1 /* Control flow functions for trees.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "tree-pass.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
40 #include "gimple-fold.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity
= 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map
<edge
, tree
> *edge_to_cases
;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs
;
98 long num_merged_labels
;
101 static struct cfg_stats_d cfg_stats
;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map
<tree
, tree
> *vars_map
;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher
: free_ptr_hash
<locus_discrim_map
>
121 static inline hashval_t
hash (const locus_discrim_map
*);
122 static inline bool equal (const locus_discrim_map
*,
123 const locus_discrim_map
*);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
130 locus_discrim_hasher::hash (const locus_discrim_map
*item
)
132 return item
->location_line
;
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
139 locus_discrim_hasher::equal (const locus_discrim_map
*a
,
140 const locus_discrim_map
*b
)
142 return a
->location_line
== b
->location_line
;
145 static hash_table
<locus_discrim_hasher
> *discriminator_per_locus
;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq
);
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block
);
154 static void make_gimple_switch_edges (gswitch
*, basic_block
);
155 static bool make_goto_expr_edges (basic_block
);
156 static void make_gimple_asm_edges (basic_block
);
157 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
158 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple
*, gimple
*);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge
);
164 static gimple
*first_non_label_stmt (basic_block
);
165 static bool verify_gimple_transaction (gtransaction
*);
166 static bool call_can_make_abnormal_goto (gimple
*);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block
, basic_block
);
170 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
171 static void remove_bb (basic_block
);
172 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
173 static edge
find_taken_edge_cond_expr (const gcond
*, tree
);
174 static edge
find_taken_edge_switch_expr (const gswitch
*, tree
);
175 static tree
find_case_label_for_value (const gswitch
*, tree
);
176 static void lower_phi_internal_fn ();
179 init_empty_tree_cfg_for_function (struct function
*fn
)
181 /* Initialize the basic block array. */
183 profile_status_for_fn (fn
) = PROFILE_ABSENT
;
184 n_basic_blocks_for_fn (fn
) = NUM_FIXED_BLOCKS
;
185 last_basic_block_for_fn (fn
) = NUM_FIXED_BLOCKS
;
186 vec_alloc (basic_block_info_for_fn (fn
), initial_cfg_capacity
);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn
),
188 initial_cfg_capacity
);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn
), initial_cfg_capacity
);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn
),
193 initial_cfg_capacity
);
195 SET_BASIC_BLOCK_FOR_FN (fn
, ENTRY_BLOCK
, ENTRY_BLOCK_PTR_FOR_FN (fn
));
196 SET_BASIC_BLOCK_FOR_FN (fn
, EXIT_BLOCK
, EXIT_BLOCK_PTR_FOR_FN (fn
));
198 ENTRY_BLOCK_PTR_FOR_FN (fn
)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn
);
200 EXIT_BLOCK_PTR_FOR_FN (fn
)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn
);
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun
);
210 /*---------------------------------------------------------------------------
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
218 build_gimple_cfg (gimple_seq seq
)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
225 init_empty_tree_cfg ();
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun
)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun
))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
),
237 n_basic_blocks_for_fn (cfun
));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus
= new hash_table
<locus_discrim_hasher
> (13);
250 assign_discriminators ();
251 lower_phi_internal_fn ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus
;
254 discriminator_per_locus
= NULL
;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
262 replace_loop_annotate_in_block (basic_block bb
, struct loop
*loop
)
264 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
265 gimple
*stmt
= gsi_stmt (gsi
);
267 if (!(stmt
&& gimple_code (stmt
) == GIMPLE_COND
))
270 for (gsi_prev_nondebug (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
272 stmt
= gsi_stmt (gsi
);
273 if (gimple_code (stmt
) != GIMPLE_CALL
)
275 if (!gimple_call_internal_p (stmt
)
276 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
279 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
281 case annot_expr_ivdep_kind
:
282 loop
->safelen
= INT_MAX
;
284 case annot_expr_unroll_kind
:
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt
, 2));
287 cfun
->has_unroll
= true;
289 case annot_expr_no_vector_kind
:
290 loop
->dont_vectorize
= true;
292 case annot_expr_vector_kind
:
293 loop
->force_vectorize
= true;
294 cfun
->has_force_vectorize_loops
= true;
296 case annot_expr_parallel_kind
:
297 loop
->can_be_parallel
= true;
298 loop
->safelen
= INT_MAX
;
304 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
305 gimple_call_arg (stmt
, 0));
306 gsi_replace (&gsi
, stmt
, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
315 replace_loop_annotate (void)
319 gimple_stmt_iterator gsi
;
322 FOR_EACH_LOOP (loop
, 0)
324 /* First look into the header. */
325 replace_loop_annotate_in_block (loop
->header
, loop
);
327 /* Then look into the latch, if any. */
329 replace_loop_annotate_in_block (loop
->latch
, loop
);
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb
, cfun
)
335 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
337 stmt
= gsi_stmt (gsi
);
338 if (gimple_code (stmt
) != GIMPLE_CALL
)
340 if (!gimple_call_internal_p (stmt
)
341 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
344 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
346 case annot_expr_ivdep_kind
:
347 case annot_expr_unroll_kind
:
348 case annot_expr_no_vector_kind
:
349 case annot_expr_vector_kind
:
350 case annot_expr_parallel_kind
:
356 warning_at (gimple_location (stmt
), 0, "ignoring loop annotation");
357 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
358 gimple_call_arg (stmt
, 0));
359 gsi_replace (&gsi
, stmt
, true);
364 /* Lower internal PHI function from GIMPLE FE. */
367 lower_phi_internal_fn ()
369 basic_block bb
, pred
= NULL
;
370 gimple_stmt_iterator gsi
;
375 /* After edge creation, handle __PHI function from GIMPLE FE. */
376 FOR_EACH_BB_FN (bb
, cfun
)
378 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);)
380 stmt
= gsi_stmt (gsi
);
381 if (! gimple_call_internal_p (stmt
, IFN_PHI
))
384 lhs
= gimple_call_lhs (stmt
);
385 phi_node
= create_phi_node (lhs
, bb
);
387 /* Add arguments to the PHI node. */
388 for (unsigned i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
390 tree arg
= gimple_call_arg (stmt
, i
);
391 if (TREE_CODE (arg
) == LABEL_DECL
)
392 pred
= label_to_block (arg
);
395 edge e
= find_edge (pred
, bb
);
396 add_phi_arg (phi_node
, arg
, e
, UNKNOWN_LOCATION
);
400 gsi_remove (&gsi
, true);
406 execute_build_cfg (void)
408 gimple_seq body
= gimple_body (current_function_decl
);
410 build_gimple_cfg (body
);
411 gimple_set_body (current_function_decl
, NULL
);
412 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
414 fprintf (dump_file
, "Scope blocks:\n");
415 dump_scope_blocks (dump_file
, dump_flags
);
418 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
419 replace_loop_annotate ();
425 const pass_data pass_data_build_cfg
=
427 GIMPLE_PASS
, /* type */
429 OPTGROUP_NONE
, /* optinfo_flags */
430 TV_TREE_CFG
, /* tv_id */
431 PROP_gimple_leh
, /* properties_required */
432 ( PROP_cfg
| PROP_loops
), /* properties_provided */
433 0, /* properties_destroyed */
434 0, /* todo_flags_start */
435 0, /* todo_flags_finish */
438 class pass_build_cfg
: public gimple_opt_pass
441 pass_build_cfg (gcc::context
*ctxt
)
442 : gimple_opt_pass (pass_data_build_cfg
, ctxt
)
445 /* opt_pass methods: */
446 virtual unsigned int execute (function
*) { return execute_build_cfg (); }
448 }; // class pass_build_cfg
453 make_pass_build_cfg (gcc::context
*ctxt
)
455 return new pass_build_cfg (ctxt
);
459 /* Return true if T is a computed goto. */
462 computed_goto_p (gimple
*t
)
464 return (gimple_code (t
) == GIMPLE_GOTO
465 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
468 /* Returns true if the sequence of statements STMTS only contains
469 a call to __builtin_unreachable (). */
472 gimple_seq_unreachable_p (gimple_seq stmts
)
475 /* Return false if -fsanitize=unreachable, we don't want to
476 optimize away those calls, but rather turn them into
477 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
479 || sanitize_flags_p (SANITIZE_UNREACHABLE
))
482 gimple_stmt_iterator gsi
= gsi_last (stmts
);
484 if (!gimple_call_builtin_p (gsi_stmt (gsi
), BUILT_IN_UNREACHABLE
))
487 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
489 gimple
*stmt
= gsi_stmt (gsi
);
490 if (gimple_code (stmt
) != GIMPLE_LABEL
491 && !is_gimple_debug (stmt
)
492 && !gimple_clobber_p (stmt
))
498 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
499 the other edge points to a bb with just __builtin_unreachable ().
500 I.e. return true for C->M edge in:
508 __builtin_unreachable ();
512 assert_unreachable_fallthru_edge_p (edge e
)
514 basic_block pred_bb
= e
->src
;
515 gimple
*last
= last_stmt (pred_bb
);
516 if (last
&& gimple_code (last
) == GIMPLE_COND
)
518 basic_block other_bb
= EDGE_SUCC (pred_bb
, 0)->dest
;
519 if (other_bb
== e
->dest
)
520 other_bb
= EDGE_SUCC (pred_bb
, 1)->dest
;
521 if (EDGE_COUNT (other_bb
->succs
) == 0)
522 return gimple_seq_unreachable_p (bb_seq (other_bb
));
528 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
529 could alter control flow except via eh. We initialize the flag at
530 CFG build time and only ever clear it later. */
533 gimple_call_initialize_ctrl_altering (gimple
*stmt
)
535 int flags
= gimple_call_flags (stmt
);
537 /* A call alters control flow if it can make an abnormal goto. */
538 if (call_can_make_abnormal_goto (stmt
)
539 /* A call also alters control flow if it does not return. */
540 || flags
& ECF_NORETURN
541 /* TM ending statements have backedges out of the transaction.
542 Return true so we split the basic block containing them.
543 Note that the TM_BUILTIN test is merely an optimization. */
544 || ((flags
& ECF_TM_BUILTIN
)
545 && is_tm_ending_fndecl (gimple_call_fndecl (stmt
)))
546 /* BUILT_IN_RETURN call is same as return statement. */
547 || gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
)
548 /* IFN_UNIQUE should be the last insn, to make checking for it
549 as cheap as possible. */
550 || (gimple_call_internal_p (stmt
)
551 && gimple_call_internal_unique_p (stmt
)))
552 gimple_call_set_ctrl_altering (stmt
, true);
554 gimple_call_set_ctrl_altering (stmt
, false);
558 /* Insert SEQ after BB and build a flowgraph. */
561 make_blocks_1 (gimple_seq seq
, basic_block bb
)
563 gimple_stmt_iterator i
= gsi_start (seq
);
565 gimple
*prev_stmt
= NULL
;
566 bool start_new_block
= true;
567 bool first_stmt_of_seq
= true;
569 while (!gsi_end_p (i
))
571 /* PREV_STMT should only be set to a debug stmt if the debug
572 stmt is before nondebug stmts. Once stmt reaches a nondebug
573 nonlabel, prev_stmt will be set to it, so that
574 stmt_starts_bb_p will know to start a new block if a label is
575 found. However, if stmt was a label after debug stmts only,
576 keep the label in prev_stmt even if we find further debug
577 stmts, for there may be other labels after them, and they
578 should land in the same block. */
579 if (!prev_stmt
|| !stmt
|| !is_gimple_debug (stmt
))
583 if (stmt
&& is_gimple_call (stmt
))
584 gimple_call_initialize_ctrl_altering (stmt
);
586 /* If the statement starts a new basic block or if we have determined
587 in a previous pass that we need to create a new block for STMT, do
589 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
591 if (!first_stmt_of_seq
)
592 gsi_split_seq_before (&i
, &seq
);
593 bb
= create_basic_block (seq
, bb
);
594 start_new_block
= false;
598 /* Now add STMT to BB and create the subgraphs for special statement
600 gimple_set_bb (stmt
, bb
);
602 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
604 if (stmt_ends_bb_p (stmt
))
606 /* If the stmt can make abnormal goto use a new temporary
607 for the assignment to the LHS. This makes sure the old value
608 of the LHS is available on the abnormal edge. Otherwise
609 we will end up with overlapping life-ranges for abnormal
611 if (gimple_has_lhs (stmt
)
612 && stmt_can_make_abnormal_goto (stmt
)
613 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
615 tree lhs
= gimple_get_lhs (stmt
);
616 tree tmp
= create_tmp_var (TREE_TYPE (lhs
));
617 gimple
*s
= gimple_build_assign (lhs
, tmp
);
618 gimple_set_location (s
, gimple_location (stmt
));
619 gimple_set_block (s
, gimple_block (stmt
));
620 gimple_set_lhs (stmt
, tmp
);
621 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
622 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
623 DECL_GIMPLE_REG_P (tmp
) = 1;
624 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
626 start_new_block
= true;
630 first_stmt_of_seq
= false;
635 /* Build a flowgraph for the sequence of stmts SEQ. */
638 make_blocks (gimple_seq seq
)
640 /* Look for debug markers right before labels, and move the debug
641 stmts after the labels. Accepting labels among debug markers
642 adds no value, just complexity; if we wanted to annotate labels
643 with view numbers (so sequencing among markers would matter) or
644 somesuch, we're probably better off still moving the labels, but
645 adding other debug annotations in their original positions or
646 emitting nonbind or bind markers associated with the labels in
647 the original position of the labels.
649 Moving labels would probably be simpler, but we can't do that:
650 moving labels assigns label ids to them, and doing so because of
651 debug markers makes for -fcompare-debug and possibly even codegen
652 differences. So, we have to move the debug stmts instead. To
653 that end, we scan SEQ backwards, marking the position of the
654 latest (earliest we find) label, and moving debug stmts that are
655 not separated from it by nondebug nonlabel stmts after the
657 if (MAY_HAVE_DEBUG_MARKER_STMTS
)
659 gimple_stmt_iterator label
= gsi_none ();
661 for (gimple_stmt_iterator i
= gsi_last (seq
); !gsi_end_p (i
); gsi_prev (&i
))
663 gimple
*stmt
= gsi_stmt (i
);
665 /* If this is the first label we encounter (latest in SEQ)
666 before nondebug stmts, record its position. */
667 if (is_a
<glabel
*> (stmt
))
669 if (gsi_end_p (label
))
674 /* Without a recorded label position to move debug stmts to,
675 there's nothing to do. */
676 if (gsi_end_p (label
))
679 /* Move the debug stmt at I after LABEL. */
680 if (is_gimple_debug (stmt
))
682 gcc_assert (gimple_debug_nonbind_marker_p (stmt
));
683 /* As STMT is removed, I advances to the stmt after
684 STMT, so the gsi_prev in the for "increment"
685 expression gets us to the stmt we're to visit after
686 STMT. LABEL, however, would advance to the moved
687 stmt if we passed it to gsi_move_after, so pass it a
688 copy instead, so as to keep LABEL pointing to the
690 gimple_stmt_iterator copy
= label
;
691 gsi_move_after (&i
, ©
);
695 /* There aren't any (more?) debug stmts before label, so
696 there isn't anything else to move after it. */
701 make_blocks_1 (seq
, ENTRY_BLOCK_PTR_FOR_FN (cfun
));
704 /* Create and return a new empty basic block after bb AFTER. */
707 create_bb (void *h
, void *e
, basic_block after
)
713 /* Create and initialize a new basic block. Since alloc_block uses
714 GC allocation that clears memory to allocate a basic block, we do
715 not have to clear the newly allocated basic block here. */
718 bb
->index
= last_basic_block_for_fn (cfun
);
720 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
722 /* Add the new block to the linked list of blocks. */
723 link_block (bb
, after
);
725 /* Grow the basic block array if needed. */
726 if ((size_t) last_basic_block_for_fn (cfun
)
727 == basic_block_info_for_fn (cfun
)->length ())
730 (last_basic_block_for_fn (cfun
)
731 + (last_basic_block_for_fn (cfun
) + 3) / 4);
732 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
), new_size
);
735 /* Add the newly created block to the array. */
736 SET_BASIC_BLOCK_FOR_FN (cfun
, last_basic_block_for_fn (cfun
), bb
);
738 n_basic_blocks_for_fn (cfun
)++;
739 last_basic_block_for_fn (cfun
)++;
745 /*---------------------------------------------------------------------------
747 ---------------------------------------------------------------------------*/
749 /* If basic block BB has an abnormal edge to a basic block
750 containing IFN_ABNORMAL_DISPATCHER internal call, return
751 that the dispatcher's basic block, otherwise return NULL. */
754 get_abnormal_succ_dispatcher (basic_block bb
)
759 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
760 if ((e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
)) == EDGE_ABNORMAL
)
762 gimple_stmt_iterator gsi
763 = gsi_start_nondebug_after_labels_bb (e
->dest
);
764 gimple
*g
= gsi_stmt (gsi
);
765 if (g
&& gimple_call_internal_p (g
, IFN_ABNORMAL_DISPATCHER
))
771 /* Helper function for make_edges. Create a basic block with
772 with ABNORMAL_DISPATCHER internal call in it if needed, and
773 create abnormal edges from BBS to it and from it to FOR_BB
774 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
777 handle_abnormal_edges (basic_block
*dispatcher_bbs
,
778 basic_block for_bb
, int *bb_to_omp_idx
,
779 auto_vec
<basic_block
> *bbs
, bool computed_goto
)
781 basic_block
*dispatcher
= dispatcher_bbs
+ (computed_goto
? 1 : 0);
782 unsigned int idx
= 0;
788 dispatcher
= dispatcher_bbs
+ 2 * bb_to_omp_idx
[for_bb
->index
];
789 if (bb_to_omp_idx
[for_bb
->index
] != 0)
793 /* If the dispatcher has been created already, then there are basic
794 blocks with abnormal edges to it, so just make a new edge to
796 if (*dispatcher
== NULL
)
798 /* Check if there are any basic blocks that need to have
799 abnormal edges to this dispatcher. If there are none, return
801 if (bb_to_omp_idx
== NULL
)
803 if (bbs
->is_empty ())
808 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
809 if (bb_to_omp_idx
[bb
->index
] == bb_to_omp_idx
[for_bb
->index
])
815 /* Create the dispatcher bb. */
816 *dispatcher
= create_basic_block (NULL
, for_bb
);
819 /* Factor computed gotos into a common computed goto site. Also
820 record the location of that site so that we can un-factor the
821 gotos after we have converted back to normal form. */
822 gimple_stmt_iterator gsi
= gsi_start_bb (*dispatcher
);
824 /* Create the destination of the factored goto. Each original
825 computed goto will put its desired destination into this
826 variable and jump to the label we create immediately below. */
827 tree var
= create_tmp_var (ptr_type_node
, "gotovar");
829 /* Build a label for the new block which will contain the
830 factored computed goto. */
831 tree factored_label_decl
832 = create_artificial_label (UNKNOWN_LOCATION
);
833 gimple
*factored_computed_goto_label
834 = gimple_build_label (factored_label_decl
);
835 gsi_insert_after (&gsi
, factored_computed_goto_label
, GSI_NEW_STMT
);
837 /* Build our new computed goto. */
838 gimple
*factored_computed_goto
= gimple_build_goto (var
);
839 gsi_insert_after (&gsi
, factored_computed_goto
, GSI_NEW_STMT
);
841 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
844 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
847 gsi
= gsi_last_bb (bb
);
848 gimple
*last
= gsi_stmt (gsi
);
850 gcc_assert (computed_goto_p (last
));
852 /* Copy the original computed goto's destination into VAR. */
854 = gimple_build_assign (var
, gimple_goto_dest (last
));
855 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
857 edge e
= make_edge (bb
, *dispatcher
, EDGE_FALLTHRU
);
858 e
->goto_locus
= gimple_location (last
);
859 gsi_remove (&gsi
, true);
864 tree arg
= inner
? boolean_true_node
: boolean_false_node
;
865 gimple
*g
= gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER
,
867 gimple_stmt_iterator gsi
= gsi_after_labels (*dispatcher
);
868 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
870 /* Create predecessor edges of the dispatcher. */
871 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
874 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
876 make_edge (bb
, *dispatcher
, EDGE_ABNORMAL
);
881 make_edge (*dispatcher
, for_bb
, EDGE_ABNORMAL
);
884 /* Creates outgoing edges for BB. Returns 1 when it ends with an
885 computed goto, returns 2 when it ends with a statement that
886 might return to this function via an nonlocal goto, otherwise
887 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
890 make_edges_bb (basic_block bb
, struct omp_region
**pcur_region
, int *pomp_index
)
892 gimple
*last
= last_stmt (bb
);
893 bool fallthru
= false;
899 switch (gimple_code (last
))
902 if (make_goto_expr_edges (bb
))
908 edge e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
909 e
->goto_locus
= gimple_location (last
);
914 make_cond_expr_edges (bb
);
918 make_gimple_switch_edges (as_a
<gswitch
*> (last
), bb
);
922 make_eh_edges (last
);
925 case GIMPLE_EH_DISPATCH
:
926 fallthru
= make_eh_dispatch_edges (as_a
<geh_dispatch
*> (last
));
930 /* If this function receives a nonlocal goto, then we need to
931 make edges from this call site to all the nonlocal goto
933 if (stmt_can_make_abnormal_goto (last
))
936 /* If this statement has reachable exception handlers, then
937 create abnormal edges to them. */
938 make_eh_edges (last
);
940 /* BUILTIN_RETURN is really a return statement. */
941 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
943 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
946 /* Some calls are known not to return. */
948 fallthru
= !gimple_call_noreturn_p (last
);
952 /* A GIMPLE_ASSIGN may throw internally and thus be considered
954 if (is_ctrl_altering_stmt (last
))
955 make_eh_edges (last
);
960 make_gimple_asm_edges (bb
);
965 fallthru
= omp_make_gimple_edges (bb
, pcur_region
, pomp_index
);
968 case GIMPLE_TRANSACTION
:
970 gtransaction
*txn
= as_a
<gtransaction
*> (last
);
971 tree label1
= gimple_transaction_label_norm (txn
);
972 tree label2
= gimple_transaction_label_uninst (txn
);
975 make_edge (bb
, label_to_block (label1
), EDGE_FALLTHRU
);
977 make_edge (bb
, label_to_block (label2
),
978 EDGE_TM_UNINSTRUMENTED
| (label1
? 0 : EDGE_FALLTHRU
));
980 tree label3
= gimple_transaction_label_over (txn
);
981 if (gimple_transaction_subcode (txn
)
982 & (GTMA_HAVE_ABORT
| GTMA_IS_OUTER
))
983 make_edge (bb
, label_to_block (label3
), EDGE_TM_ABORT
);
990 gcc_assert (!stmt_ends_bb_p (last
));
996 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
1001 /* Join all the blocks in the flowgraph. */
1007 struct omp_region
*cur_region
= NULL
;
1008 auto_vec
<basic_block
> ab_edge_goto
;
1009 auto_vec
<basic_block
> ab_edge_call
;
1010 int *bb_to_omp_idx
= NULL
;
1011 int cur_omp_region_idx
= 0;
1013 /* Create an edge from entry to the first block with executable
1014 statements in it. */
1015 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
),
1016 BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
),
1019 /* Traverse the basic block array placing edges. */
1020 FOR_EACH_BB_FN (bb
, cfun
)
1025 bb_to_omp_idx
[bb
->index
] = cur_omp_region_idx
;
1027 mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1029 ab_edge_goto
.safe_push (bb
);
1031 ab_edge_call
.safe_push (bb
);
1033 if (cur_region
&& bb_to_omp_idx
== NULL
)
1034 bb_to_omp_idx
= XCNEWVEC (int, n_basic_blocks_for_fn (cfun
));
1037 /* Computed gotos are hell to deal with, especially if there are
1038 lots of them with a large number of destinations. So we factor
1039 them to a common computed goto location before we build the
1040 edge list. After we convert back to normal form, we will un-factor
1041 the computed gotos since factoring introduces an unwanted jump.
1042 For non-local gotos and abnormal edges from calls to calls that return
1043 twice or forced labels, factor the abnormal edges too, by having all
1044 abnormal edges from the calls go to a common artificial basic block
1045 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1046 basic block to all forced labels and calls returning twice.
1047 We do this per-OpenMP structured block, because those regions
1048 are guaranteed to be single entry single exit by the standard,
1049 so it is not allowed to enter or exit such regions abnormally this way,
1050 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1051 must not transfer control across SESE region boundaries. */
1052 if (!ab_edge_goto
.is_empty () || !ab_edge_call
.is_empty ())
1054 gimple_stmt_iterator gsi
;
1055 basic_block dispatcher_bb_array
[2] = { NULL
, NULL
};
1056 basic_block
*dispatcher_bbs
= dispatcher_bb_array
;
1057 int count
= n_basic_blocks_for_fn (cfun
);
1060 dispatcher_bbs
= XCNEWVEC (basic_block
, 2 * count
);
1062 FOR_EACH_BB_FN (bb
, cfun
)
1064 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1066 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1072 target
= gimple_label_label (label_stmt
);
1074 /* Make an edge to every label block that has been marked as a
1075 potential target for a computed goto or a non-local goto. */
1076 if (FORCED_LABEL (target
))
1077 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1078 &ab_edge_goto
, true);
1079 if (DECL_NONLOCAL (target
))
1081 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1082 &ab_edge_call
, false);
1087 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
1088 gsi_next_nondebug (&gsi
);
1089 if (!gsi_end_p (gsi
))
1091 /* Make an edge to every setjmp-like call. */
1092 gimple
*call_stmt
= gsi_stmt (gsi
);
1093 if (is_gimple_call (call_stmt
)
1094 && ((gimple_call_flags (call_stmt
) & ECF_RETURNS_TWICE
)
1095 || gimple_call_builtin_p (call_stmt
,
1096 BUILT_IN_SETJMP_RECEIVER
)))
1097 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1098 &ab_edge_call
, false);
1103 XDELETE (dispatcher_bbs
);
1106 XDELETE (bb_to_omp_idx
);
1108 omp_free_regions ();
1111 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1112 needed. Returns true if new bbs were created.
1113 Note: This is transitional code, and should not be used for new code. We
1114 should be able to get rid of this by rewriting all target va-arg
1115 gimplification hooks to use an interface gimple_build_cond_value as described
1116 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1119 gimple_find_sub_bbs (gimple_seq seq
, gimple_stmt_iterator
*gsi
)
1121 gimple
*stmt
= gsi_stmt (*gsi
);
1122 basic_block bb
= gimple_bb (stmt
);
1123 basic_block lastbb
, afterbb
;
1124 int old_num_bbs
= n_basic_blocks_for_fn (cfun
);
1126 lastbb
= make_blocks_1 (seq
, bb
);
1127 if (old_num_bbs
== n_basic_blocks_for_fn (cfun
))
1129 e
= split_block (bb
, stmt
);
1130 /* Move e->dest to come after the new basic blocks. */
1132 unlink_block (afterbb
);
1133 link_block (afterbb
, lastbb
);
1134 redirect_edge_succ (e
, bb
->next_bb
);
1136 while (bb
!= afterbb
)
1138 struct omp_region
*cur_region
= NULL
;
1139 profile_count cnt
= profile_count::zero ();
1142 int cur_omp_region_idx
= 0;
1143 int mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1144 gcc_assert (!mer
&& !cur_region
);
1145 add_bb_to_loop (bb
, afterbb
->loop_father
);
1149 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1151 if (e
->count ().initialized_p ())
1156 tree_guess_outgoing_edge_probabilities (bb
);
1157 if (all
|| profile_status_for_fn (cfun
) == PROFILE_READ
)
1165 /* Find the next available discriminator value for LOCUS. The
1166 discriminator distinguishes among several basic blocks that
1167 share a common locus, allowing for more accurate sample-based
1171 next_discriminator_for_locus (int line
)
1173 struct locus_discrim_map item
;
1174 struct locus_discrim_map
**slot
;
1176 item
.location_line
= line
;
1177 item
.discriminator
= 0;
1178 slot
= discriminator_per_locus
->find_slot_with_hash (&item
, line
, INSERT
);
1180 if (*slot
== HTAB_EMPTY_ENTRY
)
1182 *slot
= XNEW (struct locus_discrim_map
);
1184 (*slot
)->location_line
= line
;
1185 (*slot
)->discriminator
= 0;
1187 (*slot
)->discriminator
++;
1188 return (*slot
)->discriminator
;
1191 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1194 same_line_p (location_t locus1
, expanded_location
*from
, location_t locus2
)
1196 expanded_location to
;
1198 if (locus1
== locus2
)
1201 to
= expand_location (locus2
);
1203 if (from
->line
!= to
.line
)
1205 if (from
->file
== to
.file
)
1207 return (from
->file
!= NULL
1209 && filename_cmp (from
->file
, to
.file
) == 0);
1212 /* Assign discriminators to each basic block. */
1215 assign_discriminators (void)
1219 FOR_EACH_BB_FN (bb
, cfun
)
1223 gimple
*last
= last_stmt (bb
);
1224 location_t locus
= last
? gimple_location (last
) : UNKNOWN_LOCATION
;
1226 if (locus
== UNKNOWN_LOCATION
)
1229 expanded_location locus_e
= expand_location (locus
);
1231 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1233 gimple
*first
= first_non_label_stmt (e
->dest
);
1234 gimple
*last
= last_stmt (e
->dest
);
1235 if ((first
&& same_line_p (locus
, &locus_e
,
1236 gimple_location (first
)))
1237 || (last
&& same_line_p (locus
, &locus_e
,
1238 gimple_location (last
))))
1240 if (e
->dest
->discriminator
!= 0 && bb
->discriminator
== 0)
1242 = next_discriminator_for_locus (locus_e
.line
);
1244 e
->dest
->discriminator
1245 = next_discriminator_for_locus (locus_e
.line
);
1251 /* Create the edges for a GIMPLE_COND starting at block BB. */
1254 make_cond_expr_edges (basic_block bb
)
1256 gcond
*entry
= as_a
<gcond
*> (last_stmt (bb
));
1257 gimple
*then_stmt
, *else_stmt
;
1258 basic_block then_bb
, else_bb
;
1259 tree then_label
, else_label
;
1263 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
1265 /* Entry basic blocks for each component. */
1266 then_label
= gimple_cond_true_label (entry
);
1267 else_label
= gimple_cond_false_label (entry
);
1268 then_bb
= label_to_block (then_label
);
1269 else_bb
= label_to_block (else_label
);
1270 then_stmt
= first_stmt (then_bb
);
1271 else_stmt
= first_stmt (else_bb
);
1273 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
1274 e
->goto_locus
= gimple_location (then_stmt
);
1275 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
1277 e
->goto_locus
= gimple_location (else_stmt
);
1279 /* We do not need the labels anymore. */
1280 gimple_cond_set_true_label (entry
, NULL_TREE
);
1281 gimple_cond_set_false_label (entry
, NULL_TREE
);
1285 /* Called for each element in the hash table (P) as we delete the
1286 edge to cases hash table.
