Mark ChangeLog
[official-gcc.git] / gcc / cselib.c
blob4845efaa00778be02dfff5373a9fe5211e007e39
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "flags.h"
31 #include "real.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "function.h"
35 #include "emit-rtl.h"
36 #include "toplev.h"
37 #include "output.h"
38 #include "ggc.h"
39 #include "hashtab.h"
40 #include "cselib.h"
41 #include "params.h"
42 #include "alloc-pool.h"
43 #include "target.h"
45 static bool cselib_record_memory;
46 static int entry_and_rtx_equal_p (const void *, const void *);
47 static hashval_t get_value_hash (const void *);
48 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
49 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
50 static void unchain_one_value (cselib_val *);
51 static void unchain_one_elt_list (struct elt_list **);
52 static void unchain_one_elt_loc_list (struct elt_loc_list **);
53 static int discard_useless_locs (void **, void *);
54 static int discard_useless_values (void **, void *);
55 static void remove_useless_values (void);
56 static rtx wrap_constant (enum machine_mode, rtx);
57 static unsigned int cselib_hash_rtx (rtx, int);
58 static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
59 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
60 static cselib_val *cselib_lookup_mem (rtx, int);
61 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
62 static void cselib_invalidate_mem (rtx);
63 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
64 static void cselib_record_sets (rtx);
66 /* There are three ways in which cselib can look up an rtx:
67 - for a REG, the reg_values table (which is indexed by regno) is used
68 - for a MEM, we recursively look up its address and then follow the
69 addr_list of that value
70 - for everything else, we compute a hash value and go through the hash
71 table. Since different rtx's can still have the same hash value,
72 this involves walking the table entries for a given value and comparing
73 the locations of the entries with the rtx we are looking up. */
75 /* A table that enables us to look up elts by their value. */
76 static htab_t cselib_hash_table;
78 /* This is a global so we don't have to pass this through every function.
79 It is used in new_elt_loc_list to set SETTING_INSN. */
80 static rtx cselib_current_insn;
81 static bool cselib_current_insn_in_libcall;
83 /* Every new unknown value gets a unique number. */
84 static unsigned int next_unknown_value;
86 /* The number of registers we had when the varrays were last resized. */
87 static unsigned int cselib_nregs;
89 /* Count values without known locations. Whenever this grows too big, we
90 remove these useless values from the table. */
91 static int n_useless_values;
93 /* Number of useless values before we remove them from the hash table. */
94 #define MAX_USELESS_VALUES 32
96 /* This table maps from register number to values. It does not
97 contain pointers to cselib_val structures, but rather elt_lists.
98 The purpose is to be able to refer to the same register in
99 different modes. The first element of the list defines the mode in
100 which the register was set; if the mode is unknown or the value is
101 no longer valid in that mode, ELT will be NULL for the first
102 element. */
103 static struct elt_list **reg_values;
104 static unsigned int reg_values_size;
105 #define REG_VALUES(i) reg_values[i]
107 /* The largest number of hard regs used by any entry added to the
108 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
109 static unsigned int max_value_regs;
111 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
112 in cselib_clear_table() for fast emptying. */
113 static unsigned int *used_regs;
114 static unsigned int n_used_regs;
116 /* We pass this to cselib_invalidate_mem to invalidate all of
117 memory for a non-const call instruction. */
118 static GTY(()) rtx callmem;
120 /* Set by discard_useless_locs if it deleted the last location of any
121 value. */
122 static int values_became_useless;
124 /* Used as stop element of the containing_mem list so we can check
125 presence in the list by checking the next pointer. */
126 static cselib_val dummy_val;
128 /* Used to list all values that contain memory reference.
