PR sanitizer/85029
[official-gcc.git] / libsanitizer / asan / asan_allocator.cc
blob1b465469c757870c11b284d1df60ef62dc933160
1 //===-- asan_allocator.cc -------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of AddressSanitizer, an address sanity checker.
9 //
10 // Implementation of ASan's memory allocator, 2-nd version.
11 // This variant uses the allocator from sanitizer_common, i.e. the one shared
12 // with ThreadSanitizer and MemorySanitizer.
14 //===----------------------------------------------------------------------===//
16 #include "asan_allocator.h"
17 #include "asan_mapping.h"
18 #include "asan_poisoning.h"
19 #include "asan_report.h"
20 #include "asan_stack.h"
21 #include "asan_thread.h"
22 #include "sanitizer_common/sanitizer_allocator_checks.h"
23 #include "sanitizer_common/sanitizer_allocator_interface.h"
24 #include "sanitizer_common/sanitizer_errno.h"
25 #include "sanitizer_common/sanitizer_flags.h"
26 #include "sanitizer_common/sanitizer_internal_defs.h"
27 #include "sanitizer_common/sanitizer_list.h"
28 #include "sanitizer_common/sanitizer_stackdepot.h"
29 #include "sanitizer_common/sanitizer_quarantine.h"
30 #include "lsan/lsan_common.h"
32 namespace __asan {
34 // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
35 // We use adaptive redzones: for larger allocation larger redzones are used.
36 static u32 RZLog2Size(u32 rz_log) {
37 CHECK_LT(rz_log, 8);
38 return 16 << rz_log;
41 static u32 RZSize2Log(u32 rz_size) {
42 CHECK_GE(rz_size, 16);
43 CHECK_LE(rz_size, 2048);
44 CHECK(IsPowerOfTwo(rz_size));
45 u32 res = Log2(rz_size) - 4;
46 CHECK_EQ(rz_size, RZLog2Size(res));
47 return res;
50 static AsanAllocator &get_allocator();
52 // The memory chunk allocated from the underlying allocator looks like this:
53 // L L L L L L H H U U U U U U R R
54 // L -- left redzone words (0 or more bytes)
55 // H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
56 // U -- user memory.
57 // R -- right redzone (0 or more bytes)
58 // ChunkBase consists of ChunkHeader and other bytes that overlap with user
59 // memory.
61 // If the left redzone is greater than the ChunkHeader size we store a magic
62 // value in the first uptr word of the memory block and store the address of
63 // ChunkBase in the next uptr.
64 // M B L L L L L L L L L H H U U U U U U
65 // | ^
66 // ---------------------|
67 // M -- magic value kAllocBegMagic
68 // B -- address of ChunkHeader pointing to the first 'H'
69 static const uptr kAllocBegMagic = 0xCC6E96B9;
71 struct ChunkHeader {
72 // 1-st 8 bytes.
73 u32 chunk_state : 8; // Must be first.
74 u32 alloc_tid : 24;
76 u32 free_tid : 24;
77 u32 from_memalign : 1;
78 u32 alloc_type : 2;
79 u32 rz_log : 3;
80 u32 lsan_tag : 2;
81 // 2-nd 8 bytes
82 // This field is used for small sizes. For large sizes it is equal to
83 // SizeClassMap::kMaxSize and the actual size is stored in the
84 // SecondaryAllocator's metadata.
85 u32 user_requested_size;
86 u32 alloc_context_id;
89 struct ChunkBase : ChunkHeader {
90 // Header2, intersects with user memory.
91 u32 free_context_id;
94 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
95 static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
96 COMPILER_CHECK(kChunkHeaderSize == 16);
97 COMPILER_CHECK(kChunkHeader2Size <= 16);
99 // Every chunk of memory allocated by this allocator can be in one of 3 states:
100 // CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
101 // CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
102 // CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
103 enum {
104 CHUNK_AVAILABLE = 0, // 0 is the default value even if we didn't set it.
105 CHUNK_ALLOCATED = 2,
106 CHUNK_QUARANTINE = 3
109 struct AsanChunk: ChunkBase {
110 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
111 uptr UsedSize(bool locked_version = false) {
112 if (user_requested_size != SizeClassMap::kMaxSize)
113 return user_requested_size;
114 return *reinterpret_cast<uptr *>(
115 get_allocator().GetMetaData(AllocBeg(locked_version)));
117 void *AllocBeg(bool locked_version = false) {
118 if (from_memalign) {
119 if (locked_version)
120 return get_allocator().GetBlockBeginFastLocked(
121 reinterpret_cast<void *>(this));
122 return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this));
124 return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
126 bool AddrIsInside(uptr addr, bool locked_version = false) {
127 return (addr >= Beg()) && (addr < Beg() + UsedSize(locked_version));
131 struct QuarantineCallback {
132 explicit QuarantineCallback(AllocatorCache *cache)
133 : cache_(cache) {
136 void Recycle(AsanChunk *m) {
137 CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
138 atomic_store((atomic_uint8_t*)m, CHUNK_AVAILABLE, memory_order_relaxed);
139 CHECK_NE(m->alloc_tid, kInvalidTid);
140 CHECK_NE(m->free_tid, kInvalidTid);
141 PoisonShadow(m->Beg(),
142 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
143 kAsanHeapLeftRedzoneMagic);
144 void *p = reinterpret_cast<void *>(m->AllocBeg());
145 if (p != m) {
146 uptr *alloc_magic = reinterpret_cast<uptr *>(p);
147 CHECK_EQ(alloc_magic[0], kAllocBegMagic);
148 // Clear the magic value, as allocator internals may overwrite the
149 // contents of deallocated chunk, confusing GetAsanChunk lookup.
150 alloc_magic[0] = 0;
151 CHECK_EQ(alloc_magic[1], reinterpret_cast<uptr>(m));
154 // Statistics.
155 AsanStats &thread_stats = GetCurrentThreadStats();
156 thread_stats.real_frees++;
157 thread_stats.really_freed += m->UsedSize();
159 get_allocator().Deallocate(cache_, p);
162 void *Allocate(uptr size) {
163 void *res = get_allocator().Allocate(cache_, size, 1);
164 // TODO(alekseys): Consider making quarantine OOM-friendly.
165 if (UNLIKELY(!res))
166 return DieOnFailure::OnOOM();
167 return res;
170 void Deallocate(void *p) {
171 get_allocator().Deallocate(cache_, p);
174 AllocatorCache *cache_;
177 typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
178 typedef AsanQuarantine::Cache QuarantineCache;
180 void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
181 PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
182 // Statistics.
183 AsanStats &thread_stats = GetCurrentThreadStats();
184 thread_stats.mmaps++;
185 thread_stats.mmaped += size;
187 void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
188 PoisonShadow(p, size, 0);
189 // We are about to unmap a chunk of user memory.
190 // Mark the corresponding shadow memory as not needed.
191 FlushUnneededASanShadowMemory(p, size);
192 // Statistics.
193 AsanStats &thread_stats = GetCurrentThreadStats();
194 thread_stats.munmaps++;
195 thread_stats.munmaped += size;
198 // We can not use THREADLOCAL because it is not supported on some of the
199 // platforms we care about (OSX 10.6, Android).
200 // static THREADLOCAL AllocatorCache cache;
201 AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
202 CHECK(ms);
203 return &ms->allocator_cache;
206 QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
207 CHECK(ms);
208 CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
209 return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
212 void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) {
213 quarantine_size_mb = f->quarantine_size_mb;
214 thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb;
215 min_redzone = f->redzone;
216 max_redzone = f->max_redzone;
217 may_return_null = cf->allocator_may_return_null;
218 alloc_dealloc_mismatch = f->alloc_dealloc_mismatch;
219 release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms;
222 void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) {
223 f->quarantine_size_mb = quarantine_size_mb;
224 f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb;
225 f->redzone = min_redzone;
226 f->max_redzone = max_redzone;
227 cf->allocator_may_return_null = may_return_null;
228 f->alloc_dealloc_mismatch = alloc_dealloc_mismatch;
229 cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms;
232 struct Allocator {
233 static const uptr kMaxAllowedMallocSize =
