PR target/49868
[official-gcc.git] / gcc / ifcvt.c
blobe4e13abe0aa29830de89c0e2a8269e0487eee342
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010,
3 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "diagnostic-core.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "vec.h"
47 #include "vecprim.h"
48 #include "dbgcnt.h"
50 #ifndef HAVE_conditional_move
51 #define HAVE_conditional_move 0
52 #endif
53 #ifndef HAVE_incscc
54 #define HAVE_incscc 0
55 #endif
56 #ifndef HAVE_decscc
57 #define HAVE_decscc 0
58 #endif
59 #ifndef HAVE_trap
60 #define HAVE_trap 0
61 #endif
63 #ifndef MAX_CONDITIONAL_EXECUTE
64 #define MAX_CONDITIONAL_EXECUTE \
65 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
66 + 1)
67 #endif
69 #define IFCVT_MULTIPLE_DUMPS 1
71 #define NULL_BLOCK ((basic_block) NULL)
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
80 /* # of changes made. */
81 static int num_true_changes;
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static rtx find_active_insn_before (basic_block, rtx);
92 static rtx find_active_insn_after (basic_block, rtx);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
95 static rtx cond_exec_get_condition (rtx);
96 static rtx noce_get_condition (rtx, rtx *, bool);
97 static int noce_operand_ok (const_rtx);
98 static void merge_if_block (ce_if_block_t *);
99 static int find_cond_trap (basic_block, edge, edge);
100 static basic_block find_if_header (basic_block, int);
101 static int block_jumps_and_fallthru_p (basic_block, basic_block);
102 static int noce_find_if_block (basic_block, edge, edge, int);
103 static int cond_exec_find_if_block (ce_if_block_t *);
104 static int find_if_case_1 (basic_block, edge, edge);
105 static int find_if_case_2 (basic_block, edge, edge);
106 static int dead_or_predicable (basic_block, basic_block, basic_block,
107 edge, int);
108 static void noce_emit_move_insn (rtx, rtx);
109 static rtx block_has_only_trap (basic_block);
111 /* Count the number of non-jump active insns in BB. */
113 static int
114 count_bb_insns (const_basic_block bb)
116 int count = 0;
117 rtx insn = BB_HEAD (bb);
119 while (1)
121 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
122 count++;
124 if (insn == BB_END (bb))
125 break;
126 insn = NEXT_INSN (insn);
129 return count;
132 /* Determine whether the total insn_rtx_cost on non-jump insns in
133 basic block BB is less than MAX_COST. This function returns
134 false if the cost of any instruction could not be estimated.
136 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
137 as those insns are being speculated. MAX_COST is scaled with SCALE
138 plus a small fudge factor. */
140 static bool
141 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
143 int count = 0;
144 rtx insn = BB_HEAD (bb);
145 bool speed = optimize_bb_for_speed_p (bb);
147 /* Our branch probability/scaling factors are just estimates and don't
148 account for cases where we can get speculation for free and other
149 secondary benefits. So we fudge the scale factor to make speculating
150 appear a little more profitable. */
151 scale += REG_BR_PROB_BASE / 8;
152 max_cost *= scale;
154 while (1)
156 if (NONJUMP_INSN_P (insn))
158 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
159 if (cost == 0)
160 return false;
162 /* If this instruction is the load or set of a "stack" register,
163 such as a floating point register on x87, then the cost of
164 speculatively executing this insn may need to include
165 the additional cost of popping its result off of the
166 register stack. Unfortunately, correctly recognizing and
167 accounting for this additional overhead is tricky, so for
168 now we simply prohibit such speculative execution. */
169 #ifdef STACK_REGS
171 rtx set = single_set (insn);
172 if (set && STACK_REG_P (SET_DEST (set)))
173 return false;
175 #endif
177 count += cost;
178 if (count >= max_cost)
179 return false;
181 else if (CALL_P (insn))
182 return false;
184 if (insn == BB_END (bb))
185 break;
186 insn = NEXT_INSN (insn);
189 return true;
192 /* Return the first non-jump active insn in the basic block. */
194 static rtx
195 first_active_insn (basic_block bb)
197 rtx insn = BB_HEAD (bb);
199 if (LABEL_P (insn))
201 if (insn == BB_END (bb))
202 return NULL_RTX;
203 insn = NEXT_INSN (insn);
206 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
208 if (insn == BB_END (bb))
209 return NULL_RTX;
210 insn = NEXT_INSN (insn);
213 if (JUMP_P (insn))
214 return NULL_RTX;
216 return insn;
219 /* Return the last non-jump active (non-jump) insn in the basic block. */
221 static rtx
222 last_active_insn (basic_block bb, int skip_use_p)
224 rtx insn = BB_END (bb);
225 rtx head = BB_HEAD (bb);
227 while (NOTE_P (insn)
228 || JUMP_P (insn)
229 || DEBUG_INSN_P (insn)
230 || (skip_use_p
231 && NONJUMP_INSN_P (insn)
232 && GET_CODE (PATTERN (insn)) == USE))
234 if (insn == head)
235 return NULL_RTX;
236 insn = PREV_INSN (insn);
239 if (LABEL_P (insn))
240 return NULL_RTX;
242 return insn;
245 /* Return the active insn before INSN inside basic block CURR_BB. */
247 static rtx
248 find_active_insn_before (basic_block curr_bb, rtx insn)
250 if (!insn || insn == BB_HEAD (curr_bb))
251 return NULL_RTX;
253 while ((insn = PREV_INSN (insn)) != NULL_RTX)
255 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
256 break;
258 /* No other active insn all the way to the start of the basic block. */
259 if (insn == BB_HEAD (curr_bb))
260 return NULL_RTX;
263 return insn;
266 /* Return the active insn after INSN inside basic block CURR_BB. */
268 static rtx
269 find_active_insn_after (basic_block curr_bb, rtx insn)
271 if (!insn || insn == BB_END (curr_bb))
272 return NULL_RTX;
274 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
276 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
277 break;
279 /* No other active insn all the way to the end of the basic block. */
280 if (insn == BB_END (curr_bb))
281 return NULL_RTX;
284 return insn;
287 /* Return the basic block reached by falling though the basic block BB. */
289 static basic_block
290 block_fallthru (basic_block bb)
292 edge e = find_fallthru_edge (bb->succs);
294 return (e) ? e->dest : NULL_BLOCK;
297 /* Go through a bunch of insns, converting them to conditional
298 execution format if possible. Return TRUE if all of the non-note
299 insns were processed. */
301 static int
302 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
303 /* if block information */rtx start,
304 /* first insn to look at */rtx end,
305 /* last insn to look at */rtx test,
306 /* conditional execution test */rtx prob_val,
307 /* probability of branch taken. */int mod_ok)
309 int must_be_last = FALSE;
310 rtx insn;
311 rtx xtest;
312 rtx pattern;
314 if (!start || !end)
315 return FALSE;
317 for (insn = start; ; insn = NEXT_INSN (insn))
319 /* dwarf2out can't cope with conditional prologues. */
320 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
321 return FALSE;
323 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
324 goto insn_done;
326 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
328 /* Remove USE insns that get in the way. */
329 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
331 /* ??? Ug. Actually unlinking the thing is problematic,
332 given what we'd have to coordinate with our callers. */
333 SET_INSN_DELETED (insn);
334 goto insn_done;
337 /* Last insn wasn't last? */
338 if (must_be_last)
339 return FALSE;
341 if (modified_in_p (test, insn))
343 if (!mod_ok)
344 return FALSE;
345 must_be_last = TRUE;
348 /* Now build the conditional form of the instruction. */
349 pattern = PATTERN (insn);
350 xtest = copy_rtx (test);
352 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
353 two conditions. */
354 if (GET_CODE (pattern) == COND_EXEC)
356 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
357 return FALSE;
359 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
360 COND_EXEC_TEST (pattern));
361 pattern = COND_EXEC_CODE (pattern);
364 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
366 /* If the machine needs to modify the insn being conditionally executed,
367 say for example to force a constant integer operand into a temp
368 register, do so here. */
369 #ifdef IFCVT_MODIFY_INSN
370 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
371 if (! pattern)
372 return FALSE;
373 #endif
375 validate_change (insn, &PATTERN (insn), pattern, 1);
377 if (CALL_P (insn) && prob_val)
378 validate_change (insn, &REG_NOTES (insn),
379 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
380 REG_NOTES (insn)), 1);
382 insn_done:
383 if (insn == end)
384 break;
387 return TRUE;
390 /* Return the condition for a jump. Do not do any special processing. */
392 static rtx
393 cond_exec_get_condition (rtx jump)
395 rtx test_if, cond;
397 if (any_condjump_p (jump))
398 test_if = SET_SRC (pc_set (jump));
399 else
400 return NULL_RTX;
401 cond = XEXP (test_if, 0);
403 /* If this branches to JUMP_LABEL when the condition is false,
404 reverse the condition. */
405 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
406 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
408 enum rtx_code rev = reversed_comparison_code (cond, jump);
409 if (rev == UNKNOWN)
410 return NULL_RTX;
412 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
413 XEXP (cond, 1));
416 return cond;
419 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
420 to conditional execution. Return TRUE if we were successful at
421 converting the block. */
423 static int
424 cond_exec_process_if_block (ce_if_block_t * ce_info,
425 /* if block information */int do_multiple_p)
427 basic_block test_bb = ce_info->test_bb; /* last test block */
428 basic_block then_bb = ce_info->then_bb; /* THEN */
429 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
430 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
431 rtx then_start; /* first insn in THEN block */
432 rtx then_end; /* last insn + 1 in THEN block */
433 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
434 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
435 int max; /* max # of insns to convert. */
436 int then_mod_ok; /* whether conditional mods are ok in THEN */
437 rtx true_expr; /* test for else block insns */
438 rtx false_expr; /* test for then block insns */
439 rtx true_prob_val; /* probability of else block */
440 rtx false_prob_val; /* probability of then block */
441 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
442 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
443 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
444 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
445 int then_n_insns, else_n_insns, n_insns;
446 enum rtx_code false_code;
448 /* If test is comprised of && or || elements, and we've failed at handling
449 all of them together, just use the last test if it is the special case of
450 && elements without an ELSE block. */
451 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
453 if (else_bb || ! ce_info->and_and_p)
454 return FALSE;
456 ce_info->test_bb = test_bb = ce_info->last_test_bb;
457 ce_info->num_multiple_test_blocks = 0;
458 ce_info->num_and_and_blocks = 0;
459 ce_info->num_or_or_blocks = 0;
462 /* Find the conditional jump to the ELSE or JOIN part, and isolate
463 the test. */
464 test_expr = cond_exec_get_condition (BB_END (test_bb));
465 if (! test_expr)
466 return FALSE;
468 /* If the conditional jump is more than just a conditional jump,
469 then we can not do conditional execution conversion on this block. */
470 if (! onlyjump_p (BB_END (test_bb)))
471 return FALSE;
473 /* Collect the bounds of where we're to search, skipping any labels, jumps
474 and notes at the beginning and end of the block. Then count the total
475 number of insns and see if it is small enough to convert. */
476 then_start = first_active_insn (then_bb);
477 then_end = last_active_insn (then_bb, TRUE);
478 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
479 n_insns = then_n_insns;
480 max = MAX_CONDITIONAL_EXECUTE;
482 if (else_bb)
484 int n_matching;
486 max *= 2;
487 else_start = first_active_insn (else_bb);
488 else_end = last_active_insn (else_bb, TRUE);
489 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
490 n_insns += else_n_insns;
492 /* Look for matching sequences at the head and tail of the two blocks,
493 and limit the range of insns to be converted if possible. */
494 n_matching = flow_find_cross_jump (then_bb, else_bb,
495 &then_first_tail, &else_first_tail,
496 NULL);
497 if (then_first_tail == BB_HEAD (then_bb))
498 then_start = then_end = NULL_RTX;
499 if (else_first_tail == BB_HEAD (else_bb))
500 else_start = else_end = NULL_RTX;
502 if (n_matching > 0)
504 if (then_end)
505 then_end = find_active_insn_before (then_bb, then_first_tail);
506 if (else_end)
507 else_end = find_active_insn_before (else_bb, else_first_tail);
508 n_insns -= 2 * n_matching;
511 if (then_start && else_start)
513 int longest_match = MIN (then_n_insns - n_matching,
514 else_n_insns - n_matching);
515 n_matching
516 = flow_find_head_matching_sequence (then_bb, else_bb,
517 &then_last_head,
518 &else_last_head,
519 longest_match);
521 if (n_matching > 0)
523 rtx insn;
525 /* We won't pass the insns in the head sequence to
526 cond_exec_process_insns, so we need to test them here
527 to make sure that they don't clobber the condition. */
528 for (insn = BB_HEAD (then_bb);
529 insn != NEXT_INSN (then_last_head);
530 insn = NEXT_INSN (insn))
531 if (!LABEL_P (insn) && !NOTE_P (insn)
532 && !DEBUG_INSN_P (insn)
533 && modified_in_p (test_expr, insn))
534 return FALSE;
537 if (then_last_head == then_end)
538 then_start = then_end = NULL_RTX;
539 if (else_last_head == else_end)
540 else_start = else_end = NULL_RTX;
542 if (n_matching > 0)
544 if (then_start)
545 then_start = find_active_insn_after (then_bb, then_last_head);
546 if (else_start)
547 else_start = find_active_insn_after (else_bb, else_last_head);
548 n_insns -= 2 * n_matching;
553 if (n_insns > max)
554 return FALSE;
556 /* Map test_expr/test_jump into the appropriate MD tests to use on
557 the conditionally executed code. */
559 true_expr = test_expr;
561 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
562 if (false_code != UNKNOWN)
563 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
564 XEXP (true_expr, 0), XEXP (true_expr, 1));
565 else
566 false_expr = NULL_RTX;
568 #ifdef IFCVT_MODIFY_TESTS
569 /* If the machine description needs to modify the tests, such as setting a
570 conditional execution register from a comparison, it can do so here. */
571 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
573 /* See if the conversion failed. */
574 if (!true_expr || !false_expr)
575 goto fail;
576 #endif
578 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
579 if (true_prob_val)
581 true_prob_val = XEXP (true_prob_val, 0);
582 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
584 else
585 false_prob_val = NULL_RTX;
587 /* If we have && or || tests, do them here. These tests are in the adjacent
588 blocks after the first block containing the test. */
589 if (ce_info->num_multiple_test_blocks > 0)
591 basic_block bb = test_bb;
592 basic_block last_test_bb = ce_info->last_test_bb;
594 if (! false_expr)
595 goto fail;
599 rtx start, end;
600 rtx t, f;
601 enum rtx_code f_code;
603 bb = block_fallthru (bb);
604 start = first_active_insn (bb);
605 end = last_active_insn (bb, TRUE);
606 if (start
607 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
608 false_prob_val, FALSE))
609 goto fail;
611 /* If the conditional jump is more than just a conditional jump, then
612 we can not do conditional execution conversion on this block. */
613 if (! onlyjump_p (BB_END (bb)))
614 goto fail;
616 /* Find the conditional jump and isolate the test. */
617 t = cond_exec_get_condition (BB_END (bb));
618 if (! t)
619 goto fail;
621 f_code = reversed_comparison_code (t, BB_END (bb));
622 if (f_code == UNKNOWN)
623 goto fail;
625 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
626 if (ce_info->and_and_p)
628 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
629 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
631 else
633 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
634 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
637 /* If the machine description needs to modify the tests, such as
638 setting a conditional execution register from a comparison, it can
639 do so here. */
640 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
641 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
643 /* See if the conversion failed. */
644 if (!t || !f)
645 goto fail;
646 #endif
648 true_expr = t;
649 false_expr = f;
651 while (bb != last_test_bb);
654 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
655 on then THEN block. */
656 then_mod_ok = (else_bb == NULL_BLOCK);
658 /* Go through the THEN and ELSE blocks converting the insns if possible
659 to conditional execution. */
661 if (then_end
662 && (! false_expr
663 || ! cond_exec_process_insns (ce_info, then_start, then_end,
664 false_expr, false_prob_val,
665 then_mod_ok)))
666 goto fail;
668 if (else_bb && else_end
669 && ! cond_exec_process_insns (ce_info, else_start, else_end,
670 true_expr, true_prob_val, TRUE))
671 goto fail;
673 /* If we cannot apply the changes, fail. Do not go through the normal fail
674 processing, since apply_change_group will call cancel_changes. */
675 if (! apply_change_group ())
677 #ifdef IFCVT_MODIFY_CANCEL
678 /* Cancel any machine dependent changes. */
679 IFCVT_MODIFY_CANCEL (ce_info);
680 #endif
681 return FALSE;
684 #ifdef IFCVT_MODIFY_FINAL
685 /* Do any machine dependent final modifications. */
686 IFCVT_MODIFY_FINAL (ce_info);
687 #endif
689 /* Conversion succeeded. */
690 if (dump_file)
691 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
692 n_insns, (n_insns == 1) ? " was" : "s were");
694 /* Merge the blocks! If we had matching sequences, make sure to delete one
695 copy at the appropriate location first: delete the copy in the THEN branch
696 for a tail sequence so that the remaining one is executed last for both
697 branches, and delete the copy in the ELSE branch for a head sequence so
698 that the remaining one is executed first for both branches. */
699 if (then_first_tail)
701 rtx from = then_first_tail;
702 if (!INSN_P (from))
703 from = find_active_insn_after (then_bb, from);
704 delete_insn_chain (from, BB_END (then_bb), false);
706 if (else_last_head)
707 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
709 merge_if_block (ce_info);
710 cond_exec_changed_p = TRUE;
711 return TRUE;
713 fail:
714 #ifdef IFCVT_MODIFY_CANCEL
715 /* Cancel any machine dependent changes. */
716 IFCVT_MODIFY_CANCEL (ce_info);
717 #endif
719 cancel_changes (0);
720 return FALSE;
723 /* Used by noce_process_if_block to communicate with its subroutines.
