* c-decl.c (duplicate_decls): Copy DECL_SAVED_TREE.
[official-gcc.git] / gcc / tree.c
blob80458512b180d7194768060bc43e9392ed1613d0
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
48 #include "langhooks.h"
50 #define obstack_chunk_alloc xmalloc
51 #define obstack_chunk_free free
52 /* obstack.[ch] explicitly declined to prototype this. */
53 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
55 static void unsave_expr_now_r PARAMS ((tree));
57 /* Objects allocated on this obstack last forever. */
59 struct obstack permanent_obstack;
61 /* Table indexed by tree code giving a string containing a character
62 classifying the tree code. Possibilities are
63 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
65 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
67 char tree_code_type[MAX_TREE_CODES] = {
68 #include "tree.def"
70 #undef DEFTREECODE
72 /* Table indexed by tree code giving number of expression
73 operands beyond the fixed part of the node structure.
74 Not used for types or decls. */
76 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
78 int tree_code_length[MAX_TREE_CODES] = {
79 #include "tree.def"
81 #undef DEFTREECODE
83 /* Names of tree components.
84 Used for printing out the tree and error messages. */
85 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
87 const char *tree_code_name[MAX_TREE_CODES] = {
88 #include "tree.def"
90 #undef DEFTREECODE
92 /* Statistics-gathering stuff. */
93 typedef enum
95 d_kind,
96 t_kind,
97 b_kind,
98 s_kind,
99 r_kind,
100 e_kind,
101 c_kind,
102 id_kind,
103 perm_list_kind,
104 temp_list_kind,
105 vec_kind,
106 x_kind,
107 lang_decl,
108 lang_type,
109 all_kinds
110 } tree_node_kind;
112 int tree_node_counts[(int) all_kinds];
113 int tree_node_sizes[(int) all_kinds];
115 static const char * const tree_node_kind_names[] = {
116 "decls",
117 "types",
118 "blocks",
119 "stmts",
120 "refs",
121 "exprs",
122 "constants",
123 "identifiers",
124 "perm_tree_lists",
125 "temp_tree_lists",
126 "vecs",
127 "random kinds",
128 "lang_decl kinds",
129 "lang_type kinds"
132 /* Unique id for next decl created. */
133 static int next_decl_uid;
134 /* Unique id for next type created. */
135 static int next_type_uid = 1;
137 /* Since we cannot rehash a type after it is in the table, we have to
138 keep the hash code. */
140 struct type_hash
142 unsigned long hash;
143 tree type;
146 /* Initial size of the hash table (rounded to next prime). */
147 #define TYPE_HASH_INITIAL_SIZE 1000
149 /* Now here is the hash table. When recording a type, it is added to
150 the slot whose index is the hash code. Note that the hash table is
151 used for several kinds of types (function types, array types and
152 array index range types, for now). While all these live in the
153 same table, they are completely independent, and the hash code is
154 computed differently for each of these. */
156 htab_t type_hash_table;
158 static void build_real_from_int_cst_1 PARAMS ((PTR));
159 static void set_type_quals PARAMS ((tree, int));
160 static void append_random_chars PARAMS ((char *));
161 static int type_hash_eq PARAMS ((const void*, const void*));
162 static unsigned int type_hash_hash PARAMS ((const void*));
163 static void print_type_hash_statistics PARAMS((void));
164 static void finish_vector_type PARAMS((tree));
165 static int type_hash_marked_p PARAMS ((const void *));
166 static void type_hash_mark PARAMS ((const void *));
167 static int mark_tree_hashtable_entry PARAMS((void **, void *));
169 /* If non-null, these are language-specific helper functions for
170 unsave_expr_now. If present, LANG_UNSAVE is called before its
171 argument (an UNSAVE_EXPR) is to be unsaved, and all other
172 processing in unsave_expr_now is aborted. LANG_UNSAVE_EXPR_NOW is
173 called from unsave_expr_1 for language-specific tree codes. */
174 void (*lang_unsave) PARAMS ((tree *));
175 void (*lang_unsave_expr_now) PARAMS ((tree));
177 /* If non-null, these are language-specific helper functions for
178 unsafe_for_reeval. Return negative to not handle some tree. */
179 int (*lang_unsafe_for_reeval) PARAMS ((tree));
181 /* Set the DECL_ASSEMBLER_NAME for a node. If it is the sort of thing
182 that the assembler should talk about, set DECL_ASSEMBLER_NAME to an
183 appropriate IDENTIFIER_NODE. Otherwise, set it to the
184 ERROR_MARK_NODE to ensure that the assembler does not talk about
185 it. */
186 void (*lang_set_decl_assembler_name) PARAMS ((tree));
188 tree global_trees[TI_MAX];
189 tree integer_types[itk_none];
191 /* Set the DECL_ASSEMBLER_NAME for DECL. */
192 void
193 set_decl_assembler_name (decl)
194 tree decl;
196 /* The language-independent code should never use the
197 DECL_ASSEMBLER_NAME for lots of DECLs. Only FUNCTION_DECLs and
198 VAR_DECLs for variables with static storage duration need a real
199 DECL_ASSEMBLER_NAME. */
200 if (TREE_CODE (decl) == FUNCTION_DECL
201 || (TREE_CODE (decl) == VAR_DECL
202 && (TREE_STATIC (decl)
203 || DECL_EXTERNAL (decl)
204 || TREE_PUBLIC (decl))))
205 /* By default, assume the name to use in assembly code is the
206 same as that used in the source language. (That's correct
207 for C, and GCC used to set DECL_ASSEMBLER_NAME to the same
208 value as DECL_NAME in build_decl, so this choice provides
209 backwards compatibility with existing front-ends. */
210 SET_DECL_ASSEMBLER_NAME (decl, DECL_NAME (decl));
211 else
212 /* Nobody should ever be asking for the DECL_ASSEMBLER_NAME of
213 these DECLs -- unless they're in language-dependent code, in
214 which case lang_set_decl_assembler_name should handle things. */
215 abort ();
218 /* Init the principal obstacks. */
220 void
221 init_obstacks ()
223 gcc_obstack_init (&permanent_obstack);
225 /* Initialize the hash table of types. */
226 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
227 type_hash_eq, 0);
228 ggc_add_deletable_htab (type_hash_table, type_hash_marked_p,
229 type_hash_mark);
230 ggc_add_tree_root (global_trees, TI_MAX);
231 ggc_add_tree_root (integer_types, itk_none);
233 /* Set lang_set_decl_set_assembler_name to a default value. */
234 lang_set_decl_assembler_name = set_decl_assembler_name;
238 /* Allocate SIZE bytes in the permanent obstack
239 and return a pointer to them. */
241 char *
242 permalloc (size)
243 int size;
245 return (char *) obstack_alloc (&permanent_obstack, size);
248 /* Allocate NELEM items of SIZE bytes in the permanent obstack
249 and return a pointer to them. The storage is cleared before
250 returning the value. */
252 char *
253 perm_calloc (nelem, size)
254 int nelem;
255 long size;
257 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
258 memset (rval, 0, nelem * size);
259 return rval;
262 /* Compute the number of bytes occupied by 'node'. This routine only
263 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
264 size_t
265 tree_size (node)
266 tree node;
268 enum tree_code code = TREE_CODE (node);
270 switch (TREE_CODE_CLASS (code))
272 case 'd': /* A decl node */
273 return sizeof (struct tree_decl);
275 case 't': /* a type node */
276 return sizeof (struct tree_type);
278 case 'b': /* a lexical block node */
279 return sizeof (struct tree_block);
281 case 'r': /* a reference */
282 case 'e': /* an expression */
283 case 's': /* an expression with side effects */
284 case '<': /* a comparison expression */
285 case '1': /* a unary arithmetic expression */
286 case '2': /* a binary arithmetic expression */
287 return (sizeof (struct tree_exp)
288 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
290 case 'c': /* a constant */
291 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
292 words is machine-dependent due to varying length of HOST_WIDE_INT,
293 which might be wider than a pointer (e.g., long long). Similarly
294 for REAL_CST, since the number of words is machine-dependent due
295 to varying size and alignment of `double'. */
296 if (code == INTEGER_CST)
297 return sizeof (struct tree_int_cst);
298 else if (code == REAL_CST)
299 return sizeof (struct tree_real_cst);
300 else
301 return (sizeof (struct tree_common)
302 + TREE_CODE_LENGTH (code) * sizeof (char *));
304 case 'x': /* something random, like an identifier. */
306 size_t length;
307 length = (sizeof (struct tree_common)
308 + TREE_CODE_LENGTH (code) * sizeof (char *));
309 if (code == TREE_VEC)
310 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
311 return length;
314 default:
315 abort ();
319 /* Return a newly allocated node of code CODE.
320 For decl and type nodes, some other fields are initialized.
321 The rest of the node is initialized to zero.
323 Achoo! I got a code in the node. */
325 tree
326 make_node (code)
327 enum tree_code code;
329 tree t;
330 int type = TREE_CODE_CLASS (code);
331 size_t length;
332 #ifdef GATHER_STATISTICS
333 tree_node_kind kind;
334 #endif
335 struct tree_common ttmp;
337 /* We can't allocate a TREE_VEC without knowing how many elements
338 it will have. */
339 if (code == TREE_VEC)
340 abort ();
342 TREE_SET_CODE ((tree)&ttmp, code);
343 length = tree_size ((tree)&ttmp);
345 #ifdef GATHER_STATISTICS
346 switch (type)
348 case 'd': /* A decl node */
349 kind = d_kind;
350 break;
352 case 't': /* a type node */
353 kind = t_kind;
354 break;
356 case 'b': /* a lexical block */
357 kind = b_kind;
358 break;
360 case 's': /* an expression with side effects */
361 kind = s_kind;
362 break;
364 case 'r': /* a reference */
365 kind = r_kind;
366 break;
368 case 'e': /* an expression */
369 case '<': /* a comparison expression */
370 case '1': /* a unary arithmetic expression */
371 case '2': /* a binary arithmetic expression */
372 kind = e_kind;
373 break;
375 case 'c': /* a constant */
376 kind = c_kind;
377 break;
379 case 'x': /* something random, like an identifier. */
380 if (code == IDENTIFIER_NODE)
381 kind = id_kind;
382 else if (code == TREE_VEC)
383 kind = vec_kind;
384 else
385 kind = x_kind;
386 break;
388 default:
389 abort ();
392 tree_node_counts[(int) kind]++;
393 tree_node_sizes[(int) kind] += length;
394 #endif
396 t = ggc_alloc_tree (length);
398 memset ((PTR) t, 0, length);
400 TREE_SET_CODE (t, code);
402 switch (type)
404 case 's':
405 TREE_SIDE_EFFECTS (t) = 1;
406 TREE_TYPE (t) = void_type_node;
407 break;
409 case 'd':
410 if (code != FUNCTION_DECL)
411 DECL_ALIGN (t) = 1;
412 DECL_USER_ALIGN (t) = 0;
413 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
414 DECL_SOURCE_LINE (t) = lineno;
415 DECL_SOURCE_FILE (t) =
416 (input_filename) ? input_filename : "<built-in>";
417 DECL_UID (t) = next_decl_uid++;
419 /* We have not yet computed the alias set for this declaration. */
420 DECL_POINTER_ALIAS_SET (t) = -1;
421 break;
423 case 't':
424 TYPE_UID (t) = next_type_uid++;
425 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
426 TYPE_USER_ALIGN (t) = 0;
427 TYPE_MAIN_VARIANT (t) = t;
429 /* Default to no attributes for type, but let target change that. */
430 TYPE_ATTRIBUTES (t) = NULL_TREE;
431 (*targetm.set_default_type_attributes) (t);
433 /* We have not yet computed the alias set for this type. */
434 TYPE_ALIAS_SET (t) = -1;
435 break;
437 case 'c':
438 TREE_CONSTANT (t) = 1;
439 break;
441 case 'e':
442 switch (code)
444 case INIT_EXPR:
445 case MODIFY_EXPR:
446 case VA_ARG_EXPR:
447 case RTL_EXPR:
448 case PREDECREMENT_EXPR:
449 case PREINCREMENT_EXPR:
450 case POSTDECREMENT_EXPR:
451 case POSTINCREMENT_EXPR:
452 /* All of these have side-effects, no matter what their
453 operands are. */
454 TREE_SIDE_EFFECTS (t) = 1;
455 break;
457 default:
458 break;
460 break;
463 return t;
466 /* A front-end can reset this to an appropriate function if types need
467 special handling. */
469 tree (*make_lang_type_fn) PARAMS ((enum tree_code)) = make_node;
471 /* Return a new type (with the indicated CODE), doing whatever
472 language-specific processing is required. */
474 tree
475 make_lang_type (code)
476 enum tree_code code;
478 return (*make_lang_type_fn) (code);
481 /* Return a new node with the same contents as NODE except that its
482 TREE_CHAIN is zero and it has a fresh uid. */
484 tree
485 copy_node (node)
486 tree node;
488 tree t;
489 enum tree_code code = TREE_CODE (node);
490 size_t length;
492 length = tree_size (node);
493 t = ggc_alloc_tree (length);
494 memcpy (t, node, length);
496 TREE_CHAIN (t) = 0;
497 TREE_ASM_WRITTEN (t) = 0;
499 if (TREE_CODE_CLASS (code) == 'd')
500 DECL_UID (t) = next_decl_uid++;
501 else if (TREE_CODE_CLASS (code) == 't')
503 TYPE_UID (t) = next_type_uid++;
504 /* The following is so that the debug code for
505 the copy is different from the original type.
506 The two statements usually duplicate each other
507 (because they clear fields of the same union),
508 but the optimizer should catch that. */
509 TYPE_SYMTAB_POINTER (t) = 0;
510 TYPE_SYMTAB_ADDRESS (t) = 0;
513 return t;
516 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
517 For example, this can copy a list made of TREE_LIST nodes. */
519 tree
520 copy_list (list)
521 tree list;
523 tree head;
524 tree prev, next;
526 if (list == 0)
527 return 0;
529 head = prev = copy_node (list);
530 next = TREE_CHAIN (list);
531 while (next)
533 TREE_CHAIN (prev) = copy_node (next);
534 prev = TREE_CHAIN (prev);
535 next = TREE_CHAIN (next);
537 return head;
541 /* Return a newly constructed INTEGER_CST node whose constant value
542 is specified by the two ints LOW and HI.