1288 Clear all the CASE_CHAINs to prevent problems with copying of
1289 SWITCH_EXPRs and structure sharing rules, then free the hash table
1293 edge_to_cases_cleanup (edge
const &, tree
const &value
, void *)
1297 for (t
= value
; t
; t
= next
)
1299 next
= CASE_CHAIN (t
);
1300 CASE_CHAIN (t
) = NULL
;
1306 /* Start recording information mapping edges to case labels. */
1309 start_recording_case_labels (void)
1311 gcc_assert (edge_to_cases
== NULL
);
1312 edge_to_cases
= new hash_map
<edge
, tree
>;
1313 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
1316 /* Return nonzero if we are recording information for case labels. */
1319 recording_case_labels_p (void)
1321 return (edge_to_cases
!= NULL
);
1324 /* Stop recording information mapping edges to case labels and
1325 remove any information we have recorded. */
1327 end_recording_case_labels (void)
1331 edge_to_cases
->traverse
<void *, edge_to_cases_cleanup
> (NULL
);
1332 delete edge_to_cases
;
1333 edge_to_cases
= NULL
;
1334 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
1336 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1339 gimple
*stmt
= last_stmt (bb
);
1340 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1341 group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1344 BITMAP_FREE (touched_switch_bbs
);
1347 /* If we are inside a {start,end}_recording_cases block, then return
1348 a chain of CASE_LABEL_EXPRs from T which reference E.
1350 Otherwise return NULL. */
1353 get_cases_for_edge (edge e
, gswitch
*t
)
1358 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1359 chains available. Return NULL so the caller can detect this case. */
1360 if (!recording_case_labels_p ())
1363 slot
= edge_to_cases
->get (e
);
1367 /* If we did not find E in the hash table, then this must be the first
1368 time we have been queried for information about E & T. Add all the
1369 elements from T to the hash table then perform the query again. */
1371 n
= gimple_switch_num_labels (t
);
1372 for (i
= 0; i
< n
; i
++)
1374 tree elt
= gimple_switch_label (t
, i
);
1375 tree lab
= CASE_LABEL (elt
);
1376 basic_block label_bb
= label_to_block (lab
);
1377 edge this_edge
= find_edge (e
->src
, label_bb
);
1379 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1381 tree
&s
= edge_to_cases
->get_or_insert (this_edge
);
1382 CASE_CHAIN (elt
) = s
;
1386 return *edge_to_cases
->get (e
);
1389 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1392 make_gimple_switch_edges (gswitch
*entry
, basic_block bb
)
1396 n
= gimple_switch_num_labels (entry
);
1398 for (i
= 0; i
< n
; ++i
)
1400 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
1401 basic_block label_bb
= label_to_block (lab
);
1402 make_edge (bb
, label_bb
, 0);
1407 /* Return the basic block holding label DEST. */
1410 label_to_block_fn (struct function
*ifun
, tree dest
)
1412 int uid
= LABEL_DECL_UID (dest
);
1414 /* We would die hard when faced by an undefined label. Emit a label to
1415 the very first basic block. This will hopefully make even the dataflow
1416 and undefined variable warnings quite right. */
1417 if (seen_error () && uid
< 0)
1419 gimple_stmt_iterator gsi
=
1420 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
));
1423 stmt
= gimple_build_label (dest
);
1424 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
1425 uid
= LABEL_DECL_UID (dest
);
1427 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
1429 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
1432 /* Create edges for a goto statement at block BB. Returns true
1433 if abnormal edges should be created. */
1436 make_goto_expr_edges (basic_block bb
)
1438 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1439 gimple
*goto_t
= gsi_stmt (last
);
1441 /* A simple GOTO creates normal edges. */
1442 if (simple_goto_p (goto_t
))
1444 tree dest
= gimple_goto_dest (goto_t
);
1445 basic_block label_bb
= label_to_block (dest
);
1446 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1447 e
->goto_locus
= gimple_location (goto_t
);
1448 gsi_remove (&last
, true);
1452 /* A computed GOTO creates abnormal edges. */
1456 /* Create edges for an asm statement with labels at block BB. */
1459 make_gimple_asm_edges (basic_block bb
)
1461 gasm
*stmt
= as_a
<gasm
*> (last_stmt (bb
));
1462 int i
, n
= gimple_asm_nlabels (stmt
);
1464 for (i
= 0; i
< n
; ++i
)
1466 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1467 basic_block label_bb
= label_to_block (label
);
1468 make_edge (bb
, label_bb
, 0);
1472 /*---------------------------------------------------------------------------
1474 ---------------------------------------------------------------------------*/
1476 /* Cleanup useless labels in basic blocks. This is something we wish
1477 to do early because it allows us to group case labels before creating
1478 the edges for the CFG, and it speeds up block statement iterators in
1479 all passes later on.
1480 We rerun this pass after CFG is created, to get rid of the labels that
1481 are no longer referenced. After then we do not run it any more, since
1482 (almost) no new labels should be created. */
1484 /* A map from basic block index to the leading label of that block. */
1485 static struct label_record
1490 /* True if the label is referenced from somewhere. */
1494 /* Given LABEL return the first label in the same basic block. */
1497 main_block_label (tree label
)
1499 basic_block bb
= label_to_block (label
);
1500 tree main_label
= label_for_bb
[bb
->index
].label
;
1502 /* label_to_block possibly inserted undefined label into the chain. */
1505 label_for_bb
[bb
->index
].label
= label
;
1509 label_for_bb
[bb
->index
].used
= true;
1513 /* Clean up redundant labels within the exception tree. */
1516 cleanup_dead_labels_eh (void)
1523 if (cfun
->eh
== NULL
)
1526 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1527 if (lp
&& lp
->post_landing_pad
)
1529 lab
= main_block_label (lp
->post_landing_pad
);
1530 if (lab
!= lp
->post_landing_pad
)
1532 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1533 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1537 FOR_ALL_EH_REGION (r
)
1541 case ERT_MUST_NOT_THROW
:
1547 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1551 c
->label
= main_block_label (lab
);
1556 case ERT_ALLOWED_EXCEPTIONS
:
1557 lab
= r
->u
.allowed
.label
;
1559 r
->u
.allowed
.label
= main_block_label (lab
);
1565 /* Cleanup redundant labels. This is a three-step process:
1566 1) Find the leading label for each block.
1567 2) Redirect all references to labels to the leading labels.
1568 3) Cleanup all useless labels. */
1571 cleanup_dead_labels (void)
1574 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block_for_fn (cfun
));
1576 /* Find a suitable label for each block. We use the first user-defined
1577 label if there is one, or otherwise just the first label we see. */
1578 FOR_EACH_BB_FN (bb
, cfun
)
1580 gimple_stmt_iterator i
;
1582 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1585 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1590 label
= gimple_label_label (label_stmt
);
1592 /* If we have not yet seen a label for the current block,
1593 remember this one and see if there are more labels. */
1594 if (!label_for_bb
[bb
->index
].label
)
1596 label_for_bb
[bb
->index
].label
= label
;
1600 /* If we did see a label for the current block already, but it
1601 is an artificially created label, replace it if the current
1602 label is a user defined label. */
1603 if (!DECL_ARTIFICIAL (label
)
1604 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1606 label_for_bb
[bb
->index
].label
= label
;
1612 /* Now redirect all jumps/branches to the selected label.
1613 First do so for each block ending in a control statement. */
1614 FOR_EACH_BB_FN (bb
, cfun
)
1616 gimple
*stmt
= last_stmt (bb
);
1617 tree label
, new_label
;
1622 switch (gimple_code (stmt
))
1626 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1627 label
= gimple_cond_true_label (cond_stmt
);
1630 new_label
= main_block_label (label
);
1631 if (new_label
!= label
)
1632 gimple_cond_set_true_label (cond_stmt
, new_label
);
1635 label
= gimple_cond_false_label (cond_stmt
);
1638 new_label
= main_block_label (label
);
1639 if (new_label
!= label
)
1640 gimple_cond_set_false_label (cond_stmt
, new_label
);
1647 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
1648 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
1650 /* Replace all destination labels. */
1651 for (i
= 0; i
< n
; ++i
)
1653 tree case_label
= gimple_switch_label (switch_stmt
, i
);
1654 label
= CASE_LABEL (case_label
);
1655 new_label
= main_block_label (label
);
1656 if (new_label
!= label
)
1657 CASE_LABEL (case_label
) = new_label
;
1664 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
1665 int i
, n
= gimple_asm_nlabels (asm_stmt
);
1667 for (i
= 0; i
< n
; ++i
)
1669 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
1670 tree label
= main_block_label (TREE_VALUE (cons
));
1671 TREE_VALUE (cons
) = label
;
1676 /* We have to handle gotos until they're removed, and we don't
1677 remove them until after we've created the CFG edges. */
1679 if (!computed_goto_p (stmt
))
1681 ggoto
*goto_stmt
= as_a
<ggoto
*> (stmt
);
1682 label
= gimple_goto_dest (goto_stmt
);
1683 new_label
= main_block_label (label
);
1684 if (new_label
!= label
)
1685 gimple_goto_set_dest (goto_stmt
, new_label
);
1689 case GIMPLE_TRANSACTION
:
1691 gtransaction
*txn
= as_a
<gtransaction
*> (stmt
);
1693 label
= gimple_transaction_label_norm (txn
);
1696 new_label
= main_block_label (label
);
1697 if (new_label
!= label
)
1698 gimple_transaction_set_label_norm (txn
, new_label
);
1701 label
= gimple_transaction_label_uninst (txn
);
1704 new_label
= main_block_label (label
);
1705 if (new_label
!= label
)
1706 gimple_transaction_set_label_uninst (txn
, new_label
);
1709 label
= gimple_transaction_label_over (txn
);
1712 new_label
= main_block_label (label
);
1713 if (new_label
!= label
)
1714 gimple_transaction_set_label_over (txn
, new_label
);
1724 /* Do the same for the exception region tree labels. */
1725 cleanup_dead_labels_eh ();
1727 /* Finally, purge dead labels. All user-defined labels and labels that
1728 can be the target of non-local gotos and labels which have their
1729 address taken are preserved. */
1730 FOR_EACH_BB_FN (bb
, cfun
)
1732 gimple_stmt_iterator i
;
1733 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1735 if (!label_for_this_bb
)
1738 /* If the main label of the block is unused, we may still remove it. */
1739 if (!label_for_bb
[bb
->index
].used
)
1740 label_for_this_bb
= NULL
;
1742 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1745 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1750 label
= gimple_label_label (label_stmt
);
1752 if (label
== label_for_this_bb
1753 || !DECL_ARTIFICIAL (label
)
1754 || DECL_NONLOCAL (label
)
1755 || FORCED_LABEL (label
))
1758 gsi_remove (&i
, true);
1762 free (label_for_bb
);
1765 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1766 the ones jumping to the same label.
1767 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1770 group_case_labels_stmt (gswitch
*stmt
)
1772 int old_size
= gimple_switch_num_labels (stmt
);
1773 int i
, next_index
, new_size
;
1774 basic_block default_bb
= NULL
;
1776 default_bb
= label_to_block (CASE_LABEL (gimple_switch_default_label (stmt
)));
1778 /* Look for possible opportunities to merge cases. */
1780 while (i
< old_size
)
1782 tree base_case
, base_high
;
1783 basic_block base_bb
;
1785 base_case
= gimple_switch_label (stmt
, i
);
1787 gcc_assert (base_case
);
1788 base_bb
= label_to_block (CASE_LABEL (base_case
));
1790 /* Discard cases that have the same destination as the default case or
1791 whose destiniation blocks have already been removed as unreachable. */
1792 if (base_bb
== NULL
|| base_bb
== default_bb
)
1798 base_high
= CASE_HIGH (base_case
)
1799 ? CASE_HIGH (base_case
)
1800 : CASE_LOW (base_case
);
1803 /* Try to merge case labels. Break out when we reach the end
1804 of the label vector or when we cannot merge the next case
1805 label with the current one. */
1806 while (next_index
< old_size
)
1808 tree merge_case
= gimple_switch_label (stmt
, next_index
);
1809 basic_block merge_bb
= label_to_block (CASE_LABEL (merge_case
));
1810 wide_int bhp1
= wi::to_wide (base_high
) + 1;
1812 /* Merge the cases if they jump to the same place,
1813 and their ranges are consecutive. */
1814 if (merge_bb
== base_bb
1815 && wi::to_wide (CASE_LOW (merge_case
)) == bhp1
)
1817 base_high
= CASE_HIGH (merge_case
) ?
1818 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1819 CASE_HIGH (base_case
) = base_high
;
1826 /* Discard cases that have an unreachable destination block. */
1827 if (EDGE_COUNT (base_bb
->succs
) == 0
1828 && gimple_seq_unreachable_p (bb_seq (base_bb
))
1829 /* Don't optimize this if __builtin_unreachable () is the
1830 implicitly added one by the C++ FE too early, before
1831 -Wreturn-type can be diagnosed. We'll optimize it later
1832 during switchconv pass or any other cfg cleanup. */
1833 && (gimple_in_ssa_p (cfun
)
1834 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb
)))
1835 != BUILTINS_LOCATION
)))
1837 edge base_edge
= find_edge (gimple_bb (stmt
), base_bb
);
1838 if (base_edge
!= NULL
)
1839 remove_edge_and_dominated_blocks (base_edge
);
1845 gimple_switch_set_label (stmt
, new_size
,
1846 gimple_switch_label (stmt
, i
));
1851 gcc_assert (new_size
<= old_size
);
1853 if (new_size
< old_size
)
1854 gimple_switch_set_num_labels (stmt
, new_size
);
1856 return new_size
< old_size
;
1859 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1860 and scan the sorted vector of cases. Combine the ones jumping to the
1864 group_case_labels (void)
1867 bool changed
= false;
1869 FOR_EACH_BB_FN (bb
, cfun
)
1871 gimple
*stmt
= last_stmt (bb
);
1872 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1873 changed
|= group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1879 /* Checks whether we can merge block B into block A. */
1882 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1886 if (!single_succ_p (a
))
1889 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1892 if (single_succ (a
) != b
)
1895 if (!single_pred_p (b
))
1898 if (a
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1899 || b
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1902 /* If A ends by a statement causing exceptions or something similar, we
1903 cannot merge the blocks. */
1904 stmt
= last_stmt (a
);
1905 if (stmt
&& stmt_ends_bb_p (stmt
))
1908 /* Do not allow a block with only a non-local label to be merged. */
1910 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
1911 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
1914 /* Examine the labels at the beginning of B. */
1915 for (gimple_stmt_iterator gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);
1919 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1922 lab
= gimple_label_label (label_stmt
);
1924 /* Do not remove user forced labels or for -O0 any user labels. */
1925 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1929 /* Protect simple loop latches. We only want to avoid merging
1930 the latch with the loop header or with a block in another
1931 loop in this case. */
1933 && b
->loop_father
->latch
== b
1934 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES
)
1935 && (b
->loop_father
->header
== a
1936 || b
->loop_father
!= a
->loop_father
))
1939 /* It must be possible to eliminate all phi nodes in B. If ssa form
1940 is not up-to-date and a name-mapping is registered, we cannot eliminate
1941 any phis. Symbols marked for renaming are never a problem though. */
1942 for (gphi_iterator gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
);
1945 gphi
*phi
= gsi
.phi ();
1946 /* Technically only new names matter. */
1947 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1951 /* When not optimizing, don't merge if we'd lose goto_locus. */
1953 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1955 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1956 gimple_stmt_iterator prev
, next
;
1957 prev
= gsi_last_nondebug_bb (a
);
1958 next
= gsi_after_labels (b
);
1959 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1960 gsi_next_nondebug (&next
);
1961 if ((gsi_end_p (prev
)
1962 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1963 && (gsi_end_p (next
)
1964 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1971 /* Replaces all uses of NAME by VAL. */
1974 replace_uses_by (tree name
, tree val
)
1976 imm_use_iterator imm_iter
;
1981 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1983 /* Mark the block if we change the last stmt in it. */
1984 if (cfgcleanup_altered_bbs
1985 && stmt_ends_bb_p (stmt
))
1986 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1988 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1990 replace_exp (use
, val
);
1992 if (gimple_code (stmt
) == GIMPLE_PHI
)
1994 e
= gimple_phi_arg_edge (as_a
<gphi
*> (stmt
),
1995 PHI_ARG_INDEX_FROM_USE (use
));
1996 if (e
->flags
& EDGE_ABNORMAL
1997 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
))
1999 /* This can only occur for virtual operands, since
2000 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2001 would prevent replacement. */
2002 gcc_checking_assert (virtual_operand_p (name
));
2003 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
2008 if (gimple_code (stmt
) != GIMPLE_PHI
)
2010 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
2011 gimple
*orig_stmt
= stmt
;
2014 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2015 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2016 only change sth from non-invariant to invariant, and only
2017 when propagating constants. */
2018 if (is_gimple_min_invariant (val
))
2019 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
2021 tree op
= gimple_op (stmt
, i
);
2022 /* Operands may be empty here. For example, the labels
2023 of a GIMPLE_COND are nulled out following the creation
2024 of the corresponding CFG edges. */
2025 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
2026 recompute_tree_invariant_for_addr_expr (op
);
2029 if (fold_stmt (&gsi
))
2030 stmt
= gsi_stmt (gsi
);
2032 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
2033 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
2039 gcc_checking_assert (has_zero_uses (name
));
2041 /* Also update the trees stored in loop structures. */
2046 FOR_EACH_LOOP (loop
, 0)
2048 substitute_in_loop_info (loop
, name
, val
);
2053 /* Merge block B into block A. */
2056 gimple_merge_blocks (basic_block a
, basic_block b
)
2058 gimple_stmt_iterator last
, gsi
;
2062 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
2064 /* Remove all single-valued PHI nodes from block B of the form
2065 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2066 gsi
= gsi_last_bb (a
);
2067 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
2069 gimple
*phi
= gsi_stmt (psi
);
2070 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
2072 bool may_replace_uses
= (virtual_operand_p (def
)
2073 || may_propagate_copy (def
, use
));
2075 /* In case we maintain loop closed ssa form, do not propagate arguments
2076 of loop exit phi nodes. */
2078 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
2079 && !virtual_operand_p (def
)
2080 && TREE_CODE (use
) == SSA_NAME
2081 && a
->loop_father
!= b
->loop_father
)
2082 may_replace_uses
= false;
2084 if (!may_replace_uses
)
2086 gcc_assert (!virtual_operand_p (def
));
2088 /* Note that just emitting the copies is fine -- there is no problem
2089 with ordering of phi nodes. This is because A is the single
2090 predecessor of B, therefore results of the phi nodes cannot
2091 appear as arguments of the phi nodes. */
2092 copy
= gimple_build_assign (def
, use
);
2093 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
2094 remove_phi_node (&psi
, false);
2098 /* If we deal with a PHI for virtual operands, we can simply
2099 propagate these without fussing with folding or updating
2101 if (virtual_operand_p (def
))
2103 imm_use_iterator iter
;
2104 use_operand_p use_p
;
2107 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
2108 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
2109 SET_USE (use_p
, use
);
2111 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
2112 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
2115 replace_uses_by (def
, use
);
2117 remove_phi_node (&psi
, true);
2121 /* Ensure that B follows A. */
2122 move_block_after (b
, a
);
2124 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
2125 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
2127 /* Remove labels from B and set gimple_bb to A for other statements. */
2128 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
2130 gimple
*stmt
= gsi_stmt (gsi
);
2131 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2133 tree label
= gimple_label_label (label_stmt
);
2136 gsi_remove (&gsi
, false);
2138 /* Now that we can thread computed gotos, we might have
2139 a situation where we have a forced label in block B
2140 However, the label at the start of block B might still be
2141 used in other ways (think about the runtime checking for
2142 Fortran assigned gotos). So we can not just delete the
2143 label. Instead we move the label to the start of block A. */
2144 if (FORCED_LABEL (label
))
2146 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
2147 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
2149 /* Other user labels keep around in a form of a debug stmt. */
2150 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_BIND_STMTS
)
2152 gimple
*dbg
= gimple_build_debug_bind (label
,
2155 gimple_debug_bind_reset_value (dbg
);
2156 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
2159 lp_nr
= EH_LANDING_PAD_NR (label
);
2162 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
2163 lp
->post_landing_pad
= NULL
;
2168 gimple_set_bb (stmt
, a
);
2173 /* When merging two BBs, if their counts are different, the larger count
2174 is selected as the new bb count. This is to handle inconsistent
2176 if (a
->loop_father
== b
->loop_father
)
2178 a
->count
= a
->count
.merge (b
->count
);
2181 /* Merge the sequences. */
2182 last
= gsi_last_bb (a
);
2183 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
2184 set_bb_seq (b
, NULL
);
2186 if (cfgcleanup_altered_bbs
)
2187 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
2191 /* Return the one of two successors of BB that is not reachable by a
2192 complex edge, if there is one. Else, return BB. We use
2193 this in optimizations that use post-dominators for their heuristics,
2194 to catch the cases in C++ where function calls are involved. */
2197 single_noncomplex_succ (basic_block bb
)
2200 if (EDGE_COUNT (bb
->succs
) != 2)
2203 e0
= EDGE_SUCC (bb
, 0);
2204 e1
= EDGE_SUCC (bb
, 1);
2205 if (e0
->flags
& EDGE_COMPLEX
)
2207 if (e1
->flags
& EDGE_COMPLEX
)
2213 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2216 notice_special_calls (gcall
*call
)
2218 int flags
= gimple_call_flags (call
);
2220 if (flags
& ECF_MAY_BE_ALLOCA
)
2221 cfun
->calls_alloca
= true;
2222 if (flags
& ECF_RETURNS_TWICE
)
2223 cfun
->calls_setjmp
= true;
2227 /* Clear flags set by notice_special_calls. Used by dead code removal
2228 to update the flags. */
2231 clear_special_calls (void)
2233 cfun
->calls_alloca
= false;
2234 cfun
->calls_setjmp
= false;
2237 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2240 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
2242 /* Since this block is no longer reachable, we can just delete all
2243 of its PHI nodes. */
2244 remove_phi_nodes (bb
);
2246 /* Remove edges to BB's successors. */
2247 while (EDGE_COUNT (bb
->succs
) > 0)
2248 remove_edge (EDGE_SUCC (bb
, 0));
2252 /* Remove statements of basic block BB. */
2255 remove_bb (basic_block bb
)
2257 gimple_stmt_iterator i
;
2261 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
2262 if (dump_flags
& TDF_DETAILS
)
2264 dump_bb (dump_file
, bb
, 0, TDF_BLOCKS
);
2265 fprintf (dump_file
, "\n");
2271 struct loop
*loop
= bb
->loop_father
;
2273 /* If a loop gets removed, clean up the information associated
2275 if (loop
->latch
== bb
2276 || loop
->header
== bb
)
2277 free_numbers_of_iterations_estimates (loop
);
2280 /* Remove all the instructions in the block. */
2281 if (bb_seq (bb
) != NULL
)
2283 /* Walk backwards so as to get a chance to substitute all
2284 released DEFs into debug stmts. See
2285 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2287 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
2289 gimple
*stmt
= gsi_stmt (i
);
2290 glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
);
2292 && (FORCED_LABEL (gimple_label_label (label_stmt
))
2293 || DECL_NONLOCAL (gimple_label_label (label_stmt
))))
2296 gimple_stmt_iterator new_gsi
;
2298 /* A non-reachable non-local label may still be referenced.
2299 But it no longer needs to carry the extra semantics of
2301 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
2303 DECL_NONLOCAL (gimple_label_label (label_stmt
)) = 0;
2304 FORCED_LABEL (gimple_label_label (label_stmt
)) = 1;
2307 new_bb
= bb
->prev_bb
;
2308 /* Don't move any labels into ENTRY block. */
2309 if (new_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2311 new_bb
= single_succ (new_bb
);
2312 gcc_assert (new_bb
!= bb
);
2314 new_gsi
= gsi_start_bb (new_bb
);
2315 gsi_remove (&i
, false);
2316 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
2320 /* Release SSA definitions. */
2321 release_defs (stmt
);
2322 gsi_remove (&i
, true);
2326 i
= gsi_last_bb (bb
);
2332 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
2333 bb
->il
.gimple
.seq
= NULL
;
2334 bb
->il
.gimple
.phi_nodes
= NULL
;
2338 /* Given a basic block BB and a value VAL for use in the final statement
2339 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2340 the edge that will be taken out of the block.
2341 If VAL is NULL_TREE, then the current value of the final statement's
2342 predicate or index is used.
2343 If the value does not match a unique edge, NULL is returned. */
2346 find_taken_edge (basic_block bb
, tree val
)
2350 stmt
= last_stmt (bb
);
2352 /* Handle ENTRY and EXIT. */
2356 if (gimple_code (stmt
) == GIMPLE_COND
)
2357 return find_taken_edge_cond_expr (as_a
<gcond
*> (stmt
), val
);
2359 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2360 return find_taken_edge_switch_expr (as_a
<gswitch
*> (stmt
), val
);
2362 if (computed_goto_p (stmt
))
2364 /* Only optimize if the argument is a label, if the argument is
2365 not a label then we can not construct a proper CFG.
2367 It may be the case that we only need to allow the LABEL_REF to
2368 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2369 appear inside a LABEL_EXPR just to be safe. */
2371 && (TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
2372 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
2373 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
2376 /* Otherwise we only know the taken successor edge if it's unique. */
2377 return single_succ_p (bb
) ? single_succ_edge (bb
) : NULL
;
2380 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2381 statement, determine which of the outgoing edges will be taken out of the
2382 block. Return NULL if either edge may be taken. */
2385 find_taken_edge_computed_goto (basic_block bb
, tree val
)
2390 dest
= label_to_block (val
);
2392 e
= find_edge (bb
, dest
);
2394 /* It's possible for find_edge to return NULL here on invalid code
2395 that abuses the labels-as-values extension (e.g. code that attempts to
2396 jump *between* functions via stored labels-as-values; PR 84136).
2397 If so, then we simply return that NULL for the edge.
2398 We don't currently have a way of detecting such invalid code, so we
2399 can't assert that it was the case when a NULL edge occurs here. */
2404 /* Given COND_STMT and a constant value VAL for use as the predicate,
2405 determine which of the two edges will be taken out of
2406 the statement's block. Return NULL if either edge may be taken.
2407 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2411 find_taken_edge_cond_expr (const gcond
*cond_stmt
, tree val
)
2413 edge true_edge
, false_edge
;
2415 if (val
== NULL_TREE
)
2417 /* Use the current value of the predicate. */
2418 if (gimple_cond_true_p (cond_stmt
))
2419 val
= integer_one_node
;
2420 else if (gimple_cond_false_p (cond_stmt
))
2421 val
= integer_zero_node
;
2425 else if (TREE_CODE (val
) != INTEGER_CST
)
2428 extract_true_false_edges_from_block (gimple_bb (cond_stmt
),
2429 &true_edge
, &false_edge
);
2431 return (integer_zerop (val
) ? false_edge
: true_edge
);
2434 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2435 which edge will be taken out of the statement's block. Return NULL if any
2437 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2441 find_taken_edge_switch_expr (const gswitch
*switch_stmt
, tree val
)
2443 basic_block dest_bb
;
2447 if (gimple_switch_num_labels (switch_stmt
) == 1)
2448 taken_case
= gimple_switch_default_label (switch_stmt
);
2451 if (val
== NULL_TREE
)
2452 val
= gimple_switch_index (switch_stmt
);
2453 if (TREE_CODE (val
) != INTEGER_CST
)
2456 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2458 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
2460 e
= find_edge (gimple_bb (switch_stmt
), dest_bb
);
2466 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2467 We can make optimal use here of the fact that the case labels are
2468 sorted: We can do a binary search for a case matching VAL. */
2471 find_case_label_for_value (const gswitch
*switch_stmt
, tree val
)
2473 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2474 tree default_case
= gimple_switch_default_label (switch_stmt
);
2476 for (low
= 0, high
= n
; high
- low
> 1; )
2478 size_t i
= (high
+ low
) / 2;
2479 tree t
= gimple_switch_label (switch_stmt
, i
);
2482 /* Cache the result of comparing CASE_LOW and val. */
2483 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2490 if (CASE_HIGH (t
) == NULL
)
2492 /* A singe-valued case label. */
2498 /* A case range. We can only handle integer ranges. */
2499 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2504 return default_case
;
2508 /* Dump a basic block on stderr. */
2511 gimple_debug_bb (basic_block bb
)
2513 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2517 /* Dump basic block with index N on stderr. */
2520 gimple_debug_bb_n (int n
)
2522 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun
, n
));
2523 return BASIC_BLOCK_FOR_FN (cfun
, n
);
2527 /* Dump the CFG on stderr.