234 FIRST_32_SECOND_64(3UL << 30, 1ULL << 40);
236 AsanAllocator allocator;
237 AsanQuarantine quarantine;
238 StaticSpinMutex fallback_mutex;
239 AllocatorCache fallback_allocator_cache;
240 QuarantineCache fallback_quarantine_cache;
242 atomic_uint8_t rss_limit_exceeded;
244 // ------------------- Options --------------------------
245 atomic_uint16_t min_redzone;
246 atomic_uint16_t max_redzone;
247 atomic_uint8_t alloc_dealloc_mismatch;
249 // ------------------- Initialization ------------------------
250 explicit Allocator(LinkerInitialized)
251 : quarantine(LINKER_INITIALIZED),
252 fallback_quarantine_cache(LINKER_INITIALIZED) {}
254 void CheckOptions(const AllocatorOptions &options) const {
255 CHECK_GE(options.min_redzone, 16);
256 CHECK_GE(options.max_redzone, options.min_redzone);
257 CHECK_LE(options.max_redzone, 2048);
258 CHECK(IsPowerOfTwo(options.min_redzone));
259 CHECK(IsPowerOfTwo(options.max_redzone));
262 void SharedInitCode(const AllocatorOptions &options) {
263 CheckOptions(options);
264 quarantine.Init((uptr)options.quarantine_size_mb << 20,
265 (uptr)options.thread_local_quarantine_size_kb << 10);
266 atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch,
267 memory_order_release);
268 atomic_store(&min_redzone, options.min_redzone, memory_order_release);
269 atomic_store(&max_redzone, options.max_redzone, memory_order_release);
272 void Initialize(const AllocatorOptions &options) {
273 SetAllocatorMayReturnNull(options.may_return_null);
274 allocator.Init(options.release_to_os_interval_ms);
275 SharedInitCode(options);
278 bool RssLimitExceeded() {
279 return atomic_load(&rss_limit_exceeded, memory_order_relaxed);
282 void SetRssLimitExceeded(bool limit_exceeded) {
283 atomic_store(&rss_limit_exceeded, limit_exceeded, memory_order_relaxed);
286 void RePoisonChunk(uptr chunk) {
287 // This could be a user-facing chunk (with redzones), or some internal
288 // housekeeping chunk, like TransferBatch. Start by assuming the former.
289 AsanChunk *ac = GetAsanChunk((void *)chunk);
290 uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)ac);
291 uptr beg = ac->Beg();
292 uptr end = ac->Beg() + ac->UsedSize(true);
293 uptr chunk_end = chunk + allocated_size;
294 if (chunk < beg && beg < end && end <= chunk_end &&
295 ac->chunk_state == CHUNK_ALLOCATED) {
296 // Looks like a valid AsanChunk in use, poison redzones only.
297 PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic);
298 uptr end_aligned_down = RoundDownTo(end, SHADOW_GRANULARITY);
299 FastPoisonShadowPartialRightRedzone(
300 end_aligned_down, end - end_aligned_down,
301 chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic);
302 } else {
303 // This is either not an AsanChunk or freed or quarantined AsanChunk.
304 // In either case, poison everything.
305 PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic);
309 void ReInitialize(const AllocatorOptions &options) {
310 SetAllocatorMayReturnNull(options.may_return_null);
311 allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms);
312 SharedInitCode(options);
314 // Poison all existing allocation's redzones.
315 if (CanPoisonMemory()) {
316 allocator.ForceLock();
317 allocator.ForEachChunk(
318 [](uptr chunk, void *alloc) {
319 ((Allocator *)alloc)->RePoisonChunk(chunk);
321 this);
322 allocator.ForceUnlock();
326 void GetOptions(AllocatorOptions *options) const {
327 options->quarantine_size_mb = quarantine.GetSize() >> 20;
328 options->thread_local_quarantine_size_kb = quarantine.GetCacheSize() >> 10;
329 options->min_redzone = atomic_load(&min_redzone, memory_order_acquire);
330 options->max_redzone = atomic_load(&max_redzone, memory_order_acquire);
331 options->may_return_null = AllocatorMayReturnNull();
332 options->alloc_dealloc_mismatch =
333 atomic_load(&alloc_dealloc_mismatch, memory_order_acquire);
334 options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs();
337 // -------------------- Helper methods. -------------------------
338 uptr ComputeRZLog(uptr user_requested_size) {
339 u32 rz_log =
340 user_requested_size <= 64 - 16 ? 0 :
341 user_requested_size <= 128 - 32 ? 1 :
342 user_requested_size <= 512 - 64 ? 2 :
343 user_requested_size <= 4096 - 128 ? 3 :
344 user_requested_size <= (1 << 14) - 256 ? 4 :
345 user_requested_size <= (1 << 15) - 512 ? 5 :
346 user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
347 u32 min_rz = atomic_load(&min_redzone, memory_order_acquire);
348 u32 max_rz = atomic_load(&max_redzone, memory_order_acquire);
349 return Min(Max(rz_log, RZSize2Log(min_rz)), RZSize2Log(max_rz));
352 // We have an address between two chunks, and we want to report just one.
