1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Elists
; use Elists
;
29 with Einfo
; use Einfo
;
30 with Exp_Disp
; use Exp_Disp
;
31 with Exp_Util
; use Exp_Util
;
32 with Exp_Ch7
; use Exp_Ch7
;
33 with Exp_Tss
; use Exp_Tss
;
34 with Errout
; use Errout
;
35 with Lib
.Xref
; use Lib
.Xref
;
36 with Namet
; use Namet
;
37 with Nlists
; use Nlists
;
38 with Nmake
; use Nmake
;
40 with Output
; use Output
;
41 with Restrict
; use Restrict
;
42 with Rident
; use Rident
;
44 with Sem_Aux
; use Sem_Aux
;
45 with Sem_Ch3
; use Sem_Ch3
;
46 with Sem_Ch6
; use Sem_Ch6
;
47 with Sem_Ch8
; use Sem_Ch8
;
48 with Sem_Eval
; use Sem_Eval
;
49 with Sem_Type
; use Sem_Type
;
50 with Sem_Util
; use Sem_Util
;
51 with Snames
; use Snames
;
52 with Sinfo
; use Sinfo
;
53 with Tbuild
; use Tbuild
;
54 with Uintp
; use Uintp
;
55 with Warnsw
; use Warnsw
;
57 package body Sem_Disp
is
59 -----------------------
60 -- Local Subprograms --
61 -----------------------
63 procedure Add_Dispatching_Operation
64 (Tagged_Type
: Entity_Id
;
66 -- Add New_Op in the list of primitive operations of Tagged_Type
68 function Check_Controlling_Type
70 Subp
: Entity_Id
) return Entity_Id
;
71 -- T is the tagged type of a formal parameter or the result of Subp.
72 -- If the subprogram has a controlling parameter or result that matches
73 -- the type, then returns the tagged type of that parameter or result
74 -- (returning the designated tagged type in the case of an access
75 -- parameter); otherwise returns empty.
77 function Find_Hidden_Overridden_Primitive
(S
: Entity_Id
) return Entity_Id
;
78 -- [Ada 2012:AI-0125] Find an inherited hidden primitive of the dispatching
79 -- type of S that has the same name of S, a type-conformant profile, an
80 -- original corresponding operation O that is a primitive of a visible
81 -- ancestor of the dispatching type of S and O is visible at the point of
82 -- of declaration of S. If the entity is found the Alias of S is set to the
83 -- original corresponding operation S and its Overridden_Operation is set
84 -- to the found entity; otherwise return Empty.
86 -- This routine does not search for non-hidden primitives since they are
87 -- covered by the normal Ada 2005 rules.
89 function Is_Inherited_Public_Operation
(Op
: Entity_Id
) return Boolean;
90 -- Check whether a primitive operation is inherited from an operation
91 -- declared in the visible part of its package.
93 -------------------------------
94 -- Add_Dispatching_Operation --
95 -------------------------------
97 procedure Add_Dispatching_Operation
98 (Tagged_Type
: Entity_Id
;
101 List
: constant Elist_Id
:= Primitive_Operations
(Tagged_Type
);
104 -- The dispatching operation may already be on the list, if it is the
105 -- wrapper for an inherited function of a null extension (see Exp_Ch3
106 -- for the construction of function wrappers). The list of primitive
107 -- operations must not contain duplicates.
109 -- The Default_Initial_Condition and invariant procedures are not added
110 -- to the list of primitives even when they are generated for a tagged
111 -- type. These routines must not be targets of dispatching calls and
112 -- therefore must not appear in the dispatch table because they already
113 -- utilize class-wide-precondition semantics to handle inheritance and
116 if Is_Suitable_Primitive
(New_Op
) then
117 Append_Unique_Elmt
(New_Op
, List
);
119 end Add_Dispatching_Operation
;
121 --------------------------
122 -- Covered_Interface_Op --
123 --------------------------
125 function Covered_Interface_Op
(Prim
: Entity_Id
) return Entity_Id
is
126 Tagged_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Prim
);
131 pragma Assert
(Is_Dispatching_Operation
(Prim
));
133 -- Although this is a dispatching primitive we must check if its
134 -- dispatching type is available because it may be the primitive
135 -- of a private type not defined as tagged in its partial view.
137 if Present
(Tagged_Type
) and then Has_Interfaces
(Tagged_Type
) then
139 -- If the tagged type is frozen then the internal entities associated
140 -- with interfaces are available in the list of primitives of the
141 -- tagged type and can be used to speed up this search.
143 if Is_Frozen
(Tagged_Type
) then
144 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
145 while Present
(Elmt
) loop
148 if Present
(Interface_Alias
(E
))
149 and then Alias
(E
) = Prim
151 return Interface_Alias
(E
);
157 -- Otherwise we must collect all the interface primitives and check
158 -- if the Prim overrides (implements) some interface primitive.
162 Ifaces_List
: Elist_Id
;
163 Iface_Elmt
: Elmt_Id
;
165 Iface_Prim
: Entity_Id
;
168 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
169 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
170 while Present
(Iface_Elmt
) loop
171 Iface
:= Node
(Iface_Elmt
);
173 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
174 while Present
(Elmt
) loop
175 Iface_Prim
:= Node
(Elmt
);
177 if Chars
(Iface_Prim
) = Chars
(Prim
)
178 and then Is_Interface_Conformant
179 (Tagged_Type
, Iface_Prim
, Prim
)
187 Next_Elmt
(Iface_Elmt
);
194 end Covered_Interface_Op
;
196 -------------------------------
197 -- Check_Controlling_Formals --
198 -------------------------------
200 procedure Check_Controlling_Formals
205 Ctrl_Type
: Entity_Id
;
208 Formal
:= First_Formal
(Subp
);
209 while Present
(Formal
) loop
210 Ctrl_Type
:= Check_Controlling_Type
(Etype
(Formal
), Subp
);
212 if Present
(Ctrl_Type
) then
214 -- When controlling type is concurrent and declared within a
215 -- generic or inside an instance use corresponding record type.
217 if Is_Concurrent_Type
(Ctrl_Type
)
218 and then Present
(Corresponding_Record_Type
(Ctrl_Type
))
220 Ctrl_Type
:= Corresponding_Record_Type
(Ctrl_Type
);
223 if Ctrl_Type
= Typ
then
224 Set_Is_Controlling_Formal
(Formal
);
226 -- Ada 2005 (AI-231): Anonymous access types that are used in
227 -- controlling parameters exclude null because it is necessary
228 -- to read the tag to dispatch, and null has no tag.
230 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
231 Set_Can_Never_Be_Null
(Etype
(Formal
));
232 Set_Is_Known_Non_Null
(Etype
(Formal
));
235 -- Check that the parameter's nominal subtype statically
236 -- matches the first subtype.
238 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
239 if not Subtypes_Statically_Match
240 (Typ
, Designated_Type
(Etype
(Formal
)))
243 ("parameter subtype does not match controlling type",
247 -- Within a predicate function, the formal may be a subtype
248 -- of a tagged type, given that the predicate is expressed
249 -- in terms of the subtype.
251 elsif not Subtypes_Statically_Match
(Typ
, Etype
(Formal
))
252 and then not Is_Predicate_Function
(Subp
)
255 ("parameter subtype does not match controlling type",
259 if Present
(Default_Value
(Formal
)) then
261 -- In Ada 2005, access parameters can have defaults
263 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
264 and then Ada_Version
< Ada_2005
267 ("default not allowed for controlling access parameter",
268 Default_Value
(Formal
));
270 elsif not Is_Tag_Indeterminate
(Default_Value
(Formal
)) then
272 ("default expression must be a tag indeterminate" &
273 " function call", Default_Value
(Formal
));
277 elsif Comes_From_Source
(Subp
) then
279 ("operation can be dispatching in only one type", Subp
);
283 Next_Formal
(Formal
);
286 if Ekind_In
(Subp
, E_Function
, E_Generic_Function
) then
287 Ctrl_Type
:= Check_Controlling_Type
(Etype
(Subp
), Subp
);
289 if Present
(Ctrl_Type
) then
290 if Ctrl_Type
= Typ
then
291 Set_Has_Controlling_Result
(Subp
);
293 -- Check that result subtype statically matches first subtype
294 -- (Ada 2005): Subp may have a controlling access result.
296 if Subtypes_Statically_Match
(Typ
, Etype
(Subp
))
297 or else (Ekind
(Etype
(Subp
)) = E_Anonymous_Access_Type
299 Subtypes_Statically_Match
300 (Typ
, Designated_Type
(Etype
(Subp
))))
306 ("result subtype does not match controlling type", Subp
);
309 elsif Comes_From_Source
(Subp
) then
311 ("operation can be dispatching in only one type", Subp
);
315 end Check_Controlling_Formals
;
317 ----------------------------
318 -- Check_Controlling_Type --
319 ----------------------------
321 function Check_Controlling_Type
323 Subp
: Entity_Id
) return Entity_Id
325 Tagged_Type
: Entity_Id
:= Empty
;
328 if Is_Tagged_Type
(T
) then
329 if Is_First_Subtype
(T
) then
332 Tagged_Type
:= Base_Type
(T
);
335 -- If the type is incomplete, it may have been declared without a
336 -- Tagged indication, but the full view may be tagged, in which case
337 -- that is the controlling type of the subprogram. This is one of the
338 -- approx. 579 places in the language where a lookahead would help.
340 elsif Ekind
(T
) = E_Incomplete_Type
341 and then Present
(Full_View
(T
))
342 and then Is_Tagged_Type
(Full_View
(T
))
344 Set_Is_Tagged_Type
(T
);
345 Tagged_Type
:= Full_View
(T
);
347 elsif Ekind
(T
) = E_Anonymous_Access_Type
348 and then Is_Tagged_Type
(Designated_Type
(T
))
350 if Ekind
(Designated_Type
(T
)) /= E_Incomplete_Type
then
351 if Is_First_Subtype
(Designated_Type
(T
)) then
352 Tagged_Type
:= Designated_Type
(T
);
354 Tagged_Type
:= Base_Type
(Designated_Type
(T
));
357 -- Ada 2005: an incomplete type can be tagged. An operation with an
358 -- access parameter of the type is dispatching.
360 elsif Scope
(Designated_Type
(T
)) = Current_Scope
then
361 Tagged_Type
:= Designated_Type
(T
);
363 -- Ada 2005 (AI-50217)
365 elsif From_Limited_With
(Designated_Type
(T
))
366 and then Has_Non_Limited_View
(Designated_Type
(T
))
367 and then Scope
(Designated_Type
(T
)) = Scope
(Subp
)
369 if Is_First_Subtype
(Non_Limited_View
(Designated_Type
(T
))) then
370 Tagged_Type
:= Non_Limited_View
(Designated_Type
(T
));
372 Tagged_Type
:= Base_Type
(Non_Limited_View
373 (Designated_Type
(T
)));
378 if No
(Tagged_Type
) or else Is_Class_Wide_Type
(Tagged_Type
) then
381 -- The dispatching type and the primitive operation must be defined in
382 -- the same scope, except in the case of internal operations and formal
383 -- abstract subprograms.
