1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
28 #include "tree-pass.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-hasher.h"
44 /* For each complex ssa name, a lattice value. We're interested in finding
45 out whether a complex number is degenerate in some way, having only real
46 or only complex parts. */
56 /* The type complex_lattice_t holds combinations of the above
58 typedef int complex_lattice_t
;
60 #define PAIR(a, b) ((a) << 2 | (b))
63 static vec
<complex_lattice_t
> complex_lattice_values
;
65 /* For each complex variable, a pair of variables for the components exists in
67 static int_tree_htab_type
*complex_variable_components
;
69 /* For each complex SSA_NAME, a pair of ssa names for the components. */
70 static vec
<tree
> complex_ssa_name_components
;
72 /* Lookup UID in the complex_variable_components hashtable and return the
75 cvc_lookup (unsigned int uid
)
77 struct int_tree_map in
;
79 return complex_variable_components
->find_with_hash (in
, uid
).to
;
82 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
85 cvc_insert (unsigned int uid
, tree to
)
91 loc
= complex_variable_components
->find_slot_with_hash (h
, uid
, INSERT
);
96 /* Return true if T is not a zero constant. In the case of real values,
97 we're only interested in +0.0. */
100 some_nonzerop (tree t
)
104 /* Operations with real or imaginary part of a complex number zero
105 cannot be treated the same as operations with a real or imaginary
106 operand if we care about the signs of zeros in the result. */
107 if (TREE_CODE (t
) == REAL_CST
&& !flag_signed_zeros
)
108 zerop
= real_identical (&TREE_REAL_CST (t
), &dconst0
);
109 else if (TREE_CODE (t
) == FIXED_CST
)
110 zerop
= fixed_zerop (t
);
111 else if (TREE_CODE (t
) == INTEGER_CST
)
112 zerop
= integer_zerop (t
);
118 /* Compute a lattice value from the components of a complex type REAL
121 static complex_lattice_t
122 find_lattice_value_parts (tree real
, tree imag
)
125 complex_lattice_t ret
;
127 r
= some_nonzerop (real
);
128 i
= some_nonzerop (imag
);
129 ret
= r
* ONLY_REAL
+ i
* ONLY_IMAG
;
131 /* ??? On occasion we could do better than mapping 0+0i to real, but we
132 certainly don't want to leave it UNINITIALIZED, which eventually gets
133 mapped to VARYING. */
134 if (ret
== UNINITIALIZED
)
141 /* Compute a lattice value from gimple_val T. */
143 static complex_lattice_t
144 find_lattice_value (tree t
)
148 switch (TREE_CODE (t
))
151 return complex_lattice_values
[SSA_NAME_VERSION (t
)];
154 real
= TREE_REALPART (t
);
155 imag
= TREE_IMAGPART (t
);
162 return find_lattice_value_parts (real
, imag
);
165 /* Determine if LHS is something for which we're interested in seeing
166 simulation results. */
169 is_complex_reg (tree lhs
)
171 return TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
&& is_gimple_reg (lhs
);
174 /* Mark the incoming parameters to the function as VARYING. */
177 init_parameter_lattice_values (void)
181 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
182 if (is_complex_reg (parm
)
183 && (ssa_name
= ssa_default_def (cfun
, parm
)) != NULL_TREE
)
184 complex_lattice_values
[SSA_NAME_VERSION (ssa_name
)] = VARYING
;
187 /* Initialize simulation state for each statement. Return false if we
188 found no statements we want to simulate, and thus there's nothing
189 for the entire pass to do. */
192 init_dont_simulate_again (void)
195 bool saw_a_complex_op
= false;
197 FOR_EACH_BB_FN (bb
, cfun
)
199 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
202 gphi
*phi
= gsi
.phi ();
203 prop_set_simulate_again (phi
,
204 is_complex_reg (gimple_phi_result (phi
)));
207 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
214 stmt
= gsi_stmt (gsi
);
215 op0
= op1
= NULL_TREE
;
217 /* Most control-altering statements must be initially
218 simulated, else we won't cover the entire cfg. */
219 sim_again_p
= stmt_ends_bb_p (stmt
);
221 switch (gimple_code (stmt
))
224 if (gimple_call_lhs (stmt
))
225 sim_again_p
= is_complex_reg (gimple_call_lhs (stmt
));
229 sim_again_p
= is_complex_reg (gimple_assign_lhs (stmt
));
230 if (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
231 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
232 op0
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0);
234 op0
= gimple_assign_rhs1 (stmt
);
235 if (gimple_num_ops (stmt
) > 2)
236 op1
= gimple_assign_rhs2 (stmt
);
240 op0
= gimple_cond_lhs (stmt
);
241 op1
= gimple_cond_rhs (stmt
);
249 switch (gimple_expr_code (stmt
))
261 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
262 || TREE_CODE (TREE_TYPE (op1
)) == COMPLEX_TYPE
)
263 saw_a_complex_op
= true;
268 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
)
269 saw_a_complex_op
= true;
274 /* The total store transformation performed during
275 gimplification creates such uninitialized loads
276 and we need to lower the statement to be able
278 if (TREE_CODE (op0
) == SSA_NAME
279 && ssa_undefined_value_p (op0
))
280 saw_a_complex_op
= true;
287 prop_set_simulate_again (stmt
, sim_again_p
);
291 return saw_a_complex_op
;
295 /* Evaluate statement STMT against the complex lattice defined above. */
297 static enum ssa_prop_result
298 complex_visit_stmt (gimple
*stmt
, edge
*taken_edge_p ATTRIBUTE_UNUSED
,
301 complex_lattice_t new_l
, old_l
, op1_l
, op2_l
;
305 lhs
= gimple_get_lhs (stmt
);
306 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
308 return SSA_PROP_VARYING
;
310 /* These conditions should be satisfied due to the initial filter
311 set up in init_dont_simulate_again. */
312 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