543 The TREE_TYPE is set to `int'.
545 This function should be used via the `build_int_2' macro. */
547 tree
548 build_int_2_wide (low, hi)
549 unsigned HOST_WIDE_INT low;
550 HOST_WIDE_INT hi;
552 tree t = make_node (INTEGER_CST);
554 TREE_INT_CST_LOW (t) = low;
555 TREE_INT_CST_HIGH (t) = hi;
556 TREE_TYPE (t) = integer_type_node;
557 return t;
560 /* Return a new REAL_CST node whose type is TYPE and value is D. */
562 tree
563 build_real (type, d)
564 tree type;
565 REAL_VALUE_TYPE d;
567 tree v;
568 int overflow = 0;
570 /* Check for valid float value for this type on this target machine;
571 if not, can print error message and store a valid value in D. */
572 #ifdef CHECK_FLOAT_VALUE
573 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
574 #endif
576 v = make_node (REAL_CST);
577 TREE_TYPE (v) = type;
578 TREE_REAL_CST (v) = d;
579 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
580 return v;
583 /* Return a new REAL_CST node whose type is TYPE
584 and whose value is the integer value of the INTEGER_CST node I. */
586 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
588 REAL_VALUE_TYPE
589 real_value_from_int_cst (type, i)
590 tree type ATTRIBUTE_UNUSED, i;
592 REAL_VALUE_TYPE d;
594 #ifdef REAL_ARITHMETIC
595 /* Clear all bits of the real value type so that we can later do
596 bitwise comparisons to see if two values are the same. */
597 memset ((char *) &d, 0, sizeof d);
599 if (! TREE_UNSIGNED (TREE_TYPE (i)))
600 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
601 TYPE_MODE (type));
602 else
603 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
604 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
605 #else /* not REAL_ARITHMETIC */
606 /* Some 386 compilers mishandle unsigned int to float conversions,
607 so introduce a temporary variable E to avoid those bugs. */
608 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
610 REAL_VALUE_TYPE e;
612 d = (double) (~TREE_INT_CST_HIGH (i));
613 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
614 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
615 d *= e;
616 e = (double) (~TREE_INT_CST_LOW (i));
617 d += e;
618 d = (- d - 1.0);
620 else
622 REAL_VALUE_TYPE e;
624 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
625 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
626 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
627 d *= e;
628 e = (double) TREE_INT_CST_LOW (i);
629 d += e;
631 #endif /* not REAL_ARITHMETIC */
632 return d;
635 /* Args to pass to and from build_real_from_int_cst_1. */
637 struct brfic_args
639 tree type; /* Input: type to conver to. */
640 tree i; /* Input: operand to convert. */
641 REAL_VALUE_TYPE d; /* Output: floating point value. */
644 /* Convert an integer to a floating point value while protected by a floating
645 point exception handler. */
647 static void
648 build_real_from_int_cst_1 (data)
649 PTR data;
651 struct brfic_args *args = (struct brfic_args *) data;
653 #ifdef REAL_ARITHMETIC
654 args->d = real_value_from_int_cst (args->type, args->i);
655 #else
656 args->d
657 = REAL_VALUE_TRUNCATE (TYPE_MODE (args->type),
658 real_value_from_int_cst (args->type, args->i));
659 #endif
662 /* Given a tree representing an integer constant I, return a tree
663 representing the same value as a floating-point constant of type TYPE.
664 We cannot perform this operation if there is no way of doing arithmetic
665 on floating-point values. */
667 tree
668 build_real_from_int_cst (type, i)
669 tree type;
670 tree i;
672 tree v;
673 int overflow = TREE_OVERFLOW (i);
674 REAL_VALUE_TYPE d;
675 struct brfic_args args;
677 v = make_node (REAL_CST);
678 TREE_TYPE (v) = type;
680 /* Setup input for build_real_from_int_cst_1() */
681 args.type = type;
682 args.i = i;
684 if (do_float_handler (build_real_from_int_cst_1, (PTR) &args))
685 /* Receive output from build_real_from_int_cst_1() */
686 d = args.d;
687 else
689 /* We got an exception from build_real_from_int_cst_1() */
690 d = dconst0;
691 overflow = 1;
694 /* Check for valid float value for this type on this target machine. */
696 #ifdef CHECK_FLOAT_VALUE
697 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
698 #endif
700 TREE_REAL_CST (v) = d;
701 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
702 return v;
705 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
707 /* Return a newly constructed STRING_CST node whose value is
708 the LEN characters at STR.
709 The TREE_TYPE is not initialized. */
711 tree
712 build_string (len, str)
713 int len;
714 const char *str;
716 tree s = make_node (STRING_CST);
718 TREE_STRING_LENGTH (s) = len;
719 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
721 return s;
724 /* Return a newly constructed COMPLEX_CST node whose value is
725 specified by the real and imaginary parts REAL and IMAG.
726 Both REAL and IMAG should be constant nodes. TYPE, if specified,
727 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
729 tree
730 build_complex (type, real, imag)
731 tree type;
732 tree real, imag;
734 tree t = make_node (COMPLEX_CST);
736 TREE_REALPART (t) = real;
737 TREE_IMAGPART (t) = imag;
738 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
739 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
740 TREE_CONSTANT_OVERFLOW (t)
741 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
742 return t;
745 /* Build a newly constructed TREE_VEC node of length LEN. */
747 tree
748 make_tree_vec (len)
749 int len;
751 tree t;
752 int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
754 #ifdef GATHER_STATISTICS
755 tree_node_counts[(int)vec_kind]++;
756 tree_node_sizes[(int)vec_kind] += length;
757 #endif
759 t = ggc_alloc_tree (length);
761 memset ((PTR) t, 0, length);
762 TREE_SET_CODE (t, TREE_VEC);
763 TREE_VEC_LENGTH (t) = len;
765 return t;
768 /* Return 1 if EXPR is the integer constant zero or a complex constant
769 of zero. */
772 integer_zerop (expr)
773 tree expr;
775 STRIP_NOPS (expr);
777 return ((TREE_CODE (expr) == INTEGER_CST
778 && ! TREE_CONSTANT_OVERFLOW (expr)
779 && TREE_INT_CST_LOW (expr) == 0
780 && TREE_INT_CST_HIGH (expr) == 0)
781 || (TREE_CODE (expr) == COMPLEX_CST
782 && integer_zerop (TREE_REALPART (expr))
783 && integer_zerop (TREE_IMAGPART (expr))));
786 /* Return 1 if EXPR is the integer constant one or the corresponding
787 complex constant. */
790 integer_onep (expr)
791 tree expr;
793 STRIP_NOPS (expr);
795 return ((TREE_CODE (expr) == INTEGER_CST
796 && ! TREE_CONSTANT_OVERFLOW (expr)
797 && TREE_INT_CST_LOW (expr) == 1
798 && TREE_INT_CST_HIGH (expr) == 0)
799 || (TREE_CODE (expr) == COMPLEX_CST
800 && integer_onep (TREE_REALPART (expr))
801 && integer_zerop (TREE_IMAGPART (expr))));
804 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
805 it contains. Likewise for the corresponding complex constant. */
808 integer_all_onesp (expr)
809 tree expr;
811 int prec;
812 int uns;
814 STRIP_NOPS (expr);
816 if (TREE_CODE (expr) == COMPLEX_CST
817 && integer_all_onesp (TREE_REALPART (expr))
818 && integer_zerop (TREE_IMAGPART (expr)))
819 return 1;
821 else if (TREE_CODE (expr) != INTEGER_CST
822 || TREE_CONSTANT_OVERFLOW (expr))
823 return 0;
825 uns = TREE_UNSIGNED (TREE_TYPE (expr));
826 if (!uns)
827 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
828 && TREE_INT_CST_HIGH (expr) == -1);
830 /* Note that using TYPE_PRECISION here is wrong. We care about the
831 actual bits, not the (arbitrary) range of the type. */
832 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
833 if (prec >= HOST_BITS_PER_WIDE_INT)
835 HOST_WIDE_INT high_value;
836 int shift_amount;
838 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
840 if (shift_amount > HOST_BITS_PER_WIDE_INT)
841 /* Can not handle precisions greater than twice the host int size. */
842 abort ();
843 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
844 /* Shifting by the host word size is undefined according to the ANSI
845 standard, so we must handle this as a special case. */
846 high_value = -1;
847 else
848 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
850 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
851 && TREE_INT_CST_HIGH (expr) == high_value);
853 else
854 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
857 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
858 one bit on). */
861 integer_pow2p (expr)
862 tree expr;
864 int prec;
865 HOST_WIDE_INT high, low;
867 STRIP_NOPS (expr);
869 if (TREE_CODE (expr) == COMPLEX_CST
870 && integer_pow2p (TREE_REALPART (expr))
871 && integer_zerop (TREE_IMAGPART (expr)))
872 return 1;
874 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
875 return 0;
877 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
878 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
879 high = TREE_INT_CST_HIGH (expr);
880 low = TREE_INT_CST_LOW (expr);
882 /* First clear all bits that are beyond the type's precision in case
883 we've been sign extended. */
885 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
887 else if (prec > HOST_BITS_PER_WIDE_INT)
888 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
889 else
891 high = 0;
892 if (prec < HOST_BITS_PER_WIDE_INT)
893 low &= ~((HOST_WIDE_INT) (-1) << prec);
896 if (high == 0 && low == 0)
897 return 0;
899 return ((high == 0 && (low & (low - 1)) == 0)
900 || (low == 0 && (high & (high - 1)) == 0));
903 /* Return the power of two represented by a tree node known to be a
904 power of two. */
907 tree_log2 (expr)
908 tree expr;
910 int prec;
911 HOST_WIDE_INT high, low;
913 STRIP_NOPS (expr);
915 if (TREE_CODE (expr) == COMPLEX_CST)
916 return tree_log2 (TREE_REALPART (expr));
918 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
919 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
921 high = TREE_INT_CST_HIGH (expr);
922 low = TREE_INT_CST_LOW (expr);
924 /* First clear all bits that are beyond the type's precision in case
925 we've been sign extended. */
927 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
929 else if (prec > HOST_BITS_PER_WIDE_INT)
930 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
931 else
933 high = 0;
934 if (prec < HOST_BITS_PER_WIDE_INT)
935 low &= ~((HOST_WIDE_INT) (-1) << prec);
938 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
939 : exact_log2 (low));
942 /* Similar, but return the largest integer Y such that 2 ** Y is less
943 than or equal to EXPR. */
946 tree_floor_log2 (expr)
947 tree expr;
949 int prec;
950 HOST_WIDE_INT high, low;
952 STRIP_NOPS (expr);
954 if (TREE_CODE (expr) == COMPLEX_CST)
955 return tree_log2 (TREE_REALPART (expr));
957 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
958 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
960 high = TREE_INT_CST_HIGH (expr);
961 low = TREE_INT_CST_LOW (expr);
963 /* First clear all bits that are beyond the type's precision in case
964 we've been sign extended. Ignore if type's precision hasn't been set
965 since what we are doing is setting it. */
967 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
969 else if (prec > HOST_BITS_PER_WIDE_INT)
970 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
971 else
973 high = 0;
974 if (prec < HOST_BITS_PER_WIDE_INT)
975 low &= ~((HOST_WIDE_INT) (-1) << prec);
978 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
979 : floor_log2 (low));
982 /* Return 1 if EXPR is the real constant zero. */
985 real_zerop (expr)
986 tree expr;
988 STRIP_NOPS (expr);
990 return ((TREE_CODE (expr) == REAL_CST
991 && ! TREE_CONSTANT_OVERFLOW (expr)
992 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
993 || (TREE_CODE (expr) == COMPLEX_CST
994 && real_zerop (TREE_REALPART (expr))
995 && real_zerop (TREE_IMAGPART (expr))));
998 /* Return 1 if EXPR is the real constant one in real or complex form. */
1001 real_onep (expr)
1002 tree expr;
1004 STRIP_NOPS (expr);
1006 return ((TREE_CODE (expr) == REAL_CST
1007 && ! TREE_CONSTANT_OVERFLOW (expr)
1008 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1009 || (TREE_CODE (expr) == COMPLEX_CST
1010 && real_onep (TREE_REALPART (expr))
1011 && real_zerop (TREE_IMAGPART (expr))));
1014 /* Return 1 if EXPR is the real constant two. */
1017 real_twop (expr)
1018 tree expr;
1020 STRIP_NOPS (expr);
1022 return ((TREE_CODE (expr) == REAL_CST
1023 && ! TREE_CONSTANT_OVERFLOW (expr)
1024 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1025 || (TREE_CODE (expr) == COMPLEX_CST
1026 && real_twop (TREE_REALPART (expr))
1027 && real_zerop (TREE_IMAGPART (expr))));
1030 /* Nonzero if EXP is a constant or a cast of a constant. */
1033 really_constant_p (exp)
1034 tree exp;
1036 /* This is not quite the same as STRIP_NOPS. It does more. */
1037 while (TREE_CODE (exp) == NOP_EXPR
1038 || TREE_CODE (exp) == CONVERT_EXPR
1039 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1040 exp = TREE_OPERAND (exp, 0);
1041 return TREE_CONSTANT (exp);
1044 /* Return first list element whose TREE_VALUE is ELEM.
1045 Return 0 if ELEM is not in LIST. */
1047 tree
1048 value_member (elem, list)
1049 tree elem, list;
1051 while (list)
1053 if (elem == TREE_VALUE (list))
1054 return list;
1055 list = TREE_CHAIN (list);
1057 return NULL_TREE;
1060 /* Return first list element whose TREE_PURPOSE is ELEM.
1061 Return 0 if ELEM is not in LIST. */
1063 tree
1064 purpose_member (elem, list)
1065 tree elem, list;
1067 while (list)
1069 if (elem == TREE_PURPOSE (list))
1070 return list;
1071 list = TREE_CHAIN (list);
1073 return NULL_TREE;
1076 /* Return first list element whose BINFO_TYPE is ELEM.
1077 Return 0 if ELEM is not in LIST. */
1079 tree
1080 binfo_member (elem, list)
1081 tree elem, list;
1083 while (list)
1085 if (elem == BINFO_TYPE (list))
1086 return list;
1087 list = TREE_CHAIN (list);
1089 return NULL_TREE;
1092 /* Return nonzero if ELEM is part of the chain CHAIN. */
1095 chain_member (elem, chain)
1096 tree elem, chain;
1098 while (chain)
1100 if (elem == chain)
1101 return 1;
1102 chain = TREE_CHAIN (chain);
1105 return 0;
1108 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1109 chain CHAIN. This and the next function are currently unused, but
1110 are retained for completeness. */
1113 chain_member_value (elem, chain)
1114 tree elem, chain;
1116 while (chain)
1118 if (elem == TREE_VALUE (chain))
1119 return 1;
1120 chain = TREE_CHAIN (chain);
1123 return 0;
1126 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1127 for any piece of chain CHAIN. */
1130 chain_member_purpose (elem, chain)
1131 tree elem, chain;
1133 while (chain)
1135 if (elem == TREE_PURPOSE (chain))
1136 return 1;
1137 chain = TREE_CHAIN (chain);
1140 return 0;
1143 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1144 We expect a null pointer to mark the end of the chain.
1145 This is the Lisp primitive `length'. */
1148 list_length (t)
1149 tree t;
1151 tree tail;
1152 int len = 0;
1154 for (tail = t; tail; tail = TREE_CHAIN (tail))
1155 len++;
1157 return len;
1160 /* Returns the number of FIELD_DECLs in TYPE. */
1163 fields_length (type)
1164 tree type;
1166 tree t = TYPE_FIELDS (type);
1167 int count = 0;
1169 for (; t; t = TREE_CHAIN (t))
1170 if (TREE_CODE (t) == FIELD_DECL)
1171 ++count;
1173 return count;
1176 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1177 by modifying the last node in chain 1 to point to chain 2.