2529 FLAGS are the same used by the tree dumping functions
2530 (see TDF_* in dumpfile.h). */
2533 gimple_debug_cfg (dump_flags_t flags
)
2535 gimple_dump_cfg (stderr
, flags
);
2539 /* Dump the program showing basic block boundaries on the given FILE.
2541 FLAGS are the same used by the tree dumping functions (see TDF_* in
2545 gimple_dump_cfg (FILE *file
, dump_flags_t flags
)
2547 if (flags
& TDF_DETAILS
)
2549 dump_function_header (file
, current_function_decl
, flags
);
2550 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2551 n_basic_blocks_for_fn (cfun
), n_edges_for_fn (cfun
),
2552 last_basic_block_for_fn (cfun
));
2554 brief_dump_cfg (file
, flags
);
2555 fprintf (file
, "\n");
2558 if (flags
& TDF_STATS
)
2559 dump_cfg_stats (file
);
2561 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2565 /* Dump CFG statistics on FILE. */
2568 dump_cfg_stats (FILE *file
)
2570 static long max_num_merged_labels
= 0;
2571 unsigned long size
, total
= 0;
2574 const char * const fmt_str
= "%-30s%-13s%12s\n";
2575 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2576 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2577 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2578 const char *funcname
= current_function_name ();
2580 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2582 fprintf (file
, "---------------------------------------------------------\n");
2583 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2584 fprintf (file
, fmt_str
, "", " instances ", "used ");
2585 fprintf (file
, "---------------------------------------------------------\n");
2587 size
= n_basic_blocks_for_fn (cfun
) * sizeof (struct basic_block_def
);
2589 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks_for_fn (cfun
),
2590 SCALE (size
), LABEL (size
));
2593 FOR_EACH_BB_FN (bb
, cfun
)
2594 num_edges
+= EDGE_COUNT (bb
->succs
);
2595 size
= num_edges
* sizeof (struct edge_def
);
2597 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2599 fprintf (file
, "---------------------------------------------------------\n");
2600 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2602 fprintf (file
, "---------------------------------------------------------\n");
2603 fprintf (file
, "\n");
2605 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2606 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2608 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2609 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2611 fprintf (file
, "\n");
2615 /* Dump CFG statistics on stderr. Keep extern so that it's always
2616 linked in the final executable. */
2619 debug_cfg_stats (void)
2621 dump_cfg_stats (stderr
);
2624 /*---------------------------------------------------------------------------
2625 Miscellaneous helpers
2626 ---------------------------------------------------------------------------*/
2628 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2629 flow. Transfers of control flow associated with EH are excluded. */
2632 call_can_make_abnormal_goto (gimple
*t
)
2634 /* If the function has no non-local labels, then a call cannot make an
2635 abnormal transfer of control. */
2636 if (!cfun
->has_nonlocal_label
2637 && !cfun
->calls_setjmp
)
2640 /* Likewise if the call has no side effects. */
2641 if (!gimple_has_side_effects (t
))
2644 /* Likewise if the called function is leaf. */
2645 if (gimple_call_flags (t
) & ECF_LEAF
)
2652 /* Return true if T can make an abnormal transfer of control flow.
2653 Transfers of control flow associated with EH are excluded. */
2656 stmt_can_make_abnormal_goto (gimple
*t
)
2658 if (computed_goto_p (t
))
2660 if (is_gimple_call (t
))
2661 return call_can_make_abnormal_goto (t
);
2666 /* Return true if T represents a stmt that always transfers control. */
2669 is_ctrl_stmt (gimple
*t
)
2671 switch (gimple_code (t
))
2685 /* Return true if T is a statement that may alter the flow of control
2686 (e.g., a call to a non-returning function). */
2689 is_ctrl_altering_stmt (gimple
*t
)
2693 switch (gimple_code (t
))
2696 /* Per stmt call flag indicates whether the call could alter
2698 if (gimple_call_ctrl_altering_p (t
))
2702 case GIMPLE_EH_DISPATCH
:
2703 /* EH_DISPATCH branches to the individual catch handlers at
2704 this level of a try or allowed-exceptions region. It can
2705 fallthru to the next statement as well. */
2709 if (gimple_asm_nlabels (as_a
<gasm
*> (t
)) > 0)
2714 /* OpenMP directives alter control flow. */
2717 case GIMPLE_TRANSACTION
:
2718 /* A transaction start alters control flow. */
2725 /* If a statement can throw, it alters control flow. */
2726 return stmt_can_throw_internal (t
);
2730 /* Return true if T is a simple local goto. */
2733 simple_goto_p (gimple
*t
)
2735 return (gimple_code (t
) == GIMPLE_GOTO
2736 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2740 /* Return true if STMT should start a new basic block. PREV_STMT is
2741 the statement preceding STMT. It is used when STMT is a label or a
2742 case label. Labels should only start a new basic block if their
2743 previous statement wasn't a label. Otherwise, sequence of labels
2744 would generate unnecessary basic blocks that only contain a single
2748 stmt_starts_bb_p (gimple
*stmt
, gimple
*prev_stmt
)
2753 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2754 any nondebug stmts in the block. We don't want to start another
2755 block in this case: the debug stmt will already have started the
2756 one STMT would start if we weren't outputting debug stmts. */
2757 if (prev_stmt
&& is_gimple_debug (prev_stmt
))
2760 /* Labels start a new basic block only if the preceding statement
2761 wasn't a label of the same type. This prevents the creation of
2762 consecutive blocks that have nothing but a single label. */
2763 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2765 /* Nonlocal and computed GOTO targets always start a new block. */
2766 if (DECL_NONLOCAL (gimple_label_label (label_stmt
))
2767 || FORCED_LABEL (gimple_label_label (label_stmt
)))
2770 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2772 if (DECL_NONLOCAL (gimple_label_label (
2773 as_a
<glabel
*> (prev_stmt
))))
2776 cfg_stats
.num_merged_labels
++;
2782 else if (gimple_code (stmt
) == GIMPLE_CALL
)
2784 if (gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
2785 /* setjmp acts similar to a nonlocal GOTO target and thus should
2786 start a new block. */
2788 if (gimple_call_internal_p (stmt
, IFN_PHI
)
2790 && gimple_code (prev_stmt
) != GIMPLE_LABEL
2791 && (gimple_code (prev_stmt
) != GIMPLE_CALL
2792 || ! gimple_call_internal_p (prev_stmt
, IFN_PHI
)))
2793 /* PHI nodes start a new block unless preceeded by a label
2802 /* Return true if T should end a basic block. */
2805 stmt_ends_bb_p (gimple
*t
)
2807 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2810 /* Remove block annotations and other data structures. */
2813 delete_tree_cfg_annotations (struct function
*fn
)
2815 vec_free (label_to_block_map_for_fn (fn
));
2818 /* Return the virtual phi in BB. */
2821 get_virtual_phi (basic_block bb
)
2823 for (gphi_iterator gsi
= gsi_start_phis (bb
);
2827 gphi
*phi
= gsi
.phi ();
2829 if (virtual_operand_p (PHI_RESULT (phi
)))
2836 /* Return the first statement in basic block BB. */
2839 first_stmt (basic_block bb
)
2841 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2842 gimple
*stmt
= NULL
;
2844 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2852 /* Return the first non-label statement in basic block BB. */
2855 first_non_label_stmt (basic_block bb
)
2857 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2858 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2860 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2863 /* Return the last statement in basic block BB. */
2866 last_stmt (basic_block bb
)
2868 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2869 gimple
*stmt
= NULL
;
2871 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2879 /* Return the last statement of an otherwise empty block. Return NULL
2880 if the block is totally empty, or if it contains more than one
2884 last_and_only_stmt (basic_block bb
)
2886 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2887 gimple
*last
, *prev
;
2892 last
= gsi_stmt (i
);
2893 gsi_prev_nondebug (&i
);
2897 /* Empty statements should no longer appear in the instruction stream.
2898 Everything that might have appeared before should be deleted by
2899 remove_useless_stmts, and the optimizers should just gsi_remove
2900 instead of smashing with build_empty_stmt.
2902 Thus the only thing that should appear here in a block containing
2903 one executable statement is a label. */
2904 prev
= gsi_stmt (i
);
2905 if (gimple_code (prev
) == GIMPLE_LABEL
)
2911 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2914 reinstall_phi_args (edge new_edge
, edge old_edge
)
2920 vec
<edge_var_map
> *v
= redirect_edge_var_map_vector (old_edge
);
2924 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2925 v
->iterate (i
, &vm
) && !gsi_end_p (phis
);
2926 i
++, gsi_next (&phis
))
2928 gphi
*phi
= phis
.phi ();
2929 tree result
= redirect_edge_var_map_result (vm
);
2930 tree arg
= redirect_edge_var_map_def (vm
);
2932 gcc_assert (result
== gimple_phi_result (phi
));
2934 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2937 redirect_edge_var_map_clear (old_edge
);
2940 /* Returns the basic block after which the new basic block created
2941 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2942 near its "logical" location. This is of most help to humans looking
2943 at debugging dumps. */
2946 split_edge_bb_loc (edge edge_in
)
2948 basic_block dest
= edge_in
->dest
;
2949 basic_block dest_prev
= dest
->prev_bb
;
2953 edge e
= find_edge (dest_prev
, dest
);
2954 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2955 return edge_in
->src
;
2960 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2961 Abort on abnormal edges. */
2964 gimple_split_edge (edge edge_in
)
2966 basic_block new_bb
, after_bb
, dest
;
2969 /* Abnormal edges cannot be split. */
2970 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2972 dest
= edge_in
->dest
;
2974 after_bb
= split_edge_bb_loc (edge_in
);
2976 new_bb
= create_empty_bb (after_bb
);
2977 new_bb
->count
= edge_in
->count ();
2979 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2980 gcc_assert (e
== edge_in
);
2982 new_edge
= make_single_succ_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2983 reinstall_phi_args (new_edge
, e
);
2989 /* Verify properties of the address expression T whose base should be
2990 TREE_ADDRESSABLE if VERIFY_ADDRESSABLE is true. */
2993 verify_address (tree t
, bool verify_addressable
)
2996 bool old_side_effects
;
2998 bool new_side_effects
;
3000 old_constant
= TREE_CONSTANT (t
);
3001 old_side_effects
= TREE_SIDE_EFFECTS (t
);
3003 recompute_tree_invariant_for_addr_expr (t
);
3004 new_side_effects
= TREE_SIDE_EFFECTS (t
);
3005 new_constant
= TREE_CONSTANT (t
);
3007 if (old_constant
!= new_constant
)
3009 error ("constant not recomputed when ADDR_EXPR changed");
3012 if (old_side_effects
!= new_side_effects
)
3014 error ("side effects not recomputed when ADDR_EXPR changed");
3018 tree base
= TREE_OPERAND (t
, 0);
3019 while (handled_component_p (base
))
3020 base
= TREE_OPERAND (base
, 0);
3023 || TREE_CODE (base
) == PARM_DECL
3024 || TREE_CODE (base
) == RESULT_DECL
))
3027 if (DECL_GIMPLE_REG_P (base
))
3029 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3033 if (verify_addressable
&& !TREE_ADDRESSABLE (base
))
3035 error ("address taken, but ADDRESSABLE bit not set");
3043 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3044 Returns true if there is an error, otherwise false. */
3047 verify_types_in_gimple_min_lval (tree expr
)
3051 if (is_gimple_id (expr
))
3054 if (TREE_CODE (expr
) != TARGET_MEM_REF
3055 && TREE_CODE (expr
) != MEM_REF
)
3057 error ("invalid expression for min lvalue");
3061 /* TARGET_MEM_REFs are strange beasts. */
3062 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3065 op
= TREE_OPERAND (expr
, 0);
3066 if (!is_gimple_val (op
))
3068 error ("invalid operand in indirect reference");
3069 debug_generic_stmt (op
);
3072 /* Memory references now generally can involve a value conversion. */
3077 /* Verify if EXPR is a valid GIMPLE reference expression. If
3078 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3079 if there is an error, otherwise false. */
3082 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
3084 if (TREE_CODE (expr
) == REALPART_EXPR
3085 || TREE_CODE (expr
) == IMAGPART_EXPR
3086 || TREE_CODE (expr
) == BIT_FIELD_REF
)
3088 tree op
= TREE_OPERAND (expr
, 0);
3089 if (!is_gimple_reg_type (TREE_TYPE (expr
)))
3091 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3095 if (TREE_CODE (expr
) == BIT_FIELD_REF
)
3097 tree t1
= TREE_OPERAND (expr
, 1);
3098 tree t2
= TREE_OPERAND (expr
, 2);
3099 poly_uint64 size
, bitpos
;
3100 if (!poly_int_tree_p (t1
, &size
)
3101 || !poly_int_tree_p (t2
, &bitpos
)
3102 || !types_compatible_p (bitsizetype
, TREE_TYPE (t1
))
3103 || !types_compatible_p (bitsizetype
, TREE_TYPE (t2
)))
3105 error ("invalid position or size operand to BIT_FIELD_REF");
3108 if (INTEGRAL_TYPE_P (TREE_TYPE (expr
))
3109 && maybe_ne (TYPE_PRECISION (TREE_TYPE (expr
)), size
))
3111 error ("integral result type precision does not match "
3112 "field size of BIT_FIELD_REF");
3115 else if (!INTEGRAL_TYPE_P (TREE_TYPE (expr
))
3116 && TYPE_MODE (TREE_TYPE (expr
)) != BLKmode
3117 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr
))),
3120 error ("mode size of non-integral result does not "
3121 "match field size of BIT_FIELD_REF");
3124 if (!AGGREGATE_TYPE_P (TREE_TYPE (op
))
3125 && maybe_gt (size
+ bitpos
,
3126 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (op
)))))
3128 error ("position plus size exceeds size of referenced object in "
3134 if ((TREE_CODE (expr
) == REALPART_EXPR
3135 || TREE_CODE (expr
) == IMAGPART_EXPR
)
3136 && !useless_type_conversion_p (TREE_TYPE (expr
),
3137 TREE_TYPE (TREE_TYPE (op
))))
3139 error ("type mismatch in real/imagpart reference");
3140 debug_generic_stmt (TREE_TYPE (expr
));
3141 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3147 while (handled_component_p (expr
))
3149 if (TREE_CODE (expr
) == REALPART_EXPR
3150 || TREE_CODE (expr
) == IMAGPART_EXPR
3151 || TREE_CODE (expr
) == BIT_FIELD_REF
)
3153 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3157 tree op
= TREE_OPERAND (expr
, 0);
3159 if (TREE_CODE (expr
) == ARRAY_REF
3160 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
3162 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
3163 || (TREE_OPERAND (expr
, 2)
3164 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3165 || (TREE_OPERAND (expr
, 3)
3166 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
3168 error ("invalid operands to array reference");
3169 debug_generic_stmt (expr
);
3174 /* Verify if the reference array element types are compatible. */
3175 if (TREE_CODE (expr
) == ARRAY_REF
3176 && !useless_type_conversion_p (TREE_TYPE (expr
),
3177 TREE_TYPE (TREE_TYPE (op
))))
3179 error ("type mismatch in array reference");
3180 debug_generic_stmt (TREE_TYPE (expr
));
3181 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3184 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
3185 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
3186 TREE_TYPE (TREE_TYPE (op
))))
3188 error ("type mismatch in array range reference");
3189 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
3190 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3194 if (TREE_CODE (expr
) == COMPONENT_REF
)
3196 if (TREE_OPERAND (expr
, 2)
3197 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3199 error ("invalid COMPONENT_REF offset operator");
3202 if (!useless_type_conversion_p (TREE_TYPE (expr
),
3203 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3205 error ("type mismatch in component reference");
3206 debug_generic_stmt (TREE_TYPE (expr
));
3207 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3212 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3214 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3215 that their operand is not an SSA name or an invariant when
3216 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3217 bug). Otherwise there is nothing to verify, gross mismatches at
3218 most invoke undefined behavior. */
3220 && (TREE_CODE (op
) == SSA_NAME
3221 || is_gimple_min_invariant (op
)))
3223 error ("conversion of an SSA_NAME on the left hand side");
3224 debug_generic_stmt (expr
);
3227 else if (TREE_CODE (op
) == SSA_NAME
3228 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
3230 error ("conversion of register to a different size");
3231 debug_generic_stmt (expr
);
3234 else if (!handled_component_p (op
))
3241 if (TREE_CODE (expr
) == MEM_REF
)
3243 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0))
3244 || (TREE_CODE (TREE_OPERAND (expr
, 0)) == ADDR_EXPR
3245 && verify_address (TREE_OPERAND (expr
, 0), false)))
3247 error ("invalid address operand in MEM_REF");
3248 debug_generic_stmt (expr
);
3251 if (!poly_int_tree_p (TREE_OPERAND (expr
, 1))
3252 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
3254 error ("invalid offset operand in MEM_REF");
3255 debug_generic_stmt (expr
);
3259 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3261 if (!TMR_BASE (expr
)
3262 || !is_gimple_mem_ref_addr (TMR_BASE (expr
))
3263 || (TREE_CODE (TMR_BASE (expr
)) == ADDR_EXPR
3264 && verify_address (TMR_BASE (expr
), false)))
3266 error ("invalid address operand in TARGET_MEM_REF");
3269 if (!TMR_OFFSET (expr
)
3270 || !poly_int_tree_p (TMR_OFFSET (expr
))
3271 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3273 error ("invalid offset operand in TARGET_MEM_REF");
3274 debug_generic_stmt (expr
);
3278 else if (TREE_CODE (expr
) == INDIRECT_REF
)
3280 error ("INDIRECT_REF in gimple IL");
3281 debug_generic_stmt (expr
);
3285 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3286 && verify_types_in_gimple_min_lval (expr
));
3289 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3290 list of pointer-to types that is trivially convertible to DEST. */
3293 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3297 if (!TYPE_POINTER_TO (src_obj
))
3300 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3301 if (useless_type_conversion_p (dest
, src
))
3307 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3308 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3311 valid_fixed_convert_types_p (tree type1
, tree type2
)
3313 return (FIXED_POINT_TYPE_P (type1
)
3314 && (INTEGRAL_TYPE_P (type2
)
3315 || SCALAR_FLOAT_TYPE_P (type2
)
3316 || FIXED_POINT_TYPE_P (type2
)));
3319 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3320 is a problem, otherwise false. */
3323 verify_gimple_call (gcall
*stmt
)
3325 tree fn
= gimple_call_fn (stmt
);
3326 tree fntype
, fndecl
;
3329 if (gimple_call_internal_p (stmt
))
3333 error ("gimple call has two targets");
3334 debug_generic_stmt (fn
);
3337 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3338 else if (gimple_call_internal_fn (stmt
) == IFN_PHI
)
3347 error ("gimple call has no target");
3352 if (fn
&& !is_gimple_call_addr (fn
))
3354 error ("invalid function in gimple call");
3355 debug_generic_stmt (fn
);
3360 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3361 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3362 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3364 error ("non-function in gimple call");
3368 fndecl
= gimple_call_fndecl (stmt
);
3370 && TREE_CODE (fndecl
) == FUNCTION_DECL
3371 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3372 && !DECL_PURE_P (fndecl
)
3373 && !TREE_READONLY (fndecl
))
3375 error ("invalid pure const state for function");
3379 tree lhs
= gimple_call_lhs (stmt
);
3381 && (!is_gimple_lvalue (lhs
)
3382 || verify_types_in_gimple_reference (lhs
, true)))
3384 error ("invalid LHS in gimple call");
3388 if (gimple_call_ctrl_altering_p (stmt
)
3389 && gimple_call_noreturn_p (stmt
)
3390 && should_remove_lhs_p (lhs
))
3392 error ("LHS in noreturn call");
3396 fntype
= gimple_call_fntype (stmt
);
3399 && !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (fntype
))
3400 /* ??? At least C++ misses conversions at assignments from
3401 void * call results.
3402 For now simply allow arbitrary pointer type conversions. */
3403 && !(POINTER_TYPE_P (TREE_TYPE (lhs
))
3404 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3406 error ("invalid conversion in gimple call");
3407 debug_generic_stmt (TREE_TYPE (lhs
));
3408 debug_generic_stmt (TREE_TYPE (fntype
));
3412 if (gimple_call_chain (stmt
)
3413 && !is_gimple_val (gimple_call_chain (stmt
)))
3415 error ("invalid static chain in gimple call");
3416 debug_generic_stmt (gimple_call_chain (stmt
));
3420 /* If there is a static chain argument, the call should either be
3421 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3422 if (gimple_call_chain (stmt
)
3424 && !DECL_STATIC_CHAIN (fndecl
))
3426 error ("static chain with function that doesn%'t use one");
3430 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
3432 switch (DECL_FUNCTION_CODE (fndecl
))
3434 case BUILT_IN_UNREACHABLE
:
3436 if (gimple_call_num_args (stmt
) > 0)
3438 /* Built-in unreachable with parameters might not be caught by
3439 undefined behavior sanitizer. Front-ends do check users do not
3440 call them that way but we also produce calls to
3441 __builtin_unreachable internally, for example when IPA figures
3442 out a call cannot happen in a legal program. In such cases,
3443 we must make sure arguments are stripped off. */
3444 error ("__builtin_unreachable or __builtin_trap call with "
3454 /* ??? The C frontend passes unpromoted arguments in case it
3455 didn't see a function declaration before the call. So for now
3456 leave the call arguments mostly unverified. Once we gimplify
3457 unit-at-a-time we have a chance to fix this. */
3459 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3461 tree arg
= gimple_call_arg (stmt
, i
);
3462 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3463 && !is_gimple_val (arg
))
3464 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3465 && !is_gimple_lvalue (arg
)))
3467 error ("invalid argument to gimple call");
3468 debug_generic_expr (arg
);
3476 /* Verifies the gimple comparison with the result type TYPE and
3477 the operands OP0 and OP1, comparison code is CODE. */
3480 verify_gimple_comparison (tree type
, tree op0
, tree op1
, enum tree_code code
)
3482 tree op0_type
= TREE_TYPE (op0
);
3483 tree op1_type
= TREE_TYPE (op1
);
3485 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3487 error ("invalid operands in gimple comparison");
3491 /* For comparisons we do not have the operations type as the
3492 effective type the comparison is carried out in. Instead
3493 we require that either the first operand is trivially
3494 convertible into the second, or the other way around.
3495 Because we special-case pointers to void we allow
3496 comparisons of pointers with the same mode as well. */
3497 if (!useless_type_conversion_p (op0_type
, op1_type
)
3498 && !useless_type_conversion_p (op1_type
, op0_type
)
3499 && (!POINTER_TYPE_P (op0_type
)
3500 || !POINTER_TYPE_P (op1_type
)
3501 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3503 error ("mismatching comparison operand types");
3504 debug_generic_expr (op0_type
);
3505 debug_generic_expr (op1_type
);
3509 /* The resulting type of a comparison may be an effective boolean type. */
3510 if (INTEGRAL_TYPE_P (type
)
3511 && (TREE_CODE (type
) == BOOLEAN_TYPE
3512 || TYPE_PRECISION (type
) == 1))
3514 if ((TREE_CODE (op0_type
) == VECTOR_TYPE
3515 || TREE_CODE (op1_type
) == VECTOR_TYPE
)
3516 && code
!= EQ_EXPR
&& code
!= NE_EXPR
3517 && !VECTOR_BOOLEAN_TYPE_P (op0_type
)
3518 && !VECTOR_INTEGER_TYPE_P (op0_type
))
3520 error ("unsupported operation or type for vector comparison"
3521 " returning a boolean");
3522 debug_generic_expr (op0_type
);
3523 debug_generic_expr (op1_type
);
3527 /* Or a boolean vector type with the same element count
3528 as the comparison operand types. */
3529 else if (TREE_CODE (type
) == VECTOR_TYPE
3530 && TREE_CODE (TREE_TYPE (type
)) == BOOLEAN_TYPE
)
3532 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3533 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3535 error ("non-vector operands in vector comparison");
3536 debug_generic_expr (op0_type
);
3537 debug_generic_expr (op1_type
);
3541 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type
),
3542 TYPE_VECTOR_SUBPARTS (op0_type
)))
3544 error ("invalid vector comparison resulting type");
3545 debug_generic_expr (type
);
3551 error ("bogus comparison result type");
3552 debug_generic_expr (type
);
3559 /* Verify a gimple assignment statement STMT with an unary rhs.
3560 Returns true if anything is wrong. */
3563 verify_gimple_assign_unary (gassign
*stmt
)
3565 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3566 tree lhs
= gimple_assign_lhs (stmt
);
3567 tree lhs_type
= TREE_TYPE (lhs
);
3568 tree rhs1
= gimple_assign_rhs1 (stmt
);
3569 tree rhs1_type
= TREE_TYPE (rhs1
);
3571 if (!is_gimple_reg (lhs
))
3573 error ("non-register as LHS of unary operation");
3577 if (!is_gimple_val (rhs1
))
3579 error ("invalid operand in unary operation");
3583 /* First handle conversions. */
3588 /* Allow conversions from pointer type to integral type only if
3589 there is no sign or zero extension involved.
3590 For targets were the precision of ptrofftype doesn't match that
3591 of pointers we need to allow arbitrary conversions to ptrofftype. */
3592 if ((POINTER_TYPE_P (lhs_type
)
3593 && INTEGRAL_TYPE_P (rhs1_type
))
3594 || (POINTER_TYPE_P (rhs1_type
)
3595 && INTEGRAL_TYPE_P (lhs_type
)
3596 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3597 || ptrofftype_p (lhs_type
))))
3600 /* Allow conversion from integral to offset type and vice versa. */
3601 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3602 && INTEGRAL_TYPE_P (rhs1_type
))
3603 || (INTEGRAL_TYPE_P (lhs_type
)
3604 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3607 /* Otherwise assert we are converting between types of the
3609 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3611 error ("invalid types in nop conversion");
3612 debug_generic_expr (lhs_type
);
3613 debug_generic_expr (rhs1_type
);
3620 case ADDR_SPACE_CONVERT_EXPR
:
3622 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3623 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3624 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3626 error ("invalid types in address space conversion");
3627 debug_generic_expr (lhs_type
);
3628 debug_generic_expr (rhs1_type
);
3635 case FIXED_CONVERT_EXPR
:
3637 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3638 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3640 error ("invalid types in fixed-point conversion");
3641 debug_generic_expr (lhs_type
);
3642 debug_generic_expr (rhs1_type
);
3651 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3652 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3653 || !VECTOR_FLOAT_TYPE_P (lhs_type
)))
3655 error ("invalid types in conversion to floating point");
3656 debug_generic_expr (lhs_type
);
3657 debug_generic_expr (rhs1_type
);
3664 case FIX_TRUNC_EXPR
:
3666 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3667 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3668 || !VECTOR_FLOAT_TYPE_P (rhs1_type
)))
3670 error ("invalid types in conversion to integer");
3671 debug_generic_expr (lhs_type
);
3672 debug_generic_expr (rhs1_type
);
3679 case VEC_UNPACK_HI_EXPR
:
3680 case VEC_UNPACK_LO_EXPR
:
3681 case VEC_UNPACK_FLOAT_HI_EXPR
:
3682 case VEC_UNPACK_FLOAT_LO_EXPR
:
3683 case VEC_UNPACK_FIX_TRUNC_HI_EXPR
:
3684 case VEC_UNPACK_FIX_TRUNC_LO_EXPR
:
3685 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3686 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3687 || (!INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3688 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type
)))
3689 || (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3690 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3691 || ((rhs_code
== VEC_UNPACK_HI_EXPR
3692 || rhs_code
== VEC_UNPACK_LO_EXPR
)
3693 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3694 != INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3695 || ((rhs_code
== VEC_UNPACK_FLOAT_HI_EXPR
3696 || rhs_code
== VEC_UNPACK_FLOAT_LO_EXPR
)
3697 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3698 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
))))
3699 || ((rhs_code
== VEC_UNPACK_FIX_TRUNC_HI_EXPR
3700 || rhs_code
== VEC_UNPACK_FIX_TRUNC_LO_EXPR
)
3701 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3702 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type
))))
3703 || (maybe_ne (GET_MODE_SIZE (element_mode (lhs_type
)),
3704 2 * GET_MODE_SIZE (element_mode (rhs1_type
)))
3705 && (!VECTOR_BOOLEAN_TYPE_P (lhs_type
)
3706 || !VECTOR_BOOLEAN_TYPE_P (rhs1_type
)))
3707 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (lhs_type
),
3708 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
3710 error ("type mismatch in vector unpack expression");
3711 debug_generic_expr (lhs_type
);
3712 debug_generic_expr (rhs1_type
);
3726 if (!ANY_INTEGRAL_TYPE_P (lhs_type
)
3727 || !TYPE_UNSIGNED (lhs_type
)
3728 || !ANY_INTEGRAL_TYPE_P (rhs1_type
)
3729 || TYPE_UNSIGNED (rhs1_type
)
3730 || element_precision (lhs_type
) != element_precision (rhs1_type
))
3732 error ("invalid types for ABSU_EXPR");
3733 debug_generic_expr (lhs_type
);
3734 debug_generic_expr (rhs1_type
);
3739 case VEC_DUPLICATE_EXPR
:
3740 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
3741 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
3743 error ("vec_duplicate should be from a scalar to a like vector");
3744 debug_generic_expr (lhs_type
);
3745 debug_generic_expr (rhs1_type
);
3754 /* For the remaining codes assert there is no conversion involved. */
3755 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3757 error ("non-trivial conversion in unary operation");
3758 debug_generic_expr (lhs_type
);
3759 debug_generic_expr (rhs1_type
);
3766 /* Verify a gimple assignment statement STMT with a binary rhs.