313 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
316 ver
= SSA_NAME_VERSION (lhs
);
317 old_l
= complex_lattice_values
[ver
];
319 switch (gimple_expr_code (stmt
))
323 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
327 new_l
= find_lattice_value_parts (gimple_assign_rhs1 (stmt
),
328 gimple_assign_rhs2 (stmt
));
333 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
334 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
336 /* We've set up the lattice values such that IOR neatly
338 new_l
= op1_l
| op2_l
;
347 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
348 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
350 /* Obviously, if either varies, so does the result. */
351 if (op1_l
== VARYING
|| op2_l
== VARYING
)
353 /* Don't prematurely promote variables if we've not yet seen
355 else if (op1_l
== UNINITIALIZED
)
357 else if (op2_l
== UNINITIALIZED
)
361 /* At this point both numbers have only one component. If the
362 numbers are of opposite kind, the result is imaginary,
363 otherwise the result is real. The add/subtract translates
364 the real/imag from/to 0/1; the ^ performs the comparison. */
365 new_l
= ((op1_l
- ONLY_REAL
) ^ (op2_l
- ONLY_REAL
)) + ONLY_REAL
;
367 /* Don't allow the lattice value to flip-flop indefinitely. */
374 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
382 /* If nothing changed this round, let the propagator know. */
384 return SSA_PROP_NOT_INTERESTING
;
386 complex_lattice_values
[ver
] = new_l
;
387 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
390 /* Evaluate a PHI node against the complex lattice defined above. */
392 static enum ssa_prop_result
393 complex_visit_phi (gphi
*phi
)
395 complex_lattice_t new_l
, old_l
;
400 lhs
= gimple_phi_result (phi
);
402 /* This condition should be satisfied due to the initial filter
403 set up in init_dont_simulate_again. */
404 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
406 /* We've set up the lattice values such that IOR neatly models PHI meet. */
407 new_l
= UNINITIALIZED
;
408 for (i
= gimple_phi_num_args (phi
) - 1; i
>= 0; --i
)
409 new_l
|= find_lattice_value (gimple_phi_arg_def (phi
, i
));
411 ver
= SSA_NAME_VERSION (lhs
);
412 old_l
= complex_lattice_values
[ver
];
415 return SSA_PROP_NOT_INTERESTING
;
417 complex_lattice_values
[ver
] = new_l
;
418 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
421 /* Create one backing variable for a complex component of ORIG. */
424 create_one_component_var (tree type
, tree orig
, const char *prefix
,
425 const char *suffix
, enum tree_code code
)
427 tree r
= create_tmp_var (type
, prefix
);
429 DECL_SOURCE_LOCATION (r
) = DECL_SOURCE_LOCATION (orig
);
430 DECL_ARTIFICIAL (r
) = 1;
432 if (DECL_NAME (orig
) && !DECL_IGNORED_P (orig
))
434 const char *name
= IDENTIFIER_POINTER (DECL_NAME (orig
));
435 name
= ACONCAT ((name
, suffix
, NULL
));
436 DECL_NAME (r
) = get_identifier (name
);
438 SET_DECL_DEBUG_EXPR (r
, build1 (code
, type
, orig
));
439 DECL_HAS_DEBUG_EXPR_P (r
) = 1;
440 DECL_IGNORED_P (r
) = 0;
441 TREE_NO_WARNING (r
) = TREE_NO_WARNING (orig
);
445 DECL_IGNORED_P (r
) = 1;
446 TREE_NO_WARNING (r
) = 1;
452 /* Retrieve a value for a complex component of VAR. */
455 get_component_var (tree var
, bool imag_p
)
457 size_t decl_index
= DECL_UID (var
) * 2 + imag_p
;
458 tree ret
= cvc_lookup (decl_index
);
462 ret
= create_one_component_var (TREE_TYPE (TREE_TYPE (var
)), var
,
463 imag_p
? "CI" : "CR",
464 imag_p
? "$imag" : "$real",
465 imag_p
? IMAGPART_EXPR
: REALPART_EXPR
);
466 cvc_insert (decl_index
, ret
);
472 /* Retrieve a value for a complex component of SSA_NAME. */
475 get_component_ssa_name (tree ssa_name
, bool imag_p
)
477 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
478 size_t ssa_name_index
;
481 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
483 tree inner_type
= TREE_TYPE (TREE_TYPE (ssa_name
));
484 if (SCALAR_FLOAT_TYPE_P (inner_type
))
485 return build_real (inner_type
, dconst0
);
487 return build_int_cst (inner_type
, 0);
490 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
491 ret
= complex_ssa_name_components
[ssa_name_index
];
494 if (SSA_NAME_VAR (ssa_name
))
495 ret
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
497 ret
= TREE_TYPE (TREE_TYPE (ssa_name
));
498 ret
= make_ssa_name (ret
);
500 /* Copy some properties from the original. In particular, whether it
501 is used in an abnormal phi, and whether it's uninitialized. */
502 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret
)
503 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
);
504 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name
)
505 && TREE_CODE (SSA_NAME_VAR (ssa_name
)) == VAR_DECL
)
507 SSA_NAME_DEF_STMT (ret
) = SSA_NAME_DEF_STMT (ssa_name
);
508 set_ssa_default_def (cfun
, SSA_NAME_VAR (ret
), ret
);
511 complex_ssa_name_components
[ssa_name_index
] = ret
;
517 /* Set a value for a complex component of SSA_NAME, return a
518 gimple_seq of stuff that needs doing. */
521 set_component_ssa_name (tree ssa_name
, bool imag_p
, tree value
)
523 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
524 size_t ssa_name_index
;
529 /* We know the value must be zero, else there's a bug in our lattice
530 analysis. But the value may well be a variable known to contain
531 zero. We should be safe ignoring it. */
532 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
535 /* If we've already assigned an SSA_NAME to this component, then this
536 means that our walk of the basic blocks found a use before the set.
