXP (t, 0)) == IOR
6732 || GET_CODE (XEXP (t, 0)) == XOR)
6733 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6734 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6735 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6736 && (num_sign_bit_copies (f, GET_MODE (f))
6737 > (unsigned int)
6738 (GET_MODE_PRECISION (int_mode)
6739 - GET_MODE_PRECISION (inner_mode))))
6741 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6742 extend_op = SIGN_EXTEND;
6743 m = inner_mode;
6745 else if (GET_CODE (t) == ZERO_EXTEND
6746 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6747 && (GET_CODE (XEXP (t, 0)) == PLUS
6748 || GET_CODE (XEXP (t, 0)) == MINUS
6749 || GET_CODE (XEXP (t, 0)) == IOR
6750 || GET_CODE (XEXP (t, 0)) == XOR
6751 || GET_CODE (XEXP (t, 0)) == ASHIFT
6752 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6753 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6754 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6755 && HWI_COMPUTABLE_MODE_P (int_mode)
6756 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6757 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6758 && ((nonzero_bits (f, GET_MODE (f))
6759 & ~GET_MODE_MASK (inner_mode))
6760 == 0))
6762 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6763 extend_op = ZERO_EXTEND;
6764 m = inner_mode;
6766 else if (GET_CODE (t) == ZERO_EXTEND
6767 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6768 && (GET_CODE (XEXP (t, 0)) == PLUS
6769 || GET_CODE (XEXP (t, 0)) == IOR
6770 || GET_CODE (XEXP (t, 0)) == XOR)
6771 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6772 && HWI_COMPUTABLE_MODE_P (int_mode)
6773 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6774 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6775 && ((nonzero_bits (f, GET_MODE (f))
6776 & ~GET_MODE_MASK (inner_mode))
6777 == 0))
6779 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6780 extend_op = ZERO_EXTEND;
6781 m = inner_mode;
6784 if (z)
6786 machine_mode cm = m;
6787 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6788 && GET_MODE (c1) != VOIDmode)
6789 cm = GET_MODE (c1);
6790 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6791 cond_op0, cond_op1),
6792 pc_rtx, pc_rtx, 0, 0, 0);
6793 temp = simplify_gen_binary (MULT, cm, temp,
6794 simplify_gen_binary (MULT, cm, c1,
6795 const_true_rtx));
6796 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6797 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6799 if (extend_op != UNKNOWN)
6800 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6802 return temp;
6806 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6807 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6808 negation of a single bit, we can convert this operation to a shift. We
6809 can actually do this more generally, but it doesn't seem worth it. */
6811 if (true_code == NE
6812 && is_a <scalar_int_mode> (mode, &int_mode)
6813 && XEXP (cond, 1) == const0_rtx
6814 && false_rtx == const0_rtx
6815 && CONST_INT_P (true_rtx)
6816 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6817 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6818 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6819 == GET_MODE_PRECISION (int_mode))
6820 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6821 return
6822 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6823 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6825 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6826 non-zero bit in A is C1. */
6827 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6828 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6829 && is_a <scalar_int_mode> (mode, &int_mode)
6830 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6831 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6832 == nonzero_bits (XEXP (cond, 0), inner_mode)
6833 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6835 rtx val = XEXP (cond, 0);
6836 if (inner_mode == int_mode)
6837 return val;
6838 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6839 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6842 return x;
6845 /* Simplify X, a SET expression. Return the new expression. */
6847 static rtx
6848 simplify_set (rtx x)
6850 rtx src = SET_SRC (x);
6851 rtx dest = SET_DEST (x);
6852 machine_mode mode
6853 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6854 rtx_insn *other_insn;
6855 rtx *cc_use;
6856 scalar_int_mode int_mode;
6858 /* (set (pc) (return)) gets written as (return). */
6859 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6860 return src;
6862 /* Now that we know for sure which bits of SRC we are using, see if we can
6863 simplify the expression for the object knowing that we only need the
6864 low-order bits. */
6866 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6868 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6869 SUBST (SET_SRC (x), src);
6872 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6873 the comparison result and try to simplify it unless we already have used
6874 undobuf.other_insn. */
6875 if ((GET_MODE_CLASS (mode) == MODE_CC
6876 || GET_CODE (src) == COMPARE
6877 || CC0_P (dest))
6878 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6879 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6880 && COMPARISON_P (*cc_use)
6881 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6883 enum rtx_code old_code = GET_CODE (*cc_use);
6884 enum rtx_code new_code;
6885 rtx op0, op1, tmp;
6886 int other_changed = 0;
6887 rtx inner_compare = NULL_RTX;
6888 machine_mode compare_mode = GET_MODE (dest);
6890 if (GET_CODE (src) == COMPARE)
6892 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6893 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6895 inner_compare = op0;
6896 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6899 else
6900 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6902 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6903 op0, op1);
6904 if (!tmp)
6905 new_code = old_code;
6906 else if (!CONSTANT_P (tmp))
6908 new_code = GET_CODE (tmp);
6909 op0 = XEXP (tmp, 0);
6910 op1 = XEXP (tmp, 1);
6912 else
6914 rtx pat = PATTERN (other_insn);
6915 undobuf.other_insn = other_insn;
6916 SUBST (*cc_use, tmp);
6918 /* Attempt to simplify CC user. */
6919 if (GET_CODE (pat) == SET)
6921 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6922 if (new_rtx != NULL_RTX)
6923 SUBST (SET_SRC (pat), new_rtx);
6926 /* Convert X into a no-op move. */
6927 SUBST (SET_DEST (x), pc_rtx);
6928 SUBST (SET_SRC (x), pc_rtx);
6929 return x;
6932 /* Simplify our comparison, if possible. */
6933 new_code = simplify_comparison (new_code, &op0, &op1);
6935 #ifdef SELECT_CC_MODE
6936 /* If this machine has CC modes other than CCmode, check to see if we
6937 need to use a different CC mode here. */
6938 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6939 compare_mode = GET_MODE (op0);
6940 else if (inner_compare
6941 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6942 && new_code == old_code
6943 && op0 == XEXP (inner_compare, 0)
6944 && op1 == XEXP (inner_compare, 1))
6945 compare_mode = GET_MODE (inner_compare);
6946 else
6947 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6949 /* If the mode changed, we have to change SET_DEST, the mode in the
6950 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6951 a hard register, just build new versions with the proper mode. If it
6952 is a pseudo, we lose unless it is only time we set the pseudo, in
6953 which case we can safely change its mode. */
6954 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6956 if (can_change_dest_mode (dest, 0, compare_mode))
6958 unsigned int regno = REGNO (dest);
6959 rtx new_dest;
6961 if (regno < FIRST_PSEUDO_REGISTER)
6962 new_dest = gen_rtx_REG (compare_mode, regno);
6963 else
6965 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6966 new_dest = regno_reg_rtx[regno];
6969 SUBST (SET_DEST (x), new_dest);
6970 SUBST (XEXP (*cc_use, 0), new_dest);
6971 other_changed = 1;
6973 dest = new_dest;
6976 #endif /* SELECT_CC_MODE */
6978 /* If the code changed, we have to build a new comparison in
6979 undobuf.other_insn. */
6980 if (new_code != old_code)
6982 int other_changed_previously = other_changed;
6983 unsigned HOST_WIDE_INT mask;
6984 rtx old_cc_use = *cc_use;
6986 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6987 dest, const0_rtx));
6988 other_changed = 1;
6990 /* If the only change we made was to change an EQ into an NE or
6991 vice versa, OP0 has only one bit that might be nonzero, and OP1
6992 is zero, check if changing the user of the condition code will
6993 produce a valid insn. If it won't, we can keep the original code
6994 in that insn by surrounding our operation with an XOR. */
6996 if (((old_code == NE && new_code == EQ)
6997 || (old_code == EQ && new_code == NE))
6998 && ! other_changed_previously && op1 == const0_rtx
6999 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
7000 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
7002 rtx pat = PATTERN (other_insn), note = 0;
7004 if ((recog_for_combine (&pat, other_insn, &note) < 0
7005 && ! check_asm_operands (pat)))
7007 *cc_use = old_cc_use;
7008 other_changed = 0;
7010 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
7011 gen_int_mode (mask,
7012 GET_MODE (op0)));
7017 if (other_changed)
7018 undobuf.other_insn = other_insn;
7020 /* Don't generate a compare of a CC with 0, just use that CC. */
7021 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
7023 SUBST (SET_SRC (x), op0);
7024 src = SET_SRC (x);
7026 /* Otherwise, if we didn't previously have the same COMPARE we
7027 want, create it from scratch. */
7028 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
7029 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
7031 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
7032 src = SET_SRC (x);
7035 else
7037 /* Get SET_SRC in a form where we have placed back any
7038 compound expressions. Then do the checks below. */
7039 src = make_compound_operation (src, SET);
7040 SUBST (SET_SRC (x), src);
7043 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
7044 and X being a REG or (subreg (reg)), we may be able to convert this to
7045 (set (subreg:m2 x) (op)).
7047 We can always do this if M1 is narrower than M2 because that means that
7048 we only care about the low bits of the result.
7050 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
7051 perform a narrower operation than requested since the high-order bits will
7052 be undefined. On machine where it is defined, this transformation is safe
7053 as long as M1 and M2 have the same number of words. */
7055 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
7056 && !OBJECT_P (SUBREG_REG (src))
7057 && (known_equal_after_align_up
7058 (GET_MODE_SIZE (GET_MODE (src)),
7059 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
7060 UNITS_PER_WORD))
7061 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
7062 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
7063 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
7064 GET_MODE (SUBREG_REG (src)),
7065 GET_MODE (src)))
7066 && (REG_P (dest)
7067 || (GET_CODE (dest) == SUBREG
7068 && REG_P (SUBREG_REG (dest)))))
7070 SUBST (SET_DEST (x),
7071 gen_lowpart (GET_MODE (SUBREG_REG (src)),
7072 dest));
7073 SUBST (SET_SRC (x), SUBREG_REG (src));
7075 src = SET_SRC (x), dest = SET_DEST (x);
7078 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
7079 in SRC. */
7080 if (dest == cc0_rtx
7081 && partial_subreg_p (src)
7082 && subreg_lowpart_p (src))
7084 rtx inner = SUBREG_REG (src);
7085 machine_mode inner_mode = GET_MODE (inner);
7087 /* Here we make sure that we don't have a sign bit on. */
7088 if (val_signbit_known_clear_p (GET_MODE (src),
7089 nonzero_bits (inner, inner_mode)))
7091 SUBST (SET_SRC (x), inner);
7092 src = SET_SRC (x);
7096 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7097 would require a paradoxical subreg. Replace the subreg with a
7098 zero_extend to avoid the reload that would otherwise be required.
7099 Don't do this unless we have a scalar integer mode, otherwise the
7100 transformation is incorrect. */
7102 enum rtx_code extend_op;
7103 if (paradoxical_subreg_p (src)
7104 && MEM_P (SUBREG_REG (src))
7105 && SCALAR_INT_MODE_P (GET_MODE (src))
7106 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7108 SUBST (SET_SRC (x),
7109 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7111 src = SET_SRC (x);
7114 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7115 are comparing an item known to be 0 or -1 against 0, use a logical
7116 operation instead. Check for one of the arms being an IOR of the other
7117 arm with some value. We compute three terms to be IOR'ed together. In
7118 practice, at most two will be nonzero. Then we do the IOR's. */
7120 if (GET_CODE (dest) != PC
7121 && GET_CODE (src) == IF_THEN_ELSE
7122 && is_int_mode (GET_MODE (src), &int_mode)
7123 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7124 && XEXP (XEXP (src, 0), 1) == const0_rtx
7125 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7126 && (!HAVE_conditional_move
7127 || ! can_conditionally_move_p (int_mode))
7128 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7129 == GET_MODE_PRECISION (int_mode))
7130 && ! side_effects_p (src))
7132 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7133 ? XEXP (src, 1) : XEXP (src, 2));
7134 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7135 ? XEXP (src, 2) : XEXP (src, 1));
7136 rtx term1 = const0_rtx, term2, term3;
7138 if (GET_CODE (true_rtx) == IOR
7139 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7140 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7141 else if (GET_CODE (true_rtx) == IOR
7142 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7143 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7144 else if (GET_CODE (false_rtx) == IOR
7145 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7146 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7147 else if (GET_CODE (false_rtx) == IOR
7148 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7149 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7151 term2 = simplify_gen_binary (AND, int_mode,
7152 XEXP (XEXP (src, 0), 0), true_rtx);
7153 term3 = simplify_gen_binary (AND, int_mode,
7154 simplify_gen_unary (NOT, int_mode,
7155 XEXP (XEXP (src, 0), 0),
7156 int_mode),
7157 false_rtx);
7159 SUBST (SET_SRC (x),
7160 simplify_gen_binary (IOR, int_mode,
7161 simplify_gen_binary (IOR, int_mode,
7162 term1, term2),
7163 term3));
7165 src = SET_SRC (x);
7168 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7169 whole thing fail. */
7170 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7171 return src;
7172 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7173 return dest;
7174 else
7175 /* Convert this into a field assignment operation, if possible. */
7176 return make_field_assignment (x);
7179 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7180 result. */
7182 static rtx
7183 simplify_logical (rtx x)
7185 rtx op0 = XEXP (x, 0);
7186 rtx op1 = XEXP (x, 1);
7187 scalar_int_mode mode;
7189 switch (GET_CODE (x))
7191 case AND:
7192 /* We can call simplify_and_const_int only if we don't lose
7193 any (sign) bits when converting INTVAL (op1) to
7194 "unsigned HOST_WIDE_INT". */
7195 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7196 && CONST_INT_P (op1)
7197 && (HWI_COMPUTABLE_MODE_P (mode)
7198 || INTVAL (op1) > 0))
7200 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7201 if (GET_CODE (x) != AND)
7202 return x;
7204 op0 = XEXP (x, 0);
7205 op1 = XEXP (x, 1);
7208 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7209 apply the distributive law and then the inverse distributive
7210 law to see if things simplify. */
7211 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7213 rtx result = distribute_and_simplify_rtx (x, 0);
7214 if (result)
7215 return result;
7217 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7219 rtx result = distribute_and_simplify_rtx (x, 1);
7220 if (result)
7221 return result;
7223 break;
7225 case IOR:
7226 /* If we have (ior (and A B) C), apply the distributive law and then
7227 the inverse distributive law to see if things simplify. */
7229 if (GET_CODE (op0) == AND)
7231 rtx result = distribute_and_simplify_rtx (x, 0);
7232 if (result)
7233 return result;
7236 if (GET_CODE (op1) == AND)
7238 rtx result = distribute_and_simplify_rtx (x, 1);
7239 if (result)
7240 return result;
7242 break;
7244 default:
7245 gcc_unreachable ();
7248 return x;
7251 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7252 operations" because they can be replaced with two more basic operations.
7253 ZERO_EXTEND is also considered "compound" because it can be replaced with
7254 an AND operation, which is simpler, though only one operation.
7256 The function expand_compound_operation is called with an rtx expression
7257 and will convert it to the appropriate shifts and AND operations,
7258 simplifying at each stage.
7260 The function make_compound_operation is called to convert an expression
7261 consisting of shifts and ANDs into the equivalent compound expression.
7262 It is the inverse of this function, loosely speaking. */
7264 static rtx
7265 expand_compound_operation (rtx x)
7267 unsigned HOST_WIDE_INT pos = 0, len;
7268 int unsignedp = 0;
7269 unsigned int modewidth;
7270 rtx tem;
7271 scalar_int_mode inner_mode;
7273 switch (GET_CODE (x))
7275 case ZERO_EXTEND:
7276 unsignedp = 1;
7277 /* FALLTHRU */
7278 case SIGN_EXTEND:
7279 /* We can't necessarily use a const_int for a multiword mode;
7280 it depends on implicitly extending the value.
7281 Since we don't know the right way to extend it,
7282 we can't tell whether the implicit way is right.
7284 Even for a mode that is no wider than a const_int,
7285 we can't win, because we need to sign extend one of its bits through
7286 the rest of it, and we don't know which bit. */
7287 if (CONST_INT_P (XEXP (x, 0)))
7288 return x;
7290 /* Reject modes that aren't scalar integers because turning vector
7291 or complex modes into shifts causes problems. */
7292 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7293 return x;
7295 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7296 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7297 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7298 reloaded. If not for that, MEM's would very rarely be safe.
7300 Reject modes bigger than a word, because we might not be able
7301 to reference a two-register group starting with an arbitrary register
7302 (and currently gen_lowpart might crash for a SUBREG). */
7304 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7305 return x;
7307 len = GET_MODE_PRECISION (inner_mode);
7308 /* If the inner object has VOIDmode (the only way this can happen
7309 is if it is an ASM_OPERANDS), we can't do anything since we don't
7310 know how much masking to do. */
7311 if (len == 0)
7312 return x;
7314 break;
7316 case ZERO_EXTRACT:
7317 unsignedp = 1;
7319 /* fall through */
7321 case SIGN_EXTRACT:
7322 /* If the operand is a CLOBBER, just return it. */
7323 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7324 return XEXP (x, 0);
7326 if (!CONST_INT_P (XEXP (x, 1))
7327 || !CONST_INT_P (XEXP (x, 2)))
7328 return x;
7330 /* Reject modes that aren't scalar integers because turning vector
7331 or complex modes into shifts causes problems. */
7332 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7333 return x;
7335 len = INTVAL (XEXP (x, 1));
7336 pos = INTVAL (XEXP (x, 2));
7338 /* This should stay within the object being extracted, fail otherwise. */
7339 if (len + pos > GET_MODE_PRECISION (inner_mode))
7340 return x;
7342 if (BITS_BIG_ENDIAN)
7343 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7345 break;
7347 default:
7348 return x;
7351 /* We've rejected non-scalar operations by now. */
7352 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7354 /* Convert sign extension to zero extension, if we know that the high
7355 bit is not set, as this is easier to optimize. It will be converted
7356 back to cheaper alternative in make_extraction. */
7357 if (GET_CODE (x) == SIGN_EXTEND
7358 && HWI_COMPUTABLE_MODE_P (mode)
7359 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7360 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7361 == 0))
7363 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7364 rtx temp2 = expand_compound_operation (temp);
7366 /* Make sure this is a profitable operation. */
7367 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7368 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7369 return temp2;
7370 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7371 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7372 return temp;
7373 else
7374 return x;
7377 /* We can optimize some special cases of ZERO_EXTEND. */
7378 if (GET_CODE (x) == ZERO_EXTEND)
7380 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7381 know that the last value didn't have any inappropriate bits
7382 set. */
7383 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7384 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7385 && HWI_COMPUTABLE_MODE_P (mode)
7386 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7387 & ~GET_MODE_MASK (inner_mode)) == 0)
7388 return XEXP (XEXP (x, 0), 0);
7390 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7391 if (GET_CODE (XEXP (x, 0)) == SUBREG
7392 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7393 && subreg_lowpart_p (XEXP (x, 0))
7394 && HWI_COMPUTABLE_MODE_P (mode)
7395 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7396 & ~GET_MODE_MASK (inner_mode)) == 0)
7397 return SUBREG_REG (XEXP (x, 0));
7399 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7400 is a comparison and STORE_FLAG_VALUE permits. This is like
7401 the first case, but it works even when MODE is larger
7402 than HOST_WIDE_INT. */
7403 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7404 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7405 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7406 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7407 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7408 return XEXP (XEXP (x, 0), 0);
7410 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7411 if (GET_CODE (XEXP (x, 0)) == SUBREG
7412 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7413 && subreg_lowpart_p (XEXP (x, 0))
7414 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7415 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7416 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7417 return SUBREG_REG (XEXP (x, 0));
7421 /* If we reach here, we want to return a pair of shifts. The inner
7422 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7423 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7424 logical depending on the value of UNSIGNEDP.
7426 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7427 converted into an AND of a shift.
7429 We must check for the case where the left shift would have a negative
7430 count. This can happen in a case like (x >> 31) & 255 on machines
7431 that can't shift by a constant. On those machines, we would first
7432 combine the shift with the AND to produce a variable-position
7433 extraction. Then the constant of 31 would be substituted in
7434 to produce such a position. */
7436 modewidth = GET_MODE_PRECISION (mode);
7437 if (modewidth >= pos + len)
7439 tem = gen_lowpart (mode, XEXP (x, 0));
7440 if (!tem || GET_CODE (tem) == CLOBBER)
7441 return x;
7442 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7443 tem, modewidth - pos - len);
7444 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7445 mode, tem, modewidth - len);
7447 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7448 tem = simplify_and_const_int (NULL_RTX, mode,
7449 simplify_shift_const (NULL_RTX, LSHIFTRT,
7450 mode, XEXP (x, 0),
7451 pos),
7452 (HOST_WIDE_INT_1U << len) - 1);
7453 else
7454 /* Any other cases we can't handle. */
7455 return x;
7457 /* If we couldn't do this for some reason, return the original
7458 expression. */
7459 if (GET_CODE (tem) == CLOBBER)
7460 return x;
7462 return tem;
7465 /* X is a SET which contains an assignment of one object into
7466 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7467 or certain SUBREGS). If possible, convert it into a series of
7468 logical operations.
7470 We half-heartedly support variable positions, but do not at all
7471 support variable lengths. */
7473 static const_rtx
7474 expand_field_assignment (const_rtx x)
7476 rtx inner;
7477 rtx pos; /* Always counts from low bit. */
7478 int len, inner_len;
7479 rtx mask, cleared, masked;
7480 scalar_int_mode compute_mode;
7482 /* Loop until we find something we can't simplify. */
7483 while (1)
7485 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7486 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7488 rtx x0 = XEXP (SET_DEST (x), 0);
7489 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7490 break;
7491 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7492 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7493 MAX_MODE_INT);
7495 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7496 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7498 inner = XEXP (SET_DEST (x), 0);
7499 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7500 break;
7502 len = INTVAL (XEXP (SET_DEST (x), 1));
7503 pos = XEXP (SET_DEST (x), 2);
7505 /* A constant position should stay within the width of INNER. */
7506 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7507 break;
7509 if (BITS_BIG_ENDIAN)
7511 if (CONST_INT_P (pos))
7512 pos = GEN_INT (inner_len - len - INTVAL (pos));
7513 else if (GET_CODE (pos) == MINUS
7514 && CONST_INT_P (XEXP (pos, 1))
7515 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7516 /* If position is ADJUST - X, new position is X. */
7517 pos = XEXP (pos, 0);
7518 else
7519 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7520 gen_int_mode (inner_len - len,
7521 GET_MODE (pos)),
7522 pos);
7526 /* If the destination is a subreg that overwrites the whole of the inner
7527 register, we can move the subreg to the source. */
7528 else if (GET_CODE (SET_DEST (x)) == SUBREG
7529 /* We need SUBREGs to compute nonzero_bits properly. */
7530 && nonzero_sign_valid
7531 && !read_modify_subreg_p (SET_DEST (x)))
7533 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7534 gen_lowpart
7535 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7536 SET_SRC (x)));
7537 continue;
7539 else
7540 break;
7542 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7543 inner = SUBREG_REG (inner);
7545 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7546 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7548 /* Don't do anything for vector or complex integral types. */
7549 if (! FLOAT_MODE_P (GET_MODE (inner)))
7550 break;
7552 /* Try to find an integral mode to pun with. */
7553 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7554 .exists (&compute_mode))
7555 break;
7557 inner = gen_lowpart (compute_mode, inner);
7560 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7561 if (len >= HOST_BITS_PER_WIDE_INT)
7562 break;
7564 /* Don't try to compute in too wide unsupported modes. */
7565 if (!targetm.scalar_mode_supported_p (compute_mode))
7566 break;
7568 /* Now compute the equivalent expression. Make a copy of INNER
7569 for the SET_DEST in case it is a MEM into which we will substitute;
7570 we don't want shared RTL in that case. */
7571 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7572 compute_mode);
7573 cleared = simplify_gen_binary (AND, compute_mode,
7574 simplify_gen_unary (NOT, compute_mode,
7575 simplify_gen_binary (ASHIFT,
7576 compute_mode,
7577 mask, pos),
7578 compute_mode),
7579 inner);
7580 masked = simplify_gen_binary (ASHIFT, compute_mode,
7581 simplify_gen_binary (
7582 AND, compute_mode,
7583 gen_lowpart (compute_mode, SET_SRC (x)),
7584 mask),
7585 pos);
7587 x = gen_rtx_SET (copy_rtx (inner),
7588 simplify_gen_binary (IOR, compute_mode,
7589 cleared, masked));
7592 return x;
7595 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7596 it is an RTX that represents the (variable) starting position; otherwise,
7597 POS is the (constant) starting bit position. Both are counted from the LSB.
7599 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7601 IN_DEST is nonzero if this is a reference in the destination of a SET.
7602 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7603 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7604 be used.
7606 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7607 ZERO_EXTRACT should be built even for bits starting at bit 0.
7609 MODE is the desired mode of the result (if IN_DEST == 0).
7611 The result is an RTX for the extraction or NULL_RTX if the target
7612 can't handle it. */
7614 static rtx
7615 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7616 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7617 int in_dest, int in_compare)
7619 /* This mode describes the size of the storage area
7620 to fetch the overall value from. Within that, we
7621 ignore the POS lowest bits, etc. */
7622 machine_mode is_mode = GET_MODE (inner);
7623 machine_mode inner_mode;
7624 scalar_int_mode wanted_inner_mode;
7625 scalar_int_mode wanted_inner_reg_mode = word_mode;
7626 scalar_int_mode pos_mode = word_mode;
7627 machine_mode extraction_mode = word_mode;
7628 rtx new_rtx = 0;
7629 rtx orig_pos_rtx = pos_rtx;
7630 HOST_WIDE_INT orig_pos;
7632 if (pos_rtx && CONST_INT_P (pos_rtx))
7633 pos = INTVAL (pos_rtx), pos_rtx = 0;
7635 if (GET_CODE (inner) == SUBREG
7636 && subreg_lowpart_p (inner)
7637 && (paradoxical_subreg_p (inner)
7638 /* If trying or potentionally trying to extract
7639 bits outside of is_mode, don't look through
7640 non-paradoxical SUBREGs. See PR82192. */
7641 || (pos_rtx == NULL_RTX
7642 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7644 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7645 consider just the QI as the memory to extract from.
7646 The subreg adds or removes high bits; its mode is
7647 irrelevant to the meaning of this extraction,
7648 since POS and LEN count from the lsb. */
7649 if (MEM_P (SUBREG_REG (inner)))
7650 is_mode = GET_MODE (SUBREG_REG (inner));
7651 inner = SUBREG_REG (inner);
7653 else if (GET_CODE (inner) == ASHIFT
7654 && CONST_INT_P (XEXP (inner, 1))
7655 && pos_rtx == 0 && pos == 0
7656 && len > UINTVAL (XEXP (inner, 1)))
7658 /* We're extracting the least significant bits of an rtx
7659 (ashift X (const_int C)), where LEN > C. Extract the
7660 least significant (LEN - C) bits of X, giving an rtx
7661 whose mode is MODE, then shift it left C times. */
7662 new_rtx = make_extraction (mode, XEXP (inner, 0),
7663 0, 0, len - INTVAL (XEXP (inner, 1)),
7664 unsignedp, in_dest, in_compare);
7665 if (new_rtx != 0)
7666 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7668 else if (GET_CODE (inner) == TRUNCATE
7669 /* If trying or potentionally trying to extract
7670 bits outside of is_mode, don't look through
7671 TRUNCATE. See PR82192. */
7672 && pos_rtx == NULL_RTX
7673 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7674 inner = XEXP (inner, 0);
7676 inner_mode = GET_MODE (inner);
7678 /* See if this can be done without an extraction. We never can if the
7679 width of the field is not the same as that of some integer mode. For
7680 registers, we can only avoid the extraction if the position is at the
7681 low-order bit and this is either not in the destination or we have the
7682 appropriate STRICT_LOW_PART operation available.
7684 For MEM, we can avoid an extract if the field starts on an appropriate
7685 boundary and we can change the mode of the memory reference. */
7687 scalar_int_mode tmode;
7688 if (int_mode_for_size (len, 1).exists (&tmode)
7689 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7690 && !MEM_P (inner)
7691 && (pos == 0 || REG_P (inner))
7692 && (inner_mode == tmode
7693 || !REG_P (inner)
7694 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7695 || reg_truncated_to_mode (tmode, inner))
7696 && (! in_dest
7697 || (REG_P (inner)
7698 && have_insn_for (STRICT_LOW_PART, tmode))))
7699 || (MEM_P (inner) && pos_rtx == 0
7700 && (pos
7701 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7702 : BITS_PER_UNIT)) == 0
7703 /* We can't do this if we are widening INNER_MODE (it
7704 may not be aligned, for one thing). */
7705 && !paradoxical_subreg_p (tmode, inner_mode)
7706 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7707 && (inner_mode == tmode
7708 || (! mode_dependent_address_p (XEXP (inner, 0),
7709 MEM_ADDR_SPACE (inner))
7710 && ! MEM_VOLATILE_P (inner))))))
7712 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7713 field. If the original and current mode are the same, we need not
7714 adjust the offset. Otherwise, we do if bytes big endian.
