2012-01-18 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / libstdc++-v3 / include / bits / hashtable_policy.h
bloba06f6e316bc475b398da843812d8917b2c519c0f
1 // Internal policy header for unordered_set and unordered_map -*- C++ -*-
3 // Copyright (C) 2010, 2011, 2012 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
25 /** @file bits/hashtable_policy.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly.
28 * @headername{unordered_map,unordered_set}
31 #ifndef _HASHTABLE_POLICY_H
32 #define _HASHTABLE_POLICY_H 1
34 namespace std _GLIBCXX_VISIBILITY(default)
36 namespace __detail
38 _GLIBCXX_BEGIN_NAMESPACE_VERSION
40 // Helper function: return distance(first, last) for forward
41 // iterators, or 0 for input iterators.
42 template<class _Iterator>
43 inline typename std::iterator_traits<_Iterator>::difference_type
44 __distance_fw(_Iterator __first, _Iterator __last,
45 std::input_iterator_tag)
46 { return 0; }
48 template<class _Iterator>
49 inline typename std::iterator_traits<_Iterator>::difference_type
50 __distance_fw(_Iterator __first, _Iterator __last,
51 std::forward_iterator_tag)
52 { return std::distance(__first, __last); }
54 template<class _Iterator>
55 inline typename std::iterator_traits<_Iterator>::difference_type
56 __distance_fw(_Iterator __first, _Iterator __last)
58 typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
59 return __distance_fw(__first, __last, _Tag());
62 // Helper type used to detect when the hash functor is noexcept qualified or
63 // not
64 template <typename _Key, typename _Hash>
65 struct __is_noexcept_hash : std::integral_constant<bool,
66 noexcept(declval<const _Hash&>()(declval<const _Key&>()))>
67 {};
69 // Auxiliary types used for all instantiations of _Hashtable: nodes
70 // and iterators.
72 // Nodes, used to wrap elements stored in the hash table. A policy
73 // template parameter of class template _Hashtable controls whether
74 // nodes also store a hash code. In some cases (e.g. strings) this
75 // may be a performance win.
76 struct _Hash_node_base
78 _Hash_node_base* _M_nxt;
80 _Hash_node_base()
81 : _M_nxt() { }
82 _Hash_node_base(_Hash_node_base* __next)
83 : _M_nxt(__next) { }
86 template<typename _Value, bool __cache_hash_code>
87 struct _Hash_node;
89 template<typename _Value>
90 struct _Hash_node<_Value, true> : _Hash_node_base
92 _Value _M_v;
93 std::size_t _M_hash_code;
95 template<typename... _Args>
96 _Hash_node(_Args&&... __args)
97 : _M_v(std::forward<_Args>(__args)...), _M_hash_code() { }
99 _Hash_node* _M_next() const
100 { return static_cast<_Hash_node*>(_M_nxt); }
103 template<typename _Value>
104 struct _Hash_node<_Value, false> : _Hash_node_base
106 _Value _M_v;
108 template<typename... _Args>
109 _Hash_node(_Args&&... __args)
110 : _M_v(std::forward<_Args>(__args)...) { }
112 _Hash_node* _M_next() const
113 { return static_cast<_Hash_node*>(_M_nxt); }
116 // Node iterators, used to iterate through all the hashtable.
117 template<typename _Value, bool __cache>
118 struct _Node_iterator_base
120 _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
121 : _M_cur(__p) { }
123 void
124 _M_incr()
125 { _M_cur = _M_cur->_M_next(); }
127 _Hash_node<_Value, __cache>* _M_cur;
130 template<typename _Value, bool __cache>
131 inline bool
132 operator==(const _Node_iterator_base<_Value, __cache>& __x,
133 const _Node_iterator_base<_Value, __cache>& __y)
134 { return __x._M_cur == __y._M_cur; }
136 template<typename _Value, bool __cache>
137 inline bool
138 operator!=(const _Node_iterator_base<_Value, __cache>& __x,
139 const _Node_iterator_base<_Value, __cache>& __y)
140 { return __x._M_cur != __y._M_cur; }
142 template<typename _Value, bool __constant_iterators, bool __cache>
143 struct _Node_iterator
144 : public _Node_iterator_base<_Value, __cache>
146 typedef _Value value_type;
147 typedef typename std::conditional<__constant_iterators,
148 const _Value*, _Value*>::type
149 pointer;
150 typedef typename std::conditional<__constant_iterators,
151 const _Value&, _Value&>::type
152 reference;
153 typedef std::ptrdiff_t difference_type;
154 typedef std::forward_iterator_tag iterator_category;
156 _Node_iterator()
157 : _Node_iterator_base<_Value, __cache>(0) { }
159 explicit
160 _Node_iterator(_Hash_node<_Value, __cache>* __p)
161 : _Node_iterator_base<_Value, __cache>(__p) { }
163 reference
164 operator*() const
165 { return this->_M_cur->_M_v; }
167 pointer
168 operator->() const
169 { return std::__addressof(this->_M_cur->_M_v); }
171 _Node_iterator&
172 operator++()
174 this->_M_incr();
175 return *this;
178 _Node_iterator
179 operator++(int)
181 _Node_iterator __tmp(*this);
182 this->_M_incr();
183 return __tmp;
187 template<typename _Value, bool __constant_iterators, bool __cache>