3767 Returns true if anything is wrong. */
3770 verify_gimple_assign_binary (gassign
*stmt
)
3772 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3773 tree lhs
= gimple_assign_lhs (stmt
);
3774 tree lhs_type
= TREE_TYPE (lhs
);
3775 tree rhs1
= gimple_assign_rhs1 (stmt
);
3776 tree rhs1_type
= TREE_TYPE (rhs1
);
3777 tree rhs2
= gimple_assign_rhs2 (stmt
);
3778 tree rhs2_type
= TREE_TYPE (rhs2
);
3780 if (!is_gimple_reg (lhs
))
3782 error ("non-register as LHS of binary operation");
3786 if (!is_gimple_val (rhs1
)
3787 || !is_gimple_val (rhs2
))
3789 error ("invalid operands in binary operation");
3793 /* First handle operations that involve different types. */
3798 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3799 || !(INTEGRAL_TYPE_P (rhs1_type
)
3800 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3801 || !(INTEGRAL_TYPE_P (rhs2_type
)
3802 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3804 error ("type mismatch in complex expression");
3805 debug_generic_expr (lhs_type
);
3806 debug_generic_expr (rhs1_type
);
3807 debug_generic_expr (rhs2_type
);
3819 /* Shifts and rotates are ok on integral types, fixed point
3820 types and integer vector types. */
3821 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3822 && !FIXED_POINT_TYPE_P (rhs1_type
)
3823 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3824 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3825 || (!INTEGRAL_TYPE_P (rhs2_type
)
3826 /* Vector shifts of vectors are also ok. */
3827 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3828 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3829 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3830 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3831 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3833 error ("type mismatch in shift expression");
3834 debug_generic_expr (lhs_type
);
3835 debug_generic_expr (rhs1_type
);
3836 debug_generic_expr (rhs2_type
);
3843 case WIDEN_LSHIFT_EXPR
:
3845 if (!INTEGRAL_TYPE_P (lhs_type
)
3846 || !INTEGRAL_TYPE_P (rhs1_type
)
3847 || TREE_CODE (rhs2
) != INTEGER_CST
3848 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3850 error ("type mismatch in widening vector shift expression");
3851 debug_generic_expr (lhs_type
);
3852 debug_generic_expr (rhs1_type
);
3853 debug_generic_expr (rhs2_type
);
3860 case VEC_WIDEN_LSHIFT_HI_EXPR
:
3861 case VEC_WIDEN_LSHIFT_LO_EXPR
:
3863 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3864 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3865 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3866 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3867 || TREE_CODE (rhs2
) != INTEGER_CST
3868 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
3869 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
3871 error ("type mismatch in widening vector shift expression");
3872 debug_generic_expr (lhs_type
);
3873 debug_generic_expr (rhs1_type
);
3874 debug_generic_expr (rhs2_type
);
3884 tree lhs_etype
= lhs_type
;
3885 tree rhs1_etype
= rhs1_type
;
3886 tree rhs2_etype
= rhs2_type
;
3887 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
)
3889 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3890 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3892 error ("invalid non-vector operands to vector valued plus");
3895 lhs_etype
= TREE_TYPE (lhs_type
);
3896 rhs1_etype
= TREE_TYPE (rhs1_type
);
3897 rhs2_etype
= TREE_TYPE (rhs2_type
);
3899 if (POINTER_TYPE_P (lhs_etype
)
3900 || POINTER_TYPE_P (rhs1_etype
)
3901 || POINTER_TYPE_P (rhs2_etype
))
3903 error ("invalid (pointer) operands to plus/minus");
3907 /* Continue with generic binary expression handling. */
3911 case POINTER_PLUS_EXPR
:
3913 if (!POINTER_TYPE_P (rhs1_type
)
3914 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3915 || !ptrofftype_p (rhs2_type
))
3917 error ("type mismatch in pointer plus expression");
3918 debug_generic_stmt (lhs_type
);
3919 debug_generic_stmt (rhs1_type
);
3920 debug_generic_stmt (rhs2_type
);
3927 case POINTER_DIFF_EXPR
:
3929 if (!POINTER_TYPE_P (rhs1_type
)
3930 || !POINTER_TYPE_P (rhs2_type
)
3931 /* Because we special-case pointers to void we allow difference
3932 of arbitrary pointers with the same mode. */
3933 || TYPE_MODE (rhs1_type
) != TYPE_MODE (rhs2_type
)
3934 || TREE_CODE (lhs_type
) != INTEGER_TYPE
3935 || TYPE_UNSIGNED (lhs_type
)
3936 || TYPE_PRECISION (lhs_type
) != TYPE_PRECISION (rhs1_type
))
3938 error ("type mismatch in pointer diff expression");
3939 debug_generic_stmt (lhs_type
);
3940 debug_generic_stmt (rhs1_type
);
3941 debug_generic_stmt (rhs2_type
);
3948 case TRUTH_ANDIF_EXPR
:
3949 case TRUTH_ORIF_EXPR
:
3950 case TRUTH_AND_EXPR
:
3952 case TRUTH_XOR_EXPR
:
3962 case UNORDERED_EXPR
:
3970 /* Comparisons are also binary, but the result type is not
3971 connected to the operand types. */
3972 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
, rhs_code
);
3974 case WIDEN_MULT_EXPR
:
3975 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3977 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
3978 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3980 case WIDEN_SUM_EXPR
:
3982 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
3983 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
3984 && ((!INTEGRAL_TYPE_P (rhs1_type
)
3985 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3986 || (!INTEGRAL_TYPE_P (lhs_type
)
3987 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
3988 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3989 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type
)),
3990 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
3992 error ("type mismatch in widening sum reduction");
3993 debug_generic_expr (lhs_type
);
3994 debug_generic_expr (rhs1_type
);
3995 debug_generic_expr (rhs2_type
);
4001 case VEC_WIDEN_MULT_HI_EXPR
:
4002 case VEC_WIDEN_MULT_LO_EXPR
:
4003 case VEC_WIDEN_MULT_EVEN_EXPR
:
4004 case VEC_WIDEN_MULT_ODD_EXPR
:
4006 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4007 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4008 || !types_compatible_p (rhs1_type
, rhs2_type
)
4009 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type
)),
4010 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4012 error ("type mismatch in vector widening multiplication");
4013 debug_generic_expr (lhs_type
);
4014 debug_generic_expr (rhs1_type
);
4015 debug_generic_expr (rhs2_type
);
4021 case VEC_PACK_TRUNC_EXPR
:
4022 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4023 vector boolean types. */
4024 if (VECTOR_BOOLEAN_TYPE_P (lhs_type
)
4025 && VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4026 && types_compatible_p (rhs1_type
, rhs2_type
)
4027 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type
),
4028 2 * TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4032 case VEC_PACK_SAT_EXPR
:
4033 case VEC_PACK_FIX_TRUNC_EXPR
:
4035 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4036 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4037 || !((rhs_code
== VEC_PACK_FIX_TRUNC_EXPR
4038 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
))
4039 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
)))
4040 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4041 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))))
4042 || !types_compatible_p (rhs1_type
, rhs2_type
)
4043 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type
)),
4044 2 * GET_MODE_SIZE (element_mode (lhs_type
)))
4045 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type
),
4046 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4048 error ("type mismatch in vector pack expression");
4049 debug_generic_expr (lhs_type
);
4050 debug_generic_expr (rhs1_type
);
4051 debug_generic_expr (rhs2_type
);
4058 case VEC_PACK_FLOAT_EXPR
:
4059 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4060 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4061 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4062 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type
))
4063 || !types_compatible_p (rhs1_type
, rhs2_type
)
4064 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type
)),
4065 2 * GET_MODE_SIZE (element_mode (lhs_type
)))
4066 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type
),
4067 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4069 error ("type mismatch in vector pack expression");
4070 debug_generic_expr (lhs_type
);
4071 debug_generic_expr (rhs1_type
);
4072 debug_generic_expr (rhs2_type
);
4079 case MULT_HIGHPART_EXPR
:
4080 case TRUNC_DIV_EXPR
:
4082 case FLOOR_DIV_EXPR
:
4083 case ROUND_DIV_EXPR
:
4084 case TRUNC_MOD_EXPR
:
4086 case FLOOR_MOD_EXPR
:
4087 case ROUND_MOD_EXPR
:
4089 case EXACT_DIV_EXPR
:
4095 /* Continue with generic binary expression handling. */
4098 case VEC_SERIES_EXPR
:
4099 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
))
4101 error ("type mismatch in series expression");
4102 debug_generic_expr (rhs1_type
);
4103 debug_generic_expr (rhs2_type
);
4106 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
4107 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
4109 error ("vector type expected in series expression");
4110 debug_generic_expr (lhs_type
);
4119 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4120 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4122 error ("type mismatch in binary expression");
4123 debug_generic_stmt (lhs_type
);
4124 debug_generic_stmt (rhs1_type
);
4125 debug_generic_stmt (rhs2_type
);
4132 /* Verify a gimple assignment statement STMT with a ternary rhs.
4133 Returns true if anything is wrong. */
4136 verify_gimple_assign_ternary (gassign
*stmt
)
4138 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4139 tree lhs
= gimple_assign_lhs (stmt
);
4140 tree lhs_type
= TREE_TYPE (lhs
);
4141 tree rhs1
= gimple_assign_rhs1 (stmt
);
4142 tree rhs1_type
= TREE_TYPE (rhs1
);
4143 tree rhs2
= gimple_assign_rhs2 (stmt
);
4144 tree rhs2_type
= TREE_TYPE (rhs2
);
4145 tree rhs3
= gimple_assign_rhs3 (stmt
);
4146 tree rhs3_type
= TREE_TYPE (rhs3
);
4148 if (!is_gimple_reg (lhs
))
4150 error ("non-register as LHS of ternary operation");
4154 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
4155 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
4156 || !is_gimple_val (rhs2
)
4157 || !is_gimple_val (rhs3
))
4159 error ("invalid operands in ternary operation");
4163 /* First handle operations that involve different types. */
4166 case WIDEN_MULT_PLUS_EXPR
:
4167 case WIDEN_MULT_MINUS_EXPR
:
4168 if ((!INTEGRAL_TYPE_P (rhs1_type
)
4169 && !FIXED_POINT_TYPE_P (rhs1_type
))
4170 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
4171 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4172 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
4173 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
4175 error ("type mismatch in widening multiply-accumulate expression");
4176 debug_generic_expr (lhs_type
);
4177 debug_generic_expr (rhs1_type
);
4178 debug_generic_expr (rhs2_type
);
4179 debug_generic_expr (rhs3_type
);
4185 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4186 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4187 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4189 error ("the first argument of a VEC_COND_EXPR must be of a "
4190 "boolean vector type of the same number of elements "
4192 debug_generic_expr (lhs_type
);
4193 debug_generic_expr (rhs1_type
);
4198 if (!is_gimple_val (rhs1
)
4199 && verify_gimple_comparison (TREE_TYPE (rhs1
),
4200 TREE_OPERAND (rhs1
, 0),
4201 TREE_OPERAND (rhs1
, 1),
4204 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
4205 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
4207 error ("type mismatch in conditional expression");
4208 debug_generic_expr (lhs_type
);
4209 debug_generic_expr (rhs2_type
);
4210 debug_generic_expr (rhs3_type
);
4216 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4217 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4219 error ("type mismatch in vector permute expression");
4220 debug_generic_expr (lhs_type
);
4221 debug_generic_expr (rhs1_type
);
4222 debug_generic_expr (rhs2_type
);
4223 debug_generic_expr (rhs3_type
);
4227 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4228 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4229 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4231 error ("vector types expected in vector permute expression");
4232 debug_generic_expr (lhs_type
);
4233 debug_generic_expr (rhs1_type
);
4234 debug_generic_expr (rhs2_type
);
4235 debug_generic_expr (rhs3_type
);
4239 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4240 TYPE_VECTOR_SUBPARTS (rhs2_type
))
4241 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type
),
4242 TYPE_VECTOR_SUBPARTS (rhs3_type
))
4243 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type
),
4244 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4246 error ("vectors with different element number found "
4247 "in vector permute expression");
4248 debug_generic_expr (lhs_type
);
4249 debug_generic_expr (rhs1_type
);
4250 debug_generic_expr (rhs2_type
);
4251 debug_generic_expr (rhs3_type
);
4255 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
4256 || (TREE_CODE (rhs3
) != VECTOR_CST
4257 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4258 (TREE_TYPE (rhs3_type
)))
4259 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4260 (TREE_TYPE (rhs1_type
))))))
4262 error ("invalid mask type in vector permute expression");
4263 debug_generic_expr (lhs_type
);
4264 debug_generic_expr (rhs1_type
);
4265 debug_generic_expr (rhs2_type
);
4266 debug_generic_expr (rhs3_type
);
4273 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
)
4274 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4275 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
)))
4276 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type
))))
4278 error ("type mismatch in sad expression");
4279 debug_generic_expr (lhs_type
);
4280 debug_generic_expr (rhs1_type
);
4281 debug_generic_expr (rhs2_type
);
4282 debug_generic_expr (rhs3_type
);
4286 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4287 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4288 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4290 error ("vector types expected in sad expression");
4291 debug_generic_expr (lhs_type
);
4292 debug_generic_expr (rhs1_type
);
4293 debug_generic_expr (rhs2_type
);
4294 debug_generic_expr (rhs3_type
);
4300 case BIT_INSERT_EXPR
:
4301 if (! useless_type_conversion_p (lhs_type
, rhs1_type
))
4303 error ("type mismatch in BIT_INSERT_EXPR");
4304 debug_generic_expr (lhs_type
);
4305 debug_generic_expr (rhs1_type
);
4308 if (! ((INTEGRAL_TYPE_P (rhs1_type
)
4309 && INTEGRAL_TYPE_P (rhs2_type
))
4310 || (VECTOR_TYPE_P (rhs1_type
)
4311 && types_compatible_p (TREE_TYPE (rhs1_type
), rhs2_type
))))
4313 error ("not allowed type combination in BIT_INSERT_EXPR");
4314 debug_generic_expr (rhs1_type
);
4315 debug_generic_expr (rhs2_type
);
4318 if (! tree_fits_uhwi_p (rhs3
)
4319 || ! types_compatible_p (bitsizetype
, TREE_TYPE (rhs3
))
4320 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type
)))
4322 error ("invalid position or size in BIT_INSERT_EXPR");
4325 if (INTEGRAL_TYPE_P (rhs1_type
))
4327 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4328 if (bitpos
>= TYPE_PRECISION (rhs1_type
)
4329 || (bitpos
+ TYPE_PRECISION (rhs2_type
)
4330 > TYPE_PRECISION (rhs1_type
)))
4332 error ("insertion out of range in BIT_INSERT_EXPR");
4336 else if (VECTOR_TYPE_P (rhs1_type
))
4338 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4339 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (TYPE_SIZE (rhs2_type
));
4340 if (bitpos
% bitsize
!= 0)
4342 error ("vector insertion not at element boundary");
4350 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
4351 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
4352 && ((!INTEGRAL_TYPE_P (rhs1_type
)
4353 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
4354 || (!INTEGRAL_TYPE_P (lhs_type
)
4355 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
4356 || !types_compatible_p (rhs1_type
, rhs2_type
)
4357 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4358 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type
)),
4359 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4361 error ("type mismatch in dot product reduction");
4362 debug_generic_expr (lhs_type
);
4363 debug_generic_expr (rhs1_type
);
4364 debug_generic_expr (rhs2_type
);
4370 case REALIGN_LOAD_EXPR
:
4380 /* Verify a gimple assignment statement STMT with a single rhs.
4381 Returns true if anything is wrong. */
4384 verify_gimple_assign_single (gassign
*stmt
)
4386 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4387 tree lhs
= gimple_assign_lhs (stmt
);
4388 tree lhs_type
= TREE_TYPE (lhs
);
4389 tree rhs1
= gimple_assign_rhs1 (stmt
);
4390 tree rhs1_type
= TREE_TYPE (rhs1
);
4393 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
4395 error ("non-trivial conversion at assignment");
4396 debug_generic_expr (lhs_type
);
4397 debug_generic_expr (rhs1_type
);
4401 if (gimple_clobber_p (stmt
)
4402 && !(DECL_P (lhs
) || TREE_CODE (lhs
) == MEM_REF
))
4404 error ("non-decl/MEM_REF LHS in clobber statement");
4405 debug_generic_expr (lhs
);
4409 if (handled_component_p (lhs
)
4410 || TREE_CODE (lhs
) == MEM_REF
4411 || TREE_CODE (lhs
) == TARGET_MEM_REF
)
4412 res
|= verify_types_in_gimple_reference (lhs
, true);
4414 /* Special codes we cannot handle via their class. */
4419 tree op
= TREE_OPERAND (rhs1
, 0);
4420 if (!is_gimple_addressable (op
))
4422 error ("invalid operand in unary expression");
4426 /* Technically there is no longer a need for matching types, but
4427 gimple hygiene asks for this check. In LTO we can end up
4428 combining incompatible units and thus end up with addresses
4429 of globals that change their type to a common one. */
4431 && !types_compatible_p (TREE_TYPE (op
),
4432 TREE_TYPE (TREE_TYPE (rhs1
)))
4433 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
4436 error ("type mismatch in address expression");
4437 debug_generic_stmt (TREE_TYPE (rhs1
));
4438 debug_generic_stmt (TREE_TYPE (op
));
4442 return (verify_address (rhs1
, true)
4443 || verify_types_in_gimple_reference (op
, true));
4448 error ("INDIRECT_REF in gimple IL");
4454 case ARRAY_RANGE_REF
:
4455 case VIEW_CONVERT_EXPR
:
4458 case TARGET_MEM_REF
:
4460 if (!is_gimple_reg (lhs
)
4461 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4463 error ("invalid rhs for gimple memory store");
4464 debug_generic_stmt (lhs
);
4465 debug_generic_stmt (rhs1
);
4468 return res
|| verify_types_in_gimple_reference (rhs1
, false);
4480 /* tcc_declaration */
4485 if (!is_gimple_reg (lhs
)
4486 && !is_gimple_reg (rhs1
)
4487 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4489 error ("invalid rhs for gimple memory store");
4490 debug_generic_stmt (lhs
);
4491 debug_generic_stmt (rhs1
);
4497 if (TREE_CODE (rhs1_type
) == VECTOR_TYPE
)
4500 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
4502 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
4504 /* For vector CONSTRUCTORs we require that either it is empty
4505 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4506 (then the element count must be correct to cover the whole
4507 outer vector and index must be NULL on all elements, or it is
4508 a CONSTRUCTOR of scalar elements, where we as an exception allow
4509 smaller number of elements (assuming zero filling) and
4510 consecutive indexes as compared to NULL indexes (such
4511 CONSTRUCTORs can appear in the IL from FEs). */
4512 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
4514 if (elt_t
== NULL_TREE
)
4516 elt_t
= TREE_TYPE (elt_v
);
4517 if (TREE_CODE (elt_t
) == VECTOR_TYPE
)
4519 tree elt_t
= TREE_TYPE (elt_v
);
4520 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4523 error ("incorrect type of vector CONSTRUCTOR"
4525 debug_generic_stmt (rhs1
);
4528 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1
)
4529 * TYPE_VECTOR_SUBPARTS (elt_t
),
4530 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4532 error ("incorrect number of vector CONSTRUCTOR"
4534 debug_generic_stmt (rhs1
);
4538 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4541 error ("incorrect type of vector CONSTRUCTOR elements");
4542 debug_generic_stmt (rhs1
);
4545 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1
),
4546 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4548 error ("incorrect number of vector CONSTRUCTOR elements");
4549 debug_generic_stmt (rhs1
);
4553 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
4555 error ("incorrect type of vector CONSTRUCTOR elements");
4556 debug_generic_stmt (rhs1
);
4559 if (elt_i
!= NULL_TREE
4560 && (TREE_CODE (elt_t
) == VECTOR_TYPE
4561 || TREE_CODE (elt_i
) != INTEGER_CST
4562 || compare_tree_int (elt_i
, i
) != 0))
4564 error ("vector CONSTRUCTOR with non-NULL element index");
4565 debug_generic_stmt (rhs1
);
4568 if (!is_gimple_val (elt_v
))
4570 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4571 debug_generic_stmt (rhs1
);
4576 else if (CONSTRUCTOR_NELTS (rhs1
) != 0)
4578 error ("non-vector CONSTRUCTOR with elements");
4579 debug_generic_stmt (rhs1
);
4586 rhs1
= fold (ASSERT_EXPR_COND (rhs1
));
4587 if (rhs1
== boolean_false_node
)
4589 error ("ASSERT_EXPR with an always-false condition");
4590 debug_generic_stmt (rhs1
);
4596 case WITH_SIZE_EXPR
:
4606 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4607 is a problem, otherwise false. */
4610 verify_gimple_assign (gassign
*stmt
)
4612 switch (gimple_assign_rhs_class (stmt
))
4614 case GIMPLE_SINGLE_RHS
:
4615 return verify_gimple_assign_single (stmt
);
4617 case GIMPLE_UNARY_RHS
:
4618 return verify_gimple_assign_unary (stmt
);
4620 case GIMPLE_BINARY_RHS
:
4621 return verify_gimple_assign_binary (stmt
);
4623 case GIMPLE_TERNARY_RHS
:
4624 return verify_gimple_assign_ternary (stmt
);
4631 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4632 is a problem, otherwise false. */
4635 verify_gimple_return (greturn
*stmt
)
4637 tree op
= gimple_return_retval (stmt
);
4638 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4640 /* We cannot test for present return values as we do not fix up missing
4641 return values from the original source. */
4645 if (!is_gimple_val (op
)
4646 && TREE_CODE (op
) != RESULT_DECL
)
4648 error ("invalid operand in return statement");
4649 debug_generic_stmt (op
);
4653 if ((TREE_CODE (op
) == RESULT_DECL
4654 && DECL_BY_REFERENCE (op
))
4655 || (TREE_CODE (op
) == SSA_NAME
4656 && SSA_NAME_VAR (op
)
4657 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4658 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4659 op
= TREE_TYPE (op
);
4661 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4663 error ("invalid conversion in return statement");
4664 debug_generic_stmt (restype
);
4665 debug_generic_stmt (TREE_TYPE (op
));
4673 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4674 is a problem, otherwise false. */
4677 verify_gimple_goto (ggoto
*stmt
)
4679 tree dest
= gimple_goto_dest (stmt
);
4681 /* ??? We have two canonical forms of direct goto destinations, a
4682 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4683 if (TREE_CODE (dest
) != LABEL_DECL
4684 && (!is_gimple_val (dest
)
4685 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4687 error ("goto destination is neither a label nor a pointer");
4694 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4695 is a problem, otherwise false. */
4698 verify_gimple_switch (gswitch
*stmt
)
4701 tree elt
, prev_upper_bound
= NULL_TREE
;
4702 tree index_type
, elt_type
= NULL_TREE
;
4704 if (!is_gimple_val (gimple_switch_index (stmt
)))
4706 error ("invalid operand to switch statement");
4707 debug_generic_stmt (gimple_switch_index (stmt
));
4711 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4712 if (! INTEGRAL_TYPE_P (index_type
))
4714 error ("non-integral type switch statement");
4715 debug_generic_expr (index_type
);
4719 elt
= gimple_switch_label (stmt
, 0);
4720 if (CASE_LOW (elt
) != NULL_TREE
4721 || CASE_HIGH (elt
) != NULL_TREE
4722 || CASE_CHAIN (elt
) != NULL_TREE
)
4724 error ("invalid default case label in switch statement");
4725 debug_generic_expr (elt
);
4729 n
= gimple_switch_num_labels (stmt
);
4730 for (i
= 1; i
< n
; i
++)
4732 elt
= gimple_switch_label (stmt
, i
);
4734 if (CASE_CHAIN (elt
))
4736 error ("invalid CASE_CHAIN");
4737 debug_generic_expr (elt
);
4740 if (! CASE_LOW (elt
))
4742 error ("invalid case label in switch statement");
4743 debug_generic_expr (elt
);
4747 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4749 error ("invalid case range in switch statement");
4750 debug_generic_expr (elt
);
4756 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4757 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4759 error ("type mismatch for case label in switch statement");
4760 debug_generic_expr (elt
);
4766 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4767 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4769 error ("type precision mismatch in switch statement");
4774 if (prev_upper_bound
)
4776 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4778 error ("case labels not sorted in switch statement");
4783 prev_upper_bound
= CASE_HIGH (elt
);
4784 if (! prev_upper_bound
)
4785 prev_upper_bound
= CASE_LOW (elt
);
4791 /* Verify a gimple debug statement STMT.
4792 Returns true if anything is wrong. */
4795 verify_gimple_debug (gimple
*stmt ATTRIBUTE_UNUSED
)
4797 /* There isn't much that could be wrong in a gimple debug stmt. A
4798 gimple debug bind stmt, for example, maps a tree, that's usually
4799 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4800 component or member of an aggregate type, to another tree, that
4801 can be an arbitrary expression. These stmts expand into debug
4802 insns, and are converted to debug notes by var-tracking.c. */
4806 /* Verify a gimple label statement STMT.
4807 Returns true if anything is wrong. */
4810 verify_gimple_label (glabel
*stmt
)
4812 tree decl
= gimple_label_label (stmt
);
4816 if (TREE_CODE (decl
) != LABEL_DECL
)
4818 if (!DECL_NONLOCAL (decl
) && !FORCED_LABEL (decl
)
4819 && DECL_CONTEXT (decl
) != current_function_decl
)
4821 error ("label's context is not the current function decl");
4825 uid
= LABEL_DECL_UID (decl
);
4828 || (*label_to_block_map_for_fn (cfun
))[uid
] != gimple_bb (stmt
)))
4830 error ("incorrect entry in label_to_block_map");
4834 uid
= EH_LANDING_PAD_NR (decl
);
4837 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4838 if (decl
!= lp
->post_landing_pad
)
4840 error ("incorrect setting of landing pad number");
4848 /* Verify a gimple cond statement STMT.