1178 This is the Lisp primitive `nconc'. */
1180 tree
1181 chainon (op1, op2)
1182 tree op1, op2;
1185 if (op1)
1187 tree t1;
1188 #ifdef ENABLE_TREE_CHECKING
1189 tree t2;
1190 #endif
1192 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1194 TREE_CHAIN (t1) = op2;
1195 #ifdef ENABLE_TREE_CHECKING
1196 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1197 if (t2 == t1)
1198 abort (); /* Circularity created. */
1199 #endif
1200 return op1;
1202 else
1203 return op2;
1206 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1208 tree
1209 tree_last (chain)
1210 tree chain;
1212 tree next;
1213 if (chain)
1214 while ((next = TREE_CHAIN (chain)))
1215 chain = next;
1216 return chain;
1219 /* Reverse the order of elements in the chain T,
1220 and return the new head of the chain (old last element). */
1222 tree
1223 nreverse (t)
1224 tree t;
1226 tree prev = 0, decl, next;
1227 for (decl = t; decl; decl = next)
1229 next = TREE_CHAIN (decl);
1230 TREE_CHAIN (decl) = prev;
1231 prev = decl;
1233 return prev;
1236 /* Given a chain CHAIN of tree nodes,
1237 construct and return a list of those nodes. */
1239 tree
1240 listify (chain)
1241 tree chain;
1243 tree result = NULL_TREE;
1244 tree in_tail = chain;
1245 tree out_tail = NULL_TREE;
1247 while (in_tail)
1249 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1250 if (out_tail)
1251 TREE_CHAIN (out_tail) = next;
1252 else
1253 result = next;
1254 out_tail = next;
1255 in_tail = TREE_CHAIN (in_tail);
1258 return result;
1261 /* Return a newly created TREE_LIST node whose
1262 purpose and value fields are PARM and VALUE. */
1264 tree
1265 build_tree_list (parm, value)
1266 tree parm, value;
1268 tree t = make_node (TREE_LIST);
1269 TREE_PURPOSE (t) = parm;
1270 TREE_VALUE (t) = value;
1271 return t;
1274 /* Return a newly created TREE_LIST node whose
1275 purpose and value fields are PARM and VALUE
1276 and whose TREE_CHAIN is CHAIN. */
1278 tree
1279 tree_cons (purpose, value, chain)
1280 tree purpose, value, chain;
1282 tree node;
1284 node = ggc_alloc_tree (sizeof (struct tree_list));
1286 memset (node, 0, sizeof (struct tree_common));
1288 #ifdef GATHER_STATISTICS
1289 tree_node_counts[(int) x_kind]++;
1290 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1291 #endif
1293 TREE_SET_CODE (node, TREE_LIST);
1294 TREE_CHAIN (node) = chain;
1295 TREE_PURPOSE (node) = purpose;
1296 TREE_VALUE (node) = value;
1297 return node;
1301 /* Return the size nominally occupied by an object of type TYPE
1302 when it resides in memory. The value is measured in units of bytes,
1303 and its data type is that normally used for type sizes
1304 (which is the first type created by make_signed_type or
1305 make_unsigned_type). */
1307 tree
1308 size_in_bytes (type)
1309 tree type;
1311 tree t;
1313 if (type == error_mark_node)
1314 return integer_zero_node;
1316 type = TYPE_MAIN_VARIANT (type);
1317 t = TYPE_SIZE_UNIT (type);
1319 if (t == 0)
1321 incomplete_type_error (NULL_TREE, type);
1322 return size_zero_node;
1325 if (TREE_CODE (t) == INTEGER_CST)
1326 force_fit_type (t, 0);
1328 return t;
1331 /* Return the size of TYPE (in bytes) as a wide integer
1332 or return -1 if the size can vary or is larger than an integer. */
1334 HOST_WIDE_INT
1335 int_size_in_bytes (type)
1336 tree type;
1338 tree t;
1340 if (type == error_mark_node)
1341 return 0;
1343 type = TYPE_MAIN_VARIANT (type);
1344 t = TYPE_SIZE_UNIT (type);
1345 if (t == 0
1346 || TREE_CODE (t) != INTEGER_CST
1347 || TREE_OVERFLOW (t)
1348 || TREE_INT_CST_HIGH (t) != 0
1349 /* If the result would appear negative, it's too big to represent. */
1350 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1351 return -1;
1353 return TREE_INT_CST_LOW (t);
1356 /* Return the bit position of FIELD, in bits from the start of the record.
1357 This is a tree of type bitsizetype. */
1359 tree
1360 bit_position (field)
1361 tree field;
1364 return bit_from_pos (DECL_FIELD_OFFSET (field),
1365 DECL_FIELD_BIT_OFFSET (field));
1368 /* Likewise, but return as an integer. Abort if it cannot be represented
1369 in that way (since it could be a signed value, we don't have the option
1370 of returning -1 like int_size_in_byte can. */
1372 HOST_WIDE_INT
1373 int_bit_position (field)
1374 tree field;
1376 return tree_low_cst (bit_position (field), 0);
1379 /* Return the byte position of FIELD, in bytes from the start of the record.
1380 This is a tree of type sizetype. */
1382 tree
1383 byte_position (field)
1384 tree field;
1386 return byte_from_pos (DECL_FIELD_OFFSET (field),
1387 DECL_FIELD_BIT_OFFSET (field));
1390 /* Likewise, but return as an integer. Abort if it cannot be represented
1391 in that way (since it could be a signed value, we don't have the option
1392 of returning -1 like int_size_in_byte can. */
1394 HOST_WIDE_INT
1395 int_byte_position (field)
1396 tree field;
1398 return tree_low_cst (byte_position (field), 0);
1401 /* Return the strictest alignment, in bits, that T is known to have. */
1403 unsigned int
1404 expr_align (t)
1405 tree t;
1407 unsigned int align0, align1;
1409 switch (TREE_CODE (t))
1411 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1412 /* If we have conversions, we know that the alignment of the
1413 object must meet each of the alignments of the types. */
1414 align0 = expr_align (TREE_OPERAND (t, 0));
1415 align1 = TYPE_ALIGN (TREE_TYPE (t));
1416 return MAX (align0, align1);
1418 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1419 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1420 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1421 /* These don't change the alignment of an object. */
1422 return expr_align (TREE_OPERAND (t, 0));
1424 case COND_EXPR:
1425 /* The best we can do is say that the alignment is the least aligned
1426 of the two arms. */
1427 align0 = expr_align (TREE_OPERAND (t, 1));
1428 align1 = expr_align (TREE_OPERAND (t, 2));
1429 return MIN (align0, align1);
1431 case LABEL_DECL: case CONST_DECL:
1432 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1433 if (DECL_ALIGN (t) != 0)
1434 return DECL_ALIGN (t);
1435 break;
1437 case FUNCTION_DECL:
1438 return FUNCTION_BOUNDARY;
1440 default:
1441 break;
1444 /* Otherwise take the alignment from that of the type. */
1445 return TYPE_ALIGN (TREE_TYPE (t));
1448 /* Return, as a tree node, the number of elements for TYPE (which is an
1449 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1451 tree
1452 array_type_nelts (type)
1453 tree type;
1455 tree index_type, min, max;
1457 /* If they did it with unspecified bounds, then we should have already
1458 given an error about it before we got here. */
1459 if (! TYPE_DOMAIN (type))
1460 return error_mark_node;
1462 index_type = TYPE_DOMAIN (type);
1463 min = TYPE_MIN_VALUE (index_type);
1464 max = TYPE_MAX_VALUE (index_type);
1466 return (integer_zerop (min)
1467 ? max
1468 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1471 /* Return nonzero if arg is static -- a reference to an object in
1472 static storage. This is not the same as the C meaning of `static'. */
1475 staticp (arg)
1476 tree arg;
1478 switch (TREE_CODE (arg))
1480 case FUNCTION_DECL:
1481 /* Nested functions aren't static, since taking their address
1482 involves a trampoline. */
1483 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1484 && ! DECL_NON_ADDR_CONST_P (arg);
1486 case VAR_DECL:
1487 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1488 && ! DECL_NON_ADDR_CONST_P (arg);
1490 case CONSTRUCTOR:
1491 return TREE_STATIC (arg);
1493 case LABEL_DECL:
1494 case STRING_CST:
1495 return 1;
1497 /* If we are referencing a bitfield, we can't evaluate an
1498 ADDR_EXPR at compile time and so it isn't a constant. */
1499 case COMPONENT_REF:
1500 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1501 && staticp (TREE_OPERAND (arg, 0)));
1503 case BIT_FIELD_REF:
1504 return 0;
1506 #if 0
1507 /* This case is technically correct, but results in setting
1508 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1509 compile time. */
1510 case INDIRECT_REF:
1511 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1512 #endif
1514 case ARRAY_REF:
1515 case ARRAY_RANGE_REF:
1516 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1517 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1518 return staticp (TREE_OPERAND (arg, 0));
1520 default:
1521 return 0;
1525 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1526 Do this to any expression which may be used in more than one place,
1527 but must be evaluated only once.
1529 Normally, expand_expr would reevaluate the expression each time.
1530 Calling save_expr produces something that is evaluated and recorded
1531 the first time expand_expr is called on it. Subsequent calls to
1532 expand_expr just reuse the recorded value.
1534 The call to expand_expr that generates code that actually computes
1535 the value is the first call *at compile time*. Subsequent calls
1536 *at compile time* generate code to use the saved value.
1537 This produces correct result provided that *at run time* control
1538 always flows through the insns made by the first expand_expr
1539 before reaching the other places where the save_expr was evaluated.
1540 You, the caller of save_expr, must make sure this is so.
1542 Constants, and certain read-only nodes, are returned with no
1543 SAVE_EXPR because that is safe. Expressions containing placeholders
1544 are not touched; see tree.def for an explanation of what these
1545 are used for. */
1547 tree
1548 save_expr (expr)
1549 tree expr;
1551 tree t = fold (expr);
1552 tree inner;
1554 /* We don't care about whether this can be used as an lvalue in this
1555 context. */
1556 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1557 t = TREE_OPERAND (t, 0);
1559 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1560 a constant, it will be more efficient to not make another SAVE_EXPR since
1561 it will allow better simplification and GCSE will be able to merge the
1562 computations if they actualy occur. */
1563 for (inner = t;
1564 (TREE_CODE_CLASS (TREE_CODE (inner)) == '1'
1565 || (TREE_CODE_CLASS (TREE_CODE (inner)) == '2'
1566 && TREE_CONSTANT (TREE_OPERAND (inner, 1))));
1567 inner = TREE_OPERAND (inner, 0))
1570 /* If the tree evaluates to a constant, then we don't want to hide that
1571 fact (i.e. this allows further folding, and direct checks for constants).
1572 However, a read-only object that has side effects cannot be bypassed.
1573 Since it is no problem to reevaluate literals, we just return the
1574 literal node. */
1575 if (TREE_CONSTANT (inner)
1576 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1577 || TREE_CODE (inner) == SAVE_EXPR || TREE_CODE (inner) == ERROR_MARK)
1578 return t;
1580 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1581 it means that the size or offset of some field of an object depends on
1582 the value within another field.
1584 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1585 and some variable since it would then need to be both evaluated once and
1586 evaluated more than once. Front-ends must assure this case cannot
1587 happen by surrounding any such subexpressions in their own SAVE_EXPR
1588 and forcing evaluation at the proper time. */
1589 if (contains_placeholder_p (t))
1590 return t;
1592 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1594 /* This expression might be placed ahead of a jump to ensure that the
1595 value was computed on both sides of the jump. So make sure it isn't
1596 eliminated as dead. */
1597 TREE_SIDE_EFFECTS (t) = 1;
1598 TREE_READONLY (t) = 1;
1599 return t;
1602 /* Arrange for an expression to be expanded multiple independent
1603 times. This is useful for cleanup actions, as the backend can
1604 expand them multiple times in different places. */
1606 tree
1607 unsave_expr (expr)
1608 tree expr;
1610 tree t;
1612 /* If this is already protected, no sense in protecting it again. */
1613 if (TREE_CODE (expr) == UNSAVE_EXPR)
1614 return expr;
1616 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1617 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1618 return t;
1621 /* Returns the index of the first non-tree operand for CODE, or the number
1622 of operands if all are trees. */
1625 first_rtl_op (code)
1626 enum tree_code code;
1628 switch (code)
1630 case SAVE_EXPR:
1631 return 2;
1632 case GOTO_SUBROUTINE_EXPR:
1633 case RTL_EXPR:
1634 return 0;
1635 case WITH_CLEANUP_EXPR:
1636 return 2;
1637 case METHOD_CALL_EXPR:
1638 return 3;
1639 default:
1640 return TREE_CODE_LENGTH (code);
1644 /* Perform any modifications to EXPR required when it is unsaved. Does
1645 not recurse into EXPR's subtrees. */
1647 void
1648 unsave_expr_1 (expr)
1649 tree expr;
1651 switch (TREE_CODE (expr))
1653 case SAVE_EXPR:
1654 if (! SAVE_EXPR_PERSISTENT_P (expr))
1655 SAVE_EXPR_RTL (expr) = 0;
1656 break;
1658 case TARGET_EXPR:
1659 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1660 It's OK for this to happen if it was part of a subtree that
1661 isn't immediately expanded, such as operand 2 of another
1662 TARGET_EXPR. */
1663 if (TREE_OPERAND (expr, 1))
1664 break;
1666 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1667 TREE_OPERAND (expr, 3) = NULL_TREE;
1668 break;
1670 case RTL_EXPR:
1671 /* I don't yet know how to emit a sequence multiple times. */
1672 if (RTL_EXPR_SEQUENCE (expr) != 0)
1673 abort ();
1674 break;
1676 default:
1677 if (lang_unsave_expr_now != 0)
1678 (*lang_unsave_expr_now) (expr);
1679 break;
1683 /* Helper function for unsave_expr_now. */
1685 static void
1686 unsave_expr_now_r (expr)
1687 tree expr;
1689 enum tree_code code;
1691 /* There's nothing to do for NULL_TREE. */
1692 if (expr == 0)
1693 return;
1695 unsave_expr_1 (expr);
1697 code = TREE_CODE (expr);
1698 switch (TREE_CODE_CLASS (code))
1700 case 'c': /* a constant */
1701 case 't': /* a type node */
1702 case 'd': /* A decl node */
1703 case 'b': /* A block node */
1704 break;
1706 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1707 if (code == TREE_LIST)
1709 unsave_expr_now_r (TREE_VALUE (expr));
1710 unsave_expr_now_r (TREE_CHAIN (expr));
1712 break;
1714 case 'e': /* an expression */
1715 case 'r': /* a reference */
1716 case 's': /* an expression with side effects */
1717 case '<': /* a comparison expression */
1718 case '2': /* a binary arithmetic expression */
1719 case '1': /* a unary arithmetic expression */
1721 int i;
1723 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1724 unsave_expr_now_r (TREE_OPERAND (expr, i));
1726 break;
1728 default:
1729 abort ();
1733 /* Modify a tree in place so that all the evaluate only once things
1734 are cleared out. Return the EXPR given. */
1736 tree
1737 unsave_expr_now (expr)
1738 tree expr;
1740 if (lang_unsave!= 0)
1741 (*lang_unsave) (&expr);
1742 else
1743 unsave_expr_now_r (expr);
1745 return expr;
1748 /* Return 0 if it is safe to evaluate EXPR multiple times,
1749 return 1 if it is safe if EXPR is unsaved afterward, or
1750 return 2 if it is completely unsafe.
1752 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1753 an expression tree, so that it safe to unsave them and the surrounding
1754 context will be correct.
1756 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1757 occasionally across the whole of a function. It is therefore only
1758 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1759 below the UNSAVE_EXPR.