537 This is fine. Now we should create an initialization for the value
538 we created earlier. */
539 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
540 comp
= complex_ssa_name_components
[ssa_name_index
];
544 /* If we've nothing assigned, and the value we're given is already stable,
545 then install that as the value for this SSA_NAME. This preemptively
546 copy-propagates the value, which avoids unnecessary memory allocation. */
547 else if (is_gimple_min_invariant (value
)
548 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
550 complex_ssa_name_components
[ssa_name_index
] = value
;
553 else if (TREE_CODE (value
) == SSA_NAME
554 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
556 /* Replace an anonymous base value with the variable from cvc_lookup.
557 This should result in better debug info. */
558 if (SSA_NAME_VAR (ssa_name
)
559 && (!SSA_NAME_VAR (value
) || DECL_IGNORED_P (SSA_NAME_VAR (value
)))
560 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name
)))
562 comp
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
563 replace_ssa_name_symbol (value
, comp
);
566 complex_ssa_name_components
[ssa_name_index
] = value
;
570 /* Finally, we need to stabilize the result by installing the value into
573 comp
= get_component_ssa_name (ssa_name
, imag_p
);
575 /* Do all the work to assign VALUE to COMP. */
577 value
= force_gimple_operand (value
, &list
, false, NULL
);
578 last
= gimple_build_assign (comp
, value
);
579 gimple_seq_add_stmt (&list
, last
);
580 gcc_assert (SSA_NAME_DEF_STMT (comp
) == last
);
585 /* Extract the real or imaginary part of a complex variable or constant.
586 Make sure that it's a proper gimple_val and gimplify it if not.
587 Emit any new code before gsi. */
590 extract_component (gimple_stmt_iterator
*gsi
, tree t
, bool imagpart_p
,
593 switch (TREE_CODE (t
))
596 return imagpart_p
? TREE_IMAGPART (t
) : TREE_REALPART (t
);
606 case VIEW_CONVERT_EXPR
:
609 tree inner_type
= TREE_TYPE (TREE_TYPE (t
));
611 t
= build1 ((imagpart_p
? IMAGPART_EXPR
: REALPART_EXPR
),
612 inner_type
, unshare_expr (t
));
615 t
= force_gimple_operand_gsi (gsi
, t
, true, NULL
, true,
622 return get_component_ssa_name (t
, imagpart_p
);
629 /* Update the complex components of the ssa name on the lhs of STMT. */
632 update_complex_components (gimple_stmt_iterator
*gsi
, gimple
*stmt
, tree r
,
638 lhs
= gimple_get_lhs (stmt
);
640 list
= set_component_ssa_name (lhs
, false, r
);
642 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
644 list
= set_component_ssa_name (lhs
, true, i
);
646 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
650 update_complex_components_on_edge (edge e
, tree lhs
, tree r
, tree i
)
654 list
= set_component_ssa_name (lhs
, false, r
);
656 gsi_insert_seq_on_edge (e
, list
);
658 list
= set_component_ssa_name (lhs
, true, i
);
660 gsi_insert_seq_on_edge (e
, list
);
664 /* Update an assignment to a complex variable in place. */
667 update_complex_assignment (gimple_stmt_iterator
*gsi
, tree r
, tree i
)
671 gimple_assign_set_rhs_with_ops (gsi
, COMPLEX_EXPR
, r
, i
);
672 stmt
= gsi_stmt (*gsi
);
674 if (maybe_clean_eh_stmt (stmt
))
675 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
677 if (gimple_in_ssa_p (cfun
))
678 update_complex_components (gsi
, gsi_stmt (*gsi
), r
, i
);
682 /* Generate code at the entry point of the function to initialize the
683 component variables for a complex parameter. */
686 update_parameter_components (void)
688 edge entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
691 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
693 tree type
= TREE_TYPE (parm
);
696 if (TREE_CODE (type
) != COMPLEX_TYPE
|| !is_gimple_reg (parm
))
699 type
= TREE_TYPE (type
);
700 ssa_name
= ssa_default_def (cfun
, parm
);
704 r
= build1 (REALPART_EXPR
, type
, ssa_name
);
705 i
= build1 (IMAGPART_EXPR
, type
, ssa_name
);
706 update_complex_components_on_edge (entry_edge
, ssa_name
, r
, i
);
710 /* Generate code to set the component variables of a complex variable
711 to match the PHI statements in block BB. */
714 update_phi_components (basic_block bb
)
718 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
720 gphi
*phi
= gsi
.phi ();
722 if (is_complex_reg (gimple_phi_result (phi
)))
725 gimple
*pr
= NULL
, *pi
= NULL
;
728 lr
= get_component_ssa_name (gimple_phi_result (phi
), false);
729 if (TREE_CODE (lr
) == SSA_NAME