725 The subroutines know that A and B may be evaluated freely. They
726 know that X is a register. They should insert new instructions
727 before cond_earliest. */
729 struct noce_if_info
731 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
732 basic_block test_bb, then_bb, else_bb, join_bb;
734 /* The jump that ends TEST_BB. */
735 rtx jump;
737 /* The jump condition. */
738 rtx cond;
740 /* New insns should be inserted before this one. */
741 rtx cond_earliest;
743 /* Insns in the THEN and ELSE block. There is always just this
744 one insns in those blocks. The insns are single_set insns.
745 If there was no ELSE block, INSN_B is the last insn before
746 COND_EARLIEST, or NULL_RTX. In the former case, the insn
747 operands are still valid, as if INSN_B was moved down below
748 the jump. */
749 rtx insn_a, insn_b;
751 /* The SET_SRC of INSN_A and INSN_B. */
752 rtx a, b;
754 /* The SET_DEST of INSN_A. */
755 rtx x;
757 /* True if this if block is not canonical. In the canonical form of
758 if blocks, the THEN_BB is the block reached via the fallthru edge
759 from TEST_BB. For the noce transformations, we allow the symmetric
760 form as well. */
761 bool then_else_reversed;
763 /* Estimated cost of the particular branch instruction. */
764 int branch_cost;
767 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
768 static int noce_try_move (struct noce_if_info *);
769 static int noce_try_store_flag (struct noce_if_info *);
770 static int noce_try_addcc (struct noce_if_info *);
771 static int noce_try_store_flag_constants (struct noce_if_info *);
772 static int noce_try_store_flag_mask (struct noce_if_info *);
773 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
774 rtx, rtx, rtx);
775 static int noce_try_cmove (struct noce_if_info *);
776 static int noce_try_cmove_arith (struct noce_if_info *);
777 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
778 static int noce_try_minmax (struct noce_if_info *);
779 static int noce_try_abs (struct noce_if_info *);
780 static int noce_try_sign_mask (struct noce_if_info *);
782 /* Helper function for noce_try_store_flag*. */
784 static rtx
785 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
786 int normalize)
788 rtx cond = if_info->cond;
789 int cond_complex;
790 enum rtx_code code;
792 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
793 || ! general_operand (XEXP (cond, 1), VOIDmode));
795 /* If earliest == jump, or when the condition is complex, try to
796 build the store_flag insn directly. */
798 if (cond_complex)
800 rtx set = pc_set (if_info->jump);
801 cond = XEXP (SET_SRC (set), 0);
802 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
803 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
804 reversep = !reversep;
805 if (if_info->then_else_reversed)
806 reversep = !reversep;
809 if (reversep)
810 code = reversed_comparison_code (cond, if_info->jump);
811 else
812 code = GET_CODE (cond);
814 if ((if_info->cond_earliest == if_info->jump || cond_complex)
815 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
817 rtx tmp;
819 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
820 XEXP (cond, 1));
821 tmp = gen_rtx_SET (VOIDmode, x, tmp);
823 start_sequence ();
824 tmp = emit_insn (tmp);
826 if (recog_memoized (tmp) >= 0)
828 tmp = get_insns ();
829 end_sequence ();
830 emit_insn (tmp);
832 if_info->cond_earliest = if_info->jump;
834 return x;
837 end_sequence ();
840 /* Don't even try if the comparison operands or the mode of X are weird. */
841 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
842 return NULL_RTX;
844 return emit_store_flag (x, code, XEXP (cond, 0),
845 XEXP (cond, 1), VOIDmode,
846 (code == LTU || code == LEU
847 || code == GEU || code == GTU), normalize);
850 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
851 X is the destination/target and Y is the value to copy. */
853 static void
854 noce_emit_move_insn (rtx x, rtx y)
856 enum machine_mode outmode;
857 rtx outer, inner;
858 int bitpos;
860 if (GET_CODE (x) != STRICT_LOW_PART)
862 rtx seq, insn, target;
863 optab ot;
865 start_sequence ();
866 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
867 otherwise construct a suitable SET pattern ourselves. */
868 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
869 ? emit_move_insn (x, y)
870 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
871 seq = get_insns ();
872 end_sequence ();
874 if (recog_memoized (insn) <= 0)
876 if (GET_CODE (x) == ZERO_EXTRACT)
878 rtx op = XEXP (x, 0);
879 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
880 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
882 /* store_bit_field expects START to be relative to
883 BYTES_BIG_ENDIAN and adjusts this value for machines with
884 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
885 invoke store_bit_field again it is necessary to have the START
886 value from the first call. */
887 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
889 if (MEM_P (op))
890 start = BITS_PER_UNIT - start - size;
891 else
893 gcc_assert (REG_P (op));
894 start = BITS_PER_WORD - start - size;
898 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
899 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
900 return;
903 switch (GET_RTX_CLASS (GET_CODE (y)))
905 case RTX_UNARY:
906 ot = code_to_optab[GET_CODE (y)];
907 if (ot)
909 start_sequence ();
910 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
911 if (target != NULL_RTX)
913 if (target != x)
914 emit_move_insn (x, target);
915 seq = get_insns ();
917 end_sequence ();
919 break;
921 case RTX_BIN_ARITH:
922 case RTX_COMM_ARITH:
923 ot = code_to_optab[GET_CODE (y)];
924 if (ot)
926 start_sequence ();
927 target = expand_binop (GET_MODE (y), ot,
928 XEXP (y, 0), XEXP (y, 1),
929 x, 0, OPTAB_DIRECT);
930 if (target != NULL_RTX)
932 if (target != x)
933 emit_move_insn (x, target);
934 seq = get_insns ();
936 end_sequence ();
938 break;
940 default:
941 break;
945 emit_insn (seq);
946 return;
949 outer = XEXP (x, 0);
950 inner = XEXP (outer, 0);
951 outmode = GET_MODE (outer);
952 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
953 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
954 0, 0, outmode, y);
957 /* Return sequence of instructions generated by if conversion. This
958 function calls end_sequence() to end the current stream, ensures
959 that are instructions are unshared, recognizable non-jump insns.
960 On failure, this function returns a NULL_RTX. */
962 static rtx
963 end_ifcvt_sequence (struct noce_if_info *if_info)
965 rtx insn;
966 rtx seq = get_insns ();
968 set_used_flags (if_info->x);
969 set_used_flags (if_info->cond);
970 unshare_all_rtl_in_chain (seq);
971 end_sequence ();
973 /* Make sure that all of the instructions emitted are recognizable,
974 and that we haven't introduced a new jump instruction.
975 As an exercise for the reader, build a general mechanism that
976 allows proper placement of required clobbers. */
977 for (insn = seq; insn; insn = NEXT_INSN (insn))
978 if (JUMP_P (insn)
979 || recog_memoized (insn) == -1)
980 return NULL_RTX;
982 return seq;
985 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
986 "if (a == b) x = a; else x = b" into "x = b". */
988 static int
989 noce_try_move (struct noce_if_info *if_info)
991 rtx cond = if_info->cond;
992 enum rtx_code code = GET_CODE (cond);
993 rtx y, seq;
995 if (code != NE && code != EQ)
996 return FALSE;
998 /* This optimization isn't valid if either A or B could be a NaN
999 or a signed zero. */
1000 if (HONOR_NANS (GET_MODE (if_info->x))
1001 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1002 return FALSE;
1004 /* Check whether the operands of the comparison are A and in
1005 either order. */
1006 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1007 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1008 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1009 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1011 y = (code == EQ) ? if_info->a : if_info->b;
1013 /* Avoid generating the move if the source is the destination. */
1014 if (! rtx_equal_p (if_info->x, y))
1016 start_sequence ();
1017 noce_emit_move_insn (if_info->x, y);
1018 seq = end_ifcvt_sequence (if_info);
1019 if (!seq)
1020 return FALSE;
1022 emit_insn_before_setloc (seq, if_info->jump,
1023 INSN_LOCATOR (if_info->insn_a));
1025 return TRUE;
1027 return FALSE;
1030 /* Convert "if (test) x = 1; else x = 0".
1032 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1033 tried in noce_try_store_flag_constants after noce_try_cmove has had
1034 a go at the conversion. */
1036 static int
1037 noce_try_store_flag (struct noce_if_info *if_info)
1039 int reversep;
1040 rtx target, seq;
1042 if (CONST_INT_P (if_info->b)
1043 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1044 && if_info->a == const0_rtx)
1045 reversep = 0;
1046 else if (if_info->b == const0_rtx
1047 && CONST_INT_P (if_info->a)
1048 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1049 && (reversed_comparison_code (if_info->cond, if_info->jump)
1050 != UNKNOWN))
1051 reversep = 1;
1052 else
1053 return FALSE;
1055 start_sequence ();
1057 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1058 if (target)
1060 if (target != if_info->x)
1061 noce_emit_move_insn (if_info->x, target);
1063 seq = end_ifcvt_sequence (if_info);
1064 if (! seq)
1065 return FALSE;
1067 emit_insn_before_setloc (seq, if_info->jump,
1068 INSN_LOCATOR (if_info->insn_a));
1069 return TRUE;
1071 else
1073 end_sequence ();
1074 return FALSE;
1078 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1080 static int
1081 noce_try_store_flag_constants (struct noce_if_info *if_info)
1083 rtx target, seq;
1084 int reversep;
1085 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1086 int normalize, can_reverse;
1087 enum machine_mode mode;
1089 if (CONST_INT_P (if_info->a)
1090 && CONST_INT_P (if_info->b))
1092 mode = GET_MODE (if_info->x);
1093 ifalse = INTVAL (if_info->a);
1094 itrue = INTVAL (if_info->b);
1096 /* Make sure we can represent the difference between the two values. */
1097 if ((itrue - ifalse > 0)
1098 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1099 return FALSE;
1101 diff = trunc_int_for_mode (itrue - ifalse, mode);
1103 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1104 != UNKNOWN);
1106 reversep = 0;
1107 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1108 normalize = 0;
1109 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1110 && (STORE_FLAG_VALUE == 1
1111 || if_info->branch_cost >= 2))
1112 normalize = 1;
1113 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1114 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1115 normalize = 1, reversep = 1;
1116 else if (itrue == -1
1117 && (STORE_FLAG_VALUE == -1
1118 || if_info->branch_cost >= 2))
1119 normalize = -1;
1120 else if (ifalse == -1 && can_reverse
1121 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1122 normalize = -1, reversep = 1;
1123 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1124 || if_info->branch_cost >= 3)
1125 normalize = -1;
1126 else
1127 return FALSE;
1129 if (reversep)
1131 tmp = itrue; itrue = ifalse; ifalse = tmp;
1132 diff = trunc_int_for_mode (-diff, mode);
1135 start_sequence ();
1136 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1137 if (! target)
1139 end_sequence ();
1140 return FALSE;
1143 /* if (test) x = 3; else x = 4;
1144 => x = 3 + (test == 0); */
1145 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1147 target = expand_simple_binop (mode,
1148 (diff == STORE_FLAG_VALUE
1149 ? PLUS : MINUS),
1150 GEN_INT (ifalse), target, if_info->x, 0,
1151 OPTAB_WIDEN);
1154 /* if (test) x = 8; else x = 0;
1155 => x = (test != 0) << 3; */
1156 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1158 target = expand_simple_binop (mode, ASHIFT,
1159 target, GEN_INT (tmp), if_info->x, 0,
1160 OPTAB_WIDEN);
1163 /* if (test) x = -1; else x = b;
1164 => x = -(test != 0) | b; */
1165 else if (itrue == -1)
1167 target = expand_simple_binop (mode, IOR,
1168 target, GEN_INT (ifalse), if_info->x, 0,
1169 OPTAB_WIDEN);
1172 /* if (test) x = a; else x = b;
1173 => x = (-(test != 0) & (b - a)) + a; */
1174 else
1176 target = expand_simple_binop (mode, AND,
1177 target, GEN_INT (diff), if_info->x, 0,
1178 OPTAB_WIDEN);
1179 if (target)
1180 target = expand_simple_binop (mode, PLUS,
1181 target, GEN_INT (ifalse),
1182 if_info->x, 0, OPTAB_WIDEN);
1185 if (! target)
1187 end_sequence ();
1188 return FALSE;
1191 if (target != if_info->x)
1192 noce_emit_move_insn (if_info->x, target);
1194 seq = end_ifcvt_sequence (if_info);
1195 if (!seq)
1196 return FALSE;
1198 emit_insn_before_setloc (seq, if_info->jump,
1199 INSN_LOCATOR (if_info->insn_a));
1200 return TRUE;
1203 return FALSE;
1206 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1207 similarly for "foo--". */
1209 static int
1210 noce_try_addcc (struct noce_if_info *if_info)
1212 rtx target, seq;
1213 int subtract, normalize;
1215 if (GET_CODE (if_info->a) == PLUS
1216 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1217 && (reversed_comparison_code (if_info->cond, if_info->jump)
1218 != UNKNOWN))
1220 rtx cond = if_info->cond;
1221 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1223 /* First try to use addcc pattern. */
1224 if (general_operand (XEXP (cond, 0), VOIDmode)
1225 && general_operand (XEXP (cond, 1), VOIDmode))
1227 start_sequence ();
1228 target = emit_conditional_add (if_info->x, code,
1229 XEXP (cond, 0),
1230 XEXP (cond, 1),
1231 VOIDmode,
1232 if_info->b,
1233 XEXP (if_info->a, 1),
1234 GET_MODE (if_info->x),
1235 (code == LTU || code == GEU
1236 || code == LEU || code == GTU));
1237 if (target)
1239 if (target != if_info->x)
1240 noce_emit_move_insn (if_info->x, target);
1242 seq = end_ifcvt_sequence (if_info);
1243 if (!seq)
1244 return FALSE;
1246 emit_insn_before_setloc (seq, if_info->jump,
1247 INSN_LOCATOR (if_info->insn_a));
1248 return TRUE;
1250 end_sequence ();
1253 /* If that fails, construct conditional increment or decrement using
1254 setcc. */
1255 if (if_info->branch_cost >= 2
1256 && (XEXP (if_info->a, 1) == const1_rtx
1257 || XEXP (if_info->a, 1) == constm1_rtx))
1259 start_sequence ();
1260 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1261 subtract = 0, normalize = 0;
1262 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1263 subtract = 1, normalize = 0;
1264 else
1265 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1268 target = noce_emit_store_flag (if_info,
1269 gen_reg_rtx (GET_MODE (if_info->x)),
1270 1, normalize);
1272 if (target)
1273 target = expand_simple_binop (GET_MODE (if_info->x),
1274 subtract ? MINUS : PLUS,
1275 if_info->b, target, if_info->x,
1276 0, OPTAB_WIDEN);
1277 if (target)
1279 if (target != if_info->x)
1280 noce_emit_move_insn (if_info->x, target);
1282 seq = end_ifcvt_sequence (if_info);
1283 if (!seq)
1284 return FALSE;
1286 emit_insn_before_setloc (seq, if_info->jump,
1287 INSN_LOCATOR (if_info->insn_a));
1288 return TRUE;
1290 end_sequence ();
1294 return FALSE;
1297 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1299 static int
1300 noce_try_store_flag_mask (struct noce_if_info *if_info)
1302 rtx target, seq;
1303 int reversep;
1305 reversep = 0;
1306 if ((if_info->branch_cost >= 2
1307 || STORE_FLAG_VALUE == -1)
1308 && ((if_info->a == const0_rtx
1309 && rtx_equal_p (if_info->b, if_info->x))
1310 || ((reversep = (reversed_comparison_code (if_info->cond,
1311 if_info->jump)
1312 != UNKNOWN))
1313 && if_info->b == const0_rtx
1314 && rtx_equal_p (if_info->a, if_info->x))))
1316 start_sequence ();
1317 target = noce_emit_store_flag (if_info,
1318 gen_reg_rtx (GET_MODE (if_info->x)),
1319 reversep, -1);
1320 if (target)
1321 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1322 if_info->x,
1323 target, if_info->x, 0,
1324 OPTAB_WIDEN);
1326 if (target)
1328 if (target != if_info->x)
1329 noce_emit_move_insn (if_info->x, target);
1331 seq = end_ifcvt_sequence (if_info);
1332 if (!seq)
1333 return FALSE;
1335 emit_insn_before_setloc (seq, if_info->jump,
1336 INSN_LOCATOR (if_info->insn_a));
1337 return TRUE;
1340 end_sequence ();
1343 return FALSE;
1346 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1348 static rtx
1349 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1350 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1352 rtx target ATTRIBUTE_UNUSED;
1353 int unsignedp ATTRIBUTE_UNUSED;
1355 /* If earliest == jump, try to build the cmove insn directly.