353 AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk,
354 AsanChunk *right_chunk) {
355 // Prefer an allocated chunk over freed chunk and freed chunk
356 // over available chunk.
357 if (left_chunk->chunk_state != right_chunk->chunk_state) {
358 if (left_chunk->chunk_state == CHUNK_ALLOCATED)
359 return left_chunk;
360 if (right_chunk->chunk_state == CHUNK_ALLOCATED)
361 return right_chunk;
362 if (left_chunk->chunk_state == CHUNK_QUARANTINE)
363 return left_chunk;
364 if (right_chunk->chunk_state == CHUNK_QUARANTINE)
365 return right_chunk;
367 // Same chunk_state: choose based on offset.
368 sptr l_offset = 0, r_offset = 0;
369 CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
370 CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
371 if (l_offset < r_offset)
372 return left_chunk;
373 return right_chunk;
376 // -------------------- Allocation/Deallocation routines ---------------
377 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
378 AllocType alloc_type, bool can_fill) {
379 if (UNLIKELY(!asan_inited))
380 AsanInitFromRtl();
381 if (RssLimitExceeded())
382 return AsanAllocator::FailureHandler::OnOOM();
383 Flags &fl = *flags();
384 CHECK(stack);
385 const uptr min_alignment = SHADOW_GRANULARITY;
386 if (alignment < min_alignment)
387 alignment = min_alignment;
388 if (size == 0) {
389 // We'd be happy to avoid allocating memory for zero-size requests, but
390 // some programs/tests depend on this behavior and assume that malloc
391 // would not return NULL even for zero-size allocations. Moreover, it
392 // looks like operator new should never return NULL, and results of
393 // consecutive "new" calls must be different even if the allocated size
394 // is zero.
395 size = 1;
397 CHECK(IsPowerOfTwo(alignment));
398 uptr rz_log = ComputeRZLog(size);
399 uptr rz_size = RZLog2Size(rz_log);
400 uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
401 uptr needed_size = rounded_size + rz_size;
402 if (alignment > min_alignment)
403 needed_size += alignment;
404 bool using_primary_allocator = true;
405 // If we are allocating from the secondary allocator, there will be no
406 // automatic right redzone, so add the right redzone manually.
407 if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
408 needed_size += rz_size;
409 using_primary_allocator = false;
411 CHECK(IsAligned(needed_size, min_alignment));
412 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
413 Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n",
414 (void*)size);
415 return AsanAllocator::FailureHandler::OnBadRequest();
418 AsanThread *t = GetCurrentThread();
419 void *allocated;
420 if (t) {
421 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
422 allocated = allocator.Allocate(cache, needed_size, 8);
423 } else {
424 SpinMutexLock l(&fallback_mutex);
425 AllocatorCache *cache = &fallback_allocator_cache;
426 allocated = allocator.Allocate(cache, needed_size, 8);
428 if (!allocated)
429 return nullptr;
431 if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) {
432 // Heap poisoning is enabled, but the allocator provides an unpoisoned
433 // chunk. This is possible if CanPoisonMemory() was false for some
434 // time, for example, due to flags()->start_disabled.
435 // Anyway, poison the block before using it for anything else.
436 uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
437 PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
440 uptr alloc_beg = reinterpret_cast<uptr>(allocated);
441 uptr alloc_end = alloc_beg + needed_size;
442 uptr beg_plus_redzone = alloc_beg + rz_size;
443 uptr user_beg = beg_plus_redzone;
444 if (!IsAligned(user_beg, alignment))
445 user_beg = RoundUpTo(user_beg, alignment);
446 uptr user_end = user_beg + size;
447 CHECK_LE(user_end, alloc_end);
448 uptr chunk_beg = user_beg - kChunkHeaderSize;
449 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
450 m->alloc_type = alloc_type;
451 m->rz_log = rz_log;
452 u32 alloc_tid = t ? t->tid() : 0;
453 m->alloc_tid = alloc_tid;