)
730 pr
= create_phi_node (lr
, bb
);
732 li
= get_component_ssa_name (gimple_phi_result (phi
), true);
733 if (TREE_CODE (li
) == SSA_NAME
)
734 pi
= create_phi_node (li
, bb
);
736 for (i
= 0, n
= gimple_phi_num_args (phi
); i
< n
; ++i
)
738 tree comp
, arg
= gimple_phi_arg_def (phi
, i
);
741 comp
= extract_component (NULL
, arg
, false, false);
742 SET_PHI_ARG_DEF (pr
, i
, comp
);
746 comp
= extract_component (NULL
, arg
, true, false);
747 SET_PHI_ARG_DEF (pi
, i
, comp
);
754 /* Expand a complex move to scalars. */
757 expand_complex_move (gimple_stmt_iterator
*gsi
, tree type
)
759 tree inner_type
= TREE_TYPE (type
);
761 gimple
*stmt
= gsi_stmt (*gsi
);
763 if (is_gimple_assign (stmt
))
765 lhs
= gimple_assign_lhs (stmt
);
766 if (gimple_num_ops (stmt
) == 2)
767 rhs
= gimple_assign_rhs1 (stmt
);
771 else if (is_gimple_call (stmt
))
773 lhs
= gimple_call_lhs (stmt
);
779 if (TREE_CODE (lhs
) == SSA_NAME
)
781 if (is_ctrl_altering_stmt (stmt
))
785 /* The value is not assigned on the exception edges, so we need not
786 concern ourselves there. We do need to update on the fallthru
788 e
= find_fallthru_edge (gsi_bb (*gsi
)->succs
);
792 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
793 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
794 update_complex_components_on_edge (e
, lhs
, r
, i
);
796 else if (is_gimple_call (stmt
)
797 || gimple_has_side_effects (stmt
)
798 || gimple_assign_rhs_code (stmt
) == PAREN_EXPR
)
800 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
801 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
802 update_complex_components (gsi
, stmt
, r
, i
);
806 if (gimple_assign_rhs_code (stmt
) != COMPLEX_EXPR
)
808 r
= extract_component (gsi
, rhs
, 0, true);
809 i
= extract_component (gsi
, rhs
, 1, true);
813 r
= gimple_assign_rhs1 (stmt
);
814 i
= gimple_assign_rhs2 (stmt
);
816 update_complex_assignment (gsi
, r
, i
);
819 else if (rhs
&& TREE_CODE (rhs
) == SSA_NAME
&& !TREE_SIDE_EFFECTS (lhs
))
825 loc
= gimple_location (stmt
);
826 r
= extract_component (gsi
, rhs
, 0, false);
827 i
= extract_component (gsi
, rhs
, 1, false);
829 x
= build1 (REALPART_EXPR
, inner_type
, unshare_expr (lhs
));
830 t
= gimple_build_assign (x
, r
);
831 gimple_set_location (t
, loc
);
832 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
834 if (stmt
== gsi_stmt (*gsi
))
836 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
837 gimple_assign_set_lhs (stmt
, x
);
838 gimple_assign_set_rhs1 (stmt
, i
);
842 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
843 t
= gimple_build_assign (x
, i
);
844 gimple_set_location (t
, loc
);
845 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
847 stmt
= gsi_stmt (*gsi
);
848 gcc_assert (gimple_code (stmt
) == GIMPLE_RETURN
);
849 gimple_return_set_retval (as_a
<greturn
*> (stmt
), lhs
);
856 /* Expand complex addition to scalars:
857 a + b = (ar + br) + i(ai + bi)
858 a - b = (ar - br) + i(ai + bi)
862 expand_complex_addition (gimple_stmt_iterator
*gsi
, tree inner_type
,
863 tree ar
, tree ai
, tree br
, tree bi
,
865 complex_lattice_t al
, complex_lattice_t bl
)
869 switch (PAIR (al
, bl
))
871 case PAIR (ONLY_REAL
, ONLY_REAL
):
872 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
876 case PAIR (ONLY_REAL
, ONLY_IMAG
):
878 if (code
== MINUS_EXPR
)
879 ri
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, bi
);
884 case PAIR (ONLY_IMAG
, ONLY_REAL
):
885 if (code
== MINUS_EXPR
)
886 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ar
, br
);
892 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
894 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
897 case PAIR (VARYING
, ONLY_REAL
):
898 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
902 case PAIR (VARYING
, ONLY_IMAG
):
904 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
907 case PAIR (ONLY_REAL
, VARYING
):
908 if (code
== MINUS_EXPR
)
910 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
914 case PAIR (ONLY_IMAG
, VARYING
):
915 if (code
== MINUS_EXPR
)
918 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
921 case PAIR (VARYING
, VARYING
):
923 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
924 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
931 update_complex_assignment (gsi
, rr
, ri
);
934 /* Expand a complex multiplication or division to a libcall to the c99
935 compliant routines. */