385 elsif ((Scope
(Subp
) = Scope
(Tagged_Type
) or else Is_Internal
(Subp
))
386 and then (not Is_Generic_Type
(Tagged_Type
)
387 or else not Comes_From_Source
(Subp
)))
389 (Is_Formal_Subprogram
(Subp
) and then Is_Abstract_Subprogram
(Subp
))
391 (Nkind
(Parent
(Parent
(Subp
))) = N_Subprogram_Renaming_Declaration
393 Present
(Corresponding_Formal_Spec
(Parent
(Parent
(Subp
))))
395 Is_Abstract_Subprogram
(Subp
))
402 end Check_Controlling_Type
;
404 ----------------------------
405 -- Check_Dispatching_Call --
406 ----------------------------
408 procedure Check_Dispatching_Call
(N
: Node_Id
) is
409 Loc
: constant Source_Ptr
:= Sloc
(N
);
412 Control
: Node_Id
:= Empty
;
414 Subp_Entity
: Entity_Id
;
415 Indeterm_Ancestor_Call
: Boolean := False;
416 Indeterm_Ctrl_Type
: Entity_Id
:= Empty
; -- init to avoid warning
418 Static_Tag
: Node_Id
:= Empty
;
419 -- If a controlling formal has a statically tagged actual, the tag of
420 -- this actual is to be used for any tag-indeterminate actual.
422 procedure Check_Direct_Call
;
423 -- In the case when the controlling actual is a class-wide type whose
424 -- root type's completion is a task or protected type, the call is in
425 -- fact direct. This routine detects the above case and modifies the
428 procedure Check_Dispatching_Context
(Call
: Node_Id
);
429 -- If the call is tag-indeterminate and the entity being called is
430 -- abstract, verify that the context is a call that will eventually
431 -- provide a tag for dispatching, or has provided one already.
433 -----------------------
434 -- Check_Direct_Call --
435 -----------------------
437 procedure Check_Direct_Call
is
438 Typ
: Entity_Id
:= Etype
(Control
);
440 -- Predefined primitives do not receive wrappers since they are built
441 -- from scratch for the corresponding record of synchronized types.
442 -- Equality is in general predefined, but is excluded from the check
443 -- when it is user-defined.
445 if Is_Predefined_Dispatching_Operation
(Subp_Entity
)
446 and then not Is_User_Defined_Equality
(Subp_Entity
)
451 if Is_Class_Wide_Type
(Typ
) then
452 Typ
:= Root_Type
(Typ
);
455 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
456 Typ
:= Full_View
(Typ
);
459 if Is_Concurrent_Type
(Typ
)
461 Present
(Corresponding_Record_Type
(Typ
))
463 Typ
:= Corresponding_Record_Type
(Typ
);
465 -- The concurrent record's list of primitives should contain a
466 -- wrapper for the entity of the call, retrieve it.
471 Wrapper_Found
: Boolean := False;
474 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
475 while Present
(Prim_Elmt
) loop
476 Prim
:= Node
(Prim_Elmt
);
478 if Is_Primitive_Wrapper
(Prim
)
479 and then Wrapped_Entity
(Prim
) = Subp_Entity
481 Wrapper_Found
:= True;
485 Next_Elmt
(Prim_Elmt
);
488 -- A primitive declared between two views should have a
489 -- corresponding wrapper.
491 pragma Assert
(Wrapper_Found
);
493 -- Modify the call by setting the proper entity
495 Set_Entity
(Name
(N
), Prim
);
498 end Check_Direct_Call
;
500 -------------------------------
501 -- Check_Dispatching_Context --
502 -------------------------------
504 procedure Check_Dispatching_Context
(Call
: Node_Id
) is
505 Subp
: constant Entity_Id
:= Entity
(Name
(Call
));
507 procedure Abstract_Context_Error
;
508 -- Error for abstract call dispatching on result is not dispatching
510 ----------------------------
511 -- Abstract_Context_Error --
512 ----------------------------
514 procedure Abstract_Context_Error
is
516 if Ekind
(Subp
) = E_Function
then
518 ("call to abstract function must be dispatching", N
);
520 -- This error can occur for a procedure in the case of a call to
521 -- an abstract formal procedure with a statically tagged operand.
525 ("call to abstract procedure must be dispatching", N
);
527 end Abstract_Context_Error
;
531 Scop
: constant Entity_Id
:= Current_Scope_No_Loops
;
532 Typ
: constant Entity_Id
:= Etype
(Subp
);
535 -- Start of processing for Check_Dispatching_Context
538 -- If the called subprogram is a private overriding, replace it
539 -- with its alias, which has the correct body. Verify that the
540 -- two subprograms have the same controlling type (this is not the
541 -- case for an inherited subprogram that has become abstract).
543 if Is_Abstract_Subprogram
(Subp
)
544 and then No
(Controlling_Argument
(Call
))
546 if Present
(Alias
(Subp
))
547 and then not Is_Abstract_Subprogram
(Alias
(Subp
))
548 and then No
(DTC_Entity
(Subp
))
549 and then Find_Dispatching_Type
(Subp
) =
550 Find_Dispatching_Type
(Alias
(Subp
))
552 -- Private overriding of inherited abstract operation, call is
555 Set_Entity
(Name
(N
), Alias
(Subp
));
558 -- An obscure special case: a null procedure may have a class-
559 -- wide pre/postcondition that includes a call to an abstract
560 -- subp. Calls within the expression may not have been rewritten
561 -- as dispatching calls yet, because the null body appears in
562 -- the current declarative part. The expression will be properly
563 -- rewritten/reanalyzed when the postcondition procedure is built.
565 -- Similarly, if this is a pre/postcondition for an abstract
566 -- subprogram, it may call another abstract function which is
567 -- a primitive of an abstract type. The call is non-dispatching
568 -- but will be legal in overridings of the operation.
570 elsif (Is_Subprogram
(Scop
)
571 or else Chars
(Scop
) = Name_Postcondition
)
573 (Is_Abstract_Subprogram
(Scop
)
575 (Nkind
(Parent
(Scop
)) = N_Procedure_Specification
576 and then Null_Present
(Parent
(Scop
))))
580 elsif Ekind
(Current_Scope
) = E_Function
581 and then Nkind
(Unit_Declaration_Node
(Scop
)) =
582 N_Generic_Subprogram_Declaration
587 -- We need to determine whether the context of the call
588 -- provides a tag to make the call dispatching. This requires
589 -- the call to be the actual in an enclosing call, and that
590 -- actual must be controlling. If the call is an operand of
591 -- equality, the other operand must not ve abstract.
593 if not Is_Tagged_Type
(Typ
)
595 (Ekind
(Typ
) = E_Anonymous_Access_Type
596 and then Is_Tagged_Type
(Designated_Type
(Typ
)))
598 Abstract_Context_Error
;
602 Par
:= Parent
(Call
);
604 if Nkind
(Par
) = N_Parameter_Association
then
608 if Nkind
(Par
) = N_Qualified_Expression
609 or else Nkind
(Par
) = N_Unchecked_Type_Conversion
614 if Nkind_In
(Par
, N_Function_Call
, N_Procedure_Call_Statement
)
615 and then Is_Entity_Name
(Name
(Par
))
618 Enc_Subp
: constant Entity_Id
:= Entity
(Name
(Par
));
622 Ret_Type
: Entity_Id
;
625 -- Find controlling formal that can provide tag for the
626 -- tag-indeterminate actual. The corresponding actual
627 -- must be the corresponding class-wide type.
629 F
:= First_Formal
(Enc_Subp
);
630 A
:= First_Actual
(Par
);
632 -- Find controlling type of call. Dereference if function
633 -- returns an access type.
635 Ret_Type
:= Etype
(Call
);
636 if Is_Access_Type
(Etype
(Call
)) then
637 Ret_Type
:= Designated_Type
(Ret_Type
);
640 while Present
(F
) loop
641 Control
:= Etype
(A
);
643 if Is_Access_Type
(Control
) then
644 Control
:= Designated_Type
(Control
);
647 if Is_Controlling_Formal
(F
)
648 and then not (Call
= A
or else Parent
(Call
) = A
)
649 and then Control
= Class_Wide_Type
(Ret_Type
)
658 if Nkind
(Par
) = N_Function_Call
659 and then Is_Tag_Indeterminate
(Par
)
661 -- The parent may be an actual of an enclosing call
663 Check_Dispatching_Context
(Par
);
668 ("call to abstract function must be dispatching",
674 -- For equality operators, one of the operands must be
675 -- statically or dynamically tagged.
677 elsif Nkind_In
(Par
, N_Op_Eq
, N_Op_Ne
) then
678 if N
= Right_Opnd
(Par
)
679 and then Is_Tag_Indeterminate
(Left_Opnd
(Par
))
681 Abstract_Context_Error
;
683 elsif N
= Left_Opnd
(Par
)
684 and then Is_Tag_Indeterminate
(Right_Opnd
(Par
))
686 Abstract_Context_Error
;
691 -- The left-hand side of an assignment provides the tag
693 elsif Nkind
(Par
) = N_Assignment_Statement
then
697 Abstract_Context_Error
;
701 end Check_Dispatching_Context
;
703 -- Start of processing for Check_Dispatching_Call
706 -- Find a controlling argument, if any
708 if Present
(Parameter_Associations
(N
)) then
709 Subp_Entity
:= Entity
(Name
(N
));
711 Actual
:= First_Actual
(N
);
712 Formal
:= First_Formal
(Subp_Entity
);
713 while Present
(Actual
) loop
714 Control
:= Find_Controlling_Arg
(Actual
);
715 exit when Present
(Control
);
717 -- Check for the case where the actual is a tag-indeterminate call
718 -- whose result type is different than the tagged type associated
719 -- with the containing call, but is an ancestor of the type.
721 if Is_Controlling_Formal
(Formal
)
722 and then Is_Tag_Indeterminate
(Actual
)
723 and then Base_Type
(Etype
(Actual
)) /= Base_Type
(Etype
(Formal
))
724 and then Is_Ancestor
(Etype
(Actual
), Etype
(Formal
))
726 Indeterm_Ancestor_Call
:= True;
727 Indeterm_Ctrl_Type
:= Etype
(Formal
);
729 -- If the formal is controlling but the actual is not, the type
730 -- of the actual is statically known, and may be used as the
731 -- controlling tag for some other tag-indeterminate actual.