454 CHECK_EQ(alloc_tid, m->alloc_tid); // Does alloc_tid fit into the bitfield?
455 m->free_tid = kInvalidTid;
456 m->from_memalign = user_beg != beg_plus_redzone;
457 if (alloc_beg != chunk_beg) {
458 CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg);
459 reinterpret_cast<uptr *>(alloc_beg)[0] = kAllocBegMagic;
460 reinterpret_cast<uptr *>(alloc_beg)[1] = chunk_beg;
462 if (using_primary_allocator) {
463 CHECK(size);
464 m->user_requested_size = size;
465 CHECK(allocator.FromPrimary(allocated));
466 } else {
467 CHECK(!allocator.FromPrimary(allocated));
468 m->user_requested_size = SizeClassMap::kMaxSize;
469 uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
470 meta[0] = size;
471 meta[1] = chunk_beg;
474 m->alloc_context_id = StackDepotPut(*stack);
476 uptr size_rounded_down_to_granularity =
477 RoundDownTo(size, SHADOW_GRANULARITY);
478 // Unpoison the bulk of the memory region.
479 if (size_rounded_down_to_granularity)
480 PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
481 // Deal with the end of the region if size is not aligned to granularity.
482 if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
483 u8 *shadow =
484 (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity);
485 *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
488 AsanStats &thread_stats = GetCurrentThreadStats();
489 thread_stats.mallocs++;
490 thread_stats.malloced += size;
491 thread_stats.malloced_redzones += needed_size - size;
492 if (needed_size > SizeClassMap::kMaxSize)
493 thread_stats.malloc_large++;
494 else
495 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
497 void *res = reinterpret_cast<void *>(user_beg);
498 if (can_fill && fl.max_malloc_fill_size) {
499 uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
500 REAL(memset)(res, fl.malloc_fill_byte, fill_size);
502 #if CAN_SANITIZE_LEAKS
503 m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
504 : __lsan::kDirectlyLeaked;
505 #endif
506 // Must be the last mutation of metadata in this function.
507 atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release);
508 ASAN_MALLOC_HOOK(res, size);
509 return res;
512 // Set quarantine flag if chunk is allocated, issue ASan error report on
513 // available and quarantined chunks. Return true on success, false otherwise.
514 bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr,
515 BufferedStackTrace *stack) {
516 u8 old_chunk_state = CHUNK_ALLOCATED;
517 // Flip the chunk_state atomically to avoid race on double-free.
518 if (!atomic_compare_exchange_strong((atomic_uint8_t *)m, &old_chunk_state,
519 CHUNK_QUARANTINE,
520 memory_order_acquire)) {
521 ReportInvalidFree(ptr, old_chunk_state, stack);
522 // It's not safe to push a chunk in quarantine on invalid free.
523 return false;
525 CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
526 return true;
529 // Expects the chunk to already be marked as quarantined by using
530 // AtomicallySetQuarantineFlagIfAllocated.
531 void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) {
532 CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
533 CHECK_GE(m->alloc_tid, 0);
534 if (SANITIZER_WORDSIZE == 64) // On 32-bits this resides in user area.
535 CHECK_EQ(m->free_tid, kInvalidTid);
536 AsanThread *t = GetCurrentThread();
537 m->free_tid = t ? t->tid() : 0;
538 m->free_context_id = StackDepotPut(*stack);
540 Flags &fl = *flags();
541 if (fl.max_free_fill_size > 0) {
542 // We have to skip the chunk header, it contains free_context_id.
543 uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size;
544 if (m->UsedSize() >= kChunkHeader2Size) { // Skip Header2 in user area.
545 uptr size_to_fill = m->UsedSize() - kChunkHeader2Size;
546 size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size);
547 REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill);
551 // Poison the region.
552 PoisonShadow(m->Beg(),
553 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
554 kAsanHeapFreeMagic);
556 AsanStats &thread_stats = GetCurrentThreadStats();
557 thread_stats.frees++;
558 thread_stats.freed += m->UsedSize();
560 // Push into quarantine.
561 if (t) {
562 AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
563 AllocatorCache *ac = GetAllocatorCache(ms);
564 quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac), m,
565 m->UsedSize());
566 } else {
567 SpinMutexLock l(&fallback_mutex);
568 AllocatorCache *ac = &fallback_allocator_cache;
569 quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac), m,
570 m->UsedSize());
574 void Deallocate(void *ptr, uptr delete_size, BufferedStackTrace *stack,
575 AllocType alloc_type) {
576 uptr p = reinterpret_cast<uptr>(ptr);
577 if (p == 0) return;
579 uptr chunk_beg = p - kChunkHeaderSize;
580 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
582 // On Windows, uninstrumented DLLs may allocate memory before ASan hooks
583 // malloc. Don't report an invalid free in this case.