188 struct _Node_const_iterator
189 : public _Node_iterator_base<_Value, __cache>
191 typedef _Value value_type;
192 typedef const _Value* pointer;
193 typedef const _Value& reference;
194 typedef std::ptrdiff_t difference_type;
195 typedef std::forward_iterator_tag iterator_category;
197 _Node_const_iterator()
198 : _Node_iterator_base<_Value, __cache>(0) { }
200 explicit
201 _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
202 : _Node_iterator_base<_Value, __cache>(__p) { }
204 _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
205 __cache>& __x)
206 : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
208 reference
209 operator*() const
210 { return this->_M_cur->_M_v; }
212 pointer
213 operator->() const
214 { return std::__addressof(this->_M_cur->_M_v); }
216 _Node_const_iterator&
217 operator++()
219 this->_M_incr();
220 return *this;
223 _Node_const_iterator
224 operator++(int)
226 _Node_const_iterator __tmp(*this);
227 this->_M_incr();
228 return __tmp;
232 // Many of class template _Hashtable's template parameters are policy
233 // classes. These are defaults for the policies.
235 // Default range hashing function: use division to fold a large number
236 // into the range [0, N).
237 struct _Mod_range_hashing
239 typedef std::size_t first_argument_type;
240 typedef std::size_t second_argument_type;
241 typedef std::size_t result_type;
243 result_type
244 operator()(first_argument_type __num, second_argument_type __den) const
245 { return __num % __den; }
248 // Default ranged hash function H. In principle it should be a
249 // function object composed from objects of type H1 and H2 such that
250 // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
251 // h1 and h2. So instead we'll just use a tag to tell class template
252 // hashtable to do that composition.
253 struct _Default_ranged_hash { };
255 // Default value for rehash policy. Bucket size is (usually) the
256 // smallest prime that keeps the load factor small enough.
257 struct _Prime_rehash_policy
259 _Prime_rehash_policy(float __z = 1.0)
260 : _M_max_load_factor(__z), _M_prev_resize(0), _M_next_resize(0) { }
262 float
263 max_load_factor() const noexcept
264 { return _M_max_load_factor; }
266 // Return a bucket size no smaller than n.
267 std::size_t
268 _M_next_bkt(std::size_t __n) const;
270 // Return a bucket count appropriate for n elements
271 std::size_t
272 _M_bkt_for_elements(std::size_t __n) const;
274 // __n_bkt is current bucket count, __n_elt is current element count,
275 // and __n_ins is number of elements to be inserted. Do we need to
276 // increase bucket count? If so, return make_pair(true, n), where n
277 // is the new bucket count. If not, return make_pair(false, 0).
278 std::pair<bool, std::size_t>
279 _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
280 std::size_t __n_ins) const;
282 typedef std::pair<std::size_t, std::size_t> _State;
284 _State
285 _M_state() const
286 { return std::make_pair(_M_prev_resize, _M_next_resize); }
288 void
289 _M_reset(const _State& __state)
291 _M_prev_resize = __state.first;
292 _M_next_resize = __state.second;
295 enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
297 float _M_max_load_factor;
298 mutable std::size_t _M_prev_resize;
299 mutable std::size_t _M_next_resize;
302 extern const unsigned long __prime_list[];
304 // XXX This is a hack. There's no good reason for any of
305 // _Prime_rehash_policy's member functions to be inline.
307 // Return a prime no smaller than n.
308 inline std::size_t
309 _Prime_rehash_policy::
310 _M_next_bkt(std::size_t __n) const
312 // Optimize lookups involving the first elements of __prime_list.
313 // (useful to speed-up, eg, constructors)
314 static const unsigned char __fast_bkt[12]
315 = { 2, 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11 };
317 if (__n <= 11)
319 _M_prev_resize = 0;
320 _M_next_resize
321 = __builtin_ceil(__fast_bkt[__n] * (long double)_M_max_load_factor);
322 return __fast_bkt[__n];
325 const unsigned long* __p
326 = std::lower_bound(__prime_list + 5, __prime_list + _S_n_primes, __n);
328 // Shrink will take place only if the number of elements is small enough
329 // so that the prime number 2 steps before __p is large enough to still
330 // conform to the max load factor:
331 _M_prev_resize
332 = __builtin_floor(*(__p - 2) * (long double)_M_max_load_factor);
334 // Let's guaranty that a minimal grow step of 11 is used
335 if (*__p - __n < 11)
336 __p = std::lower_bound(__p, __prime_list + _S_n_primes, __n + 11);
337 _M_next_resize = __builtin_ceil(*__p * (long double)_M_max_load_factor);
338 return *__p;
341 // Return the smallest prime p such that alpha p >= n, where alpha
342 // is the load factor.