129 May or may not contain the useless values - the list is compacted
130 each time memory is invalidated. */
131 static cselib_val *first_containing_mem = &dummy_val;
132 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
135 /* Allocate a struct elt_list and fill in its two elements with the
136 arguments. */
138 static inline struct elt_list *
139 new_elt_list (struct elt_list *next, cselib_val *elt)
141 struct elt_list *el;
142 el = pool_alloc (elt_list_pool);
143 el->next = next;
144 el->elt = elt;
145 return el;
148 /* Allocate a struct elt_loc_list and fill in its two elements with the
149 arguments. */
151 static inline struct elt_loc_list *
152 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
154 struct elt_loc_list *el;
155 el = pool_alloc (elt_loc_list_pool);
156 el->next = next;
157 el->loc = loc;
158 el->setting_insn = cselib_current_insn;
159 el->in_libcall = cselib_current_insn_in_libcall;
160 return el;
163 /* The elt_list at *PL is no longer needed. Unchain it and free its
164 storage. */
166 static inline void
167 unchain_one_elt_list (struct elt_list **pl)
169 struct elt_list *l = *pl;
171 *pl = l->next;
172 pool_free (elt_list_pool, l);
175 /* Likewise for elt_loc_lists. */
177 static void
178 unchain_one_elt_loc_list (struct elt_loc_list **pl)
180 struct elt_loc_list *l = *pl;
182 *pl = l->next;
183 pool_free (elt_loc_list_pool, l);
186 /* Likewise for cselib_vals. This also frees the addr_list associated with
187 V. */
189 static void
190 unchain_one_value (cselib_val *v)
192 while (v->addr_list)
193 unchain_one_elt_list (&v->addr_list);
195 pool_free (cselib_val_pool, v);
198 /* Remove all entries from the hash table. Also used during
199 initialization. If CLEAR_ALL isn't set, then only clear the entries
200 which are known to have been used. */
202 void
203 cselib_clear_table (void)
205 unsigned int i;
207 for (i = 0; i < n_used_regs; i++)
208 REG_VALUES (used_regs[i]) = 0;
210 max_value_regs = 0;
212 n_used_regs = 0;
214 htab_empty (cselib_hash_table);
216 n_useless_values = 0;
218 next_unknown_value = 0;
220 first_containing_mem = &dummy_val;
223 /* The equality test for our hash table. The first argument ENTRY is a table
224 element (i.e. a cselib_val), while the second arg X is an rtx. We know
225 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
226 CONST of an appropriate mode. */
228 static int
229 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
231 struct elt_loc_list *l;
232 const cselib_val *v = (const cselib_val *) entry;
233 rtx x = (rtx) x_arg;
234 enum machine_mode mode = GET_MODE (x);
236 gcc_assert (GET_CODE (x) != CONST_INT
237 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
239 if (mode != GET_MODE (v->u.val_rtx))
240 return 0;
242 /* Unwrap X if necessary. */
243 if (GET_CODE (x) == CONST
244 && (GET_CODE (XEXP (x, 0)) == CONST_INT
245 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
246 x = XEXP (x, 0);
248 /* We don't guarantee that distinct rtx's have different hash values,
249 so we need to do a comparison. */
250 for (l = v->locs; l; l = l->next)
251 if (rtx_equal_for_cselib_p (l->loc, x))
252 return 1;
254 return 0;
257 /* The hash function for our hash table. The value is always computed with
258 cselib_hash_rtx when adding an element; this function just extracts the
259 hash value from a cselib_val structure. */
261 static hashval_t
262 get_value_hash (const void *entry)
264 const cselib_val *v = (const cselib_val *) entry;
265 return v->value;
268 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
269 only return true for values which point to a cselib_val whose value
270 element has been set to zero, which implies the cselib_val will be
271 removed. */
274 references_value_p (rtx x, int only_useless)
276 enum rtx_code code = GET_CODE (x);
277 const char *fmt = GET_RTX_FORMAT (code);
278 int i, j;
280 if (GET_CODE (x) == VALUE
281 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
282 return 1;
284 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
286 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
287 return 1;
288 else if (fmt[i] == 'E')
289 for (j = 0; j < XVECLEN (x, i); j++)
290 if (references_value_p (XVECEXP (x, i, j), only_useless))
291 return 1;
294 return 0;
297 /* For all locations found in X, delete locations that reference useless
298 values (i.e. values without any location). Called through
299 htab_traverse. */
301 static int
302 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
304 cselib_val *v = (cselib_val *)*x;
305 struct elt_loc_list **p = &v->locs;
306 int had_locs = v->locs != 0;
308 while (*p)
310 if (references_value_p ((*p)->loc, 1))
311 unchain_one_elt_loc_list (p);
312 else
313 p = &(*p)->next;
316 if (had_locs && v->locs == 0)
318 n_useless_values++;
319 values_became_useless = 1;
321 return 1;
324 /* If X is a value with no locations, remove it from the hashtable. */
326 static int
327 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
329 cselib_val *v = (cselib_val *)*x;
331 if (v->locs == 0)
333 CSELIB_VAL_PTR (v->u.val_rtx) = NULL;
334 htab_clear_slot (cselib_hash_table, x);
335 unchain_one_value (v);