733 elsif Is_Controlling_Formal
(Formal
)
734 and then Is_Entity_Name
(Actual
)
735 and then Is_Tagged_Type
(Etype
(Actual
))
737 Static_Tag
:= Actual
;
740 Next_Actual
(Actual
);
741 Next_Formal
(Formal
);
744 -- If the call doesn't have a controlling actual but does have an
745 -- indeterminate actual that requires dispatching treatment, then an
746 -- object is needed that will serve as the controlling argument for
747 -- a dispatching call on the indeterminate actual. This can occur
748 -- in the unusual situation of a default actual given by a tag-
749 -- indeterminate call and where the type of the call is an ancestor
750 -- of the type associated with a containing call to an inherited
751 -- operation (see AI-239).
753 -- Rather than create an object of the tagged type, which would
754 -- be problematic for various reasons (default initialization,
755 -- discriminants), the tag of the containing call's associated
756 -- tagged type is directly used to control the dispatching.
759 and then Indeterm_Ancestor_Call
760 and then No
(Static_Tag
)
763 Make_Attribute_Reference
(Loc
,
764 Prefix
=> New_Occurrence_Of
(Indeterm_Ctrl_Type
, Loc
),
765 Attribute_Name
=> Name_Tag
);
770 if Present
(Control
) then
772 -- Verify that no controlling arguments are statically tagged
775 Write_Str
("Found Dispatching call");
780 Actual
:= First_Actual
(N
);
781 while Present
(Actual
) loop
782 if Actual
/= Control
then
784 if not Is_Controlling_Actual
(Actual
) then
785 null; -- Can be anything
787 elsif Is_Dynamically_Tagged
(Actual
) then
788 null; -- Valid parameter
790 elsif Is_Tag_Indeterminate
(Actual
) then
792 -- The tag is inherited from the enclosing call (the node
793 -- we are currently analyzing). Explicitly expand the
794 -- actual, since the previous call to Expand (from
795 -- Resolve_Call) had no way of knowing about the
796 -- required dispatching.
798 Propagate_Tag
(Control
, Actual
);
802 ("controlling argument is not dynamically tagged",
808 Next_Actual
(Actual
);
811 -- Mark call as a dispatching call
813 Set_Controlling_Argument
(N
, Control
);
814 Check_Restriction
(No_Dispatching_Calls
, N
);
816 -- The dispatching call may need to be converted into a direct
817 -- call in certain cases.
821 -- If there is a statically tagged actual and a tag-indeterminate
822 -- call to a function of the ancestor (such as that provided by a
823 -- default), then treat this as a dispatching call and propagate
824 -- the tag to the tag-indeterminate call(s).
826 elsif Present
(Static_Tag
) and then Indeterm_Ancestor_Call
then
828 Make_Attribute_Reference
(Loc
,
830 New_Occurrence_Of
(Etype
(Static_Tag
), Loc
),
831 Attribute_Name
=> Name_Tag
);
835 Actual
:= First_Actual
(N
);
836 Formal
:= First_Formal
(Subp_Entity
);
837 while Present
(Actual
) loop
838 if Is_Tag_Indeterminate
(Actual
)
839 and then Is_Controlling_Formal
(Formal
)
841 Propagate_Tag
(Control
, Actual
);
844 Next_Actual
(Actual
);
845 Next_Formal
(Formal
);
848 Check_Dispatching_Context
(N
);
850 elsif Nkind
(N
) /= N_Function_Call
then
852 -- The call is not dispatching, so check that there aren't any
853 -- tag-indeterminate abstract calls left among its actuals.
855 Actual
:= First_Actual
(N
);
856 while Present
(Actual
) loop
857 if Is_Tag_Indeterminate
(Actual
) then
859 -- Function call case
861 if Nkind
(Original_Node
(Actual
)) = N_Function_Call
then
862 Func
:= Entity
(Name
(Original_Node
(Actual
)));
864 -- If the actual is an attribute then it can't be abstract
865 -- (the only current case of a tag-indeterminate attribute
866 -- is the stream Input attribute).
868 elsif Nkind
(Original_Node
(Actual
)) = N_Attribute_Reference
872 -- Ditto if it is an explicit dereference
874 elsif Nkind
(Original_Node
(Actual
)) = N_Explicit_Dereference
878 -- Only other possibility is a qualified expression whose
879 -- constituent expression is itself a call.
883 Entity
(Name
(Original_Node
884 (Expression
(Original_Node
(Actual
)))));
887 if Present
(Func
) and then Is_Abstract_Subprogram
(Func
) then
889 ("call to abstract function must be dispatching",
894 Next_Actual
(Actual
);
897 Check_Dispatching_Context
(N
);
900 elsif Nkind
(Parent
(N
)) in N_Subexpr
then
901 Check_Dispatching_Context
(N
);
903 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
904 and then Is_Class_Wide_Type
(Etype
(Name
(Parent
(N
))))
908 elsif Is_Abstract_Subprogram
(Subp_Entity
) then
909 Check_Dispatching_Context
(N
);
914 -- If dispatching on result, the enclosing call, if any, will
915 -- determine the controlling argument. Otherwise this is the
916 -- primitive operation of the root type.
918 Check_Dispatching_Context
(N
);
920 end Check_Dispatching_Call
;
922 ---------------------------------
923 -- Check_Dispatching_Operation --
924 ---------------------------------
926 procedure Check_Dispatching_Operation
(Subp
, Old_Subp
: Entity_Id
) is
927 procedure Warn_On_Late_Primitive_After_Private_Extension
930 -- Prim is a dispatching primitive of the tagged type Typ. Warn on Prim
931 -- if it is a public primitive defined after some private extension of
934 ----------------------------------------------------
935 -- Warn_On_Late_Primitive_After_Private_Extension --
936 ----------------------------------------------------
938 procedure Warn_On_Late_Primitive_After_Private_Extension
945 if Warn_On_Late_Primitives
946 and then Comes_From_Source
(Prim
)
947 and then Has_Private_Extension
(Typ
)
948 and then Is_Package_Or_Generic_Package
(Current_Scope
)
949 and then not In_Private_Part
(Current_Scope
)
951 E
:= Next_Entity
(Typ
);
954 if Ekind
(E
) = E_Record_Type_With_Private
955 and then Etype
(E
) = Typ
957 Error_Msg_Name_1
:= Chars
(Typ
);
958 Error_Msg_Name_2
:= Chars
(E
);
959 Error_Msg_Sloc
:= Sloc
(E
);
961 ("?j?primitive of type % defined after private extension "
963 Error_Msg_Name_1
:= Chars
(Prim
);
964 Error_Msg_Name_2
:= Chars
(E
);
966 ("\spec of % should appear before declaration of type %!",
974 end Warn_On_Late_Primitive_After_Private_Extension
;
978 Body_Is_Last_Primitive
: Boolean := False;
979 Has_Dispatching_Parent
: Boolean := False;
980 Ovr_Subp
: Entity_Id
:= Empty
;
981 Tagged_Type
: Entity_Id
;
983 -- Start of processing for Check_Dispatching_Operation
986 if not Ekind_In
(Subp
, E_Function
, E_Procedure
) then
989 -- The Default_Initial_Condition procedure is not a primitive subprogram
990 -- even if it relates to a tagged type. This routine is not meant to be
991 -- inherited or overridden.
993 elsif Is_DIC_Procedure
(Subp
) then
996 -- The "partial" and "full" type invariant procedures are not primitive
997 -- subprograms even if they relate to a tagged type. These routines are
998 -- not meant to be inherited or overridden.
1000 elsif Is_Invariant_Procedure
(Subp
)
1001 or else Is_Partial_Invariant_Procedure
(Subp
)
1006 Set_Is_Dispatching_Operation
(Subp
, False);
1007 Tagged_Type
:= Find_Dispatching_Type
(Subp
);
1009 -- Ada 2005 (AI-345): Use the corresponding record (if available).
1010 -- Required because primitives of concurrent types are attached
1011 -- to the corresponding record (not to the concurrent type).
1013 if Ada_Version
>= Ada_2005
1014 and then Present
(Tagged_Type
)
1015 and then Is_Concurrent_Type
(Tagged_Type
)
1016 and then Present
(Corresponding_Record_Type
(Tagged_Type
))
1018 Tagged_Type
:= Corresponding_Record_Type
(Tagged_Type
);
1021 -- (AI-345): The task body procedure is not a primitive of the tagged
1024 if Present
(Tagged_Type
)
1025 and then Is_Concurrent_Record_Type
(Tagged_Type
)
1026 and then Present
(Corresponding_Concurrent_Type
(Tagged_Type
))
1027 and then Is_Task_Type
(Corresponding_Concurrent_Type
(Tagged_Type
))
1028 and then Subp
= Get_Task_Body_Procedure
1029 (Corresponding_Concurrent_Type
(Tagged_Type
))
1034 -- If Subp is derived from a dispatching operation then it should
1035 -- always be treated as dispatching. In this case various checks
1036 -- below will be bypassed. Makes sure that late declarations for
1037 -- inherited private subprograms are treated as dispatching, even
1038 -- if the associated tagged type is already frozen.
1040 Has_Dispatching_Parent
:=
1041 Present
(Alias
(Subp
))
1042 and then Is_Dispatching_Operation
(Alias
(Subp
));
1044 if No
(Tagged_Type
) then
1046 -- Ada 2005 (AI-251): Check that Subp is not a primitive associated
1047 -- with an abstract interface type unless the interface acts as a
1048 -- parent type in a derivation. If the interface type is a formal
1049 -- type then the operation is not primitive and therefore legal.
1056 E
:= First_Entity
(Subp
);
1057 while Present
(E
) loop
1059 -- For an access parameter, check designated type
1061 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
then
1062 Typ
:= Designated_Type
(Etype
(E
));
1067 if Comes_From_Source
(Subp
)
1068 and then Is_Interface
(Typ
)
1069 and then not Is_Class_Wide_Type
(Typ
)
1070 and then not Is_Derived_Type
(Typ
)
1071 and then not Is_Generic_Type
(Typ
)
1072 and then not In_Instance
1074 Error_Msg_N
("??declaration of& is too late!", Subp
);
1075 Error_Msg_NE
-- CODEFIX??
1076 ("\??spec should appear immediately after declaration of "
1077 & "& !", Subp
, Typ
);
1084 -- In case of functions check also the result type
1086 if Ekind
(Subp
) = E_Function
then
1087 if Is_Access_Type
(Etype
(Subp
)) then
1088 Typ
:= Designated_Type
(Etype
(Subp
));
1090 Typ
:= Etype
(Subp
);
1093 -- The following should be better commented, especially since
1094 -- we just added several new conditions here ???