1356 This is helpful when combine has created some complex condition
1357 (like for alpha's cmovlbs) that we can't hope to regenerate
1358 through the normal interface. */
1360 if (if_info->cond_earliest == if_info->jump)
1362 rtx tmp;
1364 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1365 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1366 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1368 start_sequence ();
1369 tmp = emit_insn (tmp);
1371 if (recog_memoized (tmp) >= 0)
1373 tmp = get_insns ();
1374 end_sequence ();
1375 emit_insn (tmp);
1377 return x;
1380 end_sequence ();
1383 /* Don't even try if the comparison operands are weird. */
1384 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1385 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1386 return NULL_RTX;
1388 #if HAVE_conditional_move
1389 unsignedp = (code == LTU || code == GEU
1390 || code == LEU || code == GTU);
1392 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1393 vtrue, vfalse, GET_MODE (x),
1394 unsignedp);
1395 if (target)
1396 return target;
1398 /* We might be faced with a situation like:
1400 x = (reg:M TARGET)
1401 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1402 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1404 We can't do a conditional move in mode M, but it's possible that we
1405 could do a conditional move in mode N instead and take a subreg of
1406 the result.
1408 If we can't create new pseudos, though, don't bother. */
1409 if (reload_completed)
1410 return NULL_RTX;
1412 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1414 rtx reg_vtrue = SUBREG_REG (vtrue);
1415 rtx reg_vfalse = SUBREG_REG (vfalse);
1416 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1417 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1418 rtx promoted_target;
1420 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1421 || byte_vtrue != byte_vfalse
1422 || (SUBREG_PROMOTED_VAR_P (vtrue)
1423 != SUBREG_PROMOTED_VAR_P (vfalse))
1424 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1425 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1426 return NULL_RTX;
1428 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1430 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1431 VOIDmode, reg_vtrue, reg_vfalse,
1432 GET_MODE (reg_vtrue), unsignedp);
1433 /* Nope, couldn't do it in that mode either. */
1434 if (!target)
1435 return NULL_RTX;
1437 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1438 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1439 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1440 emit_move_insn (x, target);
1441 return x;
1443 else
1444 return NULL_RTX;
1445 #else
1446 /* We'll never get here, as noce_process_if_block doesn't call the
1447 functions involved. Ifdef code, however, should be discouraged
1448 because it leads to typos in the code not selected. However,
1449 emit_conditional_move won't exist either. */
1450 return NULL_RTX;
1451 #endif
1454 /* Try only simple constants and registers here. More complex cases
1455 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1456 has had a go at it. */
1458 static int
1459 noce_try_cmove (struct noce_if_info *if_info)
1461 enum rtx_code code;
1462 rtx target, seq;
1464 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1465 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1467 start_sequence ();
1469 code = GET_CODE (if_info->cond);
1470 target = noce_emit_cmove (if_info, if_info->x, code,
1471 XEXP (if_info->cond, 0),
1472 XEXP (if_info->cond, 1),
1473 if_info->a, if_info->b);
1475 if (target)
1477 if (target != if_info->x)
1478 noce_emit_move_insn (if_info->x, target);
1480 seq = end_ifcvt_sequence (if_info);
1481 if (!seq)
1482 return FALSE;
1484 emit_insn_before_setloc (seq, if_info->jump,
1485 INSN_LOCATOR (if_info->insn_a));
1486 return TRUE;
1488 else
1490 end_sequence ();
1491 return FALSE;
1495 return FALSE;
1498 /* Try more complex cases involving conditional_move. */
1500 static int
1501 noce_try_cmove_arith (struct noce_if_info *if_info)
1503 rtx a = if_info->a;
1504 rtx b = if_info->b;
1505 rtx x = if_info->x;
1506 rtx orig_a, orig_b;
1507 rtx insn_a, insn_b;
1508 rtx tmp, target;
1509 int is_mem = 0;
1510 int insn_cost;
1511 enum rtx_code code;
1513 /* A conditional move from two memory sources is equivalent to a
1514 conditional on their addresses followed by a load. Don't do this
1515 early because it'll screw alias analysis. Note that we've
1516 already checked for no side effects. */
1517 /* ??? FIXME: Magic number 5. */
1518 if (cse_not_expected
1519 && MEM_P (a) && MEM_P (b)
1520 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1521 && if_info->branch_cost >= 5)
1523 enum machine_mode address_mode
1524 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (a));
1526 a = XEXP (a, 0);
1527 b = XEXP (b, 0);
1528 x = gen_reg_rtx (address_mode);
1529 is_mem = 1;
1532 /* ??? We could handle this if we knew that a load from A or B could
1533 not trap or fault. This is also true if we've already loaded
1534 from the address along the path from ENTRY. */
1535 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1536 return FALSE;
1538 /* if (test) x = a + b; else x = c - d;
1539 => y = a + b;
1540 x = c - d;
1541 if (test)
1542 x = y;
1545 code = GET_CODE (if_info->cond);
1546 insn_a = if_info->insn_a;
1547 insn_b = if_info->insn_b;
1549 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1550 if insn_rtx_cost can't be estimated. */
1551 if (insn_a)
1553 insn_cost
1554 = insn_rtx_cost (PATTERN (insn_a),
1555 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1556 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1557 return FALSE;
1559 else
1560 insn_cost = 0;
1562 if (insn_b)
1564 insn_cost
1565 += insn_rtx_cost (PATTERN (insn_b),
1566 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1567 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1568 return FALSE;
1571 /* Possibly rearrange operands to make things come out more natural. */
1572 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1574 int reversep = 0;
1575 if (rtx_equal_p (b, x))
1576 reversep = 1;
1577 else if (general_operand (b, GET_MODE (b)))
1578 reversep = 1;
1580 if (reversep)
1582 code = reversed_comparison_code (if_info->cond, if_info->jump);
1583 tmp = a, a = b, b = tmp;
1584 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1588 start_sequence ();
1590 orig_a = a;
1591 orig_b = b;
1593 /* If either operand is complex, load it into a register first.
1594 The best way to do this is to copy the original insn. In this
1595 way we preserve any clobbers etc that the insn may have had.
1596 This is of course not possible in the IS_MEM case. */
1597 if (! general_operand (a, GET_MODE (a)))
1599 rtx set;
1601 if (is_mem)
1603 tmp = gen_reg_rtx (GET_MODE (a));
1604 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1606 else if (! insn_a)
1607 goto end_seq_and_fail;
1608 else
1610 a = gen_reg_rtx (GET_MODE (a));
1611 tmp = copy_rtx (insn_a);
1612 set = single_set (tmp);
1613 SET_DEST (set) = a;
1614 tmp = emit_insn (PATTERN (tmp));
1616 if (recog_memoized (tmp) < 0)
1617 goto end_seq_and_fail;
1619 if (! general_operand (b, GET_MODE (b)))
1621 rtx set, last;
1623 if (is_mem)
1625 tmp = gen_reg_rtx (GET_MODE (b));
1626 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1628 else if (! insn_b)
1629 goto end_seq_and_fail;
1630 else
1632 b = gen_reg_rtx (GET_MODE (b));
1633 tmp = copy_rtx (insn_b);
1634 set = single_set (tmp);
1635 SET_DEST (set) = b;
1636 tmp = PATTERN (tmp);
1639 /* If insn to set up A clobbers any registers B depends on, try to
1640 swap insn that sets up A with the one that sets up B. If even
1641 that doesn't help, punt. */
1642 last = get_last_insn ();
1643 if (last && modified_in_p (orig_b, last))
1645 tmp = emit_insn_before (tmp, get_insns ());
1646 if (modified_in_p (orig_a, tmp))
1647 goto end_seq_and_fail;
1649 else
1650 tmp = emit_insn (tmp);
1652 if (recog_memoized (tmp) < 0)
1653 goto end_seq_and_fail;
1656 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1657 XEXP (if_info->cond, 1), a, b);
1659 if (! target)
1660 goto end_seq_and_fail;
1662 /* If we're handling a memory for above, emit the load now. */
1663 if (is_mem)
1665 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1667 /* Copy over flags as appropriate. */
1668 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1669 MEM_VOLATILE_P (tmp) = 1;
1670 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1671 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1672 set_mem_align (tmp,
1673 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1675 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1676 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1678 noce_emit_move_insn (if_info->x, tmp);
1680 else if (target != x)
1681 noce_emit_move_insn (x, target);
1683 tmp = end_ifcvt_sequence (if_info);
1684 if (!tmp)
1685 return FALSE;
1687 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1688 return TRUE;
1690 end_seq_and_fail:
1691 end_sequence ();
1692 return FALSE;
1695 /* For most cases, the simplified condition we found is the best
1696 choice, but this is not the case for the min/max/abs transforms.
1697 For these we wish to know that it is A or B in the condition. */
1699 static rtx
1700 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1701 rtx *earliest)
1703 rtx cond, set, insn;
1704 int reverse;
1706 /* If target is already mentioned in the known condition, return it. */
1707 if (reg_mentioned_p (target, if_info->cond))
1709 *earliest = if_info->cond_earliest;
1710 return if_info->cond;
1713 set = pc_set (if_info->jump);
1714 cond = XEXP (SET_SRC (set), 0);
1715 reverse
1716 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1717 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1718 if (if_info->then_else_reversed)
1719 reverse = !reverse;
1721 /* If we're looking for a constant, try to make the conditional
1722 have that constant in it. There are two reasons why it may
1723 not have the constant we want:
1725 1. GCC may have needed to put the constant in a register, because
1726 the target can't compare directly against that constant. For
1727 this case, we look for a SET immediately before the comparison
1728 that puts a constant in that register.
1730 2. GCC may have canonicalized the conditional, for example
1731 replacing "if x < 4" with "if x <= 3". We can undo that (or
1732 make equivalent types of changes) to get the constants we need
1733 if they're off by one in the right direction. */
1735 if (CONST_INT_P (target))
1737 enum rtx_code code = GET_CODE (if_info->cond);
1738 rtx op_a = XEXP (if_info->cond, 0);
1739 rtx op_b = XEXP (if_info->cond, 1);
1740 rtx prev_insn;
1742 /* First, look to see if we put a constant in a register. */
1743 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1744 if (prev_insn
1745 && BLOCK_FOR_INSN (prev_insn)
1746 == BLOCK_FOR_INSN (if_info->cond_earliest)
1747 && INSN_P (prev_insn)
1748 && GET_CODE (PATTERN (prev_insn)) == SET)
1750 rtx src = find_reg_equal_equiv_note (prev_insn);
1751 if (!src)
1752 src = SET_SRC (PATTERN (prev_insn));
1753 if (CONST_INT_P (src))
1755 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1756 op_a = src;
1757 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1758 op_b = src;
1760 if (CONST_INT_P (op_a))
1762 rtx tmp = op_a;
1763 op_a = op_b;
1764 op_b = tmp;
1765 code = swap_condition (code);
1770 /* Now, look to see if we can get the right constant by
1771 adjusting the conditional. */
1772 if (CONST_INT_P (op_b))
1774 HOST_WIDE_INT desired_val = INTVAL (target);
1775 HOST_WIDE_INT actual_val = INTVAL (op_b);
1777 switch (code)
1779 case LT:
1780 if (actual_val == desired_val + 1)
1782 code = LE;
1783 op_b = GEN_INT (desired_val);
1785 break;
1786 case LE:
1787 if (actual_val == desired_val - 1)
1789 code = LT;
1790 op_b = GEN_INT (desired_val);
1792 break;
1793 case GT:
1794 if (actual_val == desired_val - 1)
1796 code = GE;
1797 op_b = GEN_INT (desired_val);
1799 break;
1800 case GE:
1801 if (actual_val == desired_val + 1)
1803 code = GT;
1804 op_b = GEN_INT (desired_val);
1806 break;
1807 default:
1808 break;
1812 /* If we made any changes, generate a new conditional that is
1813 equivalent to what we started with, but has the right
1814 constants in it. */
1815 if (code != GET_CODE (if_info->cond)
1816 || op_a != XEXP (if_info->cond, 0)
1817 || op_b != XEXP (if_info->cond, 1))
1819 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1820 *earliest = if_info->cond_earliest;
1821 return cond;
1825 cond = canonicalize_condition (if_info->jump, cond, reverse,
1826 earliest, target, false, true);
1827 if (! cond || ! reg_mentioned_p (target, cond))
1828 return NULL;
1830 /* We almost certainly searched back to a different place.