4849 Returns true if anything is wrong. */
4852 verify_gimple_cond (gcond
*stmt
)
4854 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4856 error ("invalid comparison code in gimple cond");
4859 if (!(!gimple_cond_true_label (stmt
)
4860 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4861 || !(!gimple_cond_false_label (stmt
)
4862 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4864 error ("invalid labels in gimple cond");
4868 return verify_gimple_comparison (boolean_type_node
,
4869 gimple_cond_lhs (stmt
),
4870 gimple_cond_rhs (stmt
),
4871 gimple_cond_code (stmt
));
4874 /* Verify the GIMPLE statement STMT. Returns true if there is an
4875 error, otherwise false. */
4878 verify_gimple_stmt (gimple
*stmt
)
4880 switch (gimple_code (stmt
))
4883 return verify_gimple_assign (as_a
<gassign
*> (stmt
));
4886 return verify_gimple_label (as_a
<glabel
*> (stmt
));
4889 return verify_gimple_call (as_a
<gcall
*> (stmt
));
4892 return verify_gimple_cond (as_a
<gcond
*> (stmt
));
4895 return verify_gimple_goto (as_a
<ggoto
*> (stmt
));
4898 return verify_gimple_switch (as_a
<gswitch
*> (stmt
));
4901 return verify_gimple_return (as_a
<greturn
*> (stmt
));
4906 case GIMPLE_TRANSACTION
:
4907 return verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
4909 /* Tuples that do not have tree operands. */
4911 case GIMPLE_PREDICT
:
4913 case GIMPLE_EH_DISPATCH
:
4914 case GIMPLE_EH_MUST_NOT_THROW
:
4918 /* OpenMP directives are validated by the FE and never operated
4919 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4920 non-gimple expressions when the main index variable has had
4921 its address taken. This does not affect the loop itself
4922 because the header of an GIMPLE_OMP_FOR is merely used to determine
4923 how to setup the parallel iteration. */
4927 return verify_gimple_debug (stmt
);
4934 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4935 and false otherwise. */
4938 verify_gimple_phi (gphi
*phi
)
4942 tree phi_result
= gimple_phi_result (phi
);
4947 error ("invalid PHI result");
4951 virtual_p
= virtual_operand_p (phi_result
);
4952 if (TREE_CODE (phi_result
) != SSA_NAME
4954 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4956 error ("invalid PHI result");
4960 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4962 tree t
= gimple_phi_arg_def (phi
, i
);
4966 error ("missing PHI def");
4970 /* Addressable variables do have SSA_NAMEs but they
4971 are not considered gimple values. */
4972 else if ((TREE_CODE (t
) == SSA_NAME
4973 && virtual_p
!= virtual_operand_p (t
))
4975 && (TREE_CODE (t
) != SSA_NAME
4976 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4978 && !is_gimple_val (t
)))
4980 error ("invalid PHI argument");
4981 debug_generic_expr (t
);
4984 #ifdef ENABLE_TYPES_CHECKING
4985 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4987 error ("incompatible types in PHI argument %u", i
);
4988 debug_generic_stmt (TREE_TYPE (phi_result
));
4989 debug_generic_stmt (TREE_TYPE (t
));
4998 /* Verify the GIMPLE statements inside the sequence STMTS. */
5001 verify_gimple_in_seq_2 (gimple_seq stmts
)
5003 gimple_stmt_iterator ittr
;
5006 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
5008 gimple
*stmt
= gsi_stmt (ittr
);
5010 switch (gimple_code (stmt
))
5013 err
|= verify_gimple_in_seq_2 (
5014 gimple_bind_body (as_a
<gbind
*> (stmt
)));
5018 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
5019 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
5022 case GIMPLE_EH_FILTER
:
5023 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
5026 case GIMPLE_EH_ELSE
:
5028 geh_else
*eh_else
= as_a
<geh_else
*> (stmt
);
5029 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else
));
5030 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else
));
5035 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (
5036 as_a
<gcatch
*> (stmt
)));
5039 case GIMPLE_TRANSACTION
:
5040 err
|= verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
5045 bool err2
= verify_gimple_stmt (stmt
);
5047 debug_gimple_stmt (stmt
);
5056 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5057 is a problem, otherwise false. */
5060 verify_gimple_transaction (gtransaction
*stmt
)
5064 lab
= gimple_transaction_label_norm (stmt
);
5065 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5067 lab
= gimple_transaction_label_uninst (stmt
);
5068 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5070 lab
= gimple_transaction_label_over (stmt
);
5071 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5074 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
5078 /* Verify the GIMPLE statements inside the statement list STMTS. */
5081 verify_gimple_in_seq (gimple_seq stmts
)
5083 timevar_push (TV_TREE_STMT_VERIFY
);
5084 if (verify_gimple_in_seq_2 (stmts
))
5085 internal_error ("verify_gimple failed");
5086 timevar_pop (TV_TREE_STMT_VERIFY
);
5089 /* Return true when the T can be shared. */
5092 tree_node_can_be_shared (tree t
)
5094 if (IS_TYPE_OR_DECL_P (t
)
5095 || TREE_CODE (t
) == SSA_NAME
5096 || TREE_CODE (t
) == IDENTIFIER_NODE
5097 || TREE_CODE (t
) == CASE_LABEL_EXPR
5098 || is_gimple_min_invariant (t
))
5101 if (t
== error_mark_node
)
5107 /* Called via walk_tree. Verify tree sharing. */
5110 verify_node_sharing_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5112 hash_set
<void *> *visited
= (hash_set
<void *> *) data
;
5114 if (tree_node_can_be_shared (*tp
))
5116 *walk_subtrees
= false;
5120 if (visited
->add (*tp
))
5126 /* Called via walk_gimple_stmt. Verify tree sharing. */
5129 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
5131 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5132 return verify_node_sharing_1 (tp
, walk_subtrees
, wi
->info
);
5135 static bool eh_error_found
;
5137 verify_eh_throw_stmt_node (gimple
*const &stmt
, const int &,
5138 hash_set
<gimple
*> *visited
)
5140 if (!visited
->contains (stmt
))
5142 error ("dead STMT in EH table");
5143 debug_gimple_stmt (stmt
);
5144 eh_error_found
= true;
5149 /* Verify if the location LOCs block is in BLOCKS. */
5152 verify_location (hash_set
<tree
> *blocks
, location_t loc
)
5154 tree block
= LOCATION_BLOCK (loc
);
5155 if (block
!= NULL_TREE
5156 && !blocks
->contains (block
))
5158 error ("location references block not in block tree");
5161 if (block
!= NULL_TREE
)
5162 return verify_location (blocks
, BLOCK_SOURCE_LOCATION (block
));
5166 /* Called via walk_tree. Verify that expressions have no blocks. */
5169 verify_expr_no_block (tree
*tp
, int *walk_subtrees
, void *)
5173 *walk_subtrees
= false;
5177 location_t loc
= EXPR_LOCATION (*tp
);
5178 if (LOCATION_BLOCK (loc
) != NULL
)
5184 /* Called via walk_tree. Verify locations of expressions. */
5187 verify_expr_location_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5189 hash_set
<tree
> *blocks
= (hash_set
<tree
> *) data
;
5192 /* ??? This doesn't really belong here but there's no good place to
5193 stick this remainder of old verify_expr. */
5194 /* ??? This barfs on debug stmts which contain binds to vars with
5195 different function context. */
5198 || TREE_CODE (t
) == PARM_DECL
5199 || TREE_CODE (t
) == RESULT_DECL
)
5201 tree context
= decl_function_context (t
);
5202 if (context
!= cfun
->decl
5203 && !SCOPE_FILE_SCOPE_P (context
)
5205 && !DECL_EXTERNAL (t
))
5207 error ("local declaration from a different function");
5213 if (VAR_P (t
) && DECL_HAS_DEBUG_EXPR_P (t
))
5215 tree x
= DECL_DEBUG_EXPR (t
);
5216 tree addr
= walk_tree (&x
, verify_expr_no_block
, NULL
, NULL
);
5221 || TREE_CODE (t
) == PARM_DECL
5222 || TREE_CODE (t
) == RESULT_DECL
)
5223 && DECL_HAS_VALUE_EXPR_P (t
))
5225 tree x
= DECL_VALUE_EXPR (t
);
5226 tree addr
= walk_tree (&x
, verify_expr_no_block
, NULL
, NULL
);
5233 *walk_subtrees
= false;
5237 location_t loc
= EXPR_LOCATION (t
);
5238 if (verify_location (blocks
, loc
))
5244 /* Called via walk_gimple_op. Verify locations of expressions. */
5247 verify_expr_location (tree
*tp
, int *walk_subtrees
, void *data
)
5249 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5250 return verify_expr_location_1 (tp
, walk_subtrees
, wi
->info
);
5253 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5256 collect_subblocks (hash_set
<tree
> *blocks
, tree block
)
5259 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= BLOCK_CHAIN (t
))
5262 collect_subblocks (blocks
, t
);
5266 /* Verify the GIMPLE statements in the CFG of FN. */
5269 verify_gimple_in_cfg (struct function
*fn
, bool verify_nothrow
)
5274 timevar_push (TV_TREE_STMT_VERIFY
);
5275 hash_set
<void *> visited
;
5276 hash_set
<gimple
*> visited_throwing_stmts
;
5278 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5279 hash_set
<tree
> blocks
;
5280 if (DECL_INITIAL (fn
->decl
))
5282 blocks
.add (DECL_INITIAL (fn
->decl
));
5283 collect_subblocks (&blocks
, DECL_INITIAL (fn
->decl
));
5286 FOR_EACH_BB_FN (bb
, fn
)
5288 gimple_stmt_iterator gsi
;
5290 for (gphi_iterator gpi
= gsi_start_phis (bb
);
5294 gphi
*phi
= gpi
.phi ();
5298 if (gimple_bb (phi
) != bb
)
5300 error ("gimple_bb (phi) is set to a wrong basic block");
5304 err2
|= verify_gimple_phi (phi
);
5306 /* Only PHI arguments have locations. */
5307 if (gimple_location (phi
) != UNKNOWN_LOCATION
)
5309 error ("PHI node with location");
5313 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5315 tree arg
= gimple_phi_arg_def (phi
, i
);
5316 tree addr
= walk_tree (&arg
, verify_node_sharing_1
,
5320 error ("incorrect sharing of tree nodes");
5321 debug_generic_expr (addr
);
5324 location_t loc
= gimple_phi_arg_location (phi
, i
);
5325 if (virtual_operand_p (gimple_phi_result (phi
))
5326 && loc
!= UNKNOWN_LOCATION
)
5328 error ("virtual PHI with argument locations");
5331 addr
= walk_tree (&arg
, verify_expr_location_1
, &blocks
, NULL
);
5334 debug_generic_expr (addr
);
5337 err2
|= verify_location (&blocks
, loc
);
5341 debug_gimple_stmt (phi
);
5345 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5347 gimple
*stmt
= gsi_stmt (gsi
);
5349 struct walk_stmt_info wi
;
5353 if (gimple_bb (stmt
) != bb
)
5355 error ("gimple_bb (stmt) is set to a wrong basic block");
5359 err2
|= verify_gimple_stmt (stmt
);
5360 err2
|= verify_location (&blocks
, gimple_location (stmt
));
5362 memset (&wi
, 0, sizeof (wi
));
5363 wi
.info
= (void *) &visited
;
5364 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
5367 error ("incorrect sharing of tree nodes");
5368 debug_generic_expr (addr
);
5372 memset (&wi
, 0, sizeof (wi
));
5373 wi
.info
= (void *) &blocks
;
5374 addr
= walk_gimple_op (stmt
, verify_expr_location
, &wi
);
5377 debug_generic_expr (addr
);
5381 /* If the statement is marked as part of an EH region, then it is
5382 expected that the statement could throw. Verify that when we
5383 have optimizations that simplify statements such that we prove
5384 that they cannot throw, that we update other data structures
5386 lp_nr
= lookup_stmt_eh_lp (stmt
);
5388 visited_throwing_stmts
.add (stmt
);
5391 if (!stmt_could_throw_p (stmt
))
5395 error ("statement marked for throw, but doesn%'t");
5399 else if (!gsi_one_before_end_p (gsi
))
5401 error ("statement marked for throw in middle of block");
5407 debug_gimple_stmt (stmt
);
5412 hash_map
<gimple
*, int> *eh_table
= get_eh_throw_stmt_table (cfun
);
5413 eh_error_found
= false;
5415 eh_table
->traverse
<hash_set
<gimple
*> *, verify_eh_throw_stmt_node
>
5416 (&visited_throwing_stmts
);
5418 if (err
|| eh_error_found
)
5419 internal_error ("verify_gimple failed");
5421 verify_histograms ();
5422 timevar_pop (TV_TREE_STMT_VERIFY
);
5426 /* Verifies that the flow information is OK. */
5429 gimple_verify_flow_info (void)
5433 gimple_stmt_iterator gsi
;
5438 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5439 || ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5441 error ("ENTRY_BLOCK has IL associated with it");
5445 if (EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5446 || EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5448 error ("EXIT_BLOCK has IL associated with it");
5452 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5453 if (e
->flags
& EDGE_FALLTHRU
)
5455 error ("fallthru to exit from bb %d", e
->src
->index
);
5459 FOR_EACH_BB_FN (bb
, cfun
)
5461 bool found_ctrl_stmt
= false;
5465 /* Skip labels on the start of basic block. */
5466 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5469 gimple
*prev_stmt
= stmt
;
5471 stmt
= gsi_stmt (gsi
);
5473 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5476 label
= gimple_label_label (as_a
<glabel
*> (stmt
));
5477 if (prev_stmt
&& DECL_NONLOCAL (label
))
5479 error ("nonlocal label ");
5480 print_generic_expr (stderr
, label
);
5481 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5486 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
5488 error ("EH landing pad label ");
5489 print_generic_expr (stderr
, label
);
5490 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5495 if (label_to_block (label
) != bb
)
5498 print_generic_expr (stderr
, label
);
5499 fprintf (stderr
, " to block does not match in bb %d",
5504 if (decl_function_context (label
) != current_function_decl
)
5507 print_generic_expr (stderr
, label
);
5508 fprintf (stderr
, " has incorrect context in bb %d",
5514 /* Verify that body of basic block BB is free of control flow. */
5515 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
5517 gimple
*stmt
= gsi_stmt (gsi
);
5519 if (found_ctrl_stmt
)
5521 error ("control flow in the middle of basic block %d",
5526 if (stmt_ends_bb_p (stmt
))
5527 found_ctrl_stmt
= true;
5529 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
5532 print_generic_expr (stderr
, gimple_label_label (label_stmt
));
5533 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
5538 gsi
= gsi_last_nondebug_bb (bb
);
5539 if (gsi_end_p (gsi
))
5542 stmt
= gsi_stmt (gsi
);
5544 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5547 err
|= verify_eh_edges (stmt
);
5549 if (is_ctrl_stmt (stmt
))
5551 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5552 if (e
->flags
& EDGE_FALLTHRU
)
5554 error ("fallthru edge after a control statement in bb %d",
5560 if (gimple_code (stmt
) != GIMPLE_COND
)
5562 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5563 after anything else but if statement. */
5564 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5565 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
5567 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5573 switch (gimple_code (stmt
))
5580 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
5584 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
5585 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
5586 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5587 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5588 || EDGE_COUNT (bb
->succs
) >= 3)
5590 error ("wrong outgoing edge flags at end of bb %d",
5598 if (simple_goto_p (stmt
))
5600 error ("explicit goto at end of bb %d", bb
->index
);
5605 /* FIXME. We should double check that the labels in the
5606 destination blocks have their address taken. */
5607 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5608 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
5609 | EDGE_FALSE_VALUE
))
5610 || !(e
->flags
& EDGE_ABNORMAL
))
5612 error ("wrong outgoing edge flags at end of bb %d",
5620 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
5624 if (!single_succ_p (bb
)
5625 || (single_succ_edge (bb
)->flags
5626 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
5627 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5629 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
5632 if (single_succ (bb
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
5634 error ("return edge does not point to exit in bb %d",
5642 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5647 n
= gimple_switch_num_labels (switch_stmt
);
5649 /* Mark all the destination basic blocks. */
5650 for (i
= 0; i
< n
; ++i
)
5652 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5653 basic_block label_bb
= label_to_block (lab
);
5654 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
5655 label_bb
->aux
= (void *)1;
5658 /* Verify that the case labels are sorted. */
5659 prev
= gimple_switch_label (switch_stmt
, 0);
5660 for (i
= 1; i
< n
; ++i
)
5662 tree c
= gimple_switch_label (switch_stmt
, i
);
5665 error ("found default case not at the start of "
5671 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
5673 error ("case labels not sorted: ");
5674 print_generic_expr (stderr
, prev
);
5675 fprintf (stderr
," is greater than ");
5676 print_generic_expr (stderr
, c
);
5677 fprintf (stderr
," but comes before it.\n");
5682 /* VRP will remove the default case if it can prove it will
5683 never be executed. So do not verify there always exists
5684 a default case here. */
5686 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5690 error ("extra outgoing edge %d->%d",
5691 bb
->index
, e
->dest
->index
);
5695 e
->dest
->aux
= (void *)2;
5696 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
5697 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5699 error ("wrong outgoing edge flags at end of bb %d",
5705 /* Check that we have all of them. */
5706 for (i
= 0; i
< n
; ++i
)
5708 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5709 basic_block label_bb
= label_to_block (lab
);
5711 if (label_bb
->aux
!= (void *)2)
5713 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5718 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5719 e
->dest
->aux
= (void *)0;
5723 case GIMPLE_EH_DISPATCH
:
5724 err
|= verify_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
));
5732 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5733 verify_dominators (CDI_DOMINATORS
);
5739 /* Updates phi nodes after creating a forwarder block joined
5740 by edge FALLTHRU. */
5743 gimple_make_forwarder_block (edge fallthru
)
5747 basic_block dummy
, bb
;
5751 dummy
= fallthru
->src
;
5752 bb
= fallthru
->dest
;
5754 if (single_pred_p (bb
))
5757 /* If we redirected a branch we must create new PHI nodes at the
5759 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5761 gphi
*phi
, *new_phi
;
5764 var
= gimple_phi_result (phi
);
5765 new_phi
= create_phi_node (var
, bb
);
5766 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
5767 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
5771 /* Add the arguments we have stored on edges. */
5772 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5777 flush_pending_stmts (e
);
5782 /* Return a non-special label in the head of basic block BLOCK.
5783 Create one if it doesn't exist. */
5786 gimple_block_label (basic_block bb
)
5788 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
5793 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
5795 stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
5798 label
= gimple_label_label (stmt
);
5799 if (!DECL_NONLOCAL (label
))
5802 gsi_move_before (&i
, &s
);
5807 label
= create_artificial_label (UNKNOWN_LOCATION
);
5808 stmt
= gimple_build_label (label
);
5809 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
5814 /* Attempt to perform edge redirection by replacing a possibly complex
5815 jump instruction by a goto or by removing the jump completely.
5816 This can apply only if all edges now point to the same block. The
5817 parameters and return values are equivalent to
5818 redirect_edge_and_branch. */
5821 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
5823 basic_block src
= e
->src
;
5824 gimple_stmt_iterator i
;
5827 /* We can replace or remove a complex jump only when we have exactly
5829 if (EDGE_COUNT (src
->succs
) != 2
5830 /* Verify that all targets will be TARGET. Specifically, the
5831 edge that is not E must also go to TARGET. */
5832 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
5835 i
= gsi_last_bb (src
);
5839 stmt
= gsi_stmt (i
);
5841 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5843 gsi_remove (&i
, true);
5844 e
= ssa_redirect_edge (e
, target
);
5845 e
->flags
= EDGE_FALLTHRU
;
5853 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5854 edge representing the redirected branch. */
5857 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
5859 basic_block bb
= e
->src
;
5860 gimple_stmt_iterator gsi
;
5864 if (e
->flags
& EDGE_ABNORMAL
)
5867 if (e
->dest
== dest
)
5870 if (e
->flags
& EDGE_EH
)
5871 return redirect_eh_edge (e
, dest
);
5873 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
5875 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
5880 gsi
= gsi_last_nondebug_bb (bb
);
5881 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
5883 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
5886 /* For COND_EXPR, we only need to redirect the edge. */
5890 /* No non-abnormal edges should lead from a non-simple goto, and
5891 simple ones should be represented implicitly. */
5896 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5897 tree label
= gimple_block_label (dest
);
5898 tree cases
= get_cases_for_edge (e
, switch_stmt
);
5900 /* If we have a list of cases associated with E, then use it
5901 as it's a lot faster than walking the entire case vector. */
5904 edge e2
= find_edge (e
->src
, dest
);
5911 CASE_LABEL (cases
) = label
;
5912 cases
= CASE_CHAIN (cases
);
5915 /* If there was already an edge in the CFG, then we need
5916 to move all the cases associated with E to E2. */
5919 tree cases2
= get_cases_for_edge (e2
, switch_stmt
);
5921 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
5922 CASE_CHAIN (cases2
) = first
;
5924 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
5928 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
5930 for (i
= 0; i
< n
; i
++)
5932 tree elt
= gimple_switch_label (switch_stmt
, i
);
5933 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
5934 CASE_LABEL (elt
) = label
;
5942 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
5943 int i
, n
= gimple_asm_nlabels (asm_stmt
);
5946 for (i
= 0; i
< n
; ++i
)
5948 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
5949 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
5952 label
= gimple_block_label (dest
);
5953 TREE_VALUE (cons
) = label
;
5957 /* If we didn't find any label matching the former edge in the
5958 asm labels, we must be redirecting the fallthrough
5960 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
5965 gsi_remove (&gsi
, true);
5966 e
->flags
|= EDGE_FALLTHRU
;
5969 case GIMPLE_OMP_RETURN
:
5970 case GIMPLE_OMP_CONTINUE
:
5971 case GIMPLE_OMP_SECTIONS_SWITCH
:
5972 case GIMPLE_OMP_FOR
:
5973 /* The edges from OMP constructs can be simply redirected. */
5976 case GIMPLE_EH_DISPATCH
:
5977 if (!(e
->flags
& EDGE_FALLTHRU
))
5978 redirect_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
), e
, dest
);
5981 case GIMPLE_TRANSACTION
:
5982 if (e
->flags
& EDGE_TM_ABORT
)
5983 gimple_transaction_set_label_over (as_a
<gtransaction
*> (stmt
),
5984 gimple_block_label (dest
));
5985 else if (e
->flags
& EDGE_TM_UNINSTRUMENTED
)
5986 gimple_transaction_set_label_uninst (as_a
<gtransaction
*> (stmt
),
5987 gimple_block_label (dest
));
5989 gimple_transaction_set_label_norm (as_a
<gtransaction
*> (stmt
),
5990 gimple_block_label (dest
));
5994 /* Otherwise it must be a fallthru edge, and we don't need to
5995 do anything besides redirecting it. */
5996 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
6000 /* Update/insert PHI nodes as necessary. */
6002 /* Now update the edges in the CFG. */
6003 e
= ssa_redirect_edge (e
, dest
);
6008 /* Returns true if it is possible to remove edge E by redirecting
6009 it to the destination of the other edge from E->src. */
6012 gimple_can_remove_branch_p (const_edge e
)
6014 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
6020 /* Simple wrapper, as we can always redirect fallthru edges. */
6023 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
6025 e
= gimple_redirect_edge_and_branch (e
, dest
);
6032 /* Splits basic block BB after statement STMT (but at least after the
6033 labels). If STMT is NULL, BB is split just after the labels. */
6036 gimple_split_block (basic_block bb
, void *stmt
)
6038 gimple_stmt_iterator gsi
;
6039 gimple_stmt_iterator gsi_tgt
;
6045 new_bb
= create_empty_bb (bb
);
6047 /* Redirect the outgoing edges. */
6048 new_bb
->succs
= bb
->succs
;
6050 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
6053 /* Get a stmt iterator pointing to the first stmt to move. */
6054 if (!stmt
|| gimple_code ((gimple
*) stmt
) == GIMPLE_LABEL
)
6055 gsi
= gsi_after_labels (bb
);
6058 gsi
= gsi_for_stmt ((gimple
*) stmt
);
6062 /* Move everything from GSI to the new basic block. */
6063 if (gsi_end_p (gsi
))
6066 /* Split the statement list - avoid re-creating new containers as this
6067 brings ugly quadratic memory consumption in the inliner.
6068 (We are still quadratic since we need to update stmt BB pointers,
6070 gsi_split_seq_before (&gsi
, &list
);
6071 set_bb_seq (new_bb
, list
);
6072 for (gsi_tgt
= gsi_start (list
);
6073 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
6074 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
6080 /* Moves basic block BB after block AFTER. */
6083 gimple_move_block_after (basic_block bb
, basic_block after
)
6085 if (bb
->prev_bb
== after
)
6089 link_block (bb
, after
);
6095 /* Return TRUE if block BB has no executable statements, otherwise return
6099 gimple_empty_block_p (basic_block bb
)
6101 /* BB must have no executable statements. */
6102 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
6105 if (gsi_end_p (gsi
))
6107 if (is_gimple_debug (gsi_stmt (gsi
)))
6108 gsi_next_nondebug (&gsi
);
6109 return gsi_end_p (gsi
);
6113 /* Split a basic block if it ends with a conditional branch and if the
6114 other part of the block is not empty. */
6117 gimple_split_block_before_cond_jump (basic_block bb
)
6119 gimple
*last
, *split_point
;
6120 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6121 if (gsi_end_p (gsi
))
6123 last
= gsi_stmt (gsi
);
6124 if (gimple_code (last
) != GIMPLE_COND
6125 && gimple_code (last
) != GIMPLE_SWITCH
)
6128 split_point
= gsi_stmt (gsi
);
6129 return split_block (bb
, split_point
)->dest
;
6133 /* Return true if basic_block can be duplicated. */
6136 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
6141 /* Create a duplicate of the basic block BB. NOTE: This does not
6142 preserve SSA form. */
6145 gimple_duplicate_bb (basic_block bb
)
6148 gimple_stmt_iterator gsi_tgt
;
6150 new_bb
= create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
);
6152 /* Copy the PHI nodes. We ignore PHI node arguments here because
6153 the incoming edges have not been setup yet. */
6154 for (gphi_iterator gpi
= gsi_start_phis (bb
);
6160 copy
= create_phi_node (NULL_TREE
, new_bb
);
6161 create_new_def_for (gimple_phi_result (phi
), copy
,
6162 gimple_phi_result_ptr (copy
));
6163 gimple_set_uid (copy
, gimple_uid (phi
));
6166 gsi_tgt
= gsi_start_bb (new_bb
);
6167 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
6171 def_operand_p def_p
;
6172 ssa_op_iter op_iter
;
6174 gimple
*stmt
, *copy
;
6176 stmt
= gsi_stmt (gsi
);
6177 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6180 /* Don't duplicate label debug stmts. */
6181 if (gimple_debug_bind_p (stmt
)
6182 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
6186 /* Create a new copy of STMT and duplicate STMT's virtual
6188 copy
= gimple_copy (stmt
);
6189 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
6191 maybe_duplicate_eh_stmt (copy
, stmt
);
6192 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
6194 /* When copying around a stmt writing into a local non-user
6195 aggregate, make sure it won't share stack slot with other
6197 lhs
= gimple_get_lhs (stmt
);
6198 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
6200 tree base
= get_base_address (lhs
);
6202 && (VAR_P (base
) || TREE_CODE (base
) == RESULT_DECL
)
6203 && DECL_IGNORED_P (base
)
6204 && !TREE_STATIC (base
)
6205 && !DECL_EXTERNAL (base
)
6206 && (!VAR_P (base
) || !DECL_HAS_VALUE_EXPR_P (base
)))
6207 DECL_NONSHAREABLE (base
) = 1;
6210 /* Create new names for all the definitions created by COPY and
6211 add replacement mappings for each new name. */
6212 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
6213 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
6219 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6222 add_phi_args_after_copy_edge (edge e_copy
)
6224 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
6227 gphi
*phi
, *phi_copy
;
6229 gphi_iterator psi
, psi_copy
;
6231 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
6234 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
6236 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
6237 dest
= get_bb_original (e_copy
->dest
);
6239 dest
= e_copy
->dest
;
6241 e
= find_edge (bb
, dest
);
6244 /* During loop unrolling the target of the latch edge is copied.
6245 In this case we are not looking for edge to dest, but to
6246 duplicated block whose original was dest. */
6247 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6249 if ((e
->dest
->flags
& BB_DUPLICATED
)
6250 && get_bb_original (e
->dest
) == dest
)
6254 gcc_assert (e
!= NULL
);
6257 for (psi
= gsi_start_phis (e
->dest
),
6258 psi_copy
= gsi_start_phis (e_copy
->dest
);
6260 gsi_next (&psi
), gsi_next (&psi_copy
))
6263 phi_copy
= psi_copy
.phi ();
6264 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
6265 add_phi_arg (phi_copy
, def
, e_copy
,
6266 gimple_phi_arg_location_from_edge (phi
, e
));
6271 /* Basic block BB_COPY was created by code duplication. Add phi node
6272 arguments for edges going out of BB_COPY. The blocks that were
6273 duplicated have BB_DUPLICATED set. */
6276 add_phi_args_after_copy_bb (basic_block bb_copy
)
6281 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
6283 add_phi_args_after_copy_edge (e_copy
);
6287 /* Blocks in REGION_COPY array of length N_REGION were created by
6288 duplication of basic blocks. Add phi node arguments for edges
6289 going from these blocks. If E_COPY is not NULL, also add
6290 phi node arguments for its destination.*/
6293 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
6298 for (i
= 0; i
< n_region
; i
++)
6299 region_copy
[i
]->flags
|= BB_DUPLICATED
;
6301 for (i
= 0; i
< n_region
; i
++)
6302 add_phi_args_after_copy_bb (region_copy
[i
]);
6304 add_phi_args_after_copy_edge (e_copy
);
6306 for (i
= 0; i
< n_region
; i
++)
6307 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
6310 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6311 important exit edge EXIT. By important we mean that no SSA name defined
6312 inside region is live over the other exit edges of the region. All entry
6313 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6314 to the duplicate of the region. Dominance and loop information is
6315 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6316 UPDATE_DOMINANCE is false then we assume that the caller will update the
6317 dominance information after calling this function. The new basic
6318 blocks are stored to REGION_COPY in the same order as they had in REGION,
6319 provided that REGION_COPY is not NULL.