938 expand_complex_libcall (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
939 tree br
, tree bi
, enum tree_code code
)
942 enum built_in_function bcode
;
947 old_stmt
= gsi_stmt (*gsi
);
948 lhs
= gimple_assign_lhs (old_stmt
);
949 type
= TREE_TYPE (lhs
);
951 mode
= TYPE_MODE (type
);
952 gcc_assert (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
);
954 if (code
== MULT_EXPR
)
955 bcode
= ((enum built_in_function
)
956 (BUILT_IN_COMPLEX_MUL_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
957 else if (code
== RDIV_EXPR
)
958 bcode
= ((enum built_in_function
)
959 (BUILT_IN_COMPLEX_DIV_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
962 fn
= builtin_decl_explicit (bcode
);
964 stmt
= gimple_build_call (fn
, 4, ar
, ai
, br
, bi
);
965 gimple_call_set_lhs (stmt
, lhs
);
967 gsi_replace (gsi
, stmt
, false);
969 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
970 gimple_purge_dead_eh_edges (gsi_bb (*gsi
));
972 if (gimple_in_ssa_p (cfun
))
974 type
= TREE_TYPE (type
);
975 update_complex_components (gsi
, stmt
,
976 build1 (REALPART_EXPR
, type
, lhs
),
977 build1 (IMAGPART_EXPR
, type
, lhs
));
978 SSA_NAME_DEF_STMT (lhs
) = stmt
;
982 /* Expand complex multiplication to scalars:
983 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
987 expand_complex_multiplication (gimple_stmt_iterator
*gsi
, tree inner_type
,
988 tree ar
, tree ai
, tree br
, tree bi
,
989 complex_lattice_t al
, complex_lattice_t bl
)
995 complex_lattice_t tl
;
996 rr
= ar
, ar
= br
, br
= rr
;
997 ri
= ai
, ai
= bi
, bi
= ri
;
998 tl
= al
, al
= bl
, bl
= tl
;
1001 switch (PAIR (al
, bl
))
1003 case PAIR (ONLY_REAL
, ONLY_REAL
):
1004 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1008 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1010 if (TREE_CODE (ai
) == REAL_CST
1011 && real_identical (&TREE_REAL_CST (ai
), &dconst1
))
1014 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1017 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1018 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1019 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1023 case PAIR (VARYING
, ONLY_REAL
):
1024 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1025 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1028 case PAIR (VARYING
, ONLY_IMAG
):
1029 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1030 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1031 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1034 case PAIR (VARYING
, VARYING
):
1035 if (flag_complex_method
== 2 && SCALAR_FLOAT_TYPE_P (inner_type
))
1037 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, MULT_EXPR
);
1042 tree t1
, t2
, t3
, t4
;
1044 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1045 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1046 t3
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1048 /* Avoid expanding redundant multiplication for the common
1049 case of squaring a complex number. */
1050 if (ar
== br
&& ai
== bi
)
1053 t4
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1055 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1056 ri
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t3
, t4
);
1064 update_complex_assignment (gsi
, rr
, ri
);
1067 /* Keep this algorithm in sync with fold-const.c:const_binop().
1069 Expand complex division to scalars, straightforward algorithm.
1070 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1075 expand_complex_div_straight (gimple_stmt_iterator
*gsi
, tree inner_type
,
1076 tree ar
, tree ai
, tree br
, tree bi
,
1077 enum tree_code code
)
1079 tree rr
, ri
, div
, t1
, t2
, t3
;
1081 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, br
);
1082 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, bi
);
1083 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1085 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1086 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1087 t3
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1088 rr
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1090 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1091 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1092 t3
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1093 ri
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1095 update_complex_assignment (gsi
, rr
, ri
);
1098 /* Keep this algorithm in sync with fold-const.c:const_binop().