336 n_useless_values--;
339 return 1;
342 /* Clean out useless values (i.e. those which no longer have locations
343 associated with them) from the hash table. */
345 static void
346 remove_useless_values (void)
348 cselib_val **p, *v;
349 /* First pass: eliminate locations that reference the value. That in
350 turn can make more values useless. */
353 values_became_useless = 0;
354 htab_traverse (cselib_hash_table, discard_useless_locs, 0);
356 while (values_became_useless);
358 /* Second pass: actually remove the values. */
360 p = &first_containing_mem;
361 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
362 if (v->locs)
364 *p = v;
365 p = &(*p)->next_containing_mem;
367 *p = &dummy_val;
369 htab_traverse (cselib_hash_table, discard_useless_values, 0);
371 gcc_assert (!n_useless_values);
374 /* Return the mode in which a register was last set. If X is not a
375 register, return its mode. If the mode in which the register was
376 set is not known, or the value was already clobbered, return
377 VOIDmode. */
379 enum machine_mode
380 cselib_reg_set_mode (rtx x)
382 if (!REG_P (x))
383 return GET_MODE (x);
385 if (REG_VALUES (REGNO (x)) == NULL
386 || REG_VALUES (REGNO (x))->elt == NULL)
387 return VOIDmode;
389 return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
392 /* Return nonzero if we can prove that X and Y contain the same value, taking
393 our gathered information into account. */
396 rtx_equal_for_cselib_p (rtx x, rtx y)
398 enum rtx_code code;
399 const char *fmt;
400 int i;
402 if (REG_P (x) || MEM_P (x))
404 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
406 if (e)
407 x = e->u.val_rtx;
410 if (REG_P (y) || MEM_P (y))
412 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
414 if (e)
415 y = e->u.val_rtx;
418 if (x == y)
419 return 1;
421 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
422 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
424 if (GET_CODE (x) == VALUE)
426 cselib_val *e = CSELIB_VAL_PTR (x);
427 struct elt_loc_list *l;
429 for (l = e->locs; l; l = l->next)
431 rtx t = l->loc;
433 /* Avoid infinite recursion. */
434 if (REG_P (t) || MEM_P (t))
435 continue;
436 else if (rtx_equal_for_cselib_p (t, y))
437 return 1;
440 return 0;
443 if (GET_CODE (y) == VALUE)
445 cselib_val *e = CSELIB_VAL_PTR (y);
446 struct elt_loc_list *l;
448 for (l = e->locs; l; l = l->next)
450 rtx t = l->loc;
452 if (REG_P (t) || MEM_P (t))
453 continue;
454 else if (rtx_equal_for_cselib_p (x, t))
455 return 1;
458 return 0;
461 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
462 return 0;
464 /* These won't be handled correctly by the code below. */
465 switch (GET_CODE (x))
467 case CONST_DOUBLE:
468 return 0;
470 case LABEL_REF:
471 return XEXP (x, 0) == XEXP (y, 0);
473 default:
474 break;
477 code = GET_CODE (x);
478 fmt = GET_RTX_FORMAT (code);
480 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
482 int j;
484 switch (fmt[i])
486 case 'w':
487 if (XWINT (x, i) != XWINT (y, i))
488 return 0;
489 break;
491 case 'n':
492 case 'i':
493 if (XINT (x, i) != XINT (y, i))
494 return 0;
495 break;
497 case 'V':
498 case 'E':
499 /* Two vectors must have the same length. */
500 if (XVECLEN (x, i) != XVECLEN (y, i))
501 return 0;
503 /* And the corresponding elements must match. */
504 for (j = 0; j < XVECLEN (x, i); j++)
505 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
506 XVECEXP (y, i, j)))
507 return 0;
508 break;
510 case 'e':
511 if (i == 1
512 && targetm.commutative_p (x, UNKNOWN)
513 && rtx_equal_for_cselib_p (XEXP (x, 1), XEXP (y, 0))
514 && rtx_equal_for_cselib_p (XEXP (x, 0), XEXP (y, 1)))
515 return 1;
516 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
517 return 0;
518 break;
520 case 'S':
521 case 's':
522 if (strcmp (XSTR (x, i), XSTR (y, i)))
523 return 0;
524 break;
526 case 'u':
527 /* These are just backpointers, so they don't matter. */
528 break;
530 case '0':
531 case 't':
532 break;
534 /* It is believed that rtx's at this level will never
535 contain anything but integers and other rtx's,
536 except for within LABEL_REFs and SYMBOL_REFs. */
537 default:
538 gcc_unreachable ();
541 return 1;
544 /* We need to pass down the mode of constants through the hash table
545 functions. For that purpose, wrap them in a CONST of the appropriate
546 mode. */
547 static rtx
548 wrap_constant (enum machine_mode mode, rtx x)
550 if (GET_CODE (x) != CONST_INT
551 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
552 return x;
553 gcc_assert (mode != VOIDmode);
554 return gen_rtx_CONST (mode, x);
557 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
558 For registers and memory locations, we look up their cselib_val structure
559 and return its VALUE element.
560 Possible reasons for return 0 are: the object is volatile, or we couldn't
561 find a register or memory location in the table and CREATE is zero. If
562 CREATE is nonzero, table elts are created for regs and mem.
563 N.B. this hash function returns the same hash value for RTXes that
564 differ only in the order of operands, thus it is suitable for comparisons
565 that take commutativity into account.