6320 The function returns false if it is unable to copy the region,
6324 gimple_duplicate_sese_region (edge entry
, edge exit
,
6325 basic_block
*region
, unsigned n_region
,
6326 basic_block
*region_copy
,
6327 bool update_dominance
)
6330 bool free_region_copy
= false, copying_header
= false;
6331 struct loop
*loop
= entry
->dest
->loop_father
;
6333 vec
<basic_block
> doms
= vNULL
;
6335 profile_count total_count
= profile_count::uninitialized ();
6336 profile_count entry_count
= profile_count::uninitialized ();
6338 if (!can_copy_bbs_p (region
, n_region
))
6341 /* Some sanity checking. Note that we do not check for all possible
6342 missuses of the functions. I.e. if you ask to copy something weird,
6343 it will work, but the state of structures probably will not be
6345 for (i
= 0; i
< n_region
; i
++)
6347 /* We do not handle subloops, i.e. all the blocks must belong to the
6349 if (region
[i
]->loop_father
!= loop
)
6352 if (region
[i
] != entry
->dest
6353 && region
[i
] == loop
->header
)
6357 /* In case the function is used for loop header copying (which is the primary
6358 use), ensure that EXIT and its copy will be new latch and entry edges. */
6359 if (loop
->header
== entry
->dest
)
6361 copying_header
= true;
6363 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
6366 for (i
= 0; i
< n_region
; i
++)
6367 if (region
[i
] != exit
->src
6368 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
6372 initialize_original_copy_tables ();
6375 set_loop_copy (loop
, loop_outer (loop
));
6377 set_loop_copy (loop
, loop
);
6381 region_copy
= XNEWVEC (basic_block
, n_region
);
6382 free_region_copy
= true;
6385 /* Record blocks outside the region that are dominated by something
6387 if (update_dominance
)
6390 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6393 if (entry
->dest
->count
.initialized_p ())
6395 total_count
= entry
->dest
->count
;
6396 entry_count
= entry
->count ();
6397 /* Fix up corner cases, to avoid division by zero or creation of negative
6399 if (entry_count
> total_count
)
6400 entry_count
= total_count
;
6403 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
6404 split_edge_bb_loc (entry
), update_dominance
);
6405 if (total_count
.initialized_p () && entry_count
.initialized_p ())
6407 scale_bbs_frequencies_profile_count (region
, n_region
,
6408 total_count
- entry_count
,
6410 scale_bbs_frequencies_profile_count (region_copy
, n_region
, entry_count
,
6416 loop
->header
= exit
->dest
;
6417 loop
->latch
= exit
->src
;
6420 /* Redirect the entry and add the phi node arguments. */
6421 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
6422 gcc_assert (redirected
!= NULL
);
6423 flush_pending_stmts (entry
);
6425 /* Concerning updating of dominators: We must recount dominators
6426 for entry block and its copy. Anything that is outside of the
6427 region, but was dominated by something inside needs recounting as
6429 if (update_dominance
)
6431 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
6432 doms
.safe_push (get_bb_original (entry
->dest
));
6433 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6437 /* Add the other PHI node arguments. */
6438 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
6440 if (free_region_copy
)
6443 free_original_copy_tables ();
6447 /* Checks if BB is part of the region defined by N_REGION BBS. */
6449 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
6453 for (n
= 0; n
< n_region
; n
++)
6461 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6462 are stored to REGION_COPY in the same order in that they appear
6463 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6464 the region, EXIT an exit from it. The condition guarding EXIT
6465 is moved to ENTRY. Returns true if duplication succeeds, false
6491 gimple_duplicate_sese_tail (edge entry
, edge exit
,
6492 basic_block
*region
, unsigned n_region
,
6493 basic_block
*region_copy
)
6496 bool free_region_copy
= false;
6497 struct loop
*loop
= exit
->dest
->loop_father
;
6498 struct loop
*orig_loop
= entry
->dest
->loop_father
;
6499 basic_block switch_bb
, entry_bb
, nentry_bb
;
6500 vec
<basic_block
> doms
;
6501 profile_count total_count
= profile_count::uninitialized (),
6502 exit_count
= profile_count::uninitialized ();
6503 edge exits
[2], nexits
[2], e
;
6504 gimple_stmt_iterator gsi
;
6507 basic_block exit_bb
;
6511 struct loop
*target
, *aloop
, *cloop
;
6513 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
6515 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
6517 if (!can_copy_bbs_p (region
, n_region
))
6520 initialize_original_copy_tables ();
6521 set_loop_copy (orig_loop
, loop
);
6524 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
6526 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
6528 cloop
= duplicate_loop (aloop
, target
);
6529 duplicate_subloops (aloop
, cloop
);
6535 region_copy
= XNEWVEC (basic_block
, n_region
);
6536 free_region_copy
= true;
6539 gcc_assert (!need_ssa_update_p (cfun
));
6541 /* Record blocks outside the region that are dominated by something
6543 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6545 total_count
= exit
->src
->count
;
6546 exit_count
= exit
->count ();
6547 /* Fix up corner cases, to avoid division by zero or creation of negative
6549 if (exit_count
> total_count
)
6550 exit_count
= total_count
;
6552 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
6553 split_edge_bb_loc (exit
), true);
6554 if (total_count
.initialized_p () && exit_count
.initialized_p ())
6556 scale_bbs_frequencies_profile_count (region
, n_region
,
6557 total_count
- exit_count
,
6559 scale_bbs_frequencies_profile_count (region_copy
, n_region
, exit_count
,
6563 /* Create the switch block, and put the exit condition to it. */
6564 entry_bb
= entry
->dest
;
6565 nentry_bb
= get_bb_copy (entry_bb
);
6566 if (!last_stmt (entry
->src
)
6567 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
6568 switch_bb
= entry
->src
;
6570 switch_bb
= split_edge (entry
);
6571 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
6573 gsi
= gsi_last_bb (switch_bb
);
6574 cond_stmt
= last_stmt (exit
->src
);
6575 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
6576 cond_stmt
= gimple_copy (cond_stmt
);
6578 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
6580 sorig
= single_succ_edge (switch_bb
);
6581 sorig
->flags
= exits
[1]->flags
;
6582 sorig
->probability
= exits
[1]->probability
;
6583 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
6584 snew
->probability
= exits
[0]->probability
;
6587 /* Register the new edge from SWITCH_BB in loop exit lists. */
6588 rescan_loop_exit (snew
, true, false);
6590 /* Add the PHI node arguments. */
6591 add_phi_args_after_copy (region_copy
, n_region
, snew
);
6593 /* Get rid of now superfluous conditions and associated edges (and phi node
6595 exit_bb
= exit
->dest
;
6597 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
6598 PENDING_STMT (e
) = NULL
;
6600 /* The latch of ORIG_LOOP was copied, and so was the backedge
6601 to the original header. We redirect this backedge to EXIT_BB. */
6602 for (i
= 0; i
< n_region
; i
++)
6603 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
6605 gcc_assert (single_succ_edge (region_copy
[i
]));
6606 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
6607 PENDING_STMT (e
) = NULL
;
6608 for (psi
= gsi_start_phis (exit_bb
);
6613 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
6614 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
6617 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
6618 PENDING_STMT (e
) = NULL
;
6620 /* Anything that is outside of the region, but was dominated by something
6621 inside needs to update dominance info. */
6622 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6624 /* Update the SSA web. */
6625 update_ssa (TODO_update_ssa
);
6627 if (free_region_copy
)
6630 free_original_copy_tables ();
6634 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6635 adding blocks when the dominator traversal reaches EXIT. This
6636 function silently assumes that ENTRY strictly dominates EXIT. */
6639 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
6640 vec
<basic_block
> *bbs_p
)
6644 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
6646 son
= next_dom_son (CDI_DOMINATORS
, son
))
6648 bbs_p
->safe_push (son
);
6650 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
6654 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6655 The duplicates are recorded in VARS_MAP. */
6658 replace_by_duplicate_decl (tree
*tp
, hash_map
<tree
, tree
> *vars_map
,
6661 tree t
= *tp
, new_t
;
6662 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
6664 if (DECL_CONTEXT (t
) == to_context
)
6668 tree
&loc
= vars_map
->get_or_insert (t
, &existed
);
6674 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
6675 add_local_decl (f
, new_t
);
6679 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
6680 new_t
= copy_node (t
);
6682 DECL_CONTEXT (new_t
) = to_context
;
6693 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6694 VARS_MAP maps old ssa names and var_decls to the new ones. */
6697 replace_ssa_name (tree name
, hash_map
<tree
, tree
> *vars_map
,
6702 gcc_assert (!virtual_operand_p (name
));
6704 tree
*loc
= vars_map
->get (name
);
6708 tree decl
= SSA_NAME_VAR (name
);
6711 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name
));
6712 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
6713 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6714 decl
, SSA_NAME_DEF_STMT (name
));
6717 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6718 name
, SSA_NAME_DEF_STMT (name
));
6720 /* Now that we've used the def stmt to define new_name, make sure it
6721 doesn't define name anymore. */
6722 SSA_NAME_DEF_STMT (name
) = NULL
;
6724 vars_map
->put (name
, new_name
);
6738 hash_map
<tree
, tree
> *vars_map
;
6739 htab_t new_label_map
;
6740 hash_map
<void *, void *> *eh_map
;
6744 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6745 contained in *TP if it has been ORIG_BLOCK previously and change the
6746 DECL_CONTEXT of every local variable referenced in *TP. */
6749 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
6751 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6752 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6757 tree block
= TREE_BLOCK (t
);
6758 if (block
== NULL_TREE
)
6760 else if (block
== p
->orig_block
6761 || p
->orig_block
== NULL_TREE
)
6763 /* tree_node_can_be_shared says we can share invariant
6764 addresses but unshare_expr copies them anyways. Make sure
6765 to unshare before adjusting the block in place - we do not
6766 always see a copy here. */
6767 if (TREE_CODE (t
) == ADDR_EXPR
6768 && is_gimple_min_invariant (t
))
6769 *tp
= t
= unshare_expr (t
);
6770 TREE_SET_BLOCK (t
, p
->new_block
);
6772 else if (flag_checking
)
6774 while (block
&& TREE_CODE (block
) == BLOCK
&& block
!= p
->orig_block
)
6775 block
= BLOCK_SUPERCONTEXT (block
);
6776 gcc_assert (block
== p
->orig_block
);
6779 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
6781 if (TREE_CODE (t
) == SSA_NAME
)
6782 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
6783 else if (TREE_CODE (t
) == PARM_DECL
6784 && gimple_in_ssa_p (cfun
))
6785 *tp
= *(p
->vars_map
->get (t
));
6786 else if (TREE_CODE (t
) == LABEL_DECL
)
6788 if (p
->new_label_map
)
6790 struct tree_map in
, *out
;
6792 out
= (struct tree_map
*)
6793 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
6798 /* For FORCED_LABELs we can end up with references from other
6799 functions if some SESE regions are outlined. It is UB to
6800 jump in between them, but they could be used just for printing
6801 addresses etc. In that case, DECL_CONTEXT on the label should
6802 be the function containing the glabel stmt with that LABEL_DECL,
6803 rather than whatever function a reference to the label was seen
6805 if (!FORCED_LABEL (t
) && !DECL_NONLOCAL (t
))
6806 DECL_CONTEXT (t
) = p
->to_context
;
6808 else if (p
->remap_decls_p
)
6810 /* Replace T with its duplicate. T should no longer appear in the
6811 parent function, so this looks wasteful; however, it may appear
6812 in referenced_vars, and more importantly, as virtual operands of
6813 statements, and in alias lists of other variables. It would be
6814 quite difficult to expunge it from all those places. ??? It might
6815 suffice to do this for addressable variables. */
6816 if ((VAR_P (t
) && !is_global_var (t
))
6817 || TREE_CODE (t
) == CONST_DECL
)
6818 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
6822 else if (TYPE_P (t
))
6828 /* Helper for move_stmt_r. Given an EH region number for the source
6829 function, map that to the duplicate EH regio number in the dest. */
6832 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
6834 eh_region old_r
, new_r
;
6836 old_r
= get_eh_region_from_number (old_nr
);
6837 new_r
= static_cast<eh_region
> (*p
->eh_map
->get (old_r
));
6839 return new_r
->index
;
6842 /* Similar, but operate on INTEGER_CSTs. */
6845 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
6849 old_nr
= tree_to_shwi (old_t_nr
);
6850 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
6852 return build_int_cst (integer_type_node
, new_nr
);
6855 /* Like move_stmt_op, but for gimple statements.
6857 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6858 contained in the current statement in *GSI_P and change the
6859 DECL_CONTEXT of every local variable referenced in the current
6863 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
6864 struct walk_stmt_info
*wi
)
6866 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6867 gimple
*stmt
= gsi_stmt (*gsi_p
);
6868 tree block
= gimple_block (stmt
);
6870 if (block
== p
->orig_block
6871 || (p
->orig_block
== NULL_TREE
6872 && block
!= NULL_TREE
))
6873 gimple_set_block (stmt
, p
->new_block
);
6875 switch (gimple_code (stmt
))
6878 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6880 tree r
, fndecl
= gimple_call_fndecl (stmt
);
6881 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
6882 switch (DECL_FUNCTION_CODE (fndecl
))
6884 case BUILT_IN_EH_COPY_VALUES
:
6885 r
= gimple_call_arg (stmt
, 1);
6886 r
= move_stmt_eh_region_tree_nr (r
, p
);
6887 gimple_call_set_arg (stmt
, 1, r
);
6890 case BUILT_IN_EH_POINTER
:
6891 case BUILT_IN_EH_FILTER
:
6892 r
= gimple_call_arg (stmt
, 0);
6893 r
= move_stmt_eh_region_tree_nr (r
, p
);
6894 gimple_call_set_arg (stmt
, 0, r
);
6905 gresx
*resx_stmt
= as_a
<gresx
*> (stmt
);
6906 int r
= gimple_resx_region (resx_stmt
);
6907 r
= move_stmt_eh_region_nr (r
, p
);
6908 gimple_resx_set_region (resx_stmt
, r
);
6912 case GIMPLE_EH_DISPATCH
:
6914 geh_dispatch
*eh_dispatch_stmt
= as_a
<geh_dispatch
*> (stmt
);
6915 int r
= gimple_eh_dispatch_region (eh_dispatch_stmt
);
6916 r
= move_stmt_eh_region_nr (r
, p
);
6917 gimple_eh_dispatch_set_region (eh_dispatch_stmt
, r
);
6921 case GIMPLE_OMP_RETURN
:
6922 case GIMPLE_OMP_CONTINUE
:
6927 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
6928 so that such labels can be referenced from other regions.
6929 Make sure to update it when seeing a GIMPLE_LABEL though,
6930 that is the owner of the label. */
6931 walk_gimple_op (stmt
, move_stmt_op
, wi
);
6932 *handled_ops_p
= true;
6933 tree label
= gimple_label_label (as_a
<glabel
*> (stmt
));
6934 if (FORCED_LABEL (label
) || DECL_NONLOCAL (label
))
6935 DECL_CONTEXT (label
) = p
->to_context
;
6940 if (is_gimple_omp (stmt
))
6942 /* Do not remap variables inside OMP directives. Variables
6943 referenced in clauses and directive header belong to the
6944 parent function and should not be moved into the child
6946 bool save_remap_decls_p
= p
->remap_decls_p
;
6947 p
->remap_decls_p
= false;
6948 *handled_ops_p
= true;
6950 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
6953 p
->remap_decls_p
= save_remap_decls_p
;
6961 /* Move basic block BB from function CFUN to function DEST_FN. The
6962 block is moved out of the original linked list and placed after
6963 block AFTER in the new list. Also, the block is removed from the
6964 original array of blocks and placed in DEST_FN's array of blocks.
6965 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6966 updated to reflect the moved edges.
6968 The local variables are remapped to new instances, VARS_MAP is used
6969 to record the mapping. */
6972 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
6973 basic_block after
, bool update_edge_count_p
,
6974 struct move_stmt_d
*d
)
6976 struct control_flow_graph
*cfg
;
6979 gimple_stmt_iterator si
;
6980 unsigned old_len
, new_len
;
6982 /* Remove BB from dominance structures. */
6983 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
6985 /* Move BB from its current loop to the copy in the new function. */
6988 struct loop
*new_loop
= (struct loop
*)bb
->loop_father
->aux
;
6990 bb
->loop_father
= new_loop
;
6993 /* Link BB to the new linked list. */
6994 move_block_after (bb
, after
);
6996 /* Update the edge count in the corresponding flowgraphs. */
6997 if (update_edge_count_p
)
6998 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7000 cfun
->cfg
->x_n_edges
--;
7001 dest_cfun
->cfg
->x_n_edges
++;
7004 /* Remove BB from the original basic block array. */
7005 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
7006 cfun
->cfg
->x_n_basic_blocks
--;
7008 /* Grow DEST_CFUN's basic block array if needed. */
7009 cfg
= dest_cfun
->cfg
;
7010 cfg
->x_n_basic_blocks
++;
7011 if (bb
->index
>= cfg
->x_last_basic_block
)
7012 cfg
->x_last_basic_block
= bb
->index
+ 1;
7014 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
7015 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
7017 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
7018 vec_safe_grow_cleared (cfg
->x_basic_block_info
, new_len
);
7021 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
7023 /* Remap the variables in phi nodes. */
7024 for (gphi_iterator psi
= gsi_start_phis (bb
);
7027 gphi
*phi
= psi
.phi ();
7029 tree op
= PHI_RESULT (phi
);
7033 if (virtual_operand_p (op
))
7035 /* Remove the phi nodes for virtual operands (alias analysis will be
7036 run for the new function, anyway). */
7037 remove_phi_node (&psi
, true);
7041 SET_PHI_RESULT (phi
,
7042 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
7043 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
7045 op
= USE_FROM_PTR (use
);
7046 if (TREE_CODE (op
) == SSA_NAME
)
7047 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
7050 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
7052 location_t locus
= gimple_phi_arg_location (phi
, i
);
7053 tree block
= LOCATION_BLOCK (locus
);
7055 if (locus
== UNKNOWN_LOCATION
)
7057 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
7059 locus
= set_block (locus
, d
->new_block
);
7060 gimple_phi_arg_set_location (phi
, i
, locus
);
7067 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7069 gimple
*stmt
= gsi_stmt (si
);
7070 struct walk_stmt_info wi
;
7072 memset (&wi
, 0, sizeof (wi
));
7074 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
7076 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
7078 tree label
= gimple_label_label (label_stmt
);
7079 int uid
= LABEL_DECL_UID (label
);
7081 gcc_assert (uid
> -1);
7083 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
7084 if (old_len
<= (unsigned) uid
)
7086 new_len
= 3 * uid
/ 2 + 1;
7087 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, new_len
);
7090 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
7091 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
7093 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
7095 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
7096 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
7099 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
7100 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
7102 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
7103 gimple_remove_stmt_histograms (cfun
, stmt
);
7105 /* We cannot leave any operands allocated from the operand caches of
7106 the current function. */
7107 free_stmt_operands (cfun
, stmt
);
7108 push_cfun (dest_cfun
);
7113 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7114 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
7116 tree block
= LOCATION_BLOCK (e
->goto_locus
);
7117 if (d
->orig_block
== NULL_TREE
7118 || block
== d
->orig_block
)
7119 e
->goto_locus
= set_block (e
->goto_locus
, d
->new_block
);
7123 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7124 the outermost EH region. Use REGION as the incoming base EH region. */
7127 find_outermost_region_in_block (struct function
*src_cfun
,
7128 basic_block bb
, eh_region region
)
7130 gimple_stmt_iterator si
;
7132 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7134 gimple
*stmt
= gsi_stmt (si
);
7135 eh_region stmt_region
;
7138 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
7139 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
7143 region
= stmt_region
;
7144 else if (stmt_region
!= region
)
7146 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
7147 gcc_assert (region
!= NULL
);
7156 new_label_mapper (tree decl
, void *data
)
7158 htab_t hash
= (htab_t
) data
;
7162 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
7164 m
= XNEW (struct tree_map
);
7165 m
->hash
= DECL_UID (decl
);
7166 m
->base
.from
= decl
;
7167 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
7168 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
7169 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
7170 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
7172 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
7173 gcc_assert (*slot
== NULL
);
7180 /* Tree walker to replace the decls used inside value expressions by
7184 replace_block_vars_by_duplicates_1 (tree
*tp
, int *walk_subtrees
, void *data
)
7186 struct replace_decls_d
*rd
= (struct replace_decls_d
*)data
;
7188 switch (TREE_CODE (*tp
))
7193 replace_by_duplicate_decl (tp
, rd
->vars_map
, rd
->to_context
);
7199 if (IS_TYPE_OR_DECL_P (*tp
))
7200 *walk_subtrees
= false;
7205 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7209 replace_block_vars_by_duplicates (tree block
, hash_map
<tree
, tree
> *vars_map
,
7214 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
7217 if (!VAR_P (t
) && TREE_CODE (t
) != CONST_DECL
)
7219 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
7222 if (VAR_P (*tp
) && DECL_HAS_VALUE_EXPR_P (*tp
))
7224 tree x
= DECL_VALUE_EXPR (*tp
);
7225 struct replace_decls_d rd
= { vars_map
, to_context
};
7227 walk_tree (&x
, replace_block_vars_by_duplicates_1
, &rd
, NULL
);
7228 SET_DECL_VALUE_EXPR (t
, x
);
7229 DECL_HAS_VALUE_EXPR_P (t
) = 1;
7231 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
7236 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
7237 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
7240 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7244 fixup_loop_arrays_after_move (struct function
*fn1
, struct function
*fn2
,
7247 /* Discard it from the old loop array. */
7248 (*get_loops (fn1
))[loop
->num
] = NULL
;
7250 /* Place it in the new loop array, assigning it a new number. */
7251 loop
->num
= number_of_loops (fn2
);
7252 vec_safe_push (loops_for_fn (fn2
)->larray
, loop
);
7254 /* Recurse to children. */
7255 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
7256 fixup_loop_arrays_after_move (fn1
, fn2
, loop
);
7259 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7260 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7263 verify_sese (basic_block entry
, basic_block exit
, vec
<basic_block
> *bbs_p
)
7268 bitmap bbs
= BITMAP_ALLOC (NULL
);
7271 gcc_assert (entry
!= NULL
);
7272 gcc_assert (entry
!= exit
);
7273 gcc_assert (bbs_p
!= NULL
);
7275 gcc_assert (bbs_p
->length () > 0);
7277 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7278 bitmap_set_bit (bbs
, bb
->index
);
7280 gcc_assert (bitmap_bit_p (bbs
, entry
->index
));
7281 gcc_assert (exit
== NULL
|| bitmap_bit_p (bbs
, exit
->index
));
7283 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7287 gcc_assert (single_pred_p (entry
));
7288 gcc_assert (!bitmap_bit_p (bbs
, single_pred (entry
)->index
));
7291 for (ei
= ei_start (bb
->preds
); !ei_end_p (ei
); ei_next (&ei
))
7294 gcc_assert (bitmap_bit_p (bbs
, e
->src
->index
));
7299 gcc_assert (single_succ_p (exit
));
7300 gcc_assert (!bitmap_bit_p (bbs
, single_succ (exit
)->index
));
7303 for (ei
= ei_start (bb
->succs
); !ei_end_p (ei
); ei_next (&ei
))
7306 gcc_assert (bitmap_bit_p (bbs
, e
->dest
->index
));
7313 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7316 gather_ssa_name_hash_map_from (tree
const &from
, tree
const &, void *data
)
7318 bitmap release_names
= (bitmap
)data
;
7320 if (TREE_CODE (from
) != SSA_NAME
)
7323 bitmap_set_bit (release_names
, SSA_NAME_VERSION (from
));
7327 /* Return LOOP_DIST_ALIAS call if present in BB. */
7330 find_loop_dist_alias (basic_block bb
)
7332 gimple
*g
= last_stmt (bb
);
7333 if (g
== NULL
|| gimple_code (g
) != GIMPLE_COND
)
7336 gimple_stmt_iterator gsi
= gsi_for_stmt (g
);
7338 if (gsi_end_p (gsi
))
7342 if (gimple_call_internal_p (g
, IFN_LOOP_DIST_ALIAS
))
7347 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7348 to VALUE and update any immediate uses of it's LHS. */
7351 fold_loop_internal_call (gimple
*g
, tree value
)
7353 tree lhs
= gimple_call_lhs (g
);
7354 use_operand_p use_p
;
7355 imm_use_iterator iter
;
7357 gimple_stmt_iterator gsi
= gsi_for_stmt (g
);
7359 update_call_from_tree (&gsi
, value
);
7360 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
7362 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
7363 SET_USE (use_p
, value
);
7364 update_stmt (use_stmt
);
7368 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7369 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7370 single basic block in the original CFG and the new basic block is
7371 returned. DEST_CFUN must not have a CFG yet.
7373 Note that the region need not be a pure SESE region. Blocks inside
7374 the region may contain calls to abort/exit. The only restriction
7375 is that ENTRY_BB should be the only entry point and it must
7378 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7379 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7380 to the new function.
7382 All local variables referenced in the region are assumed to be in
7383 the corresponding BLOCK_VARS and unexpanded variable lists
7384 associated with DEST_CFUN.
7386 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7387 reimplement move_sese_region_to_fn by duplicating the region rather than
7391 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
7392 basic_block exit_bb
, tree orig_block
)
7394 vec
<basic_block
> bbs
, dom_bbs
;
7395 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
7396 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
7397 struct function
*saved_cfun
= cfun
;
7398 int *entry_flag
, *exit_flag
;
7399 profile_probability
*entry_prob
, *exit_prob
;
7400 unsigned i
, num_entry_edges
, num_exit_edges
, num_nodes
;
7403 htab_t new_label_map
;
7404 hash_map
<void *, void *> *eh_map
;
7405 struct loop
*loop
= entry_bb
->loop_father
;
7406 struct loop
*loop0
= get_loop (saved_cfun
, 0);
7407 struct move_stmt_d d
;
7409 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7411 gcc_assert (entry_bb
!= exit_bb
7413 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
7415 /* Collect all the blocks in the region. Manually add ENTRY_BB
7416 because it won't be added by dfs_enumerate_from. */
7418 bbs
.safe_push (entry_bb
);
7419 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
7422 verify_sese (entry_bb
, exit_bb
, &bbs
);
7424 /* The blocks that used to be dominated by something in BBS will now be
7425 dominated by the new block. */
7426 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
7430 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7431 the predecessor edges to ENTRY_BB and the successor edges to
7432 EXIT_BB so that we can re-attach them to the new basic block that
7433 will replace the region. */
7434 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
7435 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
7436 entry_flag
= XNEWVEC (int, num_entry_edges
);
7437 entry_prob
= XNEWVEC (profile_probability
, num_entry_edges
);
7439 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
7441 entry_prob
[i
] = e
->probability
;
7442 entry_flag
[i
] = e
->flags
;
7443 entry_pred
[i
++] = e
->src
;
7449 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
7450 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
7451 exit_flag
= XNEWVEC (int, num_exit_edges
);
7452 exit_prob
= XNEWVEC (profile_probability
, num_exit_edges
);
7454 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
7456 exit_prob
[i
] = e
->probability
;
7457 exit_flag
[i
] = e
->flags
;
7458 exit_succ
[i
++] = e
->dest
;
7470 /* Switch context to the child function to initialize DEST_FN's CFG. */
7471 gcc_assert (dest_cfun
->cfg
== NULL
);
7472 push_cfun (dest_cfun
);
7474 init_empty_tree_cfg ();
7476 /* Initialize EH information for the new function. */
7478 new_label_map
= NULL
;
7481 eh_region region
= NULL
;
7483 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7484 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
7486 init_eh_for_function ();
7489 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
7490 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
7491 new_label_mapper
, new_label_map
);
7495 /* Initialize an empty loop tree. */
7496 struct loops
*loops
= ggc_cleared_alloc
<struct loops
> ();
7497 init_loops_structure (dest_cfun
, loops
, 1);
7498 loops
->state
= LOOPS_MAY_HAVE_MULTIPLE_LATCHES
;
7499 set_loops_for_fn (dest_cfun
, loops
);
7501 vec
<loop_p
, va_gc
> *larray
= get_loops (saved_cfun
)->copy ();
7503 /* Move the outlined loop tree part. */
7504 num_nodes
= bbs
.length ();
7505 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7507 if (bb
->loop_father
->header
== bb
)
7509 struct loop
*this_loop
= bb
->loop_father
;
7510 struct loop
*outer
= loop_outer (this_loop
);
7512 /* If the SESE region contains some bbs ending with
7513 a noreturn call, those are considered to belong
7514 to the outermost loop in saved_cfun, rather than
7515 the entry_bb's loop_father. */
7519 num_nodes
-= this_loop
->num_nodes
;
7520 flow_loop_tree_node_remove (bb
->loop_father
);
7521 flow_loop_tree_node_add (get_loop (dest_cfun
, 0), this_loop
);
7522 fixup_loop_arrays_after_move (saved_cfun
, cfun
, this_loop
);
7525 else if (bb
->loop_father
== loop0
&& loop0
!= loop
)
7528 /* Remove loop exits from the outlined region. */
7529 if (loops_for_fn (saved_cfun
)->exits
)
7530 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7532 struct loops
*l
= loops_for_fn (saved_cfun
);
7534 = l
->exits
->find_slot_with_hash (e
, htab_hash_pointer (e
),
7537 l
->exits
->clear_slot (slot
);
7541 /* Adjust the number of blocks in the tree root of the outlined part. */
7542 get_loop (dest_cfun
, 0)->num_nodes
= bbs
.length () + 2;
7544 /* Setup a mapping to be used by move_block_to_fn. */
7545 loop
->aux
= current_loops
->tree_root
;
7546 loop0
->aux
= current_loops
->tree_root
;
7548 /* Fix up orig_loop_num. If the block referenced in it has been moved
7549 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7551 signed char *moved_orig_loop_num
= NULL
;
7552 FOR_EACH_LOOP_FN (dest_cfun
, dloop
, 0)
7553 if (dloop
->orig_loop_num
)
7555 if (moved_orig_loop_num
== NULL
)
7557 = XCNEWVEC (signed char, vec_safe_length (larray
));
7558 if ((*larray
)[dloop
->orig_loop_num
] != NULL
7559 && get_loop (saved_cfun
, dloop
->orig_loop_num
) == NULL
)
7561 if (moved_orig_loop_num
[dloop
->orig_loop_num
] >= 0
7562 && moved_orig_loop_num
[dloop
->orig_loop_num
] < 2)
7563 moved_orig_loop_num
[dloop
->orig_loop_num
]++;
7564 dloop
->orig_loop_num
= (*larray
)[dloop
->orig_loop_num
]->num
;
7568 moved_orig_loop_num
[dloop
->orig_loop_num
] = -1;
7569 dloop
->orig_loop_num
= 0;
7574 if (moved_orig_loop_num
)
7576 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7578 gimple
*g
= find_loop_dist_alias (bb
);
7582 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
7583 gcc_assert (orig_loop_num
7584 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
7585 if (moved_orig_loop_num
[orig_loop_num
] == 2)
7587 /* If we have moved both loops with this orig_loop_num into
7588 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7589 too, update the first argument. */
7590 gcc_assert ((*larray
)[dloop
->orig_loop_num
] != NULL
7591 && (get_loop (saved_cfun
, dloop
->orig_loop_num
)
7593 tree t
= build_int_cst (integer_type_node
,
7594 (*larray
)[dloop
->orig_loop_num
]->num
);
7595 gimple_call_set_arg (g
, 0, t
);
7597 /* Make sure the following loop will not update it. */
7598 moved_orig_loop_num
[orig_loop_num
] = 0;
7601 /* Otherwise at least one of the loops stayed in saved_cfun.
7602 Remove the LOOP_DIST_ALIAS call. */
7603 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
7605 FOR_EACH_BB_FN (bb
, saved_cfun
)
7607 gimple
*g
= find_loop_dist_alias (bb
);
7610 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
7611 gcc_assert (orig_loop_num
7612 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
7613 if (moved_orig_loop_num
[orig_loop_num
])
7614 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7615 of the corresponding loops was moved, remove it. */
7616 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
7618 XDELETEVEC (moved_orig_loop_num
);
7622 /* Move blocks from BBS into DEST_CFUN. */
7623 gcc_assert (bbs
.length () >= 2);
7624 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
7625 hash_map
<tree
, tree
> vars_map
;
7627 memset (&d
, 0, sizeof (d
));
7628 d
.orig_block
= orig_block
;
7629 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
7630 d
.from_context
= cfun
->decl
;
7631 d
.to_context
= dest_cfun
->decl
;
7632 d
.vars_map
= &vars_map
;
7633 d
.new_label_map
= new_label_map
;
7635 d
.remap_decls_p
= true;
7637 if (gimple_in_ssa_p (cfun
))
7638 for (tree arg
= DECL_ARGUMENTS (d
.to_context
); arg
; arg
= DECL_CHAIN (arg
))
7640 tree narg
= make_ssa_name_fn (dest_cfun
, arg
, gimple_build_nop ());
7641 set_ssa_default_def (dest_cfun
, arg
, narg
);
7642 vars_map
.put (arg
, narg
);
7645 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7647 /* No need to update edge counts on the last block. It has
7648 already been updated earlier when we detached the region from
7649 the original CFG. */
7650 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
7656 /* Loop sizes are no longer correct, fix them up. */
7657 loop
->num_nodes
-= num_nodes
;
7658 for (struct loop
*outer
= loop_outer (loop
);
7659 outer
; outer
= loop_outer (outer
))
7660 outer
->num_nodes
-= num_nodes
;
7661 loop0
->num_nodes
-= bbs
.length () - num_nodes
;
7663 if (saved_cfun
->has_simduid_loops
|| saved_cfun
->has_force_vectorize_loops
)
7666 for (i
= 0; vec_safe_iterate (loops
->larray
, i
, &aloop
); i
++)
7671 replace_by_duplicate_decl (&aloop
->simduid
, d
.vars_map
,
7673 dest_cfun
->has_simduid_loops
= true;
7675 if (aloop
->force_vectorize
)
7676 dest_cfun
->has_force_vectorize_loops
= true;
7680 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7684 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7686 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7687 = BLOCK_SUBBLOCKS (orig_block
);
7688 for (block
= BLOCK_SUBBLOCKS (orig_block
);
7689 block
; block
= BLOCK_CHAIN (block
))
7690 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
7691 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
7694 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
7695 &vars_map
, dest_cfun
->decl
);
7698 htab_delete (new_label_map
);
7702 if (gimple_in_ssa_p (cfun
))
7704 /* We need to release ssa-names in a defined order, so first find them,
7705 and then iterate in ascending version order. */
7706 bitmap release_names
= BITMAP_ALLOC (NULL
);
7707 vars_map
.traverse
<void *, gather_ssa_name_hash_map_from
> (release_names
);
7710 EXECUTE_IF_SET_IN_BITMAP (release_names
, 0, i
, bi
)
7711 release_ssa_name (ssa_name (i
));
7712 BITMAP_FREE (release_names
);
7715 /* Rewire the entry and exit blocks. The successor to the entry
7716 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7717 the child function. Similarly, the predecessor of DEST_FN's
7718 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7719 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7720 various CFG manipulation function get to the right CFG.