584 if (SANITIZER_WINDOWS &&
585 !get_allocator().PointerIsMine(ptr)) {
586 if (!IsSystemHeapAddress(p))
587 ReportFreeNotMalloced(p, stack);
588 return;
591 ASAN_FREE_HOOK(ptr);
593 // Must mark the chunk as quarantined before any changes to its metadata.
594 // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag.
595 if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return;
597 if (m->alloc_type != alloc_type) {
598 if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) {
599 ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type,
600 (AllocType)alloc_type);
604 if (delete_size && flags()->new_delete_type_mismatch &&
605 delete_size != m->UsedSize()) {
606 ReportNewDeleteSizeMismatch(p, delete_size, stack);
609 QuarantineChunk(m, ptr, stack);
612 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
613 CHECK(old_ptr && new_size);
614 uptr p = reinterpret_cast<uptr>(old_ptr);
615 uptr chunk_beg = p - kChunkHeaderSize;
616 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
618 AsanStats &thread_stats = GetCurrentThreadStats();
619 thread_stats.reallocs++;
620 thread_stats.realloced += new_size;
622 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
623 if (new_ptr) {
624 u8 chunk_state = m->chunk_state;
625 if (chunk_state != CHUNK_ALLOCATED)
626 ReportInvalidFree(old_ptr, chunk_state, stack);
627 CHECK_NE(REAL(memcpy), nullptr);
628 uptr memcpy_size = Min(new_size, m->UsedSize());
629 // If realloc() races with free(), we may start copying freed memory.
630 // However, we will report racy double-free later anyway.
631 REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
632 Deallocate(old_ptr, 0, stack, FROM_MALLOC);
634 return new_ptr;
637 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
638 if (CheckForCallocOverflow(size, nmemb))
639 return AsanAllocator::FailureHandler::OnBadRequest();
640 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
641 // If the memory comes from the secondary allocator no need to clear it
642 // as it comes directly from mmap.
643 if (ptr && allocator.FromPrimary(ptr))
644 REAL(memset)(ptr, 0, nmemb * size);
645 return ptr;
648 void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) {
649 if (chunk_state == CHUNK_QUARANTINE)
650 ReportDoubleFree((uptr)ptr, stack);
651 else
652 ReportFreeNotMalloced((uptr)ptr, stack);
655 void CommitBack(AsanThreadLocalMallocStorage *ms) {
656 AllocatorCache *ac = GetAllocatorCache(ms);
657 quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac));
658 allocator.SwallowCache(ac);
661 // -------------------------- Chunk lookup ----------------------
663 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
664 AsanChunk *GetAsanChunk(void *alloc_beg) {
665 if (!alloc_beg) return nullptr;
666 if (!allocator.FromPrimary(alloc_beg)) {
667 uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(alloc_beg));
668 AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
669 return m;
671 uptr *alloc_magic = reinterpret_cast<uptr *>(alloc_beg);
672 if (alloc_magic[0] == kAllocBegMagic)
673 return reinterpret_cast<AsanChunk *>(alloc_magic[1]);
674 return reinterpret_cast<AsanChunk *>(alloc_beg);
677 AsanChunk *GetAsanChunkByAddr(uptr p) {
678 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
679 return GetAsanChunk(alloc_beg);
682 // Allocator must be locked when this function is called.
683 AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
684 void *alloc_beg =
685 allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
686 return GetAsanChunk(alloc_beg);
689 uptr AllocationSize(uptr p) {
690 AsanChunk *m = GetAsanChunkByAddr(p);
691 if (!m) return 0;
692 if (m->chunk_state != CHUNK_ALLOCATED) return 0;
693 if (m->Beg() != p) return 0;
694 return m->UsedSize();
697 AsanChunkView FindHeapChunkByAddress(uptr addr) {
698 AsanChunk *m1 = GetAsanChunkByAddr(addr);
699 if (!m1) return AsanChunkView(m1);
700 sptr offset = 0;
701 if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
702 // The address is in the chunk's left redzone, so maybe it is actually
703 // a right buffer overflow from the other chunk to the left.
704 // Search a bit to the left to see if there is another chunk.
705 AsanChunk *m2 = nullptr;
706 for (uptr l = 1; l < GetPageSizeCached(); l++) {
707 m2 = GetAsanChunkByAddr(addr - l);
708 if (m2 == m1) continue; // Still the same chunk.