7716 If INNER is not a MEM, get a piece consisting of just the field
7717 of interest (in this case POS % BITS_PER_WORD must be 0). */
7719 if (MEM_P (inner))
7721 poly_int64 offset;
7723 /* POS counts from lsb, but make OFFSET count in memory order. */
7724 if (BYTES_BIG_ENDIAN)
7725 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7726 - len - pos);
7727 else
7728 offset = pos / BITS_PER_UNIT;
7730 new_rtx = adjust_address_nv (inner, tmode, offset);
7732 else if (REG_P (inner))
7734 if (tmode != inner_mode)
7736 /* We can't call gen_lowpart in a DEST since we
7737 always want a SUBREG (see below) and it would sometimes
7738 return a new hard register. */
7739 if (pos || in_dest)
7741 poly_uint64 offset
7742 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7744 /* Avoid creating invalid subregs, for example when
7745 simplifying (x>>32)&255. */
7746 if (!validate_subreg (tmode, inner_mode, inner, offset))
7747 return NULL_RTX;
7749 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7751 else
7752 new_rtx = gen_lowpart (tmode, inner);
7754 else
7755 new_rtx = inner;
7757 else
7758 new_rtx = force_to_mode (inner, tmode,
7759 len >= HOST_BITS_PER_WIDE_INT
7760 ? HOST_WIDE_INT_M1U
7761 : (HOST_WIDE_INT_1U << len) - 1, 0);
7763 /* If this extraction is going into the destination of a SET,
7764 make a STRICT_LOW_PART unless we made a MEM. */
7766 if (in_dest)
7767 return (MEM_P (new_rtx) ? new_rtx
7768 : (GET_CODE (new_rtx) != SUBREG
7769 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7770 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7772 if (mode == tmode)
7773 return new_rtx;
7775 if (CONST_SCALAR_INT_P (new_rtx))
7776 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7777 mode, new_rtx, tmode);
7779 /* If we know that no extraneous bits are set, and that the high
7780 bit is not set, convert the extraction to the cheaper of
7781 sign and zero extension, that are equivalent in these cases. */
7782 if (flag_expensive_optimizations
7783 && (HWI_COMPUTABLE_MODE_P (tmode)
7784 && ((nonzero_bits (new_rtx, tmode)
7785 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7786 == 0)))
7788 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7789 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7791 /* Prefer ZERO_EXTENSION, since it gives more information to
7792 backends. */
7793 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7794 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7795 return temp;
7796 return temp1;
7799 /* Otherwise, sign- or zero-extend unless we already are in the
7800 proper mode. */
7802 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7803 mode, new_rtx));
7806 /* Unless this is a COMPARE or we have a funny memory reference,
7807 don't do anything with zero-extending field extracts starting at
7808 the low-order bit since they are simple AND operations. */
7809 if (pos_rtx == 0 && pos == 0 && ! in_dest
7810 && ! in_compare && unsignedp)
7811 return 0;
7813 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7814 if the position is not a constant and the length is not 1. In all
7815 other cases, we would only be going outside our object in cases when
7816 an original shift would have been undefined. */
7817 if (MEM_P (inner)
7818 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7819 || (pos_rtx != 0 && len != 1)))
7820 return 0;
7822 enum extraction_pattern pattern = (in_dest ? EP_insv
7823 : unsignedp ? EP_extzv : EP_extv);
7825 /* If INNER is not from memory, we want it to have the mode of a register
7826 extraction pattern's structure operand, or word_mode if there is no
7827 such pattern. The same applies to extraction_mode and pos_mode
7828 and their respective operands.
7830 For memory, assume that the desired extraction_mode and pos_mode
7831 are the same as for a register operation, since at present we don't
7832 have named patterns for aligned memory structures. */
7833 class extraction_insn insn;
7834 unsigned int inner_size;
7835 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7836 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7838 wanted_inner_reg_mode = insn.struct_mode.require ();
7839 pos_mode = insn.pos_mode;
7840 extraction_mode = insn.field_mode;
7843 /* Never narrow an object, since that might not be safe. */
7845 if (mode != VOIDmode
7846 && partial_subreg_p (extraction_mode, mode))
7847 extraction_mode = mode;
7849 /* Punt if len is too large for extraction_mode. */
7850 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7851 return NULL_RTX;
7853 if (!MEM_P (inner))
7854 wanted_inner_mode = wanted_inner_reg_mode;
7855 else
7857 /* Be careful not to go beyond the extracted object and maintain the
7858 natural alignment of the memory. */
7859 wanted_inner_mode = smallest_int_mode_for_size (len);
7860 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7861 > GET_MODE_BITSIZE (wanted_inner_mode))
7862 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7865 orig_pos = pos;
7867 if (BITS_BIG_ENDIAN)
7869 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7870 BITS_BIG_ENDIAN style. If position is constant, compute new
7871 position. Otherwise, build subtraction.
7872 Note that POS is relative to the mode of the original argument.
7873 If it's a MEM we need to recompute POS relative to that.
7874 However, if we're extracting from (or inserting into) a register,
7875 we want to recompute POS relative to wanted_inner_mode. */
7876 int width;
7877 if (!MEM_P (inner))
7878 width = GET_MODE_BITSIZE (wanted_inner_mode);
7879 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7880 return NULL_RTX;
7882 if (pos_rtx == 0)
7883 pos = width - len - pos;
7884 else
7885 pos_rtx
7886 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7887 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7888 pos_rtx);
7889 /* POS may be less than 0 now, but we check for that below.
7890 Note that it can only be less than 0 if !MEM_P (inner). */
7893 /* If INNER has a wider mode, and this is a constant extraction, try to
7894 make it smaller and adjust the byte to point to the byte containing
7895 the value. */
7896 if (wanted_inner_mode != VOIDmode
7897 && inner_mode != wanted_inner_mode
7898 && ! pos_rtx
7899 && partial_subreg_p (wanted_inner_mode, is_mode)
7900 && MEM_P (inner)
7901 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7902 && ! MEM_VOLATILE_P (inner))
7904 poly_int64 offset = 0;
7906 /* The computations below will be correct if the machine is big
7907 endian in both bits and bytes or little endian in bits and bytes.
7908 If it is mixed, we must adjust. */
7910 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7911 adjust OFFSET to compensate. */
7912 if (BYTES_BIG_ENDIAN
7913 && paradoxical_subreg_p (is_mode, inner_mode))
7914 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7916 /* We can now move to the desired byte. */
7917 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7918 * GET_MODE_SIZE (wanted_inner_mode);
7919 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7921 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7922 && is_mode != wanted_inner_mode)
7923 offset = (GET_MODE_SIZE (is_mode)
7924 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7926 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7929 /* If INNER is not memory, get it into the proper mode. If we are changing
7930 its mode, POS must be a constant and smaller than the size of the new
7931 mode. */
7932 else if (!MEM_P (inner))
7934 /* On the LHS, don't create paradoxical subregs implicitely truncating
7935 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7936 if (in_dest
7937 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7938 wanted_inner_mode))
7939 return NULL_RTX;
7941 if (GET_MODE (inner) != wanted_inner_mode
7942 && (pos_rtx != 0
7943 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7944 return NULL_RTX;
7946 if (orig_pos < 0)
7947 return NULL_RTX;
7949 inner = force_to_mode (inner, wanted_inner_mode,
7950 pos_rtx
7951 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7952 ? HOST_WIDE_INT_M1U
7953 : (((HOST_WIDE_INT_1U << len) - 1)
7954 << orig_pos),
7958 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7959 have to zero extend. Otherwise, we can just use a SUBREG.
7961 We dealt with constant rtxes earlier, so pos_rtx cannot
7962 have VOIDmode at this point. */
7963 if (pos_rtx != 0
7964 && (GET_MODE_SIZE (pos_mode)
7965 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7967 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7968 GET_MODE (pos_rtx));
7970 /* If we know that no extraneous bits are set, and that the high
7971 bit is not set, convert extraction to cheaper one - either
7972 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7973 cases. */
7974 if (flag_expensive_optimizations
7975 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7976 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7977 & ~(((unsigned HOST_WIDE_INT)
7978 GET_MODE_MASK (GET_MODE (pos_rtx)))
7979 >> 1))
7980 == 0)))
7982 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7983 GET_MODE (pos_rtx));
7985 /* Prefer ZERO_EXTENSION, since it gives more information to
7986 backends. */
7987 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7988 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7989 temp = temp1;
7991 pos_rtx = temp;
7994 /* Make POS_RTX unless we already have it and it is correct. If we don't
7995 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7996 be a CONST_INT. */
7997 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7998 pos_rtx = orig_pos_rtx;
8000 else if (pos_rtx == 0)
8001 pos_rtx = GEN_INT (pos);
8003 /* Make the required operation. See if we can use existing rtx. */
8004 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
8005 extraction_mode, inner, GEN_INT (len), pos_rtx);
8006 if (! in_dest)
8007 new_rtx = gen_lowpart (mode, new_rtx);
8009 return new_rtx;
8012 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
8013 can be commuted with any other operations in X. Return X without
8014 that shift if so. */
8016 static rtx
8017 extract_left_shift (scalar_int_mode mode, rtx x, int count)
8019 enum rtx_code code = GET_CODE (x);
8020 rtx tem;
8022 switch (code)
8024 case ASHIFT:
8025 /* This is the shift itself. If it is wide enough, we will return
8026 either the value being shifted if the shift count is equal to
8027 COUNT or a shift for the difference. */
8028 if (CONST_INT_P (XEXP (x, 1))
8029 && INTVAL (XEXP (x, 1)) >= count)
8030 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
8031 INTVAL (XEXP (x, 1)) - count);
8032 break;
8034 case NEG: case NOT:
8035 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8036 return simplify_gen_unary (code, mode, tem, mode);
8038 break;
8040 case PLUS: case IOR: case XOR: case AND:
8041 /* If we can safely shift this constant and we find the inner shift,
8042 make a new operation. */
8043 if (CONST_INT_P (XEXP (x, 1))
8044 && (UINTVAL (XEXP (x, 1))
8045 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
8046 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8048 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
8049 return simplify_gen_binary (code, mode, tem,
8050 gen_int_mode (val, mode));
8052 break;
8054 default:
8055 break;
8058 return 0;
8061 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
8062 level of the expression and MODE is its mode. IN_CODE is as for
8063 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
8064 that should be used when recursing on operands of *X_PTR.
8066 There are two possible actions:
8068 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8069 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8071 - Return a new rtx, which the caller returns directly. */
8073 static rtx
8074 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
8075 enum rtx_code in_code,
8076 enum rtx_code *next_code_ptr)
8078 rtx x = *x_ptr;
8079 enum rtx_code next_code = *next_code_ptr;
8080 enum rtx_code code = GET_CODE (x);
8081 int mode_width = GET_MODE_PRECISION (mode);
8082 rtx rhs, lhs;
8083 rtx new_rtx = 0;
8084 int i;
8085 rtx tem;
8086 scalar_int_mode inner_mode;
8087 bool equality_comparison = false;
8089 if (in_code == EQ)
8091 equality_comparison = true;
8092 in_code = COMPARE;
8095 /* Process depending on the code of this operation. If NEW is set
8096 nonzero, it will be returned. */
8098 switch (code)
8100 case ASHIFT:
8101 /* Convert shifts by constants into multiplications if inside
8102 an address. */
8103 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8104 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8105 && INTVAL (XEXP (x, 1)) >= 0)
8107 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8108 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8110 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8111 if (GET_CODE (new_rtx) == NEG)
8113 new_rtx = XEXP (new_rtx, 0);
8114 multval = -multval;
8116 multval = trunc_int_for_mode (multval, mode);
8117 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8119 break;
8121 case PLUS:
8122 lhs = XEXP (x, 0);
8123 rhs = XEXP (x, 1);
8124 lhs = make_compound_operation (lhs, next_code);
8125 rhs = make_compound_operation (rhs, next_code);
8126 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8128 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8129 XEXP (lhs, 1));
8130 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8132 else if (GET_CODE (lhs) == MULT
8133 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8135 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8136 simplify_gen_unary (NEG, mode,
8137 XEXP (lhs, 1),
8138 mode));
8139 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8141 else
8143 SUBST (XEXP (x, 0), lhs);
8144 SUBST (XEXP (x, 1), rhs);
8146 maybe_swap_commutative_operands (x);
8147 return x;
8149 case MINUS:
8150 lhs = XEXP (x, 0);
8151 rhs = XEXP (x, 1);
8152 lhs = make_compound_operation (lhs, next_code);
8153 rhs = make_compound_operation (rhs, next_code);
8154 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8156 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8157 XEXP (rhs, 1));
8158 return simplify_gen_binary (PLUS, mode, tem, lhs);
8160 else if (GET_CODE (rhs) == MULT
8161 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8163 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8164 simplify_gen_unary (NEG, mode,
8165 XEXP (rhs, 1),
8166 mode));
8167 return simplify_gen_binary (PLUS, mode, tem, lhs);
8169 else
8171 SUBST (XEXP (x, 0), lhs);
8172 SUBST (XEXP (x, 1), rhs);
8173 return x;
8176 case AND:
8177 /* If the second operand is not a constant, we can't do anything
8178 with it. */
8179 if (!CONST_INT_P (XEXP (x, 1)))
8180 break;
8182 /* If the constant is a power of two minus one and the first operand
8183 is a logical right shift, make an extraction. */
8184 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8185 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8187 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8188 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8189 i, 1, 0, in_code == COMPARE);
8192 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8193 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8194 && subreg_lowpart_p (XEXP (x, 0))
8195 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8196 &inner_mode)
8197 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8198 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8200 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8201 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8202 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8203 XEXP (inner_x0, 1),
8204 i, 1, 0, in_code == COMPARE);
8206 /* If we narrowed the mode when dropping the subreg, then we lose. */
8207 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8208 new_rtx = NULL;
8210 /* If that didn't give anything, see if the AND simplifies on
8211 its own. */
8212 if (!new_rtx && i >= 0)
8214 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8215 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8216 0, in_code == COMPARE);
8219 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8220 else if ((GET_CODE (XEXP (x, 0)) == XOR
8221 || GET_CODE (XEXP (x, 0)) == IOR)
8222 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8223 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8224 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8226 /* Apply the distributive law, and then try to make extractions. */
8227 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8228 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8229 XEXP (x, 1)),
8230 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8231 XEXP (x, 1)));
8232 new_rtx = make_compound_operation (new_rtx, in_code);
8235 /* If we are have (and (rotate X C) M) and C is larger than the number
8236 of bits in M, this is an extraction. */
8238 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8239 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8240 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8241 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8243 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8244 new_rtx = make_extraction (mode, new_rtx,
8245 (GET_MODE_PRECISION (mode)
8246 - INTVAL (XEXP (XEXP (x, 0), 1))),
8247 NULL_RTX, i, 1, 0, in_code == COMPARE);
8250 /* On machines without logical shifts, if the operand of the AND is
8251 a logical shift and our mask turns off all the propagated sign
8252 bits, we can replace the logical shift with an arithmetic shift. */
8253 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8254 && !have_insn_for (LSHIFTRT, mode)
8255 && have_insn_for (ASHIFTRT, mode)
8256 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8257 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8258 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8259 && mode_width <= HOST_BITS_PER_WIDE_INT)
8261 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8263 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8264 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8265 SUBST (XEXP (x, 0),
8266 gen_rtx_ASHIFTRT (mode,
8267 make_compound_operation (XEXP (XEXP (x,
8270 next_code),
8271 XEXP (XEXP (x, 0), 1)));
8274 /* If the constant is one less than a power of two, this might be
8275 representable by an extraction even if no shift is present.
8276 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8277 we are in a COMPARE. */
8278 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8279 new_rtx = make_extraction (mode,
8280 make_compound_operation (XEXP (x, 0),
8281 next_code),
8282 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8284 /* If we are in a comparison and this is an AND with a power of two,
8285 convert this into the appropriate bit extract. */
8286 else if (in_code == COMPARE
8287 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8288 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8289 new_rtx = make_extraction (mode,
8290 make_compound_operation (XEXP (x, 0),
8291 next_code),
8292 i, NULL_RTX, 1, 1, 0, 1);
8294 /* If the one operand is a paradoxical subreg of a register or memory and
8295 the constant (limited to the smaller mode) has only zero bits where
8296 the sub expression has known zero bits, this can be expressed as
8297 a zero_extend. */
8298 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8300 rtx sub;
8302 sub = XEXP (XEXP (x, 0), 0);
8303 machine_mode sub_mode = GET_MODE (sub);
8304 int sub_width;
8305 if ((REG_P (sub) || MEM_P (sub))
8306 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8307 && sub_width < mode_width)
8309 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8310 unsigned HOST_WIDE_INT mask;
8312 /* original AND constant with all the known zero bits set */
8313 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8314 if ((mask & mode_mask) == mode_mask)
8316 new_rtx = make_compound_operation (sub, next_code);
8317 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8318 1, 0, in_code == COMPARE);
8323 break;
8325 case LSHIFTRT:
8326 /* If the sign bit is known to be zero, replace this with an
8327 arithmetic shift. */
8328 if (have_insn_for (ASHIFTRT, mode)
8329 && ! have_insn_for (LSHIFTRT, mode)
8330 && mode_width <= HOST_BITS_PER_WIDE_INT
8331 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8333 new_rtx = gen_rtx_ASHIFTRT (mode,
8334 make_compound_operation (XEXP (x, 0),
8335 next_code),
8336 XEXP (x, 1));
8337 break;
8340 /* fall through */
8342 case ASHIFTRT:
8343 lhs = XEXP (x, 0);
8344 rhs = XEXP (x, 1);
8346 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8347 this is a SIGN_EXTRACT. */
8348 if (CONST_INT_P (rhs)
8349 && GET_CODE (lhs) == ASHIFT
8350 && CONST_INT_P (XEXP (lhs, 1))
8351 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8352 && INTVAL (XEXP (lhs, 1)) >= 0
8353 && INTVAL (rhs) < mode_width)
8355 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8356 new_rtx = make_extraction (mode, new_rtx,
8357 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8358 NULL_RTX, mode_width - INTVAL (rhs),
8359 code == LSHIFTRT, 0, in_code == COMPARE);
8360 break;
8363 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8364 If so, try to merge the shifts into a SIGN_EXTEND. We could
8365 also do this for some cases of SIGN_EXTRACT, but it doesn't
8366 seem worth the effort; the case checked for occurs on Alpha. */
8368 if (!OBJECT_P (lhs)
8369 && ! (GET_CODE (lhs) == SUBREG
8370 && (OBJECT_P (SUBREG_REG (lhs))))
8371 && CONST_INT_P (rhs)
8372 && INTVAL (rhs) >= 0
8373 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8374 && INTVAL (rhs) < mode_width
8375 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8376 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8377 next_code),
8378 0, NULL_RTX, mode_width - INTVAL (rhs),
8379 code == LSHIFTRT, 0, in_code == COMPARE);
8381 break;
8383 case SUBREG:
8384 /* Call ourselves recursively on the inner expression. If we are
8385 narrowing the object and it has a different RTL code from
8386 what it originally did, do this SUBREG as a force_to_mode. */
8388 rtx inner = SUBREG_REG (x), simplified;
8389 enum rtx_code subreg_code = in_code;
8391 /* If the SUBREG is masking of a logical right shift,
8392 make an extraction. */
8393 if (GET_CODE (inner) == LSHIFTRT
8394 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8395 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8396 && CONST_INT_P (XEXP (inner, 1))
8397 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8398 && subreg_lowpart_p (x))
8400 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8401 int width = GET_MODE_PRECISION (inner_mode)
8402 - INTVAL (XEXP (inner, 1));
8403 if (width > mode_width)
8404 width = mode_width;
8405 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8406 width, 1, 0, in_code == COMPARE);
8407 break;
8410 /* If in_code is COMPARE, it isn't always safe to pass it through
8411 to the recursive make_compound_operation call. */
8412 if (subreg_code == COMPARE
8413 && (!subreg_lowpart_p (x)
8414 || GET_CODE (inner) == SUBREG
8415 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8416 is (const_int 0), rather than
8417 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8418 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8419 for non-equality comparisons against 0 is not equivalent
8420 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8421 || (GET_CODE (inner) == AND
8422 && CONST_INT_P (XEXP (inner, 1))
8423 && partial_subreg_p (x)
8424 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8425 >= GET_MODE_BITSIZE (mode) - 1)))
8426 subreg_code = SET;
8428 tem = make_compound_operation (inner, subreg_code);
8430 simplified
8431 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8432 if (simplified)
8433 tem = simplified;
8435 if (GET_CODE (tem) != GET_CODE (inner)
8436 && partial_subreg_p (x)
8437 && subreg_lowpart_p (x))
8439 rtx newer
8440 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8442 /* If we have something other than a SUBREG, we might have
8443 done an expansion, so rerun ourselves. */
8444 if (GET_CODE (newer) != SUBREG)
8445 newer = make_compound_operation (newer, in_code);
8447 /* force_to_mode can expand compounds. If it just re-expanded
8448 the compound, use gen_lowpart to convert to the desired
8449 mode. */
8450 if (rtx_equal_p (newer, x)
8451 /* Likewise if it re-expanded the compound only partially.
8452 This happens for SUBREG of ZERO_EXTRACT if they extract
8453 the same number of bits. */
8454 || (GET_CODE (newer) == SUBREG
8455 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8456 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8457 && GET_CODE (inner) == AND
8458 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8459 return gen_lowpart (GET_MODE (x), tem);
8461 return newer;
8464 if (simplified)
8465 return tem;
8467 break;
8469 default:
8470 break;
8473 if (new_rtx)
8474 *x_ptr = gen_lowpart (mode, new_rtx);
8475 *next_code_ptr = next_code;
8476 return NULL_RTX;
8479 /* Look at the expression rooted at X. Look for expressions
8480 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8481 Form these expressions.
8483 Return the new rtx, usually just X.
8485 Also, for machines like the VAX that don't have logical shift insns,
8486 try to convert logical to arithmetic shift operations in cases where
8487 they are equivalent. This undoes the canonicalizations to logical
8488 shifts done elsewhere.
8490 We try, as much as possible, to re-use rtl expressions to save memory.
8492 IN_CODE says what kind of expression we are processing. Normally, it is
8493 SET. In a memory address it is MEM. When processing the arguments of
8494 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8495 precisely it is an equality comparison against zero. */
8498 make_compound_operation (rtx x, enum rtx_code in_code)
8500 enum rtx_code code = GET_CODE (x);
8501 const char *fmt;
8502 int i, j;
8503 enum rtx_code next_code;
8504 rtx new_rtx, tem;
8506 /* Select the code to be used in recursive calls. Once we are inside an
8507 address, we stay there. If we have a comparison, set to COMPARE,
8508 but once inside, go back to our default of SET. */
8510 next_code = (code == MEM ? MEM
8511 : ((code == COMPARE || COMPARISON_P (x))
8512 && XEXP (x, 1) == const0_rtx) ? COMPARE
8513 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8515 scalar_int_mode mode;
8516 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8518 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8519 &next_code);
8520 if (new_rtx)
8521 return new_rtx;
8522 code = GET_CODE (x);
8525 /* Now recursively process each operand of this operation. We need to
8526 handle ZERO_EXTEND specially so that we don't lose track of the
8527 inner mode. */
8528 if (code == ZERO_EXTEND)
8530 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8531 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8532 new_rtx, GET_MODE (XEXP (x, 0)));
8533 if (tem)
8534 return tem;
8535 SUBST (XEXP (x, 0), new_rtx);
8536 return x;
8539 fmt = GET_RTX_FORMAT (code);
8540 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8541 if (fmt[i] == 'e')
8543 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8544 SUBST (XEXP (x, i), new_rtx);
8546 else if (fmt[i] == 'E')
8547 for (j = 0; j < XVECLEN (x, i); j++)
8549 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8550 SUBST (XVECEXP (x, i, j), new_rtx);
8553 maybe_swap_commutative_operands (x);
8554 return x;
8557 /* Given M see if it is a value that would select a field of bits
8558 within an item, but not the entire word. Return -1 if not.
8559 Otherwise, return the starting position of the field, where 0 is the
8560 low-order bit.
8562 *PLEN is set to the length of the field. */
8564 static int
8565 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8567 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8568 int pos = m ? ctz_hwi (m) : -1;
8569 int len = 0;
8571 if (pos >= 0)
8572 /* Now shift off the low-order zero bits and see if we have a
8573 power of two minus 1. */
8574 len = exact_log2 ((m >> pos) + 1);
8576 if (len <= 0)
8577 pos = -1;
8579 *plen = len;
8580 return pos;
8583 /* If X refers to a register that equals REG in value, replace these
8584 references with REG. */
8585 static rtx
8586 canon_reg_for_combine (rtx x, rtx reg)
8588 rtx op0, op1, op2;
8589 const char *fmt;
8590 int i;
8591 bool copied;
8593 enum rtx_code code = GET_CODE (x);
8594 switch (GET_RTX_CLASS (code))
8596 case RTX_UNARY:
8597 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8598 if (op0 != XEXP (x, 0))
8599 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8600 GET_MODE (reg));
8601 break;
8603 case RTX_BIN_ARITH:
8604 case RTX_COMM_ARITH:
8605 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8606 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8607 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8608 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8609 break;
8611 case RTX_COMPARE:
8612 case RTX_COMM_COMPARE:
8613 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8614 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8615 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8616 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8617 GET_MODE (op0), op0, op1);
8618 break;
8620 case RTX_TERNARY:
8621 case RTX_BITFIELD_OPS:
8622 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8623 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8624 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8625 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8626 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8627 GET_MODE (op0), op0, op1, op2);
8628 /* FALLTHRU */
8630 case RTX_OBJ:
8631 if (REG_P (x))
8633 if (rtx_equal_p (get_last_value (reg), x)
8634 || rtx_equal_p (reg, get_last_value (x)))
8635 return reg;
8636 else
8637 break;
8640 /* fall through */
8642 default:
8643 fmt = GET_RTX_FORMAT (code);
8644 copied = false;
8645 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8646 if (fmt[i] == 'e')
8648 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8649 if (op != XEXP (x, i))
8651 if (!copied)
8653 copied = true;
8654 x = copy_rtx (x);
8656 XEXP (x, i) = op;
8659 else if (fmt[i] == 'E')
8661 int j;
8662 for (j = 0; j < XVECLEN (x, i); j++)
8664 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8665 if (op != XVECEXP (x, i, j))
8667 if (!copied)
8669 copied = true;
8670 x = copy_rtx (x);
8672 XVECEXP (x, i, j) = op;
8677 break;
8680 return x;
8683 /* Return X converted to MODE. If the value is already truncated to
8684 MODE we can just return a subreg even though in the general case we
8685 would need an explicit truncation. */
8687 static rtx
8688 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8690 if (!CONST_INT_P (x)
8691 && partial_subreg_p (mode, GET_MODE (x))
8692 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8693 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8695 /* Bit-cast X into an integer mode. */
8696 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8697 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8698 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8699 x, GET_MODE (x));
8702 return gen_lowpart (mode, x);
8705 /* See if X can be simplified knowing that we will only refer to it in
8706 MODE and will only refer to those bits that are nonzero in MASK.
8707 If other bits are being computed or if masking operations are done
8708 that select a superset of the bits in MASK, they can sometimes be
8709 ignored.
8711 Return a possibly simplified expression, but always convert X to
8712 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8714 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8715 are all off in X. This is used when X will be complemented, by either
8716 NOT, NEG, or XOR. */
8718 static rtx
8719 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8720 int just_select)
8722 enum rtx_code code = GET_CODE (x);
8723 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8724 machine_mode op_mode;
8725 unsigned HOST_WIDE_INT nonzero;
8727 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8728 code below will do the wrong thing since the mode of such an
8729 expression is VOIDmode.
8731 Also do nothing if X is a CLOBBER; this can happen if X was
8732 the return value from a call to gen_lowpart. */
8733 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8734 return x;
8736 /* We want to perform the operation in its present mode unless we know
8737 that the operation is valid in MODE, in which case we do the operation
8738 in MODE. */
8739 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8740 && have_insn_for (code, mode))
8741 ? mode : GET_MODE (x));
8743 /* It is not valid to do a right-shift in a narrower mode
8744 than the one it came in with. */
8745 if ((code == LSHIFTRT || code == ASHIFTRT)
8746 && partial_subreg_p (mode, GET_MODE (x)))
8747 op_mode = GET_MODE (x);
8749 /* Truncate MASK to fit OP_MODE. */
8750 if (op_mode)
8751 mask &= GET_MODE_MASK (op_mode);
8753 /* Determine what bits of X are guaranteed to be (non)zero. */
8754 nonzero = nonzero_bits (x, mode);
8756 /* If none of the bits in X are needed, return a zero. */
8757 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8758 x = const0_rtx;
8760 /* If X is a CONST_INT, return a new one. Do this here since the
8761 test below will fail. */
8762 if (CONST_INT_P (x))
8764 if (SCALAR_INT_MODE_P (mode))
8765 return gen_int_mode (INTVAL (x) & mask, mode);
8766 else
8768 x = GEN_INT (INTVAL (x) & mask);
8769 return gen_lowpart_common (mode, x);
8773 /* If X is narrower than MODE and we want all the bits in X's mode, just
8774 get X in the proper mode. */
8775 if (paradoxical_subreg_p (mode, GET_MODE (x))
8776 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8777 return gen_lowpart (mode, x);
8779 /* We can ignore the effect of a SUBREG if it narrows the mode or
8780 if the constant masks to zero all the bits the mode doesn't have. */
8781 if (GET_CODE (x) == SUBREG
8782 && subreg_lowpart_p (x)
8783 && (partial_subreg_p (x)
8784 || (mask
8785 & GET_MODE_MASK (GET_MODE (x))
8786 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8787 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8789 scalar_int_mode int_mode, xmode;
8790 if (is_a <scalar_int_mode> (mode, &int_mode)
8791 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8792 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8793 integer too. */
8794 return force_int_to_mode (x, int_mode, xmode,
8795 as_a <scalar_int_mode> (op_mode),
8796 mask, just_select);
8798 return gen_lowpart_or_truncate (mode, x);
8801 /* Subroutine of force_to_mode that handles cases in which both X and
8802 the result are scalar integers. MODE is the mode of the result,
8803 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8804 is preferred for simplified versions of X. The other arguments
8805 are as for force_to_mode. */
8807 static rtx
8808 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8809 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8810 int just_select)
8812 enum rtx_code code = GET_CODE (x);
8813 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8814 unsigned HOST_WIDE_INT fuller_mask;
8815 rtx op0, op1, temp;
8816 poly_int64 const_op0;
8818 /* When we have an arithmetic operation, or a shift whose count we
8819 do not know, we need to assume that all bits up to the highest-order
8820 bit in MASK will be needed. This is how we form such a mask. */
8821 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8822 fuller_mask = HOST_WIDE_INT_M1U;
8823 else
8824 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8825 - 1);
8827 switch (code)
8829 case CLOBBER:
8830 /* If X is a (clobber (const_int)), return it since we know we are
8831 generating something that won't match. */
8832 return x;
8834 case SIGN_EXTEND:
8835 case ZERO_EXTEND:
8836 case ZERO_EXTRACT:
8837 case SIGN_EXTRACT:
8838 x = expand_compound_operation (x);
8839 if (GET_CODE (x) != code)
8840 return force_to_mode (x, mode, mask, next_select);
8841 break;
8843 case TRUNCATE:
8844 /* Similarly for a truncate. */
8845 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8847 case AND:
8848 /* If this is an AND with a constant, convert it into an AND
8849 whose constant is the AND of that constant with MASK. If it
8850 remains an AND of MASK, delete it since it is redundant. */
8852 if (CONST_INT_P (XEXP (x, 1)))
8854 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8855 mask & INTVAL (XEXP (x, 1)));
8856 xmode = op_mode;
8858 /* If X is still an AND, see if it is an AND with a mask that
8859 is just some low-order bits. If so, and it is MASK, we don't
8860 need it. */
8862 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8863 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8864 x = XEXP (x, 0);
8866 /* If it remains an AND, try making another AND with the bits
8867 in the mode mask that aren't in MASK turned on. If the
8868 constant in the AND is wide enough, this might make a
8869 cheaper constant. */
8871 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8872 && GET_MODE_MASK (xmode) != mask
8873 && HWI_COMPUTABLE_MODE_P (xmode))
8875 unsigned HOST_WIDE_INT cval
8876 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8877 rtx y;
8879 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8880 gen_int_mode (cval, xmode));
8881 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8882 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8883 x = y;
8886 break;
8889 goto binop;
8891 case PLUS:
8892 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8893 low-order bits (as in an alignment operation) and FOO is already
8894 aligned to that boundary, mask C1 to that boundary as well.