343 inline std::size_t
344 _Prime_rehash_policy::
345 _M_bkt_for_elements(std::size_t __n) const
346 { return _M_next_bkt(__builtin_ceil(__n / (long double)_M_max_load_factor)); }
348 // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
349 // If p > __n_bkt, return make_pair(true, p); otherwise return
350 // make_pair(false, 0). In principle this isn't very different from
351 // _M_bkt_for_elements.
353 // The only tricky part is that we're caching the element count at
354 // which we need to rehash, so we don't have to do a floating-point
355 // multiply for every insertion.
357 inline std::pair<bool, std::size_t>
358 _Prime_rehash_policy::
359 _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
360 std::size_t __n_ins) const
362 if (__n_elt + __n_ins >= _M_next_resize)
364 long double __min_bkts = (__n_elt + __n_ins)
365 / (long double)_M_max_load_factor;
366 if (__min_bkts >= __n_bkt)
367 return std::make_pair(true,
368 _M_next_bkt(__builtin_floor(__min_bkts) + 1));
369 else
371 _M_next_resize
372 = __builtin_floor(__n_bkt * (long double)_M_max_load_factor);
373 return std::make_pair(false, 0);
376 else if (__n_elt + __n_ins < _M_prev_resize)
378 long double __min_bkts = (__n_elt + __n_ins)
379 / (long double)_M_max_load_factor;
380 return std::make_pair(true,
381 _M_next_bkt(__builtin_floor(__min_bkts) + 1));
383 else
384 return std::make_pair(false, 0);
387 // Base classes for std::_Hashtable. We define these base classes
388 // because in some cases we want to do different things depending
389 // on the value of a policy class. In some cases the policy class
390 // affects which member functions and nested typedefs are defined;
391 // we handle that by specializing base class templates. Several of
392 // the base class templates need to access other members of class
393 // template _Hashtable, so we use the "curiously recurring template
394 // pattern" for them.
396 // class template _Map_base. If the hashtable has a value type of
397 // the form pair<T1, T2> and a key extraction policy that returns the
398 // first part of the pair, the hashtable gets a mapped_type typedef.
399 // If it satisfies those criteria and also has unique keys, then it
400 // also gets an operator[].
401 template<typename _Key, typename _Value, typename _Ex, bool __unique,
402 typename _Hashtable>
403 struct _Map_base { };
405 template<typename _Key, typename _Pair, typename _Hashtable>
406 struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
408 typedef typename _Pair::second_type mapped_type;
411 template<typename _Key, typename _Pair, typename _Hashtable>
412 struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
414 typedef typename _Pair::second_type mapped_type;
416 mapped_type&
417 operator[](const _Key& __k);
419 mapped_type&
420 operator[](_Key&& __k);
422 // _GLIBCXX_RESOLVE_LIB_DEFECTS
423 // DR 761. unordered_map needs an at() member function.
424 mapped_type&
425 at(const _Key& __k);
427 const mapped_type&
428 at(const _Key& __k) const;
431 template<typename _Key, typename _Pair, typename _Hashtable>
432 typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
433 true, _Hashtable>::mapped_type&
434 _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
435 operator[](const _Key& __k)
437 _Hashtable* __h = static_cast<_Hashtable*>(this);
438 typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
439 std::size_t __n = __h->_M_bucket_index(__k, __code);
441 typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code);
442 if (!__p)
443 return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
444 __n, __code)->second;
445 return (__p->_M_v).second;
448 template<typename _Key, typename _Pair, typename _Hashtable>
449 typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
450 true, _Hashtable>::mapped_type&
451 _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
452 operator[](_Key&& __k)
454 _Hashtable* __h = static_cast<_Hashtable*>(this);
455 typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
456 std::size_t __n = __h->_M_bucket_index(__k, __code);
458 typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code);
459 if (!__p)
460 return __h->_M_insert_bucket(std::make_pair(std::move(__k),
461 mapped_type()),
462 __n, __code)->second;
463 return (__p->_M_v).second;
466 template<typename _Key, typename _Pair, typename _Hashtable>
467 typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
468 true, _Hashtable>::mapped_type&
469 _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
470 at(const _Key& __k)
472 _Hashtable* __h = static_cast<_Hashtable*>(this);
473 typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
474 std::size_t __n = __h->_M_bucket_index(__k, __code);
476 typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code);
477 if (!__p)
478 __throw_out_of_range(__N("_Map_base::at"));
479 return (__p->_M_v).second;
482 template<typename _Key, typename _Pair, typename _Hashtable>
483 const typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
484 true, _Hashtable>::mapped_type&
485 _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
486 at(const _Key& __k) const
488 const _Hashtable* __h = static_cast<const _Hashtable*>(this);
489 typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
490 std::size_t __n = __h->_M_bucket_index(__k, __code);
492 typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code);
493 if (!__p)
494 __throw_out_of_range(__N("_Map_base::at"));
495 return (__p->_M_v).second;
498 // class template _Rehash_base. Give hashtable the max_load_factor
499 // functions and reserve iff the rehash policy is _Prime_rehash_policy.