709 break;
711 if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
712 m1 = ChooseChunk(addr, m2, m1);
714 return AsanChunkView(m1);
717 void PrintStats() {
718 allocator.PrintStats();
719 quarantine.PrintStats();
722 void ForceLock() {
723 allocator.ForceLock();
724 fallback_mutex.Lock();
727 void ForceUnlock() {
728 fallback_mutex.Unlock();
729 allocator.ForceUnlock();
733 static Allocator instance(LINKER_INITIALIZED);
735 static AsanAllocator &get_allocator() {
736 return instance.allocator;
739 bool AsanChunkView::IsValid() const {
740 return chunk_ && chunk_->chunk_state != CHUNK_AVAILABLE;
742 bool AsanChunkView::IsAllocated() const {
743 return chunk_ && chunk_->chunk_state == CHUNK_ALLOCATED;
745 bool AsanChunkView::IsQuarantined() const {
746 return chunk_ && chunk_->chunk_state == CHUNK_QUARANTINE;
748 uptr AsanChunkView::Beg() const { return chunk_->Beg(); }
749 uptr AsanChunkView::End() const { return Beg() + UsedSize(); }
750 uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); }
751 uptr AsanChunkView::AllocTid() const { return chunk_->alloc_tid; }
752 uptr AsanChunkView::FreeTid() const { return chunk_->free_tid; }
753 AllocType AsanChunkView::GetAllocType() const {
754 return (AllocType)chunk_->alloc_type;
757 static StackTrace GetStackTraceFromId(u32 id) {
758 CHECK(id);
759 StackTrace res = StackDepotGet(id);
760 CHECK(res.trace);
761 return res;
764 u32 AsanChunkView::GetAllocStackId() const { return chunk_->alloc_context_id; }
765 u32 AsanChunkView::GetFreeStackId() const { return chunk_->free_context_id; }
767 StackTrace AsanChunkView::GetAllocStack() const {
768 return GetStackTraceFromId(GetAllocStackId());
771 StackTrace AsanChunkView::GetFreeStack() const {
772 return GetStackTraceFromId(GetFreeStackId());
775 void InitializeAllocator(const AllocatorOptions &options) {
776 instance.Initialize(options);
779 void ReInitializeAllocator(const AllocatorOptions &options) {
780 instance.ReInitialize(options);
783 void GetAllocatorOptions(AllocatorOptions *options) {
784 instance.GetOptions(options);
787 AsanChunkView FindHeapChunkByAddress(uptr addr) {
788 return instance.FindHeapChunkByAddress(addr);
790 AsanChunkView FindHeapChunkByAllocBeg(uptr addr) {
791 return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr)));
794 void AsanThreadLocalMallocStorage::CommitBack() {
795 instance.CommitBack(this);
798 void PrintInternalAllocatorStats() {
799 instance.PrintStats();
802 void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
803 instance.Deallocate(ptr, 0, stack, alloc_type);
806 void asan_sized_free(void *ptr, uptr size, BufferedStackTrace *stack,
807 AllocType alloc_type) {
808 instance.Deallocate(ptr, size, stack, alloc_type);
811 void *asan_malloc(uptr size, BufferedStackTrace *stack) {
812 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
815 void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
816 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
819 void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
820 if (!p)
821 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
822 if (size == 0) {
823 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
824 instance.Deallocate(p, 0, stack, FROM_MALLOC);
825 return nullptr;
827 // Allocate a size of 1 if we shouldn't free() on Realloc to 0
828 size = 1;
830 return SetErrnoOnNull(instance.Reallocate(p, size, stack));
833 void *asan_valloc(uptr size, BufferedStackTrace *stack) {
834 return SetErrnoOnNull(
835 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true));
838 void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
839 uptr PageSize = GetPageSizeCached();
840 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
841 errno = errno_ENOMEM;
842 return AsanAllocator::FailureHandler::OnBadRequest();
844 // pvalloc(0) should allocate one page.