8895 This may eliminate that PLUS and, later, the AND. */
8898 unsigned int width = GET_MODE_PRECISION (mode);
8899 unsigned HOST_WIDE_INT smask = mask;
8901 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8902 number, sign extend it. */
8904 if (width < HOST_BITS_PER_WIDE_INT
8905 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8906 smask |= HOST_WIDE_INT_M1U << width;
8908 if (CONST_INT_P (XEXP (x, 1))
8909 && pow2p_hwi (- smask)
8910 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8911 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8912 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8913 (INTVAL (XEXP (x, 1)) & smask)),
8914 mode, smask, next_select);
8917 /* fall through */
8919 case MULT:
8920 /* Substituting into the operands of a widening MULT is not likely to
8921 create RTL matching a machine insn. */
8922 if (code == MULT
8923 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8924 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8925 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8926 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8927 && REG_P (XEXP (XEXP (x, 0), 0))
8928 && REG_P (XEXP (XEXP (x, 1), 0)))
8929 return gen_lowpart_or_truncate (mode, x);
8931 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8932 most significant bit in MASK since carries from those bits will
8933 affect the bits we are interested in. */
8934 mask = fuller_mask;
8935 goto binop;
8937 case MINUS:
8938 /* If X is (minus C Y) where C's least set bit is larger than any bit
8939 in the mask, then we may replace with (neg Y). */
8940 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8941 && known_alignment (poly_uint64 (const_op0)) > mask)
8943 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8944 return force_to_mode (x, mode, mask, next_select);
8947 /* Similarly, if C contains every bit in the fuller_mask, then we may
8948 replace with (not Y). */
8949 if (CONST_INT_P (XEXP (x, 0))
8950 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8952 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8953 return force_to_mode (x, mode, mask, next_select);
8956 mask = fuller_mask;
8957 goto binop;
8959 case IOR:
8960 case XOR:
8961 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8962 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8963 operation which may be a bitfield extraction. Ensure that the
8964 constant we form is not wider than the mode of X. */
8966 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8967 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8968 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8969 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8970 && CONST_INT_P (XEXP (x, 1))
8971 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8972 + floor_log2 (INTVAL (XEXP (x, 1))))
8973 < GET_MODE_PRECISION (xmode))
8974 && (UINTVAL (XEXP (x, 1))
8975 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8977 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8978 << INTVAL (XEXP (XEXP (x, 0), 1)),
8979 xmode);
8980 temp = simplify_gen_binary (GET_CODE (x), xmode,
8981 XEXP (XEXP (x, 0), 0), temp);
8982 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8983 XEXP (XEXP (x, 0), 1));
8984 return force_to_mode (x, mode, mask, next_select);
8987 binop:
8988 /* For most binary operations, just propagate into the operation and
8989 change the mode if we have an operation of that mode. */
8991 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8992 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8994 /* If we ended up truncating both operands, truncate the result of the
8995 operation instead. */
8996 if (GET_CODE (op0) == TRUNCATE
8997 && GET_CODE (op1) == TRUNCATE)
8999 op0 = XEXP (op0, 0);
9000 op1 = XEXP (op1, 0);
9003 op0 = gen_lowpart_or_truncate (op_mode, op0);
9004 op1 = gen_lowpart_or_truncate (op_mode, op1);
9006 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
9008 x = simplify_gen_binary (code, op_mode, op0, op1);
9009 xmode = op_mode;
9011 break;
9013 case ASHIFT:
9014 /* For left shifts, do the same, but just for the first operand.
9015 However, we cannot do anything with shifts where we cannot
9016 guarantee that the counts are smaller than the size of the mode
9017 because such a count will have a different meaning in a
9018 wider mode. */
9020 if (! (CONST_INT_P (XEXP (x, 1))
9021 && INTVAL (XEXP (x, 1)) >= 0
9022 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
9023 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
9024 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
9025 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
9026 break;
9028 /* If the shift count is a constant and we can do arithmetic in
9029 the mode of the shift, refine which bits we need. Otherwise, use the
9030 conservative form of the mask. */
9031 if (CONST_INT_P (XEXP (x, 1))
9032 && INTVAL (XEXP (x, 1)) >= 0
9033 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
9034 && HWI_COMPUTABLE_MODE_P (op_mode))
9035 mask >>= INTVAL (XEXP (x, 1));
9036 else
9037 mask = fuller_mask;
9039 op0 = gen_lowpart_or_truncate (op_mode,
9040 force_to_mode (XEXP (x, 0), mode,
9041 mask, next_select));
9043 if (op_mode != xmode || op0 != XEXP (x, 0))
9045 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
9046 xmode = op_mode;
9048 break;
9050 case LSHIFTRT:
9051 /* Here we can only do something if the shift count is a constant,
9052 this shift constant is valid for the host, and we can do arithmetic
9053 in OP_MODE. */
9055 if (CONST_INT_P (XEXP (x, 1))
9056 && INTVAL (XEXP (x, 1)) >= 0
9057 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
9058 && HWI_COMPUTABLE_MODE_P (op_mode))
9060 rtx inner = XEXP (x, 0);
9061 unsigned HOST_WIDE_INT inner_mask;
9063 /* Select the mask of the bits we need for the shift operand. */
9064 inner_mask = mask << INTVAL (XEXP (x, 1));
9066 /* We can only change the mode of the shift if we can do arithmetic
9067 in the mode of the shift and INNER_MASK is no wider than the
9068 width of X's mode. */
9069 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
9070 op_mode = xmode;
9072 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
9074 if (xmode != op_mode || inner != XEXP (x, 0))
9076 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
9077 xmode = op_mode;
9081 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9082 shift and AND produces only copies of the sign bit (C2 is one less
9083 than a power of two), we can do this with just a shift. */
9085 if (GET_CODE (x) == LSHIFTRT
9086 && CONST_INT_P (XEXP (x, 1))
9087 /* The shift puts one of the sign bit copies in the least significant
9088 bit. */
9089 && ((INTVAL (XEXP (x, 1))
9090 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9091 >= GET_MODE_PRECISION (xmode))
9092 && pow2p_hwi (mask + 1)
9093 /* Number of bits left after the shift must be more than the mask
9094 needs. */
9095 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9096 <= GET_MODE_PRECISION (xmode))
9097 /* Must be more sign bit copies than the mask needs. */
9098 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9099 >= exact_log2 (mask + 1)))
9101 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9102 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9103 gen_int_shift_amount (xmode, nbits));
9105 goto shiftrt;
9107 case ASHIFTRT:
9108 /* If we are just looking for the sign bit, we don't need this shift at
9109 all, even if it has a variable count. */
9110 if (val_signbit_p (xmode, mask))
9111 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9113 /* If this is a shift by a constant, get a mask that contains those bits
9114 that are not copies of the sign bit. We then have two cases: If
9115 MASK only includes those bits, this can be a logical shift, which may
9116 allow simplifications. If MASK is a single-bit field not within
9117 those bits, we are requesting a copy of the sign bit and hence can
9118 shift the sign bit to the appropriate location. */
9120 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9121 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9123 unsigned HOST_WIDE_INT nonzero;
9124 int i;
9126 /* If the considered data is wider than HOST_WIDE_INT, we can't
9127 represent a mask for all its bits in a single scalar.
9128 But we only care about the lower bits, so calculate these. */
9130 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9132 nonzero = HOST_WIDE_INT_M1U;
9134 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9135 is the number of bits a full-width mask would have set.
9136 We need only shift if these are fewer than nonzero can
9137 hold. If not, we must keep all bits set in nonzero. */
9139 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9140 < HOST_BITS_PER_WIDE_INT)
9141 nonzero >>= INTVAL (XEXP (x, 1))
9142 + HOST_BITS_PER_WIDE_INT
9143 - GET_MODE_PRECISION (xmode);
9145 else
9147 nonzero = GET_MODE_MASK (xmode);
9148 nonzero >>= INTVAL (XEXP (x, 1));
9151 if ((mask & ~nonzero) == 0)
9153 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9154 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9155 if (GET_CODE (x) != ASHIFTRT)
9156 return force_to_mode (x, mode, mask, next_select);
9159 else if ((i = exact_log2 (mask)) >= 0)
9161 x = simplify_shift_const
9162 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9163 GET_MODE_PRECISION (xmode) - 1 - i);
9165 if (GET_CODE (x) != ASHIFTRT)
9166 return force_to_mode (x, mode, mask, next_select);
9170 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9171 even if the shift count isn't a constant. */
9172 if (mask == 1)
9173 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9175 shiftrt:
9177 /* If this is a zero- or sign-extension operation that just affects bits
9178 we don't care about, remove it. Be sure the call above returned
9179 something that is still a shift. */
9181 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9182 && CONST_INT_P (XEXP (x, 1))
9183 && INTVAL (XEXP (x, 1)) >= 0
9184 && (INTVAL (XEXP (x, 1))
9185 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9186 && GET_CODE (XEXP (x, 0)) == ASHIFT
9187 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9188 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9189 next_select);
9191 break;
9193 case ROTATE:
9194 case ROTATERT:
9195 /* If the shift count is constant and we can do computations
9196 in the mode of X, compute where the bits we care about are.
9197 Otherwise, we can't do anything. Don't change the mode of
9198 the shift or propagate MODE into the shift, though. */
9199 if (CONST_INT_P (XEXP (x, 1))
9200 && INTVAL (XEXP (x, 1)) >= 0)
9202 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9203 xmode, gen_int_mode (mask, xmode),
9204 XEXP (x, 1));
9205 if (temp && CONST_INT_P (temp))
9206 x = simplify_gen_binary (code, xmode,
9207 force_to_mode (XEXP (x, 0), xmode,
9208 INTVAL (temp), next_select),
9209 XEXP (x, 1));
9211 break;
9213 case NEG:
9214 /* If we just want the low-order bit, the NEG isn't needed since it
9215 won't change the low-order bit. */
9216 if (mask == 1)
9217 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9219 /* We need any bits less significant than the most significant bit in
9220 MASK since carries from those bits will affect the bits we are
9221 interested in. */
9222 mask = fuller_mask;
9223 goto unop;
9225 case NOT:
9226 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9227 same as the XOR case above. Ensure that the constant we form is not
9228 wider than the mode of X. */
9230 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9231 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9232 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9233 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9234 < GET_MODE_PRECISION (xmode))
9235 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9237 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9238 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9239 x = simplify_gen_binary (LSHIFTRT, xmode,
9240 temp, XEXP (XEXP (x, 0), 1));
9242 return force_to_mode (x, mode, mask, next_select);
9245 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9246 use the full mask inside the NOT. */
9247 mask = fuller_mask;
9249 unop:
9250 op0 = gen_lowpart_or_truncate (op_mode,
9251 force_to_mode (XEXP (x, 0), mode, mask,
9252 next_select));
9253 if (op_mode != xmode || op0 != XEXP (x, 0))
9255 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9256 xmode = op_mode;
9258 break;
9260 case NE:
9261 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9262 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9263 which is equal to STORE_FLAG_VALUE. */
9264 if ((mask & ~STORE_FLAG_VALUE) == 0
9265 && XEXP (x, 1) == const0_rtx
9266 && GET_MODE (XEXP (x, 0)) == mode
9267 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9268 && (nonzero_bits (XEXP (x, 0), mode)
9269 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9270 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9272 break;
9274 case IF_THEN_ELSE:
9275 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9276 written in a narrower mode. We play it safe and do not do so. */
9278 op0 = gen_lowpart_or_truncate (xmode,
9279 force_to_mode (XEXP (x, 1), mode,
9280 mask, next_select));
9281 op1 = gen_lowpart_or_truncate (xmode,
9282 force_to_mode (XEXP (x, 2), mode,
9283 mask, next_select));
9284 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9285 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9286 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9287 op0, op1);
9288 break;
9290 default:
9291 break;
9294 /* Ensure we return a value of the proper mode. */
9295 return gen_lowpart_or_truncate (mode, x);
9298 /* Return nonzero if X is an expression that has one of two values depending on
9299 whether some other value is zero or nonzero. In that case, we return the
9300 value that is being tested, *PTRUE is set to the value if the rtx being
9301 returned has a nonzero value, and *PFALSE is set to the other alternative.
9303 If we return zero, we set *PTRUE and *PFALSE to X. */
9305 static rtx
9306 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9308 machine_mode mode = GET_MODE (x);
9309 enum rtx_code code = GET_CODE (x);
9310 rtx cond0, cond1, true0, true1, false0, false1;
9311 unsigned HOST_WIDE_INT nz;
9312 scalar_int_mode int_mode;
9314 /* If we are comparing a value against zero, we are done. */
9315 if ((code == NE || code == EQ)
9316 && XEXP (x, 1) == const0_rtx)
9318 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9319 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9320 return XEXP (x, 0);
9323 /* If this is a unary operation whose operand has one of two values, apply
9324 our opcode to compute those values. */
9325 else if (UNARY_P (x)
9326 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9328 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9329 *pfalse = simplify_gen_unary (code, mode, false0,
9330 GET_MODE (XEXP (x, 0)));
9331 return cond0;
9334 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9335 make can't possibly match and would suppress other optimizations. */
9336 else if (code == COMPARE)
9339 /* If this is a binary operation, see if either side has only one of two
9340 values. If either one does or if both do and they are conditional on
9341 the same value, compute the new true and false values. */
9342 else if (BINARY_P (x))
9344 rtx op0 = XEXP (x, 0);
9345 rtx op1 = XEXP (x, 1);
9346 cond0 = if_then_else_cond (op0, &true0, &false0);
9347 cond1 = if_then_else_cond (op1, &true1, &false1);
9349 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9350 && (REG_P (op0) || REG_P (op1)))
9352 /* Try to enable a simplification by undoing work done by
9353 if_then_else_cond if it converted a REG into something more
9354 complex. */
9355 if (REG_P (op0))
9357 cond0 = 0;
9358 true0 = false0 = op0;
9360 else
9362 cond1 = 0;
9363 true1 = false1 = op1;
9367 if ((cond0 != 0 || cond1 != 0)
9368 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9370 /* If if_then_else_cond returned zero, then true/false are the
9371 same rtl. We must copy one of them to prevent invalid rtl
9372 sharing. */
9373 if (cond0 == 0)
9374 true0 = copy_rtx (true0);
9375 else if (cond1 == 0)
9376 true1 = copy_rtx (true1);
9378 if (COMPARISON_P (x))
9380 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9381 true0, true1);
9382 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9383 false0, false1);
9385 else
9387 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9388 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9391 return cond0 ? cond0 : cond1;
9394 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9395 operands is zero when the other is nonzero, and vice-versa,
9396 and STORE_FLAG_VALUE is 1 or -1. */
9398 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9399 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9400 || code == UMAX)
9401 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9403 rtx op0 = XEXP (XEXP (x, 0), 1);
9404 rtx op1 = XEXP (XEXP (x, 1), 1);
9406 cond0 = XEXP (XEXP (x, 0), 0);
9407 cond1 = XEXP (XEXP (x, 1), 0);
9409 if (COMPARISON_P (cond0)
9410 && COMPARISON_P (cond1)
9411 && SCALAR_INT_MODE_P (mode)
9412 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9413 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9414 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9415 || ((swap_condition (GET_CODE (cond0))
9416 == reversed_comparison_code (cond1, NULL))
9417 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9418 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9419 && ! side_effects_p (x))
9421 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9422 *pfalse = simplify_gen_binary (MULT, mode,
9423 (code == MINUS
9424 ? simplify_gen_unary (NEG, mode,
9425 op1, mode)
9426 : op1),
9427 const_true_rtx);
9428 return cond0;
9432 /* Similarly for MULT, AND and UMIN, except that for these the result
9433 is always zero. */
9434 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9435 && (code == MULT || code == AND || code == UMIN)
9436 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9438 cond0 = XEXP (XEXP (x, 0), 0);
9439 cond1 = XEXP (XEXP (x, 1), 0);
9441 if (COMPARISON_P (cond0)
9442 && COMPARISON_P (cond1)
9443 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9444 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9445 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9446 || ((swap_condition (GET_CODE (cond0))
9447 == reversed_comparison_code (cond1, NULL))
9448 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9449 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9450 && ! side_effects_p (x))
9452 *ptrue = *pfalse = const0_rtx;
9453 return cond0;
9458 else if (code == IF_THEN_ELSE)
9460 /* If we have IF_THEN_ELSE already, extract the condition and
9461 canonicalize it if it is NE or EQ. */
9462 cond0 = XEXP (x, 0);
9463 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9464 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9465 return XEXP (cond0, 0);
9466 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9468 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9469 return XEXP (cond0, 0);
9471 else
9472 return cond0;
9475 /* If X is a SUBREG, we can narrow both the true and false values
9476 if the inner expression, if there is a condition. */
9477 else if (code == SUBREG
9478 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9479 &false0)) != 0)
9481 true0 = simplify_gen_subreg (mode, true0,
9482 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9483 false0 = simplify_gen_subreg (mode, false0,
9484 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9485 if (true0 && false0)
9487 *ptrue = true0;
9488 *pfalse = false0;
9489 return cond0;
9493 /* If X is a constant, this isn't special and will cause confusions
9494 if we treat it as such. Likewise if it is equivalent to a constant. */
9495 else if (CONSTANT_P (x)
9496 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9499 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9500 will be least confusing to the rest of the compiler. */
9501 else if (mode == BImode)
9503 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9504 return x;
9507 /* If X is known to be either 0 or -1, those are the true and
9508 false values when testing X. */
9509 else if (x == constm1_rtx || x == const0_rtx
9510 || (is_a <scalar_int_mode> (mode, &int_mode)
9511 && (num_sign_bit_copies (x, int_mode)
9512 == GET_MODE_PRECISION (int_mode))))
9514 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9515 return x;
9518 /* Likewise for 0 or a single bit. */
9519 else if (HWI_COMPUTABLE_MODE_P (mode)
9520 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9522 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9523 return x;
9526 /* Otherwise fail; show no condition with true and false values the same. */
9527 *ptrue = *pfalse = x;
9528 return 0;
9531 /* Return the value of expression X given the fact that condition COND
9532 is known to be true when applied to REG as its first operand and VAL
9533 as its second. X is known to not be shared and so can be modified in
9534 place.
9536 We only handle the simplest cases, and specifically those cases that
9537 arise with IF_THEN_ELSE expressions. */
9539 static rtx
9540 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9542 enum rtx_code code = GET_CODE (x);
9543 const char *fmt;
9544 int i, j;
9546 if (side_effects_p (x))
9547 return x;
9549 /* If either operand of the condition is a floating point value,
9550 then we have to avoid collapsing an EQ comparison. */
9551 if (cond == EQ
9552 && rtx_equal_p (x, reg)
9553 && ! FLOAT_MODE_P (GET_MODE (x))
9554 && ! FLOAT_MODE_P (GET_MODE (val)))
9555 return val;
9557 if (cond == UNEQ && rtx_equal_p (x, reg))
9558 return val;
9560 /* If X is (abs REG) and we know something about REG's relationship
9561 with zero, we may be able to simplify this. */
9563 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9564 switch (cond)
9566 case GE: case GT: case EQ:
9567 return XEXP (x, 0);
9568 case LT: case LE:
9569 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9570 XEXP (x, 0),
9571 GET_MODE (XEXP (x, 0)));
9572 default:
9573 break;
9576 /* The only other cases we handle are MIN, MAX, and comparisons if the
9577 operands are the same as REG and VAL. */
9579 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9581 if (rtx_equal_p (XEXP (x, 0), val))
9583 std::swap (val, reg);
9584 cond = swap_condition (cond);
9587 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9589 if (COMPARISON_P (x))
9591 if (comparison_dominates_p (cond, code))
9592 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9594 code = reversed_comparison_code (x, NULL);
9595 if (code != UNKNOWN
9596 && comparison_dominates_p (cond, code))
9597 return CONST0_RTX (GET_MODE (x));
9598 else
9599 return x;
9601 else if (code == SMAX || code == SMIN
9602 || code == UMIN || code == UMAX)
9604 int unsignedp = (code == UMIN || code == UMAX);
9606 /* Do not reverse the condition when it is NE or EQ.
9607 This is because we cannot conclude anything about
9608 the value of 'SMAX (x, y)' when x is not equal to y,
9609 but we can when x equals y. */
9610 if ((code == SMAX || code == UMAX)
9611 && ! (cond == EQ || cond == NE))
9612 cond = reverse_condition (cond);
9614 switch (cond)
9616 case GE: case GT:
9617 return unsignedp ? x : XEXP (x, 1);
9618 case LE: case LT:
9619 return unsignedp ? x : XEXP (x, 0);
9620 case GEU: case GTU:
9621 return unsignedp ? XEXP (x, 1) : x;
9622 case LEU: case LTU:
9623 return unsignedp ? XEXP (x, 0) : x;
9624 default:
9625 break;
9630 else if (code == SUBREG)
9632 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9633 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9635 if (SUBREG_REG (x) != r)
9637 /* We must simplify subreg here, before we lose track of the
9638 original inner_mode. */
9639 new_rtx = simplify_subreg (GET_MODE (x), r,
9640 inner_mode, SUBREG_BYTE (x));
9641 if (new_rtx)
9642 return new_rtx;
9643 else
9644 SUBST (SUBREG_REG (x), r);
9647 return x;
9649 /* We don't have to handle SIGN_EXTEND here, because even in the
9650 case of replacing something with a modeless CONST_INT, a
9651 CONST_INT is already (supposed to be) a valid sign extension for
9652 its narrower mode, which implies it's already properly
9653 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9654 story is different. */
9655 else if (code == ZERO_EXTEND)
9657 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9658 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9660 if (XEXP (x, 0) != r)
9662 /* We must simplify the zero_extend here, before we lose
9663 track of the original inner_mode. */
9664 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9665 r, inner_mode);
9666 if (new_rtx)
9667 return new_rtx;
9668 else
9669 SUBST (XEXP (x, 0), r);
9672 return x;
9675 fmt = GET_RTX_FORMAT (code);
9676 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9678 if (fmt[i] == 'e')
9679 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9680 else if (fmt[i] == 'E')
9681 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9682 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9683 cond, reg, val));
9686 return x;
9689 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9690 assignment as a field assignment. */
9692 static int
9693 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9695 if (widen_x && GET_MODE (x) != GET_MODE (y))
9697 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9698 return 0;
9699 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9700 return 0;
9701 x = adjust_address_nv (x, GET_MODE (y),
9702 byte_lowpart_offset (GET_MODE (y),
9703 GET_MODE (x)));
9706 if (x == y || rtx_equal_p (x, y))
9707 return 1;
9709 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9710 return 0;
9712 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9713 Note that all SUBREGs of MEM are paradoxical; otherwise they
9714 would have been rewritten. */
9715 if (MEM_P (x) && GET_CODE (y) == SUBREG
9716 && MEM_P (SUBREG_REG (y))
9717 && rtx_equal_p (SUBREG_REG (y),
9718 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9719 return 1;
9721 if (MEM_P (y) && GET_CODE (x) == SUBREG
9722 && MEM_P (SUBREG_REG (x))
9723 && rtx_equal_p (SUBREG_REG (x),
9724 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9725 return 1;
9727 /* We used to see if get_last_value of X and Y were the same but that's
9728 not correct. In one direction, we'll cause the assignment to have
9729 the wrong destination and in the case, we'll import a register into this
9730 insn that might have already have been dead. So fail if none of the
9731 above cases are true. */
9732 return 0;
9735 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9736 Return that assignment if so.