1761 RTL_EXPRs consume their rtl during evaluation. It is therefore
1762 never possible to unsave them. */
1765 unsafe_for_reeval (expr)
1766 tree expr;
1768 int unsafeness = 0;
1769 enum tree_code code;
1770 int i, tmp;
1771 tree exp;
1772 int first_rtl;
1774 if (expr == NULL_TREE)
1775 return 1;
1777 code = TREE_CODE (expr);
1778 first_rtl = first_rtl_op (code);
1780 switch (code)
1782 case SAVE_EXPR:
1783 case RTL_EXPR:
1784 return 2;
1786 case TREE_LIST:
1787 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1789 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1790 unsafeness = MAX (tmp, unsafeness);
1793 return unsafeness;
1795 case CALL_EXPR:
1796 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1797 return MAX (tmp, 1);
1799 case TARGET_EXPR:
1800 unsafeness = 1;
1801 break;
1803 default:
1804 if (lang_unsafe_for_reeval != 0)
1806 tmp = (*lang_unsafe_for_reeval) (expr);
1807 if (tmp >= 0)
1808 return tmp;
1810 break;
1813 switch (TREE_CODE_CLASS (code))
1815 case 'c': /* a constant */
1816 case 't': /* a type node */
1817 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1818 case 'd': /* A decl node */
1819 case 'b': /* A block node */
1820 return 0;
1822 case 'e': /* an expression */
1823 case 'r': /* a reference */
1824 case 's': /* an expression with side effects */
1825 case '<': /* a comparison expression */
1826 case '2': /* a binary arithmetic expression */
1827 case '1': /* a unary arithmetic expression */
1828 for (i = first_rtl - 1; i >= 0; i--)
1830 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1831 unsafeness = MAX (tmp, unsafeness);
1834 return unsafeness;
1836 default:
1837 return 2;
1841 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1842 or offset that depends on a field within a record. */
1845 contains_placeholder_p (exp)
1846 tree exp;
1848 enum tree_code code;
1849 int result;
1851 if (!exp)
1852 return 0;
1854 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1855 in it since it is supplying a value for it. */
1856 code = TREE_CODE (exp);
1857 if (code == WITH_RECORD_EXPR)
1858 return 0;
1859 else if (code == PLACEHOLDER_EXPR)
1860 return 1;
1862 switch (TREE_CODE_CLASS (code))
1864 case 'r':
1865 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1866 position computations since they will be converted into a
1867 WITH_RECORD_EXPR involving the reference, which will assume
1868 here will be valid. */
1869 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1871 case 'x':
1872 if (code == TREE_LIST)
1873 return (contains_placeholder_p (TREE_VALUE (exp))
1874 || (TREE_CHAIN (exp) != 0
1875 && contains_placeholder_p (TREE_CHAIN (exp))));
1876 break;
1878 case '1':
1879 case '2': case '<':
1880 case 'e':
1881 switch (code)
1883 case COMPOUND_EXPR:
1884 /* Ignoring the first operand isn't quite right, but works best. */
1885 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1887 case RTL_EXPR:
1888 case CONSTRUCTOR:
1889 return 0;
1891 case COND_EXPR:
1892 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1893 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1894 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1896 case SAVE_EXPR:
1897 /* If we already know this doesn't have a placeholder, don't
1898 check again. */
1899 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1900 return 0;
1902 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1903 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1904 if (result)
1905 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1907 return result;
1909 case CALL_EXPR:
1910 return (TREE_OPERAND (exp, 1) != 0
1911 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1913 default:
1914 break;
1917 switch (TREE_CODE_LENGTH (code))
1919 case 1:
1920 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1921 case 2:
1922 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1923 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1924 default:
1925 return 0;
1928 default:
1929 return 0;
1931 return 0;
1934 /* Return 1 if EXP contains any expressions that produce cleanups for an
1935 outer scope to deal with. Used by fold. */
1938 has_cleanups (exp)
1939 tree exp;
1941 int i, nops, cmp;
1943 if (! TREE_SIDE_EFFECTS (exp))
1944 return 0;
1946 switch (TREE_CODE (exp))
1948 case TARGET_EXPR:
1949 case GOTO_SUBROUTINE_EXPR:
1950 case WITH_CLEANUP_EXPR:
1951 return 1;
1953 case CLEANUP_POINT_EXPR:
1954 return 0;
1956 case CALL_EXPR:
1957 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1959 cmp = has_cleanups (TREE_VALUE (exp));
1960 if (cmp)
1961 return cmp;
1963 return 0;
1965 default:
1966 break;
1969 /* This general rule works for most tree codes. All exceptions should be
1970 handled above. If this is a language-specific tree code, we can't
1971 trust what might be in the operand, so say we don't know
1972 the situation. */
1973 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1974 return -1;
1976 nops = first_rtl_op (TREE_CODE (exp));
1977 for (i = 0; i < nops; i++)
1978 if (TREE_OPERAND (exp, i) != 0)
1980 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1981 if (type == 'e' || type == '<' || type == '1' || type == '2'
1982 || type == 'r' || type == 's')
1984 cmp = has_cleanups (TREE_OPERAND (exp, i));
1985 if (cmp)
1986 return cmp;
1990 return 0;
1993 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1994 return a tree with all occurrences of references to F in a
1995 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1996 contains only arithmetic expressions or a CALL_EXPR with a
1997 PLACEHOLDER_EXPR occurring only in its arglist. */
1999 tree
2000 substitute_in_expr (exp, f, r)
2001 tree exp;
2002 tree f;
2003 tree r;
2005 enum tree_code code = TREE_CODE (exp);
2006 tree op0, op1, op2;
2007 tree new;
2008 tree inner;
2010 switch (TREE_CODE_CLASS (code))
2012 case 'c':
2013 case 'd':
2014 return exp;
2016 case 'x':
2017 if (code == PLACEHOLDER_EXPR)
2018 return exp;
2019 else if (code == TREE_LIST)
2021 op0 = (TREE_CHAIN (exp) == 0
2022 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2023 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2024 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2025 return exp;
2027 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2030 abort ();
2032 case '1':
2033 case '2':
2034 case '<':
2035 case 'e':
2036 switch (TREE_CODE_LENGTH (code))
2038 case 1:
2039 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2040 if (op0 == TREE_OPERAND (exp, 0))
2041 return exp;
2043 if (code == NON_LVALUE_EXPR)
2044 return op0;
2046 new = fold (build1 (code, TREE_TYPE (exp), op0));
2047 break;
2049 case 2:
2050 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2051 could, but we don't support it. */
2052 if (code == RTL_EXPR)
2053 return exp;
2054 else if (code == CONSTRUCTOR)
2055 abort ();
2057 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2058 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2059 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2060 return exp;
2062 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2063 break;
2065 case 3:
2066 /* It cannot be that anything inside a SAVE_EXPR contains a
2067 PLACEHOLDER_EXPR. */
2068 if (code == SAVE_EXPR)
2069 return exp;
2071 else if (code == CALL_EXPR)
2073 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2074 if (op1 == TREE_OPERAND (exp, 1))
2075 return exp;
2077 return build (code, TREE_TYPE (exp),
2078 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2081 else if (code != COND_EXPR)
2082 abort ();
2084 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2085 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2086 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2087 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2088 && op2 == TREE_OPERAND (exp, 2))
2089 return exp;
2091 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2092 break;
2094 default:
2095 abort ();
2098 break;
2100 case 'r':
2101 switch (code)
2103 case COMPONENT_REF:
2104 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2105 and it is the right field, replace it with R. */
2106 for (inner = TREE_OPERAND (exp, 0);
2107 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2108 inner = TREE_OPERAND (inner, 0))
2110 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2111 && TREE_OPERAND (exp, 1) == f)
2112 return r;
2114 /* If this expression hasn't been completed let, leave it
2115 alone. */
2116 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2117 && TREE_TYPE (inner) == 0)
2118 return exp;
2120 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2121 if (op0 == TREE_OPERAND (exp, 0))
2122 return exp;
2124 new = fold (build (code, TREE_TYPE (exp), op0,
2125 TREE_OPERAND (exp, 1)));
2126 break;
2128 case BIT_FIELD_REF:
2129 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2130 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2131 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2132 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2133 && op2 == TREE_OPERAND (exp, 2))
2134 return exp;
2136 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2137 break;
2139 case INDIRECT_REF:
2140 case BUFFER_REF:
2141 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2142 if (op0 == TREE_OPERAND (exp, 0))
2143 return exp;
2145 new = fold (build1 (code, TREE_TYPE (exp), op0));
2146 break;
2148 default:
2149 abort ();
2151 break;
2153 default:
2154 abort ();
2157 TREE_READONLY (new) = TREE_READONLY (exp);
2158 return new;
2161 /* Stabilize a reference so that we can use it any number of times
2162 without causing its operands to be evaluated more than once.
2163 Returns the stabilized reference. This works by means of save_expr,
2164 so see the caveats in the comments about save_expr.
2166 Also allows conversion expressions whose operands are references.
2167 Any other kind of expression is returned unchanged. */
2169 tree
2170 stabilize_reference (ref)
2171 tree ref;
2173 tree result;
2174 enum tree_code code = TREE_CODE (ref);
2176 switch (code)
2178 case VAR_DECL:
2179 case PARM_DECL:
2180 case RESULT_DECL:
2181 /* No action is needed in this case. */
2182 return ref;
2184 case NOP_EXPR:
2185 case CONVERT_EXPR:
2186 case FLOAT_EXPR:
2187 case FIX_TRUNC_EXPR:
2188 case FIX_FLOOR_EXPR:
2189 case FIX_ROUND_EXPR:
2190 case FIX_CEIL_EXPR:
2191 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2192 break;
2194 case INDIRECT_REF:
2195 result = build_nt (INDIRECT_REF,
2196 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2197 break;
2199 case COMPONENT_REF:
2200 result = build_nt (COMPONENT_REF,
2201 stabilize_reference (TREE_OPERAND (ref, 0)),
2202 TREE_OPERAND (ref, 1));
2203 break;
2205 case BIT_FIELD_REF:
2206 result = build_nt (BIT_FIELD_REF,
2207 stabilize_reference (TREE_OPERAND (ref, 0)),
2208 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2209 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2210 break;
2212 case ARRAY_REF:
2213 result = build_nt (ARRAY_REF,
2214 stabilize_reference (TREE_OPERAND (ref, 0)),
2215 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2216 break;
2218 case ARRAY_RANGE_REF:
2219 result = build_nt (ARRAY_RANGE_REF,
2220 stabilize_reference (TREE_OPERAND (ref, 0)),
2221 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2222 break;
2224 case COMPOUND_EXPR:
2225 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2226 it wouldn't be ignored. This matters when dealing with
2227 volatiles. */
2228 return stabilize_reference_1 (ref);
2230 case RTL_EXPR:
2231 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2232 save_expr (build1 (ADDR_EXPR,
2233 build_pointer_type (TREE_TYPE (ref)),
2234 ref)));
2235 break;
2237 /* If arg isn't a kind of lvalue we recognize, make no change.
2238 Caller should recognize the error for an invalid lvalue. */
2239 default:
2240 return ref;
2242 case ERROR_MARK:
2243 return error_mark_node;
2246 TREE_TYPE (result) = TREE_TYPE (ref);
2247 TREE_READONLY (result) = TREE_READONLY (ref);
2248 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2249 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2251 return result;
2254 /* Subroutine of stabilize_reference; this is called for subtrees of
2255 references. Any expression with side-effects must be put in a SAVE_EXPR
2256 to ensure that it is only evaluated once.
2258 We don't put SAVE_EXPR nodes around everything, because assigning very
2259 simple expressions to temporaries causes us to miss good opportunities
2260 for optimizations. Among other things, the opportunity to fold in the
2261 addition of a constant into an addressing mode often gets lost, e.g.
2262 "y[i+1] += x;". In general, we take the approach that we should not make
2263 an assignment unless we are forced into it - i.e., that any non-side effect
2264 operator should be allowed, and that cse should take care of coalescing
2265 multiple utterances of the same expression should that prove fruitful. */
2267 tree
2268 stabilize_reference_1 (e)
2269 tree e;
2271 tree result;
2272 enum tree_code code = TREE_CODE (e);
2274 /* We cannot ignore const expressions because it might be a reference
2275 to a const array but whose index contains side-effects. But we can
2276 ignore things that are actual constant or that already have been
2277 handled by this function. */
2279 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2280 return e;
2282 switch (TREE_CODE_CLASS (code))
2284 case 'x':
2285 case 't':
2286 case 'd':
2287 case 'b':
2288 case '<':
2289 case 's':
2290 case 'e':
2291 case 'r':
2292 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2293 so that it will only be evaluated once. */
2294 /* The reference (r) and comparison (<) classes could be handled as
2295 below, but it is generally faster to only evaluate them once. */
2296 if (TREE_SIDE_EFFECTS (e))
2297 return save_expr (e);
2298 return e;
2300 case 'c':
2301 /* Constants need no processing. In fact, we should never reach
2302 here. */
2303 return e;
2305 case '2':
2306 /* Division is slow and tends to be compiled with jumps,
2307 especially the division by powers of 2 that is often
2308 found inside of an array reference. So do it just once. */
2309 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2310 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2311 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2312 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2313 return save_expr (e);
2314 /* Recursively stabilize each operand. */
2315 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2316 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2317 break;
2319 case '1':
2320 /* Recursively stabilize each operand. */
2321 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2322 break;
2324 default:
2325 abort ();
2328 TREE_TYPE (result) = TREE_TYPE (e);
2329 TREE_READONLY (result) = TREE_READONLY (e);
2330 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2331 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2333 return result;
2336 /* Low-level constructors for expressions. */
2338 /* Build an expression of code CODE, data type TYPE,
2339 and operands as specified by the arguments ARG1 and following arguments.
2340 Expressions and reference nodes can be created this way.
2341 Constants, decls, types and misc nodes cannot be. */
2343 tree
2344 build VPARAMS ((enum tree_code code, tree tt, ...))
2346 tree t;
2347 int length;
2348 int i;
2349 int fro;
2350 int constant;
2352 VA_OPEN (p, tt);
2353 VA_FIXEDARG (p, enum tree_code, code);
2354 VA_FIXEDARG (p, tree, tt);
2356 t = make_node (code);
2357 length = TREE_CODE_LENGTH (code);
2358 TREE_TYPE (t) = tt;
2360 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2361 result based on those same flags for the arguments. But if the
2362 arguments aren't really even `tree' expressions, we shouldn't be trying
2363 to do this. */
2364 fro = first_rtl_op (code);
2366 /* Expressions without side effects may be constant if their
2367 arguments are as well. */
2368 constant = (TREE_CODE_CLASS (code) == '<'
2369 || TREE_CODE_CLASS (code) == '1'
2370 || TREE_CODE_CLASS (code) == '2'
2371 || TREE_CODE_CLASS (code) == 'c');
2373 if (length == 2)
2375 /* This is equivalent to the loop below, but faster. */
2376 tree arg0 = va_arg (p, tree);
2377 tree arg1 = va_arg (p, tree);
2379 TREE_OPERAND (t, 0) = arg0;
2380 TREE_OPERAND (t, 1) = arg1;
2381 TREE_READONLY (t) = 1;
2382 if (arg0 && fro > 0)
2384 if (TREE_SIDE_EFFECTS (arg0))
2385 TREE_SIDE_EFFECTS (t) = 1;
2386 if (!TREE_READONLY (arg0))
2387 TREE_READONLY (t) = 0;
2388 if (!TREE_CONSTANT (arg0))
2389 constant = 0;
2392 if (arg1 && fro > 1)
2394 if (TREE_SIDE_EFFECTS (arg1))
2395 TREE_SIDE_EFFECTS (t) = 1;
2396 if (!TREE_READONLY (arg1))
2397 TREE_READONLY (t) = 0;
2398 if (!TREE_CONSTANT (arg1))
2399 constant = 0;
2402 else if (length == 1)
2404 tree arg0 = va_arg (p, tree);
2406 /* The only one-operand cases we handle here are those with side-effects.
2407 Others are handled with build1. So don't bother checked if the
2408 arg has side-effects since we'll already have set it.
2410 ??? This really should use build1 too. */
2411 if (TREE_CODE_CLASS (code) != 's')
2412 abort ();
2413 TREE_OPERAND (t, 0) = arg0;
2415 else
2417 for (i = 0; i < length; i++)
2419 tree operand = va_arg (p, tree);
2421 TREE_OPERAND (t, i) = operand;
2422 if (operand && fro > i)
2424 if (TREE_SIDE_EFFECTS (operand))
2425 TREE_SIDE_EFFECTS (t) = 1;
2426 if (!TREE_CONSTANT (operand))
2427 constant = 0;
2431 VA_CLOSE (p);
2433 TREE_CONSTANT (t) = constant;
2434 return t;
2437 /* Same as above, but only builds for unary operators.