845 size = size ? RoundUpTo(size, PageSize) : PageSize;
846 return SetErrnoOnNull(
847 instance.Allocate(size, PageSize, stack, FROM_MALLOC, true));
850 void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
851 AllocType alloc_type) {
852 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
853 errno = errno_EINVAL;
854 return AsanAllocator::FailureHandler::OnBadRequest();
856 return SetErrnoOnNull(
857 instance.Allocate(size, alignment, stack, alloc_type, true));
860 int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
861 BufferedStackTrace *stack) {
862 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
863 AsanAllocator::FailureHandler::OnBadRequest();
864 return errno_EINVAL;
866 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
867 if (UNLIKELY(!ptr))
868 return errno_ENOMEM;
869 CHECK(IsAligned((uptr)ptr, alignment));
870 *memptr = ptr;
871 return 0;
874 uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
875 if (!ptr) return 0;
876 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
877 if (flags()->check_malloc_usable_size && (usable_size == 0)) {
878 GET_STACK_TRACE_FATAL(pc, bp);
879 ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
881 return usable_size;
884 uptr asan_mz_size(const void *ptr) {
885 return instance.AllocationSize(reinterpret_cast<uptr>(ptr));
888 void asan_mz_force_lock() {
889 instance.ForceLock();
892 void asan_mz_force_unlock() {
893 instance.ForceUnlock();
896 void AsanSoftRssLimitExceededCallback(bool limit_exceeded) {
897 instance.SetRssLimitExceeded(limit_exceeded);
900 } // namespace __asan
902 // --- Implementation of LSan-specific functions --- {{{1
903 namespace __lsan {
904 void LockAllocator() {
905 __asan::get_allocator().ForceLock();
908 void UnlockAllocator() {
909 __asan::get_allocator().ForceUnlock();
912 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
913 *begin = (uptr)&__asan::get_allocator();
914 *end = *begin + sizeof(__asan::get_allocator());
917 uptr PointsIntoChunk(void* p) {
918 uptr addr = reinterpret_cast<uptr>(p);
919 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr);
920 if (!m) return 0;
921 uptr chunk = m->Beg();
922 if (m->chunk_state != __asan::CHUNK_ALLOCATED)
923 return 0;
924 if (m->AddrIsInside(addr, /*locked_version=*/true))
925 return chunk;
926 if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(/*locked_version*/ true),
927 addr))
928 return chunk;
929 return 0;
932 uptr GetUserBegin(uptr chunk) {
933 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk);
934 CHECK(m);
935 return m->Beg();
938 LsanMetadata::LsanMetadata(uptr chunk) {
939 metadata_ = reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize);
942 bool LsanMetadata::allocated() const {
943 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
944 return m->chunk_state == __asan::CHUNK_ALLOCATED;
947 ChunkTag LsanMetadata::tag() const {
948 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
949 return static_cast<ChunkTag>(m->lsan_tag);
952 void LsanMetadata::set_tag(ChunkTag value) {
953 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
954 m->lsan_tag = value;
957 uptr LsanMetadata::requested_size() const {
958 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
959 return m->UsedSize(/*locked_version=*/true);
962 u32 LsanMetadata::stack_trace_id() const {
963 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
964 return m->alloc_context_id;
967 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
968 __asan::get_allocator().ForEachChunk(callback, arg);
971 IgnoreObjectResult IgnoreObjectLocked(const void *p) {
972 uptr addr = reinterpret_cast<uptr>(p);
973 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr);
974 if (!m) return kIgnoreObjectInvalid;
975 if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr)) {
976 if (m->lsan_tag == kIgnored)
977 return kIgnoreObjectAlreadyIgnored;
978 m->lsan_tag = __lsan::kIgnored;
979 return kIgnoreObjectSuccess;
980 } else {
981 return kIgnoreObjectInvalid;
984 } // namespace __lsan
986 // ---------------------- Interface ---------------- {{{1
987 using namespace __asan; // NOLINT
989 // ASan allocator doesn't reserve extra bytes, so normally we would
990 // just return "size". We don't want to expose our redzone sizes, etc here.
991 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
992 return size;
995 int __sanitizer_get_ownership(const void *p) {
996 uptr ptr = reinterpret_cast<uptr>(p);
997 return instance.AllocationSize(ptr) > 0;
1000 uptr __sanitizer_get_allocated_size(const void *p) {
1001 if (!p) return 0;
1002 uptr ptr = reinterpret_cast<uptr>(p);
1003 uptr allocated_size = instance.AllocationSize(ptr);
1004 // Die if p is not malloced or if it is already freed.
1005 if (allocated_size == 0) {
1006 GET_STACK_TRACE_FATAL_HERE;
1007 ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
1009 return allocated_size;
1012 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
1013 // Provide default (no-op) implementation of malloc hooks.
1014 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook,
1015 void *ptr, uptr size) {
1016 (void)ptr;
1017 (void)size;
1020 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *ptr) {
1021 (void)ptr;
1023 #endif