1100 Expand complex division to scalars, modified algorithm to minimize
1101 overflow with wide input ranges. */
1104 expand_complex_div_wide (gimple_stmt_iterator
*gsi
, tree inner_type
,
1105 tree ar
, tree ai
, tree br
, tree bi
,
1106 enum tree_code code
)
1108 tree rr
, ri
, ratio
, div
, t1
, t2
, tr
, ti
, compare
;
1109 basic_block bb_cond
, bb_true
, bb_false
, bb_join
;
1112 /* Examine |br| < |bi|, and branch. */
1113 t1
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, br
);
1114 t2
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, bi
);
1115 compare
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)),
1116 LT_EXPR
, boolean_type_node
, t1
, t2
);
1117 STRIP_NOPS (compare
);
1119 bb_cond
= bb_true
= bb_false
= bb_join
= NULL
;
1120 rr
= ri
= tr
= ti
= NULL
;
1121 if (TREE_CODE (compare
) != INTEGER_CST
)
1127 tmp
= create_tmp_var (boolean_type_node
);
1128 stmt
= gimple_build_assign (tmp
, compare
);
1129 if (gimple_in_ssa_p (cfun
))
1131 tmp
= make_ssa_name (tmp
, stmt
);
1132 gimple_assign_set_lhs (stmt
, tmp
);
1135 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1137 cond
= fold_build2_loc (gimple_location (stmt
),
1138 EQ_EXPR
, boolean_type_node
, tmp
, boolean_true_node
);
1139 stmt
= gimple_build_cond_from_tree (cond
, NULL_TREE
, NULL_TREE
);
1140 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1142 /* Split the original block, and create the TRUE and FALSE blocks. */
1143 e
= split_block (gsi_bb (*gsi
), stmt
);
1146 bb_true
= create_empty_bb (bb_cond
);
1147 bb_false
= create_empty_bb (bb_true
);
1149 /* Wire the blocks together. */
1150 e
->flags
= EDGE_TRUE_VALUE
;
1151 redirect_edge_succ (e
, bb_true
);
1152 make_edge (bb_cond
, bb_false
, EDGE_FALSE_VALUE
);
1153 make_edge (bb_true
, bb_join
, EDGE_FALLTHRU
);
1154 make_edge (bb_false
, bb_join
, EDGE_FALLTHRU
);
1155 add_bb_to_loop (bb_true
, bb_cond
->loop_father
);
1156 add_bb_to_loop (bb_false
, bb_cond
->loop_father
);
1158 /* Update dominance info. Note that bb_join's data was
1159 updated by split_block. */
1160 if (dom_info_available_p (CDI_DOMINATORS
))
1162 set_immediate_dominator (CDI_DOMINATORS
, bb_true
, bb_cond
);
1163 set_immediate_dominator (CDI_DOMINATORS
, bb_false
, bb_cond
);
1166 rr
= create_tmp_reg (inner_type
);
1167 ri
= create_tmp_reg (inner_type
);
1170 /* In the TRUE branch, we compute
1172 div = (br * ratio) + bi;
1173 tr = (ar * ratio) + ai;
1174 ti = (ai * ratio) - ar;
1177 if (bb_true
|| integer_nonzerop (compare
))
1181 *gsi
= gsi_last_bb (bb_true
);
1182 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1185 ratio
= gimplify_build2 (gsi
, code
, inner_type
, br
, bi
);
1187 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, ratio
);
1188 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, bi
);
1190 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1191 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ai
);
1193 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1194 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, ar
);
1196 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1197 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1201 stmt
= gimple_build_assign (rr
, tr
);
1202 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1203 stmt
= gimple_build_assign (ri
, ti
);
1204 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1205 gsi_remove (gsi
, true);
1209 /* In the FALSE branch, we compute
1211 divisor = (d * ratio) + c;
1212 tr = (b * ratio) + a;
1213 ti = b - (a * ratio);
1216 if (bb_false
|| integer_zerop (compare
))
1220 *gsi
= gsi_last_bb (bb_false
);
1221 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1224 ratio
= gimplify_build2 (gsi
, code
, inner_type
, bi
, br
);
1226 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, ratio
);
1227 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, br
);
1229 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1230 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ar
);
1232 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1233 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, t1
);
1235 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1236 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1240 stmt
= gimple_build_assign (rr
, tr
);
1241 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1242 stmt
= gimple_build_assign (ri
, ti
);
1243 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1244 gsi_remove (gsi
, true);
1249 *gsi
= gsi_start_bb (bb_join
);
1253 update_complex_assignment (gsi
, rr
, ri
);
1256 /* Expand complex division to scalars. */
1259 expand_complex_division (gimple_stmt_iterator
*gsi
, tree inner_type
,
1260 tree ar
, tree ai
, tree br
, tree bi
,
1261 enum tree_code code
,
1262 complex_lattice_t al
, complex_lattice_t bl
)
1266 switch (PAIR (al
, bl
))
1268 case PAIR (ONLY_REAL
, ONLY_REAL
):
1269 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1273 case PAIR (ONLY_REAL
, ONLY_IMAG
):