1096 if Comes_From_Source
(Subp
)
1097 and then Is_Interface
(Typ
)
1098 and then not Is_Class_Wide_Type
(Typ
)
1099 and then not Is_Derived_Type
(Typ
)
1100 and then not Is_Generic_Type
(Typ
)
1101 and then not In_Instance
1103 Error_Msg_N
("??declaration of& is too late!", Subp
);
1105 ("\??spec should appear immediately after declaration of "
1106 & "& !", Subp
, Typ
);
1113 -- The subprograms build internally after the freezing point (such as
1114 -- init procs, interface thunks, type support subprograms, and Offset
1115 -- to top functions for accessing interface components in variable
1116 -- size tagged types) are not primitives.
1118 elsif Is_Frozen
(Tagged_Type
)
1119 and then not Comes_From_Source
(Subp
)
1120 and then not Has_Dispatching_Parent
1122 -- Complete decoration of internally built subprograms that override
1123 -- a dispatching primitive. These entities correspond with the
1126 -- 1. Ada 2005 (AI-391): Wrapper functions built by the expander
1127 -- to override functions of nonabstract null extensions. These
1128 -- primitives were added to the list of primitives of the tagged
1129 -- type by Make_Controlling_Function_Wrappers. However, attribute
1130 -- Is_Dispatching_Operation must be set to true.
1132 -- 2. Ada 2005 (AI-251): Wrapper procedures of null interface
1135 -- 3. Subprograms associated with stream attributes (built by
1136 -- New_Stream_Subprogram)
1138 -- 4. Wrapper built for inherited operations with inherited class-
1139 -- wide conditions, where the conditions include calls to other
1140 -- overridden primitives. The wrappers include checks on these
1141 -- modified conditions. (AI12-113).
1143 if Present
(Old_Subp
)
1144 and then Present
(Overridden_Operation
(Subp
))
1145 and then Is_Dispatching_Operation
(Old_Subp
)
1148 ((Ekind
(Subp
) = E_Function
1149 and then Is_Dispatching_Operation
(Old_Subp
)
1150 and then Is_Null_Extension
(Base_Type
(Etype
(Subp
))))
1153 (Ekind
(Subp
) = E_Procedure
1154 and then Is_Dispatching_Operation
(Old_Subp
)
1155 and then Present
(Alias
(Old_Subp
))
1156 and then Is_Null_Interface_Primitive
1157 (Ultimate_Alias
(Old_Subp
)))
1159 or else Get_TSS_Name
(Subp
) = TSS_Stream_Read
1160 or else Get_TSS_Name
(Subp
) = TSS_Stream_Write
1162 or else Present
(Contract
(Overridden_Operation
(Subp
))));
1164 Check_Controlling_Formals
(Tagged_Type
, Subp
);
1165 Override_Dispatching_Operation
(Tagged_Type
, Old_Subp
, Subp
);
1166 Set_Is_Dispatching_Operation
(Subp
);
1171 -- The operation may be a child unit, whose scope is the defining
1172 -- package, but which is not a primitive operation of the type.
1174 elsif Is_Child_Unit
(Subp
) then
1177 -- If the subprogram is not defined in a package spec, the only case
1178 -- where it can be a dispatching op is when it overrides an operation
1179 -- before the freezing point of the type.
1181 elsif ((not Is_Package_Or_Generic_Package
(Scope
(Subp
)))
1182 or else In_Package_Body
(Scope
(Subp
)))
1183 and then not Has_Dispatching_Parent
1185 if not Comes_From_Source
(Subp
)
1186 or else (Present
(Old_Subp
) and then not Is_Frozen
(Tagged_Type
))
1190 -- If the type is already frozen, the overriding is not allowed
1191 -- except when Old_Subp is not a dispatching operation (which can
1192 -- occur when Old_Subp was inherited by an untagged type). However,
1193 -- a body with no previous spec freezes the type *after* its
1194 -- declaration, and therefore is a legal overriding (unless the type
1195 -- has already been frozen). Only the first such body is legal.
1197 elsif Present
(Old_Subp
)
1198 and then Is_Dispatching_Operation
(Old_Subp
)
1200 if Comes_From_Source
(Subp
)
1202 (Nkind
(Unit_Declaration_Node
(Subp
)) = N_Subprogram_Body
1203 or else Nkind
(Unit_Declaration_Node
(Subp
)) in N_Body_Stub
)
1206 Subp_Body
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
1207 Decl_Item
: Node_Id
;
1210 -- ??? The checks here for whether the type has been frozen
1211 -- prior to the new body are not complete. It's not simple
1212 -- to check frozenness at this point since the body has
1213 -- already caused the type to be prematurely frozen in
1214 -- Analyze_Declarations, but we're forced to recheck this
1215 -- here because of the odd rule interpretation that allows
1216 -- the overriding if the type wasn't frozen prior to the
1217 -- body. The freezing action should probably be delayed
1218 -- until after the spec is seen, but that's a tricky
1219 -- change to the delicate freezing code.
1221 -- Look at each declaration following the type up until the
1222 -- new subprogram body. If any of the declarations is a body
1223 -- then the type has been frozen already so the overriding
1224 -- primitive is illegal.
1226 Decl_Item
:= Next
(Parent
(Tagged_Type
));
1227 while Present
(Decl_Item
)
1228 and then (Decl_Item
/= Subp_Body
)
1230 if Comes_From_Source
(Decl_Item
)
1231 and then (Nkind
(Decl_Item
) in N_Proper_Body
1232 or else Nkind
(Decl_Item
) in N_Body_Stub
)
1234 Error_Msg_N
("overriding of& is too late!", Subp
);
1236 ("\spec should appear immediately after the type!",
1244 -- If the subprogram doesn't follow in the list of
1245 -- declarations including the type then the type has
1246 -- definitely been frozen already and the body is illegal.
1248 if No
(Decl_Item
) then
1249 Error_Msg_N
("overriding of& is too late!", Subp
);
1251 ("\spec should appear immediately after the type!",
1254 elsif Is_Frozen
(Subp
) then
1256 -- The subprogram body declares a primitive operation.
1257 -- If the subprogram is already frozen, we must update
1258 -- its dispatching information explicitly here. The
1259 -- information is taken from the overridden subprogram.
1260 -- We must also generate a cross-reference entry because
1261 -- references to other primitives were already created
1262 -- when type was frozen.
1264 Body_Is_Last_Primitive
:= True;
1266 if Present
(DTC_Entity
(Old_Subp
)) then
1267 Set_DTC_Entity
(Subp
, DTC_Entity
(Old_Subp
));
1268 Set_DT_Position_Value
(Subp
, DT_Position
(Old_Subp
));
1270 if not Restriction_Active
(No_Dispatching_Calls
) then
1271 if Building_Static_DT
(Tagged_Type
) then
1273 -- If the static dispatch table has not been
1274 -- built then there is nothing else to do now;
1275 -- otherwise we notify that we cannot build the
1276 -- static dispatch table.
1278 if Has_Dispatch_Table
(Tagged_Type
) then
1280 ("overriding of& is too late for building "
1281 & " static dispatch tables!", Subp
);
1283 ("\spec should appear immediately after "
1284 & "the type!", Subp
);
1287 -- No code required to register primitives in VM
1290 elsif not Tagged_Type_Expansion
then
1294 Insert_Actions_After
(Subp_Body
,
1295 Register_Primitive
(Sloc
(Subp_Body
),
1299 -- Indicate that this is an overriding operation,
1300 -- and replace the overridden entry in the list of
1301 -- primitive operations, which is used for xref
1302 -- generation subsequently.
1304 Generate_Reference
(Tagged_Type
, Subp
, 'P', False);
1305 Override_Dispatching_Operation
1306 (Tagged_Type
, Old_Subp
, Subp
);
1313 Error_Msg_N
("overriding of& is too late!", Subp
);
1315 ("\subprogram spec should appear immediately after the type!",
1319 -- If the type is not frozen yet and we are not in the overriding
1320 -- case it looks suspiciously like an attempt to define a primitive
1321 -- operation, which requires the declaration to be in a package spec
1322 -- (3.2.3(6)). Only report cases where the type and subprogram are
1323 -- in the same declaration list (by checking the enclosing parent
1324 -- declarations), to avoid spurious warnings on subprograms in
1325 -- instance bodies when the type is declared in the instance spec
1326 -- but hasn't been frozen by the instance body.
1328 elsif not Is_Frozen
(Tagged_Type
)
1329 and then In_Same_List
(Parent
(Tagged_Type
), Parent
(Parent
(Subp
)))
1332 ("??not dispatching (must be defined in a package spec)", Subp
);
1335 -- When the type is frozen, it is legitimate to define a new
1336 -- non-primitive operation.
1342 -- Now, we are sure that the scope is a package spec. If the subprogram
1343 -- is declared after the freezing point of the type that's an error
1345 elsif Is_Frozen
(Tagged_Type
) and then not Has_Dispatching_Parent
then
1346 Error_Msg_N
("this primitive operation is declared too late", Subp
);
1348 ("??no primitive operations for& after this line",
1349 Freeze_Node
(Tagged_Type
),
1354 Check_Controlling_Formals
(Tagged_Type
, Subp
);
1356 Ovr_Subp
:= Old_Subp
;
1358 -- [Ada 2012:AI-0125]: Search for inherited hidden primitive that may be
1359 -- overridden by Subp. This only applies to source subprograms, and
1360 -- their declaration must carry an explicit overriding indicator.
1363 and then Ada_Version
>= Ada_2012
1364 and then Comes_From_Source
(Subp
)
1366 Nkind
(Unit_Declaration_Node
(Subp
)) = N_Subprogram_Declaration
1368 Ovr_Subp
:= Find_Hidden_Overridden_Primitive
(Subp
);
1370 -- Verify that the proper overriding indicator has been supplied.
1372 if Present
(Ovr_Subp
)
1374 not Must_Override
(Specification
(Unit_Declaration_Node
(Subp
)))
1376 Error_Msg_NE
("missing overriding indicator for&", Subp
, Subp
);
1380 -- Now it should be a correct primitive operation, put it in the list
1382 if Present
(Ovr_Subp
) then
1384 -- If the type has interfaces we complete this check after we set
1385 -- attribute Is_Dispatching_Operation.
1387 Check_Subtype_Conformant
(Subp
, Ovr_Subp
);
1389 -- A primitive operation with the name of a primitive controlled
1390 -- operation does not override a non-visible overriding controlled
1391 -- operation, i.e. one declared in a private part when the full
1392 -- view of a type is controlled. Conversely, it will override a
1393 -- visible operation that may be declared in a partial view when
1394 -- the full view is controlled.