9738 We only handle the most common cases. */
9740 static rtx
9741 make_field_assignment (rtx x)
9743 rtx dest = SET_DEST (x);
9744 rtx src = SET_SRC (x);
9745 rtx assign;
9746 rtx rhs, lhs;
9747 HOST_WIDE_INT c1;
9748 HOST_WIDE_INT pos;
9749 unsigned HOST_WIDE_INT len;
9750 rtx other;
9752 /* All the rules in this function are specific to scalar integers. */
9753 scalar_int_mode mode;
9754 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9755 return x;
9757 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9758 a clear of a one-bit field. We will have changed it to
9759 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9760 for a SUBREG. */
9762 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9763 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9764 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9765 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9767 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9768 1, 1, 1, 0);
9769 if (assign != 0)
9770 return gen_rtx_SET (assign, const0_rtx);
9771 return x;
9774 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9775 && subreg_lowpart_p (XEXP (src, 0))
9776 && partial_subreg_p (XEXP (src, 0))
9777 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9778 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9779 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9780 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9782 assign = make_extraction (VOIDmode, dest, 0,
9783 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9784 1, 1, 1, 0);
9785 if (assign != 0)
9786 return gen_rtx_SET (assign, const0_rtx);
9787 return x;
9790 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9791 one-bit field. */
9792 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9793 && XEXP (XEXP (src, 0), 0) == const1_rtx
9794 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9796 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9797 1, 1, 1, 0);
9798 if (assign != 0)
9799 return gen_rtx_SET (assign, const1_rtx);
9800 return x;
9803 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9804 SRC is an AND with all bits of that field set, then we can discard
9805 the AND. */
9806 if (GET_CODE (dest) == ZERO_EXTRACT
9807 && CONST_INT_P (XEXP (dest, 1))
9808 && GET_CODE (src) == AND
9809 && CONST_INT_P (XEXP (src, 1)))
9811 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9812 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9813 unsigned HOST_WIDE_INT ze_mask;
9815 if (width >= HOST_BITS_PER_WIDE_INT)
9816 ze_mask = -1;
9817 else
9818 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9820 /* Complete overlap. We can remove the source AND. */
9821 if ((and_mask & ze_mask) == ze_mask)
9822 return gen_rtx_SET (dest, XEXP (src, 0));
9824 /* Partial overlap. We can reduce the source AND. */
9825 if ((and_mask & ze_mask) != and_mask)
9827 src = gen_rtx_AND (mode, XEXP (src, 0),
9828 gen_int_mode (and_mask & ze_mask, mode));
9829 return gen_rtx_SET (dest, src);
9833 /* The other case we handle is assignments into a constant-position
9834 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9835 a mask that has all one bits except for a group of zero bits and
9836 OTHER is known to have zeros where C1 has ones, this is such an
9837 assignment. Compute the position and length from C1. Shift OTHER
9838 to the appropriate position, force it to the required mode, and
9839 make the extraction. Check for the AND in both operands. */
9841 /* One or more SUBREGs might obscure the constant-position field
9842 assignment. The first one we are likely to encounter is an outer
9843 narrowing SUBREG, which we can just strip for the purposes of
9844 identifying the constant-field assignment. */
9845 scalar_int_mode src_mode = mode;
9846 if (GET_CODE (src) == SUBREG
9847 && subreg_lowpart_p (src)
9848 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9849 src = SUBREG_REG (src);
9851 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9852 return x;
9854 rhs = expand_compound_operation (XEXP (src, 0));
9855 lhs = expand_compound_operation (XEXP (src, 1));
9857 if (GET_CODE (rhs) == AND
9858 && CONST_INT_P (XEXP (rhs, 1))
9859 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9860 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9861 /* The second SUBREG that might get in the way is a paradoxical
9862 SUBREG around the first operand of the AND. We want to
9863 pretend the operand is as wide as the destination here. We
9864 do this by adjusting the MEM to wider mode for the sole
9865 purpose of the call to rtx_equal_for_field_assignment_p. Also
9866 note this trick only works for MEMs. */
9867 else if (GET_CODE (rhs) == AND
9868 && paradoxical_subreg_p (XEXP (rhs, 0))
9869 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9870 && CONST_INT_P (XEXP (rhs, 1))
9871 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9872 dest, true))
9873 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9874 else if (GET_CODE (lhs) == AND
9875 && CONST_INT_P (XEXP (lhs, 1))
9876 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9877 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9878 /* The second SUBREG that might get in the way is a paradoxical
9879 SUBREG around the first operand of the AND. We want to
9880 pretend the operand is as wide as the destination here. We
9881 do this by adjusting the MEM to wider mode for the sole
9882 purpose of the call to rtx_equal_for_field_assignment_p. Also
9883 note this trick only works for MEMs. */
9884 else if (GET_CODE (lhs) == AND
9885 && paradoxical_subreg_p (XEXP (lhs, 0))
9886 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9887 && CONST_INT_P (XEXP (lhs, 1))
9888 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9889 dest, true))
9890 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9891 else
9892 return x;
9894 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9895 if (pos < 0
9896 || pos + len > GET_MODE_PRECISION (mode)
9897 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9898 || (c1 & nonzero_bits (other, mode)) != 0)
9899 return x;
9901 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9902 if (assign == 0)
9903 return x;
9905 /* The mode to use for the source is the mode of the assignment, or of
9906 what is inside a possible STRICT_LOW_PART. */
9907 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9908 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9910 /* Shift OTHER right POS places and make it the source, restricting it
9911 to the proper length and mode. */
9913 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9914 src_mode, other, pos),
9915 dest);
9916 src = force_to_mode (src, new_mode,
9917 len >= HOST_BITS_PER_WIDE_INT
9918 ? HOST_WIDE_INT_M1U
9919 : (HOST_WIDE_INT_1U << len) - 1,
9922 /* If SRC is masked by an AND that does not make a difference in
9923 the value being stored, strip it. */
9924 if (GET_CODE (assign) == ZERO_EXTRACT
9925 && CONST_INT_P (XEXP (assign, 1))
9926 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9927 && GET_CODE (src) == AND
9928 && CONST_INT_P (XEXP (src, 1))
9929 && UINTVAL (XEXP (src, 1))
9930 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9931 src = XEXP (src, 0);
9933 return gen_rtx_SET (assign, src);
9936 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9937 if so. */
9939 static rtx
9940 apply_distributive_law (rtx x)
9942 enum rtx_code code = GET_CODE (x);
9943 enum rtx_code inner_code;
9944 rtx lhs, rhs, other;
9945 rtx tem;
9947 /* Distributivity is not true for floating point as it can change the
9948 value. So we don't do it unless -funsafe-math-optimizations. */
9949 if (FLOAT_MODE_P (GET_MODE (x))
9950 && ! flag_unsafe_math_optimizations)
9951 return x;
9953 /* The outer operation can only be one of the following: */
9954 if (code != IOR && code != AND && code != XOR
9955 && code != PLUS && code != MINUS)
9956 return x;
9958 lhs = XEXP (x, 0);
9959 rhs = XEXP (x, 1);
9961 /* If either operand is a primitive we can't do anything, so get out
9962 fast. */
9963 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9964 return x;
9966 lhs = expand_compound_operation (lhs);
9967 rhs = expand_compound_operation (rhs);
9968 inner_code = GET_CODE (lhs);
9969 if (inner_code != GET_CODE (rhs))
9970 return x;
9972 /* See if the inner and outer operations distribute. */
9973 switch (inner_code)
9975 case LSHIFTRT:
9976 case ASHIFTRT:
9977 case AND:
9978 case IOR:
9979 /* These all distribute except over PLUS. */
9980 if (code == PLUS || code == MINUS)
9981 return x;
9982 break;
9984 case MULT:
9985 if (code != PLUS && code != MINUS)
9986 return x;
9987 break;
9989 case ASHIFT:
9990 /* This is also a multiply, so it distributes over everything. */
9991 break;
9993 /* This used to handle SUBREG, but this turned out to be counter-
9994 productive, since (subreg (op ...)) usually is not handled by
9995 insn patterns, and this "optimization" therefore transformed
9996 recognizable patterns into unrecognizable ones. Therefore the
9997 SUBREG case was removed from here.
9999 It is possible that distributing SUBREG over arithmetic operations
10000 leads to an intermediate result than can then be optimized further,
10001 e.g. by moving the outer SUBREG to the other side of a SET as done
10002 in simplify_set. This seems to have been the original intent of
10003 handling SUBREGs here.
10005 However, with current GCC this does not appear to actually happen,
10006 at least on major platforms. If some case is found where removing
10007 the SUBREG case here prevents follow-on optimizations, distributing
10008 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
10010 default:
10011 return x;
10014 /* Set LHS and RHS to the inner operands (A and B in the example
10015 above) and set OTHER to the common operand (C in the example).
10016 There is only one way to do this unless the inner operation is
10017 commutative. */
10018 if (COMMUTATIVE_ARITH_P (lhs)
10019 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
10020 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
10021 else if (COMMUTATIVE_ARITH_P (lhs)
10022 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
10023 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
10024 else if (COMMUTATIVE_ARITH_P (lhs)
10025 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
10026 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
10027 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
10028 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
10029 else
10030 return x;
10032 /* Form the new inner operation, seeing if it simplifies first. */
10033 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
10035 /* There is one exception to the general way of distributing:
10036 (a | c) ^ (b | c) -> (a ^ b) & ~c */
10037 if (code == XOR && inner_code == IOR)
10039 inner_code = AND;
10040 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
10043 /* We may be able to continuing distributing the result, so call
10044 ourselves recursively on the inner operation before forming the
10045 outer operation, which we return. */
10046 return simplify_gen_binary (inner_code, GET_MODE (x),
10047 apply_distributive_law (tem), other);
10050 /* See if X is of the form (* (+ A B) C), and if so convert to
10051 (+ (* A C) (* B C)) and try to simplify.
10053 Most of the time, this results in no change. However, if some of
10054 the operands are the same or inverses of each other, simplifications
10055 will result.
10057 For example, (and (ior A B) (not B)) can occur as the result of
10058 expanding a bit field assignment. When we apply the distributive
10059 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10060 which then simplifies to (and (A (not B))).
10062 Note that no checks happen on the validity of applying the inverse
10063 distributive law. This is pointless since we can do it in the
10064 few places where this routine is called.
10066 N is the index of the term that is decomposed (the arithmetic operation,
10067 i.e. (+ A B) in the first example above). !N is the index of the term that
10068 is distributed, i.e. of C in the first example above. */
10069 static rtx
10070 distribute_and_simplify_rtx (rtx x, int n)
10072 machine_mode mode;
10073 enum rtx_code outer_code, inner_code;
10074 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
10076 /* Distributivity is not true for floating point as it can change the
10077 value. So we don't do it unless -funsafe-math-optimizations. */
10078 if (FLOAT_MODE_P (GET_MODE (x))
10079 && ! flag_unsafe_math_optimizations)
10080 return NULL_RTX;
10082 decomposed = XEXP (x, n);
10083 if (!ARITHMETIC_P (decomposed))
10084 return NULL_RTX;
10086 mode = GET_MODE (x);
10087 outer_code = GET_CODE (x);
10088 distributed = XEXP (x, !n);
10090 inner_code = GET_CODE (decomposed);
10091 inner_op0 = XEXP (decomposed, 0);
10092 inner_op1 = XEXP (decomposed, 1);
10094 /* Special case (and (xor B C) (not A)), which is equivalent to
10095 (xor (ior A B) (ior A C)) */
10096 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10098 distributed = XEXP (distributed, 0);
10099 outer_code = IOR;
10102 if (n == 0)
10104 /* Distribute the second term. */
10105 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10106 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10108 else
10110 /* Distribute the first term. */
10111 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10112 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10115 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10116 new_op0, new_op1));
10117 if (GET_CODE (tmp) != outer_code
10118 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10119 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10120 return tmp;
10122 return NULL_RTX;
10125 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10126 in MODE. Return an equivalent form, if different from (and VAROP
10127 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10129 static rtx
10130 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10131 unsigned HOST_WIDE_INT constop)
10133 unsigned HOST_WIDE_INT nonzero;
10134 unsigned HOST_WIDE_INT orig_constop;
10135 rtx orig_varop;
10136 int i;
10138 orig_varop = varop;
10139 orig_constop = constop;
10140 if (GET_CODE (varop) == CLOBBER)
10141 return NULL_RTX;
10143 /* Simplify VAROP knowing that we will be only looking at some of the
10144 bits in it.
10146 Note by passing in CONSTOP, we guarantee that the bits not set in
10147 CONSTOP are not significant and will never be examined. We must
10148 ensure that is the case by explicitly masking out those bits
10149 before returning. */
10150 varop = force_to_mode (varop, mode, constop, 0);
10152 /* If VAROP is a CLOBBER, we will fail so return it. */
10153 if (GET_CODE (varop) == CLOBBER)
10154 return varop;
10156 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10157 to VAROP and return the new constant. */
10158 if (CONST_INT_P (varop))
10159 return gen_int_mode (INTVAL (varop) & constop, mode);
10161 /* See what bits may be nonzero in VAROP. Unlike the general case of
10162 a call to nonzero_bits, here we don't care about bits outside
10163 MODE. */
10165 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10167 /* Turn off all bits in the constant that are known to already be zero.
10168 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10169 which is tested below. */
10171 constop &= nonzero;
10173 /* If we don't have any bits left, return zero. */
10174 if (constop == 0)
10175 return const0_rtx;
10177 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10178 a power of two, we can replace this with an ASHIFT. */
10179 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10180 && (i = exact_log2 (constop)) >= 0)
10181 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10183 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10184 or XOR, then try to apply the distributive law. This may eliminate
10185 operations if either branch can be simplified because of the AND.
10186 It may also make some cases more complex, but those cases probably
10187 won't match a pattern either with or without this. */
10189 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10191 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10192 return
10193 gen_lowpart
10194 (mode,
10195 apply_distributive_law
10196 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10197 simplify_and_const_int (NULL_RTX, varop_mode,
10198 XEXP (varop, 0),
10199 constop),
10200 simplify_and_const_int (NULL_RTX, varop_mode,
10201 XEXP (varop, 1),
10202 constop))));
10205 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10206 the AND and see if one of the operands simplifies to zero. If so, we
10207 may eliminate it. */
10209 if (GET_CODE (varop) == PLUS
10210 && pow2p_hwi (constop + 1))
10212 rtx o0, o1;
10214 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10215 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10216 if (o0 == const0_rtx)
10217 return o1;
10218 if (o1 == const0_rtx)
10219 return o0;
10222 /* Make a SUBREG if necessary. If we can't make it, fail. */
10223 varop = gen_lowpart (mode, varop);
10224 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10225 return NULL_RTX;
10227 /* If we are only masking insignificant bits, return VAROP. */
10228 if (constop == nonzero)
10229 return varop;
10231 if (varop == orig_varop && constop == orig_constop)
10232 return NULL_RTX;
10234 /* Otherwise, return an AND. */
10235 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10239 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10240 in MODE.
10242 Return an equivalent form, if different from X. Otherwise, return X. If
10243 X is zero, we are to always construct the equivalent form. */
10245 static rtx
10246 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10247 unsigned HOST_WIDE_INT constop)
10249 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10250 if (tem)
10251 return tem;
10253 if (!x)
10254 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10255 gen_int_mode (constop, mode));
10256 if (GET_MODE (x) != mode)
10257 x = gen_lowpart (mode, x);
10258 return x;
10261 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10262 We don't care about bits outside of those defined in MODE.
10263 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10265 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10266 a shift, AND, or zero_extract, we can do better. */
10268 static rtx
10269 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10270 scalar_int_mode mode,
10271 unsigned HOST_WIDE_INT *nonzero)
10273 rtx tem;
10274 reg_stat_type *rsp;
10276 /* If X is a register whose nonzero bits value is current, use it.
10277 Otherwise, if X is a register whose value we can find, use that
10278 value. Otherwise, use the previously-computed global nonzero bits
10279 for this register. */
10281 rsp = &reg_stat[REGNO (x)];
10282 if (rsp->last_set_value != 0
10283 && (rsp->last_set_mode == mode
10284 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10285 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10286 && GET_MODE_CLASS (mode) == MODE_INT))
10287 && ((rsp->last_set_label >= label_tick_ebb_start
10288 && rsp->last_set_label < label_tick)
10289 || (rsp->last_set_label == label_tick
10290 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10291 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10292 && REGNO (x) < reg_n_sets_max
10293 && REG_N_SETS (REGNO (x)) == 1
10294 && !REGNO_REG_SET_P
10295 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10296 REGNO (x)))))
10298 /* Note that, even if the precision of last_set_mode is lower than that
10299 of mode, record_value_for_reg invoked nonzero_bits on the register
10300 with nonzero_bits_mode (because last_set_mode is necessarily integral
10301 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10302 are all valid, hence in mode too since nonzero_bits_mode is defined
10303 to the largest HWI_COMPUTABLE_MODE_P mode. */
10304 *nonzero &= rsp->last_set_nonzero_bits;
10305 return NULL;
10308 tem = get_last_value (x);
10309 if (tem)
10311 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10312 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10314 return tem;
10317 if (nonzero_sign_valid && rsp->nonzero_bits)
10319 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10321 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10322 /* We don't know anything about the upper bits. */
10323 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10325 *nonzero &= mask;
10328 return NULL;
10331 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10332 end of X that are known to be equal to the sign bit. X will be used
10333 in mode MODE; the returned value will always be between 1 and the
10334 number of bits in MODE. */
10336 static rtx
10337 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10338 scalar_int_mode mode,
10339 unsigned int *result)
10341 rtx tem;
10342 reg_stat_type *rsp;
10344 rsp = &reg_stat[REGNO (x)];
10345 if (rsp->last_set_value != 0
10346 && rsp->last_set_mode == mode
10347 && ((rsp->last_set_label >= label_tick_ebb_start
10348 && rsp->last_set_label < label_tick)
10349 || (rsp->last_set_label == label_tick
10350 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10351 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10352 && REGNO (x) < reg_n_sets_max
10353 && REG_N_SETS (REGNO (x)) == 1
10354 && !REGNO_REG_SET_P
10355 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10356 REGNO (x)))))
10358 *result = rsp->last_set_sign_bit_copies;
10359 return NULL;
10362 tem = get_last_value (x);
10363 if (tem != 0)
10364 return tem;
10366 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10367 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10368 *result = rsp->sign_bit_copies;
10370 return NULL;
10373 /* Return the number of "extended" bits there are in X, when interpreted
10374 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10375 unsigned quantities, this is the number of high-order zero bits.
10376 For signed quantities, this is the number of copies of the sign bit
10377 minus 1. In both case, this function returns the number of "spare"
10378 bits. For example, if two quantities for which this function returns
10379 at least 1 are added, the addition is known not to overflow.
10381 This function will always return 0 unless called during combine, which
10382 implies that it must be called from a define_split. */
10384 unsigned int
10385 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10387 if (nonzero_sign_valid == 0)
10388 return 0;
10390 scalar_int_mode int_mode;
10391 return (unsignedp
10392 ? (is_a <scalar_int_mode> (mode, &int_mode)
10393 && HWI_COMPUTABLE_MODE_P (int_mode)
10394 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10395 - floor_log2 (nonzero_bits (x, int_mode)))
10396 : 0)
10397 : num_sign_bit_copies (x, mode) - 1);
10400 /* This function is called from `simplify_shift_const' to merge two
10401 outer operations. Specifically, we have already found that we need
10402 to perform operation *POP0 with constant *PCONST0 at the outermost
10403 position. We would now like to also perform OP1 with constant CONST1
10404 (with *POP0 being done last).
10406 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10407 the resulting operation. *PCOMP_P is set to 1 if we would need to
10408 complement the innermost operand, otherwise it is unchanged.
10410 MODE is the mode in which the operation will be done. No bits outside
10411 the width of this mode matter. It is assumed that the width of this mode
10412 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10414 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10415 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10416 result is simply *PCONST0.
10418 If the resulting operation cannot be expressed as one operation, we
10419 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10421 static int
10422 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10424 enum rtx_code op0 = *pop0;
10425 HOST_WIDE_INT const0 = *pconst0;
10427 const0 &= GET_MODE_MASK (mode);
10428 const1 &= GET_MODE_MASK (mode);
10430 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10431 if (op0 == AND)
10432 const1 &= const0;
10434 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10435 if OP0 is SET. */
10437 if (op1 == UNKNOWN || op0 == SET)
10438 return 1;
10440 else if (op0 == UNKNOWN)
10441 op0 = op1, const0 = const1;
10443 else if (op0 == op1)
10445 switch (op0)
10447 case AND:
10448 const0 &= const1;
10449 break;
10450 case IOR:
10451 const0 |= const1;
10452 break;
10453 case XOR:
10454 const0 ^= const1;
10455 break;
10456 case PLUS:
10457 const0 += const1;
10458 break;
10459 case NEG:
10460 op0 = UNKNOWN;
10461 break;
10462 default:
10463 break;
10467 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10468 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10469 return 0;
10471 /* If the two constants aren't the same, we can't do anything. The
10472 remaining six cases can all be done. */
10473 else if (const0 != const1)
10474 return 0;
10476 else
10477 switch (op0)
10479 case IOR:
10480 if (op1 == AND)
10481 /* (a & b) | b == b */
10482 op0 = SET;
10483 else /* op1 == XOR */
10484 /* (a ^ b) | b == a | b */
10486 break;
10488 case XOR:
10489 if (op1 == AND)
10490 /* (a & b) ^ b == (~a) & b */
10491 op0 = AND, *pcomp_p = 1;
10492 else /* op1 == IOR */
10493 /* (a | b) ^ b == a & ~b */
10494 op0 = AND, const0 = ~const0;
10495 break;
10497 case AND:
10498 if (op1 == IOR)
10499 /* (a | b) & b == b */
10500 op0 = SET;
10501 else /* op1 == XOR */
10502 /* (a ^ b) & b) == (~a) & b */
10503 *pcomp_p = 1;
10504 break;
10505 default:
10506 break;
10509 /* Check for NO-OP cases. */
10510 const0 &= GET_MODE_MASK (mode);
10511 if (const0 == 0
10512 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10513 op0 = UNKNOWN;
10514 else if (const0 == 0 && op0 == AND)
10515 op0 = SET;
10516 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10517 && op0 == AND)
10518 op0 = UNKNOWN;
10520 *pop0 = op0;
10522 /* ??? Slightly redundant with the above mask, but not entirely.
10523 Moving this above means we'd have to sign-extend the mode mask
10524 for the final test. */
10525 if (op0 != UNKNOWN && op0 != NEG)
10526 *pconst0 = trunc_int_for_mode (const0, mode);
10528 return 1;
10531 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10532 the shift in. The original shift operation CODE is performed on OP in
10533 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10534 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10535 result of the shift is subject to operation OUTER_CODE with operand
10536 OUTER_CONST. */
10538 static scalar_int_mode
10539 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10540 scalar_int_mode orig_mode, scalar_int_mode mode,
10541 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10543 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10545 /* In general we can't perform in wider mode for right shift and rotate. */
10546 switch (code)
10548 case ASHIFTRT:
10549 /* We can still widen if the bits brought in from the left are identical
10550 to the sign bit of ORIG_MODE. */
10551 if (num_sign_bit_copies (op, mode)
10552 > (unsigned) (GET_MODE_PRECISION (mode)
10553 - GET_MODE_PRECISION (orig_mode)))
10554 return mode;
10555 return orig_mode;
10557 case LSHIFTRT:
10558 /* Similarly here but with zero bits. */
10559 if (HWI_COMPUTABLE_MODE_P (mode)
10560 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10561 return mode;
10563 /* We can also widen if the bits brought in will be masked off. This
10564 operation is performed in ORIG_MODE. */
10565 if (outer_code == AND)
10567 int care_bits = low_bitmask_len (orig_mode, outer_const);
10569 if (care_bits >= 0
10570 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10571 return mode;
10573 /* fall through */
10575 case ROTATE:
10576 return orig_mode;
10578 case ROTATERT:
10579 gcc_unreachable ();
10581 default:
10582 return mode;
10586 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10587 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10588 if we cannot simplify it. Otherwise, return a simplified value.
10590 The shift is normally computed in the widest mode we find in VAROP, as
10591 long as it isn't a different number of words than RESULT_MODE. Exceptions
10592 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10594 static rtx
10595 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10596 rtx varop, int orig_count)
10598 enum rtx_code orig_code = code;
10599 rtx orig_varop = varop;
10600 int count, log2;
10601 machine_mode mode = result_mode;
10602 machine_mode shift_mode;
10603 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10604 /* We form (outer_op (code varop count) (outer_const)). */
10605 enum rtx_code outer_op = UNKNOWN;
10606 HOST_WIDE_INT outer_const = 0;
10607 int complement_p = 0;
10608 rtx new_rtx, x;
10610 /* Make sure and truncate the "natural" shift on the way in. We don't
10611 want to do this inside the loop as it makes it more difficult to
10612 combine shifts. */
10613 if (SHIFT_COUNT_TRUNCATED)
10614 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10616 /* If we were given an invalid count, don't do anything except exactly
10617 what was requested. */
10619 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10620 return NULL_RTX;
10622 count = orig_count;
10624 /* Unless one of the branches of the `if' in this loop does a `continue',
10625 we will `break' the loop after the `if'. */
10627 while (count != 0)
10629 /* If we have an operand of (clobber (const_int 0)), fail. */
10630 if (GET_CODE (varop) == CLOBBER)
10631 return NULL_RTX;
10633 /* Convert ROTATERT to ROTATE. */
10634 if (code == ROTATERT)
10636 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10637 code = ROTATE;
10638 count = bitsize - count;
10641 shift_mode = result_mode;
10642 if (shift_mode != mode)
10644 /* We only change the modes of scalar shifts. */
10645 int_mode = as_a <scalar_int_mode> (mode);
10646 int_result_mode = as_a <scalar_int_mode> (result_mode);
10647 shift_mode = try_widen_shift_mode (code, varop, count,
10648 int_result_mode, int_mode,
10649 outer_op, outer_const);
10652 scalar_int_mode shift_unit_mode
10653 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10655 /* Handle cases where the count is greater than the size of the mode
10656 minus 1. For ASHIFT, use the size minus one as the count (this can
10657 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10658 take the count modulo the size. For other shifts, the result is
10659 zero.
10661 Since these shifts are being produced by the compiler by combining
10662 multiple operations, each of which are defined, we know what the
10663 result is supposed to be. */
10665 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10667 if (code == ASHIFTRT)
10668 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10669 else if (code == ROTATE || code == ROTATERT)
10670 count %= GET_MODE_PRECISION (shift_unit_mode);
10671 else
10673 /* We can't simply return zero because there may be an
10674 outer op. */
10675 varop = const0_rtx;
10676 count = 0;
10677 break;
10681 /* If we discovered we had to complement VAROP, leave. Making a NOT
10682 here would cause an infinite loop. */
10683 if (complement_p)
10684 break;
10686 if (shift_mode == shift_unit_mode)
10688 /* An arithmetic right shift of a quantity known to be -1 or 0
10689 is a no-op. */
10690 if (code == ASHIFTRT
10691 && (num_sign_bit_copies (varop, shift_unit_mode)
10692 == GET_MODE_PRECISION (shift_unit_mode)))
10694 count = 0;
10695 break;
10698 /* If we are doing an arithmetic right shift and discarding all but
10699 the sign bit copies, this is equivalent to doing a shift by the
10700 bitsize minus one. Convert it into that shift because it will
10701 often allow other simplifications. */
10703 if (code == ASHIFTRT
10704 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10705 >= GET_MODE_PRECISION (shift_unit_mode)))
10706 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10708 /* We simplify the tests below and elsewhere by converting
10709 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10710 `make_compound_operation' will convert it to an ASHIFTRT for
10711 those machines (such as VAX) that don't have an LSHIFTRT. */
10712 if (code == ASHIFTRT
10713 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10714 && val_signbit_known_clear_p (shift_unit_mode,
10715 nonzero_bits (varop,
10716 shift_unit_mode)))
10717 code = LSHIFTRT;
10719 if (((code == LSHIFTRT
10720 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10721 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10722 || (code == ASHIFT
10723 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10724 && !((nonzero_bits (varop, shift_unit_mode) << count)
10725 & GET_MODE_MASK (shift_unit_mode))))
10726 && !side_effects_p (varop))
10727 varop = const0_rtx;
10730 switch (GET_CODE (varop))
10732 case SIGN_EXTEND:
10733 case ZERO_EXTEND:
10734 case SIGN_EXTRACT:
10735 case ZERO_EXTRACT:
10736 new_rtx = expand_compound_operation (varop);
10737 if (new_rtx != varop)
10739 varop = new_rtx;
10740 continue;
10742 break;
10744 case MEM:
10745 /* The following rules apply only to scalars. */
10746 if (shift_mode != shift_unit_mode)
10747 break;
10748 int_mode = as_a <scalar_int_mode> (mode);
10750 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10751 minus the width of a smaller mode, we can do this with a
10752 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10753 if ((code == ASHIFTRT || code == LSHIFTRT)
10754 && ! mode_dependent_address_p (XEXP (varop, 0),
10755 MEM_ADDR_SPACE (varop))
10756 && ! MEM_VOLATILE_P (varop)
10757 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10758 .exists (&tmode)))
10760 new_rtx = adjust_address_nv (varop, tmode,
10761 BYTES_BIG_ENDIAN ? 0
10762 : count / BITS_PER_UNIT);
10764 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10765 : ZERO_EXTEND, int_mode, new_rtx);
10766 count = 0;
10767 continue;
10769 break;
10771 case SUBREG:
10772 /* The following rules apply only to scalars. */
10773 if (shift_mode != shift_unit_mode)
10774 break;
10775 int_mode = as_a <scalar_int_mode> (mode);
10776 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10778 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10779 the same number of words as what we've seen so far. Then store
10780 the widest mode in MODE. */
10781 if (subreg_lowpart_p (varop)
10782 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10783 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10784 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10785 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10786 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10788 varop = SUBREG_REG (varop);
10789 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10790 mode = inner_mode;
10791 continue;
10793 break;
10795 case MULT:
10796 /* Some machines use MULT instead of ASHIFT because MULT
10797 is cheaper. But it is still better on those machines to
10798 merge two shifts into one. */
10799 if (CONST_INT_P (XEXP (varop, 1))
10800 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10802 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10803 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10804 XEXP (varop, 0), log2_rtx);
10805 continue;
10807 break;
10809 case UDIV:
10810 /* Similar, for when divides are cheaper. */
10811 if (CONST_INT_P (XEXP (varop, 1))
10812 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10814 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10815 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10816 XEXP (varop, 0), log2_rtx);
10817 continue;
10819 break;
10821 case ASHIFTRT:
10822 /* If we are extracting just the sign bit of an arithmetic
10823 right shift, that shift is not needed. However, the sign
10824 bit of a wider mode may be different from what would be
10825 interpreted as the sign bit in a narrower mode, so, if
10826 the result is narrower, don't discard the shift. */
10827 if (code == LSHIFTRT
10828 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10829 && (GET_MODE_UNIT_BITSIZE (result_mode)
10830 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10832 varop = XEXP (varop, 0);
10833 continue;
10836 /* fall through */
10838 case LSHIFTRT:
10839 case ASHIFT:
10840 case ROTATE:
10841 /* The following rules apply only to scalars. */
10842 if (shift_mode != shift_unit_mode)
10843 break;
10844 int_mode = as_a <scalar_int_mode> (mode);
10845 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10846 int_result_mode = as_a <scalar_int_mode> (result_mode);
10848 /* Here we have two nested shifts. The result is usually the
10849 AND of a new shift with a mask. We compute the result below. */
10850 if (CONST_INT_P (XEXP (varop, 1))
10851 && INTVAL (XEXP (varop, 1)) >= 0
10852 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10853 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10854 && HWI_COMPUTABLE_MODE_P (int_mode))
10856 enum rtx_code first_code = GET_CODE (varop);
10857 unsigned int first_count = INTVAL (XEXP (varop, 1));
10858 unsigned HOST_WIDE_INT mask;
10859 rtx mask_rtx;
10861 /* We have one common special case. We can't do any merging if
10862 the inner code is an ASHIFTRT of a smaller mode. However, if
10863 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10864 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10865 we can convert it to
10866 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10867 This simplifies certain SIGN_EXTEND operations. */
10868 if (code == ASHIFT && first_code == ASHIFTRT
10869 && count == (GET_MODE_PRECISION (int_result_mode)
10870 - GET_MODE_PRECISION (int_varop_mode)))
10872 /* C3 has the low-order C1 bits zero. */
10874 mask = GET_MODE_MASK (int_mode)
10875 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10877 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10878 XEXP (varop, 0), mask);
10879 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10880 int_result_mode, varop, count);
10881 count = first_count;
10882 code = ASHIFTRT;
10883 continue;
10886 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10887 than C1 high-order bits equal to the sign bit, we can convert
10888 this to either an ASHIFT or an ASHIFTRT depending on the
10889 two counts.
10891 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10893 if (code == ASHIFTRT && first_code == ASHIFT
10894 && int_varop_mode == shift_unit_mode
10895 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10896 > first_count))
10898 varop = XEXP (varop, 0);
10899 count -= first_count;
10900 if (count < 0)
10902 count = -count;
10903 code = ASHIFT;
10906 continue;
10909 /* There are some cases we can't do. If CODE is ASHIFTRT,
10910 we can only do this if FIRST_CODE is also ASHIFTRT.
10912 We can't do the case when CODE is ROTATE and FIRST_CODE is
10913 ASHIFTRT.
10915 If the mode of this shift is not the mode of the outer shift,
10916 we can't do this if either shift is a right shift or ROTATE.