566 If we wanted to also support associative rules, we'd have to use a different
567 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
568 We used to have a MODE argument for hashing for CONST_INTs, but that
569 didn't make sense, since it caused spurious hash differences between
570 (set (reg:SI 1) (const_int))
571 (plus:SI (reg:SI 2) (reg:SI 1))
573 (plus:SI (reg:SI 2) (const_int))
574 If the mode is important in any context, it must be checked specifically
575 in a comparison anyway, since relying on hash differences is unsafe. */
577 static unsigned int
578 cselib_hash_rtx (rtx x, int create)
580 cselib_val *e;
581 int i, j;
582 enum rtx_code code;
583 const char *fmt;
584 unsigned int hash = 0;
586 code = GET_CODE (x);
587 hash += (unsigned) code + (unsigned) GET_MODE (x);
589 switch (code)
591 case MEM:
592 case REG:
593 e = cselib_lookup (x, GET_MODE (x), create);
594 if (! e)
595 return 0;
597 return e->value;
599 case CONST_INT:
600 hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
601 return hash ? hash : (unsigned int) CONST_INT;
603 case CONST_DOUBLE:
604 /* This is like the general case, except that it only counts
605 the integers representing the constant. */
606 hash += (unsigned) code + (unsigned) GET_MODE (x);
607 if (GET_MODE (x) != VOIDmode)
608 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
609 else
610 hash += ((unsigned) CONST_DOUBLE_LOW (x)
611 + (unsigned) CONST_DOUBLE_HIGH (x));
612 return hash ? hash : (unsigned int) CONST_DOUBLE;
614 case CONST_VECTOR:
616 int units;
617 rtx elt;
619 units = CONST_VECTOR_NUNITS (x);
621 for (i = 0; i < units; ++i)
623 elt = CONST_VECTOR_ELT (x, i);
624 hash += cselib_hash_rtx (elt, 0);
627 return hash;
630 /* Assume there is only one rtx object for any given label. */
631 case LABEL_REF:
632 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
633 differences and differences between each stage's debugging dumps. */
634 hash += (((unsigned int) LABEL_REF << 7)
635 + CODE_LABEL_NUMBER (XEXP (x, 0)));
636 return hash ? hash : (unsigned int) LABEL_REF;
638 case SYMBOL_REF:
640 /* Don't hash on the symbol's address to avoid bootstrap differences.
641 Different hash values may cause expressions to be recorded in
642 different orders and thus different registers to be used in the
643 final assembler. This also avoids differences in the dump files
644 between various stages. */
645 unsigned int h = 0;
646 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
648 while (*p)
649 h += (h << 7) + *p++; /* ??? revisit */
651 hash += ((unsigned int) SYMBOL_REF << 7) + h;
652 return hash ? hash : (unsigned int) SYMBOL_REF;
655 case PRE_DEC:
656 case PRE_INC:
657 case POST_DEC:
658 case POST_INC:
659 case POST_MODIFY:
660 case PRE_MODIFY:
661 case PC:
662 case CC0:
663 case CALL:
664 case UNSPEC_VOLATILE:
665 return 0;
667 case ASM_OPERANDS:
668 if (MEM_VOLATILE_P (x))
669 return 0;
671 break;
673 default:
674 break;
677 i = GET_RTX_LENGTH (code) - 1;
678 fmt = GET_RTX_FORMAT (code);
679 for (; i >= 0; i--)
681 switch (fmt[i])
683 case 'e':
685 rtx tem = XEXP (x, i);
686 unsigned int tem_hash = cselib_hash_rtx (tem, create);
688 if (tem_hash == 0)
689 return 0;
691 hash += tem_hash;
693 break;
694 case 'E':
695 for (j = 0; j < XVECLEN (x, i); j++)
697 unsigned int tem_hash
698 = cselib_hash_rtx (XVECEXP (x, i, j), create);
700 if (tem_hash == 0)
701 return 0;
703 hash += tem_hash;
705 break;
707 case 's':
709 const unsigned char *p = (const unsigned char *) XSTR (x, i);
711 if (p)
712 while (*p)
713 hash += *p++;
714 break;
717 case 'i':
718 hash += XINT (x, i);
719 break;
721 case '0':
722 case 't':
723 /* unused */
724 break;
726 default:
727 gcc_unreachable ();
731 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
734 /* Create a new value structure for VALUE and initialize it. The mode of the
735 value is MODE. */
737 static inline cselib_val *
738 new_cselib_val (unsigned int value, enum machine_mode mode)
740 cselib_val *e = pool_alloc (cselib_val_pool);
742 gcc_assert (value);
744 e->value = value;
745 /* We use an alloc pool to allocate this RTL construct because it
746 accounts for about 8% of the overall memory usage. We know
747 precisely when we can have VALUE RTXen (when cselib is active)
748 so we don't need to put them in garbage collected memory.