1831 Need to re-verify correct lifetimes. */
1833 /* X may not be mentioned in the range (cond_earliest, jump]. */
1834 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1835 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1836 return NULL;
1838 /* A and B may not be modified in the range [cond_earliest, jump). */
1839 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1840 if (INSN_P (insn)
1841 && (modified_in_p (if_info->a, insn)
1842 || modified_in_p (if_info->b, insn)))
1843 return NULL;
1845 return cond;
1848 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1850 static int
1851 noce_try_minmax (struct noce_if_info *if_info)
1853 rtx cond, earliest, target, seq;
1854 enum rtx_code code, op;
1855 int unsignedp;
1857 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1858 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1859 to get the target to tell us... */
1860 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1861 || HONOR_NANS (GET_MODE (if_info->x)))
1862 return FALSE;
1864 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1865 if (!cond)
1866 return FALSE;
1868 /* Verify the condition is of the form we expect, and canonicalize
1869 the comparison code. */
1870 code = GET_CODE (cond);
1871 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1873 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1874 return FALSE;
1876 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1878 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1879 return FALSE;
1880 code = swap_condition (code);
1882 else
1883 return FALSE;
1885 /* Determine what sort of operation this is. Note that the code is for
1886 a taken branch, so the code->operation mapping appears backwards. */
1887 switch (code)
1889 case LT:
1890 case LE:
1891 case UNLT:
1892 case UNLE:
1893 op = SMAX;
1894 unsignedp = 0;
1895 break;
1896 case GT:
1897 case GE:
1898 case UNGT:
1899 case UNGE:
1900 op = SMIN;
1901 unsignedp = 0;
1902 break;
1903 case LTU:
1904 case LEU:
1905 op = UMAX;
1906 unsignedp = 1;
1907 break;
1908 case GTU:
1909 case GEU:
1910 op = UMIN;
1911 unsignedp = 1;
1912 break;
1913 default:
1914 return FALSE;
1917 start_sequence ();
1919 target = expand_simple_binop (GET_MODE (if_info->x), op,
1920 if_info->a, if_info->b,
1921 if_info->x, unsignedp, OPTAB_WIDEN);
1922 if (! target)
1924 end_sequence ();
1925 return FALSE;
1927 if (target != if_info->x)
1928 noce_emit_move_insn (if_info->x, target);
1930 seq = end_ifcvt_sequence (if_info);
1931 if (!seq)
1932 return FALSE;
1934 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1935 if_info->cond = cond;
1936 if_info->cond_earliest = earliest;
1938 return TRUE;
1941 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1942 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1943 etc. */
1945 static int
1946 noce_try_abs (struct noce_if_info *if_info)
1948 rtx cond, earliest, target, seq, a, b, c;
1949 int negate;
1950 bool one_cmpl = false;
1952 /* Reject modes with signed zeros. */
1953 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1954 return FALSE;
1956 /* Recognize A and B as constituting an ABS or NABS. The canonical
1957 form is a branch around the negation, taken when the object is the
1958 first operand of a comparison against 0 that evaluates to true. */
1959 a = if_info->a;
1960 b = if_info->b;
1961 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1962 negate = 0;
1963 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1965 c = a; a = b; b = c;
1966 negate = 1;
1968 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1970 negate = 0;
1971 one_cmpl = true;
1973 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1975 c = a; a = b; b = c;
1976 negate = 1;
1977 one_cmpl = true;
1979 else
1980 return FALSE;
1982 cond = noce_get_alt_condition (if_info, b, &earliest);
1983 if (!cond)
1984 return FALSE;
1986 /* Verify the condition is of the form we expect. */
1987 if (rtx_equal_p (XEXP (cond, 0), b))
1988 c = XEXP (cond, 1);
1989 else if (rtx_equal_p (XEXP (cond, 1), b))
1991 c = XEXP (cond, 0);
1992 negate = !negate;
1994 else
1995 return FALSE;
1997 /* Verify that C is zero. Search one step backward for a
1998 REG_EQUAL note or a simple source if necessary. */
1999 if (REG_P (c))
2001 rtx set, insn = prev_nonnote_insn (earliest);
2002 if (insn
2003 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2004 && (set = single_set (insn))
2005 && rtx_equal_p (SET_DEST (set), c))
2007 rtx note = find_reg_equal_equiv_note (insn);
2008 if (note)
2009 c = XEXP (note, 0);
2010 else
2011 c = SET_SRC (set);
2013 else
2014 return FALSE;
2016 if (MEM_P (c)
2017 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2018 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2019 c = get_pool_constant (XEXP (c, 0));
2021 /* Work around funny ideas get_condition has wrt canonicalization.
2022 Note that these rtx constants are known to be CONST_INT, and
2023 therefore imply integer comparisons. */
2024 if (c == constm1_rtx && GET_CODE (cond) == GT)
2026 else if (c == const1_rtx && GET_CODE (cond) == LT)
2028 else if (c != CONST0_RTX (GET_MODE (b)))
2029 return FALSE;
2031 /* Determine what sort of operation this is. */
2032 switch (GET_CODE (cond))
2034 case LT:
2035 case LE:
2036 case UNLT:
2037 case UNLE:
2038 negate = !negate;
2039 break;
2040 case GT:
2041 case GE:
2042 case UNGT:
2043 case UNGE:
2044 break;
2045 default:
2046 return FALSE;
2049 start_sequence ();
2050 if (one_cmpl)
2051 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2052 if_info->x);
2053 else
2054 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2056 /* ??? It's a quandary whether cmove would be better here, especially
2057 for integers. Perhaps combine will clean things up. */
2058 if (target && negate)
2060 if (one_cmpl)
2061 target = expand_simple_unop (GET_MODE (target), NOT, target,
2062 if_info->x, 0);
2063 else
2064 target = expand_simple_unop (GET_MODE (target), NEG, target,
2065 if_info->x, 0);
2068 if (! target)
2070 end_sequence ();
2071 return FALSE;
2074 if (target != if_info->x)
2075 noce_emit_move_insn (if_info->x, target);
2077 seq = end_ifcvt_sequence (if_info);
2078 if (!seq)
2079 return FALSE;
2081 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2082 if_info->cond = cond;
2083 if_info->cond_earliest = earliest;
2085 return TRUE;
2088 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2090 static int
2091 noce_try_sign_mask (struct noce_if_info *if_info)
2093 rtx cond, t, m, c, seq;
2094 enum machine_mode mode;
2095 enum rtx_code code;
2096 bool t_unconditional;
2098 cond = if_info->cond;
2099 code = GET_CODE (cond);
2100 m = XEXP (cond, 0);
2101 c = XEXP (cond, 1);
2103 t = NULL_RTX;
2104 if (if_info->a == const0_rtx)
2106 if ((code == LT && c == const0_rtx)
2107 || (code == LE && c == constm1_rtx))
2108 t = if_info->b;
2110 else if (if_info->b == const0_rtx)
2112 if ((code == GE && c == const0_rtx)
2113 || (code == GT && c == constm1_rtx))
2114 t = if_info->a;
2117 if (! t || side_effects_p (t))
2118 return FALSE;
2120 /* We currently don't handle different modes. */
2121 mode = GET_MODE (t);
2122 if (GET_MODE (m) != mode)
2123 return FALSE;
2125 /* This is only profitable if T is unconditionally executed/evaluated in the
2126 original insn sequence or T is cheap. The former happens if B is the
2127 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2128 INSN_B which can happen for e.g. conditional stores to memory. For the
2129 cost computation use the block TEST_BB where the evaluation will end up
2130 after the transformation. */
2131 t_unconditional =
2132 (t == if_info->b
2133 && (if_info->insn_b == NULL_RTX
2134 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2135 if (!(t_unconditional
2136 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2137 < COSTS_N_INSNS (2))))
2138 return FALSE;
2140 start_sequence ();
2141 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2142 "(signed) m >> 31" directly. This benefits targets with specialized
2143 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2144 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2145 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2146 : NULL_RTX;
2148 if (!t)
2150 end_sequence ();
2151 return FALSE;
2154 noce_emit_move_insn (if_info->x, t);
2156 seq = end_ifcvt_sequence (if_info);
2157 if (!seq)
2158 return FALSE;
2160 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2161 return TRUE;
2165 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2166 transformations. */
2168 static int
2169 noce_try_bitop (struct noce_if_info *if_info)
2171 rtx cond, x, a, result, seq;
2172 enum machine_mode mode;
2173 enum rtx_code code;
2174 int bitnum;
2176 x = if_info->x;
2177 cond = if_info->cond;
2178 code = GET_CODE (cond);
2180 /* Check for no else condition. */
2181 if (! rtx_equal_p (x, if_info->b))
2182 return FALSE;
2184 /* Check for a suitable condition. */
2185 if (code != NE && code != EQ)
2186 return FALSE;
2187 if (XEXP (cond, 1) != const0_rtx)
2188 return FALSE;
2189 cond = XEXP (cond, 0);
2191 /* ??? We could also handle AND here. */
2192 if (GET_CODE (cond) == ZERO_EXTRACT)
2194 if (XEXP (cond, 1) != const1_rtx
2195 || !CONST_INT_P (XEXP (cond, 2))
2196 || ! rtx_equal_p (x, XEXP (cond, 0)))
2197 return FALSE;
2198 bitnum = INTVAL (XEXP (cond, 2));
2199 mode = GET_MODE (x);
2200 if (BITS_BIG_ENDIAN)
2201 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2202 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2203 return FALSE;
2205 else
2206 return FALSE;
2208 a = if_info->a;
2209 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2211 /* Check for "if (X & C) x = x op C". */
2212 if (! rtx_equal_p (x, XEXP (a, 0))
2213 || !CONST_INT_P (XEXP (a, 1))
2214 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2215 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2216 return FALSE;
2218 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2219 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2220 if (GET_CODE (a) == IOR)
2221 result = (code == NE) ? a : NULL_RTX;
2222 else if (code == NE)
2224 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2225 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2226 result = simplify_gen_binary (IOR, mode, x, result);
2228 else
2230 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2231 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2232 result = simplify_gen_binary (AND, mode, x, result);
2235 else if (GET_CODE (a) == AND)
2237 /* Check for "if (X & C) x &= ~C". */
2238 if (! rtx_equal_p (x, XEXP (a, 0))
2239 || !CONST_INT_P (XEXP (a, 1))
2240 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2241 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2242 return FALSE;
2244 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2245 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2246 result = (code == EQ) ? a : NULL_RTX;
2248 else
2249 return FALSE;
2251 if (result)
2253 start_sequence ();
2254 noce_emit_move_insn (x, result);
2255 seq = end_ifcvt_sequence (if_info);
2256 if (!seq)
2257 return FALSE;
2259 emit_insn_before_setloc (seq, if_info->jump,
2260 INSN_LOCATOR (if_info->insn_a));
2262 return TRUE;
2266 /* Similar to get_condition, only the resulting condition must be
2267 valid at JUMP, instead of at EARLIEST.
2269 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2270 THEN block of the caller, and we have to reverse the condition. */
2272 static rtx
2273 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2275 rtx cond, set, tmp;
2276 bool reverse;
2278 if (! any_condjump_p (jump))
2279 return NULL_RTX;
2281 set = pc_set (jump);
2283 /* If this branches to JUMP_LABEL when the condition is false,
2284 reverse the condition. */
2285 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2286 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2288 /* We may have to reverse because the caller's if block is not canonical,
2289 i.e. the THEN block isn't the fallthrough block for the TEST block
2290 (see find_if_header). */
2291 if (then_else_reversed)
2292 reverse = !reverse;
2294 /* If the condition variable is a register and is MODE_INT, accept it. */
2296 cond = XEXP (SET_SRC (set), 0);
2297 tmp = XEXP (cond, 0);
2298 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2299 && (GET_MODE (tmp) != BImode
2300 || !targetm.small_register_classes_for_mode_p (BImode)))
2302 *earliest = jump;
2304 if (reverse)
2305 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2306 GET_MODE (cond), tmp, XEXP (cond, 1));
2307 return cond;
2310 /* Otherwise, fall back on canonicalize_condition to do the dirty
2311 work of manipulating MODE_CC values and COMPARE rtx codes. */
2312 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2313 NULL_RTX, false, true);
2315 /* We don't handle side-effects in the condition, like handling
2316 REG_INC notes and making sure no duplicate conditions are emitted. */
2317 if (tmp != NULL_RTX && side_effects_p (tmp))
2318 return NULL_RTX;
2320 return tmp;
2323 /* Return true if OP is ok for if-then-else processing. */
2325 static int
2326 noce_operand_ok (const_rtx op)
2328 if (side_effects_p (op))
2329 return FALSE;
2331 /* We special-case memories, so handle any of them with
2332 no address side effects. */
2333 if (MEM_P (op))
2334 return ! side_effects_p (XEXP (op, 0));
2336 return ! may_trap_p (op);
2339 /* Return true if a write into MEM may trap or fault. */
2341 static bool
2342 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2344 rtx addr;
2346 if (MEM_READONLY_P (mem))
2347 return true;
2349 if (may_trap_or_fault_p (mem))
2350 return true;
2352 addr = XEXP (mem, 0);
2354 /* Call target hook to avoid the effects of -fpic etc.... */
2355 addr = targetm.delegitimize_address (addr);
2357 while (addr)
2358 switch (GET_CODE (addr))
2360 case CONST:
2361 case PRE_DEC:
2362 case PRE_INC:
2363 case POST_DEC:
2364 case POST_INC:
2365 case POST_MODIFY:
2366 addr = XEXP (addr, 0);
2367 break;
2368 case LO_SUM:
2369 case PRE_MODIFY:
2370 addr = XEXP (addr, 1);
2371 break;
2372 case PLUS:
2373 if (CONST_INT_P (XEXP (addr, 1)))
2374 addr = XEXP (addr, 0);
2375 else
2376 return false;
2377 break;
2378 case LABEL_REF:
2379 return true;
2380 case SYMBOL_REF:
2381 if (SYMBOL_REF_DECL (addr)
2382 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2383 return true;
2384 return false;
2385 default:
2386 return false;
2389 return false;
2392 /* Return whether we can use store speculation for MEM. TOP_BB is the
2393 basic block above the conditional block where we are considering
2394 doing the speculative store. We look for whether MEM is set
2395 unconditionally later in the function. */
2397 static bool
2398 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2400 basic_block dominator;
2402 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2403 dominator != NULL;
2404 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2406 rtx insn;
2408 FOR_BB_INSNS (dominator, insn)
2410 /* If we see something that might be a memory barrier, we
2411 have to stop looking. Even if the MEM is set later in
2412 the function, we still don't want to set it
2413 unconditionally before the barrier. */
2414 if (INSN_P (insn)
2415 && (volatile_insn_p (PATTERN (insn))
2416 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2417 return false;
2419 if (memory_modified_in_insn_p (mem, insn))
2420 return true;
2421 if (modified_in_p (XEXP (mem, 0), insn))
2422 return false;
2427 return false;
2430 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2431 it without using conditional execution. Return TRUE if we were successful
2432 at converting the block. */
2434 static int
2435 noce_process_if_block (struct noce_if_info *if_info)
2437 basic_block test_bb = if_info->test_bb; /* test block */
2438 basic_block then_bb = if_info->then_bb; /* THEN */
2439 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2440 basic_block join_bb = if_info->join_bb; /* JOIN */
2441 rtx jump = if_info->jump;
2442 rtx cond = if_info->cond;
2443 rtx insn_a, insn_b;
2444 rtx set_a, set_b;
2445 rtx orig_x, x, a, b;
2447 /* We're looking for patterns of the form
2449 (1) if (...) x = a; else x = b;
2450 (2) x = b; if (...) x = a;
2451 (3) if (...) x = a; // as if with an initial x = x.