10918 Finally, we can't do any of these if the mode is too wide
10919 unless the codes are the same.
10921 Handle the case where the shift codes are the same
10922 first. */
10924 if (code == first_code)
10926 if (int_varop_mode != int_result_mode
10927 && (code == ASHIFTRT || code == LSHIFTRT
10928 || code == ROTATE))
10929 break;
10931 count += first_count;
10932 varop = XEXP (varop, 0);
10933 continue;
10936 if (code == ASHIFTRT
10937 || (code == ROTATE && first_code == ASHIFTRT)
10938 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10939 || (int_varop_mode != int_result_mode
10940 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10941 || first_code == ROTATE
10942 || code == ROTATE)))
10943 break;
10945 /* To compute the mask to apply after the shift, shift the
10946 nonzero bits of the inner shift the same way the
10947 outer shift will. */
10949 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10950 int_result_mode);
10951 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10952 mask_rtx
10953 = simplify_const_binary_operation (code, int_result_mode,
10954 mask_rtx, count_rtx);
10956 /* Give up if we can't compute an outer operation to use. */
10957 if (mask_rtx == 0
10958 || !CONST_INT_P (mask_rtx)
10959 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10960 INTVAL (mask_rtx),
10961 int_result_mode, &complement_p))
10962 break;
10964 /* If the shifts are in the same direction, we add the
10965 counts. Otherwise, we subtract them. */
10966 if ((code == ASHIFTRT || code == LSHIFTRT)
10967 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10968 count += first_count;
10969 else
10970 count -= first_count;
10972 /* If COUNT is positive, the new shift is usually CODE,
10973 except for the two exceptions below, in which case it is
10974 FIRST_CODE. If the count is negative, FIRST_CODE should
10975 always be used */
10976 if (count > 0
10977 && ((first_code == ROTATE && code == ASHIFT)
10978 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10979 code = first_code;
10980 else if (count < 0)
10981 code = first_code, count = -count;
10983 varop = XEXP (varop, 0);
10984 continue;
10987 /* If we have (A << B << C) for any shift, we can convert this to
10988 (A << C << B). This wins if A is a constant. Only try this if
10989 B is not a constant. */
10991 else if (GET_CODE (varop) == code
10992 && CONST_INT_P (XEXP (varop, 0))
10993 && !CONST_INT_P (XEXP (varop, 1)))
10995 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10996 sure the result will be masked. See PR70222. */
10997 if (code == LSHIFTRT
10998 && int_mode != int_result_mode
10999 && !merge_outer_ops (&outer_op, &outer_const, AND,
11000 GET_MODE_MASK (int_result_mode)
11001 >> orig_count, int_result_mode,
11002 &complement_p))
11003 break;
11004 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
11005 up outer sign extension (often left and right shift) is
11006 hardly more efficient than the original. See PR70429. */
11007 if (code == ASHIFTRT && int_mode != int_result_mode)
11008 break;
11010 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
11011 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
11012 XEXP (varop, 0),
11013 count_rtx);
11014 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
11015 count = 0;
11016 continue;
11018 break;
11020 case NOT:
11021 /* The following rules apply only to scalars. */
11022 if (shift_mode != shift_unit_mode)
11023 break;
11025 /* Make this fit the case below. */
11026 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
11027 continue;
11029 case IOR:
11030 case AND:
11031 case XOR:
11032 /* The following rules apply only to scalars. */
11033 if (shift_mode != shift_unit_mode)
11034 break;
11035 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11036 int_result_mode = as_a <scalar_int_mode> (result_mode);
11038 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
11039 with C the size of VAROP - 1 and the shift is logical if
11040 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11041 we have an (le X 0) operation. If we have an arithmetic shift
11042 and STORE_FLAG_VALUE is 1 or we have a logical shift with
11043 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
11045 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
11046 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
11047 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11048 && (code == LSHIFTRT || code == ASHIFTRT)
11049 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11050 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11052 count = 0;
11053 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
11054 const0_rtx);
11056 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11057 varop = gen_rtx_NEG (int_varop_mode, varop);
11059 continue;
11062 /* If we have (shift (logical)), move the logical to the outside
11063 to allow it to possibly combine with another logical and the
11064 shift to combine with another shift. This also canonicalizes to
11065 what a ZERO_EXTRACT looks like. Also, some machines have
11066 (and (shift)) insns. */
11068 if (CONST_INT_P (XEXP (varop, 1))
11069 /* We can't do this if we have (ashiftrt (xor)) and the
11070 constant has its sign bit set in shift_unit_mode with
11071 shift_unit_mode wider than result_mode. */
11072 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11073 && int_result_mode != shift_unit_mode
11074 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11075 shift_unit_mode) < 0)
11076 && (new_rtx = simplify_const_binary_operation
11077 (code, int_result_mode,
11078 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11079 gen_int_shift_amount (int_result_mode, count))) != 0
11080 && CONST_INT_P (new_rtx)
11081 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
11082 INTVAL (new_rtx), int_result_mode,
11083 &complement_p))
11085 varop = XEXP (varop, 0);
11086 continue;
11089 /* If we can't do that, try to simplify the shift in each arm of the
11090 logical expression, make a new logical expression, and apply
11091 the inverse distributive law. This also can't be done for
11092 (ashiftrt (xor)) where we've widened the shift and the constant
11093 changes the sign bit. */
11094 if (CONST_INT_P (XEXP (varop, 1))
11095 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11096 && int_result_mode != shift_unit_mode
11097 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11098 shift_unit_mode) < 0))
11100 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11101 XEXP (varop, 0), count);
11102 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11103 XEXP (varop, 1), count);
11105 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11106 lhs, rhs);
11107 varop = apply_distributive_law (varop);
11109 count = 0;
11110 continue;
11112 break;
11114 case EQ:
11115 /* The following rules apply only to scalars. */
11116 if (shift_mode != shift_unit_mode)
11117 break;
11118 int_result_mode = as_a <scalar_int_mode> (result_mode);
11120 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11121 says that the sign bit can be tested, FOO has mode MODE, C is
11122 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11123 that may be nonzero. */
11124 if (code == LSHIFTRT
11125 && XEXP (varop, 1) == const0_rtx
11126 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11127 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11128 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11129 && STORE_FLAG_VALUE == -1
11130 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11131 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11132 int_result_mode, &complement_p))
11134 varop = XEXP (varop, 0);
11135 count = 0;
11136 continue;
11138 break;
11140 case NEG:
11141 /* The following rules apply only to scalars. */
11142 if (shift_mode != shift_unit_mode)
11143 break;
11144 int_result_mode = as_a <scalar_int_mode> (result_mode);
11146 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11147 than the number of bits in the mode is equivalent to A. */
11148 if (code == LSHIFTRT
11149 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11150 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11152 varop = XEXP (varop, 0);
11153 count = 0;
11154 continue;
11157 /* NEG commutes with ASHIFT since it is multiplication. Move the
11158 NEG outside to allow shifts to combine. */
11159 if (code == ASHIFT
11160 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11161 int_result_mode, &complement_p))
11163 varop = XEXP (varop, 0);
11164 continue;
11166 break;
11168 case PLUS:
11169 /* The following rules apply only to scalars. */
11170 if (shift_mode != shift_unit_mode)
11171 break;
11172 int_result_mode = as_a <scalar_int_mode> (result_mode);
11174 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11175 is one less than the number of bits in the mode is
11176 equivalent to (xor A 1). */
11177 if (code == LSHIFTRT
11178 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11179 && XEXP (varop, 1) == constm1_rtx
11180 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11181 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11182 int_result_mode, &complement_p))
11184 count = 0;
11185 varop = XEXP (varop, 0);
11186 continue;
11189 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11190 that might be nonzero in BAR are those being shifted out and those
11191 bits are known zero in FOO, we can replace the PLUS with FOO.
11192 Similarly in the other operand order. This code occurs when
11193 we are computing the size of a variable-size array. */
11195 if ((code == ASHIFTRT || code == LSHIFTRT)
11196 && count < HOST_BITS_PER_WIDE_INT
11197 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11198 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11199 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11201 varop = XEXP (varop, 0);
11202 continue;
11204 else if ((code == ASHIFTRT || code == LSHIFTRT)
11205 && count < HOST_BITS_PER_WIDE_INT
11206 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11207 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11208 >> count) == 0
11209 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11210 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11212 varop = XEXP (varop, 1);
11213 continue;
11216 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11217 if (code == ASHIFT
11218 && CONST_INT_P (XEXP (varop, 1))
11219 && (new_rtx = simplify_const_binary_operation
11220 (ASHIFT, int_result_mode,
11221 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11222 gen_int_shift_amount (int_result_mode, count))) != 0
11223 && CONST_INT_P (new_rtx)
11224 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11225 INTVAL (new_rtx), int_result_mode,
11226 &complement_p))
11228 varop = XEXP (varop, 0);
11229 continue;
11232 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11233 signbit', and attempt to change the PLUS to an XOR and move it to
11234 the outer operation as is done above in the AND/IOR/XOR case
11235 leg for shift(logical). See details in logical handling above
11236 for reasoning in doing so. */
11237 if (code == LSHIFTRT
11238 && CONST_INT_P (XEXP (varop, 1))
11239 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11240 && (new_rtx = simplify_const_binary_operation
11241 (code, int_result_mode,
11242 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11243 gen_int_shift_amount (int_result_mode, count))) != 0
11244 && CONST_INT_P (new_rtx)
11245 && merge_outer_ops (&outer_op, &outer_const, XOR,
11246 INTVAL (new_rtx), int_result_mode,
11247 &complement_p))
11249 varop = XEXP (varop, 0);
11250 continue;
11253 break;
11255 case MINUS:
11256 /* The following rules apply only to scalars. */
11257 if (shift_mode != shift_unit_mode)
11258 break;
11259 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11261 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11262 with C the size of VAROP - 1 and the shift is logical if
11263 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11264 we have a (gt X 0) operation. If the shift is arithmetic with
11265 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11266 we have a (neg (gt X 0)) operation. */
11268 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11269 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11270 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11271 && (code == LSHIFTRT || code == ASHIFTRT)
11272 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11273 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11274 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11276 count = 0;
11277 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11278 const0_rtx);
11280 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11281 varop = gen_rtx_NEG (int_varop_mode, varop);
11283 continue;
11285 break;
11287 case TRUNCATE:
11288 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11289 if the truncate does not affect the value. */
11290 if (code == LSHIFTRT
11291 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11292 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11293 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11294 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11295 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11297 rtx varop_inner = XEXP (varop, 0);
11298 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11299 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11300 new_count);
11301 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11302 XEXP (varop_inner, 0),
11303 new_count_rtx);
11304 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11305 count = 0;
11306 continue;
11308 break;
11310 default:
11311 break;
11314 break;
11317 shift_mode = result_mode;
11318 if (shift_mode != mode)
11320 /* We only change the modes of scalar shifts. */
11321 int_mode = as_a <scalar_int_mode> (mode);
11322 int_result_mode = as_a <scalar_int_mode> (result_mode);
11323 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11324 int_mode, outer_op, outer_const);
11327 /* We have now finished analyzing the shift. The result should be
11328 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11329 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11330 to the result of the shift. OUTER_CONST is the relevant constant,
11331 but we must turn off all bits turned off in the shift. */
11333 if (outer_op == UNKNOWN
11334 && orig_code == code && orig_count == count
11335 && varop == orig_varop
11336 && shift_mode == GET_MODE (varop))
11337 return NULL_RTX;
11339 /* Make a SUBREG if necessary. If we can't make it, fail. */
11340 varop = gen_lowpart (shift_mode, varop);
11341 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11342 return NULL_RTX;
11344 /* If we have an outer operation and we just made a shift, it is
11345 possible that we could have simplified the shift were it not
11346 for the outer operation. So try to do the simplification
11347 recursively. */
11349 if (outer_op != UNKNOWN)
11350 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11351 else
11352 x = NULL_RTX;
11354 if (x == NULL_RTX)
11355 x = simplify_gen_binary (code, shift_mode, varop,
11356 gen_int_shift_amount (shift_mode, count));
11358 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11359 turn off all the bits that the shift would have turned off. */
11360 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11361 /* We only change the modes of scalar shifts. */
11362 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11363 x, GET_MODE_MASK (result_mode) >> orig_count);
11365 /* Do the remainder of the processing in RESULT_MODE. */
11366 x = gen_lowpart_or_truncate (result_mode, x);
11368 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11369 operation. */
11370 if (complement_p)
11371 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11373 if (outer_op != UNKNOWN)
11375 int_result_mode = as_a <scalar_int_mode> (result_mode);
11377 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11378 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11379 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11381 if (outer_op == AND)
11382 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11383 else if (outer_op == SET)
11385 /* This means that we have determined that the result is
11386 equivalent to a constant. This should be rare. */
11387 if (!side_effects_p (x))
11388 x = GEN_INT (outer_const);
11390 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11391 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11392 else
11393 x = simplify_gen_binary (outer_op, int_result_mode, x,
11394 GEN_INT (outer_const));
11397 return x;
11400 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11401 The result of the shift is RESULT_MODE. If we cannot simplify it,
11402 return X or, if it is NULL, synthesize the expression with
11403 simplify_gen_binary. Otherwise, return a simplified value.
11405 The shift is normally computed in the widest mode we find in VAROP, as
11406 long as it isn't a different number of words than RESULT_MODE. Exceptions
11407 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11409 static rtx
11410 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11411 rtx varop, int count)
11413 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11414 if (tem)
11415 return tem;
11417 if (!x)
11418 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11419 gen_int_shift_amount (GET_MODE (varop), count));
11420 if (GET_MODE (x) != result_mode)
11421 x = gen_lowpart (result_mode, x);
11422 return x;
11426 /* A subroutine of recog_for_combine. See there for arguments and
11427 return value. */
11429 static int
11430 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11432 rtx pat = *pnewpat;
11433 rtx pat_without_clobbers;
11434 int insn_code_number;
11435 int num_clobbers_to_add = 0;
11436 int i;
11437 rtx notes = NULL_RTX;
11438 rtx old_notes, old_pat;
11439 int old_icode;
11441 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11442 we use to indicate that something didn't match. If we find such a
11443 thing, force rejection. */
11444 if (GET_CODE (pat) == PARALLEL)
11445 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11446 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11447 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11448 return -1;
11450 old_pat = PATTERN (insn);
11451 old_notes = REG_NOTES (insn);
11452 PATTERN (insn) = pat;
11453 REG_NOTES (insn) = NULL_RTX;
11455 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11456 if (dump_file && (dump_flags & TDF_DETAILS))
11458 if (insn_code_number < 0)
11459 fputs ("Failed to match this instruction:\n", dump_file);
11460 else
11461 fputs ("Successfully matched this instruction:\n", dump_file);
11462 print_rtl_single (dump_file, pat);
11465 /* If it isn't, there is the possibility that we previously had an insn
11466 that clobbered some register as a side effect, but the combined
11467 insn doesn't need to do that. So try once more without the clobbers
11468 unless this represents an ASM insn. */
11470 if (insn_code_number < 0 && ! check_asm_operands (pat)
11471 && GET_CODE (pat) == PARALLEL)
11473 int pos;
11475 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11476 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11478 if (i != pos)
11479 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11480 pos++;
11483 SUBST_INT (XVECLEN (pat, 0), pos);
11485 if (pos == 1)
11486 pat = XVECEXP (pat, 0, 0);
11488 PATTERN (insn) = pat;
11489 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11490 if (dump_file && (dump_flags & TDF_DETAILS))
11492 if (insn_code_number < 0)
11493 fputs ("Failed to match this instruction:\n", dump_file);
11494 else
11495 fputs ("Successfully matched this instruction:\n", dump_file);
11496 print_rtl_single (dump_file, pat);
11500 pat_without_clobbers = pat;
11502 PATTERN (insn) = old_pat;
11503 REG_NOTES (insn) = old_notes;
11505 /* Recognize all noop sets, these will be killed by followup pass. */
11506 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11507 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11509 /* If we had any clobbers to add, make a new pattern than contains
11510 them. Then check to make sure that all of them are dead. */
11511 if (num_clobbers_to_add)
11513 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11514 rtvec_alloc (GET_CODE (pat) == PARALLEL
11515 ? (XVECLEN (pat, 0)
11516 + num_clobbers_to_add)
11517 : num_clobbers_to_add + 1));
11519 if (GET_CODE (pat) == PARALLEL)
11520 for (i = 0; i < XVECLEN (pat, 0); i++)
11521 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11522 else
11523 XVECEXP (newpat, 0, 0) = pat;
11525 add_clobbers (newpat, insn_code_number);
11527 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11528 i < XVECLEN (newpat, 0); i++)
11530 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11531 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11532 return -1;
11533 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11535 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11536 notes = alloc_reg_note (REG_UNUSED,
11537 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11540 pat = newpat;
11543 if (insn_code_number >= 0
11544 && insn_code_number != NOOP_MOVE_INSN_CODE)
11546 old_pat = PATTERN (insn);
11547 old_notes = REG_NOTES (insn);
11548 old_icode = INSN_CODE (insn);
11549 PATTERN (insn) = pat;
11550 REG_NOTES (insn) = notes;
11551 INSN_CODE (insn) = insn_code_number;
11553 /* Allow targets to reject combined insn. */
11554 if (!targetm.legitimate_combined_insn (insn))
11556 if (dump_file && (dump_flags & TDF_DETAILS))
11557 fputs ("Instruction not appropriate for target.",
11558 dump_file);
11560 /* Callers expect recog_for_combine to strip
11561 clobbers from the pattern on failure. */
11562 pat = pat_without_clobbers;
11563 notes = NULL_RTX;
11565 insn_code_number = -1;
11568 PATTERN (insn) = old_pat;
11569 REG_NOTES (insn) = old_notes;
11570 INSN_CODE (insn) = old_icode;
11573 *pnewpat = pat;
11574 *pnotes = notes;
11576 return insn_code_number;
11579 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11580 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11581 Return whether anything was so changed. */
11583 static bool
11584 change_zero_ext (rtx pat)
11586 bool changed = false;
11587 rtx *src = &SET_SRC (pat);
11589 subrtx_ptr_iterator::array_type array;
11590 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11592 rtx x = **iter;
11593 scalar_int_mode mode, inner_mode;
11594 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11595 continue;
11596 int size;
11598 if (GET_CODE (x) == ZERO_EXTRACT
11599 && CONST_INT_P (XEXP (x, 1))
11600 && CONST_INT_P (XEXP (x, 2))
11601 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11602 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11604 size = INTVAL (XEXP (x, 1));
11606 int start = INTVAL (XEXP (x, 2));
11607 if (BITS_BIG_ENDIAN)
11608 start = GET_MODE_PRECISION (inner_mode) - size - start;
11610 if (start != 0)
11611 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11612 gen_int_shift_amount (inner_mode, start));
11613 else
11614 x = XEXP (x, 0);
11616 if (mode != inner_mode)
11618 if (REG_P (x) && HARD_REGISTER_P (x)
11619 && !can_change_dest_mode (x, 0, mode))
11620 continue;
11622 x = gen_lowpart_SUBREG (mode, x);
11625 else if (GET_CODE (x) == ZERO_EXTEND
11626 && GET_CODE (XEXP (x, 0)) == SUBREG
11627 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11628 && !paradoxical_subreg_p (XEXP (x, 0))
11629 && subreg_lowpart_p (XEXP (x, 0)))
11631 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11632 size = GET_MODE_PRECISION (inner_mode);
11633 x = SUBREG_REG (XEXP (x, 0));
11634 if (GET_MODE (x) != mode)
11636 if (REG_P (x) && HARD_REGISTER_P (x)
11637 && !can_change_dest_mode (x, 0, mode))
11638 continue;
11640 x = gen_lowpart_SUBREG (mode, x);
11643 else if (GET_CODE (x) == ZERO_EXTEND
11644 && REG_P (XEXP (x, 0))
11645 && HARD_REGISTER_P (XEXP (x, 0))
11646 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11648 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11649 size = GET_MODE_PRECISION (inner_mode);
11650 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11652 else
11653 continue;
11655 if (!(GET_CODE (x) == LSHIFTRT
11656 && CONST_INT_P (XEXP (x, 1))
11657 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11659 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11660 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11663 SUBST (**iter, x);
11664 changed = true;
11667 if (changed)
11668 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11669 maybe_swap_commutative_operands (**iter);
11671 rtx *dst = &SET_DEST (pat);
11672 scalar_int_mode mode;
11673 if (GET_CODE (*dst) == ZERO_EXTRACT
11674 && REG_P (XEXP (*dst, 0))
11675 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11676 && CONST_INT_P (XEXP (*dst, 1))
11677 && CONST_INT_P (XEXP (*dst, 2)))
11679 rtx reg = XEXP (*dst, 0);
11680 int width = INTVAL (XEXP (*dst, 1));
11681 int offset = INTVAL (XEXP (*dst, 2));
11682 int reg_width = GET_MODE_PRECISION (mode);
11683 if (BITS_BIG_ENDIAN)
11684 offset = reg_width - width - offset;
11686 rtx x, y, z, w;
11687 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11688 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11689 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11690 if (offset)
11691 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11692 else
11693 y = SET_SRC (pat);
11694 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11695 w = gen_rtx_IOR (mode, x, z);
11696 SUBST (SET_DEST (pat), reg);
11697 SUBST (SET_SRC (pat), w);
11699 changed = true;
11702 return changed;
11705 /* Like recog, but we receive the address of a pointer to a new pattern.
11706 We try to match the rtx that the pointer points to.
11707 If that fails, we may try to modify or replace the pattern,
11708 storing the replacement into the same pointer object.
11710 Modifications include deletion or addition of CLOBBERs. If the
11711 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11712 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11713 (and undo if that fails).
11715 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11716 the CLOBBERs are placed.
11718 The value is the final insn code from the pattern ultimately matched,
11719 or -1. */
11721 static int
11722 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11724 rtx pat = *pnewpat;
11725 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11726 if (insn_code_number >= 0 || check_asm_operands (pat))
11727 return insn_code_number;
11729 void *marker = get_undo_marker ();
11730 bool changed = false;
11732 if (GET_CODE (pat) == SET)
11733 changed = change_zero_ext (pat);
11734 else if (GET_CODE (pat) == PARALLEL)
11736 int i;
11737 for (i = 0; i < XVECLEN (pat, 0); i++)
11739 rtx set = XVECEXP (pat, 0, i);
11740 if (GET_CODE (set) == SET)
11741 changed |= change_zero_ext (set);
11745 if (changed)
11747 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11749 if (insn_code_number < 0)
11750 undo_to_marker (marker);
11753 return insn_code_number;
11756 /* Like gen_lowpart_general but for use by combine. In combine it
11757 is not possible to create any new pseudoregs. However, it is
11758 safe to create invalid memory addresses, because combine will
11759 try to recognize them and all they will do is make the combine
11760 attempt fail.
11762 If for some reason this cannot do its job, an rtx
11763 (clobber (const_int 0)) is returned.
11764 An insn containing that will not be recognized. */
11766 static rtx
11767 gen_lowpart_for_combine (machine_mode omode, rtx x)
11769 machine_mode imode = GET_MODE (x);
11770 rtx result;
11772 if (omode == imode)
11773 return x;
11775 /* We can only support MODE being wider than a word if X is a
11776 constant integer or has a mode the same size. */
11777 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11778 && ! (CONST_SCALAR_INT_P (x)
11779 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11780 goto fail;
11782 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11783 won't know what to do. So we will strip off the SUBREG here and
11784 process normally. */
11785 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11787 x = SUBREG_REG (x);
11789 /* For use in case we fall down into the address adjustments
11790 further below, we need to adjust the known mode and size of
11791 x; imode and isize, since we just adjusted x. */
11792 imode = GET_MODE (x);
11794 if (imode == omode)
11795 return x;
11798 result = gen_lowpart_common (omode, x);
11800 if (result)
11801 return result;
11803 if (MEM_P (x))
11805 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11806 address. */
11807 if (MEM_VOLATILE_P (x)
11808 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11809 goto fail;
11811 /* If we want to refer to something bigger than the original memref,
11812 generate a paradoxical subreg instead. That will force a reload
11813 of the original memref X. */
11814 if (paradoxical_subreg_p (omode, imode))
11815 return gen_rtx_SUBREG (omode, x, 0);
11817 poly_int64 offset = byte_lowpart_offset (omode, imode);
11818 return adjust_address_nv (x, omode, offset);
11821 /* If X is a comparison operator, rewrite it in a new mode. This
11822 probably won't match, but may allow further simplifications. */
11823 else if (COMPARISON_P (x)
11824 && SCALAR_INT_MODE_P (imode)
11825 && SCALAR_INT_MODE_P (omode))
11826 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11828 /* If we couldn't simplify X any other way, just enclose it in a
11829 SUBREG. Normally, this SUBREG won't match, but some patterns may
11830 include an explicit SUBREG or we may simplify it further in combine. */
11831 else
11833 rtx res;
11835 if (imode == VOIDmode)
11837 imode = int_mode_for_mode (omode).require ();
11838 x = gen_lowpart_common (imode, x);
11839 if (x == NULL)
11840 goto fail;
11842 res = lowpart_subreg (omode, x, imode);
11843 if (res)
11844 return res;
11847 fail:
11848 return gen_rtx_CLOBBER (omode, const0_rtx);
11851 /* Try to simplify a comparison between OP0 and a constant OP1,
11852 where CODE is the comparison code that will be tested, into a
11853 (CODE OP0 const0_rtx) form.
11855 The result is a possibly different comparison code to use.
11856 *POP1 may be updated. */
11858 static enum rtx_code
11859 simplify_compare_const (enum rtx_code code, machine_mode mode,
11860 rtx op0, rtx *pop1)
11862 scalar_int_mode int_mode;
11863 HOST_WIDE_INT const_op = INTVAL (*pop1);
11865 /* Get the constant we are comparing against and turn off all bits
11866 not on in our mode. */
11867 if (mode != VOIDmode)
11868 const_op = trunc_int_for_mode (const_op, mode);
11870 /* If we are comparing against a constant power of two and the value
11871 being compared can only have that single bit nonzero (e.g., it was
11872 `and'ed with that bit), we can replace this with a comparison
11873 with zero. */
11874 if (const_op
11875 && (code == EQ || code == NE || code == GE || code == GEU
11876 || code == LT || code == LTU)
11877 && is_a <scalar_int_mode> (mode, &int_mode)
11878 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11879 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11880 && (nonzero_bits (op0, int_mode)
11881 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11883 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11884 const_op = 0;
11887 /* Similarly, if we are comparing a value known to be either -1 or
11888 0 with -1, change it to the opposite comparison against zero. */
11889 if (const_op == -1
11890 && (code == EQ || code == NE || code == GT || code == LE
11891 || code == GEU || code == LTU)
11892 && is_a <scalar_int_mode> (mode, &int_mode)
11893 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11895 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11896 const_op = 0;
11899 /* Do some canonicalizations based on the comparison code. We prefer
11900 comparisons against zero and then prefer equality comparisons.
11901 If we can reduce the size of a constant, we will do that too. */
11902 switch (code)
11904 case LT:
11905 /* < C is equivalent to <= (C - 1) */
11906 if (const_op > 0)
11908 const_op -= 1;
11909 code = LE;
11910 /* ... fall through to LE case below. */
11911 gcc_fallthrough ();
11913 else
11914 break;
11916 case LE:
11917 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11918 if (const_op < 0)
11920 const_op += 1;
11921 code = LT;
11924 /* If we are doing a <= 0 comparison on a value known to have
11925 a zero sign bit, we can replace this with == 0. */
11926 else if (const_op == 0
11927 && is_a <scalar_int_mode> (mode, &int_mode)
11928 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11929 && (nonzero_bits (op0, int_mode)
11930 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11931 == 0)
11932 code = EQ;
11933 break;
11935 case GE:
11936 /* >= C is equivalent to > (C - 1). */
11937 if (const_op > 0)
11939 const_op -= 1;
11940 code = GT;
11941 /* ... fall through to GT below. */
11942 gcc_fallthrough ();
11944 else
11945 break;
11947 case GT:
11948 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11949 if (const_op < 0)
11951 const_op += 1;
11952 code = GE;
11955 /* If we are doing a > 0 comparison on a value known to have
11956 a zero sign bit, we can replace this with != 0. */
11957 else if (const_op == 0
11958 && is_a <scalar_int_mode> (mode, &int_mode)
11959 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11960 && (nonzero_bits (op0, int_mode)
11961 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11962 == 0)
11963 code = NE;
11964 break;
11966 case LTU:
11967 /* < C is equivalent to <= (C - 1). */
11968 if (const_op > 0)
11970 const_op -= 1;
11971 code = LEU;
11972 /* ... fall through ... */
11973 gcc_fallthrough ();
11975 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11976 else if (is_a <scalar_int_mode> (mode, &int_mode)
11977 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11978 && ((unsigned HOST_WIDE_INT) const_op
11979 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11981 const_op = 0;
11982 code = GE;
11983 break;
11985 else
11986 break;
11988 case LEU:
11989 /* unsigned <= 0 is equivalent to == 0 */
11990 if (const_op == 0)
11991 code = EQ;
11992 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11993 else if (is_a <scalar_int_mode> (mode, &int_mode)
11994 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11995 && ((unsigned HOST_WIDE_INT) const_op
11996 == ((HOST_WIDE_INT_1U
11997 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11999 const_op = 0;
12000 code = GE;
12002 break;
12004 case GEU:
12005 /* >= C is equivalent to > (C - 1). */
12006 if (const_op > 1)
12008 const_op -= 1;
12009 code = GTU;
12010 /* ... fall through ... */
12011 gcc_fallthrough ();
12014 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
12015 else if (is_a <scalar_int_mode> (mode, &int_mode)
12016 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12017 && ((unsigned HOST_WIDE_INT) const_op
12018 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
12020 const_op = 0;
12021 code = LT;
12022 break;
12024 else
12025 break;
12027 case GTU:
12028 /* unsigned > 0 is equivalent to != 0 */
12029 if (const_op == 0)
12030 code = NE;
12031 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12032 else if (is_a <scalar_int_mode> (mode, &int_mode)
12033 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12034 && ((unsigned HOST_WIDE_INT) const_op
12035 == (HOST_WIDE_INT_1U
12036 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
12038 const_op = 0;
12039 code = LT;
12041 break;
12043 default:
12044 break;
12047 *pop1 = GEN_INT (const_op);
12048 return code;
12051 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12052 comparison code that will be tested.