7722 FIXME, this is silly. The CFG ought to become a parameter to
7724 push_cfun (dest_cfun
);
7725 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= entry_bb
->count
;
7726 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
), entry_bb
, EDGE_FALLTHRU
);
7729 make_single_succ_edge (exit_bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
7730 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= exit_bb
->count
;
7733 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= profile_count::zero ();
7736 /* Back in the original function, the SESE region has disappeared,
7737 create a new basic block in its place. */
7738 bb
= create_empty_bb (entry_pred
[0]);
7740 add_bb_to_loop (bb
, loop
);
7741 for (i
= 0; i
< num_entry_edges
; i
++)
7743 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
7744 e
->probability
= entry_prob
[i
];
7747 for (i
= 0; i
< num_exit_edges
; i
++)
7749 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
7750 e
->probability
= exit_prob
[i
];
7753 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
7754 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
7755 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
7772 /* Dump default def DEF to file FILE using FLAGS and indentation
7776 dump_default_def (FILE *file
, tree def
, int spc
, dump_flags_t flags
)
7778 for (int i
= 0; i
< spc
; ++i
)
7779 fprintf (file
, " ");
7780 dump_ssaname_info_to_file (file
, def
, spc
);
7782 print_generic_expr (file
, TREE_TYPE (def
), flags
);
7783 fprintf (file
, " ");
7784 print_generic_expr (file
, def
, flags
);
7785 fprintf (file
, " = ");
7786 print_generic_expr (file
, SSA_NAME_VAR (def
), flags
);
7787 fprintf (file
, ";\n");
7790 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7793 print_no_sanitize_attr_value (FILE *file
, tree value
)
7795 unsigned int flags
= tree_to_uhwi (value
);
7797 for (int i
= 0; sanitizer_opts
[i
].name
!= NULL
; ++i
)
7799 if ((sanitizer_opts
[i
].flag
& flags
) == sanitizer_opts
[i
].flag
)
7802 fprintf (file
, " | ");
7803 fprintf (file
, "%s", sanitizer_opts
[i
].name
);
7809 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7813 dump_function_to_file (tree fndecl
, FILE *file
, dump_flags_t flags
)
7815 tree arg
, var
, old_current_fndecl
= current_function_decl
;
7816 struct function
*dsf
;
7817 bool ignore_topmost_bind
= false, any_var
= false;
7820 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
7821 && decl_is_tm_clone (fndecl
));
7822 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
7824 if (DECL_ATTRIBUTES (fndecl
) != NULL_TREE
)
7826 fprintf (file
, "__attribute__((");
7830 for (chain
= DECL_ATTRIBUTES (fndecl
); chain
;
7831 first
= false, chain
= TREE_CHAIN (chain
))
7834 fprintf (file
, ", ");
7836 tree name
= get_attribute_name (chain
);
7837 print_generic_expr (file
, name
, dump_flags
);
7838 if (TREE_VALUE (chain
) != NULL_TREE
)
7840 fprintf (file
, " (");
7842 if (strstr (IDENTIFIER_POINTER (name
), "no_sanitize"))
7843 print_no_sanitize_attr_value (file
, TREE_VALUE (chain
));
7845 print_generic_expr (file
, TREE_VALUE (chain
), dump_flags
);
7846 fprintf (file
, ")");
7850 fprintf (file
, "))\n");
7853 current_function_decl
= fndecl
;
7854 if (flags
& TDF_GIMPLE
)
7856 print_generic_expr (file
, TREE_TYPE (TREE_TYPE (fndecl
)),
7857 dump_flags
| TDF_SLIM
);
7858 fprintf (file
, " __GIMPLE ()\n%s (", function_name (fun
));
7861 fprintf (file
, "%s %s(", function_name (fun
), tmclone
? "[tm-clone] " : "");
7863 arg
= DECL_ARGUMENTS (fndecl
);
7866 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
7867 fprintf (file
, " ");
7868 print_generic_expr (file
, arg
, dump_flags
);
7869 if (DECL_CHAIN (arg
))
7870 fprintf (file
, ", ");
7871 arg
= DECL_CHAIN (arg
);
7873 fprintf (file
, ")\n");
7875 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
7876 if (dsf
&& (flags
& TDF_EH
))
7877 dump_eh_tree (file
, dsf
);
7879 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
7881 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
7882 current_function_decl
= old_current_fndecl
;
7886 /* When GIMPLE is lowered, the variables are no longer available in
7887 BIND_EXPRs, so display them separately. */
7888 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
7891 ignore_topmost_bind
= true;
7893 fprintf (file
, "{\n");
7894 if (gimple_in_ssa_p (fun
)
7895 && (flags
& TDF_ALIAS
))
7897 for (arg
= DECL_ARGUMENTS (fndecl
); arg
!= NULL
;
7898 arg
= DECL_CHAIN (arg
))
7900 tree def
= ssa_default_def (fun
, arg
);
7902 dump_default_def (file
, def
, 2, flags
);
7905 tree res
= DECL_RESULT (fun
->decl
);
7906 if (res
!= NULL_TREE
7907 && DECL_BY_REFERENCE (res
))
7909 tree def
= ssa_default_def (fun
, res
);
7911 dump_default_def (file
, def
, 2, flags
);
7914 tree static_chain
= fun
->static_chain_decl
;
7915 if (static_chain
!= NULL_TREE
)
7917 tree def
= ssa_default_def (fun
, static_chain
);
7919 dump_default_def (file
, def
, 2, flags
);
7923 if (!vec_safe_is_empty (fun
->local_decls
))
7924 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
7926 print_generic_decl (file
, var
, flags
);
7927 fprintf (file
, "\n");
7934 if (gimple_in_ssa_p (cfun
))
7935 FOR_EACH_SSA_NAME (ix
, name
, cfun
)
7937 if (!SSA_NAME_VAR (name
))
7939 fprintf (file
, " ");
7940 print_generic_expr (file
, TREE_TYPE (name
), flags
);
7941 fprintf (file
, " ");
7942 print_generic_expr (file
, name
, flags
);
7943 fprintf (file
, ";\n");
7950 if (fun
&& fun
->decl
== fndecl
7952 && basic_block_info_for_fn (fun
))
7954 /* If the CFG has been built, emit a CFG-based dump. */
7955 if (!ignore_topmost_bind
)
7956 fprintf (file
, "{\n");
7958 if (any_var
&& n_basic_blocks_for_fn (fun
))
7959 fprintf (file
, "\n");
7961 FOR_EACH_BB_FN (bb
, fun
)
7962 dump_bb (file
, bb
, 2, flags
);
7964 fprintf (file
, "}\n");
7966 else if (fun
->curr_properties
& PROP_gimple_any
)
7968 /* The function is now in GIMPLE form but the CFG has not been
7969 built yet. Emit the single sequence of GIMPLE statements
7970 that make up its body. */
7971 gimple_seq body
= gimple_body (fndecl
);
7973 if (gimple_seq_first_stmt (body
)
7974 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
7975 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
7976 print_gimple_seq (file
, body
, 0, flags
);
7979 if (!ignore_topmost_bind
)
7980 fprintf (file
, "{\n");
7983 fprintf (file
, "\n");
7985 print_gimple_seq (file
, body
, 2, flags
);
7986 fprintf (file
, "}\n");
7993 /* Make a tree based dump. */
7994 chain
= DECL_SAVED_TREE (fndecl
);
7995 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
7997 if (ignore_topmost_bind
)
7999 chain
= BIND_EXPR_BODY (chain
);
8007 if (!ignore_topmost_bind
)
8009 fprintf (file
, "{\n");
8010 /* No topmost bind, pretend it's ignored for later. */
8011 ignore_topmost_bind
= true;
8017 fprintf (file
, "\n");
8019 print_generic_stmt_indented (file
, chain
, flags
, indent
);
8020 if (ignore_topmost_bind
)
8021 fprintf (file
, "}\n");
8024 if (flags
& TDF_ENUMERATE_LOCALS
)
8025 dump_enumerated_decls (file
, flags
);
8026 fprintf (file
, "\n\n");
8028 current_function_decl
= old_current_fndecl
;
8031 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8034 debug_function (tree fn
, dump_flags_t flags
)
8036 dump_function_to_file (fn
, stderr
, flags
);
8040 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8043 print_pred_bbs (FILE *file
, basic_block bb
)
8048 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
8049 fprintf (file
, "bb_%d ", e
->src
->index
);
8053 /* Print on FILE the indexes for the successors of basic_block BB. */
8056 print_succ_bbs (FILE *file
, basic_block bb
)
8061 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8062 fprintf (file
, "bb_%d ", e
->dest
->index
);
8065 /* Print to FILE the basic block BB following the VERBOSITY level. */
8068 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
8070 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
8071 memset ((void *) s_indent
, ' ', (size_t) indent
);
8072 s_indent
[indent
] = '\0';
8074 /* Print basic_block's header. */
8077 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
8078 print_pred_bbs (file
, bb
);
8079 fprintf (file
, "}, succs = {");
8080 print_succ_bbs (file
, bb
);
8081 fprintf (file
, "})\n");
8084 /* Print basic_block's body. */
8087 fprintf (file
, "%s {\n", s_indent
);
8088 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
8089 fprintf (file
, "%s }\n", s_indent
);
8093 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
8095 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8096 VERBOSITY level this outputs the contents of the loop, or just its
8100 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
8108 s_indent
= (char *) alloca ((size_t) indent
+ 1);
8109 memset ((void *) s_indent
, ' ', (size_t) indent
);
8110 s_indent
[indent
] = '\0';
8112 /* Print loop's header. */
8113 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
8115 fprintf (file
, "header = %d", loop
->header
->index
);
8118 fprintf (file
, "deleted)\n");
8122 fprintf (file
, ", latch = %d", loop
->latch
->index
);
8124 fprintf (file
, ", multiple latches");
8125 fprintf (file
, ", niter = ");
8126 print_generic_expr (file
, loop
->nb_iterations
);
8128 if (loop
->any_upper_bound
)
8130 fprintf (file
, ", upper_bound = ");
8131 print_decu (loop
->nb_iterations_upper_bound
, file
);
8133 if (loop
->any_likely_upper_bound
)
8135 fprintf (file
, ", likely_upper_bound = ");
8136 print_decu (loop
->nb_iterations_likely_upper_bound
, file
);
8139 if (loop
->any_estimate
)
8141 fprintf (file
, ", estimate = ");
8142 print_decu (loop
->nb_iterations_estimate
, file
);
8145 fprintf (file
, ", unroll = %d", loop
->unroll
);
8146 fprintf (file
, ")\n");
8148 /* Print loop's body. */
8151 fprintf (file
, "%s{\n", s_indent
);
8152 FOR_EACH_BB_FN (bb
, cfun
)
8153 if (bb
->loop_father
== loop
)
8154 print_loops_bb (file
, bb
, indent
, verbosity
);
8156 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
8157 fprintf (file
, "%s}\n", s_indent
);
8161 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8162 spaces. Following VERBOSITY level this outputs the contents of the
8163 loop, or just its structure. */
8166 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
,
8172 print_loop (file
, loop
, indent
, verbosity
);
8173 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
8176 /* Follow a CFG edge from the entry point of the program, and on entry
8177 of a loop, pretty print the loop structure on FILE. */
8180 print_loops (FILE *file
, int verbosity
)
8184 bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
8185 fprintf (file
, "\nLoops in function: %s\n", current_function_name ());
8186 if (bb
&& bb
->loop_father
)
8187 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
8193 debug (struct loop
&ref
)
8195 print_loop (stderr
, &ref
, 0, /*verbosity*/0);
8199 debug (struct loop
*ptr
)
8204 fprintf (stderr
, "<nil>\n");
8207 /* Dump a loop verbosely. */
8210 debug_verbose (struct loop
&ref
)
8212 print_loop (stderr
, &ref
, 0, /*verbosity*/3);
8216 debug_verbose (struct loop
*ptr
)
8221 fprintf (stderr
, "<nil>\n");
8225 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8228 debug_loops (int verbosity
)
8230 print_loops (stderr
, verbosity
);
8233 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8236 debug_loop (struct loop
*loop
, int verbosity
)
8238 print_loop (stderr
, loop
, 0, verbosity
);
8241 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8245 debug_loop_num (unsigned num
, int verbosity
)
8247 debug_loop (get_loop (cfun
, num
), verbosity
);
8250 /* Return true if BB ends with a call, possibly followed by some
8251 instructions that must stay with the call. Return false,
8255 gimple_block_ends_with_call_p (basic_block bb
)
8257 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8258 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
8262 /* Return true if BB ends with a conditional branch. Return false,
8266 gimple_block_ends_with_condjump_p (const_basic_block bb
)
8268 gimple
*stmt
= last_stmt (CONST_CAST_BB (bb
));
8269 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
8273 /* Return true if statement T may terminate execution of BB in ways not
8274 explicitly represtented in the CFG. */
8277 stmt_can_terminate_bb_p (gimple
*t
)
8279 tree fndecl
= NULL_TREE
;
8282 /* Eh exception not handled internally terminates execution of the whole
8284 if (stmt_can_throw_external (t
))
8287 /* NORETURN and LONGJMP calls already have an edge to exit.
8288 CONST and PURE calls do not need one.
8289 We don't currently check for CONST and PURE here, although
8290 it would be a good idea, because those attributes are
8291 figured out from the RTL in mark_constant_function, and
8292 the counter incrementation code from -fprofile-arcs
8293 leads to different results from -fbranch-probabilities. */
8294 if (is_gimple_call (t
))
8296 fndecl
= gimple_call_fndecl (t
);
8297 call_flags
= gimple_call_flags (t
);
8300 if (is_gimple_call (t
)
8302 && DECL_BUILT_IN (fndecl
)
8303 && (call_flags
& ECF_NOTHROW
)
8304 && !(call_flags
& ECF_RETURNS_TWICE
)
8305 /* fork() doesn't really return twice, but the effect of
8306 wrapping it in __gcov_fork() which calls __gcov_flush()
8307 and clears the counters before forking has the same
8308 effect as returning twice. Force a fake edge. */
8309 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
8310 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
8313 if (is_gimple_call (t
))
8319 if (call_flags
& (ECF_PURE
| ECF_CONST
)
8320 && !(call_flags
& ECF_LOOPING_CONST_OR_PURE
))
8323 /* Function call may do longjmp, terminate program or do other things.
8324 Special case noreturn that have non-abnormal edges out as in this case
8325 the fact is sufficiently represented by lack of edges out of T. */
8326 if (!(call_flags
& ECF_NORETURN
))
8330 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8331 if ((e
->flags
& EDGE_FAKE
) == 0)
8335 if (gasm
*asm_stmt
= dyn_cast
<gasm
*> (t
))
8336 if (gimple_asm_volatile_p (asm_stmt
) || gimple_asm_input_p (asm_stmt
))
8343 /* Add fake edges to the function exit for any non constant and non
8344 noreturn calls (or noreturn calls with EH/abnormal edges),
8345 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8346 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8349 The goal is to expose cases in which entering a basic block does
8350 not imply that all subsequent instructions must be executed. */
8353 gimple_flow_call_edges_add (sbitmap blocks
)
8356 int blocks_split
= 0;
8357 int last_bb
= last_basic_block_for_fn (cfun
);
8358 bool check_last_block
= false;
8360 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
8364 check_last_block
= true;
8366 check_last_block
= bitmap_bit_p (blocks
,
8367 EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
->index
);
8369 /* In the last basic block, before epilogue generation, there will be
8370 a fallthru edge to EXIT. Special care is required if the last insn
8371 of the last basic block is a call because make_edge folds duplicate
8372 edges, which would result in the fallthru edge also being marked
8373 fake, which would result in the fallthru edge being removed by
8374 remove_fake_edges, which would result in an invalid CFG.
8376 Moreover, we can't elide the outgoing fake edge, since the block
8377 profiler needs to take this into account in order to solve the minimal
8378 spanning tree in the case that the call doesn't return.
8380 Handle this by adding a dummy instruction in a new last basic block. */
8381 if (check_last_block
)
8383 basic_block bb
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
8384 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8387 if (!gsi_end_p (gsi
))
8390 if (t
&& stmt_can_terminate_bb_p (t
))
8394 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8397 gsi_insert_on_edge (e
, gimple_build_nop ());
8398 gsi_commit_edge_inserts ();
8403 /* Now add fake edges to the function exit for any non constant
8404 calls since there is no way that we can determine if they will
8406 for (i
= 0; i
< last_bb
; i
++)
8408 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8409 gimple_stmt_iterator gsi
;
8410 gimple
*stmt
, *last_stmt
;
8415 if (blocks
&& !bitmap_bit_p (blocks
, i
))
8418 gsi
= gsi_last_nondebug_bb (bb
);
8419 if (!gsi_end_p (gsi
))
8421 last_stmt
= gsi_stmt (gsi
);
8424 stmt
= gsi_stmt (gsi
);
8425 if (stmt_can_terminate_bb_p (stmt
))
8429 /* The handling above of the final block before the
8430 epilogue should be enough to verify that there is
8431 no edge to the exit block in CFG already.
8432 Calling make_edge in such case would cause us to
8433 mark that edge as fake and remove it later. */
8434 if (flag_checking
&& stmt
== last_stmt
)
8436 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8437 gcc_assert (e
== NULL
);
8440 /* Note that the following may create a new basic block
8441 and renumber the existing basic blocks. */
8442 if (stmt
!= last_stmt
)
8444 e
= split_block (bb
, stmt
);
8448 e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
8449 e
->probability
= profile_probability::guessed_never ();
8453 while (!gsi_end_p (gsi
));
8458 checking_verify_flow_info ();
8460 return blocks_split
;
8463 /* Removes edge E and all the blocks dominated by it, and updates dominance
8464 information. The IL in E->src needs to be updated separately.
8465 If dominance info is not available, only the edge E is removed.*/
8468 remove_edge_and_dominated_blocks (edge e
)
8470 vec
<basic_block
> bbs_to_remove
= vNULL
;
8471 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
8474 bool none_removed
= false;
8476 basic_block bb
, dbb
;
8479 /* If we are removing a path inside a non-root loop that may change
8480 loop ownership of blocks or remove loops. Mark loops for fixup. */
8482 && loop_outer (e
->src
->loop_father
) != NULL
8483 && e
->src
->loop_father
== e
->dest
->loop_father
)
8484 loops_state_set (LOOPS_NEED_FIXUP
);
8486 if (!dom_info_available_p (CDI_DOMINATORS
))
8492 /* No updating is needed for edges to exit. */
8493 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8495 if (cfgcleanup_altered_bbs
)
8496 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8501 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8502 that is not dominated by E->dest, then this set is empty. Otherwise,
8503 all the basic blocks dominated by E->dest are removed.
8505 Also, to DF_IDOM we store the immediate dominators of the blocks in
8506 the dominance frontier of E (i.e., of the successors of the
8507 removed blocks, if there are any, and of E->dest otherwise). */
8508 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
8513 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
8515 none_removed
= true;
8520 auto_bitmap df
, df_idom
;
8522 bitmap_set_bit (df_idom
,
8523 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
8526 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
8527 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8529 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
8531 if (f
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
8532 bitmap_set_bit (df
, f
->dest
->index
);
8535 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8536 bitmap_clear_bit (df
, bb
->index
);
8538 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
8540 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8541 bitmap_set_bit (df_idom
,
8542 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
8546 if (cfgcleanup_altered_bbs
)
8548 /* Record the set of the altered basic blocks. */
8549 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8550 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
8553 /* Remove E and the cancelled blocks. */
8558 /* Walk backwards so as to get a chance to substitute all
8559 released DEFs into debug stmts. See
8560 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8562 for (i
= bbs_to_remove
.length (); i
-- > 0; )
8563 delete_basic_block (bbs_to_remove
[i
]);
8566 /* Update the dominance information. The immediate dominator may change only
8567 for blocks whose immediate dominator belongs to DF_IDOM:
8569 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8570 removal. Let Z the arbitrary block such that idom(Z) = Y and
8571 Z dominates X after the removal. Before removal, there exists a path P
8572 from Y to X that avoids Z. Let F be the last edge on P that is
8573 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8574 dominates W, and because of P, Z does not dominate W), and W belongs to
8575 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8576 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
8578 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8579 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
8581 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
8582 bbs_to_fix_dom
.safe_push (dbb
);
8585 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
8587 bbs_to_remove
.release ();
8588 bbs_to_fix_dom
.release ();
8591 /* Purge dead EH edges from basic block BB. */
8594 gimple_purge_dead_eh_edges (basic_block bb
)
8596 bool changed
= false;
8599 gimple
*stmt
= last_stmt (bb
);
8601 if (stmt
&& stmt_can_throw_internal (stmt
))
8604 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8606 if (e
->flags
& EDGE_EH
)
8608 remove_edge_and_dominated_blocks (e
);
8618 /* Purge dead EH edges from basic block listed in BLOCKS. */
8621 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
8623 bool changed
= false;
8627 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8629 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8631 /* Earlier gimple_purge_dead_eh_edges could have removed
8632 this basic block already. */
8633 gcc_assert (bb
|| changed
);
8635 changed
|= gimple_purge_dead_eh_edges (bb
);
8641 /* Purge dead abnormal call edges from basic block BB. */
8644 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
8646 bool changed
= false;
8649 gimple
*stmt
= last_stmt (bb
);
8651 if (!cfun
->has_nonlocal_label
8652 && !cfun
->calls_setjmp
)
8655 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
8658 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8660 if (e
->flags
& EDGE_ABNORMAL
)
8662 if (e
->flags
& EDGE_FALLTHRU
)
8663 e
->flags
&= ~EDGE_ABNORMAL
;
8665 remove_edge_and_dominated_blocks (e
);
8675 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8678 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
8680 bool changed
= false;
8684 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8686 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8688 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8689 this basic block already. */
8690 gcc_assert (bb
|| changed
);
8692 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
8698 /* This function is called whenever a new edge is created or
8702 gimple_execute_on_growing_pred (edge e
)
8704 basic_block bb
= e
->dest
;
8706 if (!gimple_seq_empty_p (phi_nodes (bb
)))
8707 reserve_phi_args_for_new_edge (bb
);
8710 /* This function is called immediately before edge E is removed from
8711 the edge vector E->dest->preds. */
8714 gimple_execute_on_shrinking_pred (edge e
)
8716 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
8717 remove_phi_args (e
);
8720 /*---------------------------------------------------------------------------
8721 Helper functions for Loop versioning
8722 ---------------------------------------------------------------------------*/
8724 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8725 of 'first'. Both of them are dominated by 'new_head' basic block. When
8726 'new_head' was created by 'second's incoming edge it received phi arguments
8727 on the edge by split_edge(). Later, additional edge 'e' was created to
8728 connect 'new_head' and 'first'. Now this routine adds phi args on this
8729 additional edge 'e' that new_head to second edge received as part of edge
8733 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
8734 basic_block new_head
, edge e
)
8737 gphi_iterator psi1
, psi2
;
8739 edge e2
= find_edge (new_head
, second
);
8741 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8742 edge, we should always have an edge from NEW_HEAD to SECOND. */
8743 gcc_assert (e2
!= NULL
);
8745 /* Browse all 'second' basic block phi nodes and add phi args to
8746 edge 'e' for 'first' head. PHI args are always in correct order. */
8748 for (psi2
= gsi_start_phis (second
),
8749 psi1
= gsi_start_phis (first
);
8750 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
8751 gsi_next (&psi2
), gsi_next (&psi1
))
8755 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
8756 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
8761 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8762 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8763 the destination of the ELSE part. */
8766 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
8767 basic_block second_head ATTRIBUTE_UNUSED
,
8768 basic_block cond_bb
, void *cond_e
)
8770 gimple_stmt_iterator gsi
;
8771 gimple
*new_cond_expr
;
8772 tree cond_expr
= (tree
) cond_e
;
8775 /* Build new conditional expr */
8776 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
8777 NULL_TREE
, NULL_TREE
);
8779 /* Add new cond in cond_bb. */
8780 gsi
= gsi_last_bb (cond_bb
);
8781 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
8783 /* Adjust edges appropriately to connect new head with first head
8784 as well as second head. */
8785 e0
= single_succ_edge (cond_bb
);
8786 e0
->flags
&= ~EDGE_FALLTHRU
;
8787 e0
->flags
|= EDGE_FALSE_VALUE
;
8791 /* Do book-keeping of basic block BB for the profile consistency checker.
8792 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8793 then do post-pass accounting. Store the counting in RECORD. */
8795 gimple_account_profile_record (basic_block bb
, int after_pass
,
8796 struct profile_record
*record
)
8798 gimple_stmt_iterator i
;
8799 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
8801 record
->size
[after_pass
]
8802 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
8803 if (bb
->count
.initialized_p ())
8804 record
->time
[after_pass
]
8805 += estimate_num_insns (gsi_stmt (i
),
8806 &eni_time_weights
) * bb
->count
.to_gcov_type ();
8807 else if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
)
8808 record
->time
[after_pass
]
8809 += estimate_num_insns (gsi_stmt (i
),
8810 &eni_time_weights
) * bb
->count
.to_frequency (cfun
);
8814 struct cfg_hooks gimple_cfg_hooks
= {
8816 gimple_verify_flow_info
,
8817 gimple_dump_bb
, /* dump_bb */
8818 gimple_dump_bb_for_graph
, /* dump_bb_for_graph */
8819 create_bb
, /* create_basic_block */
8820 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
8821 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
8822 gimple_can_remove_branch_p
, /* can_remove_branch_p */
8823 remove_bb
, /* delete_basic_block */
8824 gimple_split_block
, /* split_block */
8825 gimple_move_block_after
, /* move_block_after */
8826 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
8827 gimple_merge_blocks
, /* merge_blocks */
8828 gimple_predict_edge
, /* predict_edge */
8829 gimple_predicted_by_p
, /* predicted_by_p */
8830 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
8831 gimple_duplicate_bb
, /* duplicate_block */
8832 gimple_split_edge
, /* split_edge */
8833 gimple_make_forwarder_block
, /* make_forward_block */
8834 NULL
, /* tidy_fallthru_edge */
8835 NULL
, /* force_nonfallthru */
8836 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
8837 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
8838 gimple_flow_call_edges_add
, /* flow_call_edges_add */
8839 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
8840 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
8841 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
8842 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
8843 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
8844 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
8845 flush_pending_stmts
, /* flush_pending_stmts */
8846 gimple_empty_block_p
, /* block_empty_p */
8847 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
8848 gimple_account_profile_record
,
8852 /* Split all critical edges. */
8855 split_critical_edges (void)
8861 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8862 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8863 mappings around the calls to split_edge. */
8864 start_recording_case_labels ();
8865 FOR_ALL_BB_FN (bb
, cfun
)
8867 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8869 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
8871 /* PRE inserts statements to edges and expects that
8872 since split_critical_edges was done beforehand, committing edge
8873 insertions will not split more edges. In addition to critical
8874 edges we must split edges that have multiple successors and
8875 end by control flow statements, such as RESX.
8876 Go ahead and split them too. This matches the logic in
8877 gimple_find_edge_insert_loc. */
8878 else if ((!single_pred_p (e
->dest
)
8879 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
8880 || e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8881 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
8882 && !(e
->flags
& EDGE_ABNORMAL
))
8884 gimple_stmt_iterator gsi
;
8886 gsi
= gsi_last_bb (e
->src
);
8887 if (!gsi_end_p (gsi
)
8888 && stmt_ends_bb_p (gsi_stmt (gsi
))
8889 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
8890 && !gimple_call_builtin_p (gsi_stmt (gsi
),
8896 end_recording_case_labels ();
8902 const pass_data pass_data_split_crit_edges
=
8904 GIMPLE_PASS
, /* type */
8905 "crited", /* name */
8906 OPTGROUP_NONE
, /* optinfo_flags */
8907 TV_TREE_SPLIT_EDGES
, /* tv_id */
8908 PROP_cfg
, /* properties_required */
8909 PROP_no_crit_edges
, /* properties_provided */
8910 0, /* properties_destroyed */
8911 0, /* todo_flags_start */
8912 0, /* todo_flags_finish */
8915 class pass_split_crit_edges
: public gimple_opt_pass
8918 pass_split_crit_edges (gcc::context
*ctxt
)
8919 : gimple_opt_pass (pass_data_split_crit_edges
, ctxt
)
8922 /* opt_pass methods: */
8923 virtual unsigned int execute (function
*) { return split_critical_edges (); }
8925 opt_pass
* clone () { return new pass_split_crit_edges (m_ctxt
); }
8926 }; // class pass_split_crit_edges
8931 make_pass_split_crit_edges (gcc::context
*ctxt
)
8933 return new pass_split_crit_edges (ctxt
);
8937 /* Insert COND expression which is GIMPLE_COND after STMT
8938 in basic block BB with appropriate basic block split
8939 and creation of a new conditionally executed basic block.