500 template<typename _RehashPolicy, typename _Hashtable>
501 struct _Rehash_base { };
503 template<typename _Hashtable>
504 struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
506 float
507 max_load_factor() const noexcept
509 const _Hashtable* __this = static_cast<const _Hashtable*>(this);
510 return __this->__rehash_policy().max_load_factor();
513 void
514 max_load_factor(float __z)
516 _Hashtable* __this = static_cast<_Hashtable*>(this);
517 __this->__rehash_policy(_Prime_rehash_policy(__z));
520 void
521 reserve(std::size_t __n)
523 _Hashtable* __this = static_cast<_Hashtable*>(this);
524 __this->rehash(__builtin_ceil(__n / max_load_factor()));
528 // Helper class using EBO when it is not forbidden, type is not final,
529 // and when it worth it, type is empty.
530 template<int _Nm, typename _Tp,
531 bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
532 struct _Hashtable_ebo_helper;
534 // Specialization using EBO.
535 template<int _Nm, typename _Tp>
536 struct _Hashtable_ebo_helper<_Nm, _Tp, true> : private _Tp
538 _Hashtable_ebo_helper() = default;
539 _Hashtable_ebo_helper(const _Tp& __tp) : _Tp(__tp)
542 static const _Tp&
543 _S_cget(const _Hashtable_ebo_helper& __eboh)
544 { return static_cast<const _Tp&>(__eboh); }
546 static _Tp&
547 _S_get(_Hashtable_ebo_helper& __eboh)
548 { return static_cast<_Tp&>(__eboh); }
551 // Specialization not using EBO.
552 template<int _Nm, typename _Tp>
553 struct _Hashtable_ebo_helper<_Nm, _Tp, false>
555 _Hashtable_ebo_helper() = default;
556 _Hashtable_ebo_helper(const _Tp& __tp) : _M_tp(__tp)
559 static const _Tp&
560 _S_cget(const _Hashtable_ebo_helper& __eboh)
561 { return __eboh._M_tp; }
563 static _Tp&
564 _S_get(_Hashtable_ebo_helper& __eboh)
565 { return __eboh._M_tp; }
567 private:
568 _Tp _M_tp;
571 // Class template _Hash_code_base. Encapsulates two policy issues that
572 // aren't quite orthogonal.
573 // (1) the difference between using a ranged hash function and using
574 // the combination of a hash function and a range-hashing function.
575 // In the former case we don't have such things as hash codes, so
576 // we have a dummy type as placeholder.
577 // (2) Whether or not we cache hash codes. Caching hash codes is
578 // meaningless if we have a ranged hash function.
579 // We also put the key extraction objects here, for convenience.
581 // Each specialization derives from one or more of the template parameters to
582 // benefit from Ebo. This is important as this type is inherited in some cases
583 // by the _Local_iterator_base type used to implement local_iterator and
584 // const_local_iterator. As with any iterator type we prefer to make it as
585 // small as possible.
587 // Primary template: unused except as a hook for specializations.
588 template<typename _Key, typename _Value, typename _ExtractKey,
589 typename _H1, typename _H2, typename _Hash,
590 bool __cache_hash_code>
591 struct _Hash_code_base;
593 // Specialization: ranged hash function, no caching hash codes. H1
594 // and H2 are provided but ignored. We define a dummy hash code type.
595 template<typename _Key, typename _Value, typename _ExtractKey,
596 typename _H1, typename _H2, typename _Hash>
597 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
598 : private _Hashtable_ebo_helper<0, _ExtractKey>,
599 private _Hashtable_ebo_helper<1, _Hash>
601 private:
602 typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey;
603 typedef _Hashtable_ebo_helper<1, _Hash> _EboHash;
605 protected:
606 // We need the default constructor for the local iterators.