2438 Saves lions share of calls to `build'; cuts down use
2439 of varargs, which is expensive for RISC machines. */
2441 tree
2442 build1 (code, type, node)
2443 enum tree_code code;
2444 tree type;
2445 tree node;
2447 int length;
2448 #ifdef GATHER_STATISTICS
2449 tree_node_kind kind;
2450 #endif
2451 tree t;
2453 #ifdef GATHER_STATISTICS
2454 if (TREE_CODE_CLASS (code) == 'r')
2455 kind = r_kind;
2456 else
2457 kind = e_kind;
2458 #endif
2460 #ifdef ENABLE_CHECKING
2461 if (TREE_CODE_CLASS (code) == '2'
2462 || TREE_CODE_CLASS (code) == '<'
2463 || TREE_CODE_LENGTH (code) != 1)
2464 abort ();
2465 #endif /* ENABLE_CHECKING */
2467 length = sizeof (struct tree_exp);
2469 t = ggc_alloc_tree (length);
2471 memset ((PTR) t, 0, sizeof (struct tree_common));
2473 #ifdef GATHER_STATISTICS
2474 tree_node_counts[(int) kind]++;
2475 tree_node_sizes[(int) kind] += length;
2476 #endif
2478 TREE_SET_CODE (t, code);
2480 TREE_TYPE (t) = type;
2481 TREE_COMPLEXITY (t) = 0;
2482 TREE_OPERAND (t, 0) = node;
2483 if (node && first_rtl_op (code) != 0)
2485 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2486 TREE_READONLY (t) = TREE_READONLY (node);
2489 switch (code)
2491 case INIT_EXPR:
2492 case MODIFY_EXPR:
2493 case VA_ARG_EXPR:
2494 case RTL_EXPR:
2495 case PREDECREMENT_EXPR:
2496 case PREINCREMENT_EXPR:
2497 case POSTDECREMENT_EXPR:
2498 case POSTINCREMENT_EXPR:
2499 /* All of these have side-effects, no matter what their
2500 operands are. */
2501 TREE_SIDE_EFFECTS (t) = 1;
2502 TREE_READONLY (t) = 0;
2503 break;
2505 default:
2506 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2507 TREE_CONSTANT (t) = 1;
2508 break;
2511 return t;
2514 /* Similar except don't specify the TREE_TYPE
2515 and leave the TREE_SIDE_EFFECTS as 0.
2516 It is permissible for arguments to be null,
2517 or even garbage if their values do not matter. */
2519 tree
2520 build_nt VPARAMS ((enum tree_code code, ...))
2522 tree t;
2523 int length;
2524 int i;
2526 VA_OPEN (p, code);
2527 VA_FIXEDARG (p, enum tree_code, code);
2529 t = make_node (code);
2530 length = TREE_CODE_LENGTH (code);
2532 for (i = 0; i < length; i++)
2533 TREE_OPERAND (t, i) = va_arg (p, tree);
2535 VA_CLOSE (p);
2536 return t;
2539 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2540 We do NOT enter this node in any sort of symbol table.
2542 layout_decl is used to set up the decl's storage layout.
2543 Other slots are initialized to 0 or null pointers. */
2545 tree
2546 build_decl (code, name, type)
2547 enum tree_code code;
2548 tree name, type;
2550 tree t;
2552 t = make_node (code);
2554 /* if (type == error_mark_node)
2555 type = integer_type_node; */
2556 /* That is not done, deliberately, so that having error_mark_node
2557 as the type can suppress useless errors in the use of this variable. */
2559 DECL_NAME (t) = name;
2560 TREE_TYPE (t) = type;
2562 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2563 layout_decl (t, 0);
2564 else if (code == FUNCTION_DECL)
2565 DECL_MODE (t) = FUNCTION_MODE;
2567 return t;
2570 /* BLOCK nodes are used to represent the structure of binding contours
2571 and declarations, once those contours have been exited and their contents
2572 compiled. This information is used for outputting debugging info. */
2574 tree
2575 build_block (vars, tags, subblocks, supercontext, chain)
2576 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2578 tree block = make_node (BLOCK);
2580 BLOCK_VARS (block) = vars;
2581 BLOCK_SUBBLOCKS (block) = subblocks;
2582 BLOCK_SUPERCONTEXT (block) = supercontext;
2583 BLOCK_CHAIN (block) = chain;
2584 return block;
2587 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2588 location where an expression or an identifier were encountered. It
2589 is necessary for languages where the frontend parser will handle
2590 recursively more than one file (Java is one of them). */
2592 tree
2593 build_expr_wfl (node, file, line, col)
2594 tree node;
2595 const char *file;
2596 int line, col;
2598 static const char *last_file = 0;
2599 static tree last_filenode = NULL_TREE;
2600 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2602 EXPR_WFL_NODE (wfl) = node;
2603 EXPR_WFL_SET_LINECOL (wfl, line, col);
2604 if (file != last_file)
2606 last_file = file;
2607 last_filenode = file ? get_identifier (file) : NULL_TREE;
2610 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2611 if (node)
2613 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2614 TREE_TYPE (wfl) = TREE_TYPE (node);
2617 return wfl;
2620 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2621 is ATTRIBUTE. */
2623 tree
2624 build_decl_attribute_variant (ddecl, attribute)
2625 tree ddecl, attribute;
2627 DECL_ATTRIBUTES (ddecl) = attribute;
2628 return ddecl;
2631 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2632 is ATTRIBUTE.
2634 Record such modified types already made so we don't make duplicates. */
2636 tree
2637 build_type_attribute_variant (ttype, attribute)
2638 tree ttype, attribute;
2640 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2642 unsigned int hashcode;
2643 tree ntype;
2645 ntype = copy_node (ttype);
2647 TYPE_POINTER_TO (ntype) = 0;
2648 TYPE_REFERENCE_TO (ntype) = 0;
2649 TYPE_ATTRIBUTES (ntype) = attribute;
2651 /* Create a new main variant of TYPE. */
2652 TYPE_MAIN_VARIANT (ntype) = ntype;
2653 TYPE_NEXT_VARIANT (ntype) = 0;
2654 set_type_quals (ntype, TYPE_UNQUALIFIED);
2656 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2657 + TYPE_HASH (TREE_TYPE (ntype))
2658 + attribute_hash_list (attribute));
2660 switch (TREE_CODE (ntype))
2662 case FUNCTION_TYPE:
2663 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2664 break;
2665 case ARRAY_TYPE:
2666 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2667 break;
2668 case INTEGER_TYPE:
2669 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2670 break;
2671 case REAL_TYPE:
2672 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2673 break;
2674 default:
2675 break;
2678 ntype = type_hash_canon (hashcode, ntype);
2679 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2682 return ttype;
2685 /* Default value of targetm.comp_type_attributes that always returns 1. */
2688 default_comp_type_attributes (type1, type2)
2689 tree type1 ATTRIBUTE_UNUSED;
2690 tree type2 ATTRIBUTE_UNUSED;
2692 return 1;
2695 /* Default version of targetm.set_default_type_attributes that always does
2696 nothing. */
2698 void
2699 default_set_default_type_attributes (type)
2700 tree type ATTRIBUTE_UNUSED;
2704 /* Default version of targetm.insert_attributes that always does nothing. */
2705 void
2706 default_insert_attributes (decl, attr_ptr)
2707 tree decl ATTRIBUTE_UNUSED;
2708 tree *attr_ptr ATTRIBUTE_UNUSED;
2712 /* Default value of targetm.attribute_table that is empty. */
2713 const struct attribute_spec default_target_attribute_table[] =
2715 { NULL, 0, 0, false, false, false, NULL }
2718 /* Default value of targetm.function_attribute_inlinable_p that always
2719 returns false. */
2720 bool
2721 default_function_attribute_inlinable_p (fndecl)
2722 tree fndecl ATTRIBUTE_UNUSED;
2724 /* By default, functions with machine attributes cannot be inlined. */
2725 return false;
2728 /* Return non-zero if IDENT is a valid name for attribute ATTR,
2729 or zero if not.
2731 We try both `text' and `__text__', ATTR may be either one. */
2732 /* ??? It might be a reasonable simplification to require ATTR to be only
2733 `text'. One might then also require attribute lists to be stored in
2734 their canonicalized form. */
2737 is_attribute_p (attr, ident)
2738 const char *attr;
2739 tree ident;
2741 int ident_len, attr_len;
2742 const char *p;
2744 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2745 return 0;
2747 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2748 return 1;
2750 p = IDENTIFIER_POINTER (ident);
2751 ident_len = strlen (p);
2752 attr_len = strlen (attr);
2754 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2755 if (attr[0] == '_')
2757 if (attr[1] != '_'
2758 || attr[attr_len - 2] != '_'
2759 || attr[attr_len - 1] != '_')
2760 abort ();
2761 if (ident_len == attr_len - 4
2762 && strncmp (attr + 2, p, attr_len - 4) == 0)
2763 return 1;
2765 else
2767 if (ident_len == attr_len + 4
2768 && p[0] == '_' && p[1] == '_'
2769 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2770 && strncmp (attr, p + 2, attr_len) == 0)
2771 return 1;
2774 return 0;
2777 /* Given an attribute name and a list of attributes, return a pointer to the
2778 attribute's list element if the attribute is part of the list, or NULL_TREE
2779 if not found. If the attribute appears more than once, this only
2780 returns the first occurrence; the TREE_CHAIN of the return value should
2781 be passed back in if further occurrences are wanted. */
2783 tree
2784 lookup_attribute (attr_name, list)
2785 const char *attr_name;
2786 tree list;
2788 tree l;
2790 for (l = list; l; l = TREE_CHAIN (l))
2792 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2793 abort ();
2794 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2795 return l;
2798 return NULL_TREE;
2801 /* Return an attribute list that is the union of a1 and a2. */
2803 tree
2804 merge_attributes (a1, a2)
2805 tree a1, a2;
2807 tree attributes;
2809 /* Either one unset? Take the set one. */
2811 if ((attributes = a1) == 0)
2812 attributes = a2;
2814 /* One that completely contains the other? Take it. */
2816 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2818 if (attribute_list_contained (a2, a1))
2819 attributes = a2;
2820 else
2822 /* Pick the longest list, and hang on the other list. */
2824 if (list_length (a1) < list_length (a2))
2825 attributes = a2, a2 = a1;
2827 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2829 tree a;
2830 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2831 attributes);
2832 a != NULL_TREE;
2833 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2834 TREE_CHAIN (a)))
2836 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2837 break;
2839 if (a == NULL_TREE)
2841 a1 = copy_node (a2);
2842 TREE_CHAIN (a1) = attributes;
2843 attributes = a1;
2848 return attributes;
2851 /* Given types T1 and T2, merge their attributes and return
2852 the result. */
2854 tree
2855 merge_type_attributes (t1, t2)
2856 tree t1, t2;
2858 return merge_attributes (TYPE_ATTRIBUTES (t1),
2859 TYPE_ATTRIBUTES (t2));
2862 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2863 the result. */
2865 tree
2866 merge_decl_attributes (olddecl, newdecl)
2867 tree olddecl, newdecl;
2869 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2870 DECL_ATTRIBUTES (newdecl));
2873 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2875 /* Specialization of merge_decl_attributes for various Windows targets.
2877 This handles the following situation:
2879 __declspec (dllimport) int foo;
2880 int foo;
2882 The second instance of `foo' nullifies the dllimport. */
2884 tree
2885 merge_dllimport_decl_attributes (old, new)
2886 tree old;
2887 tree new;
2889 tree a;
2890 int delete_dllimport_p;
2892 old = DECL_ATTRIBUTES (old);
2893 new = DECL_ATTRIBUTES (new);
2895 /* What we need to do here is remove from `old' dllimport if it doesn't
2896 appear in `new'. dllimport behaves like extern: if a declaration is
2897 marked dllimport and a definition appears later, then the object
2898 is not dllimport'd. */
2899 if (lookup_attribute ("dllimport", old) != NULL_TREE
2900 && lookup_attribute ("dllimport", new) == NULL_TREE)
2901 delete_dllimport_p = 1;
2902 else
2903 delete_dllimport_p = 0;
2905 a = merge_attributes (old, new);
2907 if (delete_dllimport_p)
2909 tree prev,t;
2911 /* Scan the list for dllimport and delete it. */
2912 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2914 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2916 if (prev == NULL_TREE)
2917 a = TREE_CHAIN (a);
2918 else
2919 TREE_CHAIN (prev) = TREE_CHAIN (t);
2920 break;
2925 return a;
2928 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2930 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2931 of the various TYPE_QUAL values. */
2933 static void
2934 set_type_quals (type, type_quals)
2935 tree type;
2936 int type_quals;
2938 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2939 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2940 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2943 /* Return a version of the TYPE, qualified as indicated by the
2944 TYPE_QUALS, if one exists. If no qualified version exists yet,
2945 return NULL_TREE. */
2947 tree
2948 get_qualified_type (type, type_quals)
2949 tree type;
2950 int type_quals;
2952 tree t;
2954 /* Search the chain of variants to see if there is already one there just
2955 like the one we need to have. If so, use that existing one. We must
2956 preserve the TYPE_NAME, since there is code that depends on this. */
2957 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2958 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
2959 return t;
2961 return NULL_TREE;
2964 /* Like get_qualified_type, but creates the type if it does not
2965 exist. This function never returns NULL_TREE. */
2967 tree
2968 build_qualified_type (type, type_quals)
2969 tree type;
2970 int type_quals;
2972 tree t;
2974 /* See if we already have the appropriate qualified variant. */
2975 t = get_qualified_type (type, type_quals);
2977 /* If not, build it. */
2978 if (!t)
2980 t = build_type_copy (type);
2981 set_type_quals (t, type_quals);
2984 return t;
2987 /* Create a new variant of TYPE, equivalent but distinct.
2988 This is so the caller can modify it. */
2990 tree
2991 build_type_copy (type)
2992 tree type;
2994 tree t, m = TYPE_MAIN_VARIANT (type);
2996 t = copy_node (type);
2998 TYPE_POINTER_TO (t) = 0;
2999 TYPE_REFERENCE_TO (t) = 0;
3001 /* Add this type to the chain of variants of TYPE. */
3002 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3003 TYPE_NEXT_VARIANT (m) = t;
3005 return t;
3008 /* Hashing of types so that we don't make duplicates.
3009 The entry point is `type_hash_canon'. */
3011 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3012 with types in the TREE_VALUE slots), by adding the hash codes
3013 of the individual types. */
3015 unsigned int
3016 type_hash_list (list)
3017 tree list;
3019 unsigned int hashcode;
3020 tree tail;
3022 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3023 hashcode += TYPE_HASH (TREE_VALUE (tail));
3025 return hashcode;
3028 /* These are the Hashtable callback functions. */
3030 /* Returns true if the types are equal. */
3032 static int
3033 type_hash_eq (va, vb)
3034 const void *va;
3035 const void *vb;
3037 const struct type_hash *a = va, *b = vb;
3038 if (a->hash == b->hash
3039 && TREE_CODE (a->type) == TREE_CODE (b->type)
3040 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
3041 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3042 TYPE_ATTRIBUTES (b->type))
3043 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
3044 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3045 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3046 TYPE_MAX_VALUE (b->type)))
3047 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3048 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3049 TYPE_MIN_VALUE (b->type)))
3050 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3051 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
3052 || (TYPE_DOMAIN (a->type)
3053 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
3054 && TYPE_DOMAIN (b->type)
3055 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
3056 && type_list_equal (TYPE_DOMAIN (a->type),
3057 TYPE_DOMAIN (b->type)))))
3058 return 1;
3059 return 0;
3062 /* Return the cached hash value. */
3064 static unsigned int
3065 type_hash_hash (item)
3066 const void *item;
3068 return ((const struct type_hash *) item)->hash;
3071 /* Look in the type hash table for a type isomorphic to TYPE.