8940 Update profile so the new bb is visited with probability PROB.
8941 Return created basic block. */
8943 insert_cond_bb (basic_block bb
, gimple
*stmt
, gimple
*cond
,
8944 profile_probability prob
)
8946 edge fall
= split_block (bb
, stmt
);
8947 gimple_stmt_iterator iter
= gsi_last_bb (bb
);
8950 /* Insert cond statement. */
8951 gcc_assert (gimple_code (cond
) == GIMPLE_COND
);
8952 if (gsi_end_p (iter
))
8953 gsi_insert_before (&iter
, cond
, GSI_CONTINUE_LINKING
);
8955 gsi_insert_after (&iter
, cond
, GSI_CONTINUE_LINKING
);
8957 /* Create conditionally executed block. */
8958 new_bb
= create_empty_bb (bb
);
8959 edge e
= make_edge (bb
, new_bb
, EDGE_TRUE_VALUE
);
8960 e
->probability
= prob
;
8961 new_bb
->count
= e
->count ();
8962 make_single_succ_edge (new_bb
, fall
->dest
, EDGE_FALLTHRU
);
8964 /* Fix edge for split bb. */
8965 fall
->flags
= EDGE_FALSE_VALUE
;
8966 fall
->probability
-= e
->probability
;
8968 /* Update dominance info. */
8969 if (dom_info_available_p (CDI_DOMINATORS
))
8971 set_immediate_dominator (CDI_DOMINATORS
, new_bb
, bb
);
8972 set_immediate_dominator (CDI_DOMINATORS
, fall
->dest
, bb
);
8975 /* Update loop info. */
8977 add_bb_to_loop (new_bb
, bb
->loop_father
);
8982 /* Build a ternary operation and gimplify it. Emit code before GSI.
8983 Return the gimple_val holding the result. */
8986 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
8987 tree type
, tree a
, tree b
, tree c
)
8990 location_t loc
= gimple_location (gsi_stmt (*gsi
));
8992 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
8993 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8997 /* Build a binary operation and gimplify it. Emit code before GSI.
8998 Return the gimple_val holding the result. */
9001 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
9002 tree type
, tree a
, tree b
)
9006 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
9007 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
9011 /* Build a unary operation and gimplify it. Emit code before GSI.
9012 Return the gimple_val holding the result. */
9015 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
9020 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
9021 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
9027 /* Given a basic block B which ends with a conditional and has
9028 precisely two successors, determine which of the edges is taken if
9029 the conditional is true and which is taken if the conditional is
9030 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9033 extract_true_false_edges_from_block (basic_block b
,
9037 edge e
= EDGE_SUCC (b
, 0);
9039 if (e
->flags
& EDGE_TRUE_VALUE
)
9042 *false_edge
= EDGE_SUCC (b
, 1);
9047 *true_edge
= EDGE_SUCC (b
, 1);
9052 /* From a controlling predicate in the immediate dominator DOM of
9053 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9054 predicate evaluates to true and false and store them to
9055 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9056 they are non-NULL. Returns true if the edges can be determined,
9057 else return false. */
9060 extract_true_false_controlled_edges (basic_block dom
, basic_block phiblock
,
9061 edge
*true_controlled_edge
,
9062 edge
*false_controlled_edge
)
9064 basic_block bb
= phiblock
;
9065 edge true_edge
, false_edge
, tem
;
9066 edge e0
= NULL
, e1
= NULL
;
9068 /* We have to verify that one edge into the PHI node is dominated
9069 by the true edge of the predicate block and the other edge
9070 dominated by the false edge. This ensures that the PHI argument
9071 we are going to take is completely determined by the path we
9072 take from the predicate block.
9073 We can only use BB dominance checks below if the destination of
9074 the true/false edges are dominated by their edge, thus only
9075 have a single predecessor. */
9076 extract_true_false_edges_from_block (dom
, &true_edge
, &false_edge
);
9077 tem
= EDGE_PRED (bb
, 0);
9078 if (tem
== true_edge
9079 || (single_pred_p (true_edge
->dest
)
9080 && (tem
->src
== true_edge
->dest
9081 || dominated_by_p (CDI_DOMINATORS
,
9082 tem
->src
, true_edge
->dest
))))
9084 else if (tem
== false_edge
9085 || (single_pred_p (false_edge
->dest
)
9086 && (tem
->src
== false_edge
->dest
9087 || dominated_by_p (CDI_DOMINATORS
,
9088 tem
->src
, false_edge
->dest
))))
9092 tem
= EDGE_PRED (bb
, 1);
9093 if (tem
== true_edge
9094 || (single_pred_p (true_edge
->dest
)
9095 && (tem
->src
== true_edge
->dest
9096 || dominated_by_p (CDI_DOMINATORS
,
9097 tem
->src
, true_edge
->dest
))))
9099 else if (tem
== false_edge
9100 || (single_pred_p (false_edge
->dest
)
9101 && (tem
->src
== false_edge
->dest
9102 || dominated_by_p (CDI_DOMINATORS
,
9103 tem
->src
, false_edge
->dest
))))
9110 if (true_controlled_edge
)
9111 *true_controlled_edge
= e0
;
9112 if (false_controlled_edge
)
9113 *false_controlled_edge
= e1
;
9118 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9119 range [low, high]. Place associated stmts before *GSI. */
9122 generate_range_test (basic_block bb
, tree index
, tree low
, tree high
,
9123 tree
*lhs
, tree
*rhs
)
9125 tree type
= TREE_TYPE (index
);
9126 tree utype
= unsigned_type_for (type
);
9128 low
= fold_convert (type
, low
);
9129 high
= fold_convert (type
, high
);
9131 tree tmp
= make_ssa_name (type
);
9133 = gimple_build_assign (tmp
, MINUS_EXPR
, index
, low
);
9135 *lhs
= make_ssa_name (utype
);
9136 gassign
*a
= gimple_build_assign (*lhs
, NOP_EXPR
, tmp
);
9138 *rhs
= fold_build2 (MINUS_EXPR
, utype
, high
, low
);
9139 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9140 gsi_insert_before (&gsi
, sub1
, GSI_SAME_STMT
);
9141 gsi_insert_before (&gsi
, a
, GSI_SAME_STMT
);
9144 /* Emit return warnings. */
9148 const pass_data pass_data_warn_function_return
=
9150 GIMPLE_PASS
, /* type */
9151 "*warn_function_return", /* name */
9152 OPTGROUP_NONE
, /* optinfo_flags */
9153 TV_NONE
, /* tv_id */
9154 PROP_cfg
, /* properties_required */
9155 0, /* properties_provided */
9156 0, /* properties_destroyed */
9157 0, /* todo_flags_start */
9158 0, /* todo_flags_finish */
9161 class pass_warn_function_return
: public gimple_opt_pass
9164 pass_warn_function_return (gcc::context
*ctxt
)
9165 : gimple_opt_pass (pass_data_warn_function_return
, ctxt
)
9168 /* opt_pass methods: */
9169 virtual unsigned int execute (function
*);
9171 }; // class pass_warn_function_return
9174 pass_warn_function_return::execute (function
*fun
)
9176 source_location location
;
9181 if (!targetm
.warn_func_return (fun
->decl
))
9184 /* If we have a path to EXIT, then we do return. */
9185 if (TREE_THIS_VOLATILE (fun
->decl
)
9186 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
) > 0)
9188 location
= UNKNOWN_LOCATION
;
9189 for (ei
= ei_start (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
);
9190 (e
= ei_safe_edge (ei
)); )
9192 last
= last_stmt (e
->src
);
9193 if ((gimple_code (last
) == GIMPLE_RETURN
9194 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
9195 && location
== UNKNOWN_LOCATION
9196 && ((location
= LOCATION_LOCUS (gimple_location (last
)))
9197 != UNKNOWN_LOCATION
)
9200 /* When optimizing, replace return stmts in noreturn functions
9201 with __builtin_unreachable () call. */
9202 if (optimize
&& gimple_code (last
) == GIMPLE_RETURN
)
9204 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9205 gimple
*new_stmt
= gimple_build_call (fndecl
, 0);
9206 gimple_set_location (new_stmt
, gimple_location (last
));
9207 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9208 gsi_replace (&gsi
, new_stmt
, true);
9214 if (location
== UNKNOWN_LOCATION
)
9215 location
= cfun
->function_end_locus
;
9216 warning_at (location
, 0, "%<noreturn%> function does return");
9219 /* If we see "return;" in some basic block, then we do reach the end
9220 without returning a value. */
9221 else if (warn_return_type
> 0
9222 && !TREE_NO_WARNING (fun
->decl
)
9223 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun
->decl
))))
9225 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
)
9227 gimple
*last
= last_stmt (e
->src
);
9228 greturn
*return_stmt
= dyn_cast
<greturn
*> (last
);
9230 && gimple_return_retval (return_stmt
) == NULL
9231 && !gimple_no_warning_p (last
))
9233 location
= gimple_location (last
);
9234 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9235 location
= fun
->function_end_locus
;
9236 warning_at (location
, OPT_Wreturn_type
,
9237 "control reaches end of non-void function");
9238 TREE_NO_WARNING (fun
->decl
) = 1;
9242 /* The C++ FE turns fallthrough from the end of non-void function
9243 into __builtin_unreachable () call with BUILTINS_LOCATION.
9244 Recognize those too. */
9246 if (!TREE_NO_WARNING (fun
->decl
))
9247 FOR_EACH_BB_FN (bb
, fun
)
9248 if (EDGE_COUNT (bb
->succs
) == 0)
9250 gimple
*last
= last_stmt (bb
);
9251 const enum built_in_function ubsan_missing_ret
9252 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN
;
9254 && ((LOCATION_LOCUS (gimple_location (last
))
9255 == BUILTINS_LOCATION
9256 && gimple_call_builtin_p (last
, BUILT_IN_UNREACHABLE
))
9257 || gimple_call_builtin_p (last
, ubsan_missing_ret
)))
9259 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9260 gsi_prev_nondebug (&gsi
);
9261 gimple
*prev
= gsi_stmt (gsi
);
9263 location
= UNKNOWN_LOCATION
;
9265 location
= gimple_location (prev
);
9266 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9267 location
= fun
->function_end_locus
;
9268 warning_at (location
, OPT_Wreturn_type
,
9269 "control reaches end of non-void function");
9270 TREE_NO_WARNING (fun
->decl
) = 1;
9281 make_pass_warn_function_return (gcc::context
*ctxt
)
9283 return new pass_warn_function_return (ctxt
);
9286 /* Walk a gimplified function and warn for functions whose return value is
9287 ignored and attribute((warn_unused_result)) is set. This is done before
9288 inlining, so we don't have to worry about that. */
9291 do_warn_unused_result (gimple_seq seq
)
9294 gimple_stmt_iterator i
;
9296 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
9298 gimple
*g
= gsi_stmt (i
);
9300 switch (gimple_code (g
))
9303 do_warn_unused_result (gimple_bind_body (as_a
<gbind
*>(g
)));
9306 do_warn_unused_result (gimple_try_eval (g
));
9307 do_warn_unused_result (gimple_try_cleanup (g
));
9310 do_warn_unused_result (gimple_catch_handler (
9311 as_a
<gcatch
*> (g
)));
9313 case GIMPLE_EH_FILTER
:
9314 do_warn_unused_result (gimple_eh_filter_failure (g
));
9318 if (gimple_call_lhs (g
))
9320 if (gimple_call_internal_p (g
))
9323 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9324 LHS. All calls whose value is ignored should be
9325 represented like this. Look for the attribute. */
9326 fdecl
= gimple_call_fndecl (g
);
9327 ftype
= gimple_call_fntype (g
);
9329 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
9331 location_t loc
= gimple_location (g
);
9334 warning_at (loc
, OPT_Wunused_result
,
9335 "ignoring return value of %qD, "
9336 "declared with attribute warn_unused_result",
9339 warning_at (loc
, OPT_Wunused_result
,
9340 "ignoring return value of function "
9341 "declared with attribute warn_unused_result");
9346 /* Not a container, not a call, or a call whose value is used. */
9354 const pass_data pass_data_warn_unused_result
=
9356 GIMPLE_PASS
, /* type */
9357 "*warn_unused_result", /* name */
9358 OPTGROUP_NONE
, /* optinfo_flags */
9359 TV_NONE
, /* tv_id */
9360 PROP_gimple_any
, /* properties_required */
9361 0, /* properties_provided */
9362 0, /* properties_destroyed */
9363 0, /* todo_flags_start */
9364 0, /* todo_flags_finish */
9367 class pass_warn_unused_result
: public gimple_opt_pass
9370 pass_warn_unused_result (gcc::context
*ctxt
)
9371 : gimple_opt_pass (pass_data_warn_unused_result
, ctxt
)
9374 /* opt_pass methods: */
9375 virtual bool gate (function
*) { return flag_warn_unused_result
; }
9376 virtual unsigned int execute (function
*)
9378 do_warn_unused_result (gimple_body (current_function_decl
));
9382 }; // class pass_warn_unused_result
9387 make_pass_warn_unused_result (gcc::context
*ctxt
)
9389 return new pass_warn_unused_result (ctxt
);
9392 /* IPA passes, compilation of earlier functions or inlining
9393 might have changed some properties, such as marked functions nothrow,
9394 pure, const or noreturn.
9395 Remove redundant edges and basic blocks, and create new ones if necessary.
9397 This pass can't be executed as stand alone pass from pass manager, because
9398 in between inlining and this fixup the verify_flow_info would fail. */
9401 execute_fixup_cfg (void)
9404 gimple_stmt_iterator gsi
;
9406 cgraph_node
*node
= cgraph_node::get (current_function_decl
);
9407 profile_count num
= node
->count
;
9408 profile_count den
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
;
9409 bool scale
= num
.initialized_p () && !(num
== den
);
9413 profile_count::adjust_for_ipa_scaling (&num
, &den
);
9414 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= node
->count
;
9415 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
9416 = EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
.apply_scale (num
, den
);
9419 FOR_EACH_BB_FN (bb
, cfun
)
9422 bb
->count
= bb
->count
.apply_scale (num
, den
);
9423 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);)
9425 gimple
*stmt
= gsi_stmt (gsi
);
9426 tree decl
= is_gimple_call (stmt
)
9427 ? gimple_call_fndecl (stmt
)
9431 int flags
= gimple_call_flags (stmt
);
9432 if (flags
& (ECF_CONST
| ECF_PURE
| ECF_LOOPING_CONST_OR_PURE
))
9434 if (gimple_purge_dead_abnormal_call_edges (bb
))
9435 todo
|= TODO_cleanup_cfg
;
9437 if (gimple_in_ssa_p (cfun
))
9439 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9444 if (flags
& ECF_NORETURN
9445 && fixup_noreturn_call (stmt
))
9446 todo
|= TODO_cleanup_cfg
;
9449 /* Remove stores to variables we marked write-only.
9450 Keep access when store has side effect, i.e. in case when source
9452 if (gimple_store_p (stmt
)
9453 && !gimple_has_side_effects (stmt
))
9455 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9458 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9459 && varpool_node::get (lhs
)->writeonly
)
9461 unlink_stmt_vdef (stmt
);
9462 gsi_remove (&gsi
, true);
9463 release_defs (stmt
);
9464 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9468 /* For calls we can simply remove LHS when it is known
9469 to be write-only. */
9470 if (is_gimple_call (stmt
)
9471 && gimple_get_lhs (stmt
))
9473 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9476 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9477 && varpool_node::get (lhs
)->writeonly
)
9479 gimple_call_set_lhs (stmt
, NULL
);
9481 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9485 if (maybe_clean_eh_stmt (stmt
)
9486 && gimple_purge_dead_eh_edges (bb
))
9487 todo
|= TODO_cleanup_cfg
;
9491 /* If we have a basic block with no successors that does not
9492 end with a control statement or a noreturn call end it with
9493 a call to __builtin_unreachable. This situation can occur
9494 when inlining a noreturn call that does in fact return. */
9495 if (EDGE_COUNT (bb
->succs
) == 0)
9497 gimple
*stmt
= last_stmt (bb
);
9499 || (!is_ctrl_stmt (stmt
)
9500 && (!is_gimple_call (stmt
)
9501 || !gimple_call_noreturn_p (stmt
))))
9503 if (stmt
&& is_gimple_call (stmt
))
9504 gimple_call_set_ctrl_altering (stmt
, false);
9505 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9506 stmt
= gimple_build_call (fndecl
, 0);
9507 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9508 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
9509 if (!cfun
->after_inlining
)
9511 gcall
*call_stmt
= dyn_cast
<gcall
*> (stmt
);
9512 node
->create_edge (cgraph_node::get_create (fndecl
),
9513 call_stmt
, bb
->count
);
9519 compute_function_frequency ();
9522 && (todo
& TODO_cleanup_cfg
))
9523 loops_state_set (LOOPS_NEED_FIXUP
);
9530 const pass_data pass_data_fixup_cfg
=
9532 GIMPLE_PASS
, /* type */
9533 "fixup_cfg", /* name */
9534 OPTGROUP_NONE
, /* optinfo_flags */
9535 TV_NONE
, /* tv_id */
9536 PROP_cfg
, /* properties_required */
9537 0, /* properties_provided */
9538 0, /* properties_destroyed */
9539 0, /* todo_flags_start */
9540 0, /* todo_flags_finish */
9543 class pass_fixup_cfg
: public gimple_opt_pass
9546 pass_fixup_cfg (gcc::context
*ctxt
)
9547 : gimple_opt_pass (pass_data_fixup_cfg
, ctxt
)
9550 /* opt_pass methods: */
9551 opt_pass
* clone () { return new pass_fixup_cfg (m_ctxt
); }
9552 virtual unsigned int execute (function
*) { return execute_fixup_cfg (); }
9554 }; // class pass_fixup_cfg
9559 make_pass_fixup_cfg (gcc::context
*ctxt
)
9561 return new pass_fixup_cfg (ctxt
);
9564 /* Garbage collection support for edge_def. */
9566 extern void gt_ggc_mx (tree
&);
9567 extern void gt_ggc_mx (gimple
*&);
9568 extern void gt_ggc_mx (rtx
&);
9569 extern void gt_ggc_mx (basic_block
&);
9572 gt_ggc_mx (rtx_insn
*& x
)
9575 gt_ggc_mx_rtx_def ((void *) x
);
9579 gt_ggc_mx (edge_def
*e
)
9581 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9583 gt_ggc_mx (e
->dest
);
9584 if (current_ir_type () == IR_GIMPLE
)
9585 gt_ggc_mx (e
->insns
.g
);
9587 gt_ggc_mx (e
->insns
.r
);
9591 /* PCH support for edge_def. */
9593 extern void gt_pch_nx (tree
&);
9594 extern void gt_pch_nx (gimple
*&);
9595 extern void gt_pch_nx (rtx
&);
9596 extern void gt_pch_nx (basic_block
&);
9599 gt_pch_nx (rtx_insn
*& x
)
9602 gt_pch_nx_rtx_def ((void *) x
);
9606 gt_pch_nx (edge_def
*e
)
9608 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9610 gt_pch_nx (e
->dest
);
9611 if (current_ir_type () == IR_GIMPLE
)
9612 gt_pch_nx (e
->insns
.g
);
9614 gt_pch_nx (e
->insns
.r
);
9619 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
9621 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9622 op (&(e
->src
), cookie
);
9623 op (&(e
->dest
), cookie
);
9624 if (current_ir_type () == IR_GIMPLE
)
9625 op (&(e
->insns
.g
), cookie
);
9627 op (&(e
->insns
.r
), cookie
);
9628 op (&(block
), cookie
);
9633 namespace selftest
{
9635 /* Helper function for CFG selftests: create a dummy function decl
9636 and push it as cfun. */
9639 push_fndecl (const char *name
)
9641 tree fn_type
= build_function_type_array (integer_type_node
, 0, NULL
);
9642 /* FIXME: this uses input_location: */
9643 tree fndecl
= build_fn_decl (name
, fn_type
);
9644 tree retval
= build_decl (UNKNOWN_LOCATION
, RESULT_DECL
,
9645 NULL_TREE
, integer_type_node
);
9646 DECL_RESULT (fndecl
) = retval
;
9647 push_struct_function (fndecl
);
9648 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9649 ASSERT_TRUE (fun
!= NULL
);
9650 init_empty_tree_cfg_for_function (fun
);
9651 ASSERT_EQ (2, n_basic_blocks_for_fn (fun
));
9652 ASSERT_EQ (0, n_edges_for_fn (fun
));
9656 /* These tests directly create CFGs.
9657 Compare with the static fns within tree-cfg.c:
9659 - make_blocks: calls create_basic_block (seq, bb);
9662 /* Verify a simple cfg of the form:
9663 ENTRY -> A -> B -> C -> EXIT. */
9666 test_linear_chain ()
9668 gimple_register_cfg_hooks ();
9670 tree fndecl
= push_fndecl ("cfg_test_linear_chain");
9671 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9673 /* Create some empty blocks. */
9674 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9675 basic_block bb_b
= create_empty_bb (bb_a
);
9676 basic_block bb_c
= create_empty_bb (bb_b
);
9678 ASSERT_EQ (5, n_basic_blocks_for_fn (fun
));
9679 ASSERT_EQ (0, n_edges_for_fn (fun
));
9681 /* Create some edges: a simple linear chain of BBs. */
9682 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9683 make_edge (bb_a
, bb_b
, 0);
9684 make_edge (bb_b
, bb_c
, 0);
9685 make_edge (bb_c
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9687 /* Verify the edges. */
9688 ASSERT_EQ (4, n_edges_for_fn (fun
));
9689 ASSERT_EQ (NULL
, ENTRY_BLOCK_PTR_FOR_FN (fun
)->preds
);
9690 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun
)->succs
->length ());
9691 ASSERT_EQ (1, bb_a
->preds
->length ());
9692 ASSERT_EQ (1, bb_a
->succs
->length ());
9693 ASSERT_EQ (1, bb_b
->preds
->length ());
9694 ASSERT_EQ (1, bb_b
->succs
->length ());
9695 ASSERT_EQ (1, bb_c
->preds
->length ());
9696 ASSERT_EQ (1, bb_c
->succs
->length ());
9697 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
->length ());
9698 ASSERT_EQ (NULL
, EXIT_BLOCK_PTR_FOR_FN (fun
)->succs
);
9700 /* Verify the dominance information
9701 Each BB in our simple chain should be dominated by the one before
9703 calculate_dominance_info (CDI_DOMINATORS
);
9704 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9705 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9706 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9707 ASSERT_EQ (1, dom_by_b
.length ());
9708 ASSERT_EQ (bb_c
, dom_by_b
[0]);
9709 free_dominance_info (CDI_DOMINATORS
);
9710 dom_by_b
.release ();
9712 /* Similarly for post-dominance: each BB in our chain is post-dominated
9713 by the one after it. */
9714 calculate_dominance_info (CDI_POST_DOMINATORS
);
9715 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9716 ASSERT_EQ (bb_c
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9717 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9718 ASSERT_EQ (1, postdom_by_b
.length ());
9719 ASSERT_EQ (bb_a
, postdom_by_b
[0]);
9720 free_dominance_info (CDI_POST_DOMINATORS
);
9721 postdom_by_b
.release ();
9726 /* Verify a simple CFG of the form:
9742 gimple_register_cfg_hooks ();
9744 tree fndecl
= push_fndecl ("cfg_test_diamond");
9745 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9747 /* Create some empty blocks. */
9748 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9749 basic_block bb_b
= create_empty_bb (bb_a
);
9750 basic_block bb_c
= create_empty_bb (bb_a
);
9751 basic_block bb_d
= create_empty_bb (bb_b
);
9753 ASSERT_EQ (6, n_basic_blocks_for_fn (fun
));
9754 ASSERT_EQ (0, n_edges_for_fn (fun
));
9756 /* Create the edges. */
9757 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9758 make_edge (bb_a
, bb_b
, EDGE_TRUE_VALUE
);
9759 make_edge (bb_a
, bb_c
, EDGE_FALSE_VALUE
);
9760 make_edge (bb_b
, bb_d
, 0);
9761 make_edge (bb_c
, bb_d
, 0);
9762 make_edge (bb_d
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9764 /* Verify the edges. */
9765 ASSERT_EQ (6, n_edges_for_fn (fun
));
9766 ASSERT_EQ (1, bb_a
->preds
->length ());
9767 ASSERT_EQ (2, bb_a
->succs
->length ());
9768 ASSERT_EQ (1, bb_b
->preds
->length ());
9769 ASSERT_EQ (1, bb_b
->succs
->length ());
9770 ASSERT_EQ (1, bb_c
->preds
->length ());
9771 ASSERT_EQ (1, bb_c
->succs
->length ());
9772 ASSERT_EQ (2, bb_d
->preds
->length ());
9773 ASSERT_EQ (1, bb_d
->succs
->length ());
9775 /* Verify the dominance information. */
9776 calculate_dominance_info (CDI_DOMINATORS
);
9777 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9778 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9779 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_d
));
9780 vec
<basic_block
> dom_by_a
= get_dominated_by (CDI_DOMINATORS
, bb_a
);
9781 ASSERT_EQ (3, dom_by_a
.length ()); /* B, C, D, in some order. */
9782 dom_by_a
.release ();
9783 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9784 ASSERT_EQ (0, dom_by_b
.length ());
9785 dom_by_b
.release ();
9786 free_dominance_info (CDI_DOMINATORS
);
9788 /* Similarly for post-dominance. */
9789 calculate_dominance_info (CDI_POST_DOMINATORS
);
9790 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9791 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9792 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_c
));
9793 vec
<basic_block
> postdom_by_d
= get_dominated_by (CDI_POST_DOMINATORS
, bb_d
);
9794 ASSERT_EQ (3, postdom_by_d
.length ()); /* A, B, C in some order. */
9795 postdom_by_d
.release ();
9796 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9797 ASSERT_EQ (0, postdom_by_b
.length ());
9798 postdom_by_b
.release ();
9799 free_dominance_info (CDI_POST_DOMINATORS
);
9804 /* Verify that we can handle a CFG containing a "complete" aka
9805 fully-connected subgraph (where A B C D below all have edges
9806 pointing to each other node, also to themselves).
9824 test_fully_connected ()
9826 gimple_register_cfg_hooks ();
9828 tree fndecl
= push_fndecl ("cfg_fully_connected");
9829 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9833 /* Create some empty blocks. */
9834 auto_vec
<basic_block
> subgraph_nodes
;
9835 for (int i
= 0; i
< n
; i
++)
9836 subgraph_nodes
.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
)));
9838 ASSERT_EQ (n
+ 2, n_basic_blocks_for_fn (fun
));
9839 ASSERT_EQ (0, n_edges_for_fn (fun
));
9841 /* Create the edges. */
9842 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), subgraph_nodes
[0], EDGE_FALLTHRU
);
9843 make_edge (subgraph_nodes
[0], EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9844 for (int i
= 0; i
< n
; i
++)
9845 for (int j
= 0; j
< n
; j
++)
9846 make_edge (subgraph_nodes
[i
], subgraph_nodes
[j
], 0);
9848 /* Verify the edges. */
9849 ASSERT_EQ (2 + (n
* n
), n_edges_for_fn (fun
));
9850 /* The first one is linked to ENTRY/EXIT as well as itself and
9852 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->preds
->length ());
9853 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->succs
->length ());
9854 /* The other ones in the subgraph are linked to everything in
9855 the subgraph (including themselves). */
9856 for (int i
= 1; i
< n
; i
++)
9858 ASSERT_EQ (n
, subgraph_nodes
[i
]->preds
->length ());
9859 ASSERT_EQ (n
, subgraph_nodes
[i
]->succs
->length ());
9862 /* Verify the dominance information. */
9863 calculate_dominance_info (CDI_DOMINATORS
);
9864 /* The initial block in the subgraph should be dominated by ENTRY. */
9865 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun
),
9866 get_immediate_dominator (CDI_DOMINATORS
,
9867 subgraph_nodes
[0]));
9868 /* Every other block in the subgraph should be dominated by the
9870 for (int i
= 1; i
< n
; i
++)
9871 ASSERT_EQ (subgraph_nodes
[0],
9872 get_immediate_dominator (CDI_DOMINATORS
,
9873 subgraph_nodes
[i
]));
9874 free_dominance_info (CDI_DOMINATORS
);
9876 /* Similarly for post-dominance. */
9877 calculate_dominance_info (CDI_POST_DOMINATORS
);
9878 /* The initial block in the subgraph should be postdominated by EXIT. */
9879 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun
),
9880 get_immediate_dominator (CDI_POST_DOMINATORS
,
9881 subgraph_nodes
[0]));
9882 /* Every other block in the subgraph should be postdominated by the
9883 initial block, since that leads to EXIT. */
9884 for (int i
= 1; i
< n
; i
++)
9885 ASSERT_EQ (subgraph_nodes
[0],
9886 get_immediate_dominator (CDI_POST_DOMINATORS
,
9887 subgraph_nodes
[i
]));
9888 free_dominance_info (CDI_POST_DOMINATORS
);
9893 /* Run all of the selftests within this file. */
9898 test_linear_chain ();
9900 test_fully_connected ();
9903 } // namespace selftest
9905 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
9908 - switch statement (a block with many out-edges)
9909 - something that jumps to itself
9912 #endif /* CHECKING_P */