2453 The later patterns require jumps to be more expensive.
2455 ??? For future expansion, look for multiple X in such patterns. */
2457 /* Look for one of the potential sets. */
2458 insn_a = first_active_insn (then_bb);
2459 if (! insn_a
2460 || insn_a != last_active_insn (then_bb, FALSE)
2461 || (set_a = single_set (insn_a)) == NULL_RTX)
2462 return FALSE;
2464 x = SET_DEST (set_a);
2465 a = SET_SRC (set_a);
2467 /* Look for the other potential set. Make sure we've got equivalent
2468 destinations. */
2469 /* ??? This is overconservative. Storing to two different mems is
2470 as easy as conditionally computing the address. Storing to a
2471 single mem merely requires a scratch memory to use as one of the
2472 destination addresses; often the memory immediately below the
2473 stack pointer is available for this. */
2474 set_b = NULL_RTX;
2475 if (else_bb)
2477 insn_b = first_active_insn (else_bb);
2478 if (! insn_b
2479 || insn_b != last_active_insn (else_bb, FALSE)
2480 || (set_b = single_set (insn_b)) == NULL_RTX
2481 || ! rtx_equal_p (x, SET_DEST (set_b)))
2482 return FALSE;
2484 else
2486 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2487 /* We're going to be moving the evaluation of B down from above
2488 COND_EARLIEST to JUMP. Make sure the relevant data is still
2489 intact. */
2490 if (! insn_b
2491 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2492 || !NONJUMP_INSN_P (insn_b)
2493 || (set_b = single_set (insn_b)) == NULL_RTX
2494 || ! rtx_equal_p (x, SET_DEST (set_b))
2495 || ! noce_operand_ok (SET_SRC (set_b))
2496 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2497 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2498 /* Likewise with X. In particular this can happen when
2499 noce_get_condition looks farther back in the instruction
2500 stream than one might expect. */
2501 || reg_overlap_mentioned_p (x, cond)
2502 || reg_overlap_mentioned_p (x, a)
2503 || modified_between_p (x, insn_b, jump))
2504 insn_b = set_b = NULL_RTX;
2507 /* If x has side effects then only the if-then-else form is safe to
2508 convert. But even in that case we would need to restore any notes
2509 (such as REG_INC) at then end. That can be tricky if
2510 noce_emit_move_insn expands to more than one insn, so disable the
2511 optimization entirely for now if there are side effects. */
2512 if (side_effects_p (x))
2513 return FALSE;
2515 b = (set_b ? SET_SRC (set_b) : x);
2517 /* Only operate on register destinations, and even then avoid extending
2518 the lifetime of hard registers on small register class machines. */
2519 orig_x = x;
2520 if (!REG_P (x)
2521 || (HARD_REGISTER_P (x)
2522 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2524 if (GET_MODE (x) == BLKmode)
2525 return FALSE;
2527 if (GET_CODE (x) == ZERO_EXTRACT
2528 && (!CONST_INT_P (XEXP (x, 1))
2529 || !CONST_INT_P (XEXP (x, 2))))
2530 return FALSE;
2532 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2533 ? XEXP (x, 0) : x));
2536 /* Don't operate on sources that may trap or are volatile. */
2537 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2538 return FALSE;
2540 retry:
2541 /* Set up the info block for our subroutines. */
2542 if_info->insn_a = insn_a;
2543 if_info->insn_b = insn_b;
2544 if_info->x = x;
2545 if_info->a = a;
2546 if_info->b = b;
2548 /* Try optimizations in some approximation of a useful order. */
2549 /* ??? Should first look to see if X is live incoming at all. If it
2550 isn't, we don't need anything but an unconditional set. */
2552 /* Look and see if A and B are really the same. Avoid creating silly
2553 cmove constructs that no one will fix up later. */
2554 if (rtx_equal_p (a, b))
2556 /* If we have an INSN_B, we don't have to create any new rtl. Just
2557 move the instruction that we already have. If we don't have an
2558 INSN_B, that means that A == X, and we've got a noop move. In
2559 that case don't do anything and let the code below delete INSN_A. */
2560 if (insn_b && else_bb)
2562 rtx note;
2564 if (else_bb && insn_b == BB_END (else_bb))
2565 BB_END (else_bb) = PREV_INSN (insn_b);
2566 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2568 /* If there was a REG_EQUAL note, delete it since it may have been
2569 true due to this insn being after a jump. */
2570 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2571 remove_note (insn_b, note);
2573 insn_b = NULL_RTX;
2575 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2576 x must be executed twice. */
2577 else if (insn_b && side_effects_p (orig_x))
2578 return FALSE;
2580 x = orig_x;
2581 goto success;
2584 if (!set_b && MEM_P (orig_x))
2586 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2587 for optimizations if writing to x may trap or fault,
2588 i.e. it's a memory other than a static var or a stack slot,
2589 is misaligned on strict aligned machines or is read-only. If
2590 x is a read-only memory, then the program is valid only if we
2591 avoid the store into it. If there are stores on both the
2592 THEN and ELSE arms, then we can go ahead with the conversion;
2593 either the program is broken, or the condition is always
2594 false such that the other memory is selected. */
2595 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2596 return FALSE;
2598 /* Avoid store speculation: given "if (...) x = a" where x is a
2599 MEM, we only want to do the store if x is always set
2600 somewhere in the function. This avoids cases like
2601 if (pthread_mutex_trylock(mutex))
2602 ++global_variable;
2603 where we only want global_variable to be changed if the mutex
2604 is held. FIXME: This should ideally be expressed directly in
2605 RTL somehow. */
2606 if (!noce_can_store_speculate_p (test_bb, orig_x))
2607 return FALSE;
2610 if (noce_try_move (if_info))
2611 goto success;
2612 if (noce_try_store_flag (if_info))
2613 goto success;
2614 if (noce_try_bitop (if_info))
2615 goto success;
2616 if (noce_try_minmax (if_info))
2617 goto success;
2618 if (noce_try_abs (if_info))
2619 goto success;
2620 if (HAVE_conditional_move
2621 && noce_try_cmove (if_info))
2622 goto success;
2623 if (! targetm.have_conditional_execution ())
2625 if (noce_try_store_flag_constants (if_info))
2626 goto success;
2627 if (noce_try_addcc (if_info))
2628 goto success;
2629 if (noce_try_store_flag_mask (if_info))
2630 goto success;
2631 if (HAVE_conditional_move
2632 && noce_try_cmove_arith (if_info))
2633 goto success;
2634 if (noce_try_sign_mask (if_info))
2635 goto success;
2638 if (!else_bb && set_b)
2640 insn_b = set_b = NULL_RTX;
2641 b = orig_x;
2642 goto retry;
2645 return FALSE;
2647 success:
2649 /* If we used a temporary, fix it up now. */
2650 if (orig_x != x)
2652 rtx seq;
2654 start_sequence ();
2655 noce_emit_move_insn (orig_x, x);
2656 seq = get_insns ();
2657 set_used_flags (orig_x);
2658 unshare_all_rtl_in_chain (seq);
2659 end_sequence ();
2661 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2664 /* The original THEN and ELSE blocks may now be removed. The test block
2665 must now jump to the join block. If the test block and the join block
2666 can be merged, do so. */
2667 if (else_bb)
2669 delete_basic_block (else_bb);
2670 num_true_changes++;
2672 else
2673 remove_edge (find_edge (test_bb, join_bb));
2675 remove_edge (find_edge (then_bb, join_bb));
2676 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2677 delete_basic_block (then_bb);
2678 num_true_changes++;
2680 if (can_merge_blocks_p (test_bb, join_bb))
2682 merge_blocks (test_bb, join_bb);
2683 num_true_changes++;
2686 num_updated_if_blocks++;
2687 return TRUE;
2690 /* Check whether a block is suitable for conditional move conversion.
2691 Every insn must be a simple set of a register to a constant or a
2692 register. For each assignment, store the value in the array VALS,
2693 indexed by register number, then store the register number in
2694 REGS. COND is the condition we will test. */
2696 static int
2697 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) **regs,
2698 rtx cond)
2700 rtx insn;
2702 /* We can only handle simple jumps at the end of the basic block.
2703 It is almost impossible to update the CFG otherwise. */
2704 insn = BB_END (bb);
2705 if (JUMP_P (insn) && !onlyjump_p (insn))
2706 return FALSE;
2708 FOR_BB_INSNS (bb, insn)
2710 rtx set, dest, src;
2712 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2713 continue;
2714 set = single_set (insn);
2715 if (!set)
2716 return FALSE;
2718 dest = SET_DEST (set);
2719 src = SET_SRC (set);
2720 if (!REG_P (dest)
2721 || (HARD_REGISTER_P (dest)
2722 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2723 return FALSE;
2725 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2726 return FALSE;
2728 if (side_effects_p (src) || side_effects_p (dest))
2729 return FALSE;
2731 if (may_trap_p (src) || may_trap_p (dest))
2732 return FALSE;
2734 /* Don't try to handle this if the source register was
2735 modified earlier in the block. */
2736 if ((REG_P (src)
2737 && vals[REGNO (src)] != NULL)
2738 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2739 && vals[REGNO (SUBREG_REG (src))] != NULL))
2740 return FALSE;
2742 /* Don't try to handle this if the destination register was
2743 modified earlier in the block. */
2744 if (vals[REGNO (dest)] != NULL)
2745 return FALSE;
2747 /* Don't try to handle this if the condition uses the
2748 destination register. */
2749 if (reg_overlap_mentioned_p (dest, cond))
2750 return FALSE;
2752 /* Don't try to handle this if the source register is modified
2753 later in the block. */
2754 if (!CONSTANT_P (src)
2755 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2756 return FALSE;
2758 vals[REGNO (dest)] = src;
2760 VEC_safe_push (int, heap, *regs, REGNO (dest));
2763 return TRUE;
2766 /* Given a basic block BB suitable for conditional move conversion,
2767 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2768 register values depending on COND, emit the insns in the block as
2769 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2770 processed. The caller has started a sequence for the conversion.
2771 Return true if successful, false if something goes wrong. */
2773 static bool
2774 cond_move_convert_if_block (struct noce_if_info *if_infop,
2775 basic_block bb, rtx cond,
2776 rtx *then_vals, rtx *else_vals,
2777 bool else_block_p)
2779 enum rtx_code code;
2780 rtx insn, cond_arg0, cond_arg1;
2782 code = GET_CODE (cond);
2783 cond_arg0 = XEXP (cond, 0);
2784 cond_arg1 = XEXP (cond, 1);
2786 FOR_BB_INSNS (bb, insn)
2788 rtx set, target, dest, t, e;
2789 unsigned int regno;
2791 /* ??? Maybe emit conditional debug insn? */
2792 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2793 continue;
2794 set = single_set (insn);
2795 gcc_assert (set && REG_P (SET_DEST (set)));
2797 dest = SET_DEST (set);
2798 regno = REGNO (dest);
2800 t = then_vals[regno];
2801 e = else_vals[regno];
2803 if (else_block_p)
2805 /* If this register was set in the then block, we already
2806 handled this case there. */
2807 if (t)
2808 continue;
2809 t = dest;
2810 gcc_assert (e);
2812 else
2814 gcc_assert (t);
2815 if (!e)
2816 e = dest;
2819 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2820 t, e);
2821 if (!target)
2822 return false;
2824 if (target != dest)
2825 noce_emit_move_insn (dest, target);
2828 return true;
2831 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2832 it using only conditional moves. Return TRUE if we were successful at
2833 converting the block. */
2835 static int
2836 cond_move_process_if_block (struct noce_if_info *if_info)
2838 basic_block test_bb = if_info->test_bb;
2839 basic_block then_bb = if_info->then_bb;
2840 basic_block else_bb = if_info->else_bb;
2841 basic_block join_bb = if_info->join_bb;
2842 rtx jump = if_info->jump;
2843 rtx cond = if_info->cond;
2844 rtx seq, loc_insn;
2845 int max_reg, size, c, reg;
2846 rtx *then_vals;
2847 rtx *else_vals;
2848 VEC (int, heap) *then_regs = NULL;
2849 VEC (int, heap) *else_regs = NULL;
2850 unsigned int i;
2852 /* Build a mapping for each block to the value used for each
2853 register. */
2854 max_reg = max_reg_num ();
2855 size = (max_reg + 1) * sizeof (rtx);
2856 then_vals = (rtx *) alloca (size);
2857 else_vals = (rtx *) alloca (size);
2858 memset (then_vals, 0, size);
2859 memset (else_vals, 0, size);
2861 /* Make sure the blocks are suitable. */
2862 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2863 || (else_bb
2864 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2866 VEC_free (int, heap, then_regs);
2867 VEC_free (int, heap, else_regs);
2868 return FALSE;
2871 /* Make sure the blocks can be used together. If the same register
2872 is set in both blocks, and is not set to a constant in both
2873 cases, then both blocks must set it to the same register. We
2874 have already verified that if it is set to a register, that the
2875 source register does not change after the assignment. Also count
2876 the number of registers set in only one of the blocks. */
2877 c = 0;
2878 FOR_EACH_VEC_ELT (int, then_regs, i, reg)
2880 if (!then_vals[reg] && !else_vals[reg])
2881 continue;
2883 if (!else_vals[reg])
2884 ++c;
2885 else
2887 if (!CONSTANT_P (then_vals[reg])
2888 && !CONSTANT_P (else_vals[reg])
2889 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2891 VEC_free (int, heap, then_regs);
2892 VEC_free (int, heap, else_regs);
2893 return FALSE;
2898 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2899 FOR_EACH_VEC_ELT (int, else_regs, i, reg)
2900 if (!then_vals[reg])
2901 ++c;
2903 /* Make sure it is reasonable to convert this block. What matters
2904 is the number of assignments currently made in only one of the
2905 branches, since if we convert we are going to always execute
2906 them. */
2907 if (c > MAX_CONDITIONAL_EXECUTE)
2909 VEC_free (int, heap, then_regs);
2910 VEC_free (int, heap, else_regs);
2911 return FALSE;
2914 /* Try to emit the conditional moves. First do the then block,
2915 then do anything left in the else blocks. */
2916 start_sequence ();
2917 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2918 then_vals, else_vals, false)
2919 || (else_bb
2920 && !cond_move_convert_if_block (if_info, else_bb, cond,
2921 then_vals, else_vals, true)))
2923 end_sequence ();
2924 VEC_free (int, heap, then_regs);
2925 VEC_free (int, heap, else_regs);
2926 return FALSE;
2928 seq = end_ifcvt_sequence (if_info);
2929 if (!seq)
2931 VEC_free (int, heap, then_regs);
2932 VEC_free (int, heap, else_regs);
2933 return FALSE;
2936 loc_insn = first_active_insn (then_bb);
2937 if (!loc_insn)
2939 loc_insn = first_active_insn (else_bb);
2940 gcc_assert (loc_insn);
2942 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2944 if (else_bb)
2946 delete_basic_block (else_bb);
2947 num_true_changes++;
2949 else
2950 remove_edge (find_edge (test_bb, join_bb));
2952 remove_edge (find_edge (then_bb, join_bb));
2953 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2954 delete_basic_block (then_bb);
2955 num_true_changes++;
2957 if (can_merge_blocks_p (test_bb, join_bb))
2959 merge_blocks (test_bb, join_bb);
2960 num_true_changes++;
2963 num_updated_if_blocks++;
2965 VEC_free (int, heap, then_regs);
2966 VEC_free (int, heap, else_regs);
2967 return TRUE;
2971 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2972 IF-THEN-ELSE-JOIN block.