749 ??? Why should a VALUE be an RTX in the first place? */
750 e->u.val_rtx = pool_alloc (value_pool);
751 memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
752 PUT_CODE (e->u.val_rtx, VALUE);
753 PUT_MODE (e->u.val_rtx, mode);
754 CSELIB_VAL_PTR (e->u.val_rtx) = e;
755 e->addr_list = 0;
756 e->locs = 0;
757 e->next_containing_mem = 0;
758 return e;
761 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
762 contains the data at this address. X is a MEM that represents the
763 value. Update the two value structures to represent this situation. */
765 static void
766 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
768 struct elt_loc_list *l;
770 /* Avoid duplicates. */
771 for (l = mem_elt->locs; l; l = l->next)
772 if (MEM_P (l->loc)
773 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
774 return;
776 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
777 mem_elt->locs
778 = new_elt_loc_list (mem_elt->locs,
779 replace_equiv_address_nv (x, addr_elt->u.val_rtx));
780 if (mem_elt->next_containing_mem == NULL)
782 mem_elt->next_containing_mem = first_containing_mem;
783 first_containing_mem = mem_elt;
787 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
788 If CREATE, make a new one if we haven't seen it before. */
790 static cselib_val *
791 cselib_lookup_mem (rtx x, int create)
793 enum machine_mode mode = GET_MODE (x);
794 void **slot;
795 cselib_val *addr;
796 cselib_val *mem_elt;
797 struct elt_list *l;
799 if (MEM_VOLATILE_P (x) || mode == BLKmode
800 || !cselib_record_memory
801 || (FLOAT_MODE_P (mode) && flag_float_store))
802 return 0;
804 /* Look up the value for the address. */
805 addr = cselib_lookup (XEXP (x, 0), mode, create);
806 if (! addr)
807 return 0;
809 /* Find a value that describes a value of our mode at that address. */
810 for (l = addr->addr_list; l; l = l->next)
811 if (GET_MODE (l->elt->u.val_rtx) == mode)
812 return l->elt;
814 if (! create)
815 return 0;
817 mem_elt = new_cselib_val (++next_unknown_value, mode);
818 add_mem_for_addr (addr, mem_elt, x);
819 slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
820 mem_elt->value, INSERT);
821 *slot = mem_elt;
822 return mem_elt;
825 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
826 with VALUE expressions. This way, it becomes independent of changes
827 to registers and memory.
828 X isn't actually modified; if modifications are needed, new rtl is
829 allocated. However, the return value can share rtl with X. */
832 cselib_subst_to_values (rtx x)
834 enum rtx_code code = GET_CODE (x);
835 const char *fmt = GET_RTX_FORMAT (code);
836 cselib_val *e;
837 struct elt_list *l;
838 rtx copy = x;
839 int i;
841 switch (code)
843 case REG:
844 l = REG_VALUES (REGNO (x));
845 if (l && l->elt == NULL)
846 l = l->next;
847 for (; l; l = l->next)
848 if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
849 return l->elt->u.val_rtx;
851 gcc_unreachable ();
853 case MEM:
854 e = cselib_lookup_mem (x, 0);
855 if (! e)
857 /* This happens for autoincrements. Assign a value that doesn't
858 match any other. */
859 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
861 return e->u.val_rtx;
863 case CONST_DOUBLE:
864 case CONST_VECTOR:
865 case CONST_INT:
866 return x;
868 case POST_INC:
869 case PRE_INC:
870 case POST_DEC:
871 case PRE_DEC:
872 case POST_MODIFY:
873 case PRE_MODIFY:
874 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
875 return e->u.val_rtx;
877 default:
878 break;
881 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
883 if (fmt[i] == 'e')
885 rtx t = cselib_subst_to_values (XEXP (x, i));
887 if (t != XEXP (x, i) && x == copy)
888 copy = shallow_copy_rtx (x);
890 XEXP (copy, i) = t;
892 else if (fmt[i] == 'E')
894 int j, k;
896 for (j = 0; j < XVECLEN (x, i); j++)
898 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
900 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
902 if (x == copy)
903 copy = shallow_copy_rtx (x);
905 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
906 for (k = 0; k < j; k++)
907 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
910 XVECEXP (copy, i, j) = t;
915 return copy;
918 /* Look up the rtl expression X in our tables and return the value it has.
919 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
920 we create a new one if possible, using mode MODE if X doesn't have a mode
921 (i.e. because it's a constant). */
923 cselib_val *
924 cselib_lookup (rtx x, enum machine_mode mode, int create)
926 void **slot;
927 cselib_val *e;
928 unsigned int hashval;
930 if (GET_MODE (x) != VOIDmode)
931 mode = GET_MODE (x);
933 if (GET_CODE (x) == VALUE)
934 return CSELIB_VAL_PTR (x);
936 if (REG_P (x))
938 struct elt_list *l;
939 unsigned int i = REGNO (x);
941 l = REG_VALUES (i);
942 if (l && l->elt == NULL)
943 l = l->next;
944 for (; l; l = l->next)
945 if (mode == GET_MODE (l->elt->u.val_rtx))
946 return l->elt;
948 if (! create)
949 return 0;
951 if (i < FIRST_PSEUDO_REGISTER)
953 unsigned int n = hard_regno_nregs[i][mode];
955 if (n > max_value_regs)
956 max_value_regs = n;
959 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
960 e->locs = new_elt_loc_list (e->locs, x);