607 _Hash_code_base() = default;
608 _Hash_code_base(const _ExtractKey& __ex,
609 const _H1&, const _H2&, const _Hash& __h)
610 : _EboExtractKey(__ex), _EboHash(__h) { }
612 typedef void* _Hash_code_type;
614 _Hash_code_type
615 _M_hash_code(const _Key& __key) const
616 { return 0; }
618 std::size_t
619 _M_bucket_index(const _Key& __k, _Hash_code_type,
620 std::size_t __n) const
621 { return _M_ranged_hash()(__k, __n); }
623 std::size_t
624 _M_bucket_index(const _Hash_node<_Value, false>* __p,
625 std::size_t __n) const
626 { return _M_ranged_hash()(_M_extract()(__p->_M_v), __n); }
628 void
629 _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
632 void
633 _M_copy_code(_Hash_node<_Value, false>*,
634 const _Hash_node<_Value, false>*) const
637 void
638 _M_swap(_Hash_code_base& __x)
640 std::swap(_M_extract(), __x._M_extract());
641 std::swap(_M_ranged_hash(), __x._M_ranged_hash());
644 protected:
645 const _ExtractKey&
646 _M_extract() const { return _EboExtractKey::_S_cget(*this); }
647 _ExtractKey&
648 _M_extract() { return _EboExtractKey::_S_get(*this); }
649 const _Hash&
650 _M_ranged_hash() const { return _EboHash::_S_cget(*this); }
651 _Hash&
652 _M_ranged_hash() { return _EboHash::_S_get(*this); }
655 // No specialization for ranged hash function while caching hash codes.
656 // That combination is meaningless, and trying to do it is an error.
658 // Specialization: ranged hash function, cache hash codes. This
659 // combination is meaningless, so we provide only a declaration
660 // and no definition.
661 template<typename _Key, typename _Value, typename _ExtractKey,
662 typename _H1, typename _H2, typename _Hash>
663 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
665 // Specialization: hash function and range-hashing function, no
666 // caching of hash codes.
667 // Provides typedef and accessor required by TR1.
668 template<typename _Key, typename _Value, typename _ExtractKey,
669 typename _H1, typename _H2>
670 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
671 _Default_ranged_hash, false>
672 : private _Hashtable_ebo_helper<0, _ExtractKey>,
673 private _Hashtable_ebo_helper<1, _H1>,
674 private _Hashtable_ebo_helper<2, _H2>
676 private:
677 typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey;
678 typedef _Hashtable_ebo_helper<1, _H1> _EboH1;
679 typedef _Hashtable_ebo_helper<2, _H2> _EboH2;
681 public:
682 typedef _H1 hasher;
684 hasher
685 hash_function() const
686 { return _M_h1(); }
688 protected:
689 // We need the default constructor for the local iterators.
690 _Hash_code_base() = default;
691 _Hash_code_base(const _ExtractKey& __ex,
692 const _H1& __h1, const _H2& __h2,
693 const _Default_ranged_hash&)
694 : _EboExtractKey(__ex), _EboH1(__h1), _EboH2(__h2) { }
696 typedef std::size_t _Hash_code_type;
698 _Hash_code_type
699 _M_hash_code(const _Key& __k) const
700 { return _M_h1()(__k); }
702 std::size_t
703 _M_bucket_index(const _Key&, _Hash_code_type __c,
704 std::size_t __n) const
705 { return _M_h2()(__c, __n); }
707 std::size_t
708 _M_bucket_index(const _Hash_node<_Value, false>* __p,
709 std::size_t __n) const
710 { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v)), __n); }
712 void
713 _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
716 void
717 _M_copy_code(_Hash_node<_Value, false>*,
718 const _Hash_node<_Value, false>*) const
721 void
722 _M_swap(_Hash_code_base& __x)
724 std::swap(_M_extract(), __x._M_extract());
725 std::swap(_M_h1(), __x._M_h1());
726 std::swap(_M_h2(), __x._M_h2());
729 protected:
730 const _ExtractKey&
731 _M_extract() const { return _EboExtractKey::_S_cget(*this); }
732 _ExtractKey&
733 _M_extract() { return _EboExtractKey::_S_get(*this); }
734 const _H1&
735 _M_h1() const { return _EboH1::_S_cget(*this); }
736 _H1&
737 _M_h1() { return _EboH1::_S_get(*this); }
738 const _H2&
739 _M_h2() const { return _EboH2::_S_cget(*this); }
740 _H2&
741 _M_h2() { return _EboH2::_S_get(*this); }
744 // Specialization: hash function and range-hashing function,
745 // caching hash codes. H is provided but ignored. Provides
746 // typedef and accessor required by TR1.