1396 if Nam_In
(Chars
(Subp
), Name_Initialize
, Name_Adjust
, Name_Finalize
)
1397 and then Is_Controlled
(Tagged_Type
)
1398 and then not Is_Visibly_Controlled
(Tagged_Type
)
1399 and then not Is_Inherited_Public_Operation
(Ovr_Subp
)
1401 Set_Overridden_Operation
(Subp
, Empty
);
1403 -- If the subprogram specification carries an overriding
1404 -- indicator, no need for the warning: it is either redundant,
1405 -- or else an error will be reported.
1407 if Nkind
(Parent
(Subp
)) = N_Procedure_Specification
1409 (Must_Override
(Parent
(Subp
))
1410 or else Must_Not_Override
(Parent
(Subp
)))
1414 -- Here we need the warning
1418 ("operation does not override inherited&??", Subp
, Subp
);
1422 Override_Dispatching_Operation
(Tagged_Type
, Ovr_Subp
, Subp
);
1424 -- Ada 2005 (AI-251): In case of late overriding of a primitive
1425 -- that covers abstract interface subprograms we must register it
1426 -- in all the secondary dispatch tables associated with abstract
1427 -- interfaces. We do this now only if not building static tables,
1428 -- nor when the expander is inactive (we avoid trying to register
1429 -- primitives in semantics-only mode, since the type may not have
1430 -- an associated dispatch table). Otherwise the patch code is
1431 -- emitted after those tables are built, to prevent access before
1432 -- elaboration in gigi.
1434 if Body_Is_Last_Primitive
and then Expander_Active
then
1436 Subp_Body
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
1441 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
1442 while Present
(Elmt
) loop
1443 Prim
:= Node
(Elmt
);
1445 -- No code required to register primitives in VM targets
1447 if Present
(Alias
(Prim
))
1448 and then Present
(Interface_Alias
(Prim
))
1449 and then Alias
(Prim
) = Subp
1450 and then not Building_Static_DT
(Tagged_Type
)
1451 and then Tagged_Type_Expansion
1453 Insert_Actions_After
(Subp_Body
,
1454 Register_Primitive
(Sloc
(Subp_Body
), Prim
=> Prim
));
1460 -- Redisplay the contents of the updated dispatch table
1462 if Debug_Flag_ZZ
then
1463 Write_Str
("Late overriding: ");
1464 Write_DT
(Tagged_Type
);
1470 -- If the tagged type is a concurrent type then we must be compiling
1471 -- with no code generation (we are either compiling a generic unit or
1472 -- compiling under -gnatc mode) because we have previously tested that
1473 -- no serious errors has been reported. In this case we do not add the
1474 -- primitive to the list of primitives of Tagged_Type but we leave the
1475 -- primitive decorated as a dispatching operation to be able to analyze
1476 -- and report errors associated with the Object.Operation notation.
1478 elsif Is_Concurrent_Type
(Tagged_Type
) then
1479 pragma Assert
(not Expander_Active
);
1481 -- Attach operation to list of primitives of the synchronized type
1482 -- itself, for ASIS use.
1484 Add_Dispatching_Operation
(Tagged_Type
, Subp
);
1486 -- If no old subprogram, then we add this as a dispatching operation,
1487 -- but we avoid doing this if an error was posted, to prevent annoying
1490 elsif not Error_Posted
(Subp
) then
1491 Add_Dispatching_Operation
(Tagged_Type
, Subp
);
1494 Set_Is_Dispatching_Operation
(Subp
, True);
1496 -- Ada 2005 (AI-251): If the type implements interfaces we must check
1497 -- subtype conformance against all the interfaces covered by this
1500 if Present
(Ovr_Subp
)
1501 and then Has_Interfaces
(Tagged_Type
)
1504 Ifaces_List
: Elist_Id
;
1505 Iface_Elmt
: Elmt_Id
;
1506 Iface_Prim_Elmt
: Elmt_Id
;
1507 Iface_Prim
: Entity_Id
;
1508 Ret_Typ
: Entity_Id
;
1511 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1513 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1514 while Present
(Iface_Elmt
) loop
1515 if not Is_Ancestor
(Node
(Iface_Elmt
), Tagged_Type
) then
1517 First_Elmt
(Primitive_Operations
(Node
(Iface_Elmt
)));
1518 while Present
(Iface_Prim_Elmt
) loop
1519 Iface_Prim
:= Node
(Iface_Prim_Elmt
);
1521 if Is_Interface_Conformant
1522 (Tagged_Type
, Iface_Prim
, Subp
)
1524 -- Handle procedures, functions whose return type
1525 -- matches, or functions not returning interfaces
1527 if Ekind
(Subp
) = E_Procedure
1528 or else Etype
(Iface_Prim
) = Etype
(Subp
)
1529 or else not Is_Interface
(Etype
(Iface_Prim
))
1531 Check_Subtype_Conformant
1533 Old_Id
=> Iface_Prim
,
1535 Skip_Controlling_Formals
=> True);
1537 -- Handle functions returning interfaces
1539 elsif Implements_Interface
1540 (Etype
(Subp
), Etype
(Iface_Prim
))
1542 -- Temporarily force both entities to return the
1543 -- same type. Required because Subtype_Conformant
1544 -- does not handle this case.
1546 Ret_Typ
:= Etype
(Iface_Prim
);
1547 Set_Etype
(Iface_Prim
, Etype
(Subp
));
1549 Check_Subtype_Conformant
1551 Old_Id
=> Iface_Prim
,
1553 Skip_Controlling_Formals
=> True);
1555 Set_Etype
(Iface_Prim
, Ret_Typ
);
1559 Next_Elmt
(Iface_Prim_Elmt
);
1563 Next_Elmt
(Iface_Elmt
);
1568 if not Body_Is_Last_Primitive
then
1569 Set_DT_Position_Value
(Subp
, No_Uint
);
1571 elsif Has_Controlled_Component
(Tagged_Type
)
1572 and then Nam_In
(Chars
(Subp
), Name_Initialize
,
1575 Name_Finalize_Address
)
1578 F_Node
: constant Node_Id
:= Freeze_Node
(Tagged_Type
);
1582 Old_Spec
: Entity_Id
;
1584 C_Names
: constant array (1 .. 4) of Name_Id
:=
1588 Name_Finalize_Address
);
1590 D_Names
: constant array (1 .. 4) of TSS_Name_Type
:=
1591 (TSS_Deep_Initialize
,
1594 TSS_Finalize_Address
);
1597 -- Remove previous controlled function which was constructed and
1598 -- analyzed when the type was frozen. This requires removing the
1599 -- body of the redefined primitive, as well as its specification
1600 -- if needed (there is no spec created for Deep_Initialize, see
1601 -- exp_ch3.adb). We must also dismantle the exception information
1602 -- that may have been generated for it when front end zero-cost
1603 -- tables are enabled.
1605 for J
in D_Names
'Range loop
1606 Old_P
:= TSS
(Tagged_Type
, D_Names
(J
));
1609 and then Chars
(Subp
) = C_Names
(J
)
1611 Old_Bod
:= Unit_Declaration_Node
(Old_P
);
1613 Set_Is_Eliminated
(Old_P
);
1614 Set_Scope
(Old_P
, Scope
(Current_Scope
));
1616 if Nkind
(Old_Bod
) = N_Subprogram_Body
1617 and then Present
(Corresponding_Spec
(Old_Bod
))
1619 Old_Spec
:= Corresponding_Spec
(Old_Bod
);
1620 Set_Has_Completion
(Old_Spec
, False);
1625 Build_Late_Proc
(Tagged_Type
, Chars
(Subp
));
1627 -- The new operation is added to the actions of the freeze node
1628 -- for the type, but this node has already been analyzed, so we
1629 -- must retrieve and analyze explicitly the new body.
1632 and then Present
(Actions
(F_Node
))
1634 Decl
:= Last
(Actions
(F_Node
));
1640 -- For similarity with record extensions, in Ada 9X the language should
1641 -- have disallowed adding visible operations to a tagged type after
1642 -- deriving a private extension from it. Report a warning if this
1643 -- primitive is defined after a private extension of Tagged_Type.
1645 Warn_On_Late_Primitive_After_Private_Extension
(Tagged_Type
, Subp
);
1646 end Check_Dispatching_Operation
;
1648 ------------------------------------------
1649 -- Check_Operation_From_Incomplete_Type --
1650 ------------------------------------------
1652 procedure Check_Operation_From_Incomplete_Type
1656 Full
: constant Entity_Id
:= Full_View
(Typ
);
1657 Parent_Typ
: constant Entity_Id
:= Etype
(Full
);
1658 Old_Prim
: constant Elist_Id
:= Primitive_Operations
(Parent_Typ
);
1659 New_Prim
: constant Elist_Id
:= Primitive_Operations
(Full
);
1661 Prev
: Elmt_Id
:= No_Elmt
;
1663 function Derives_From
(Parent_Subp
: Entity_Id
) return Boolean;
1664 -- Check that Subp has profile of an operation derived from Parent_Subp.
1665 -- Subp must have a parameter or result type that is Typ or an access
1666 -- parameter or access result type that designates Typ.
1672 function Derives_From
(Parent_Subp
: Entity_Id
) return Boolean is
1676 if Chars
(Parent_Subp
) /= Chars
(Subp
) then
1680 -- Check that the type of controlling formals is derived from the
1681 -- parent subprogram's controlling formal type (or designated type
1682 -- if the formal type is an anonymous access type).
1684 F1
:= First_Formal
(Parent_Subp
);
1685 F2
:= First_Formal
(Subp
);
1686 while Present
(F1
) and then Present
(F2
) loop
1687 if Ekind
(Etype
(F1
)) = E_Anonymous_Access_Type
then
1688 if Ekind
(Etype
(F2
)) /= E_Anonymous_Access_Type
then
1690 elsif Designated_Type
(Etype
(F1
)) = Parent_Typ
1691 and then Designated_Type
(Etype
(F2
)) /= Full
1696 elsif Ekind
(Etype
(F2
)) = E_Anonymous_Access_Type
then
1699 elsif Etype
(F1
) = Parent_Typ
and then Etype
(F2
) /= Full
then
1707 -- Check that a controlling result type is derived from the parent
1708 -- subprogram's result type (or designated type if the result type
1709 -- is an anonymous access type).