3072 If one is found, return it. Otherwise return 0. */
3074 tree
3075 type_hash_lookup (hashcode, type)
3076 unsigned int hashcode;
3077 tree type;
3079 struct type_hash *h, in;
3081 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3082 must call that routine before comparing TYPE_ALIGNs. */
3083 layout_type (type);
3085 in.hash = hashcode;
3086 in.type = type;
3088 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3089 if (h)
3090 return h->type;
3091 return NULL_TREE;
3094 /* Add an entry to the type-hash-table
3095 for a type TYPE whose hash code is HASHCODE. */
3097 void
3098 type_hash_add (hashcode, type)
3099 unsigned int hashcode;
3100 tree type;
3102 struct type_hash *h;
3103 void **loc;
3105 h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
3106 h->hash = hashcode;
3107 h->type = type;
3108 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3109 *(struct type_hash **) loc = h;
3112 /* Given TYPE, and HASHCODE its hash code, return the canonical
3113 object for an identical type if one already exists.
3114 Otherwise, return TYPE, and record it as the canonical object
3115 if it is a permanent object.
3117 To use this function, first create a type of the sort you want.
3118 Then compute its hash code from the fields of the type that
3119 make it different from other similar types.
3120 Then call this function and use the value.
3121 This function frees the type you pass in if it is a duplicate. */
3123 /* Set to 1 to debug without canonicalization. Never set by program. */
3124 int debug_no_type_hash = 0;
3126 tree
3127 type_hash_canon (hashcode, type)
3128 unsigned int hashcode;
3129 tree type;
3131 tree t1;
3133 if (debug_no_type_hash)
3134 return type;
3136 /* See if the type is in the hash table already. If so, return it.
3137 Otherwise, add the type. */
3138 t1 = type_hash_lookup (hashcode, type);
3139 if (t1 != 0)
3141 #ifdef GATHER_STATISTICS
3142 tree_node_counts[(int) t_kind]--;
3143 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3144 #endif
3145 return t1;
3147 else
3149 type_hash_add (hashcode, type);
3150 return type;
3154 /* See if the data pointed to by the type hash table is marked. We consider
3155 it marked if the type is marked or if a debug type number or symbol
3156 table entry has been made for the type. This reduces the amount of
3157 debugging output and eliminates that dependency of the debug output on
3158 the number of garbage collections. */
3160 static int
3161 type_hash_marked_p (p)
3162 const void *p;
3164 tree type = ((struct type_hash *) p)->type;
3166 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3169 /* Mark the entry in the type hash table the type it points to is marked.
3170 Also mark the type in case we are considering this entry "marked" by
3171 virtue of TYPE_SYMTAB_POINTER being set. */
3173 static void
3174 type_hash_mark (p)
3175 const void *p;
3177 ggc_mark (p);
3178 ggc_mark_tree (((struct type_hash *) p)->type);
3181 /* Mark the hashtable slot pointed to by ENTRY (which is really a
3182 `tree**') for GC. */
3184 static int
3185 mark_tree_hashtable_entry (entry, data)
3186 void **entry;
3187 void *data ATTRIBUTE_UNUSED;
3189 ggc_mark_tree ((tree) *entry);
3190 return 1;
3193 /* Mark ARG (which is really a htab_t whose slots are trees) for
3194 GC. */
3196 void
3197 mark_tree_hashtable (arg)
3198 void *arg;
3200 htab_t t = *(htab_t *) arg;
3201 htab_traverse (t, mark_tree_hashtable_entry, 0);
3204 static void
3205 print_type_hash_statistics ()
3207 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3208 (long) htab_size (type_hash_table),
3209 (long) htab_elements (type_hash_table),
3210 htab_collisions (type_hash_table));
3213 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3214 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3215 by adding the hash codes of the individual attributes. */
3217 unsigned int
3218 attribute_hash_list (list)
3219 tree list;
3221 unsigned int hashcode;
3222 tree tail;
3224 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3225 /* ??? Do we want to add in TREE_VALUE too? */
3226 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3227 return hashcode;
3230 /* Given two lists of attributes, return true if list l2 is
3231 equivalent to l1. */
3234 attribute_list_equal (l1, l2)
3235 tree l1, l2;
3237 return attribute_list_contained (l1, l2)
3238 && attribute_list_contained (l2, l1);
3241 /* Given two lists of attributes, return true if list L2 is
3242 completely contained within L1. */
3243 /* ??? This would be faster if attribute names were stored in a canonicalized
3244 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3245 must be used to show these elements are equivalent (which they are). */
3246 /* ??? It's not clear that attributes with arguments will always be handled
3247 correctly. */
3250 attribute_list_contained (l1, l2)
3251 tree l1, l2;
3253 tree t1, t2;
3255 /* First check the obvious, maybe the lists are identical. */
3256 if (l1 == l2)
3257 return 1;
3259 /* Maybe the lists are similar. */
3260 for (t1 = l1, t2 = l2;
3261 t1 != 0 && t2 != 0
3262 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3263 && TREE_VALUE (t1) == TREE_VALUE (t2);
3264 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3266 /* Maybe the lists are equal. */
3267 if (t1 == 0 && t2 == 0)
3268 return 1;
3270 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3272 tree attr;
3273 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3274 attr != NULL_TREE;
3275 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3276 TREE_CHAIN (attr)))
3278 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3279 break;
3282 if (attr == 0)
3283 return 0;
3285 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3286 return 0;
3289 return 1;
3292 /* Given two lists of types
3293 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3294 return 1 if the lists contain the same types in the same order.
3295 Also, the TREE_PURPOSEs must match. */
3298 type_list_equal (l1, l2)
3299 tree l1, l2;
3301 tree t1, t2;
3303 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3304 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3305 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3306 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3307 && (TREE_TYPE (TREE_PURPOSE (t1))
3308 == TREE_TYPE (TREE_PURPOSE (t2))))))
3309 return 0;
3311 return t1 == t2;
3314 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3315 given by TYPE. If the argument list accepts variable arguments,
3316 then this function counts only the ordinary arguments. */
3319 type_num_arguments (type)
3320 tree type;
3322 int i = 0;
3323 tree t;
3325 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3326 /* If the function does not take a variable number of arguments,
3327 the last element in the list will have type `void'. */
3328 if (VOID_TYPE_P (TREE_VALUE (t)))
3329 break;
3330 else
3331 ++i;
3333 return i;
3336 /* Nonzero if integer constants T1 and T2
3337 represent the same constant value. */
3340 tree_int_cst_equal (t1, t2)
3341 tree t1, t2;
3343 if (t1 == t2)
3344 return 1;
3346 if (t1 == 0 || t2 == 0)
3347 return 0;
3349 if (TREE_CODE (t1) == INTEGER_CST
3350 && TREE_CODE (t2) == INTEGER_CST
3351 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3352 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3353 return 1;
3355 return 0;
3358 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3359 The precise way of comparison depends on their data type. */
3362 tree_int_cst_lt (t1, t2)
3363 tree t1, t2;
3365 if (t1 == t2)
3366 return 0;
3368 if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3369 return INT_CST_LT (t1, t2);
3371 return INT_CST_LT_UNSIGNED (t1, t2);
3374 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3377 tree_int_cst_compare (t1, t2)
3378 tree t1;
3379 tree t2;
3381 if (tree_int_cst_lt (t1, t2))
3382 return -1;
3383 else if (tree_int_cst_lt (t2, t1))
3384 return 1;
3385 else
3386 return 0;
3389 /* Return 1 if T is an INTEGER_CST that can be represented in a single
3390 HOST_WIDE_INT value. If POS is nonzero, the result must be positive. */
3393 host_integerp (t, pos)
3394 tree t;
3395 int pos;
3397 return (TREE_CODE (t) == INTEGER_CST
3398 && ! TREE_OVERFLOW (t)
3399 && ((TREE_INT_CST_HIGH (t) == 0
3400 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3401 || (! pos && TREE_INT_CST_HIGH (t) == -1
3402 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
3403 || (! pos && TREE_INT_CST_HIGH (t) == 0
3404 && TREE_UNSIGNED (TREE_TYPE (t)))));
3407 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3408 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3409 be positive. Abort if we cannot satisfy the above conditions. */
3411 HOST_WIDE_INT
3412 tree_low_cst (t, pos)
3413 tree t;
3414 int pos;
3416 if (host_integerp (t, pos))
3417 return TREE_INT_CST_LOW (t);
3418 else
3419 abort ();
3422 /* Return the most significant bit of the integer constant T. */
3425 tree_int_cst_msb (t)
3426 tree t;
3428 int prec;
3429 HOST_WIDE_INT h;
3430 unsigned HOST_WIDE_INT l;
3432 /* Note that using TYPE_PRECISION here is wrong. We care about the
3433 actual bits, not the (arbitrary) range of the type. */
3434 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3435 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3436 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3437 return (l & 1) == 1;
3440 /* Return an indication of the sign of the integer constant T.
3441 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3442 Note that -1 will never be returned it T's type is unsigned. */
3445 tree_int_cst_sgn (t)
3446 tree t;
3448 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3449 return 0;
3450 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3451 return 1;
3452 else if (TREE_INT_CST_HIGH (t) < 0)
3453 return -1;
3454 else
3455 return 1;
3458 /* Compare two constructor-element-type constants. Return 1 if the lists
3459 are known to be equal; otherwise return 0. */
3462 simple_cst_list_equal (l1, l2)
3463 tree l1, l2;
3465 while (l1 != NULL_TREE && l2 != NULL_TREE)
3467 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3468 return 0;
3470 l1 = TREE_CHAIN (l1);
3471 l2 = TREE_CHAIN (l2);
3474 return l1 == l2;
3477 /* Return truthvalue of whether T1 is the same tree structure as T2.
3478 Return 1 if they are the same.
3479 Return 0 if they are understandably different.
3480 Return -1 if either contains tree structure not understood by
3481 this function. */
3484 simple_cst_equal (t1, t2)
3485 tree t1, t2;
3487 enum tree_code code1, code2;
3488 int cmp;
3489 int i;
3491 if (t1 == t2)
3492 return 1;
3493 if (t1 == 0 || t2 == 0)
3494 return 0;
3496 code1 = TREE_CODE (t1);
3497 code2 = TREE_CODE (t2);
3499 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3501 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3502 || code2 == NON_LVALUE_EXPR)
3503 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3504 else
3505 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3508 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3509 || code2 == NON_LVALUE_EXPR)
3510 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3512 if (code1 != code2)
3513 return 0;
3515 switch (code1)
3517 case INTEGER_CST:
3518 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3519 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3521 case REAL_CST:
3522 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3524 case STRING_CST:
3525 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3526 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3527 TREE_STRING_LENGTH (t1)));
3529 case CONSTRUCTOR:
3530 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3531 return 1;
3532 else
3533 abort ();
3535 case SAVE_EXPR:
3536 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3538 case CALL_EXPR:
3539 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3540 if (cmp <= 0)
3541 return cmp;
3542 return
3543 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3545 case TARGET_EXPR:
3546 /* Special case: if either target is an unallocated VAR_DECL,
3547 it means that it's going to be unified with whatever the
3548 TARGET_EXPR is really supposed to initialize, so treat it
3549 as being equivalent to anything. */
3550 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3551 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3552 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3553 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3554 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3555 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3556 cmp = 1;
3557 else
3558 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3560 if (cmp <= 0)
3561 return cmp;
3563 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3565 case WITH_CLEANUP_EXPR:
3566 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3567 if (cmp <= 0)
3568 return cmp;
3570 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3572 case COMPONENT_REF:
3573 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3574 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3576 return 0;
3578 case VAR_DECL:
3579 case PARM_DECL:
3580 case CONST_DECL:
3581 case FUNCTION_DECL:
3582 return 0;
3584 default:
3585 break;
3588 /* This general rule works for most tree codes. All exceptions should be
3589 handled above. If this is a language-specific tree code, we can't
3590 trust what might be in the operand, so say we don't know
3591 the situation. */
3592 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3593 return -1;
3595 switch (TREE_CODE_CLASS (code1))
3597 case '1':
3598 case '2':
3599 case '<':
3600 case 'e':
3601 case 'r':
3602 case 's':
3603 cmp = 1;
3604 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3606 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3607 if (cmp <= 0)
3608 return cmp;
3611 return cmp;
3613 default:
3614 return -1;
3618 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3619 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3620 than U, respectively. */
3623 compare_tree_int (t, u)
3624 tree t;
3625 unsigned int u;
3627 if (tree_int_cst_sgn (t) < 0)
3628 return -1;
3629 else if (TREE_INT_CST_HIGH (t) != 0)
3630 return 1;
3631 else if (TREE_INT_CST_LOW (t) == u)
3632 return 0;
3633 else if (TREE_INT_CST_LOW (t) < u)
3634 return -1;
3635 else
3636 return 1;
3639 /* Constructors for pointer, array and function types.
3640 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3641 constructed by language-dependent code, not here.) */
3643 /* Construct, lay out and return the type of pointers to TO_TYPE.
3644 If such a type has already been constructed, reuse it. */
3646 tree
3647 build_pointer_type (to_type)
3648 tree to_type;
3650 tree t = TYPE_POINTER_TO (to_type);
3652 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3654 if (t != 0)
3655 return t;
3657 /* We need a new one. */
3658 t = make_node (POINTER_TYPE);
3660 TREE_TYPE (t) = to_type;
3662 /* Record this type as the pointer to TO_TYPE. */
3663 TYPE_POINTER_TO (to_type) = t;
3665 /* Lay out the type. This function has many callers that are concerned
3666 with expression-construction, and this simplifies them all.
3667 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3668 layout_type (t);
3670 return t;
3673 /* Build the node for the type of references-to-TO_TYPE. */
3675 tree
3676 build_reference_type (to_type)
3677 tree to_type;
3679 tree t = TYPE_REFERENCE_TO (to_type);
3681 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3683 if (t)
3684 return t;
3686 /* We need a new one. */
3687 t = make_node (REFERENCE_TYPE);
3689 TREE_TYPE (t) = to_type;
3691 /* Record this type as the pointer to TO_TYPE. */
3692 TYPE_REFERENCE_TO (to_type) = t;
3694 layout_type (t);
3696 return t;
3699 /* Build a type that is compatible with t but has no cv quals anywhere
3700 in its type, thus
3702 const char *const *const * -> char ***. */
3704 tree
3705 build_type_no_quals (t)
3706 tree t;
3708 switch (TREE_CODE (t))
3710 case POINTER_TYPE:
3711 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3712 case REFERENCE_TYPE:
3713 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3714 default:
3715 return TYPE_MAIN_VARIANT (t);
3719 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3720 MAXVAL should be the maximum value in the domain
3721 (one less than the length of the array).
3723 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3724 We don't enforce this limit, that is up to caller (e.g. language front end).
3725 The limit exists because the result is a signed type and we don't handle
3726 sizes that use more than one HOST_WIDE_INT. */
3728 tree
3729 build_index_type (maxval)
3730 tree maxval;
3732 tree itype = make_node (INTEGER_TYPE);
3734 TREE_TYPE (itype) = sizetype;
3735 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3736 TYPE_MIN_VALUE (itype) = size_zero_node;
3737 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3738 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3739 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3740 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3741 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3742 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3744 if (host_integerp (maxval, 1))
3745 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3746 else
3747 return itype;
3750 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3751 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3752 low bound LOWVAL and high bound HIGHVAL.