961 if (REG_VALUES (i) == 0)
963 /* Maintain the invariant that the first entry of
964 REG_VALUES, if present, must be the value used to set the
965 register, or NULL. */
966 used_regs[n_used_regs++] = i;
967 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
969 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
970 slot = htab_find_slot_with_hash (cselib_hash_table, x, e->value, INSERT);
971 *slot = e;
972 return e;
975 if (MEM_P (x))
976 return cselib_lookup_mem (x, create);
978 hashval = cselib_hash_rtx (x, create);
979 /* Can't even create if hashing is not possible. */
980 if (! hashval)
981 return 0;
983 slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
984 hashval, create ? INSERT : NO_INSERT);
985 if (slot == 0)
986 return 0;
988 e = (cselib_val *) *slot;
989 if (e)
990 return e;
992 e = new_cselib_val (hashval, mode);
994 /* We have to fill the slot before calling cselib_subst_to_values:
995 the hash table is inconsistent until we do so, and
996 cselib_subst_to_values will need to do lookups. */
997 *slot = (void *) e;
998 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
999 return e;
1002 /* Invalidate any entries in reg_values that overlap REGNO. This is called
1003 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
1004 is used to determine how many hard registers are being changed. If MODE
1005 is VOIDmode, then only REGNO is being changed; this is used when
1006 invalidating call clobbered registers across a call. */
1008 static void
1009 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
1011 unsigned int endregno;
1012 unsigned int i;
1014 /* If we see pseudos after reload, something is _wrong_. */
1015 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
1016 || reg_renumber[regno] < 0);
1018 /* Determine the range of registers that must be invalidated. For
1019 pseudos, only REGNO is affected. For hard regs, we must take MODE
1020 into account, and we must also invalidate lower register numbers
1021 if they contain values that overlap REGNO. */
1022 if (regno < FIRST_PSEUDO_REGISTER)
1024 gcc_assert (mode != VOIDmode);
1026 if (regno < max_value_regs)
1027 i = 0;
1028 else
1029 i = regno - max_value_regs;
1031 endregno = regno + hard_regno_nregs[regno][mode];
1033 else
1035 i = regno;
1036 endregno = regno + 1;
1039 for (; i < endregno; i++)
1041 struct elt_list **l = &REG_VALUES (i);
1043 /* Go through all known values for this reg; if it overlaps the range
1044 we're invalidating, remove the value. */
1045 while (*l)
1047 cselib_val *v = (*l)->elt;
1048 struct elt_loc_list **p;
1049 unsigned int this_last = i;
1051 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1052 this_last += hard_regno_nregs[i][GET_MODE (v->u.val_rtx)] - 1;
1054 if (this_last < regno || v == NULL)
1056 l = &(*l)->next;
1057 continue;
1060 /* We have an overlap. */
1061 if (*l == REG_VALUES (i))
1063 /* Maintain the invariant that the first entry of
1064 REG_VALUES, if present, must be the value used to set
1065 the register, or NULL. This is also nice because
1066 then we won't push the same regno onto user_regs
1067 multiple times. */
1068 (*l)->elt = NULL;
1069 l = &(*l)->next;
1071 else
1072 unchain_one_elt_list (l);
1074 /* Now, we clear the mapping from value to reg. It must exist, so
1075 this code will crash intentionally if it doesn't. */
1076 for (p = &v->locs; ; p = &(*p)->next)
1078 rtx x = (*p)->loc;
1080 if (REG_P (x) && REGNO (x) == i)
1082 unchain_one_elt_loc_list (p);
1083 break;
1086 if (v->locs == 0)
1087 n_useless_values++;
1092 /* Return 1 if X has a value that can vary even between two
1093 executions of the program. 0 means X can be compared reliably
1094 against certain constants or near-constants. */
1096 static int
1097 cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
1099 /* We actually don't need to verify very hard. This is because
1100 if X has actually changed, we invalidate the memory anyway,
1101 so assume that all common memory addresses are
1102 invariant. */
1103 return 0;
1106 /* Invalidate any locations in the table which are changed because of a
1107 store to MEM_RTX. If this is called because of a non-const call
1108 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1110 static void
1111 cselib_invalidate_mem (rtx mem_rtx)
1113 cselib_val **vp, *v, *next;
1114 int num_mems = 0;
1115 rtx mem_addr;
1117 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1118 mem_rtx = canon_rtx (mem_rtx);
1120 vp = &first_containing_mem;
1121 for (v = *vp; v != &dummy_val; v = next)
1123 bool has_mem = false;
1124 struct elt_loc_list **p = &v->locs;
1125 int had_locs = v->locs != 0;
1127 while (*p)
1129 rtx x = (*p)->loc;
1130 cselib_val *addr;
1131 struct elt_list **mem_chain;
1133 /* MEMs may occur in locations only at the top level; below
1134 that every MEM or REG is substituted by its VALUE. */
1135 if (!MEM_P (x))
1137 p = &(*p)->next;
1138 continue;
1140 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1141 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1142 x, cselib_rtx_varies_p))
1144 has_mem = true;
1145 num_mems++;
1146 p = &(*p)->next;
1147 continue;