12054 The result is a possibly different comparison code to use. *POP0 and
12055 *POP1 may be updated.
12057 It is possible that we might detect that a comparison is either always
12058 true or always false. However, we do not perform general constant
12059 folding in combine, so this knowledge isn't useful. Such tautologies
12060 should have been detected earlier. Hence we ignore all such cases. */
12062 static enum rtx_code
12063 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12065 rtx op0 = *pop0;
12066 rtx op1 = *pop1;
12067 rtx tem, tem1;
12068 int i;
12069 scalar_int_mode mode, inner_mode, tmode;
12070 opt_scalar_int_mode tmode_iter;
12072 /* Try a few ways of applying the same transformation to both operands. */
12073 while (1)
12075 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12076 so check specially. */
12077 if (!WORD_REGISTER_OPERATIONS
12078 && code != GTU && code != GEU && code != LTU && code != LEU
12079 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12080 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12081 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12082 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12083 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12084 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12085 && (is_a <scalar_int_mode>
12086 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12087 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12088 && CONST_INT_P (XEXP (op0, 1))
12089 && XEXP (op0, 1) == XEXP (op1, 1)
12090 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12091 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12092 && (INTVAL (XEXP (op0, 1))
12093 == (GET_MODE_PRECISION (mode)
12094 - GET_MODE_PRECISION (inner_mode))))
12096 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12097 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12100 /* If both operands are the same constant shift, see if we can ignore the
12101 shift. We can if the shift is a rotate or if the bits shifted out of
12102 this shift are known to be zero for both inputs and if the type of
12103 comparison is compatible with the shift. */
12104 if (GET_CODE (op0) == GET_CODE (op1)
12105 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12106 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12107 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12108 && (code != GT && code != LT && code != GE && code != LE))
12109 || (GET_CODE (op0) == ASHIFTRT
12110 && (code != GTU && code != LTU
12111 && code != GEU && code != LEU)))
12112 && CONST_INT_P (XEXP (op0, 1))
12113 && INTVAL (XEXP (op0, 1)) >= 0
12114 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12115 && XEXP (op0, 1) == XEXP (op1, 1))
12117 machine_mode mode = GET_MODE (op0);
12118 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12119 int shift_count = INTVAL (XEXP (op0, 1));
12121 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12122 mask &= (mask >> shift_count) << shift_count;
12123 else if (GET_CODE (op0) == ASHIFT)
12124 mask = (mask & (mask << shift_count)) >> shift_count;
12126 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12127 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12128 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12129 else
12130 break;
12133 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12134 SUBREGs are of the same mode, and, in both cases, the AND would
12135 be redundant if the comparison was done in the narrower mode,
12136 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12137 and the operand's possibly nonzero bits are 0xffffff01; in that case
12138 if we only care about QImode, we don't need the AND). This case
12139 occurs if the output mode of an scc insn is not SImode and
12140 STORE_FLAG_VALUE == 1 (e.g., the 386).
12142 Similarly, check for a case where the AND's are ZERO_EXTEND
12143 operations from some narrower mode even though a SUBREG is not
12144 present. */
12146 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12147 && CONST_INT_P (XEXP (op0, 1))
12148 && CONST_INT_P (XEXP (op1, 1)))
12150 rtx inner_op0 = XEXP (op0, 0);
12151 rtx inner_op1 = XEXP (op1, 0);
12152 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12153 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12154 int changed = 0;
12156 if (paradoxical_subreg_p (inner_op0)
12157 && GET_CODE (inner_op1) == SUBREG
12158 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12159 && (GET_MODE (SUBREG_REG (inner_op0))
12160 == GET_MODE (SUBREG_REG (inner_op1)))
12161 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12162 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12163 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12164 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12166 op0 = SUBREG_REG (inner_op0);
12167 op1 = SUBREG_REG (inner_op1);
12169 /* The resulting comparison is always unsigned since we masked
12170 off the original sign bit. */
12171 code = unsigned_condition (code);
12173 changed = 1;
12176 else if (c0 == c1)
12177 FOR_EACH_MODE_UNTIL (tmode,
12178 as_a <scalar_int_mode> (GET_MODE (op0)))
12179 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12181 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12182 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12183 code = unsigned_condition (code);
12184 changed = 1;
12185 break;
12188 if (! changed)
12189 break;
12192 /* If both operands are NOT, we can strip off the outer operation
12193 and adjust the comparison code for swapped operands; similarly for
12194 NEG, except that this must be an equality comparison. */
12195 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12196 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12197 && (code == EQ || code == NE)))
12198 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12200 else
12201 break;
12204 /* If the first operand is a constant, swap the operands and adjust the
12205 comparison code appropriately, but don't do this if the second operand
12206 is already a constant integer. */
12207 if (swap_commutative_operands_p (op0, op1))
12209 std::swap (op0, op1);
12210 code = swap_condition (code);
12213 /* We now enter a loop during which we will try to simplify the comparison.
12214 For the most part, we only are concerned with comparisons with zero,
12215 but some things may really be comparisons with zero but not start
12216 out looking that way. */
12218 while (CONST_INT_P (op1))
12220 machine_mode raw_mode = GET_MODE (op0);
12221 scalar_int_mode int_mode;
12222 int equality_comparison_p;
12223 int sign_bit_comparison_p;
12224 int unsigned_comparison_p;
12225 HOST_WIDE_INT const_op;
12227 /* We only want to handle integral modes. This catches VOIDmode,
12228 CCmode, and the floating-point modes. An exception is that we
12229 can handle VOIDmode if OP0 is a COMPARE or a comparison
12230 operation. */
12232 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12233 && ! (raw_mode == VOIDmode
12234 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12235 break;
12237 /* Try to simplify the compare to constant, possibly changing the
12238 comparison op, and/or changing op1 to zero. */
12239 code = simplify_compare_const (code, raw_mode, op0, &op1);
12240 const_op = INTVAL (op1);
12242 /* Compute some predicates to simplify code below. */
12244 equality_comparison_p = (code == EQ || code == NE);
12245 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12246 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12247 || code == GEU);
12249 /* If this is a sign bit comparison and we can do arithmetic in
12250 MODE, say that we will only be needing the sign bit of OP0. */
12251 if (sign_bit_comparison_p
12252 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12253 && HWI_COMPUTABLE_MODE_P (int_mode))
12254 op0 = force_to_mode (op0, int_mode,
12255 HOST_WIDE_INT_1U
12256 << (GET_MODE_PRECISION (int_mode) - 1),
12259 if (COMPARISON_P (op0))
12261 /* We can't do anything if OP0 is a condition code value, rather
12262 than an actual data value. */
12263 if (const_op != 0
12264 || CC0_P (XEXP (op0, 0))
12265 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12266 break;
12268 /* Get the two operands being compared. */
12269 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12270 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12271 else
12272 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12274 /* Check for the cases where we simply want the result of the
12275 earlier test or the opposite of that result. */
12276 if (code == NE || code == EQ
12277 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12278 && (code == LT || code == GE)))
12280 enum rtx_code new_code;
12281 if (code == LT || code == NE)
12282 new_code = GET_CODE (op0);
12283 else
12284 new_code = reversed_comparison_code (op0, NULL);
12286 if (new_code != UNKNOWN)
12288 code = new_code;
12289 op0 = tem;
12290 op1 = tem1;
12291 continue;
12294 break;
12297 if (raw_mode == VOIDmode)
12298 break;
12299 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12301 /* Now try cases based on the opcode of OP0. If none of the cases
12302 does a "continue", we exit this loop immediately after the
12303 switch. */
12305 unsigned int mode_width = GET_MODE_PRECISION (mode);
12306 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12307 switch (GET_CODE (op0))
12309 case ZERO_EXTRACT:
12310 /* If we are extracting a single bit from a variable position in
12311 a constant that has only a single bit set and are comparing it
12312 with zero, we can convert this into an equality comparison
12313 between the position and the location of the single bit. */
12314 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12315 have already reduced the shift count modulo the word size. */
12316 if (!SHIFT_COUNT_TRUNCATED
12317 && CONST_INT_P (XEXP (op0, 0))
12318 && XEXP (op0, 1) == const1_rtx
12319 && equality_comparison_p && const_op == 0
12320 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12322 if (BITS_BIG_ENDIAN)
12323 i = BITS_PER_WORD - 1 - i;
12325 op0 = XEXP (op0, 2);
12326 op1 = GEN_INT (i);
12327 const_op = i;
12329 /* Result is nonzero iff shift count is equal to I. */
12330 code = reverse_condition (code);
12331 continue;
12334 /* fall through */
12336 case SIGN_EXTRACT:
12337 tem = expand_compound_operation (op0);
12338 if (tem != op0)
12340 op0 = tem;
12341 continue;
12343 break;
12345 case NOT:
12346 /* If testing for equality, we can take the NOT of the constant. */
12347 if (equality_comparison_p
12348 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12350 op0 = XEXP (op0, 0);
12351 op1 = tem;
12352 continue;
12355 /* If just looking at the sign bit, reverse the sense of the
12356 comparison. */
12357 if (sign_bit_comparison_p)
12359 op0 = XEXP (op0, 0);
12360 code = (code == GE ? LT : GE);
12361 continue;
12363 break;
12365 case NEG:
12366 /* If testing for equality, we can take the NEG of the constant. */
12367 if (equality_comparison_p
12368 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12370 op0 = XEXP (op0, 0);
12371 op1 = tem;
12372 continue;
12375 /* The remaining cases only apply to comparisons with zero. */
12376 if (const_op != 0)
12377 break;
12379 /* When X is ABS or is known positive,
12380 (neg X) is < 0 if and only if X != 0. */
12382 if (sign_bit_comparison_p
12383 && (GET_CODE (XEXP (op0, 0)) == ABS
12384 || (mode_width <= HOST_BITS_PER_WIDE_INT
12385 && (nonzero_bits (XEXP (op0, 0), mode)
12386 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12387 == 0)))
12389 op0 = XEXP (op0, 0);
12390 code = (code == LT ? NE : EQ);
12391 continue;
12394 /* If we have NEG of something whose two high-order bits are the
12395 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12396 if (num_sign_bit_copies (op0, mode) >= 2)
12398 op0 = XEXP (op0, 0);
12399 code = swap_condition (code);
12400 continue;
12402 break;
12404 case ROTATE:
12405 /* If we are testing equality and our count is a constant, we
12406 can perform the inverse operation on our RHS. */
12407 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12408 && (tem = simplify_binary_operation (ROTATERT, mode,
12409 op1, XEXP (op0, 1))) != 0)
12411 op0 = XEXP (op0, 0);
12412 op1 = tem;
12413 continue;
12416 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12417 a particular bit. Convert it to an AND of a constant of that
12418 bit. This will be converted into a ZERO_EXTRACT. */
12419 if (const_op == 0 && sign_bit_comparison_p
12420 && CONST_INT_P (XEXP (op0, 1))
12421 && mode_width <= HOST_BITS_PER_WIDE_INT
12422 && UINTVAL (XEXP (op0, 1)) < mode_width)
12424 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12425 (HOST_WIDE_INT_1U
12426 << (mode_width - 1
12427 - INTVAL (XEXP (op0, 1)))));
12428 code = (code == LT ? NE : EQ);
12429 continue;
12432 /* Fall through. */
12434 case ABS:
12435 /* ABS is ignorable inside an equality comparison with zero. */
12436 if (const_op == 0 && equality_comparison_p)
12438 op0 = XEXP (op0, 0);
12439 continue;
12441 break;
12443 case SIGN_EXTEND:
12444 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12445 (compare FOO CONST) if CONST fits in FOO's mode and we
12446 are either testing inequality or have an unsigned
12447 comparison with ZERO_EXTEND or a signed comparison with
12448 SIGN_EXTEND. But don't do it if we don't have a compare
12449 insn of the given mode, since we'd have to revert it
12450 later on, and then we wouldn't know whether to sign- or
12451 zero-extend. */
12452 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12453 && ! unsigned_comparison_p
12454 && HWI_COMPUTABLE_MODE_P (mode)
12455 && trunc_int_for_mode (const_op, mode) == const_op
12456 && have_insn_for (COMPARE, mode))
12458 op0 = XEXP (op0, 0);
12459 continue;
12461 break;
12463 case SUBREG:
12464 /* Check for the case where we are comparing A - C1 with C2, that is
12466 (subreg:MODE (plus (A) (-C1))) op (C2)
12468 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12469 comparison in the wider mode. One of the following two conditions
12470 must be true in order for this to be valid:
12472 1. The mode extension results in the same bit pattern being added
12473 on both sides and the comparison is equality or unsigned. As
12474 C2 has been truncated to fit in MODE, the pattern can only be
12475 all 0s or all 1s.
12477 2. The mode extension results in the sign bit being copied on
12478 each side.
12480 The difficulty here is that we have predicates for A but not for
12481 (A - C1) so we need to check that C1 is within proper bounds so
12482 as to perturbate A as little as possible. */
12484 if (mode_width <= HOST_BITS_PER_WIDE_INT
12485 && subreg_lowpart_p (op0)
12486 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12487 &inner_mode)
12488 && GET_MODE_PRECISION (inner_mode) > mode_width
12489 && GET_CODE (SUBREG_REG (op0)) == PLUS
12490 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12492 rtx a = XEXP (SUBREG_REG (op0), 0);
12493 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12495 if ((c1 > 0
12496 && (unsigned HOST_WIDE_INT) c1
12497 < HOST_WIDE_INT_1U << (mode_width - 1)
12498 && (equality_comparison_p || unsigned_comparison_p)
12499 /* (A - C1) zero-extends if it is positive and sign-extends
12500 if it is negative, C2 both zero- and sign-extends. */
12501 && (((nonzero_bits (a, inner_mode)
12502 & ~GET_MODE_MASK (mode)) == 0
12503 && const_op >= 0)
12504 /* (A - C1) sign-extends if it is positive and 1-extends
12505 if it is negative, C2 both sign- and 1-extends. */
12506 || (num_sign_bit_copies (a, inner_mode)
12507 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12508 - mode_width)
12509 && const_op < 0)))
12510 || ((unsigned HOST_WIDE_INT) c1
12511 < HOST_WIDE_INT_1U << (mode_width - 2)
12512 /* (A - C1) always sign-extends, like C2. */
12513 && num_sign_bit_copies (a, inner_mode)
12514 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12515 - (mode_width - 1))))
12517 op0 = SUBREG_REG (op0);
12518 continue;
12522 /* If the inner mode is narrower and we are extracting the low part,
12523 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12524 if (paradoxical_subreg_p (op0))
12526 else if (subreg_lowpart_p (op0)
12527 && GET_MODE_CLASS (mode) == MODE_INT
12528 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12529 && (code == NE || code == EQ)
12530 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12531 && !paradoxical_subreg_p (op0)
12532 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12533 & ~GET_MODE_MASK (mode)) == 0)
12535 /* Remove outer subregs that don't do anything. */
12536 tem = gen_lowpart (inner_mode, op1);
12538 if ((nonzero_bits (tem, inner_mode)
12539 & ~GET_MODE_MASK (mode)) == 0)
12541 op0 = SUBREG_REG (op0);
12542 op1 = tem;
12543 continue;
12545 break;
12547 else
12548 break;
12550 /* FALLTHROUGH */
12552 case ZERO_EXTEND:
12553 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12554 && (unsigned_comparison_p || equality_comparison_p)
12555 && HWI_COMPUTABLE_MODE_P (mode)
12556 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12557 && const_op >= 0
12558 && have_insn_for (COMPARE, mode))
12560 op0 = XEXP (op0, 0);
12561 continue;
12563 break;
12565 case PLUS:
12566 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12567 this for equality comparisons due to pathological cases involving
12568 overflows. */
12569 if (equality_comparison_p
12570 && (tem = simplify_binary_operation (MINUS, mode,
12571 op1, XEXP (op0, 1))) != 0)
12573 op0 = XEXP (op0, 0);
12574 op1 = tem;
12575 continue;
12578 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12579 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12580 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12582 op0 = XEXP (XEXP (op0, 0), 0);
12583 code = (code == LT ? EQ : NE);
12584 continue;
12586 break;
12588 case MINUS:
12589 /* We used to optimize signed comparisons against zero, but that
12590 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12591 arrive here as equality comparisons, or (GEU, LTU) are
12592 optimized away. No need to special-case them. */
12594 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12595 (eq B (minus A C)), whichever simplifies. We can only do
12596 this for equality comparisons due to pathological cases involving
12597 overflows. */
12598 if (equality_comparison_p
12599 && (tem = simplify_binary_operation (PLUS, mode,
12600 XEXP (op0, 1), op1)) != 0)
12602 op0 = XEXP (op0, 0);
12603 op1 = tem;
12604 continue;
12607 if (equality_comparison_p
12608 && (tem = simplify_binary_operation (MINUS, mode,
12609 XEXP (op0, 0), op1)) != 0)
12611 op0 = XEXP (op0, 1);
12612 op1 = tem;
12613 continue;
12616 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12617 of bits in X minus 1, is one iff X > 0. */
12618 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12619 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12620 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12621 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12623 op0 = XEXP (op0, 1);
12624 code = (code == GE ? LE : GT);
12625 continue;
12627 break;
12629 case XOR:
12630 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12631 if C is zero or B is a constant. */
12632 if (equality_comparison_p
12633 && (tem = simplify_binary_operation (XOR, mode,
12634 XEXP (op0, 1), op1)) != 0)
12636 op0 = XEXP (op0, 0);
12637 op1 = tem;
12638 continue;
12640 break;
12643 case IOR:
12644 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12645 iff X <= 0. */
12646 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12647 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12648 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12650 op0 = XEXP (op0, 1);
12651 code = (code == GE ? GT : LE);
12652 continue;
12654 break;
12656 case AND:
12657 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12658 will be converted to a ZERO_EXTRACT later. */
12659 if (const_op == 0 && equality_comparison_p
12660 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12661 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12663 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12664 XEXP (XEXP (op0, 0), 1));
12665 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12666 continue;
12669 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12670 zero and X is a comparison and C1 and C2 describe only bits set
12671 in STORE_FLAG_VALUE, we can compare with X. */
12672 if (const_op == 0 && equality_comparison_p
12673 && mode_width <= HOST_BITS_PER_WIDE_INT
12674 && CONST_INT_P (XEXP (op0, 1))
12675 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12676 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12677 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12678 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12680 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12681 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12682 if ((~STORE_FLAG_VALUE & mask) == 0
12683 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12684 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12685 && COMPARISON_P (tem))))
12687 op0 = XEXP (XEXP (op0, 0), 0);
12688 continue;
12692 /* If we are doing an equality comparison of an AND of a bit equal
12693 to the sign bit, replace this with a LT or GE comparison of
12694 the underlying value. */
12695 if (equality_comparison_p
12696 && const_op == 0
12697 && CONST_INT_P (XEXP (op0, 1))
12698 && mode_width <= HOST_BITS_PER_WIDE_INT
12699 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12700 == HOST_WIDE_INT_1U << (mode_width - 1)))
12702 op0 = XEXP (op0, 0);
12703 code = (code == EQ ? GE : LT);
12704 continue;
12707 /* If this AND operation is really a ZERO_EXTEND from a narrower
12708 mode, the constant fits within that mode, and this is either an
12709 equality or unsigned comparison, try to do this comparison in
12710 the narrower mode.
12712 Note that in:
12714 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12715 -> (ne:DI (reg:SI 4) (const_int 0))
12717 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12718 known to hold a value of the required mode the
12719 transformation is invalid. */
12720 if ((equality_comparison_p || unsigned_comparison_p)
12721 && CONST_INT_P (XEXP (op0, 1))
12722 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12723 & GET_MODE_MASK (mode))
12724 + 1)) >= 0
12725 && const_op >> i == 0
12726 && int_mode_for_size (i, 1).exists (&tmode))
12728 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12729 continue;
12732 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12733 fits in both M1 and M2 and the SUBREG is either paradoxical
12734 or represents the low part, permute the SUBREG and the AND
12735 and try again. */
12736 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12737 && CONST_INT_P (XEXP (op0, 1)))
12739 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12740 /* Require an integral mode, to avoid creating something like
12741 (AND:SF ...). */
12742 if ((is_a <scalar_int_mode>
12743 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12744 /* It is unsafe to commute the AND into the SUBREG if the
12745 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12746 not defined. As originally written the upper bits
12747 have a defined value due to the AND operation.
12748 However, if we commute the AND inside the SUBREG then
12749 they no longer have defined values and the meaning of
12750 the code has been changed.
12751 Also C1 should not change value in the smaller mode,
12752 see PR67028 (a positive C1 can become negative in the
12753 smaller mode, so that the AND does no longer mask the
12754 upper bits). */
12755 && ((WORD_REGISTER_OPERATIONS
12756 && mode_width > GET_MODE_PRECISION (tmode)
12757 && mode_width <= BITS_PER_WORD
12758 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12759 || (mode_width <= GET_MODE_PRECISION (tmode)
12760 && subreg_lowpart_p (XEXP (op0, 0))))
12761 && mode_width <= HOST_BITS_PER_WIDE_INT
12762 && HWI_COMPUTABLE_MODE_P (tmode)
12763 && (c1 & ~mask) == 0
12764 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12765 && c1 != mask
12766 && c1 != GET_MODE_MASK (tmode))
12768 op0 = simplify_gen_binary (AND, tmode,
12769 SUBREG_REG (XEXP (op0, 0)),
12770 gen_int_mode (c1, tmode));
12771 op0 = gen_lowpart (mode, op0);
12772 continue;
12776 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12777 if (const_op == 0 && equality_comparison_p
12778 && XEXP (op0, 1) == const1_rtx
12779 && GET_CODE (XEXP (op0, 0)) == NOT)
12781 op0 = simplify_and_const_int (NULL_RTX, mode,
12782 XEXP (XEXP (op0, 0), 0), 1);
12783 code = (code == NE ? EQ : NE);
12784 continue;
12787 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12788 (eq (and (lshiftrt X) 1) 0).
12789 Also handle the case where (not X) is expressed using xor. */
12790 if (const_op == 0 && equality_comparison_p
12791 && XEXP (op0, 1) == const1_rtx
12792 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12794 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12795 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12797 if (GET_CODE (shift_op) == NOT
12798 || (GET_CODE (shift_op) == XOR
12799 && CONST_INT_P (XEXP (shift_op, 1))
12800 && CONST_INT_P (shift_count)
12801 && HWI_COMPUTABLE_MODE_P (mode)
12802 && (UINTVAL (XEXP (shift_op, 1))
12803 == HOST_WIDE_INT_1U
12804 << INTVAL (shift_count))))
12807 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12808 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12809 code = (code == NE ? EQ : NE);
12810 continue;
12813 break;
12815 case ASHIFT:
12816 /* If we have (compare (ashift FOO N) (const_int C)) and
12817 the high order N bits of FOO (N+1 if an inequality comparison)
12818 are known to be zero, we can do this by comparing FOO with C
12819 shifted right N bits so long as the low-order N bits of C are
12820 zero. */
12821 if (CONST_INT_P (XEXP (op0, 1))
12822 && INTVAL (XEXP (op0, 1)) >= 0
12823 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12824 < HOST_BITS_PER_WIDE_INT)
12825 && (((unsigned HOST_WIDE_INT) const_op
12826 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12827 - 1)) == 0)
12828 && mode_width <= HOST_BITS_PER_WIDE_INT
12829 && (nonzero_bits (XEXP (op0, 0), mode)
12830 & ~(mask >> (INTVAL (XEXP (op0, 1))
12831 + ! equality_comparison_p))) == 0)
12833 /* We must perform a logical shift, not an arithmetic one,
12834 as we want the top N bits of C to be zero. */
12835 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12837 temp >>= INTVAL (XEXP (op0, 1));
12838 op1 = gen_int_mode (temp, mode);
12839 op0 = XEXP (op0, 0);
12840 continue;
12843 /* If we are doing a sign bit comparison, it means we are testing
12844 a particular bit. Convert it to the appropriate AND. */
12845 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12846 && mode_width <= HOST_BITS_PER_WIDE_INT)
12848 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12849 (HOST_WIDE_INT_1U
12850 << (mode_width - 1
12851 - INTVAL (XEXP (op0, 1)))));
12852 code = (code == LT ? NE : EQ);
12853 continue;
12856 /* If this an equality comparison with zero and we are shifting
12857 the low bit to the sign bit, we can convert this to an AND of the
12858 low-order bit. */
12859 if (const_op == 0 && equality_comparison_p
12860 && CONST_INT_P (XEXP (op0, 1))
12861 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12863 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12864 continue;
12866 break;
12868 case ASHIFTRT:
12869 /* If this is an equality comparison with zero, we can do this
12870 as a logical shift, which might be much simpler. */
12871 if (equality_comparison_p && const_op == 0
12872 && CONST_INT_P (XEXP (op0, 1)))
12874 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12875 XEXP (op0, 0),
12876 INTVAL (XEXP (op0, 1)));
12877 continue;
12880 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12881 do the comparison in a narrower mode. */
12882 if (! unsigned_comparison_p
12883 && CONST_INT_P (XEXP (op0, 1))
12884 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12885 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12886 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12887 .exists (&tmode))
12888 && (((unsigned HOST_WIDE_INT) const_op
12889 + (GET_MODE_MASK (tmode) >> 1) + 1)
12890 <= GET_MODE_MASK (tmode)))
12892 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12893 continue;
12896 /* Likewise if OP0 is a PLUS of a sign extension with a
12897 constant, which is usually represented with the PLUS
12898 between the shifts. */
12899 if (! unsigned_comparison_p
12900 && CONST_INT_P (XEXP (op0, 1))
12901 && GET_CODE (XEXP (op0, 0)) == PLUS
12902 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12903 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12904 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12905 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12906 .exists (&tmode))
12907 && (((unsigned HOST_WIDE_INT) const_op
12908 + (GET_MODE_MASK (tmode) >> 1) + 1)
12909 <= GET_MODE_MASK (tmode)))
12911 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12912 rtx add_const = XEXP (XEXP (op0, 0), 1);
12913 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12914 add_const, XEXP (op0, 1));
12916 op0 = simplify_gen_binary (PLUS, tmode,
12917 gen_lowpart (tmode, inner),
12918 new_const);
12919 continue;
12922 /* FALLTHROUGH */
12923 case LSHIFTRT:
12924 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12925 the low order N bits of FOO are known to be zero, we can do this
12926 by comparing FOO with C shifted left N bits so long as no
12927 overflow occurs. Even if the low order N bits of FOO aren't known
12928 to be zero, if the comparison is >= or < we can use the same
12929 optimization and for > or <= by setting all the low
12930 order N bits in the comparison constant. */
12931 if (CONST_INT_P (XEXP (op0, 1))
12932 && INTVAL (XEXP (op0, 1)) > 0
12933 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12934 && mode_width <= HOST_BITS_PER_WIDE_INT
12935 && (((unsigned HOST_WIDE_INT) const_op
12936 + (GET_CODE (op0) != LSHIFTRT
12937 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12938 + 1)
12939 : 0))
12940 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12942 unsigned HOST_WIDE_INT low_bits
12943 = (nonzero_bits (XEXP (op0, 0), mode)
12944 & ((HOST_WIDE_INT_1U
12945 << INTVAL (XEXP (op0, 1))) - 1));
12946 if (low_bits == 0 || !equality_comparison_p)
12948 /* If the shift was logical, then we must make the condition
12949 unsigned. */
12950 if (GET_CODE (op0) == LSHIFTRT)
12951 code = unsigned_condition (code);
12953 const_op = (unsigned HOST_WIDE_INT) const_op
12954 << INTVAL (XEXP (op0, 1));
12955 if (low_bits != 0
12956 && (code == GT || code == GTU
12957 || code == LE || code == LEU))
12958 const_op
12959 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12960 op1 = GEN_INT (const_op);
12961 op0 = XEXP (op0, 0);
12962 continue;
12966 /* If we are using this shift to extract just the sign bit, we
12967 can replace this with an LT or GE comparison. */
12968 if (const_op == 0
12969 && (equality_comparison_p || sign_bit_comparison_p)
12970 && CONST_INT_P (XEXP (op0, 1))
12971 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12973 op0 = XEXP (op0, 0);
12974 code = (code == NE || code == GT ? LT : GE);
12975 continue;
12977 break;
12979 default:
12980 break;
12983 break;
12986 /* Now make any compound operations involved in this comparison. Then,
12987 check for an outmost SUBREG on OP0 that is not doing anything or is
12988 paradoxical. The latter transformation must only be performed when
12989 it is known that the "extra" bits will be the same in op0 and op1 or
12990 that they don't matter. There are three cases to consider:
12992 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12993 care bits and we can assume they have any convenient value. So
12994 making the transformation is safe.
12996 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12997 In this case the upper bits of op0 are undefined. We should not make
12998 the simplification in that case as we do not know the contents of
12999 those bits.
13001 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
13002 In that case we know those bits are zeros or ones. We must also be
13003 sure that they are the same as the upper bits of op1.