747 template<typename _Key, typename _Value, typename _ExtractKey,
748 typename _H1, typename _H2>
749 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
750 _Default_ranged_hash, true>
751 : private _Hashtable_ebo_helper<0, _ExtractKey>,
752 private _Hashtable_ebo_helper<1, _H1>,
753 private _Hashtable_ebo_helper<2, _H2>
755 private:
756 typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey;
757 typedef _Hashtable_ebo_helper<1, _H1> _EboH1;
758 typedef _Hashtable_ebo_helper<2, _H2> _EboH2;
760 public:
761 typedef _H1 hasher;
763 hasher
764 hash_function() const
765 { return _M_h1(); }
767 protected:
768 _Hash_code_base(const _ExtractKey& __ex,
769 const _H1& __h1, const _H2& __h2,
770 const _Default_ranged_hash&)
771 : _EboExtractKey(__ex), _EboH1(__h1), _EboH2(__h2) { }
773 typedef std::size_t _Hash_code_type;
775 _Hash_code_type
776 _M_hash_code(const _Key& __k) const
777 { return _M_h1()(__k); }
779 std::size_t
780 _M_bucket_index(const _Key&, _Hash_code_type __c,
781 std::size_t __n) const
782 { return _M_h2()(__c, __n); }
784 std::size_t
785 _M_bucket_index(const _Hash_node<_Value, true>* __p,
786 std::size_t __n) const
787 { return _M_h2()(__p->_M_hash_code, __n); }
789 void
790 _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
791 { __n->_M_hash_code = __c; }
793 void
794 _M_copy_code(_Hash_node<_Value, true>* __to,
795 const _Hash_node<_Value, true>* __from) const
796 { __to->_M_hash_code = __from->_M_hash_code; }
798 void
799 _M_swap(_Hash_code_base& __x)
801 std::swap(_M_extract(), __x._M_extract());
802 std::swap(_M_h1(), __x._M_h1());
803 std::swap(_M_h2(), __x._M_h2());
806 protected:
807 const _ExtractKey&
808 _M_extract() const { return _EboExtractKey::_S_cget(*this); }
809 _ExtractKey&
810 _M_extract() { return _EboExtractKey::_S_get(*this); }
811 const _H1&
812 _M_h1() const { return _EboH1::_S_cget(*this); }
813 _H1&
814 _M_h1() { return _EboH1::_S_get(*this); }
815 const _H2&
816 _M_h2() const { return _EboH2::_S_cget(*this); }
817 _H2&
818 _M_h2() { return _EboH2::_S_get(*this); }
821 template <typename _Key, typename _Value, typename _ExtractKey,
822 typename _Equal, typename _HashCodeType,
823 bool __cache_hash_code>
824 struct _Equal_helper;
826 template<typename _Key, typename _Value, typename _ExtractKey,
827 typename _Equal, typename _HashCodeType>
828 struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
830 static bool
831 _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
832 const _Key& __k, _HashCodeType __c,
833 _Hash_node<_Value, true>* __n)
834 { return __c == __n->_M_hash_code
835 && __eq(__k, __extract(__n->_M_v)); }
838 template<typename _Key, typename _Value, typename _ExtractKey,
839 typename _Equal, typename _HashCodeType>
840 struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
842 static bool
843 _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
844 const _Key& __k, _HashCodeType,
845 _Hash_node<_Value, false>* __n)
846 { return __eq(__k, __extract(__n->_M_v)); }
849 // Helper class adding management of _Equal functor to _Hash_code_base
850 // type.
851 template<typename _Key, typename _Value,
852 typename _ExtractKey, typename _Equal,
853 typename _H1, typename _H2, typename _Hash,
854 bool __cache_hash_code>
855 struct _Hashtable_base
856 : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
857 __cache_hash_code>,
858 private _Hashtable_ebo_helper<0, _Equal>
860 private:
861 typedef _Hashtable_ebo_helper<0, _Equal> _EboEqual;
863 protected:
864 typedef _Hash_code_base<_Key, _Value, _ExtractKey,
865 _H1, _H2, _Hash, __cache_hash_code> _HCBase;
866 typedef typename _HCBase::_Hash_code_type _Hash_code_type;
868 _Hashtable_base(const _ExtractKey& __ex,
869 const _H1& __h1, const _H2& __h2,
870 const _Hash& __hash, const _Equal& __eq)
871 : _HCBase(__ex, __h1, __h2, __hash), _EboEqual(__eq) { }
873 bool
874 _M_equals(const _Key& __k, _Hash_code_type __c,
875 _Hash_node<_Value, __cache_hash_code>* __n) const
877 typedef _Equal_helper<_Key, _Value, _ExtractKey,
878 _Equal, _Hash_code_type,
879 __cache_hash_code> _EqualHelper;
880 return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
881 __k, __c, __n);
884 void
885 _M_swap(_Hashtable_base& __x)
887 _HCBase::_M_swap(__x);
888 std::swap(_M_eq(), __x._M_eq());
891 protected:
892 const _Equal&
893 _M_eq() const { return _EboEqual::_S_cget(*this); }
894 _Equal&
895 _M_eq() { return _EboEqual::_S_get(*this); }
898 // Local iterators, used to iterate within a bucket but not between
899 // buckets.