1150 /* This one overlaps. */
1151 /* We must have a mapping from this MEM's address to the
1152 value (E). Remove that, too. */
1153 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1154 mem_chain = &addr->addr_list;
1155 for (;;)
1157 if ((*mem_chain)->elt == v)
1159 unchain_one_elt_list (mem_chain);
1160 break;
1163 mem_chain = &(*mem_chain)->next;
1166 unchain_one_elt_loc_list (p);
1169 if (had_locs && v->locs == 0)
1170 n_useless_values++;
1172 next = v->next_containing_mem;
1173 if (has_mem)
1175 *vp = v;
1176 vp = &(*vp)->next_containing_mem;
1178 else
1179 v->next_containing_mem = NULL;
1181 *vp = &dummy_val;
1184 /* Invalidate DEST, which is being assigned to or clobbered. */
1186 void
1187 cselib_invalidate_rtx (rtx dest)
1189 while (GET_CODE (dest) == SUBREG
1190 || GET_CODE (dest) == ZERO_EXTRACT
1191 || GET_CODE (dest) == STRICT_LOW_PART)
1192 dest = XEXP (dest, 0);
1194 if (REG_P (dest))
1195 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1196 else if (MEM_P (dest))
1197 cselib_invalidate_mem (dest);
1199 /* Some machines don't define AUTO_INC_DEC, but they still use push
1200 instructions. We need to catch that case here in order to
1201 invalidate the stack pointer correctly. Note that invalidating
1202 the stack pointer is different from invalidating DEST. */
1203 if (push_operand (dest, GET_MODE (dest)))
1204 cselib_invalidate_rtx (stack_pointer_rtx);
1207 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1209 static void
1210 cselib_invalidate_rtx_note_stores (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
1211 void *data ATTRIBUTE_UNUSED)
1213 cselib_invalidate_rtx (dest);
1216 /* Record the result of a SET instruction. DEST is being set; the source
1217 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1218 describes its address. */
1220 static void
1221 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1223 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
1225 if (src_elt == 0 || side_effects_p (dest))
1226 return;
1228 if (dreg >= 0)
1230 if (dreg < FIRST_PSEUDO_REGISTER)
1232 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
1234 if (n > max_value_regs)
1235 max_value_regs = n;
1238 if (REG_VALUES (dreg) == 0)
1240 used_regs[n_used_regs++] = dreg;
1241 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1243 else
1245 /* The register should have been invalidated. */
1246 gcc_assert (REG_VALUES (dreg)->elt == 0);
1247 REG_VALUES (dreg)->elt = src_elt;
1250 if (src_elt->locs == 0)
1251 n_useless_values--;
1252 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1254 else if (MEM_P (dest) && dest_addr_elt != 0
1255 && cselib_record_memory)
1257 if (src_elt->locs == 0)
1258 n_useless_values--;
1259 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1263 /* Describe a single set that is part of an insn. */
1264 struct set
1266 rtx src;
1267 rtx dest;
1268 cselib_val *src_elt;
1269 cselib_val *dest_addr_elt;
1272 /* There is no good way to determine how many elements there can be
1273 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1274 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1276 /* Record the effects of any sets in INSN. */
1277 static void
1278 cselib_record_sets (rtx insn)
1280 int n_sets = 0;
1281 int i;
1282 struct set sets[MAX_SETS];
1283 rtx body = PATTERN (insn);
1284 rtx cond = 0;
1286 body = PATTERN (insn);
1287 if (GET_CODE (body) == COND_EXEC)
1289 cond = COND_EXEC_TEST (body);
1290 body = COND_EXEC_CODE (body);
1293 /* Find all sets. */
1294 if (GET_CODE (body) == SET)
1296 sets[0].src = SET_SRC (body);
1297 sets[0].dest = SET_DEST (body);
1298 n_sets = 1;
1300 else if (GET_CODE (body) == PARALLEL)
1302 /* Look through the PARALLEL and record the values being
1303 set, if possible. Also handle any CLOBBERs. */
1304 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1306 rtx x = XVECEXP (body, 0, i);
1308 if (GET_CODE (x) == SET)
1310 sets[n_sets].src = SET_SRC (x);
1311 sets[n_sets].dest = SET_DEST (x);
1312 n_sets++;
1317 /* Look up the values that are read. Do this before invalidating the
1318 locations that are written. */
1319 for (i = 0; i < n_sets; i++)
1321 rtx dest = sets[i].dest;
1323 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1324 the low part after invalidating any knowledge about larger modes. */
1325 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1326 sets[i].dest = dest = XEXP (dest, 0);
1328 /* We don't know how to record anything but REG or MEM. */
1329 if (REG_P (dest)
1330 || (MEM_P (dest) && cselib_record_memory))
1332 rtx src = sets[i].src;
1333 if (cond)
1334 src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
1335 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
1336 if (MEM_P (dest))
1337 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1338 else
1339 sets[i].dest_addr_elt = 0;
1343 /* Invalidate all locations written by this insn. Note that the elts we
1344 looked up in the previous loop aren't affected, just some of their
1345 locations may go away. */
1346 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
1348 /* If this is an asm, look for duplicate sets. This can happen when the