1275 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1276 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1279 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1281 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1284 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1285 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1289 case PAIR (VARYING
, ONLY_REAL
):
1290 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1291 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1294 case PAIR (VARYING
, ONLY_IMAG
):
1295 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1296 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1297 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1299 case PAIR (ONLY_REAL
, VARYING
):
1300 case PAIR (ONLY_IMAG
, VARYING
):
1301 case PAIR (VARYING
, VARYING
):
1302 switch (flag_complex_method
)
1305 /* straightforward implementation of complex divide acceptable. */
1306 expand_complex_div_straight (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1310 if (SCALAR_FLOAT_TYPE_P (inner_type
))
1312 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, code
);
1318 /* wide ranges of inputs must work for complex divide. */
1319 expand_complex_div_wide (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1331 update_complex_assignment (gsi
, rr
, ri
);
1334 /* Expand complex negation to scalars:
1339 expand_complex_negation (gimple_stmt_iterator
*gsi
, tree inner_type
,
1344 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ar
);
1345 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1347 update_complex_assignment (gsi
, rr
, ri
);
1350 /* Expand complex conjugate to scalars:
1355 expand_complex_conjugate (gimple_stmt_iterator
*gsi
, tree inner_type
,
1360 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1362 update_complex_assignment (gsi
, ar
, ri
);
1365 /* Expand complex comparison (EQ or NE only). */
1368 expand_complex_comparison (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
1369 tree br
, tree bi
, enum tree_code code
)
1371 tree cr
, ci
, cc
, type
;
1374 cr
= gimplify_build2 (gsi
, code
, boolean_type_node
, ar
, br
);
1375 ci
= gimplify_build2 (gsi
, code
, boolean_type_node
, ai
, bi
);
1376 cc
= gimplify_build2 (gsi
,
1377 (code
== EQ_EXPR
? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
),
1378 boolean_type_node
, cr
, ci
);
1380 stmt
= gsi_stmt (*gsi
);
1382 switch (gimple_code (stmt
))
1386 greturn
*return_stmt
= as_a
<greturn
*> (stmt
);
1387 type
= TREE_TYPE (gimple_return_retval (return_stmt
));
1388 gimple_return_set_retval (return_stmt
, fold_convert (type
, cc
));
1393 type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1394 gimple_assign_set_rhs_from_tree (gsi
, fold_convert (type
, cc
));
1395 stmt
= gsi_stmt (*gsi
);
1400 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1401 gimple_cond_set_code (cond_stmt
, EQ_EXPR
);
1402 gimple_cond_set_lhs (cond_stmt
, cc
);
1403 gimple_cond_set_rhs (cond_stmt
, boolean_true_node
);
1414 /* Expand inline asm that sets some complex SSA_NAMEs. */
1417 expand_complex_asm (gimple_stmt_iterator
*gsi
)
1419 gasm
*stmt
= as_a
<gasm
*> (gsi_stmt (*gsi
));
1422 for (i
= 0; i
< gimple_asm_noutputs (stmt
); ++i
)
1424 tree link
= gimple_asm_output_op (stmt
, i
);
1425 tree op
= TREE_VALUE (link
);
1426 if (TREE_CODE (op
) == SSA_NAME
1427 && TREE_CODE (TREE_TYPE (op
)) == COMPLEX_TYPE
)
1429 tree type
= TREE_TYPE (op
);
1430 tree inner_type
= TREE_TYPE (type
);
1431 tree r
= build1 (REALPART_EXPR
, inner_type
, op
);
1432 tree i
= build1 (IMAGPART_EXPR
, inner_type
, op
);
1433 gimple_seq list
= set_component_ssa_name (op
, false, r
);
1436 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1438 list
= set_component_ssa_name (op
, true, i
);
1440 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1445 /* Process one statement. If we identify a complex operation, expand it. */
1448 expand_complex_operations_1 (gimple_stmt_iterator
*gsi
)
1450 gimple
*stmt
= gsi_stmt (*gsi
);
1451 tree type
, inner_type
, lhs
;
1452 tree ac
, ar
, ai
, bc
, br
, bi
;
1453 complex_lattice_t al
, bl
;
1454 enum tree_code code
;
1456 if (gimple_code (stmt
) == GIMPLE_ASM
)
1458 expand_complex_asm (gsi
);
1462 lhs
= gimple_get_lhs (stmt
);
1463 if (!lhs
&& gimple_code (stmt
) != GIMPLE_COND
)
1466 type
= TREE_TYPE (gimple_op (stmt
, 0));
1467 code
= gimple_expr_code (stmt
);
1469 /* Initial filter for operations we handle. */
1475 case TRUNC_DIV_EXPR
:
1477 case FLOOR_DIV_EXPR
:
1478 case ROUND_DIV_EXPR
:
1482 if (TREE_CODE (type
) != COMPLEX_TYPE
)
1484 inner_type
= TREE_TYPE (type
);
1489 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1490 subcode, so we need to access the operands using gimple_op. */
1491 inner_type
= TREE_TYPE (gimple_op (stmt
, 1));
1492 if (TREE_CODE (inner_type
) != COMPLEX_TYPE
)
1500 /* GIMPLE_COND may also fallthru here, but we do not need to
1501 do anything with it. */
1502 if (gimple_code (stmt
) == GIMPLE_COND
)