1711 if Ekind
(Parent_Subp
) = E_Function
then
1712 if Ekind
(Subp
) /= E_Function
then
1715 elsif Ekind
(Etype
(Parent_Subp
)) = E_Anonymous_Access_Type
then
1716 if Ekind
(Etype
(Subp
)) /= E_Anonymous_Access_Type
then
1719 elsif Designated_Type
(Etype
(Parent_Subp
)) = Parent_Typ
1720 and then Designated_Type
(Etype
(Subp
)) /= Full
1725 elsif Ekind
(Etype
(Subp
)) = E_Anonymous_Access_Type
then
1728 elsif Etype
(Parent_Subp
) = Parent_Typ
1729 and then Etype
(Subp
) /= Full
1734 elsif Ekind
(Subp
) = E_Function
then
1738 return No
(F1
) and then No
(F2
);
1741 -- Start of processing for Check_Operation_From_Incomplete_Type
1744 -- The operation may override an inherited one, or may be a new one
1745 -- altogether. The inherited operation will have been hidden by the
1746 -- current one at the point of the type derivation, so it does not
1747 -- appear in the list of primitive operations of the type. We have to
1748 -- find the proper place of insertion in the list of primitive opera-
1749 -- tions by iterating over the list for the parent type.
1751 Op1
:= First_Elmt
(Old_Prim
);
1752 Op2
:= First_Elmt
(New_Prim
);
1753 while Present
(Op1
) and then Present
(Op2
) loop
1754 if Derives_From
(Node
(Op1
)) then
1757 -- Avoid adding it to the list of primitives if already there
1759 if Node
(Op2
) /= Subp
then
1760 Prepend_Elmt
(Subp
, New_Prim
);
1764 Insert_Elmt_After
(Subp
, Prev
);
1775 -- Operation is a new primitive
1777 Append_Elmt
(Subp
, New_Prim
);
1778 end Check_Operation_From_Incomplete_Type
;
1780 ---------------------------------------
1781 -- Check_Operation_From_Private_View --
1782 ---------------------------------------
1784 procedure Check_Operation_From_Private_View
(Subp
, Old_Subp
: Entity_Id
) is
1785 Tagged_Type
: Entity_Id
;
1788 if Is_Dispatching_Operation
(Alias
(Subp
)) then
1789 Set_Scope
(Subp
, Current_Scope
);
1790 Tagged_Type
:= Find_Dispatching_Type
(Subp
);
1792 -- Add Old_Subp to primitive operations if not already present
1794 if Present
(Tagged_Type
) and then Is_Tagged_Type
(Tagged_Type
) then
1795 Add_Dispatching_Operation
(Tagged_Type
, Old_Subp
);
1797 -- If Old_Subp isn't already marked as dispatching then this is
1798 -- the case of an operation of an untagged private type fulfilled
1799 -- by a tagged type that overrides an inherited dispatching
1800 -- operation, so we set the necessary dispatching attributes here.
1802 if not Is_Dispatching_Operation
(Old_Subp
) then
1804 -- If the untagged type has no discriminants, and the full
1805 -- view is constrained, there will be a spurious mismatch of
1806 -- subtypes on the controlling arguments, because the tagged
1807 -- type is the internal base type introduced in the derivation.
1808 -- Use the original type to verify conformance, rather than the
1811 if not Comes_From_Source
(Tagged_Type
)
1812 and then Has_Discriminants
(Tagged_Type
)
1818 Formal
:= First_Formal
(Old_Subp
);
1819 while Present
(Formal
) loop
1820 if Tagged_Type
= Base_Type
(Etype
(Formal
)) then
1821 Tagged_Type
:= Etype
(Formal
);
1824 Next_Formal
(Formal
);
1828 if Tagged_Type
= Base_Type
(Etype
(Old_Subp
)) then
1829 Tagged_Type
:= Etype
(Old_Subp
);
1833 Check_Controlling_Formals
(Tagged_Type
, Old_Subp
);
1834 Set_Is_Dispatching_Operation
(Old_Subp
, True);
1835 Set_DT_Position_Value
(Old_Subp
, No_Uint
);
1838 -- If the old subprogram is an explicit renaming of some other
1839 -- entity, it is not overridden by the inherited subprogram.
1840 -- Otherwise, update its alias and other attributes.
1842 if Present
(Alias
(Old_Subp
))
1843 and then Nkind
(Unit_Declaration_Node
(Old_Subp
)) /=
1844 N_Subprogram_Renaming_Declaration
1846 Set_Alias
(Old_Subp
, Alias
(Subp
));
1848 -- The derived subprogram should inherit the abstractness of
1849 -- the parent subprogram (except in the case of a function
1850 -- returning the type). This sets the abstractness properly
1851 -- for cases where a private extension may have inherited an
1852 -- abstract operation, but the full type is derived from a
1853 -- descendant type and inherits a nonabstract version.
1855 if Etype
(Subp
) /= Tagged_Type
then
1856 Set_Is_Abstract_Subprogram
1857 (Old_Subp
, Is_Abstract_Subprogram
(Alias
(Subp
)));
1862 end Check_Operation_From_Private_View
;
1864 --------------------------
1865 -- Find_Controlling_Arg --
1866 --------------------------
1868 function Find_Controlling_Arg
(N
: Node_Id
) return Node_Id
is
1869 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
1873 if Nkind
(Orig_Node
) = N_Qualified_Expression
then
1874 return Find_Controlling_Arg
(Expression
(Orig_Node
));
1877 -- Dispatching on result case. If expansion is disabled, the node still
1878 -- has the structure of a function call. However, if the function name
1879 -- is an operator and the call was given in infix form, the original
1880 -- node has no controlling result and we must examine the current node.
1882 if Nkind
(N
) = N_Function_Call
1883 and then Present
(Controlling_Argument
(N
))
1884 and then Has_Controlling_Result
(Entity
(Name
(N
)))
1886 return Controlling_Argument
(N
);
1888 -- If expansion is enabled, the call may have been transformed into
1889 -- an indirect call, and we need to recover the original node.
1891 elsif Nkind
(Orig_Node
) = N_Function_Call
1892 and then Present
(Controlling_Argument
(Orig_Node
))
1893 and then Has_Controlling_Result
(Entity
(Name
(Orig_Node
)))
1895 return Controlling_Argument
(Orig_Node
);
1897 -- Type conversions are dynamically tagged if the target type, or its
1898 -- designated type, are classwide. An interface conversion expands into
1899 -- a dereference, so test must be performed on the original node.
1901 elsif Nkind
(Orig_Node
) = N_Type_Conversion
1902 and then Nkind
(N
) = N_Explicit_Dereference
1903 and then Is_Controlling_Actual
(N
)
1906 Target_Type
: constant Entity_Id
:=
1907 Entity
(Subtype_Mark
(Orig_Node
));
1910 if Is_Class_Wide_Type
(Target_Type
) then
1913 elsif Is_Access_Type
(Target_Type
)
1914 and then Is_Class_Wide_Type
(Designated_Type
(Target_Type
))
1925 elsif Is_Controlling_Actual
(N
)
1927 (Nkind
(Parent
(N
)) = N_Qualified_Expression
1928 and then Is_Controlling_Actual
(Parent
(N
)))
1932 if Is_Access_Type
(Typ
) then
1934 -- In the case of an Access attribute, use the type of the prefix,
1935 -- since in the case of an actual for an access parameter, the
1936 -- attribute's type may be of a specific designated type, even
1937 -- though the prefix type is class-wide.
1939 if Nkind
(N
) = N_Attribute_Reference
then
1940 Typ
:= Etype
(Prefix
(N
));
1942 -- An allocator is dispatching if the type of qualified expression
1943 -- is class_wide, in which case this is the controlling type.
1945 elsif Nkind
(Orig_Node
) = N_Allocator
1946 and then Nkind
(Expression
(Orig_Node
)) = N_Qualified_Expression
1948 Typ
:= Etype
(Expression
(Orig_Node
));
1950 Typ
:= Designated_Type
(Typ
);
1954 if Is_Class_Wide_Type
(Typ
)
1956 (Nkind
(Parent
(N
)) = N_Qualified_Expression
1957 and then Is_Access_Type
(Etype
(N
))
1958 and then Is_Class_Wide_Type
(Designated_Type
(Etype
(N
))))
1965 end Find_Controlling_Arg
;
1967 ---------------------------
1968 -- Find_Dispatching_Type --
1969 ---------------------------
1971 function Find_Dispatching_Type
(Subp
: Entity_Id
) return Entity_Id
is
1972 A_Formal
: Entity_Id
;
1974 Ctrl_Type
: Entity_Id
;
1977 if Ekind_In
(Subp
, E_Function
, E_Procedure
)
1978 and then Present
(DTC_Entity
(Subp
))
1980 return Scope
(DTC_Entity
(Subp
));
1982 -- For subprograms internally generated by derivations of tagged types
1983 -- use the alias subprogram as a reference to locate the dispatching
1986 elsif not Comes_From_Source
(Subp
)
1987 and then Present
(Alias
(Subp
))
1988 and then Is_Dispatching_Operation
(Alias
(Subp
))
1990 if Ekind
(Alias
(Subp
)) = E_Function
1991 and then Has_Controlling_Result
(Alias
(Subp
))
1993 return Check_Controlling_Type
(Etype
(Subp
), Subp
);
1996 Formal
:= First_Formal
(Subp
);
1997 A_Formal
:= First_Formal
(Alias
(Subp
));
1998 while Present
(A_Formal
) loop
1999 if Is_Controlling_Formal
(A_Formal
) then
2000 return Check_Controlling_Type
(Etype
(Formal
), Subp
);
2003 Next_Formal
(Formal
);
2004 Next_Formal
(A_Formal
);
2007 pragma Assert
(False);
2014 Formal
:= First_Formal
(Subp
);
2015 while Present
(Formal
) loop
2016 Ctrl_Type
:= Check_Controlling_Type
(Etype
(Formal
), Subp
);
2018 if Present
(Ctrl_Type
) then
2022 Next_Formal
(Formal
);
2025 -- The subprogram may also be dispatching on result
2027 if Present
(Etype
(Subp
)) then
2028 return Check_Controlling_Type
(Etype
(Subp
), Subp
);
2032 pragma Assert
(not Is_Dispatching_Operation
(Subp
));
2034 end Find_Dispatching_Type
;
2036 --------------------------------------
2037 -- Find_Hidden_Overridden_Primitive --
2038 --------------------------------------
2040 function Find_Hidden_Overridden_Primitive
(S
: Entity_Id
) return Entity_Id
2042 Tag_Typ
: constant Entity_Id
:= Find_Dispatching_Type
(S
);
2044 Orig_Prim
: Entity_Id
;
2046 Vis_List
: Elist_Id
;
2049 -- This Ada 2012 rule applies only for type extensions or private
2050 -- extensions, where the parent type is not in a parent unit, and
2051 -- where an operation is never declared but still inherited.
2054 or else not Is_Record_Type
(Tag_Typ
)
2055 or else Etype
(Tag_Typ
) = Tag_Typ
2056 or else In_Open_Scopes
(Scope
(Etype
(Tag_Typ
)))
2061 -- Collect the list of visible ancestor of the tagged type
2063 Vis_List
:= Visible_Ancestors
(Tag_Typ
);
2065 Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
2066 while Present
(Elmt
) loop
2067 Prim
:= Node
(Elmt
);
2069 -- Find an inherited hidden dispatching primitive with the name of S
2070 -- and a type-conformant profile.