13005 We can never remove a SUBREG for a non-equality comparison because
13006 the sign bit is in a different place in the underlying object. */
13008 rtx_code op0_mco_code = SET;
13009 if (op1 == const0_rtx)
13010 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
13012 op0 = make_compound_operation (op0, op0_mco_code);
13013 op1 = make_compound_operation (op1, SET);
13015 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
13016 && is_int_mode (GET_MODE (op0), &mode)
13017 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
13018 && (code == NE || code == EQ))
13020 if (paradoxical_subreg_p (op0))
13022 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13023 implemented. */
13024 if (REG_P (SUBREG_REG (op0)))
13026 op0 = SUBREG_REG (op0);
13027 op1 = gen_lowpart (inner_mode, op1);
13030 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
13031 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13032 & ~GET_MODE_MASK (mode)) == 0)
13034 tem = gen_lowpart (inner_mode, op1);
13036 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13037 op0 = SUBREG_REG (op0), op1 = tem;
13041 /* We now do the opposite procedure: Some machines don't have compare
13042 insns in all modes. If OP0's mode is an integer mode smaller than a
13043 word and we can't do a compare in that mode, see if there is a larger
13044 mode for which we can do the compare. There are a number of cases in
13045 which we can use the wider mode. */
13047 if (is_int_mode (GET_MODE (op0), &mode)
13048 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13049 && ! have_insn_for (COMPARE, mode))
13050 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13052 tmode = tmode_iter.require ();
13053 if (!HWI_COMPUTABLE_MODE_P (tmode))
13054 break;
13055 if (have_insn_for (COMPARE, tmode))
13057 int zero_extended;
13059 /* If this is a test for negative, we can make an explicit
13060 test of the sign bit. Test this first so we can use
13061 a paradoxical subreg to extend OP0. */
13063 if (op1 == const0_rtx && (code == LT || code == GE)
13064 && HWI_COMPUTABLE_MODE_P (mode))
13066 unsigned HOST_WIDE_INT sign
13067 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13068 op0 = simplify_gen_binary (AND, tmode,
13069 gen_lowpart (tmode, op0),
13070 gen_int_mode (sign, tmode));
13071 code = (code == LT) ? NE : EQ;
13072 break;
13075 /* If the only nonzero bits in OP0 and OP1 are those in the
13076 narrower mode and this is an equality or unsigned comparison,
13077 we can use the wider mode. Similarly for sign-extended
13078 values, in which case it is true for all comparisons. */
13079 zero_extended = ((code == EQ || code == NE
13080 || code == GEU || code == GTU
13081 || code == LEU || code == LTU)
13082 && (nonzero_bits (op0, tmode)
13083 & ~GET_MODE_MASK (mode)) == 0
13084 && ((CONST_INT_P (op1)
13085 || (nonzero_bits (op1, tmode)
13086 & ~GET_MODE_MASK (mode)) == 0)));
13088 if (zero_extended
13089 || ((num_sign_bit_copies (op0, tmode)
13090 > (unsigned int) (GET_MODE_PRECISION (tmode)
13091 - GET_MODE_PRECISION (mode)))
13092 && (num_sign_bit_copies (op1, tmode)
13093 > (unsigned int) (GET_MODE_PRECISION (tmode)
13094 - GET_MODE_PRECISION (mode)))))
13096 /* If OP0 is an AND and we don't have an AND in MODE either,
13097 make a new AND in the proper mode. */
13098 if (GET_CODE (op0) == AND
13099 && !have_insn_for (AND, mode))
13100 op0 = simplify_gen_binary (AND, tmode,
13101 gen_lowpart (tmode,
13102 XEXP (op0, 0)),
13103 gen_lowpart (tmode,
13104 XEXP (op0, 1)));
13105 else
13107 if (zero_extended)
13109 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13110 op0, mode);
13111 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13112 op1, mode);
13114 else
13116 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13117 op0, mode);
13118 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13119 op1, mode);
13121 break;
13127 /* We may have changed the comparison operands. Re-canonicalize. */
13128 if (swap_commutative_operands_p (op0, op1))
13130 std::swap (op0, op1);
13131 code = swap_condition (code);
13134 /* If this machine only supports a subset of valid comparisons, see if we
13135 can convert an unsupported one into a supported one. */
13136 target_canonicalize_comparison (&code, &op0, &op1, 0);
13138 *pop0 = op0;
13139 *pop1 = op1;
13141 return code;
13144 /* Utility function for record_value_for_reg. Count number of
13145 rtxs in X. */
13146 static int
13147 count_rtxs (rtx x)
13149 enum rtx_code code = GET_CODE (x);
13150 const char *fmt;
13151 int i, j, ret = 1;
13153 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13154 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13156 rtx x0 = XEXP (x, 0);
13157 rtx x1 = XEXP (x, 1);
13159 if (x0 == x1)
13160 return 1 + 2 * count_rtxs (x0);
13162 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13163 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13164 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13165 return 2 + 2 * count_rtxs (x0)
13166 + count_rtxs (x == XEXP (x1, 0)
13167 ? XEXP (x1, 1) : XEXP (x1, 0));
13169 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13170 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13171 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13172 return 2 + 2 * count_rtxs (x1)
13173 + count_rtxs (x == XEXP (x0, 0)
13174 ? XEXP (x0, 1) : XEXP (x0, 0));
13177 fmt = GET_RTX_FORMAT (code);
13178 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13179 if (fmt[i] == 'e')
13180 ret += count_rtxs (XEXP (x, i));
13181 else if (fmt[i] == 'E')
13182 for (j = 0; j < XVECLEN (x, i); j++)
13183 ret += count_rtxs (XVECEXP (x, i, j));
13185 return ret;
13188 /* Utility function for following routine. Called when X is part of a value
13189 being stored into last_set_value. Sets last_set_table_tick
13190 for each register mentioned. Similar to mention_regs in cse.c */
13192 static void
13193 update_table_tick (rtx x)
13195 enum rtx_code code = GET_CODE (x);
13196 const char *fmt = GET_RTX_FORMAT (code);
13197 int i, j;
13199 if (code == REG)
13201 unsigned int regno = REGNO (x);
13202 unsigned int endregno = END_REGNO (x);
13203 unsigned int r;
13205 for (r = regno; r < endregno; r++)
13207 reg_stat_type *rsp = &reg_stat[r];
13208 rsp->last_set_table_tick = label_tick;
13211 return;
13214 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13215 if (fmt[i] == 'e')
13217 /* Check for identical subexpressions. If x contains
13218 identical subexpression we only have to traverse one of
13219 them. */
13220 if (i == 0 && ARITHMETIC_P (x))
13222 /* Note that at this point x1 has already been
13223 processed. */
13224 rtx x0 = XEXP (x, 0);
13225 rtx x1 = XEXP (x, 1);
13227 /* If x0 and x1 are identical then there is no need to
13228 process x0. */
13229 if (x0 == x1)
13230 break;
13232 /* If x0 is identical to a subexpression of x1 then while
13233 processing x1, x0 has already been processed. Thus we
13234 are done with x. */
13235 if (ARITHMETIC_P (x1)
13236 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13237 break;
13239 /* If x1 is identical to a subexpression of x0 then we
13240 still have to process the rest of x0. */
13241 if (ARITHMETIC_P (x0)
13242 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13244 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13245 break;
13249 update_table_tick (XEXP (x, i));
13251 else if (fmt[i] == 'E')
13252 for (j = 0; j < XVECLEN (x, i); j++)
13253 update_table_tick (XVECEXP (x, i, j));
13256 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13257 are saying that the register is clobbered and we no longer know its
13258 value. If INSN is zero, don't update reg_stat[].last_set; this is
13259 only permitted with VALUE also zero and is used to invalidate the
13260 register. */
13262 static void
13263 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13265 unsigned int regno = REGNO (reg);
13266 unsigned int endregno = END_REGNO (reg);
13267 unsigned int i;
13268 reg_stat_type *rsp;
13270 /* If VALUE contains REG and we have a previous value for REG, substitute
13271 the previous value. */
13272 if (value && insn && reg_overlap_mentioned_p (reg, value))
13274 rtx tem;
13276 /* Set things up so get_last_value is allowed to see anything set up to
13277 our insn. */
13278 subst_low_luid = DF_INSN_LUID (insn);
13279 tem = get_last_value (reg);
13281 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13282 it isn't going to be useful and will take a lot of time to process,
13283 so just use the CLOBBER. */
13285 if (tem)
13287 if (ARITHMETIC_P (tem)
13288 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13289 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13290 tem = XEXP (tem, 0);
13291 else if (count_occurrences (value, reg, 1) >= 2)
13293 /* If there are two or more occurrences of REG in VALUE,
13294 prevent the value from growing too much. */
13295 if (count_rtxs (tem) > param_max_last_value_rtl)
13296 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13299 value = replace_rtx (copy_rtx (value), reg, tem);
13303 /* For each register modified, show we don't know its value, that
13304 we don't know about its bitwise content, that its value has been
13305 updated, and that we don't know the location of the death of the
13306 register. */
13307 for (i = regno; i < endregno; i++)
13309 rsp = &reg_stat[i];
13311 if (insn)
13312 rsp->last_set = insn;
13314 rsp->last_set_value = 0;
13315 rsp->last_set_mode = VOIDmode;
13316 rsp->last_set_nonzero_bits = 0;
13317 rsp->last_set_sign_bit_copies = 0;
13318 rsp->last_death = 0;
13319 rsp->truncated_to_mode = VOIDmode;
13322 /* Mark registers that are being referenced in this value. */
13323 if (value)
13324 update_table_tick (value);
13326 /* Now update the status of each register being set.
13327 If someone is using this register in this block, set this register
13328 to invalid since we will get confused between the two lives in this
13329 basic block. This makes using this register always invalid. In cse, we
13330 scan the table to invalidate all entries using this register, but this
13331 is too much work for us. */
13333 for (i = regno; i < endregno; i++)
13335 rsp = &reg_stat[i];
13336 rsp->last_set_label = label_tick;
13337 if (!insn
13338 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13339 rsp->last_set_invalid = 1;
13340 else
13341 rsp->last_set_invalid = 0;
13344 /* The value being assigned might refer to X (like in "x++;"). In that
13345 case, we must replace it with (clobber (const_int 0)) to prevent
13346 infinite loops. */
13347 rsp = &reg_stat[regno];
13348 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13350 value = copy_rtx (value);
13351 if (!get_last_value_validate (&value, insn, label_tick, 1))
13352 value = 0;
13355 /* For the main register being modified, update the value, the mode, the
13356 nonzero bits, and the number of sign bit copies. */
13358 rsp->last_set_value = value;
13360 if (value)
13362 machine_mode mode = GET_MODE (reg);
13363 subst_low_luid = DF_INSN_LUID (insn);
13364 rsp->last_set_mode = mode;
13365 if (GET_MODE_CLASS (mode) == MODE_INT
13366 && HWI_COMPUTABLE_MODE_P (mode))
13367 mode = nonzero_bits_mode;
13368 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13369 rsp->last_set_sign_bit_copies
13370 = num_sign_bit_copies (value, GET_MODE (reg));
13374 /* Called via note_stores from record_dead_and_set_regs to handle one
13375 SET or CLOBBER in an insn. DATA is the instruction in which the
13376 set is occurring. */
13378 static void
13379 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13381 rtx_insn *record_dead_insn = (rtx_insn *) data;
13383 if (GET_CODE (dest) == SUBREG)
13384 dest = SUBREG_REG (dest);
13386 if (!record_dead_insn)
13388 if (REG_P (dest))
13389 record_value_for_reg (dest, NULL, NULL_RTX);
13390 return;
13393 if (REG_P (dest))
13395 /* If we are setting the whole register, we know its value. Otherwise
13396 show that we don't know the value. We can handle a SUBREG if it's
13397 the low part, but we must be careful with paradoxical SUBREGs on
13398 RISC architectures because we cannot strip e.g. an extension around
13399 a load and record the naked load since the RTL middle-end considers
13400 that the upper bits are defined according to LOAD_EXTEND_OP. */
13401 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13402 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13403 else if (GET_CODE (setter) == SET
13404 && GET_CODE (SET_DEST (setter)) == SUBREG
13405 && SUBREG_REG (SET_DEST (setter)) == dest
13406 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13407 BITS_PER_WORD)
13408 && subreg_lowpart_p (SET_DEST (setter)))
13409 record_value_for_reg (dest, record_dead_insn,
13410 WORD_REGISTER_OPERATIONS
13411 && word_register_operation_p (SET_SRC (setter))
13412 && paradoxical_subreg_p (SET_DEST (setter))
13413 ? SET_SRC (setter)
13414 : gen_lowpart (GET_MODE (dest),
13415 SET_SRC (setter)));
13416 else
13417 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13419 else if (MEM_P (dest)
13420 /* Ignore pushes, they clobber nothing. */
13421 && ! push_operand (dest, GET_MODE (dest)))
13422 mem_last_set = DF_INSN_LUID (record_dead_insn);
13425 /* Update the records of when each REG was most recently set or killed
13426 for the things done by INSN. This is the last thing done in processing
13427 INSN in the combiner loop.
13429 We update reg_stat[], in particular fields last_set, last_set_value,
13430 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13431 last_death, and also the similar information mem_last_set (which insn
13432 most recently modified memory) and last_call_luid (which insn was the
13433 most recent subroutine call). */
13435 static void
13436 record_dead_and_set_regs (rtx_insn *insn)
13438 rtx link;
13439 unsigned int i;
13441 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13443 if (REG_NOTE_KIND (link) == REG_DEAD
13444 && REG_P (XEXP (link, 0)))
13446 unsigned int regno = REGNO (XEXP (link, 0));
13447 unsigned int endregno = END_REGNO (XEXP (link, 0));
13449 for (i = regno; i < endregno; i++)
13451 reg_stat_type *rsp;
13453 rsp = &reg_stat[i];
13454 rsp->last_death = insn;
13457 else if (REG_NOTE_KIND (link) == REG_INC)
13458 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13461 if (CALL_P (insn))
13463 HARD_REG_SET callee_clobbers
13464 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
13465 hard_reg_set_iterator hrsi;
13466 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, i, hrsi)
13468 reg_stat_type *rsp;
13470 /* ??? We could try to preserve some information from the last
13471 set of register I if the call doesn't actually clobber
13472 (reg:last_set_mode I), which might be true for ABIs with
13473 partial clobbers. However, it would be difficult to
13474 update last_set_nonzero_bits and last_sign_bit_copies
13475 to account for the part of I that actually was clobbered.
13476 It wouldn't help much anyway, since we rarely see this
13477 situation before RA. */
13478 rsp = &reg_stat[i];
13479 rsp->last_set_invalid = 1;
13480 rsp->last_set = insn;
13481 rsp->last_set_value = 0;
13482 rsp->last_set_mode = VOIDmode;
13483 rsp->last_set_nonzero_bits = 0;
13484 rsp->last_set_sign_bit_copies = 0;
13485 rsp->last_death = 0;
13486 rsp->truncated_to_mode = VOIDmode;
13489 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13491 /* We can't combine into a call pattern. Remember, though, that
13492 the return value register is set at this LUID. We could
13493 still replace a register with the return value from the
13494 wrong subroutine call! */
13495 note_stores (insn, record_dead_and_set_regs_1, NULL_RTX);
13497 else
13498 note_stores (insn, record_dead_and_set_regs_1, insn);
13501 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13502 register present in the SUBREG, so for each such SUBREG go back and
13503 adjust nonzero and sign bit information of the registers that are
13504 known to have some zero/sign bits set.
13506 This is needed because when combine blows the SUBREGs away, the
13507 information on zero/sign bits is lost and further combines can be
13508 missed because of that. */
13510 static void
13511 record_promoted_value (rtx_insn *insn, rtx subreg)
13513 struct insn_link *links;
13514 rtx set;
13515 unsigned int regno = REGNO (SUBREG_REG (subreg));
13516 machine_mode mode = GET_MODE (subreg);
13518 if (!HWI_COMPUTABLE_MODE_P (mode))
13519 return;
13521 for (links = LOG_LINKS (insn); links;)
13523 reg_stat_type *rsp;
13525 insn = links->insn;
13526 set = single_set (insn);
13528 if (! set || !REG_P (SET_DEST (set))
13529 || REGNO (SET_DEST (set)) != regno
13530 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13532 links = links->next;
13533 continue;
13536 rsp = &reg_stat[regno];
13537 if (rsp->last_set == insn)
13539 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13540 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13543 if (REG_P (SET_SRC (set)))
13545 regno = REGNO (SET_SRC (set));
13546 links = LOG_LINKS (insn);
13548 else
13549 break;
13553 /* Check if X, a register, is known to contain a value already
13554 truncated to MODE. In this case we can use a subreg to refer to
13555 the truncated value even though in the generic case we would need
13556 an explicit truncation. */
13558 static bool
13559 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13561 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13562 machine_mode truncated = rsp->truncated_to_mode;
13564 if (truncated == 0
13565 || rsp->truncation_label < label_tick_ebb_start)
13566 return false;
13567 if (!partial_subreg_p (mode, truncated))
13568 return true;
13569 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13570 return true;
13571 return false;
13574 /* If X is a hard reg or a subreg record the mode that the register is
13575 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13576 able to turn a truncate into a subreg using this information. Return true
13577 if traversing X is complete. */
13579 static bool
13580 record_truncated_value (rtx x)
13582 machine_mode truncated_mode;
13583 reg_stat_type *rsp;
13585 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13587 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13588 truncated_mode = GET_MODE (x);
13590 if (!partial_subreg_p (truncated_mode, original_mode))
13591 return true;
13593 truncated_mode = GET_MODE (x);
13594 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13595 return true;
13597 x = SUBREG_REG (x);
13599 /* ??? For hard-regs we now record everything. We might be able to
13600 optimize this using last_set_mode. */
13601 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13602 truncated_mode = GET_MODE (x);
13603 else
13604 return false;
13606 rsp = &reg_stat[REGNO (x)];
13607 if (rsp->truncated_to_mode == 0
13608 || rsp->truncation_label < label_tick_ebb_start
13609 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13611 rsp->truncated_to_mode = truncated_mode;
13612 rsp->truncation_label = label_tick;
13615 return true;
13618 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13619 the modes they are used in. This can help truning TRUNCATEs into
13620 SUBREGs. */
13622 static void
13623 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13625 subrtx_var_iterator::array_type array;
13626 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13627 if (record_truncated_value (*iter))
13628 iter.skip_subrtxes ();
13631 /* Scan X for promoted SUBREGs. For each one found,
13632 note what it implies to the registers used in it. */
13634 static void
13635 check_promoted_subreg (rtx_insn *insn, rtx x)
13637 if (GET_CODE (x) == SUBREG
13638 && SUBREG_PROMOTED_VAR_P (x)
13639 && REG_P (SUBREG_REG (x)))
13640 record_promoted_value (insn, x);
13641 else
13643 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13644 int i, j;
13646 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13647 switch (format[i])
13649 case 'e':
13650 check_promoted_subreg (insn, XEXP (x, i));
13651 break;
13652 case 'V':
13653 case 'E':
13654 if (XVEC (x, i) != 0)
13655 for (j = 0; j < XVECLEN (x, i); j++)
13656 check_promoted_subreg (insn, XVECEXP (x, i, j));
13657 break;
13662 /* Verify that all the registers and memory references mentioned in *LOC are
13663 still valid. *LOC was part of a value set in INSN when label_tick was
13664 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13665 the invalid references with (clobber (const_int 0)) and return 1. This
13666 replacement is useful because we often can get useful information about
13667 the form of a value (e.g., if it was produced by a shift that always
13668 produces -1 or 0) even though we don't know exactly what registers it
13669 was produced from. */
13671 static int
13672 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13674 rtx x = *loc;
13675 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13676 int len = GET_RTX_LENGTH (GET_CODE (x));
13677 int i, j;
13679 if (REG_P (x))
13681 unsigned int regno = REGNO (x);
13682 unsigned int endregno = END_REGNO (x);
13683 unsigned int j;
13685 for (j = regno; j < endregno; j++)
13687 reg_stat_type *rsp = &reg_stat[j];
13688 if (rsp->last_set_invalid
13689 /* If this is a pseudo-register that was only set once and not
13690 live at the beginning of the function, it is always valid. */
13691 || (! (regno >= FIRST_PSEUDO_REGISTER
13692 && regno < reg_n_sets_max
13693 && REG_N_SETS (regno) == 1
13694 && (!REGNO_REG_SET_P
13695 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13696 regno)))
13697 && rsp->last_set_label > tick))
13699 if (replace)
13700 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13701 return replace;
13705 return 1;
13707 /* If this is a memory reference, make sure that there were no stores after
13708 it that might have clobbered the value. We don't have alias info, so we
13709 assume any store invalidates it. Moreover, we only have local UIDs, so
13710 we also assume that there were stores in the intervening basic blocks. */
13711 else if (MEM_P (x) && !MEM_READONLY_P (x)
13712 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13714 if (replace)
13715 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13716 return replace;
13719 for (i = 0; i < len; i++)
13721 if (fmt[i] == 'e')
13723 /* Check for identical subexpressions. If x contains
13724 identical subexpression we only have to traverse one of
13725 them. */
13726 if (i == 1 && ARITHMETIC_P (x))
13728 /* Note that at this point x0 has already been checked
13729 and found valid. */
13730 rtx x0 = XEXP (x, 0);
13731 rtx x1 = XEXP (x, 1);
13733 /* If x0 and x1 are identical then x is also valid. */
13734 if (x0 == x1)
13735 return 1;
13737 /* If x1 is identical to a subexpression of x0 then
13738 while checking x0, x1 has already been checked. Thus
13739 it is valid and so as x. */
13740 if (ARITHMETIC_P (x0)
13741 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13742 return 1;
13744 /* If x0 is identical to a subexpression of x1 then x is
13745 valid iff the rest of x1 is valid. */
13746 if (ARITHMETIC_P (x1)
13747 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13748 return
13749 get_last_value_validate (&XEXP (x1,
13750 x0 == XEXP (x1, 0) ? 1 : 0),
13751 insn, tick, replace);
13754 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13755 replace) == 0)
13756 return 0;
13758 else if (fmt[i] == 'E')
13759 for (j = 0; j < XVECLEN (x, i); j++)
13760 if (get_last_value_validate (&XVECEXP (x, i, j),
13761 insn, tick, replace) == 0)
13762 return 0;
13765 /* If we haven't found a reason for it to be invalid, it is valid. */
13766 return 1;
13769 /* Get the last value assigned to X, if known. Some registers
13770 in the value may be replaced with (clobber (const_int 0)) if their value
13771 is known longer known reliably. */
13773 static rtx
13774 get_last_value (const_rtx x)
13776 unsigned int regno;
13777 rtx value;
13778 reg_stat_type *rsp;
13780 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13781 then convert it to the desired mode. If this is a paradoxical SUBREG,
13782 we cannot predict what values the "extra" bits might have. */
13783 if (GET_CODE (x) == SUBREG
13784 && subreg_lowpart_p (x)
13785 && !paradoxical_subreg_p (x)
13786 && (value = get_last_value (SUBREG_REG (x))) != 0)
13787 return gen_lowpart (GET_MODE (x), value);
13789 if (!REG_P (x))
13790 return 0;
13792 regno = REGNO (x);
13793 rsp = &reg_stat[regno];
13794 value = rsp->last_set_value;
13796 /* If we don't have a value, or if it isn't for this basic block and
13797 it's either a hard register, set more than once, or it's a live
13798 at the beginning of the function, return 0.
13800 Because if it's not live at the beginning of the function then the reg
13801 is always set before being used (is never used without being set).
13802 And, if it's set only once, and it's always set before use, then all
13803 uses must have the same last value, even if it's not from this basic
13804 block. */
13806 if (value == 0
13807 || (rsp->last_set_label < label_tick_ebb_start
13808 && (regno < FIRST_PSEUDO_REGISTER
13809 || regno >= reg_n_sets_max
13810 || REG_N_SETS (regno) != 1
13811 || REGNO_REG_SET_P
13812 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13813 return 0;
13815 /* If the value was set in a later insn than the ones we are processing,
13816 we can't use it even if the register was only set once. */
13817 if (rsp->last_set_label == label_tick
13818 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13819 return 0;
13821 /* If fewer bits were set than what we are asked for now, we cannot use
13822 the value. */
13823 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13824 GET_MODE_PRECISION (GET_MODE (x))))
13825 return 0;
13827 /* If the value has all its registers valid, return it. */
13828 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13829 return value;
13831 /* Otherwise, make a copy and replace any invalid register with
13832 (clobber (const_int 0)). If that fails for some reason, return 0. */
13834 value = copy_rtx (value);
13835 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13836 return value;
13838 return 0;
13841 /* Define three variables used for communication between the following
13842 routines. */
13844 static unsigned int reg_dead_regno, reg_dead_endregno;
13845 static int reg_dead_flag;
13846 rtx reg_dead_reg;
13848 /* Function called via note_stores from reg_dead_at_p.
13850 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13851 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13853 static void
13854 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13856 unsigned int regno, endregno;
13858 if (!REG_P (dest))
13859 return;
13861 regno = REGNO (dest);
13862 endregno = END_REGNO (dest);
13863 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13864 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13867 /* Return nonzero if REG is known to be dead at INSN.
13869 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13870 referencing REG, it is dead. If we hit a SET referencing REG, it is
13871 live. Otherwise, see if it is live or dead at the start of the basic
13872 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13873 must be assumed to be always live. */
13875 static int
13876 reg_dead_at_p (rtx reg, rtx_insn *insn)
13878 basic_block block;
13879 unsigned int i;
13881 /* Set variables for reg_dead_at_p_1. */
13882 reg_dead_regno = REGNO (reg);
13883 reg_dead_endregno = END_REGNO (reg);
13884 reg_dead_reg = reg;
13886 reg_dead_flag = 0;
13888 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13889 we allow the machine description to decide whether use-and-clobber
13890 patterns are OK. */
13891 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13893 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13894 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13895 return 0;
13898 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13899 beginning of basic block. */
13900 block = BLOCK_FOR_INSN (insn);
13901 for (;;)
13903 if (INSN_P (insn))
13905 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13906 return 1;
13908 note_stores (insn, reg_dead_at_p_1, NULL);
13909 if (reg_dead_flag)
13910 return reg_dead_flag == 1 ? 1 : 0;
13912 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13913 return 1;
13916 if (insn == BB_HEAD (block))
13917 break;
13919 insn = PREV_INSN (insn);
13922 /* Look at live-in sets for the basic block that we were in. */
13923 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13924 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13925 return 0;
13927 return 1;
13930 /* Note hard registers in X that are used. */
13932 static void
13933 mark_used_regs_combine (rtx x)
13935 RTX_CODE code = GET_CODE (x);
13936 unsigned int regno;
13937 int i;
13939 switch (code)
13941 case LABEL_REF:
13942 case SYMBOL_REF:
13943 case CONST:
13944 CASE_CONST_ANY:
13945 case PC:
13946 case ADDR_VEC:
13947 case ADDR_DIFF_VEC:
13948 case ASM_INPUT:
13949 /* CC0 must die in the insn after it is set, so we don't need to take
13950 special note of it here. */
13951 case CC0:
13952 return;
13954 case CLOBBER:
13955 /* If we are clobbering a MEM, mark any hard registers inside the
13956 address as used. */
13957 if (MEM_P (XEXP (x, 0)))
13958 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13959 return;
13961 case REG:
13962 regno = REGNO (x);
13963 /* A hard reg in a wide mode may really be multiple registers.
13964 If so, mark all of them just like the first. */
13965 if (regno < FIRST_PSEUDO_REGISTER)
13967 /* None of this applies to the stack, frame or arg pointers. */
13968 if (regno == STACK_POINTER_REGNUM
13969 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13970 && regno == HARD_FRAME_POINTER_REGNUM)
13971 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13972 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13973 || regno == FRAME_POINTER_REGNUM)
13974 return;
13976 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13978 return;
13980 case SET:
13982 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13983 the address. */
13984 rtx testreg = SET_DEST (x);
13986 while (GET_CODE (testreg) == SUBREG
13987 || GET_CODE (testreg) == ZERO_EXTRACT
13988 || GET_CODE (testreg) == STRICT_LOW_PART)
13989 testreg = XEXP (testreg, 0);
13991 if (MEM_P (testreg))
13992 mark_used_regs_combine (XEXP (testreg, 0));
13994 mark_used_regs_combine (SET_SRC (x));
13996 return;
13998 default:
13999 break;
14002 /* Recursively scan the operands of this expression. */
14005 const char *fmt = GET_RTX_FORMAT (code);
14007 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
14009 if (fmt[i] == 'e')
14010 mark_used_regs_combine (XEXP (x, i));
14011 else if (fmt[i] == 'E')
14013 int j;
14015 for (j = 0; j < XVECLEN (x, i); j++)
14016 mark_used_regs_combine (XVECEXP (x, i, j));
14022 /* Remove register number REGNO from the dead registers list of INSN.
14024 Return the note used to record the death, if there was one. */
14027 remove_death (unsigned int regno, rtx_insn *insn)
14029 rtx note = find_regno_note (insn, REG_DEAD, regno);
14031 if (note)
14032 remove_note (insn, note);
14034 return note;
14037 /* For each register (hardware or pseudo) used within expression X, if its
14038 death is in an instruction with luid between FROM_LUID (inclusive) and
14039 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14040 list headed by PNOTES.