2974 If so, we'll try to convert the insns to not require the branch,
2975 using only transformations that do not require conditional execution.
2977 Return TRUE if we were successful at converting the block. */
2979 static int
2980 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2981 int pass)
2983 basic_block then_bb, else_bb, join_bb;
2984 bool then_else_reversed = false;
2985 rtx jump, cond;
2986 rtx cond_earliest;
2987 struct noce_if_info if_info;
2989 /* We only ever should get here before reload. */
2990 gcc_assert (!reload_completed);
2992 /* Recognize an IF-THEN-ELSE-JOIN block. */
2993 if (single_pred_p (then_edge->dest)
2994 && single_succ_p (then_edge->dest)
2995 && single_pred_p (else_edge->dest)
2996 && single_succ_p (else_edge->dest)
2997 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2999 then_bb = then_edge->dest;
3000 else_bb = else_edge->dest;
3001 join_bb = single_succ (then_bb);
3003 /* Recognize an IF-THEN-JOIN block. */
3004 else if (single_pred_p (then_edge->dest)
3005 && single_succ_p (then_edge->dest)
3006 && single_succ (then_edge->dest) == else_edge->dest)
3008 then_bb = then_edge->dest;
3009 else_bb = NULL_BLOCK;
3010 join_bb = else_edge->dest;
3012 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3013 of basic blocks in cfglayout mode does not matter, so the fallthrough
3014 edge can go to any basic block (and not just to bb->next_bb, like in
3015 cfgrtl mode). */
3016 else if (single_pred_p (else_edge->dest)
3017 && single_succ_p (else_edge->dest)
3018 && single_succ (else_edge->dest) == then_edge->dest)
3020 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3021 To make this work, we have to invert the THEN and ELSE blocks
3022 and reverse the jump condition. */
3023 then_bb = else_edge->dest;
3024 else_bb = NULL_BLOCK;
3025 join_bb = single_succ (then_bb);
3026 then_else_reversed = true;
3028 else
3029 /* Not a form we can handle. */
3030 return FALSE;
3032 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3033 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3034 return FALSE;
3035 if (else_bb
3036 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3037 return FALSE;
3039 num_possible_if_blocks++;
3041 if (dump_file)
3043 fprintf (dump_file,
3044 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3045 (else_bb) ? "-ELSE" : "",
3046 pass, test_bb->index, then_bb->index);
3048 if (else_bb)
3049 fprintf (dump_file, ", else %d", else_bb->index);
3051 fprintf (dump_file, ", join %d\n", join_bb->index);
3054 /* If the conditional jump is more than just a conditional
3055 jump, then we can not do if-conversion on this block. */
3056 jump = BB_END (test_bb);
3057 if (! onlyjump_p (jump))
3058 return FALSE;
3060 /* If this is not a standard conditional jump, we can't parse it. */
3061 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3062 if (!cond)
3063 return FALSE;
3065 /* We must be comparing objects whose modes imply the size. */
3066 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3067 return FALSE;
3069 /* Initialize an IF_INFO struct to pass around. */
3070 memset (&if_info, 0, sizeof if_info);
3071 if_info.test_bb = test_bb;
3072 if_info.then_bb = then_bb;
3073 if_info.else_bb = else_bb;
3074 if_info.join_bb = join_bb;
3075 if_info.cond = cond;
3076 if_info.cond_earliest = cond_earliest;
3077 if_info.jump = jump;
3078 if_info.then_else_reversed = then_else_reversed;
3079 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3080 predictable_edge_p (then_edge));
3082 /* Do the real work. */
3084 if (noce_process_if_block (&if_info))
3085 return TRUE;
3087 if (HAVE_conditional_move
3088 && cond_move_process_if_block (&if_info))
3089 return TRUE;
3091 return FALSE;
3095 /* Merge the blocks and mark for local life update. */
3097 static void
3098 merge_if_block (struct ce_if_block * ce_info)
3100 basic_block test_bb = ce_info->test_bb; /* last test block */
3101 basic_block then_bb = ce_info->then_bb; /* THEN */
3102 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3103 basic_block join_bb = ce_info->join_bb; /* join block */
3104 basic_block combo_bb;
3106 /* All block merging is done into the lower block numbers. */
3108 combo_bb = test_bb;
3109 df_set_bb_dirty (test_bb);
3111 /* Merge any basic blocks to handle && and || subtests. Each of
3112 the blocks are on the fallthru path from the predecessor block. */
3113 if (ce_info->num_multiple_test_blocks > 0)
3115 basic_block bb = test_bb;
3116 basic_block last_test_bb = ce_info->last_test_bb;
3117 basic_block fallthru = block_fallthru (bb);
3121 bb = fallthru;
3122 fallthru = block_fallthru (bb);
3123 merge_blocks (combo_bb, bb);
3124 num_true_changes++;
3126 while (bb != last_test_bb);
3129 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3130 label, but it might if there were || tests. That label's count should be
3131 zero, and it normally should be removed. */
3133 if (then_bb)
3135 merge_blocks (combo_bb, then_bb);
3136 num_true_changes++;
3139 /* The ELSE block, if it existed, had a label. That label count
3140 will almost always be zero, but odd things can happen when labels
3141 get their addresses taken. */
3142 if (else_bb)
3144 merge_blocks (combo_bb, else_bb);
3145 num_true_changes++;
3148 /* If there was no join block reported, that means it was not adjacent
3149 to the others, and so we cannot merge them. */
3151 if (! join_bb)
3153 rtx last = BB_END (combo_bb);
3155 /* The outgoing edge for the current COMBO block should already
3156 be correct. Verify this. */
3157 if (EDGE_COUNT (combo_bb->succs) == 0)
3158 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3159 || (NONJUMP_INSN_P (last)
3160 && GET_CODE (PATTERN (last)) == TRAP_IF
3161 && (TRAP_CONDITION (PATTERN (last))
3162 == const_true_rtx)));
3164 else
3165 /* There should still be something at the end of the THEN or ELSE
3166 blocks taking us to our final destination. */
3167 gcc_assert (JUMP_P (last)
3168 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3169 && CALL_P (last)
3170 && SIBLING_CALL_P (last))
3171 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3172 && can_throw_internal (last)));
3175 /* The JOIN block may have had quite a number of other predecessors too.
3176 Since we've already merged the TEST, THEN and ELSE blocks, we should
3177 have only one remaining edge from our if-then-else diamond. If there
3178 is more than one remaining edge, it must come from elsewhere. There
3179 may be zero incoming edges if the THEN block didn't actually join
3180 back up (as with a call to a non-return function). */
3181 else if (EDGE_COUNT (join_bb->preds) < 2
3182 && join_bb != EXIT_BLOCK_PTR)
3184 /* We can merge the JOIN cleanly and update the dataflow try
3185 again on this pass.*/
3186 merge_blocks (combo_bb, join_bb);
3187 num_true_changes++;
3189 else
3191 /* We cannot merge the JOIN. */
3193 /* The outgoing edge for the current COMBO block should already
3194 be correct. Verify this. */
3195 gcc_assert (single_succ_p (combo_bb)
3196 && single_succ (combo_bb) == join_bb);
3198 /* Remove the jump and cruft from the end of the COMBO block. */
3199 if (join_bb != EXIT_BLOCK_PTR)
3200 tidy_fallthru_edge (single_succ_edge (combo_bb));
3203 num_updated_if_blocks++;
3206 /* Find a block ending in a simple IF condition and try to transform it
3207 in some way. When converting a multi-block condition, put the new code
3208 in the first such block and delete the rest. Return a pointer to this
3209 first block if some transformation was done. Return NULL otherwise. */
3211 static basic_block
3212 find_if_header (basic_block test_bb, int pass)
3214 ce_if_block_t ce_info;
3215 edge then_edge;
3216 edge else_edge;
3218 /* The kind of block we're looking for has exactly two successors. */
3219 if (EDGE_COUNT (test_bb->succs) != 2)
3220 return NULL;
3222 then_edge = EDGE_SUCC (test_bb, 0);
3223 else_edge = EDGE_SUCC (test_bb, 1);
3225 if (df_get_bb_dirty (then_edge->dest))
3226 return NULL;
3227 if (df_get_bb_dirty (else_edge->dest))
3228 return NULL;
3230 /* Neither edge should be abnormal. */
3231 if ((then_edge->flags & EDGE_COMPLEX)
3232 || (else_edge->flags & EDGE_COMPLEX))
3233 return NULL;
3235 /* Nor exit the loop. */
3236 if ((then_edge->flags & EDGE_LOOP_EXIT)
3237 || (else_edge->flags & EDGE_LOOP_EXIT))
3238 return NULL;
3240 /* The THEN edge is canonically the one that falls through. */
3241 if (then_edge->flags & EDGE_FALLTHRU)
3243 else if (else_edge->flags & EDGE_FALLTHRU)
3245 edge e = else_edge;
3246 else_edge = then_edge;
3247 then_edge = e;
3249 else
3250 /* Otherwise this must be a multiway branch of some sort. */
3251 return NULL;
3253 memset (&ce_info, 0, sizeof (ce_info));
3254 ce_info.test_bb = test_bb;
3255 ce_info.then_bb = then_edge->dest;
3256 ce_info.else_bb = else_edge->dest;
3257 ce_info.pass = pass;
3259 #ifdef IFCVT_INIT_EXTRA_FIELDS
3260 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
3261 #endif
3263 if (!reload_completed
3264 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3265 goto success;
3267 if (reload_completed
3268 && targetm.have_conditional_execution ()
3269 && cond_exec_find_if_block (&ce_info))
3270 goto success;
3272 if (HAVE_trap
3273 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3274 && find_cond_trap (test_bb, then_edge, else_edge))
3275 goto success;
3277 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3278 && (reload_completed || !targetm.have_conditional_execution ()))
3280 if (find_if_case_1 (test_bb, then_edge, else_edge))
3281 goto success;
3282 if (find_if_case_2 (test_bb, then_edge, else_edge))
3283 goto success;
3286 return NULL;
3288 success:
3289 if (dump_file)
3290 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3291 /* Set this so we continue looking. */
3292 cond_exec_changed_p = TRUE;
3293 return ce_info.test_bb;
3296 /* Return true if a block has two edges, one of which falls through to the next
3297 block, and the other jumps to a specific block, so that we can tell if the
3298 block is part of an && test or an || test. Returns either -1 or the number
3299 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3301 static int
3302 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3304 edge cur_edge;
3305 int fallthru_p = FALSE;
3306 int jump_p = FALSE;
3307 rtx insn;
3308 rtx end;
3309 int n_insns = 0;
3310 edge_iterator ei;
3312 if (!cur_bb || !target_bb)
3313 return -1;
3315 /* If no edges, obviously it doesn't jump or fallthru. */
3316 if (EDGE_COUNT (cur_bb->succs) == 0)
3317 return FALSE;
3319 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3321 if (cur_edge->flags & EDGE_COMPLEX)
3322 /* Anything complex isn't what we want. */
3323 return -1;
3325 else if (cur_edge->flags & EDGE_FALLTHRU)
3326 fallthru_p = TRUE;
3328 else if (cur_edge->dest == target_bb)
3329 jump_p = TRUE;
3331 else
3332 return -1;
3335 if ((jump_p & fallthru_p) == 0)
3336 return -1;
3338 /* Don't allow calls in the block, since this is used to group && and ||
3339 together for conditional execution support. ??? we should support
3340 conditional execution support across calls for IA-64 some day, but
3341 for now it makes the code simpler. */
3342 end = BB_END (cur_bb);
3343 insn = BB_HEAD (cur_bb);
3345 while (insn != NULL_RTX)
3347 if (CALL_P (insn))
3348 return -1;
3350 if (INSN_P (insn)
3351 && !JUMP_P (insn)
3352 && !DEBUG_INSN_P (insn)
3353 && GET_CODE (PATTERN (insn)) != USE
3354 && GET_CODE (PATTERN (insn)) != CLOBBER)
3355 n_insns++;
3357 if (insn == end)
3358 break;
3360 insn = NEXT_INSN (insn);
3363 return n_insns;
3366 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3367 block. If so, we'll try to convert the insns to not require the branch.