2072 if Present
(Alias
(Prim
))
2073 and then Is_Hidden
(Alias
(Prim
))
2074 and then Find_Dispatching_Type
(Alias
(Prim
)) /= Tag_Typ
2075 and then Primitive_Names_Match
(S
, Prim
)
2076 and then Type_Conformant
(S
, Prim
)
2079 Vis_Ancestor
: Elmt_Id
;
2083 -- The original corresponding operation of Prim must be an
2084 -- operation of a visible ancestor of the dispatching type S,
2085 -- and the original corresponding operation of S2 must be
2088 Orig_Prim
:= Original_Corresponding_Operation
(Prim
);
2090 if Orig_Prim
/= Prim
2091 and then Is_Immediately_Visible
(Orig_Prim
)
2093 Vis_Ancestor
:= First_Elmt
(Vis_List
);
2094 while Present
(Vis_Ancestor
) loop
2096 First_Elmt
(Primitive_Operations
(Node
(Vis_Ancestor
)));
2097 while Present
(Elmt
) loop
2098 if Node
(Elmt
) = Orig_Prim
then
2099 Set_Overridden_Operation
(S
, Prim
);
2100 Set_Alias
(Prim
, Orig_Prim
);
2107 Next_Elmt
(Vis_Ancestor
);
2117 end Find_Hidden_Overridden_Primitive
;
2119 ---------------------------------------
2120 -- Find_Primitive_Covering_Interface --
2121 ---------------------------------------
2123 function Find_Primitive_Covering_Interface
2124 (Tagged_Type
: Entity_Id
;
2125 Iface_Prim
: Entity_Id
) return Entity_Id
2131 pragma Assert
(Is_Interface
(Find_Dispatching_Type
(Iface_Prim
))
2132 or else (Present
(Alias
(Iface_Prim
))
2135 (Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
)))));
2137 -- Search in the homonym chain. Done to speed up locating visible
2138 -- entities and required to catch primitives associated with the partial
2139 -- view of private types when processing the corresponding full view.
2141 E
:= Current_Entity
(Iface_Prim
);
2142 while Present
(E
) loop
2143 if Is_Subprogram
(E
)
2144 and then Is_Dispatching_Operation
(E
)
2145 and then Is_Interface_Conformant
(Tagged_Type
, Iface_Prim
, E
)
2153 -- Search in the list of primitives of the type. Required to locate
2154 -- the covering primitive if the covering primitive is not visible
2155 -- (for example, non-visible inherited primitive of private type).
2157 El
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
2158 while Present
(El
) loop
2161 -- Keep separate the management of internal entities that link
2162 -- primitives with interface primitives from tagged type primitives.
2164 if No
(Interface_Alias
(E
)) then
2165 if Present
(Alias
(E
)) then
2167 -- This interface primitive has not been covered yet
2169 if Alias
(E
) = Iface_Prim
then
2172 -- The covering primitive was inherited
2174 elsif Overridden_Operation
(Ultimate_Alias
(E
))
2181 -- Check if E covers the interface primitive (includes case in
2182 -- which E is an inherited private primitive).
2184 if Is_Interface_Conformant
(Tagged_Type
, Iface_Prim
, E
) then
2188 -- Use the internal entity that links the interface primitive with
2189 -- the covering primitive to locate the entity.
2191 elsif Interface_Alias
(E
) = Iface_Prim
then
2201 end Find_Primitive_Covering_Interface
;
2203 ---------------------------
2204 -- Inheritance_Utilities --
2205 ---------------------------
2207 package body Inheritance_Utilities
is
2209 ---------------------------
2210 -- Inherited_Subprograms --
2211 ---------------------------
2213 function Inherited_Subprograms
2215 No_Interfaces
: Boolean := False;
2216 Interfaces_Only
: Boolean := False;
2217 One_Only
: Boolean := False) return Subprogram_List
2219 Result
: Subprogram_List
(1 .. 6000);
2220 -- 6000 here is intended to be infinity. We could use an expandable
2221 -- table, but it would be awfully heavy, and there is no way that we
2222 -- could reasonably exceed this value.
2225 -- Number of entries in Result
2227 Parent_Op
: Entity_Id
;
2228 -- Traverses the Overridden_Operation chain
2230 procedure Store_IS
(E
: Entity_Id
);
2231 -- Stores E in Result if not already stored
2237 procedure Store_IS
(E
: Entity_Id
) is
2239 for J
in 1 .. N
loop
2240 if E
= Result
(J
) then
2249 -- Start of processing for Inherited_Subprograms
2252 pragma Assert
(not (No_Interfaces
and Interfaces_Only
));
2254 -- When used from backends, visibility can be handled differently
2255 -- resulting in no dispatching type being found.
2258 and then Is_Dispatching_Operation
(S
)
2259 and then Present
(Find_DT
(S
))
2261 -- Deal with direct inheritance
2263 if not Interfaces_Only
then
2266 Parent_Op
:= Overridden_Operation
(Parent_Op
);
2267 exit when No
(Parent_Op
)
2268 or else (No_Interfaces
2269 and then Is_Interface
(Find_DT
(Parent_Op
)));
2271 if Is_Subprogram_Or_Generic_Subprogram
(Parent_Op
) then
2272 Store_IS
(Parent_Op
);
2281 -- Now deal with interfaces
2283 if not No_Interfaces
then
2285 Tag_Typ
: Entity_Id
;
2290 Tag_Typ
:= Find_DT
(S
);
2292 -- In the presence of limited views there may be no visible
2293 -- dispatching type. Primitives will be inherited when non-
2294 -- limited view is frozen.
2296 if No
(Tag_Typ
) then
2297 return Result
(1 .. 0);
2300 if Is_Concurrent_Type
(Tag_Typ
) then
2301 Tag_Typ
:= Corresponding_Record_Type
(Tag_Typ
);
2304 -- Search primitive operations of dispatching type
2306 if Present
(Tag_Typ
)
2307 and then Present
(Primitive_Operations
(Tag_Typ
))
2309 Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
2310 while Present
(Elmt
) loop
2311 Prim
:= Node
(Elmt
);
2313 -- The following test eliminates some odd cases in
2314 -- which Ekind (Prim) is Void, to be investigated
2317 if not Is_Subprogram_Or_Generic_Subprogram
(Prim
) then
2320 -- For [generic] subprogram, look at interface
2323 elsif Present
(Interface_Alias
(Prim
))
2324 and then Alias
(Prim
) = S
2326 -- We have found a primitive covered by S
2328 Store_IS
(Interface_Alias
(Prim
));
2344 return Result
(1 .. N
);
2345 end Inherited_Subprograms
;
2347 ------------------------------
2348 -- Is_Overriding_Subprogram --
2349 ------------------------------
2351 function Is_Overriding_Subprogram
(E
: Entity_Id
) return Boolean is
2352 Inherited
: constant Subprogram_List
:=
2353 Inherited_Subprograms
(E
, One_Only
=> True);
2355 return Inherited
'Length > 0;
2356 end Is_Overriding_Subprogram
;
2357 end Inheritance_Utilities
;
2359 --------------------------------
2360 -- Inheritance_Utilities_Inst --
2361 --------------------------------
2363 package Inheritance_Utilities_Inst
is new
2364 Inheritance_Utilities
(Find_Dispatching_Type
);
2366 ---------------------------
2367 -- Inherited_Subprograms --
2368 ---------------------------
2370 function Inherited_Subprograms
2372 No_Interfaces
: Boolean := False;
2373 Interfaces_Only
: Boolean := False;
2374 One_Only
: Boolean := False) return Subprogram_List
renames
2375 Inheritance_Utilities_Inst
.Inherited_Subprograms
;
2377 ---------------------------
2378 -- Is_Dynamically_Tagged --
2379 ---------------------------
2381 function Is_Dynamically_Tagged
(N
: Node_Id
) return Boolean is
2383 if Nkind
(N
) = N_Error
then
2386 elsif Present
(Find_Controlling_Arg
(N
)) then
2389 -- Special cases: entities, and calls that dispatch on result
2391 elsif Is_Entity_Name
(N
) then
2392 return Is_Class_Wide_Type
(Etype
(N
));
2394 elsif Nkind
(N
) = N_Function_Call
2395 and then Is_Class_Wide_Type
(Etype
(N
))
2399 -- Otherwise check whether call has controlling argument
2404 end Is_Dynamically_Tagged
;
2406 ---------------------------------
2407 -- Is_Null_Interface_Primitive --
2408 ---------------------------------
2410 function Is_Null_Interface_Primitive
(E
: Entity_Id
) return Boolean is
2412 return Comes_From_Source
(E
)
2413 and then Is_Dispatching_Operation
(E
)
2414 and then Ekind
(E
) = E_Procedure
2415 and then Null_Present
(Parent
(E
))
2416 and then Is_Interface
(Find_Dispatching_Type
(E
));
2417 end Is_Null_Interface_Primitive
;
2419 -----------------------------------
2420 -- Is_Inherited_Public_Operation --
2421 -----------------------------------
2423 function Is_Inherited_Public_Operation
(Op
: Entity_Id
) return Boolean is
2424 Pack_Decl
: Node_Id
;
2425 Prim
: Entity_Id
:= Op
;
2426 Scop
: Entity_Id
:= Prim
;
2429 -- Locate the ultimate non-hidden alias entity
2431 while Present
(Alias
(Prim
)) and then not Is_Hidden
(Alias
(Prim
)) loop
2432 pragma Assert
(Alias
(Prim
) /= Prim
);
2433 Prim
:= Alias
(Prim
);
2434 Scop
:= Scope
(Prim
);
2437 if Comes_From_Source
(Prim
) and then Ekind
(Scop
) = E_Package
then
2438 Pack_Decl
:= Unit_Declaration_Node
(Scop
);
2441 Nkind
(Pack_Decl
) = N_Package_Declaration
2442 and then List_Containing
(Unit_Declaration_Node
(Prim
)) =
2443 Visible_Declarations
(Specification
(Pack_Decl
));
2448 end Is_Inherited_Public_Operation
;
2450 ------------------------------
2451 -- Is_Overriding_Subprogram --
2452 ------------------------------
2454 function Is_Overriding_Subprogram
(E
: Entity_Id
) return Boolean renames
2455 Inheritance_Utilities_Inst
.Is_Overriding_Subprogram
;
2457 --------------------------
2458 -- Is_Tag_Indeterminate --
2459 --------------------------
2461 function Is_Tag_Indeterminate
(N
: Node_Id
) return Boolean is
2464 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
2467 if Nkind
(Orig_Node
) = N_Function_Call
2468 and then Is_Entity_Name
(Name
(Orig_Node
))
2470 Nam
:= Entity
(Name
(Orig_Node
));
2472 if not Has_Controlling_Result
(Nam
) then
2475 -- The function may have a controlling result, but if the return type
2476 -- is not visibly tagged, then this is not tag-indeterminate.