3753 if TYPE==NULL_TREE, sizetype is used. */
3755 tree
3756 build_range_type (type, lowval, highval)
3757 tree type, lowval, highval;
3759 tree itype = make_node (INTEGER_TYPE);
3761 TREE_TYPE (itype) = type;
3762 if (type == NULL_TREE)
3763 type = sizetype;
3765 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3766 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3768 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3769 TYPE_MODE (itype) = TYPE_MODE (type);
3770 TYPE_SIZE (itype) = TYPE_SIZE (type);
3771 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3772 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3773 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3775 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3776 return type_hash_canon (tree_low_cst (highval, 0)
3777 - tree_low_cst (lowval, 0),
3778 itype);
3779 else
3780 return itype;
3783 /* Just like build_index_type, but takes lowval and highval instead
3784 of just highval (maxval). */
3786 tree
3787 build_index_2_type (lowval,highval)
3788 tree lowval, highval;
3790 return build_range_type (sizetype, lowval, highval);
3793 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3794 Needed because when index types are not hashed, equal index types
3795 built at different times appear distinct, even though structurally,
3796 they are not. */
3799 index_type_equal (itype1, itype2)
3800 tree itype1, itype2;
3802 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3803 return 0;
3805 if (TREE_CODE (itype1) == INTEGER_TYPE)
3807 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3808 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3809 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3810 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3811 return 0;
3813 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3814 TYPE_MIN_VALUE (itype2))
3815 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3816 TYPE_MAX_VALUE (itype2)))
3817 return 1;
3820 return 0;
3823 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3824 and number of elements specified by the range of values of INDEX_TYPE.
3825 If such a type has already been constructed, reuse it. */
3827 tree
3828 build_array_type (elt_type, index_type)
3829 tree elt_type, index_type;
3831 tree t;
3832 unsigned int hashcode;
3834 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3836 error ("arrays of functions are not meaningful");
3837 elt_type = integer_type_node;
3840 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3841 build_pointer_type (elt_type);
3843 /* Allocate the array after the pointer type,
3844 in case we free it in type_hash_canon. */
3845 t = make_node (ARRAY_TYPE);
3846 TREE_TYPE (t) = elt_type;
3847 TYPE_DOMAIN (t) = index_type;
3849 if (index_type == 0)
3851 return t;
3854 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3855 t = type_hash_canon (hashcode, t);
3857 if (!COMPLETE_TYPE_P (t))
3858 layout_type (t);
3859 return t;
3862 /* Return the TYPE of the elements comprising
3863 the innermost dimension of ARRAY. */
3865 tree
3866 get_inner_array_type (array)
3867 tree array;
3869 tree type = TREE_TYPE (array);
3871 while (TREE_CODE (type) == ARRAY_TYPE)
3872 type = TREE_TYPE (type);
3874 return type;
3877 /* Construct, lay out and return
3878 the type of functions returning type VALUE_TYPE
3879 given arguments of types ARG_TYPES.
3880 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3881 are data type nodes for the arguments of the function.
3882 If such a type has already been constructed, reuse it. */
3884 tree
3885 build_function_type (value_type, arg_types)
3886 tree value_type, arg_types;
3888 tree t;
3889 unsigned int hashcode;
3891 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3893 error ("function return type cannot be function");
3894 value_type = integer_type_node;
3897 /* Make a node of the sort we want. */
3898 t = make_node (FUNCTION_TYPE);
3899 TREE_TYPE (t) = value_type;
3900 TYPE_ARG_TYPES (t) = arg_types;
3902 /* If we already have such a type, use the old one and free this one. */
3903 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3904 t = type_hash_canon (hashcode, t);
3906 if (!COMPLETE_TYPE_P (t))
3907 layout_type (t);
3908 return t;
3911 /* Construct, lay out and return the type of methods belonging to class
3912 BASETYPE and whose arguments and values are described by TYPE.
3913 If that type exists already, reuse it.
3914 TYPE must be a FUNCTION_TYPE node. */
3916 tree
3917 build_method_type (basetype, type)
3918 tree basetype, type;
3920 tree t;
3921 unsigned int hashcode;
3923 /* Make a node of the sort we want. */
3924 t = make_node (METHOD_TYPE);
3926 if (TREE_CODE (type) != FUNCTION_TYPE)
3927 abort ();
3929 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3930 TREE_TYPE (t) = TREE_TYPE (type);
3932 /* The actual arglist for this function includes a "hidden" argument
3933 which is "this". Put it into the list of argument types. */
3935 TYPE_ARG_TYPES (t)
3936 = tree_cons (NULL_TREE,
3937 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3939 /* If we already have such a type, use the old one and free this one. */
3940 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3941 t = type_hash_canon (hashcode, t);
3943 if (!COMPLETE_TYPE_P (t))
3944 layout_type (t);
3946 return t;
3949 /* Construct, lay out and return the type of offsets to a value
3950 of type TYPE, within an object of type BASETYPE.
3951 If a suitable offset type exists already, reuse it. */
3953 tree
3954 build_offset_type (basetype, type)
3955 tree basetype, type;
3957 tree t;
3958 unsigned int hashcode;
3960 /* Make a node of the sort we want. */
3961 t = make_node (OFFSET_TYPE);
3963 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3964 TREE_TYPE (t) = type;
3966 /* If we already have such a type, use the old one and free this one. */
3967 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3968 t = type_hash_canon (hashcode, t);
3970 if (!COMPLETE_TYPE_P (t))
3971 layout_type (t);
3973 return t;
3976 /* Create a complex type whose components are COMPONENT_TYPE. */
3978 tree
3979 build_complex_type (component_type)
3980 tree component_type;
3982 tree t;
3983 unsigned int hashcode;
3985 /* Make a node of the sort we want. */
3986 t = make_node (COMPLEX_TYPE);
3988 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3989 set_type_quals (t, TYPE_QUALS (component_type));
3991 /* If we already have such a type, use the old one and free this one. */
3992 hashcode = TYPE_HASH (component_type);
3993 t = type_hash_canon (hashcode, t);
3995 if (!COMPLETE_TYPE_P (t))
3996 layout_type (t);
3998 /* If we are writing Dwarf2 output we need to create a name,
3999 since complex is a fundamental type. */
4000 if (write_symbols == DWARF2_DEBUG && ! TYPE_NAME (t))
4002 const char *name;
4003 if (component_type == char_type_node)
4004 name = "complex char";
4005 else if (component_type == signed_char_type_node)
4006 name = "complex signed char";
4007 else if (component_type == unsigned_char_type_node)
4008 name = "complex unsigned char";
4009 else if (component_type == short_integer_type_node)
4010 name = "complex short int";
4011 else if (component_type == short_unsigned_type_node)
4012 name = "complex short unsigned int";
4013 else if (component_type == integer_type_node)
4014 name = "complex int";
4015 else if (component_type == unsigned_type_node)
4016 name = "complex unsigned int";
4017 else if (component_type == long_integer_type_node)
4018 name = "complex long int";
4019 else if (component_type == long_unsigned_type_node)
4020 name = "complex long unsigned int";
4021 else if (component_type == long_long_integer_type_node)
4022 name = "complex long long int";
4023 else if (component_type == long_long_unsigned_type_node)
4024 name = "complex long long unsigned int";
4025 else
4026 name = 0;
4028 if (name != 0)
4029 TYPE_NAME (t) = get_identifier (name);
4032 return t;
4035 /* Return OP, stripped of any conversions to wider types as much as is safe.
4036 Converting the value back to OP's type makes a value equivalent to OP.
4038 If FOR_TYPE is nonzero, we return a value which, if converted to
4039 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4041 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4042 narrowest type that can hold the value, even if they don't exactly fit.
4043 Otherwise, bit-field references are changed to a narrower type
4044 only if they can be fetched directly from memory in that type.
4046 OP must have integer, real or enumeral type. Pointers are not allowed!
4048 There are some cases where the obvious value we could return
4049 would regenerate to OP if converted to OP's type,
4050 but would not extend like OP to wider types.
4051 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4052 For example, if OP is (unsigned short)(signed char)-1,
4053 we avoid returning (signed char)-1 if FOR_TYPE is int,
4054 even though extending that to an unsigned short would regenerate OP,
4055 since the result of extending (signed char)-1 to (int)
4056 is different from (int) OP. */
4058 tree
4059 get_unwidened (op, for_type)
4060 tree op;
4061 tree for_type;
4063 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4064 tree type = TREE_TYPE (op);
4065 unsigned final_prec
4066 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4067 int uns
4068 = (for_type != 0 && for_type != type
4069 && final_prec > TYPE_PRECISION (type)
4070 && TREE_UNSIGNED (type));
4071 tree win = op;
4073 while (TREE_CODE (op) == NOP_EXPR)
4075 int bitschange
4076 = TYPE_PRECISION (TREE_TYPE (op))
4077 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4079 /* Truncations are many-one so cannot be removed.
4080 Unless we are later going to truncate down even farther. */
4081 if (bitschange < 0
4082 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4083 break;
4085 /* See what's inside this conversion. If we decide to strip it,
4086 we will set WIN. */
4087 op = TREE_OPERAND (op, 0);
4089 /* If we have not stripped any zero-extensions (uns is 0),
4090 we can strip any kind of extension.
4091 If we have previously stripped a zero-extension,
4092 only zero-extensions can safely be stripped.
4093 Any extension can be stripped if the bits it would produce
4094 are all going to be discarded later by truncating to FOR_TYPE. */
4096 if (bitschange > 0)
4098 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4099 win = op;
4100 /* TREE_UNSIGNED says whether this is a zero-extension.
4101 Let's avoid computing it if it does not affect WIN
4102 and if UNS will not be needed again. */
4103 if ((uns || TREE_CODE (op) == NOP_EXPR)
4104 && TREE_UNSIGNED (TREE_TYPE (op)))
4106 uns = 1;
4107 win = op;
4112 if (TREE_CODE (op) == COMPONENT_REF
4113 /* Since type_for_size always gives an integer type. */
4114 && TREE_CODE (type) != REAL_TYPE
4115 /* Don't crash if field not laid out yet. */
4116 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4117 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4119 unsigned int innerprec
4120 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4122 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4124 /* We can get this structure field in the narrowest type it fits in.
4125 If FOR_TYPE is 0, do this only for a field that matches the
4126 narrower type exactly and is aligned for it
4127 The resulting extension to its nominal type (a fullword type)
4128 must fit the same conditions as for other extensions. */
4130 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4131 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4132 && (! uns || final_prec <= innerprec
4133 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4134 && type != 0)
4136 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4137 TREE_OPERAND (op, 1));
4138 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4139 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4143 return win;
4146 /* Return OP or a simpler expression for a narrower value
4147 which can be sign-extended or zero-extended to give back OP.
4148 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4149 or 0 if the value should be sign-extended. */
4151 tree
4152 get_narrower (op, unsignedp_ptr)
4153 tree op;
4154 int *unsignedp_ptr;
4156 int uns = 0;
4157 int first = 1;
4158 tree win = op;
4160 while (TREE_CODE (op) == NOP_EXPR)
4162 int bitschange
4163 = (TYPE_PRECISION (TREE_TYPE (op))
4164 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4166 /* Truncations are many-one so cannot be removed. */
4167 if (bitschange < 0)
4168 break;
4170 /* See what's inside this conversion. If we decide to strip it,
4171 we will set WIN. */
4172 op = TREE_OPERAND (op, 0);
4174 if (bitschange > 0)
4176 /* An extension: the outermost one can be stripped,
4177 but remember whether it is zero or sign extension. */
4178 if (first)
4179 uns = TREE_UNSIGNED (TREE_TYPE (op));
4180 /* Otherwise, if a sign extension has been stripped,
4181 only sign extensions can now be stripped;
4182 if a zero extension has been stripped, only zero-extensions. */
4183 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4184 break;
4185 first = 0;
4187 else /* bitschange == 0 */
4189 /* A change in nominal type can always be stripped, but we must
4190 preserve the unsignedness. */
4191 if (first)
4192 uns = TREE_UNSIGNED (TREE_TYPE (op));
4193 first = 0;
4196 win = op;
4199 if (TREE_CODE (op) == COMPONENT_REF
4200 /* Since type_for_size always gives an integer type. */
4201 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4202 /* Ensure field is laid out already. */
4203 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4205 unsigned HOST_WIDE_INT innerprec
4206 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4207 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4209 /* We can get this structure field in a narrower type that fits it,
4210 but the resulting extension to its nominal type (a fullword type)
4211 must satisfy the same conditions as for other extensions.
4213 Do this only for fields that are aligned (not bit-fields),
4214 because when bit-field insns will be used there is no
4215 advantage in doing this. */
4217 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4218 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4219 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4220 && type != 0)
4222 if (first)
4223 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4224 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4225 TREE_OPERAND (op, 1));
4226 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4227 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4230 *unsignedp_ptr = uns;
4231 return win;
4234 /* Nonzero if integer constant C has a value that is permissible
4235 for type TYPE (an INTEGER_TYPE). */
4238 int_fits_type_p (c, type)
4239 tree c, type;
4241 /* If the bounds of the type are integers, we can check ourselves.
4242 Otherwise,. use force_fit_type, which checks against the precision. */
4243 if (TYPE_MAX_VALUE (type) != NULL_TREE
4244 && TYPE_MIN_VALUE (type) != NULL_TREE
4245 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4246 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4248 if (TREE_UNSIGNED (type))
4249 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4250 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4251 /* Negative ints never fit unsigned types. */
4252 && ! (TREE_INT_CST_HIGH (c) < 0
4253 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4254 else
4255 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4256 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4257 /* Unsigned ints with top bit set never fit signed types. */
4258 && ! (TREE_INT_CST_HIGH (c) < 0
4259 && TREE_UNSIGNED (TREE_TYPE (c))));
4261 else
4263 c = copy_node (c);
4264 TREE_TYPE (c) = type;
4265 return !force_fit_type (c, 0);
4269 /* Given a DECL or TYPE, return the scope in which it was declared, or
4270 NULL_TREE if there is no containing scope. */
4272 tree
4273 get_containing_scope (t)
4274 tree t;
4276 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4279 /* Return the innermost context enclosing DECL that is
4280 a FUNCTION_DECL, or zero if none. */
4282 tree
4283 decl_function_context (decl)
4284 tree decl;
4286 tree context;
4288 if (TREE_CODE (decl) == ERROR_MARK)
4289 return 0;
4291 if (TREE_CODE (decl) == SAVE_EXPR)
4292 context = SAVE_EXPR_CONTEXT (decl);
4294 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4295 where we look up the function at runtime. Such functions always take
4296 a first argument of type 'pointer to real context'.