1349 user uses the same value as an output multiple times. This is valid
1350 if the outputs are not actually used thereafter. Treat this case as
1351 if the value isn't actually set. We do this by smashing the destination
1352 to pc_rtx, so that we won't record the value later. */
1353 if (n_sets >= 2 && asm_noperands (body) >= 0)
1355 for (i = 0; i < n_sets; i++)
1357 rtx dest = sets[i].dest;
1358 if (REG_P (dest) || MEM_P (dest))
1360 int j;
1361 for (j = i + 1; j < n_sets; j++)
1362 if (rtx_equal_p (dest, sets[j].dest))
1364 sets[i].dest = pc_rtx;
1365 sets[j].dest = pc_rtx;
1371 /* Now enter the equivalences in our tables. */
1372 for (i = 0; i < n_sets; i++)
1374 rtx dest = sets[i].dest;
1375 if (REG_P (dest)
1376 || (MEM_P (dest) && cselib_record_memory))
1377 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1381 /* Record the effects of INSN. */
1383 void
1384 cselib_process_insn (rtx insn)
1386 int i;
1387 rtx x;
1389 if (find_reg_note (insn, REG_LIBCALL, NULL))
1390 cselib_current_insn_in_libcall = true;
1391 cselib_current_insn = insn;
1393 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1394 if (LABEL_P (insn)
1395 || (CALL_P (insn)
1396 && find_reg_note (insn, REG_SETJMP, NULL))
1397 || (NONJUMP_INSN_P (insn)
1398 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1399 && MEM_VOLATILE_P (PATTERN (insn))))
1401 if (find_reg_note (insn, REG_RETVAL, NULL))
1402 cselib_current_insn_in_libcall = false;
1403 cselib_clear_table ();
1404 return;
1407 if (! INSN_P (insn))
1409 if (find_reg_note (insn, REG_RETVAL, NULL))
1410 cselib_current_insn_in_libcall = false;
1411 cselib_current_insn = 0;
1412 return;
1415 /* If this is a call instruction, forget anything stored in a
1416 call clobbered register, or, if this is not a const call, in
1417 memory. */
1418 if (CALL_P (insn))
1420 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1421 if (call_used_regs[i]
1422 || (REG_VALUES (i) && REG_VALUES (i)->elt
1423 && HARD_REGNO_CALL_PART_CLOBBERED (i,
1424 GET_MODE (REG_VALUES (i)->elt->u.val_rtx))))
1425 cselib_invalidate_regno (i, reg_raw_mode[i]);
1427 if (! CONST_OR_PURE_CALL_P (insn))
1428 cselib_invalidate_mem (callmem);
1431 cselib_record_sets (insn);
1433 #ifdef AUTO_INC_DEC
1434 /* Clobber any registers which appear in REG_INC notes. We
1435 could keep track of the changes to their values, but it is
1436 unlikely to help. */
1437 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1438 if (REG_NOTE_KIND (x) == REG_INC)
1439 cselib_invalidate_rtx (XEXP (x, 0));
1440 #endif
1442 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1443 after we have processed the insn. */
1444 if (CALL_P (insn))
1445 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1446 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1447 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
1449 if (find_reg_note (insn, REG_RETVAL, NULL))
1450 cselib_current_insn_in_libcall = false;
1451 cselib_current_insn = 0;
1453 if (n_useless_values > MAX_USELESS_VALUES
1454 /* remove_useless_values is linear in the hash table size. Avoid
1455 quadratic behaviour for very large hashtables with very few
1456 useless elements. */
1457 && (unsigned int)n_useless_values > cselib_hash_table->n_elements / 4)
1458 remove_useless_values ();
1461 /* Initialize cselib for one pass. The caller must also call
1462 init_alias_analysis. */
1464 void
1465 cselib_init (bool record_memory)
1467 elt_list_pool = create_alloc_pool ("elt_list",
1468 sizeof (struct elt_list), 10);
1469 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1470 sizeof (struct elt_loc_list), 10);
1471 cselib_val_pool = create_alloc_pool ("cselib_val_list",
1472 sizeof (cselib_val), 10);
1473 value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
1474 cselib_record_memory = record_memory;
1475 /* This is only created once. */
1476 if (! callmem)
1477 callmem = gen_rtx_MEM (BLKmode, const0_rtx);
1479 cselib_nregs = max_reg_num ();
1481 /* We preserve reg_values to allow expensive clearing of the whole thing.
1482 Reallocate it however if it happens to be too large. */
1483 if (!reg_values || reg_values_size < cselib_nregs
1484 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
1486 if (reg_values)
1487 free (reg_values);
1488 /* Some space for newly emit instructions so we don't end up
1489 reallocating in between passes. */
1490 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
1491 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
1493 used_regs = XNEWVEC (unsigned int, cselib_nregs);
1494 n_used_regs = 0;
1495 cselib_hash_table = htab_create (31, get_value_hash,
1496 entry_and_rtx_equal_p, NULL);
1497 cselib_current_insn_in_libcall = false;
1500 /* Called when the current user is done with cselib. */
1502 void
1503 cselib_finish (void)
1505 free_alloc_pool (elt_list_pool);
1506 free_alloc_pool (elt_loc_list_pool);
1507 free_alloc_pool (cselib_val_pool);
1508 free_alloc_pool (value_pool);
1509 cselib_clear_table ();
1510 htab_delete (cselib_hash_table);
1511 free (used_regs);
1512 used_regs = 0;
1513 cselib_hash_table = 0;
1514 n_useless_values = 0;
1515 next_unknown_value = 0;
1518 #include "gt-cselib.h"