900 template<typename _Key, typename _Value, typename _ExtractKey,
901 typename _H1, typename _H2, typename _Hash,
902 bool __cache_hash_code>
903 struct _Local_iterator_base;
905 template<typename _Key, typename _Value, typename _ExtractKey,
906 typename _H1, typename _H2, typename _Hash>
907 struct _Local_iterator_base<_Key, _Value, _ExtractKey,
908 _H1, _H2, _Hash, true>
909 : private _H2
911 _Local_iterator_base() = default;
912 _Local_iterator_base(_Hash_node<_Value, true>* __p,
913 std::size_t __bkt, std::size_t __bkt_count)
914 : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
916 void
917 _M_incr()
919 _M_cur = _M_cur->_M_next();
920 if (_M_cur)
922 std::size_t __bkt = _M_h2()(_M_cur->_M_hash_code, _M_bucket_count);
923 if (__bkt != _M_bucket)
924 _M_cur = nullptr;
928 const _H2& _M_h2() const
929 { return *this; }
931 _Hash_node<_Value, true>* _M_cur;
932 std::size_t _M_bucket;
933 std::size_t _M_bucket_count;
936 template<typename _Key, typename _Value, typename _ExtractKey,
937 typename _H1, typename _H2, typename _Hash>
938 struct _Local_iterator_base<_Key, _Value, _ExtractKey,
939 _H1, _H2, _Hash, false>
940 : private _Hash_code_base<_Key, _Value, _ExtractKey,
941 _H1, _H2, _Hash, false>
943 _Local_iterator_base() = default;
944 _Local_iterator_base(_Hash_node<_Value, false>* __p,
945 std::size_t __bkt, std::size_t __bkt_count)
946 : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
948 void
949 _M_incr()
951 _M_cur = _M_cur->_M_next();
952 if (_M_cur)
954 std::size_t __bkt = this->_M_bucket_index(_M_cur, _M_bucket_count);
955 if (__bkt != _M_bucket)
956 _M_cur = nullptr;
960 _Hash_node<_Value, false>* _M_cur;
961 std::size_t _M_bucket;
962 std::size_t _M_bucket_count;
965 template<typename _Key, typename _Value, typename _ExtractKey,
966 typename _H1, typename _H2, typename _Hash, bool __cache>
967 inline bool
968 operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
969 _H1, _H2, _Hash, __cache>& __x,
970 const _Local_iterator_base<_Key, _Value, _ExtractKey,
971 _H1, _H2, _Hash, __cache>& __y)
972 { return __x._M_cur == __y._M_cur; }
974 template<typename _Key, typename _Value, typename _ExtractKey,
975 typename _H1, typename _H2, typename _Hash, bool __cache>
976 inline bool
977 operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
978 _H1, _H2, _Hash, __cache>& __x,
979 const _Local_iterator_base<_Key, _Value, _ExtractKey,
980 _H1, _H2, _Hash, __cache>& __y)
981 { return __x._M_cur != __y._M_cur; }
983 template<typename _Key, typename _Value, typename _ExtractKey,
984 typename _H1, typename _H2, typename _Hash,
985 bool __constant_iterators, bool __cache>
986 struct _Local_iterator
987 : public _Local_iterator_base<_Key, _Value, _ExtractKey,
988 _H1, _H2, _Hash, __cache>
990 typedef _Value value_type;
991 typedef typename std::conditional<__constant_iterators,
992 const _Value*, _Value*>::type
993 pointer;
994 typedef typename std::conditional<__constant_iterators,
995 const _Value&, _Value&>::type
996 reference;
997 typedef std::ptrdiff_t difference_type;
998 typedef std::forward_iterator_tag iterator_category;
1000 _Local_iterator() = default;
1002 explicit
1003 _Local_iterator(_Hash_node<_Value, __cache>* __p,
1004 std::size_t __bkt, std::size_t __bkt_count)
1005 : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1006 __cache>(__p, __bkt, __bkt_count)
1009 reference
1010 operator*() const
1011 { return this->_M_cur->_M_v; }
1013 pointer
1014 operator->() const
1015 { return std::__addressof(this->_M_cur->_M_v); }
1017 _Local_iterator&
1018 operator++()
1020 this->_M_incr();
1021 return *this;
1024 _Local_iterator
1025 operator++(int)
1027 _Local_iterator __tmp(*this);
1028 this->_M_incr();
1029 return __tmp;
1033 template<typename _Key, typename _Value, typename _ExtractKey,
1034 typename _H1, typename _H2, typename _Hash,
1035 bool __constant_iterators, bool __cache>
1036 struct _Local_const_iterator
1037 : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1038 _H1, _H2, _Hash, __cache>
1040 typedef _Value value_type;
1041 typedef const _Value* pointer;
1042 typedef const _Value& reference;
1043 typedef std::ptrdiff_t difference_type;
1044 typedef std::forward_iterator_tag iterator_category;
1046 _Local_const_iterator() = default;
1048 explicit
1049 _Local_const_iterator(_Hash_node<_Value, __cache>* __p,
1050 std::size_t __bkt, std::size_t __bkt_count)
1051 : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1052 __cache>(__p, __bkt, __bkt_count)
1055 _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1056 _H1, _H2, _Hash,
1057 __constant_iterators,
1058 __cache>& __x)
1059 : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1060 __cache>(__x._M_cur, __x._M_bucket,
1061 __x._M_bucket_count)
1064 reference
1065 operator*() const
1066 { return this->_M_cur->_M_v; }
1068 pointer
1069 operator->() const
1070 { return std::__addressof(this->_M_cur->_M_v); }
1072 _Local_const_iterator&
1073 operator++()
1075 this->_M_incr();
1076 return *this;
1079 _Local_const_iterator
1080 operator++(int)
1082 _Local_const_iterator __tmp(*this);
1083 this->_M_incr();
1084 return __tmp;
1089 // Class template _Equality_base. This is for implementing equality
1090 // comparison for unordered containers, per N3068, by John Lakos and
1091 // Pablo Halpern. Algorithmically, we follow closely the reference
1092 // implementations therein.