4298 C++ should really be fixed to use DECL_CONTEXT for the real context,
4299 and use something else for the "virtual context". */
4300 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4301 context
4302 = TYPE_MAIN_VARIANT
4303 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4304 else
4305 context = DECL_CONTEXT (decl);
4307 while (context && TREE_CODE (context) != FUNCTION_DECL)
4309 if (TREE_CODE (context) == BLOCK)
4310 context = BLOCK_SUPERCONTEXT (context);
4311 else
4312 context = get_containing_scope (context);
4315 return context;
4318 /* Return the innermost context enclosing DECL that is
4319 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4320 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4322 tree
4323 decl_type_context (decl)
4324 tree decl;
4326 tree context = DECL_CONTEXT (decl);
4328 while (context)
4330 if (TREE_CODE (context) == RECORD_TYPE
4331 || TREE_CODE (context) == UNION_TYPE
4332 || TREE_CODE (context) == QUAL_UNION_TYPE)
4333 return context;
4335 if (TREE_CODE (context) == TYPE_DECL
4336 || TREE_CODE (context) == FUNCTION_DECL)
4337 context = DECL_CONTEXT (context);
4339 else if (TREE_CODE (context) == BLOCK)
4340 context = BLOCK_SUPERCONTEXT (context);
4342 else
4343 /* Unhandled CONTEXT!? */
4344 abort ();
4346 return NULL_TREE;
4349 /* CALL is a CALL_EXPR. Return the declaration for the function
4350 called, or NULL_TREE if the called function cannot be
4351 determined. */
4353 tree
4354 get_callee_fndecl (call)
4355 tree call;
4357 tree addr;
4359 /* It's invalid to call this function with anything but a
4360 CALL_EXPR. */
4361 if (TREE_CODE (call) != CALL_EXPR)
4362 abort ();
4364 /* The first operand to the CALL is the address of the function
4365 called. */
4366 addr = TREE_OPERAND (call, 0);
4368 STRIP_NOPS (addr);
4370 /* If this is a readonly function pointer, extract its initial value. */
4371 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4372 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4373 && DECL_INITIAL (addr))
4374 addr = DECL_INITIAL (addr);
4376 /* If the address is just `&f' for some function `f', then we know
4377 that `f' is being called. */
4378 if (TREE_CODE (addr) == ADDR_EXPR
4379 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4380 return TREE_OPERAND (addr, 0);
4382 /* We couldn't figure out what was being called. */
4383 return NULL_TREE;
4386 /* Print debugging information about the obstack O, named STR. */
4388 void
4389 print_obstack_statistics (str, o)
4390 const char *str;
4391 struct obstack *o;
4393 struct _obstack_chunk *chunk = o->chunk;
4394 int n_chunks = 1;
4395 int n_alloc = 0;
4397 n_alloc += o->next_free - chunk->contents;
4398 chunk = chunk->prev;
4399 while (chunk)
4401 n_chunks += 1;
4402 n_alloc += chunk->limit - &chunk->contents[0];
4403 chunk = chunk->prev;
4405 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4406 str, n_alloc, n_chunks);
4409 /* Print debugging information about tree nodes generated during the compile,
4410 and any language-specific information. */
4412 void
4413 dump_tree_statistics ()
4415 #ifdef GATHER_STATISTICS
4416 int i;
4417 int total_nodes, total_bytes;
4418 #endif
4420 fprintf (stderr, "\n??? tree nodes created\n\n");
4421 #ifdef GATHER_STATISTICS
4422 fprintf (stderr, "Kind Nodes Bytes\n");
4423 fprintf (stderr, "-------------------------------------\n");
4424 total_nodes = total_bytes = 0;
4425 for (i = 0; i < (int) all_kinds; i++)
4427 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4428 tree_node_counts[i], tree_node_sizes[i]);
4429 total_nodes += tree_node_counts[i];
4430 total_bytes += tree_node_sizes[i];
4432 fprintf (stderr, "-------------------------------------\n");
4433 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4434 fprintf (stderr, "-------------------------------------\n");
4435 #else
4436 fprintf (stderr, "(No per-node statistics)\n");
4437 #endif
4438 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4439 print_type_hash_statistics ();
4440 (*lang_hooks.print_statistics) ();
4443 #define FILE_FUNCTION_PREFIX_LEN 9
4445 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4447 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4448 clashes in cases where we can't reliably choose a unique name.
4450 Derived from mkstemp.c in libiberty. */
4452 static void
4453 append_random_chars (template)
4454 char *template;
4456 static const char letters[]
4457 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4458 static unsigned HOST_WIDE_INT value;
4459 unsigned HOST_WIDE_INT v;
4461 if (! value)
4463 struct stat st;
4465 /* VALUE should be unique for each file and must
4466 not change between compiles since this can cause
4467 bootstrap comparison errors. */
4469 if (stat (main_input_filename, &st) < 0)
4470 abort ();
4472 value = st.st_dev ^ st.st_ino ^ st.st_mtime;
4475 template += strlen (template);
4477 v = value;
4479 /* Fill in the random bits. */
4480 template[0] = letters[v % 62];
4481 v /= 62;
4482 template[1] = letters[v % 62];
4483 v /= 62;
4484 template[2] = letters[v % 62];
4485 v /= 62;
4486 template[3] = letters[v % 62];
4487 v /= 62;
4488 template[4] = letters[v % 62];
4489 v /= 62;
4490 template[5] = letters[v % 62];
4492 template[6] = '\0';
4495 /* P is a string that will be used in a symbol. Mask out any characters
4496 that are not valid in that context. */
4498 void
4499 clean_symbol_name (p)
4500 char *p;
4502 for (; *p; p++)
4503 if (! (ISALNUM (*p)
4504 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4505 || *p == '$'
4506 #endif
4507 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4508 || *p == '.'
4509 #endif
4511 *p = '_';
4514 /* Generate a name for a function unique to this translation unit.
4515 TYPE is some string to identify the purpose of this function to the
4516 linker or collect2. */
4518 tree
4519 get_file_function_name_long (type)
4520 const char *type;
4522 char *buf;
4523 const char *p;
4524 char *q;
4526 if (first_global_object_name)
4527 p = first_global_object_name;
4528 else
4530 /* We don't have anything that we know to be unique to this translation
4531 unit, so use what we do have and throw in some randomness. */
4533 const char *name = weak_global_object_name;
4534 const char *file = main_input_filename;
4536 if (! name)
4537 name = "";
4538 if (! file)
4539 file = input_filename;
4541 q = (char *) alloca (7 + strlen (name) + strlen (file));
4543 sprintf (q, "%s%s", name, file);
4544 append_random_chars (q);
4545 p = q;
4548 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4549 + strlen (type));
4551 /* Set up the name of the file-level functions we may need.
4552 Use a global object (which is already required to be unique over
4553 the program) rather than the file name (which imposes extra
4554 constraints). */
4555 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4557 /* Don't need to pull weird characters out of global names. */
4558 if (p != first_global_object_name)
4559 clean_symbol_name (buf + 11);
4561 return get_identifier (buf);
4564 /* If KIND=='I', return a suitable global initializer (constructor) name.
4565 If KIND=='D', return a suitable global clean-up (destructor) name. */
4567 tree
4568 get_file_function_name (kind)
4569 int kind;
4571 char p[2];
4573 p[0] = kind;
4574 p[1] = 0;
4576 return get_file_function_name_long (p);
4579 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4580 The result is placed in BUFFER (which has length BIT_SIZE),
4581 with one bit in each char ('\000' or '\001').
4583 If the constructor is constant, NULL_TREE is returned.
4584 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4586 tree
4587 get_set_constructor_bits (init, buffer, bit_size)
4588 tree init;
4589 char *buffer;
4590 int bit_size;
4592 int i;
4593 tree vals;
4594 HOST_WIDE_INT domain_min
4595 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4596 tree non_const_bits = NULL_TREE;
4598 for (i = 0; i < bit_size; i++)
4599 buffer[i] = 0;
4601 for (vals = TREE_OPERAND (init, 1);
4602 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4604 if (!host_integerp (TREE_VALUE (vals), 0)
4605 || (TREE_PURPOSE (vals) != NULL_TREE
4606 && !host_integerp (TREE_PURPOSE (vals), 0)))
4607 non_const_bits
4608 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4609 else if (TREE_PURPOSE (vals) != NULL_TREE)
4611 /* Set a range of bits to ones. */
4612 HOST_WIDE_INT lo_index
4613 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4614 HOST_WIDE_INT hi_index
4615 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4617 if (lo_index < 0 || lo_index >= bit_size
4618 || hi_index < 0 || hi_index >= bit_size)
4619 abort ();
4620 for (; lo_index <= hi_index; lo_index++)
4621 buffer[lo_index] = 1;
4623 else
4625 /* Set a single bit to one. */
4626 HOST_WIDE_INT index
4627 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4628 if (index < 0 || index >= bit_size)
4630 error ("invalid initializer for bit string");
4631 return NULL_TREE;
4633 buffer[index] = 1;
4636 return non_const_bits;
4639 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4640 The result is placed in BUFFER (which is an array of bytes).
4641 If the constructor is constant, NULL_TREE is returned.
4642 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4644 tree
4645 get_set_constructor_bytes (init, buffer, wd_size)
4646 tree init;
4647 unsigned char *buffer;
4648 int wd_size;
4650 int i;
4651 int set_word_size = BITS_PER_UNIT;
4652 int bit_size = wd_size * set_word_size;
4653 int bit_pos = 0;
4654 unsigned char *bytep = buffer;
4655 char *bit_buffer = (char *) alloca (bit_size);
4656 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4658 for (i = 0; i < wd_size; i++)
4659 buffer[i] = 0;
4661 for (i = 0; i < bit_size; i++)
4663 if (bit_buffer[i])
4665 if (BYTES_BIG_ENDIAN)
4666 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4667 else
4668 *bytep |= 1 << bit_pos;
4670 bit_pos++;
4671 if (bit_pos >= set_word_size)
4672 bit_pos = 0, bytep++;
4674 return non_const_bits;
4677 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4678 /* Complain that the tree code of NODE does not match the expected CODE.
4679 FILE, LINE, and FUNCTION are of the caller. */
4681 void
4682 tree_check_failed (node, code, file, line, function)
4683 const tree node;
4684 enum tree_code code;
4685 const char *file;
4686 int line;
4687 const char *function;
4689 internal_error ("Tree check: expected %s, have %s in %s, at %s:%d",
4690 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4691 function, trim_filename (file), line);
4694 /* Similar to above, except that we check for a class of tree
4695 code, given in CL. */
4697 void
4698 tree_class_check_failed (node, cl, file, line, function)
4699 const tree node;
4700 int cl;
4701 const char *file;
4702 int line;
4703 const char *function;
4705 internal_error
4706 ("Tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4707 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4708 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4711 #endif /* ENABLE_TREE_CHECKING */
4713 /* For a new vector type node T, build the information necessary for
4714 debuggint output. */
4716 static void
4717 finish_vector_type (t)
4718 tree t;
4720 layout_type (t);
4723 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4724 tree array = build_array_type (TREE_TYPE (t),
4725 build_index_type (index));
4726 tree rt = make_node (RECORD_TYPE);
4728 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4729 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4730 layout_type (rt);
4731 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4732 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4733 the representation type, and we want to find that die when looking up
4734 the vector type. This is most easily achieved by making the TYPE_UID
4735 numbers equal. */
4736 TYPE_UID (rt) = TYPE_UID (t);
4740 /* Create nodes for all integer types (and error_mark_node) using the sizes
4741 of C datatypes. The caller should call set_sizetype soon after calling
4742 this function to select one of the types as sizetype. */
4744 void
4745 build_common_tree_nodes (signed_char)
4746 int signed_char;
4748 error_mark_node = make_node (ERROR_MARK);
4749 TREE_TYPE (error_mark_node) = error_mark_node;
4751 initialize_sizetypes ();
4753 /* Define both `signed char' and `unsigned char'. */
4754 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4755 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4757 /* Define `char', which is like either `signed char' or `unsigned char'
4758 but not the same as either. */
4759 char_type_node
4760 = (signed_char
4761 ? make_signed_type (CHAR_TYPE_SIZE)
4762 : make_unsigned_type (CHAR_TYPE_SIZE));
4764 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4765 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4766 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4767 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4768 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4769 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4770 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4771 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4773 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4774 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4775 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4776 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4777 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4779 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4780 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4781 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4782 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4783 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4786 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4787 It will create several other common tree nodes. */
4789 void
4790 build_common_tree_nodes_2 (short_double)
4791 int short_double;
4793 /* Define these next since types below may used them. */
4794 integer_zero_node = build_int_2 (0, 0);
4795 integer_one_node = build_int_2 (1, 0);
4796 integer_minus_one_node = build_int_2 (-1, -1);
4798 size_zero_node = size_int (0);
4799 size_one_node = size_int (1);
4800 bitsize_zero_node = bitsize_int (0);
4801 bitsize_one_node = bitsize_int (1);
4802 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4804 void_type_node = make_node (VOID_TYPE);
4805 layout_type (void_type_node);
4807 /* We are not going to have real types in C with less than byte alignment,
4808 so we might as well not have any types that claim to have it. */
4809 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4810 TYPE_USER_ALIGN (void_type_node) = 0;
4812 null_pointer_node = build_int_2 (0, 0);
4813 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4814 layout_type (TREE_TYPE (null_pointer_node));
4816 ptr_type_node = build_pointer_type (void_type_node);
4817 const_ptr_type_node
4818 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4820 float_type_node = make_node (REAL_TYPE);
4821 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4822 layout_type (float_type_node);
4824 double_type_node = make_node (REAL_TYPE);
4825 if (short_double)
4826 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4827 else
4828 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4829 layout_type (double_type_node);
4831 long_double_type_node = make_node (REAL_TYPE);
4832 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4833 layout_type (long_double_type_node);
4835 complex_integer_type_node = make_node (COMPLEX_TYPE);
4836 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4837 layout_type (complex_integer_type_node);
4839 complex_float_type_node = make_node (COMPLEX_TYPE);
4840 TREE_TYPE (complex_float_type_node) = float_type_node;
4841 layout_type (complex_float_type_node);
4843 complex_double_type_node = make_node (COMPLEX_TYPE);
4844 TREE_TYPE (complex_double_type_node) = double_type_node;
4845 layout_type (complex_double_type_node);
4847 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4848 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4849 layout_type (complex_long_double_type_node);
4852 tree t;
4853 BUILD_VA_LIST_TYPE (t);
4855 /* Many back-ends define record types without seting TYPE_NAME.
4856 If we copied the record type here, we'd keep the original
4857 record type without a name. This breaks name mangling. So,
4858 don't copy record types and let c_common_nodes_and_builtins()
4859 declare the type to be __builtin_va_list. */
4860 if (TREE_CODE (t) != RECORD_TYPE)
4861 t = build_type_copy (t);
4863 va_list_type_node = t;
4866 V4SF_type_node = make_node (VECTOR_TYPE);
4867 TREE_TYPE (V4SF_type_node) = float_type_node;
4868 TYPE_MODE (V4SF_type_node) = V4SFmode;
4869 finish_vector_type (V4SF_type_node);
4871 V4SI_type_node = make_node (VECTOR_TYPE);
4872 TREE_TYPE (V4SI_type_node) = intSI_type_node;
4873 TYPE_MODE (V4SI_type_node) = V4SImode;
4874 finish_vector_type (V4SI_type_node);
4876 V2SI_type_node = make_node (VECTOR_TYPE);
4877 TREE_TYPE (V2SI_type_node) = intSI_type_node;
4878 TYPE_MODE (V2SI_type_node) = V2SImode;
4879 finish_vector_type (V2SI_type_node);
4881 V4HI_type_node = make_node (VECTOR_TYPE);
4882 TREE_TYPE (V4HI_type_node) = intHI_type_node;
4883 TYPE_MODE (V4HI_type_node) = V4HImode;
4884 finish_vector_type (V4HI_type_node);
4886 V8QI_type_node = make_node (VECTOR_TYPE);
4887 TREE_TYPE (V8QI_type_node) = intQI_type_node;
4888 TYPE_MODE (V8QI_type_node) = V8QImode;
4889 finish_vector_type (V8QI_type_node);
4891 V8HI_type_node = make_node (VECTOR_TYPE);
4892 TREE_TYPE (V8HI_type_node) = intHI_type_node;
4893 TYPE_MODE (V8HI_type_node) = V8HImode;
4894 finish_vector_type (V8HI_type_node);
4896 V2SF_type_node = make_node (VECTOR_TYPE);
4897 TREE_TYPE (V2SF_type_node) = float_type_node;
4898 TYPE_MODE (V2SF_type_node) = V2SFmode;
4899 finish_vector_type (V2SF_type_node);
4901 V16QI_type_node = make_node (VECTOR_TYPE);
4902 TREE_TYPE (V16QI_type_node) = intQI_type_node;
4903 TYPE_MODE (V16QI_type_node) = V16QImode;
4904 finish_vector_type (V16QI_type_node);