3368 Return TRUE if we were successful at converting the block. */
3370 static int
3371 cond_exec_find_if_block (struct ce_if_block * ce_info)
3373 basic_block test_bb = ce_info->test_bb;
3374 basic_block then_bb = ce_info->then_bb;
3375 basic_block else_bb = ce_info->else_bb;
3376 basic_block join_bb = NULL_BLOCK;
3377 edge cur_edge;
3378 basic_block next;
3379 edge_iterator ei;
3381 ce_info->last_test_bb = test_bb;
3383 /* We only ever should get here after reload,
3384 and if we have conditional execution. */
3385 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3387 /* Discover if any fall through predecessors of the current test basic block
3388 were && tests (which jump to the else block) or || tests (which jump to
3389 the then block). */
3390 if (single_pred_p (test_bb)
3391 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3393 basic_block bb = single_pred (test_bb);
3394 basic_block target_bb;
3395 int max_insns = MAX_CONDITIONAL_EXECUTE;
3396 int n_insns;
3398 /* Determine if the preceding block is an && or || block. */
3399 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3401 ce_info->and_and_p = TRUE;
3402 target_bb = else_bb;
3404 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3406 ce_info->and_and_p = FALSE;
3407 target_bb = then_bb;
3409 else
3410 target_bb = NULL_BLOCK;
3412 if (target_bb && n_insns <= max_insns)
3414 int total_insns = 0;
3415 int blocks = 0;
3417 ce_info->last_test_bb = test_bb;
3419 /* Found at least one && or || block, look for more. */
3422 ce_info->test_bb = test_bb = bb;
3423 total_insns += n_insns;
3424 blocks++;
3426 if (!single_pred_p (bb))
3427 break;
3429 bb = single_pred (bb);
3430 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3432 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3434 ce_info->num_multiple_test_blocks = blocks;
3435 ce_info->num_multiple_test_insns = total_insns;
3437 if (ce_info->and_and_p)
3438 ce_info->num_and_and_blocks = blocks;
3439 else
3440 ce_info->num_or_or_blocks = blocks;
3444 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3445 other than any || blocks which jump to the THEN block. */
3446 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3447 return FALSE;
3449 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3450 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3452 if (cur_edge->flags & EDGE_COMPLEX)
3453 return FALSE;
3456 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3458 if (cur_edge->flags & EDGE_COMPLEX)
3459 return FALSE;
3462 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3463 if (EDGE_COUNT (then_bb->succs) > 0
3464 && (!single_succ_p (then_bb)
3465 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3466 || (epilogue_completed
3467 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3468 return FALSE;
3470 /* If the THEN block has no successors, conditional execution can still
3471 make a conditional call. Don't do this unless the ELSE block has
3472 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3473 Check for the last insn of the THEN block being an indirect jump, which
3474 is listed as not having any successors, but confuses the rest of the CE
3475 code processing. ??? we should fix this in the future. */
3476 if (EDGE_COUNT (then_bb->succs) == 0)
3478 if (single_pred_p (else_bb))
3480 rtx last_insn = BB_END (then_bb);
3482 while (last_insn
3483 && NOTE_P (last_insn)
3484 && last_insn != BB_HEAD (then_bb))
3485 last_insn = PREV_INSN (last_insn);
3487 if (last_insn
3488 && JUMP_P (last_insn)
3489 && ! simplejump_p (last_insn))
3490 return FALSE;
3492 join_bb = else_bb;
3493 else_bb = NULL_BLOCK;
3495 else
3496 return FALSE;
3499 /* If the THEN block's successor is the other edge out of the TEST block,
3500 then we have an IF-THEN combo without an ELSE. */
3501 else if (single_succ (then_bb) == else_bb)
3503 join_bb = else_bb;
3504 else_bb = NULL_BLOCK;
3507 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3508 has exactly one predecessor and one successor, and the outgoing edge
3509 is not complex, then we have an IF-THEN-ELSE combo. */
3510 else if (single_succ_p (else_bb)
3511 && single_succ (then_bb) == single_succ (else_bb)
3512 && single_pred_p (else_bb)
3513 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3514 && !(epilogue_completed
3515 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3516 join_bb = single_succ (else_bb);
3518 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3519 else
3520 return FALSE;
3522 num_possible_if_blocks++;
3524 if (dump_file)
3526 fprintf (dump_file,
3527 "\nIF-THEN%s block found, pass %d, start block %d "
3528 "[insn %d], then %d [%d]",
3529 (else_bb) ? "-ELSE" : "",
3530 ce_info->pass,
3531 test_bb->index,
3532 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3533 then_bb->index,
3534 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3536 if (else_bb)
3537 fprintf (dump_file, ", else %d [%d]",
3538 else_bb->index,
3539 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3541 fprintf (dump_file, ", join %d [%d]",
3542 join_bb->index,
3543 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3545 if (ce_info->num_multiple_test_blocks > 0)
3546 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3547 ce_info->num_multiple_test_blocks,
3548 (ce_info->and_and_p) ? "&&" : "||",
3549 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3550 ce_info->last_test_bb->index,
3551 ((BB_HEAD (ce_info->last_test_bb))
3552 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3553 : -1));
3555 fputc ('\n', dump_file);
3558 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3559 first condition for free, since we've already asserted that there's a
3560 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3561 we checked the FALLTHRU flag, those are already adjacent to the last IF
3562 block. */
3563 /* ??? As an enhancement, move the ELSE block. Have to deal with
3564 BLOCK notes, if by no other means than backing out the merge if they
3565 exist. Sticky enough I don't want to think about it now. */
3566 next = then_bb;
3567 if (else_bb && (next = next->next_bb) != else_bb)
3568 return FALSE;
3569 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3571 if (else_bb)
3572 join_bb = NULL;
3573 else
3574 return FALSE;
3577 /* Do the real work. */
3579 ce_info->else_bb = else_bb;
3580 ce_info->join_bb = join_bb;
3582 /* If we have && and || tests, try to first handle combining the && and ||
3583 tests into the conditional code, and if that fails, go back and handle
3584 it without the && and ||, which at present handles the && case if there
3585 was no ELSE block. */
3586 if (cond_exec_process_if_block (ce_info, TRUE))
3587 return TRUE;
3589 if (ce_info->num_multiple_test_blocks)
3591 cancel_changes (0);
3593 if (cond_exec_process_if_block (ce_info, FALSE))
3594 return TRUE;
3597 return FALSE;
3600 /* Convert a branch over a trap, or a branch
3601 to a trap, into a conditional trap. */
3603 static int
3604 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3606 basic_block then_bb = then_edge->dest;
3607 basic_block else_bb = else_edge->dest;
3608 basic_block other_bb, trap_bb;
3609 rtx trap, jump, cond, cond_earliest, seq;
3610 enum rtx_code code;
3612 /* Locate the block with the trap instruction. */
3613 /* ??? While we look for no successors, we really ought to allow
3614 EH successors. Need to fix merge_if_block for that to work. */
3615 if ((trap = block_has_only_trap (then_bb)) != NULL)
3616 trap_bb = then_bb, other_bb = else_bb;
3617 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3618 trap_bb = else_bb, other_bb = then_bb;
3619 else
3620 return FALSE;
3622 if (dump_file)
3624 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3625 test_bb->index, trap_bb->index);
3628 /* If this is not a standard conditional jump, we can't parse it. */
3629 jump = BB_END (test_bb);
3630 cond = noce_get_condition (jump, &cond_earliest, false);
3631 if (! cond)
3632 return FALSE;
3634 /* If the conditional jump is more than just a conditional jump, then
3635 we can not do if-conversion on this block. */
3636 if (! onlyjump_p (jump))
3637 return FALSE;
3639 /* We must be comparing objects whose modes imply the size. */
3640 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3641 return FALSE;
3643 /* Reverse the comparison code, if necessary. */
3644 code = GET_CODE (cond);
3645 if (then_bb == trap_bb)
3647 code = reversed_comparison_code (cond, jump);
3648 if (code == UNKNOWN)
3649 return FALSE;
3652 /* Attempt to generate the conditional trap. */
3653 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3654 copy_rtx (XEXP (cond, 1)),
3655 TRAP_CODE (PATTERN (trap)));
3656 if (seq == NULL)
3657 return FALSE;
3659 /* Emit the new insns before cond_earliest. */
3660 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3662 /* Delete the trap block if possible. */
3663 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3664 df_set_bb_dirty (test_bb);
3665 df_set_bb_dirty (then_bb);
3666 df_set_bb_dirty (else_bb);
3668 if (EDGE_COUNT (trap_bb->preds) == 0)
3670 delete_basic_block (trap_bb);
3671 num_true_changes++;
3674 /* Wire together the blocks again. */
3675 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3676 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3677 else
3679 rtx lab, newjump;
3681 lab = JUMP_LABEL (jump);
3682 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3683 LABEL_NUSES (lab) += 1;
3684 JUMP_LABEL (newjump) = lab;
3685 emit_barrier_after (newjump);
3687 delete_insn (jump);
3689 if (can_merge_blocks_p (test_bb, other_bb))
3691 merge_blocks (test_bb, other_bb);
3692 num_true_changes++;
3695 num_updated_if_blocks++;
3696 return TRUE;
3699 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3700 return it. */
3702 static rtx
3703 block_has_only_trap (basic_block bb)
3705 rtx trap;
3707 /* We're not the exit block. */
3708 if (bb == EXIT_BLOCK_PTR)
3709 return NULL_RTX;
3711 /* The block must have no successors. */
3712 if (EDGE_COUNT (bb->succs) > 0)
3713 return NULL_RTX;
3715 /* The only instruction in the THEN block must be the trap. */
3716 trap = first_active_insn (bb);
3717 if (! (trap == BB_END (bb)
3718 && GET_CODE (PATTERN (trap)) == TRAP_IF
3719 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3720 return NULL_RTX;
3722 return trap;
3725 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3726 transformable, but not necessarily the other. There need be no
3727 JOIN block.
3729 Return TRUE if we were successful at converting the block.
3731 Cases we'd like to look at:
3734 if (test) goto over; // x not live
3735 x = a;
3736 goto label;
3737 over:
3739 becomes
3741 x = a;
3742 if (! test) goto label;
3745 if (test) goto E; // x not live
3746 x = big();
3747 goto L;
3749 x = b;
3750 goto M;
3752 becomes
3754 x = b;
3755 if (test) goto M;
3756 x = big();
3757 goto L;
3759 (3) // This one's really only interesting for targets that can do
3760 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3761 // it results in multiple branches on a cache line, which often
3762 // does not sit well with predictors.
3764 if (test1) goto E; // predicted not taken
3765 x = a;
3766 if (test2) goto F;
3769 x = b;
3772 becomes
3774 x = a;
3775 if (test1) goto E;
3776 if (test2) goto F;
3778 Notes:
3780 (A) Don't do (2) if the branch is predicted against the block we're
3781 eliminating. Do it anyway if we can eliminate a branch; this requires
3782 that the sole successor of the eliminated block postdominate the other
3783 side of the if.
3785 (B) With CE, on (3) we can steal from both sides of the if, creating
3787 if (test1) x = a;
3788 if (!test1) x = b;
3789 if (test1) goto J;
3790 if (test2) goto F;
3794 Again, this is most useful if J postdominates.
3796 (C) CE substitutes for helpful life information.
3798 (D) These heuristics need a lot of work. */
3800 /* Tests for case 1 above. */
3802 static int
3803 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3805 basic_block then_bb = then_edge->dest;
3806 basic_block else_bb = else_edge->dest;
3807 basic_block new_bb;
3808 int then_bb_index, then_prob;
3809 rtx else_target = NULL_RTX;
3811 /* If we are partitioning hot/cold basic blocks, we don't want to
3812 mess up unconditional or indirect jumps that cross between hot
3813 and cold sections.
3815 Basic block partitioning may result in some jumps that appear to
3816 be optimizable (or blocks that appear to be mergeable), but which really
3817 must be left untouched (they are required to make it safely across
3818 partition boundaries). See the comments at the top of
3819 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3821 if ((BB_END (then_bb)
3822 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3823 || (BB_END (test_bb)
3824 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3825 || (BB_END (else_bb)
3826 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3827 NULL_RTX)))
3828 return FALSE;
3830 /* THEN has one successor. */
3831 if (!single_succ_p (then_bb))
3832 return FALSE;
3834 /* THEN does not fall through, but is not strange either. */
3835 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3836 return FALSE;
3838 /* THEN has one predecessor. */
3839 if (!single_pred_p (then_bb))
3840 return FALSE;
3842 /* THEN must do something. */
3843 if (forwarder_block_p (then_bb))
3844 return FALSE;
3846 num_possible_if_blocks++;
3847 if (dump_file)
3848 fprintf (dump_file,
3849 "\nIF-CASE-1 found, start %d, then %d\n",
3850 test_bb->index, then_bb->index);
3852 if (then_edge->probability)
3853 then_prob = REG_BR_PROB_BASE - then_edge->probability;
3854 else
3855 then_prob = REG_BR_PROB_BASE / 2;
3857 /* We're speculating from the THEN path, we want to make sure the cost
3858 of speculation is within reason. */
3859 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
3860 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3861 predictable_edge_p (then_edge)))))
3862 return FALSE;
3864 if (else_bb == EXIT_BLOCK_PTR)
3866 rtx jump = BB_END (else_edge->src);
3867 gcc_assert (JUMP_P (jump));
3868 else_target = JUMP_LABEL (jump);
3871 /* Registers set are dead, or are predicable. */
3872 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3873 single_succ_edge (then_bb), 1))
3874 return FALSE;
3876 /* Conversion went ok, including moving the insns and fixing up the
3877 jump. Adjust the CFG to match. */
3879 /* We can avoid creating a new basic block if then_bb is immediately
3880 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3881 thru to else_bb. */
3883 if (then_bb->next_bb == else_bb
3884 && then_bb->prev_bb == test_bb
3885 && else_bb != EXIT_BLOCK_PTR)
3887 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3888 new_bb = 0;
3890 else if (else_bb == EXIT_BLOCK_PTR)
3891 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
3892 else_bb, else_target);
3893 else
3894 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3895 else_bb);
3897 df_set_bb_dirty (test_bb);
3898 df_set_bb_dirty (else_bb);
3900 then_bb_index = then_bb->index;
3901 delete_basic_block (then_bb);
3903 /* Make rest of code believe that the newly created block is the THEN_BB
3904 block we removed. */
3905 if (new_bb)
3907 df_bb_replace (then_bb_index, new_bb);
3908 /* Since the fallthru edge was redirected from test_bb to new_bb,
3909 we need to ensure that new_bb is in the same partition as
3910 test bb (you can not fall through across section boundaries). */
3911 BB_COPY_PARTITION (new_bb, test_bb);
3914 num_true_changes++;
3915 num_updated_if_blocks++;
3917 return TRUE;
3920 /* Test for case 2 above. */
3922 static int
3923 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3925 basic_block then_bb = then_edge->dest;
3926 basic_block else_bb = else_edge->dest;
3927 edge else_succ;
3928 int then_prob, else_prob;
3930 /* If we are partitioning hot/cold basic blocks, we don't want to
3931 mess up unconditional or indirect jumps that cross between hot
3932 and cold sections.
3934 Basic block partitioning may result in some jumps that appear to
3935 be optimizable (or blocks that appear to be mergeable), but which really
3936 must be left untouched (they are required to make it safely across
3937 partition boundaries). See the comments at the top of
3938 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3940 if ((BB_END (then_bb)
3941 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3942 || (BB_END (test_bb)
3943 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3944 || (BB_END (else_bb)
3945 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3946 NULL_RTX)))
3947 return FALSE;
3949 /* ELSE has one successor. */
3950 if (!single_succ_p (else_bb))
3951 return FALSE;
3952 else
3953 else_succ = single_succ_edge (else_bb);
3955 /* ELSE outgoing edge is not complex. */
3956 if (else_succ->flags & EDGE_COMPLEX)
3957 return FALSE;
3959 /* ELSE has one predecessor. */
3960 if (!single_pred_p (else_bb))
3961 return FALSE;
3963 /* THEN is not EXIT. */
3964 if (then_bb->index < NUM_FIXED_BLOCKS)
3965 return FALSE;
3967 if (else_edge->probability)
3969 else_prob = else_edge->probability;
3970 then_prob = REG_BR_PROB_BASE - else_prob;
3972 else
3974 else_prob = REG_BR_PROB_BASE / 2;
3975 then_prob = REG_BR_PROB_BASE / 2;
3978 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3979 if (else_prob > then_prob)
3981 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3982 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3983 else_succ->dest))
3985 else
3986 return FALSE;
3988 num_possible_if_blocks++;
3989 if (dump_file)
3990 fprintf (dump_file,
3991 "\nIF-CASE-2 found, start %d, else %d\n",
3992 test_bb->index, else_bb->index);
3994 /* We're speculating from the ELSE path, we want to make sure the cost
3995 of speculation is within reason. */
3996 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
3997 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3998 predictable_edge_p (else_edge)))))
3999 return FALSE;
4001 /* Registers set are dead, or are predicable. */
4002 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4003 return FALSE;
4005 /* Conversion went ok, including moving the insns and fixing up the
4006 jump. Adjust the CFG to match. */
4008 df_set_bb_dirty (test_bb);
4009 df_set_bb_dirty (then_bb);
4010 delete_basic_block (else_bb);
4012 num_true_changes++;
4013 num_updated_if_blocks++;
4015 /* ??? We may now fallthru from one of THEN's successors into a join
4016 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4018 return TRUE;
4021 /* Used by the code above to perform the actual rtl transformations.