1093 template<typename _ExtractKey, bool __unique_keys,
1094 typename _Hashtable>
1095 struct _Equality_base;
1097 template<typename _ExtractKey, typename _Hashtable>
1098 struct _Equality_base<_ExtractKey, true, _Hashtable>
1100 bool _M_equal(const _Hashtable&) const;
1103 template<typename _ExtractKey, typename _Hashtable>
1104 bool
1105 _Equality_base<_ExtractKey, true, _Hashtable>::
1106 _M_equal(const _Hashtable& __other) const
1108 const _Hashtable* __this = static_cast<const _Hashtable*>(this);
1110 if (__this->size() != __other.size())
1111 return false;
1113 for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1115 const auto __ity = __other.find(_ExtractKey()(*__itx));
1116 if (__ity == __other.end() || *__ity != *__itx)
1117 return false;
1119 return true;
1122 template<typename _ExtractKey, typename _Hashtable>
1123 struct _Equality_base<_ExtractKey, false, _Hashtable>
1125 bool _M_equal(const _Hashtable&) const;
1127 private:
1128 template<typename _Uiterator>
1129 static bool
1130 _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
1133 // See std::is_permutation in N3068.
1134 template<typename _ExtractKey, typename _Hashtable>
1135 template<typename _Uiterator>
1136 bool
1137 _Equality_base<_ExtractKey, false, _Hashtable>::
1138 _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
1139 _Uiterator __first2)
1141 for (; __first1 != __last1; ++__first1, ++__first2)
1142 if (!(*__first1 == *__first2))
1143 break;
1145 if (__first1 == __last1)
1146 return true;
1148 _Uiterator __last2 = __first2;
1149 std::advance(__last2, std::distance(__first1, __last1));
1151 for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
1153 _Uiterator __tmp = __first1;
1154 while (__tmp != __it1 && !(*__tmp == *__it1))
1155 ++__tmp;
1157 // We've seen this one before.
1158 if (__tmp != __it1)
1159 continue;
1161 std::ptrdiff_t __n2 = 0;
1162 for (__tmp = __first2; __tmp != __last2; ++__tmp)
1163 if (*__tmp == *__it1)
1164 ++__n2;
1166 if (!__n2)
1167 return false;
1169 std::ptrdiff_t __n1 = 0;
1170 for (__tmp = __it1; __tmp != __last1; ++__tmp)
1171 if (*__tmp == *__it1)
1172 ++__n1;
1174 if (__n1 != __n2)
1175 return false;
1177 return true;
1180 template<typename _ExtractKey, typename _Hashtable>
1181 bool
1182 _Equality_base<_ExtractKey, false, _Hashtable>::
1183 _M_equal(const _Hashtable& __other) const
1185 const _Hashtable* __this = static_cast<const _Hashtable*>(this);
1187 if (__this->size() != __other.size())
1188 return false;
1190 for (auto __itx = __this->begin(); __itx != __this->end();)
1192 const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
1193 const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
1195 if (std::distance(__xrange.first, __xrange.second)
1196 != std::distance(__yrange.first, __yrange.second))
1197 return false;
1199 if (!_S_is_permutation(__xrange.first,
1200 __xrange.second,
1201 __yrange.first))
1202 return false;
1204 __itx = __xrange.second;
1206 return true;
1209 _GLIBCXX_END_NAMESPACE_VERSION
1210 } // namespace __detail
1211 } // namespace std
1213 #endif // _HASHTABLE_POLICY_H