14042 That said, don't move registers killed by maybe_kill_insn.
14044 This is done when X is being merged by combination into TO_INSN. These
14045 notes will then be distributed as needed. */
14047 static void
14048 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14049 rtx *pnotes)
14051 const char *fmt;
14052 int len, i;
14053 enum rtx_code code = GET_CODE (x);
14055 if (code == REG)
14057 unsigned int regno = REGNO (x);
14058 rtx_insn *where_dead = reg_stat[regno].last_death;
14060 /* If we do not know where the register died, it may still die between
14061 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14062 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14064 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14065 while (insn
14066 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
14067 && DF_INSN_LUID (insn) >= from_luid)
14069 if (dead_or_set_regno_p (insn, regno))
14071 if (find_regno_note (insn, REG_DEAD, regno))
14072 where_dead = insn;
14073 break;
14076 insn = prev_real_nondebug_insn (insn);
14080 /* Don't move the register if it gets killed in between from and to. */
14081 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14082 && ! reg_referenced_p (x, maybe_kill_insn))
14083 return;
14085 if (where_dead
14086 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14087 && DF_INSN_LUID (where_dead) >= from_luid
14088 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14090 rtx note = remove_death (regno, where_dead);
14092 /* It is possible for the call above to return 0. This can occur
14093 when last_death points to I2 or I1 that we combined with.
14094 In that case make a new note.
14096 We must also check for the case where X is a hard register
14097 and NOTE is a death note for a range of hard registers
14098 including X. In that case, we must put REG_DEAD notes for
14099 the remaining registers in place of NOTE. */
14101 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14102 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14104 unsigned int deadregno = REGNO (XEXP (note, 0));
14105 unsigned int deadend = END_REGNO (XEXP (note, 0));
14106 unsigned int ourend = END_REGNO (x);
14107 unsigned int i;
14109 for (i = deadregno; i < deadend; i++)
14110 if (i < regno || i >= ourend)
14111 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14114 /* If we didn't find any note, or if we found a REG_DEAD note that
14115 covers only part of the given reg, and we have a multi-reg hard
14116 register, then to be safe we must check for REG_DEAD notes
14117 for each register other than the first. They could have
14118 their own REG_DEAD notes lying around. */
14119 else if ((note == 0
14120 || (note != 0
14121 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14122 GET_MODE (x))))
14123 && regno < FIRST_PSEUDO_REGISTER
14124 && REG_NREGS (x) > 1)
14126 unsigned int ourend = END_REGNO (x);
14127 unsigned int i, offset;
14128 rtx oldnotes = 0;
14130 if (note)
14131 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14132 else
14133 offset = 1;
14135 for (i = regno + offset; i < ourend; i++)
14136 move_deaths (regno_reg_rtx[i],
14137 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14140 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14142 XEXP (note, 1) = *pnotes;
14143 *pnotes = note;
14145 else
14146 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14149 return;
14152 else if (GET_CODE (x) == SET)
14154 rtx dest = SET_DEST (x);
14156 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14158 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14159 that accesses one word of a multi-word item, some
14160 piece of everything register in the expression is used by
14161 this insn, so remove any old death. */
14162 /* ??? So why do we test for equality of the sizes? */
14164 if (GET_CODE (dest) == ZERO_EXTRACT
14165 || GET_CODE (dest) == STRICT_LOW_PART
14166 || (GET_CODE (dest) == SUBREG
14167 && !read_modify_subreg_p (dest)))
14169 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14170 return;
14173 /* If this is some other SUBREG, we know it replaces the entire
14174 value, so use that as the destination. */
14175 if (GET_CODE (dest) == SUBREG)
14176 dest = SUBREG_REG (dest);
14178 /* If this is a MEM, adjust deaths of anything used in the address.
14179 For a REG (the only other possibility), the entire value is
14180 being replaced so the old value is not used in this insn. */
14182 if (MEM_P (dest))
14183 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14184 to_insn, pnotes);
14185 return;
14188 else if (GET_CODE (x) == CLOBBER)
14189 return;
14191 len = GET_RTX_LENGTH (code);
14192 fmt = GET_RTX_FORMAT (code);
14194 for (i = 0; i < len; i++)
14196 if (fmt[i] == 'E')
14198 int j;
14199 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14200 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14201 to_insn, pnotes);
14203 else if (fmt[i] == 'e')
14204 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14208 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14209 pattern of an insn. X must be a REG. */
14211 static int
14212 reg_bitfield_target_p (rtx x, rtx body)
14214 int i;
14216 if (GET_CODE (body) == SET)
14218 rtx dest = SET_DEST (body);
14219 rtx target;
14220 unsigned int regno, tregno, endregno, endtregno;
14222 if (GET_CODE (dest) == ZERO_EXTRACT)
14223 target = XEXP (dest, 0);
14224 else if (GET_CODE (dest) == STRICT_LOW_PART)
14225 target = SUBREG_REG (XEXP (dest, 0));
14226 else
14227 return 0;
14229 if (GET_CODE (target) == SUBREG)
14230 target = SUBREG_REG (target);
14232 if (!REG_P (target))
14233 return 0;
14235 tregno = REGNO (target), regno = REGNO (x);
14236 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14237 return target == x;
14239 endtregno = end_hard_regno (GET_MODE (target), tregno);
14240 endregno = end_hard_regno (GET_MODE (x), regno);
14242 return endregno > tregno && regno < endtregno;
14245 else if (GET_CODE (body) == PARALLEL)
14246 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14247 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14248 return 1;
14250 return 0;
14253 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14254 as appropriate. I3 and I2 are the insns resulting from the combination
14255 insns including FROM (I2 may be zero).
14257 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14258 not need REG_DEAD notes because they are being substituted for. This
14259 saves searching in the most common cases.
14261 Each note in the list is either ignored or placed on some insns, depending
14262 on the type of note. */
14264 static void
14265 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14266 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14268 rtx note, next_note;
14269 rtx tem_note;
14270 rtx_insn *tem_insn;
14272 for (note = notes; note; note = next_note)
14274 rtx_insn *place = 0, *place2 = 0;
14276 next_note = XEXP (note, 1);
14277 switch (REG_NOTE_KIND (note))
14279 case REG_BR_PROB:
14280 case REG_BR_PRED:
14281 /* Doesn't matter much where we put this, as long as it's somewhere.
14282 It is preferable to keep these notes on branches, which is most
14283 likely to be i3. */
14284 place = i3;
14285 break;
14287 case REG_NON_LOCAL_GOTO:
14288 if (JUMP_P (i3))
14289 place = i3;
14290 else
14292 gcc_assert (i2 && JUMP_P (i2));
14293 place = i2;
14295 break;
14297 case REG_EH_REGION:
14298 /* These notes must remain with the call or trapping instruction. */
14299 if (CALL_P (i3))
14300 place = i3;
14301 else if (i2 && CALL_P (i2))
14302 place = i2;
14303 else
14305 gcc_assert (cfun->can_throw_non_call_exceptions);
14306 if (may_trap_p (i3))
14307 place = i3;
14308 else if (i2 && may_trap_p (i2))
14309 place = i2;
14310 /* ??? Otherwise assume we've combined things such that we
14311 can now prove that the instructions can't trap. Drop the
14312 note in this case. */
14314 break;
14316 case REG_ARGS_SIZE:
14317 /* ??? How to distribute between i3-i1. Assume i3 contains the
14318 entire adjustment. Assert i3 contains at least some adjust. */
14319 if (!noop_move_p (i3))
14321 poly_int64 old_size, args_size = get_args_size (note);
14322 /* fixup_args_size_notes looks at REG_NORETURN note,
14323 so ensure the note is placed there first. */
14324 if (CALL_P (i3))
14326 rtx *np;
14327 for (np = &next_note; *np; np = &XEXP (*np, 1))
14328 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14330 rtx n = *np;
14331 *np = XEXP (n, 1);
14332 XEXP (n, 1) = REG_NOTES (i3);
14333 REG_NOTES (i3) = n;
14334 break;
14337 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14338 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14339 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14340 gcc_assert (maybe_ne (old_size, args_size)
14341 || (CALL_P (i3)
14342 && !ACCUMULATE_OUTGOING_ARGS
14343 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14345 break;
14347 case REG_NORETURN:
14348 case REG_SETJMP:
14349 case REG_TM:
14350 case REG_CALL_DECL:
14351 case REG_CALL_NOCF_CHECK:
14352 /* These notes must remain with the call. It should not be
14353 possible for both I2 and I3 to be a call. */
14354 if (CALL_P (i3))
14355 place = i3;
14356 else
14358 gcc_assert (i2 && CALL_P (i2));
14359 place = i2;
14361 break;
14363 case REG_UNUSED:
14364 /* Any clobbers for i3 may still exist, and so we must process
14365 REG_UNUSED notes from that insn.
14367 Any clobbers from i2 or i1 can only exist if they were added by
14368 recog_for_combine. In that case, recog_for_combine created the
14369 necessary REG_UNUSED notes. Trying to keep any original
14370 REG_UNUSED notes from these insns can cause incorrect output
14371 if it is for the same register as the original i3 dest.
14372 In that case, we will notice that the register is set in i3,
14373 and then add a REG_UNUSED note for the destination of i3, which
14374 is wrong. However, it is possible to have REG_UNUSED notes from
14375 i2 or i1 for register which were both used and clobbered, so
14376 we keep notes from i2 or i1 if they will turn into REG_DEAD
14377 notes. */
14379 /* If this register is set or clobbered in I3, put the note there
14380 unless there is one already. */
14381 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14383 if (from_insn != i3)
14384 break;
14386 if (! (REG_P (XEXP (note, 0))
14387 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14388 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14389 place = i3;
14391 /* Otherwise, if this register is used by I3, then this register
14392 now dies here, so we must put a REG_DEAD note here unless there
14393 is one already. */
14394 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14395 && ! (REG_P (XEXP (note, 0))
14396 ? find_regno_note (i3, REG_DEAD,
14397 REGNO (XEXP (note, 0)))
14398 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14400 PUT_REG_NOTE_KIND (note, REG_DEAD);
14401 place = i3;
14404 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14405 but we can't tell which at this point. We must reset any
14406 expectations we had about the value that was previously
14407 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14408 and, if appropriate, restore its previous value, but we
14409 don't have enough information for that at this point. */
14410 else
14412 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14414 /* Otherwise, if this register is now referenced in i2
14415 then the register used to be modified in one of the
14416 original insns. If it was i3 (say, in an unused
14417 parallel), it's now completely gone, so the note can
14418 be discarded. But if it was modified in i2, i1 or i0
14419 and we still reference it in i2, then we're
14420 referencing the previous value, and since the
14421 register was modified and REG_UNUSED, we know that
14422 the previous value is now dead. So, if we only
14423 reference the register in i2, we change the note to
14424 REG_DEAD, to reflect the previous value. However, if
14425 we're also setting or clobbering the register as
14426 scratch, we know (because the register was not
14427 referenced in i3) that it's unused, just as it was
14428 unused before, and we place the note in i2. */
14429 if (from_insn != i3 && i2 && INSN_P (i2)
14430 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14432 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14433 PUT_REG_NOTE_KIND (note, REG_DEAD);
14434 if (! (REG_P (XEXP (note, 0))
14435 ? find_regno_note (i2, REG_NOTE_KIND (note),
14436 REGNO (XEXP (note, 0)))
14437 : find_reg_note (i2, REG_NOTE_KIND (note),
14438 XEXP (note, 0))))
14439 place = i2;
14443 break;
14445 case REG_EQUAL:
14446 case REG_EQUIV:
14447 case REG_NOALIAS:
14448 /* These notes say something about results of an insn. We can
14449 only support them if they used to be on I3 in which case they
14450 remain on I3. Otherwise they are ignored.
14452 If the note refers to an expression that is not a constant, we
14453 must also ignore the note since we cannot tell whether the
14454 equivalence is still true. It might be possible to do
14455 slightly better than this (we only have a problem if I2DEST
14456 or I1DEST is present in the expression), but it doesn't
14457 seem worth the trouble. */
14459 if (from_insn == i3
14460 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14461 place = i3;
14462 break;
14464 case REG_INC:
14465 /* These notes say something about how a register is used. They must
14466 be present on any use of the register in I2 or I3. */
14467 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14468 place = i3;
14470 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14472 if (place)
14473 place2 = i2;
14474 else
14475 place = i2;
14477 break;
14479 case REG_LABEL_TARGET:
14480 case REG_LABEL_OPERAND:
14481 /* This can show up in several ways -- either directly in the
14482 pattern, or hidden off in the constant pool with (or without?)
14483 a REG_EQUAL note. */
14484 /* ??? Ignore the without-reg_equal-note problem for now. */
14485 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14486 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14487 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14488 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14489 place = i3;
14491 if (i2
14492 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14493 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14494 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14495 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14497 if (place)
14498 place2 = i2;
14499 else
14500 place = i2;
14503 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14504 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14505 there. */
14506 if (place && JUMP_P (place)
14507 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14508 && (JUMP_LABEL (place) == NULL
14509 || JUMP_LABEL (place) == XEXP (note, 0)))
14511 rtx label = JUMP_LABEL (place);
14513 if (!label)
14514 JUMP_LABEL (place) = XEXP (note, 0);
14515 else if (LABEL_P (label))
14516 LABEL_NUSES (label)--;
14519 if (place2 && JUMP_P (place2)
14520 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14521 && (JUMP_LABEL (place2) == NULL
14522 || JUMP_LABEL (place2) == XEXP (note, 0)))
14524 rtx label = JUMP_LABEL (place2);
14526 if (!label)
14527 JUMP_LABEL (place2) = XEXP (note, 0);
14528 else if (LABEL_P (label))
14529 LABEL_NUSES (label)--;
14530 place2 = 0;
14532 break;
14534 case REG_NONNEG:
14535 /* This note says something about the value of a register prior
14536 to the execution of an insn. It is too much trouble to see
14537 if the note is still correct in all situations. It is better
14538 to simply delete it. */
14539 break;
14541 case REG_DEAD:
14542 /* If we replaced the right hand side of FROM_INSN with a
14543 REG_EQUAL note, the original use of the dying register
14544 will not have been combined into I3 and I2. In such cases,
14545 FROM_INSN is guaranteed to be the first of the combined
14546 instructions, so we simply need to search back before
14547 FROM_INSN for the previous use or set of this register,
14548 then alter the notes there appropriately.
14550 If the register is used as an input in I3, it dies there.
14551 Similarly for I2, if it is nonzero and adjacent to I3.
14553 If the register is not used as an input in either I3 or I2
14554 and it is not one of the registers we were supposed to eliminate,
14555 there are two possibilities. We might have a non-adjacent I2
14556 or we might have somehow eliminated an additional register
14557 from a computation. For example, we might have had A & B where
14558 we discover that B will always be zero. In this case we will
14559 eliminate the reference to A.
14561 In both cases, we must search to see if we can find a previous
14562 use of A and put the death note there. */
14564 if (from_insn
14565 && from_insn == i2mod
14566 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14567 tem_insn = from_insn;
14568 else
14570 if (from_insn
14571 && CALL_P (from_insn)
14572 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14573 place = from_insn;
14574 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14576 /* If the new I2 sets the same register that is marked
14577 dead in the note, we do not in general know where to
14578 put the note. One important case we _can_ handle is
14579 when the note comes from I3. */
14580 if (from_insn == i3)
14581 place = i3;
14582 else
14583 break;
14585 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14586 place = i3;
14587 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14588 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14589 place = i2;
14590 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14591 && !(i2mod
14592 && reg_overlap_mentioned_p (XEXP (note, 0),
14593 i2mod_old_rhs)))
14594 || rtx_equal_p (XEXP (note, 0), elim_i1)
14595 || rtx_equal_p (XEXP (note, 0), elim_i0))
14596 break;
14597 tem_insn = i3;
14600 if (place == 0)
14602 basic_block bb = this_basic_block;
14604 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14606 if (!NONDEBUG_INSN_P (tem_insn))
14608 if (tem_insn == BB_HEAD (bb))
14609 break;
14610 continue;
14613 /* If the register is being set at TEM_INSN, see if that is all
14614 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14615 into a REG_UNUSED note instead. Don't delete sets to
14616 global register vars. */
14617 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14618 || !global_regs[REGNO (XEXP (note, 0))])
14619 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14621 rtx set = single_set (tem_insn);
14622 rtx inner_dest = 0;
14623 rtx_insn *cc0_setter = NULL;
14625 if (set != 0)
14626 for (inner_dest = SET_DEST (set);
14627 (GET_CODE (inner_dest) == STRICT_LOW_PART
14628 || GET_CODE (inner_dest) == SUBREG
14629 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14630 inner_dest = XEXP (inner_dest, 0))
14633 /* Verify that it was the set, and not a clobber that
14634 modified the register.
14636 CC0 targets must be careful to maintain setter/user
14637 pairs. If we cannot delete the setter due to side
14638 effects, mark the user with an UNUSED note instead
14639 of deleting it. */
14641 if (set != 0 && ! side_effects_p (SET_SRC (set))
14642 && rtx_equal_p (XEXP (note, 0), inner_dest)
14643 && (!HAVE_cc0
14644 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14645 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14646 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14648 /* Move the notes and links of TEM_INSN elsewhere.
14649 This might delete other dead insns recursively.
14650 First set the pattern to something that won't use
14651 any register. */
14652 rtx old_notes = REG_NOTES (tem_insn);
14654 PATTERN (tem_insn) = pc_rtx;
14655 REG_NOTES (tem_insn) = NULL;
14657 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14658 NULL_RTX, NULL_RTX, NULL_RTX);
14659 distribute_links (LOG_LINKS (tem_insn));
14661 unsigned int regno = REGNO (XEXP (note, 0));
14662 reg_stat_type *rsp = &reg_stat[regno];
14663 if (rsp->last_set == tem_insn)
14664 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14666 SET_INSN_DELETED (tem_insn);
14667 if (tem_insn == i2)
14668 i2 = NULL;
14670 /* Delete the setter too. */
14671 if (cc0_setter)
14673 PATTERN (cc0_setter) = pc_rtx;
14674 old_notes = REG_NOTES (cc0_setter);
14675 REG_NOTES (cc0_setter) = NULL;
14677 distribute_notes (old_notes, cc0_setter,
14678 cc0_setter, NULL,
14679 NULL_RTX, NULL_RTX, NULL_RTX);
14680 distribute_links (LOG_LINKS (cc0_setter));
14682 SET_INSN_DELETED (cc0_setter);
14683 if (cc0_setter == i2)
14684 i2 = NULL;
14687 else
14689 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14691 /* If there isn't already a REG_UNUSED note, put one
14692 here. Do not place a REG_DEAD note, even if
14693 the register is also used here; that would not
14694 match the algorithm used in lifetime analysis
14695 and can cause the consistency check in the
14696 scheduler to fail. */
14697 if (! find_regno_note (tem_insn, REG_UNUSED,
14698 REGNO (XEXP (note, 0))))
14699 place = tem_insn;
14700 break;
14703 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14704 || (CALL_P (tem_insn)
14705 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14707 place = tem_insn;
14709 /* If we are doing a 3->2 combination, and we have a
14710 register which formerly died in i3 and was not used
14711 by i2, which now no longer dies in i3 and is used in
14712 i2 but does not die in i2, and place is between i2
14713 and i3, then we may need to move a link from place to
14714 i2. */
14715 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14716 && from_insn
14717 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14718 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14720 struct insn_link *links = LOG_LINKS (place);
14721 LOG_LINKS (place) = NULL;
14722 distribute_links (links);
14724 break;
14727 if (tem_insn == BB_HEAD (bb))
14728 break;
14733 /* If the register is set or already dead at PLACE, we needn't do
14734 anything with this note if it is still a REG_DEAD note.
14735 We check here if it is set at all, not if is it totally replaced,
14736 which is what `dead_or_set_p' checks, so also check for it being
14737 set partially. */
14739 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14741 unsigned int regno = REGNO (XEXP (note, 0));
14742 reg_stat_type *rsp = &reg_stat[regno];
14744 if (dead_or_set_p (place, XEXP (note, 0))
14745 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14747 /* Unless the register previously died in PLACE, clear
14748 last_death. [I no longer understand why this is
14749 being done.] */
14750 if (rsp->last_death != place)
14751 rsp->last_death = 0;
14752 place = 0;
14754 else
14755 rsp->last_death = place;
14757 /* If this is a death note for a hard reg that is occupying
14758 multiple registers, ensure that we are still using all
14759 parts of the object. If we find a piece of the object
14760 that is unused, we must arrange for an appropriate REG_DEAD
14761 note to be added for it. However, we can't just emit a USE
14762 and tag the note to it, since the register might actually
14763 be dead; so we recourse, and the recursive call then finds
14764 the previous insn that used this register. */
14766 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14768 unsigned int endregno = END_REGNO (XEXP (note, 0));
14769 bool all_used = true;
14770 unsigned int i;
14772 for (i = regno; i < endregno; i++)
14773 if ((! refers_to_regno_p (i, PATTERN (place))
14774 && ! find_regno_fusage (place, USE, i))
14775 || dead_or_set_regno_p (place, i))
14777 all_used = false;
14778 break;
14781 if (! all_used)
14783 /* Put only REG_DEAD notes for pieces that are
14784 not already dead or set. */
14786 for (i = regno; i < endregno;
14787 i += hard_regno_nregs (i, reg_raw_mode[i]))
14789 rtx piece = regno_reg_rtx[i];
14790 basic_block bb = this_basic_block;
14792 if (! dead_or_set_p (place, piece)
14793 && ! reg_bitfield_target_p (piece,
14794 PATTERN (place)))
14796 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14797 NULL_RTX);
14799 distribute_notes (new_note, place, place,
14800 NULL, NULL_RTX, NULL_RTX,
14801 NULL_RTX);
14803 else if (! refers_to_regno_p (i, PATTERN (place))
14804 && ! find_regno_fusage (place, USE, i))
14805 for (tem_insn = PREV_INSN (place); ;
14806 tem_insn = PREV_INSN (tem_insn))
14808 if (!NONDEBUG_INSN_P (tem_insn))
14810 if (tem_insn == BB_HEAD (bb))
14811 break;
14812 continue;
14814 if (dead_or_set_p (tem_insn, piece)
14815 || reg_bitfield_target_p (piece,
14816 PATTERN (tem_insn)))
14818 add_reg_note (tem_insn, REG_UNUSED, piece);
14819 break;
14824 place = 0;
14828 break;
14830 default:
14831 /* Any other notes should not be present at this point in the
14832 compilation. */
14833 gcc_unreachable ();
14836 if (place)
14838 XEXP (note, 1) = REG_NOTES (place);
14839 REG_NOTES (place) = note;
14841 /* Set added_notes_insn to the earliest insn we added a note to. */
14842 if (added_notes_insn == 0
14843 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14844 added_notes_insn = place;
14847 if (place2)
14849 add_shallow_copy_of_reg_note (place2, note);
14851 /* Set added_notes_insn to the earliest insn we added a note to. */
14852 if (added_notes_insn == 0
14853 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14854 added_notes_insn = place2;
14859 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14860 I3, I2, and I1 to new locations. This is also called to add a link
14861 pointing at I3 when I3's destination is changed. */
14863 static void
14864 distribute_links (struct insn_link *links)
14866 struct insn_link *link, *next_link;
14868 for (link = links; link; link = next_link)
14870 rtx_insn *place = 0;
14871 rtx_insn *insn;
14872 rtx set, reg;
14874 next_link = link->next;
14876 /* If the insn that this link points to is a NOTE, ignore it. */
14877 if (NOTE_P (link->insn))
14878 continue;
14880 set = 0;
14881 rtx pat = PATTERN (link->insn);
14882 if (GET_CODE (pat) == SET)
14883 set = pat;
14884 else if (GET_CODE (pat) == PARALLEL)
14886 int i;
14887 for (i = 0; i < XVECLEN (pat, 0); i++)
14889 set = XVECEXP (pat, 0, i);
14890 if (GET_CODE (set) != SET)
14891 continue;
14893 reg = SET_DEST (set);
14894 while (GET_CODE (reg) == ZERO_EXTRACT
14895 || GET_CODE (reg) == STRICT_LOW_PART
14896 || GET_CODE (reg) == SUBREG)
14897 reg = XEXP (reg, 0);
14899 if (!REG_P (reg))
14900 continue;
14902 if (REGNO (reg) == link->regno)
14903 break;
14905 if (i == XVECLEN (pat, 0))
14906 continue;
14908 else
14909 continue;
14911 reg = SET_DEST (set);
14913 while (GET_CODE (reg) == ZERO_EXTRACT
14914 || GET_CODE (reg) == STRICT_LOW_PART
14915 || GET_CODE (reg) == SUBREG)
14916 reg = XEXP (reg, 0);
14918 if (reg == pc_rtx)
14919 continue;
14921 /* A LOG_LINK is defined as being placed on the first insn that uses
14922 a register and points to the insn that sets the register. Start
14923 searching at the next insn after the target of the link and stop
14924 when we reach a set of the register or the end of the basic block.
14926 Note that this correctly handles the link that used to point from
14927 I3 to I2. Also note that not much searching is typically done here
14928 since most links don't point very far away. */
14930 for (insn = NEXT_INSN (link->insn);
14931 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14932 || BB_HEAD (this_basic_block->next_bb) != insn));
14933 insn = NEXT_INSN (insn))
14934 if (DEBUG_INSN_P (insn))
14935 continue;
14936 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14938 if (reg_referenced_p (reg, PATTERN (insn)))
14939 place = insn;
14940 break;
14942 else if (CALL_P (insn)
14943 && find_reg_fusage (insn, USE, reg))
14945 place = insn;
14946 break;
14948 else if (INSN_P (insn) && reg_set_p (reg, insn))
14949 break;
14951 /* If we found a place to put the link, place it there unless there
14952 is already a link to the same insn as LINK at that point. */
14954 if (place)
14956 struct insn_link *link2;
14958 FOR_EACH_LOG_LINK (link2, place)
14959 if (link2->insn == link->insn && link2->regno == link->regno)
14960 break;
14962 if (link2 == NULL)
14964 link->next = LOG_LINKS (place);
14965 LOG_LINKS (place) = link;
14967 /* Set added_links_insn to the earliest insn we added a
14968 link to. */
14969 if (added_links_insn == 0
14970 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14971 added_links_insn = place;
14977 /* Check for any register or memory mentioned in EQUIV that is not
14978 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14979 of EXPR where some registers may have been replaced by constants. */
14981 static bool
14982 unmentioned_reg_p (rtx equiv, rtx expr)
14984 subrtx_iterator::array_type array;
14985 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14987 const_rtx x = *iter;
14988 if ((REG_P (x) || MEM_P (x))
14989 && !reg_mentioned_p (x, expr))
14990 return true;
14992 return false;
14995 DEBUG_FUNCTION void
14996 dump_combine_stats (FILE *file)
14998 fprintf
14999 (file,
15000 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
15001 combine_attempts, combine_merges, combine_extras, combine_successes);
15004 void
15005 dump_combine_total_stats (FILE *file)
15007 fprintf
15008 (file,
15009 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
15010 total_attempts, total_merges, total_extras, total_successes);
15013 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
15014 the reg-to-reg copy can usefully combine with later instructions, but we
15015 do not want to combine the hard reg into later instructions, for that
15016 restricts register allocation. */
15017 static void
15018 make_more_copies (void)
15020 basic_block bb;
15022 FOR_EACH_BB_FN (bb, cfun)
15024 rtx_insn *insn;
15026 FOR_BB_INSNS (bb, insn)
15028 if (!NONDEBUG_INSN_P (insn))
15029 continue;
15031 rtx set = single_set (insn);
15032 if (!set)
15033 continue;
15035 rtx dest = SET_DEST (set);
15036 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15037 continue;
15039 rtx src = SET_SRC (set);
15040 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15041 continue;
15042 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15043 continue;
15045 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15046 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15047 SET_SRC (set) = new_reg;
15048 emit_insn_before (new_insn, insn);
15049 df_insn_rescan (insn);
15054 /* Try combining insns through substitution. */
15055 static unsigned int
15056 rest_of_handle_combine (void)
15058 make_more_copies ();
15060 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15061 df_note_add_problem ();
15062 df_analyze ();
15064 regstat_init_n_sets_and_refs ();
15065 reg_n_sets_max = max_reg_num ();
15067 int rebuild_jump_labels_after_combine
15068 = combine_instructions (get_insns (), max_reg_num ());
15070 /* Combining insns may have turned an indirect jump into a
15071 direct jump. Rebuild the JUMP_LABEL fields of jumping
15072 instructions. */
15073 if (rebuild_jump_labels_after_combine)
15075 if (dom_info_available_p (CDI_DOMINATORS))
15076 free_dominance_info (CDI_DOMINATORS);
15077 timevar_push (TV_JUMP);
15078 rebuild_jump_labels (get_insns ());
15079 cleanup_cfg (0);
15080 timevar_pop (TV_JUMP);
15083 regstat_free_n_sets_and_refs ();
15084 return 0;
15087 namespace {
15089 const pass_data pass_data_combine =
15091 RTL_PASS, /* type */
15092 "combine", /* name */
15093 OPTGROUP_NONE, /* optinfo_flags */
15094 TV_COMBINE, /* tv_id */
15095 PROP_cfglayout, /* properties_required */
15096 0, /* properties_provided */
15097 0, /* properties_destroyed */
15098 0, /* todo_flags_start */
15099 TODO_df_finish, /* todo_flags_finish */
15102 class pass_combine : public rtl_opt_pass
15104 public:
15105 pass_combine (gcc::context *ctxt)
15106 : rtl_opt_pass (pass_data_combine, ctxt)
15109 /* opt_pass methods: */
15110 virtual bool gate (function *) { return (optimize > 0); }
15111 virtual unsigned int execute (function *)
15113 return rest_of_handle_combine ();
15116 }; // class pass_combine
15118 } // anon namespace
15120 rtl_opt_pass *
15121 make_pass_combine (gcc::context *ctxt)
15123 return new pass_combine (ctxt);