4022 Return TRUE if successful.
4024 TEST_BB is the block containing the conditional branch. MERGE_BB
4025 is the block containing the code to manipulate. DEST_EDGE is an
4026 edge representing a jump to the join block; after the conversion,
4027 TEST_BB should be branching to its destination.
4028 REVERSEP is true if the sense of the branch should be reversed. */
4030 static int
4031 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4032 basic_block other_bb, edge dest_edge, int reversep)
4034 basic_block new_dest = dest_edge->dest;
4035 rtx head, end, jump, earliest = NULL_RTX, old_dest;
4036 bitmap merge_set = NULL;
4037 /* Number of pending changes. */
4038 int n_validated_changes = 0;
4039 rtx new_dest_label = NULL_RTX;
4041 jump = BB_END (test_bb);
4043 /* Find the extent of the real code in the merge block. */
4044 head = BB_HEAD (merge_bb);
4045 end = BB_END (merge_bb);
4047 while (DEBUG_INSN_P (end) && end != head)
4048 end = PREV_INSN (end);
4050 /* If merge_bb ends with a tablejump, predicating/moving insn's
4051 into test_bb and then deleting merge_bb will result in the jumptable
4052 that follows merge_bb being removed along with merge_bb and then we
4053 get an unresolved reference to the jumptable. */
4054 if (tablejump_p (end, NULL, NULL))
4055 return FALSE;
4057 if (LABEL_P (head))
4058 head = NEXT_INSN (head);
4059 while (DEBUG_INSN_P (head) && head != end)
4060 head = NEXT_INSN (head);
4061 if (NOTE_P (head))
4063 if (head == end)
4065 head = end = NULL_RTX;
4066 goto no_body;
4068 head = NEXT_INSN (head);
4069 while (DEBUG_INSN_P (head) && head != end)
4070 head = NEXT_INSN (head);
4073 if (JUMP_P (end))
4075 if (head == end)
4077 head = end = NULL_RTX;
4078 goto no_body;
4080 end = PREV_INSN (end);
4081 while (DEBUG_INSN_P (end) && end != head)
4082 end = PREV_INSN (end);
4085 /* Disable handling dead code by conditional execution if the machine needs
4086 to do anything funny with the tests, etc. */
4087 #ifndef IFCVT_MODIFY_TESTS
4088 if (targetm.have_conditional_execution ())
4090 /* In the conditional execution case, we have things easy. We know
4091 the condition is reversible. We don't have to check life info
4092 because we're going to conditionally execute the code anyway.
4093 All that's left is making sure the insns involved can actually
4094 be predicated. */
4096 rtx cond, prob_val;
4098 cond = cond_exec_get_condition (jump);
4099 if (! cond)
4100 return FALSE;
4102 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4103 if (prob_val)
4104 prob_val = XEXP (prob_val, 0);
4106 if (reversep)
4108 enum rtx_code rev = reversed_comparison_code (cond, jump);
4109 if (rev == UNKNOWN)
4110 return FALSE;
4111 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4112 XEXP (cond, 1));
4113 if (prob_val)
4114 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
4117 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4118 && verify_changes (0))
4119 n_validated_changes = num_validated_changes ();
4120 else
4121 cancel_changes (0);
4123 earliest = jump;
4125 #endif
4127 /* If we allocated new pseudos (e.g. in the conditional move
4128 expander called from noce_emit_cmove), we must resize the
4129 array first. */
4130 if (max_regno < max_reg_num ())
4131 max_regno = max_reg_num ();
4133 /* Try the NCE path if the CE path did not result in any changes. */
4134 if (n_validated_changes == 0)
4136 rtx cond, insn;
4137 regset live;
4138 bool success;
4140 /* In the non-conditional execution case, we have to verify that there
4141 are no trapping operations, no calls, no references to memory, and
4142 that any registers modified are dead at the branch site. */
4144 if (!any_condjump_p (jump))
4145 return FALSE;
4147 /* Find the extent of the conditional. */
4148 cond = noce_get_condition (jump, &earliest, false);
4149 if (!cond)
4150 return FALSE;
4152 live = BITMAP_ALLOC (&reg_obstack);
4153 simulate_backwards_to_point (merge_bb, live, end);
4154 success = can_move_insns_across (head, end, earliest, jump,
4155 merge_bb, live,
4156 df_get_live_in (other_bb), NULL);
4157 BITMAP_FREE (live);
4158 if (!success)
4159 return FALSE;
4161 /* Collect the set of registers set in MERGE_BB. */
4162 merge_set = BITMAP_ALLOC (&reg_obstack);
4164 FOR_BB_INSNS (merge_bb, insn)
4165 if (NONDEBUG_INSN_P (insn))
4166 df_simulate_find_defs (insn, merge_set);
4168 #ifdef HAVE_simple_return
4169 /* If shrink-wrapping, disable this optimization when test_bb is
4170 the first basic block and merge_bb exits. The idea is to not
4171 move code setting up a return register as that may clobber a
4172 register used to pass function parameters, which then must be
4173 saved in caller-saved regs. A caller-saved reg requires the
4174 prologue, killing a shrink-wrap opportunity. */
4175 if ((flag_shrink_wrap && HAVE_simple_return && !epilogue_completed)
4176 && ENTRY_BLOCK_PTR->next_bb == test_bb
4177 && single_succ_p (new_dest)
4178 && single_succ (new_dest) == EXIT_BLOCK_PTR
4179 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4181 regset return_regs;
4182 unsigned int i;
4184 return_regs = BITMAP_ALLOC (&reg_obstack);
4186 /* Start off with the intersection of regs used to pass
4187 params and regs used to return values. */
4188 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4189 if (FUNCTION_ARG_REGNO_P (i)
4190 && targetm.calls.function_value_regno_p (i))
4191 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4193 bitmap_and_into (return_regs, df_get_live_out (ENTRY_BLOCK_PTR));
4194 bitmap_and_into (return_regs, df_get_live_in (EXIT_BLOCK_PTR));
4195 if (!bitmap_empty_p (return_regs))
4197 FOR_BB_INSNS_REVERSE (new_dest, insn)
4198 if (NONDEBUG_INSN_P (insn))
4200 df_ref *def_rec;
4201 unsigned int uid = INSN_UID (insn);
4203 /* If this insn sets any reg in return_regs.. */
4204 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4206 df_ref def = *def_rec;
4207 unsigned r = DF_REF_REGNO (def);
4209 if (bitmap_bit_p (return_regs, r))
4210 break;
4212 /* ..then add all reg uses to the set of regs
4213 we're interested in. */
4214 if (*def_rec)
4215 df_simulate_uses (insn, return_regs);
4217 if (bitmap_intersect_p (merge_set, return_regs))
4219 BITMAP_FREE (return_regs);
4220 BITMAP_FREE (merge_set);
4221 return FALSE;
4224 BITMAP_FREE (return_regs);
4226 #endif
4229 no_body:
4230 /* We don't want to use normal invert_jump or redirect_jump because
4231 we don't want to delete_insn called. Also, we want to do our own
4232 change group management. */
4234 old_dest = JUMP_LABEL (jump);
4235 if (other_bb != new_dest)
4237 if (JUMP_P (BB_END (dest_edge->src)))
4238 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4239 else if (new_dest == EXIT_BLOCK_PTR)
4240 new_dest_label = ret_rtx;
4241 else
4242 new_dest_label = block_label (new_dest);
4244 if (reversep
4245 ? ! invert_jump_1 (jump, new_dest_label)
4246 : ! redirect_jump_1 (jump, new_dest_label))
4247 goto cancel;
4250 if (verify_changes (n_validated_changes))
4251 confirm_change_group ();
4252 else
4253 goto cancel;
4255 if (other_bb != new_dest)
4257 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4259 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4260 if (reversep)
4262 gcov_type count, probability;
4263 count = BRANCH_EDGE (test_bb)->count;
4264 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4265 FALLTHRU_EDGE (test_bb)->count = count;
4266 probability = BRANCH_EDGE (test_bb)->probability;
4267 BRANCH_EDGE (test_bb)->probability
4268 = FALLTHRU_EDGE (test_bb)->probability;
4269 FALLTHRU_EDGE (test_bb)->probability = probability;
4270 update_br_prob_note (test_bb);
4274 /* Move the insns out of MERGE_BB to before the branch. */
4275 if (head != NULL)
4277 rtx insn;
4279 if (end == BB_END (merge_bb))
4280 BB_END (merge_bb) = PREV_INSN (head);
4282 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4283 notes being moved might become invalid. */
4284 insn = head;
4287 rtx note, set;
4289 if (! INSN_P (insn))
4290 continue;
4291 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4292 if (! note)
4293 continue;
4294 set = single_set (insn);
4295 if (!set || !function_invariant_p (SET_SRC (set))
4296 || !function_invariant_p (XEXP (note, 0)))
4297 remove_note (insn, note);
4298 } while (insn != end && (insn = NEXT_INSN (insn)));
4300 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4301 notes referring to the registers being set might become invalid. */
4302 if (merge_set)
4304 unsigned i;
4305 bitmap_iterator bi;
4307 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4308 remove_reg_equal_equiv_notes_for_regno (i);
4310 BITMAP_FREE (merge_set);
4313 reorder_insns (head, end, PREV_INSN (earliest));
4316 /* Remove the jump and edge if we can. */
4317 if (other_bb == new_dest)
4319 delete_insn (jump);
4320 remove_edge (BRANCH_EDGE (test_bb));
4321 /* ??? Can't merge blocks here, as then_bb is still in use.
4322 At minimum, the merge will get done just before bb-reorder. */
4325 return TRUE;
4327 cancel:
4328 cancel_changes (0);
4330 if (merge_set)
4331 BITMAP_FREE (merge_set);
4333 return FALSE;
4336 /* Main entry point for all if-conversion. */
4338 static void
4339 if_convert (void)
4341 basic_block bb;
4342 int pass;
4344 if (optimize == 1)
4346 df_live_add_problem ();
4347 df_live_set_all_dirty ();
4350 num_possible_if_blocks = 0;
4351 num_updated_if_blocks = 0;
4352 num_true_changes = 0;
4354 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4355 mark_loop_exit_edges ();
4356 loop_optimizer_finalize ();
4357 free_dominance_info (CDI_DOMINATORS);
4359 /* Compute postdominators. */
4360 calculate_dominance_info (CDI_POST_DOMINATORS);
4362 df_set_flags (DF_LR_RUN_DCE);
4364 /* Go through each of the basic blocks looking for things to convert. If we
4365 have conditional execution, we make multiple passes to allow us to handle
4366 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4367 pass = 0;
4370 df_analyze ();
4371 /* Only need to do dce on the first pass. */
4372 df_clear_flags (DF_LR_RUN_DCE);
4373 cond_exec_changed_p = FALSE;
4374 pass++;
4376 #ifdef IFCVT_MULTIPLE_DUMPS
4377 if (dump_file && pass > 1)
4378 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4379 #endif
4381 FOR_EACH_BB (bb)
4383 basic_block new_bb;
4384 while (!df_get_bb_dirty (bb)
4385 && (new_bb = find_if_header (bb, pass)) != NULL)
4386 bb = new_bb;
4389 #ifdef IFCVT_MULTIPLE_DUMPS
4390 if (dump_file && cond_exec_changed_p)
4392 if (dump_flags & TDF_SLIM)
4393 print_rtl_slim_with_bb (dump_file, get_insns (), dump_flags);
4394 else
4395 print_rtl_with_bb (dump_file, get_insns ());
4397 #endif
4399 while (cond_exec_changed_p);
4401 #ifdef IFCVT_MULTIPLE_DUMPS
4402 if (dump_file)
4403 fprintf (dump_file, "\n\n========== no more changes\n");
4404 #endif
4406 free_dominance_info (CDI_POST_DOMINATORS);
4408 if (dump_file)
4409 fflush (dump_file);
4411 clear_aux_for_blocks ();
4413 /* If we allocated new pseudos, we must resize the array for sched1. */
4414 if (max_regno < max_reg_num ())
4415 max_regno = max_reg_num ();
4417 /* Write the final stats. */
4418 if (dump_file && num_possible_if_blocks > 0)
4420 fprintf (dump_file,
4421 "\n%d possible IF blocks searched.\n",
4422 num_possible_if_blocks);
4423 fprintf (dump_file,
4424 "%d IF blocks converted.\n",
4425 num_updated_if_blocks);
4426 fprintf (dump_file,
4427 "%d true changes made.\n\n\n",
4428 num_true_changes);
4431 if (optimize == 1)
4432 df_remove_problem (df_live);
4434 #ifdef ENABLE_CHECKING
4435 verify_flow_info ();
4436 #endif
4439 static bool
4440 gate_handle_if_conversion (void)
4442 return (optimize > 0)
4443 && dbg_cnt (if_conversion);
4446 /* If-conversion and CFG cleanup. */
4447 static unsigned int
4448 rest_of_handle_if_conversion (void)
4450 if (flag_if_conversion)
4452 if (dump_file)
4453 dump_flow_info (dump_file, dump_flags);
4454 cleanup_cfg (CLEANUP_EXPENSIVE);
4455 if_convert ();
4458 cleanup_cfg (0);
4459 return 0;
4462 struct rtl_opt_pass pass_rtl_ifcvt =
4465 RTL_PASS,
4466 "ce1", /* name */
4467 gate_handle_if_conversion, /* gate */
4468 rest_of_handle_if_conversion, /* execute */
4469 NULL, /* sub */
4470 NULL, /* next */
4471 0, /* static_pass_number */
4472 TV_IFCVT, /* tv_id */
4473 0, /* properties_required */
4474 0, /* properties_provided */
4475 0, /* properties_destroyed */
4476 0, /* todo_flags_start */
4477 TODO_df_finish | TODO_verify_rtl_sharing |
4478 0 /* todo_flags_finish */
4482 static bool
4483 gate_handle_if_after_combine (void)
4485 return optimize > 0 && flag_if_conversion
4486 && dbg_cnt (if_after_combine);
4490 /* Rerun if-conversion, as combine may have simplified things enough
4491 to now meet sequence length restrictions. */
4492 static unsigned int
4493 rest_of_handle_if_after_combine (void)
4495 if_convert ();
4496 return 0;
4499 struct rtl_opt_pass pass_if_after_combine =
4502 RTL_PASS,
4503 "ce2", /* name */
4504 gate_handle_if_after_combine, /* gate */
4505 rest_of_handle_if_after_combine, /* execute */
4506 NULL, /* sub */
4507 NULL, /* next */
4508 0, /* static_pass_number */
4509 TV_IFCVT, /* tv_id */
4510 0, /* properties_required */
4511 0, /* properties_provided */
4512 0, /* properties_destroyed */
4513 0, /* todo_flags_start */
4514 TODO_df_finish | TODO_verify_rtl_sharing |
4515 TODO_ggc_collect /* todo_flags_finish */
4520 static bool
4521 gate_handle_if_after_reload (void)
4523 return optimize > 0 && flag_if_conversion2
4524 && dbg_cnt (if_after_reload);
4527 static unsigned int
4528 rest_of_handle_if_after_reload (void)
4530 if_convert ();
4531 return 0;
4535 struct rtl_opt_pass pass_if_after_reload =
4538 RTL_PASS,
4539 "ce3", /* name */
4540 gate_handle_if_after_reload, /* gate */
4541 rest_of_handle_if_after_reload, /* execute */
4542 NULL, /* sub */
4543 NULL, /* next */
4544 0, /* static_pass_number */
4545 TV_IFCVT2, /* tv_id */
4546 0, /* properties_required */
4547 0, /* properties_provided */
4548 0, /* properties_destroyed */
4549 0, /* todo_flags_start */
4550 TODO_df_finish | TODO_verify_rtl_sharing |
4551 TODO_ggc_collect /* todo_flags_finish */