1505 if (TREE_CODE (type
) == COMPLEX_TYPE
)
1506 expand_complex_move (gsi
, type
);
1507 else if (is_gimple_assign (stmt
)
1508 && (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
1509 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
1510 && TREE_CODE (lhs
) == SSA_NAME
)
1512 rhs
= gimple_assign_rhs1 (stmt
);
1513 rhs
= extract_component (gsi
, TREE_OPERAND (rhs
, 0),
1514 gimple_assign_rhs_code (stmt
)
1517 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1518 stmt
= gsi_stmt (*gsi
);
1525 /* Extract the components of the two complex values. Make sure and
1526 handle the common case of the same value used twice specially. */
1527 if (is_gimple_assign (stmt
))
1529 ac
= gimple_assign_rhs1 (stmt
);
1530 bc
= (gimple_num_ops (stmt
) > 2) ? gimple_assign_rhs2 (stmt
) : NULL
;
1532 /* GIMPLE_CALL can not get here. */
1535 ac
= gimple_cond_lhs (stmt
);
1536 bc
= gimple_cond_rhs (stmt
);
1539 ar
= extract_component (gsi
, ac
, false, true);
1540 ai
= extract_component (gsi
, ac
, true, true);
1546 br
= extract_component (gsi
, bc
, 0, true);
1547 bi
= extract_component (gsi
, bc
, 1, true);
1550 br
= bi
= NULL_TREE
;
1552 if (gimple_in_ssa_p (cfun
))
1554 al
= find_lattice_value (ac
);
1555 if (al
== UNINITIALIZED
)
1558 if (TREE_CODE_CLASS (code
) == tcc_unary
)
1564 bl
= find_lattice_value (bc
);
1565 if (bl
== UNINITIALIZED
)
1576 expand_complex_addition (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1580 expand_complex_multiplication (gsi
, inner_type
, ar
, ai
, br
, bi
, al
, bl
);
1583 case TRUNC_DIV_EXPR
:
1585 case FLOOR_DIV_EXPR
:
1586 case ROUND_DIV_EXPR
:
1588 expand_complex_division (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1592 expand_complex_negation (gsi
, inner_type
, ar
, ai
);
1596 expand_complex_conjugate (gsi
, inner_type
, ar
, ai
);
1601 expand_complex_comparison (gsi
, ar
, ai
, br
, bi
, code
);
1610 /* Entry point for complex operation lowering during optimization. */
1613 tree_lower_complex (void)
1615 int old_last_basic_block
;
1616 gimple_stmt_iterator gsi
;
1619 if (!init_dont_simulate_again ())
1622 complex_lattice_values
.create (num_ssa_names
);
1623 complex_lattice_values
.safe_grow_cleared (num_ssa_names
);
1625 init_parameter_lattice_values ();
1626 ssa_propagate (complex_visit_stmt
, complex_visit_phi
);
1628 complex_variable_components
= new int_tree_htab_type (10);
1630 complex_ssa_name_components
.create (2 * num_ssa_names
);
1631 complex_ssa_name_components
.safe_grow_cleared (2 * num_ssa_names
);
1633 update_parameter_components ();
1635 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1636 old_last_basic_block
= last_basic_block_for_fn (cfun
);
1637 FOR_EACH_BB_FN (bb
, cfun
)
1639 if (bb
->index
>= old_last_basic_block
)
1642 update_phi_components (bb
);
1643 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1644 expand_complex_operations_1 (&gsi
);
1647 gsi_commit_edge_inserts ();
1649 delete complex_variable_components
;
1650 complex_variable_components
= NULL
;
1651 complex_ssa_name_components
.release ();
1652 complex_lattice_values
.release ();
1658 const pass_data pass_data_lower_complex
=
1660 GIMPLE_PASS
, /* type */
1661 "cplxlower", /* name */
1662 OPTGROUP_NONE
, /* optinfo_flags */
1663 TV_NONE
, /* tv_id */
1664 PROP_ssa
, /* properties_required */
1665 PROP_gimple_lcx
, /* properties_provided */
1666 0, /* properties_destroyed */
1667 0, /* todo_flags_start */
1668 TODO_update_ssa
, /* todo_flags_finish */
1671 class pass_lower_complex
: public gimple_opt_pass
1674 pass_lower_complex (gcc::context
*ctxt
)
1675 : gimple_opt_pass (pass_data_lower_complex
, ctxt
)
1678 /* opt_pass methods: */
1679 opt_pass
* clone () { return new pass_lower_complex (m_ctxt
); }
1680 virtual unsigned int execute (function
*) { return tree_lower_complex (); }
1682 }; // class pass_lower_complex
1687 make_pass_lower_complex (gcc::context
*ctxt
)
1689 return new pass_lower_complex (ctxt
);
1695 const pass_data pass_data_lower_complex_O0
=
1697 GIMPLE_PASS
, /* type */
1698 "cplxlower0", /* name */
1699 OPTGROUP_NONE
, /* optinfo_flags */
1700 TV_NONE
, /* tv_id */
1701 PROP_cfg
, /* properties_required */
1702 PROP_gimple_lcx
, /* properties_provided */
1703 0, /* properties_destroyed */
1704 0, /* todo_flags_start */
1705 TODO_update_ssa
, /* todo_flags_finish */
1708 class pass_lower_complex_O0
: public gimple_opt_pass
1711 pass_lower_complex_O0 (gcc::context
*ctxt
)
1712 : gimple_opt_pass (pass_data_lower_complex_O0
, ctxt
)
1715 /* opt_pass methods: */
1716 virtual bool gate (function
*fun
)
1718 /* With errors, normal optimization passes are not run. If we don't
1719 lower complex operations at all, rtl expansion will abort. */
1720 return !(fun
->curr_properties
& PROP_gimple_lcx
);
1723 virtual unsigned int execute (function
*) { return tree_lower_complex (); }
1725 }; // class pass_lower_complex_O0
1730 make_pass_lower_complex_O0 (gcc::context
*ctxt
)
1732 return new pass_lower_complex_O0 (ctxt
);