2478 elsif Is_Access_Type
(Etype
(Nam
))
2479 and then not Is_Tagged_Type
(Designated_Type
(Etype
(Nam
)))
2483 -- An explicit dereference means that the call has already been
2484 -- expanded and there is no tag to propagate.
2486 elsif Nkind
(N
) = N_Explicit_Dereference
then
2489 -- If there are no actuals, the call is tag-indeterminate
2491 elsif No
(Parameter_Associations
(Orig_Node
)) then
2495 Actual
:= First_Actual
(Orig_Node
);
2496 while Present
(Actual
) loop
2497 if Is_Controlling_Actual
(Actual
)
2498 and then not Is_Tag_Indeterminate
(Actual
)
2500 -- One operand is dispatching
2505 Next_Actual
(Actual
);
2511 elsif Nkind
(Orig_Node
) = N_Qualified_Expression
then
2512 return Is_Tag_Indeterminate
(Expression
(Orig_Node
));
2514 -- Case of a call to the Input attribute (possibly rewritten), which is
2515 -- always tag-indeterminate except when its prefix is a Class attribute.
2517 elsif Nkind
(Orig_Node
) = N_Attribute_Reference
2519 Get_Attribute_Id
(Attribute_Name
(Orig_Node
)) = Attribute_Input
2520 and then Nkind
(Prefix
(Orig_Node
)) /= N_Attribute_Reference
2524 -- In Ada 2005, a function that returns an anonymous access type can be
2525 -- dispatching, and the dereference of a call to such a function can
2526 -- also be tag-indeterminate if the call itself is.
2528 elsif Nkind
(Orig_Node
) = N_Explicit_Dereference
2529 and then Ada_Version
>= Ada_2005
2531 return Is_Tag_Indeterminate
(Prefix
(Orig_Node
));
2536 end Is_Tag_Indeterminate
;
2538 ------------------------------------
2539 -- Override_Dispatching_Operation --
2540 ------------------------------------
2542 procedure Override_Dispatching_Operation
2543 (Tagged_Type
: Entity_Id
;
2544 Prev_Op
: Entity_Id
;
2546 Is_Wrapper
: Boolean := False)
2552 -- Diagnose failure to match No_Return in parent (Ada-2005, AI-414, but
2553 -- we do it unconditionally in Ada 95 now, since this is our pragma).
2555 if No_Return
(Prev_Op
) and then not No_Return
(New_Op
) then
2556 Error_Msg_N
("procedure & must have No_Return pragma", New_Op
);
2557 Error_Msg_N
("\since overridden procedure has No_Return", New_Op
);
2560 -- If there is no previous operation to override, the type declaration
2561 -- was malformed, and an error must have been emitted already.
2563 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
2564 while Present
(Elmt
) and then Node
(Elmt
) /= Prev_Op
loop
2572 -- The location of entities that come from source in the list of
2573 -- primitives of the tagged type must follow their order of occurrence
2574 -- in the sources to fulfill the C++ ABI. If the overridden entity is a
2575 -- primitive of an interface that is not implemented by the parents of
2576 -- this tagged type (that is, it is an alias of an interface primitive
2577 -- generated by Derive_Interface_Progenitors), then we must append the
2578 -- new entity at the end of the list of primitives.
2580 if Present
(Alias
(Prev_Op
))
2581 and then Etype
(Tagged_Type
) /= Tagged_Type
2582 and then Is_Interface
(Find_Dispatching_Type
(Alias
(Prev_Op
)))
2583 and then not Is_Ancestor
(Find_Dispatching_Type
(Alias
(Prev_Op
)),
2584 Tagged_Type
, Use_Full_View
=> True)
2585 and then not Implements_Interface
2586 (Etype
(Tagged_Type
),
2587 Find_Dispatching_Type
(Alias
(Prev_Op
)))
2589 Remove_Elmt
(Primitive_Operations
(Tagged_Type
), Elmt
);
2590 Add_Dispatching_Operation
(Tagged_Type
, New_Op
);
2592 -- The new primitive replaces the overridden entity. Required to ensure
2593 -- that overriding primitive is assigned the same dispatch table slot.
2596 Replace_Elmt
(Elmt
, New_Op
);
2599 if Ada_Version
>= Ada_2005
and then Has_Interfaces
(Tagged_Type
) then
2601 -- Ada 2005 (AI-251): Update the attribute alias of all the aliased
2602 -- entities of the overridden primitive to reference New_Op, and
2603 -- also propagate the proper value of Is_Abstract_Subprogram. Verify
2604 -- that the new operation is subtype conformant with the interface
2605 -- operations that it implements (for operations inherited from the
2606 -- parent itself, this check is made when building the derived type).
2608 -- Note: This code is executed with internally generated wrappers of
2609 -- functions with controlling result and late overridings.
2611 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
2612 while Present
(Elmt
) loop
2613 Prim
:= Node
(Elmt
);
2615 if Prim
= New_Op
then
2618 -- Note: The check on Is_Subprogram protects the frontend against
2619 -- reading attributes in entities that are not yet fully decorated
2621 elsif Is_Subprogram
(Prim
)
2622 and then Present
(Interface_Alias
(Prim
))
2623 and then Alias
(Prim
) = Prev_Op
2625 Set_Alias
(Prim
, New_Op
);
2627 -- No further decoration needed yet for internally generated
2628 -- wrappers of controlling functions since (at this stage)
2629 -- they are not yet decorated.
2631 if not Is_Wrapper
then
2632 Check_Subtype_Conformant
(New_Op
, Prim
);
2634 Set_Is_Abstract_Subprogram
(Prim
,
2635 Is_Abstract_Subprogram
(New_Op
));
2637 -- Ensure that this entity will be expanded to fill the
2638 -- corresponding entry in its dispatch table.
2640 if not Is_Abstract_Subprogram
(Prim
) then
2641 Set_Has_Delayed_Freeze
(Prim
);
2650 if (not Is_Package_Or_Generic_Package
(Current_Scope
))
2651 or else not In_Private_Part
(Current_Scope
)
2653 -- Not a private primitive
2657 else pragma Assert
(Is_Inherited_Operation
(Prev_Op
));
2659 -- Make the overriding operation into an alias of the implicit one.
2660 -- In this fashion a call from outside ends up calling the new body
2661 -- even if non-dispatching, and a call from inside calls the over-
2662 -- riding operation because it hides the implicit one. To indicate
2663 -- that the body of Prev_Op is never called, set its dispatch table
2664 -- entity to Empty. If the overridden operation has a dispatching
2665 -- result, so does the overriding one.
2667 Set_Alias
(Prev_Op
, New_Op
);
2668 Set_DTC_Entity
(Prev_Op
, Empty
);
2669 Set_Has_Controlling_Result
(New_Op
, Has_Controlling_Result
(Prev_Op
));
2672 end Override_Dispatching_Operation
;
2678 procedure Propagate_Tag
(Control
: Node_Id
; Actual
: Node_Id
) is
2679 Call_Node
: Node_Id
;
2683 if Nkind
(Actual
) = N_Function_Call
then
2684 Call_Node
:= Actual
;
2686 elsif Nkind
(Actual
) = N_Identifier
2687 and then Nkind
(Original_Node
(Actual
)) = N_Function_Call
2689 -- Call rewritten as object declaration when stack-checking is
2690 -- enabled. Propagate tag to expression in declaration, which is
2693 Call_Node
:= Expression
(Parent
(Entity
(Actual
)));
2695 -- Ada 2005: If this is a dereference of a call to a function with a
2696 -- dispatching access-result, the tag is propagated when the dereference
2697 -- itself is expanded (see exp_ch6.adb) and there is nothing else to do.
2699 elsif Nkind
(Actual
) = N_Explicit_Dereference
2700 and then Nkind
(Original_Node
(Prefix
(Actual
))) = N_Function_Call
2704 -- When expansion is suppressed, an unexpanded call to 'Input can occur,
2705 -- and in that case we can simply return.
2707 elsif Nkind
(Actual
) = N_Attribute_Reference
then
2708 pragma Assert
(Attribute_Name
(Actual
) = Name_Input
);
2712 -- Only other possibilities are parenthesized or qualified expression,
2713 -- or an expander-generated unchecked conversion of a function call to
2714 -- a stream Input attribute.
2717 Call_Node
:= Expression
(Actual
);
2720 -- No action needed if the call has been already expanded
2722 if Is_Expanded_Dispatching_Call
(Call_Node
) then
2726 -- Do not set the Controlling_Argument if already set. This happens in
2727 -- the special case of _Input (see Exp_Attr, case Input).
2729 if No
(Controlling_Argument
(Call_Node
)) then
2730 Set_Controlling_Argument
(Call_Node
, Control
);
2733 Arg
:= First_Actual
(Call_Node
);
2734 while Present
(Arg
) loop
2735 if Is_Tag_Indeterminate
(Arg
) then
2736 Propagate_Tag
(Control
, Arg
);
2742 -- Expansion of dispatching calls is suppressed on VM targets, because
2743 -- the VM back-ends directly handle the generation of dispatching calls
2744 -- and would have to undo any expansion to an indirect call.
2746 if Tagged_Type_Expansion
then
2748 Call_Typ
: constant Entity_Id
:= Etype
(Call_Node
);
2751 Expand_Dispatching_Call
(Call_Node
);
2753 -- If the controlling argument is an interface type and the type
2754 -- of Call_Node differs then we must add an implicit conversion to
2755 -- force displacement of the pointer to the object to reference
2756 -- the secondary dispatch table of the interface.
2758 if Is_Interface
(Etype
(Control
))
2759 and then Etype
(Control
) /= Call_Typ
2761 -- Cannot use Convert_To because the previous call to
2762 -- Expand_Dispatching_Call leaves decorated the Call_Node
2763 -- with the type of Control.
2766 Make_Type_Conversion
(Sloc
(Call_Node
),
2768 New_Occurrence_Of
(Etype
(Control
), Sloc
(Call_Node
)),
2769 Expression
=> Relocate_Node
(Call_Node
)));
2770 Set_Etype
(Call_Node
, Etype
(Control
));
2771 Set_Analyzed
(Call_Node
);
2773 Expand_Interface_Conversion
(Call_Node
);
2777 -- Expansion of a dispatching call results in an indirect call, which in
2778 -- turn causes current values to be killed (see Resolve_Call), so on VM
2779 -- targets we do the call here to ensure consistent warnings between VM
2780 -- and non-VM targets.
2783 Kill_Current_Values
;